WorldWideScience

Sample records for amplitude-modulated electromagnetic fields

  1. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  2. Electromagnetic fields and cancer

    International Nuclear Information System (INIS)

    Singh, Neeta; Mathur, R.; Behari, J.

    1997-01-01

    Several studies in recent years have raised the possibility that exposure to electromagnetic fields (EMFs) may be hazardous to human health, in particular by promotion or initiation of cancer. Recent reports have indicated increased cancer risk from industrial and domestic exposure to environmental ELF fields and to RF fields that are amplitude modulated at ELF. EMF fields have been reported to affect biological systems in various ways, affecting changes in the morphology and or functional behavior of cells, which have been observed in a variety of tissues. Although the mechanism of interaction of EMFs with living cells are not known, it has been proposed that they have multiple effects and can affect cell signalling, including modification of plasma membrane permeability and ion transport. Our findings suggest that EMFs can affect post translational modification of proteins such as poly ADP-ribosylation by epigenetic mechanism and that the effect of EMFs are highly specific regarding both the cell type and the frequency and amplification of the applied field. (author)

  3. Treating Cancer with Amplitude-Modulated Electromagnetic Fields: A Potential Paradigm Shift, Again?

    Science.gov (United States)

    The Zimmerman et al. (2011) study published here, coupled with the group's two preceding papers (Barbault et al. (2009), Costa et al. (2011)), identify a potential modality for treating tumors at a dramatic reduction in trauma and cost. This set of clinical and explanatory labora...

  4. What Are Electromagnetic Fields?

    Science.gov (United States)

    ... sources of electromagnetic fields Besides natural sources the electromagnetic spectrum also includes fields generated by human-made sources: ... ability to break bonds between molecules. In the electromagnetic spectrum, gamma rays given off by radioactive materials, cosmic ...

  5. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  6. Amplitude modulation reflectometer for FTU

    International Nuclear Information System (INIS)

    Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.

    1995-06-01

    Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed

  7. Introducing Electromagnetic Field Momentum

    Science.gov (United States)

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  8. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  9. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  10. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  11. Fringe image analysis based on the amplitude modulation method.

    Science.gov (United States)

    Gai, Shaoyan; Da, Feipeng

    2010-05-10

    A novel phase-analysis method is proposed. To get the fringe order of a fringe image, the amplitude-modulation fringe pattern is carried out, which is combined with the phase-shift method. The primary phase value is obtained by a phase-shift algorithm, and the fringe-order information is encoded in the amplitude-modulation fringe pattern. Different from other methods, the amplitude-modulation fringe identifies the fringe order by the amplitude of the fringe pattern. In an amplitude-modulation fringe pattern, each fringe has its own amplitude; thus, the order information is integrated in one fringe pattern, and the absolute fringe phase can be calculated correctly and quickly with the amplitude-modulation fringe image. The detailed algorithm is given, and the error analysis of this method is also discussed. Experimental results are presented by a full-field shape measurement system where the data has been processed using the proposed algorithm. (c) 2010 Optical Society of America.

  12. Evaluation of HSP70 expression and DNA damage in cells of a human trophoblast cell line exposed to 1.8 GHz amplitude-modulated radiofrequency fields.

    Science.gov (United States)

    Valbonesi, Paola; Franzellitti, Silvia; Piano, Annamaria; Contin, Andrea; Biondi, Carla; Fabbri, Elena

    2008-03-01

    The aim of this study was to determine whether high-frequency electromagnetic fields (EMFs) could induce cellular effects. The human trophoblast cell line HTR-8/SVneo was used as a model to evaluate the expression of proteins (HSP70 and HSC70) and genes (HSP70A, B, C and HSC70) of the HSP70 family and the primary DNA damage response after nonthermal exposure to pulse-modulated 1817 MHz sinusoidal waves (GSM-217 Hz; 1 h; SAR of 2 W/kg). HSP70 expression was significantly enhanced by heat, which was applied as the prototypical stimulus. The HSP70A, B and C transcripts were differentially expressed under basal conditions, and they were all significantly induced above basal levels by thermal stress. Conversely, HSC70 protein and gene expression was not influenced by heat. Exposing HTR-8/SVneo cells to high-frequency EMFs did not change either HSP70 or HSC70 protein or gene expression. A significant increase in DNA strand breaks was caused by exposure to H(2)O(2), which was used as a positive stimulus; however, no effect was observed after exposure of cells to high-frequency EMFs. Overall, no evidence was found that a 1-h exposure to GSM-217 Hz induced a HSP70-mediated stress response or primary DNA damage in HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations are needed.

  13. Electromagnetic Fields and Public Health: Mobile Phones

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Electromagnetic fields and public health: mobile phones Fact sheet N° ... Electromagnetic fields: base stations and wireless technologies Electromagnetic fields: electromagnetic ... research agenda for electromagnetic fields You ...

  14. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  15. Static electromagnetic field

    International Nuclear Information System (INIS)

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    The problem of static electromagnetic field admitting a time-like and two space-like Killing vectors is completely solved. The solutions contain plane-symmetric solution as a special case. The solutions can be transformed into solutions describing the gravitational field of a charge line-mass by suitably introducing weyl's canonical coordinates. Further, these solutions are true generalizations of Kasner solutions. (Author) [pt

  16. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  17. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  18. Electromagnetic Field Penetration Studies

    Science.gov (United States)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  19. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  20. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  1. Correlation of amplitude modulation to inflow characteristics

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2014-01-01

    Amplitude modulation (AM) of noise from wind turbines and its more extreme version named “other amplitude modulation” OAM have been investigated intensively during the last few years due to the additional annoyance impact this type of noise has compared to broad band noise. In a recent published...

  2. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    Science.gov (United States)

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  3. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  4. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  5. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  6. Nonlinear electromagnetic fields and symmetries

    Science.gov (United States)

    Barjašić, Irena; Gulin, Luka; Smolić, Ivica

    2017-06-01

    We extend the classical results on the symmetry inheritance of the canonical electromagnetic fields, described by the Maxwell's Lagrangian, to a much wider class of models, which include those of the Born-Infeld, power Maxwell and the Euler-Heisenberg type. Symmetry inheriting fields allow the introduction of electromagnetic scalar potentials and these are proven to be constant on the Killing horizons. Finally, using the relations obtained along the analysis, we generalize and simplify the recent proof for the symmetry inheritance of the 3-dimensional case, as well as give the first constraint for the higher dimensional electromagnetic fields.

  7. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  8. Electromagnetic fields in biological systems

    CERN Document Server

    Lin, James C

    2016-01-01

    As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...

  9. Self-dual electromagnetic fields

    Science.gov (United States)

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2010-08-01

    We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.

  10. Gauge invariant fractional electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)

    2011-09-26

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.

  11. Effects of amplitude modulation on perception of wind turbine noise

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2016-10-15

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.

  12. Effects of amplitude modulation on perception of wind turbine noise

    International Nuclear Information System (INIS)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young

    2016-01-01

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation

  13. A primer on electromagnetic fields

    CERN Document Server

    Frezza, Fabrizio

    2015-01-01

    This book is a concise introduction to electromagnetics and electromagnetic fields that covers the aspects of most significance for engineering applications by means of a rigorous, analytical treatment. After an introduction to equations and basic theorems, topics of fundamental theoretical and applicative importance, including plane waves, transmission lines, waveguides, and Green's functions, are discussed in a deliberately general way. Care has been taken to ensure that the text is readily accessible and self-consistent, with conservation of the intermediate steps in the analytical derivations. The book offers the reader a clear, succinct course in basic electromagnetic theory. It will also be a useful lookup tool for students and designers.

  14. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  15. Electromagnetic Fields Exposure Limits

    Science.gov (United States)

    2018-01-01

    Standard 5-2 Figure 5-3 Graphical Depiction of the IEEE C95.1TM-2005 Pulse RF Standard 5-3 with Thermally -Based Standard Extended Figure 5-4...Electromagnetic Ground Environment STO-TR-HFM-189 ix SLED Stanford Linear Energy Doubler SME Subject-Matter Expert SOH Safety and Occupational Health...as grasping versus touch. ICC will be a secondary project that will be addressed and scheduled as time permits and as laboratories are found to have

  16. Clinical importance of electromagnetic fields

    International Nuclear Information System (INIS)

    Ruppe, I.

    1993-01-01

    The clinical importance of most of the electromagnetic fields is not highly. Mostly they only have thermal effects, produced by energy-absorption. About 1 C increase of whole-body-temperature is valid for tolerable limit. For measuring is used the SAR-Value (Specific Absorption Rate) in W/kg body mass. SAR = 0,8W/kg for the whole body is valid to be safety. For the evaluation of possible other effects of electromagnetic fields the scientific knowledges are till now not sufficient to allow a final statement. That could be impacts of electromagnetic fields to conduction or switch processes in the nerves or brains, in the framwork of cellular regulations, in the genetic reactions are occurig is little, but if is necessary to find it out in scinentific investigations. (orig.) [de

  17. Traditional beliefs and electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Colin A. Ross

    2011-09-01

    Full Text Available The author proposes that a wide range of traditional beliefs and practices may provide clues to real electromagnetic field interactions in the biosphere. For instance, evil eye beliefs may be a cultural elaboration of the sense of being stared at, which in turn may have a basis in real electromagnetic emissions through the eye. Data to support this hypothesis are presented. Other traditional beliefs such as remote sensing of game and the importance of connection to the Earth Mother may also contain a kernel of truth. A series of testable scientific hypotheses concerning traditional beliefs and electromagnetic fields is presented. At this stage, the theory does not have sufficient evidence to be accepted as proven; its purpose is to stimulate thought and research

  18. Fast electromagnetic field strength probes

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Serra, Ramiro

    2013-01-01

    Diode detectors and thermocouple detectors are conventionally used to measure electromagnetic field strength. Both detectors have some disadvantages for applications where a fast response and a high dynamic range is required. The diode detector is limited in dynamic range. The dynamic range is

  19. Explanations, Education, and Electromagnetic Fields.

    Science.gov (United States)

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  20. Biological effects of electromagnetic fields

    International Nuclear Information System (INIS)

    David, E.

    1993-01-01

    In this generally intelligible article, the author describes at first the physical fundamentals of electromagnetic fields and their basic biological significance and effects for animals and human beings before dealing with the discussion regarding limiting values and dangers. The article treats possible connections with leukaemia as well as ith melatonine production more detailed. (vhe) [de

  1. Forces in electromagnetic field and gravitational field

    OpenAIRE

    Weng, Zihua

    2008-01-01

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...

  2. Health hazards and electromagnetic fields.

    Science.gov (United States)

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  3. Interactions between Electromagnetic Fields.

    Science.gov (United States)

    1985-02-10

    two compute the ionic fluxes produced by a low frequency low amplitude electrical field applied to a cell modelled by an Hodgkin and Huxley membrane...of the 7mutual rrst~co-t dis t-nce ir the .,-n ,qu-re sense, in the pre- .;enace of -n exccenous low-froi,, cnc y electric fl old. Ey doing so, th-!o...of low-omu.’li- t"ve el., extposure in three different .;iturtions. porturbetion of the Ca +4 influx Pcross the r.embr-.ne of :-: y cell; perturbc- tion

  4. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  5. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhao-Xiang; Gong, Lei [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031 (China); Vaveliuk, Pablo [Centro de Investigaciones Opticas (CONICET La Plata-CIC), Cno. Centenario y 506, P.O. Box 3, 1897 Gonnet, La Plata, Pcia. de Buenos Aires (Argentina); Chen, Yue; Lu, Rong-De, E-mail: lrd@ustc.edu.cn [Physics Experiment Teaching Center, School of Physical Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  6. Gallilei covariant quantum mechanics in electromagnetic fields

    Directory of Open Access Journals (Sweden)

    H. E. Wilhelm

    1985-01-01

    Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.

  7. Controlling the evolution of nondiffracting speckle by complex amplitude modulation on a phase-only spatial light modulator

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2011-09-01

    Full Text Available amplitude modulation on a phase-only spatial light modulator to implement controlled ring-slit experiments for the generation of nondiffracting speckle fields. The structure of the nondiffracting speckle due to binary and continuous phase modulations...

  8. Particle physics in intense electromagnetic fields

    International Nuclear Information System (INIS)

    Kurilin, A.V.

    1999-01-01

    The quantum field theory in the presence of classical background electromagnetic field is reviewed giving a pedagogical introduction to the Feynman-Furry method of describing non-perturbative interactions with very strong electromagnetic fields. A particular emphasis is given to the case of the plane-wave electromagnetic field for which the charged particles' wave functions and propagators are presented. Some general features of quantum processes proceeding in the intense electromagnetic background are argued. The possibilities of searching new physics through the investigations of quantum phenomena induced by a strong electromagnetic environment are also discussed

  9. Wireless Phones Electromagnetic Field Radiation Exposure Assessment

    OpenAIRE

    A. D. Usman; W. F.W. Ahmad; M. Z.A.A. Kadir; M. Mokhtar

    2009-01-01

    Problem statement: Inadequate knowledge of electromagnetic field emitted by mobile phones and increased usage at close proximity, created a lot of skepticism and speculations among end users on its safety or otherwise. Approach: In this study, near field electromagnetic field radiation measurements were conducted on different brand of mobile phones in active mode using a tri-axis isotropic probe and electric field meter. Results: The highest electromagnetic field exposure was recorded when th...

  10. Electromagnetic fields, environment and health

    CERN Document Server

    Perrin, Anne

    2013-01-01

    A good number of false ideas are circulating on the effects of non-ionizing radiations on our health, which can lead to an oversimplification of the issue, to potentially dangerous misconceptions or to misleading data analysis. Health effects may be exaggerated, or on the contrary underplayed. The authors of this work (doctors, engineers and researchers) have endeavored to supply validated and easily understandable scientific information on the electromagnetic fields and their biological and health effects. After a general review of the physics of the waves and a presentation of non-ionizing r

  11. Numerical analysis of electromagnetic fields

    CERN Document Server

    Zhou Pei Bai

    1993-01-01

    Numerical methods for solving boundary value problems have developed rapidly. Knowledge of these methods is important both for engineers and scientists. There are many books published that deal with various approximate methods such as the finite element method, the boundary element method and so on. However, there is no textbook that includes all of these methods. This book is intended to fill this gap. The book is designed to be suitable for graduate students in engineering science, for senior undergraduate students as well as for scientists and engineers who are interested in electromagnetic fields. Objective Numerical calculation is the combination of mathematical methods and field theory. A great number of mathematical concepts, principles and techniques are discussed and many computational techniques are considered in dealing with practical problems. The purpose of this book is to provide students with a solid background in numerical analysis of the field problems. The book emphasizes the basic theories ...

  12. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, D. S., E-mail: dsj23@cam.ac.uk, E-mail: rd448@cam.ac.uk; Kindness, S. J.; Ren, Y.; Beere, H. E.; Ritchie, D. A.; Degl' Innocenti, R., E-mail: dsj23@cam.ac.uk, E-mail: rd448@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Xiao, L.; Braeuninger-Weimer, P.; Hofmann, S. [Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Lin, H.; Zeitler, J. A. [Department of Chemical Engineering & Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Ren, C. X. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2016-04-25

    The terahertz (THz) region of the electromagnetic spectrum holds great potential in many fields of study, from spectroscopy to biomedical imaging, remote gas sensing, and high speed communication. To fully exploit this potential, fast optoelectronic devices such as amplitude and phase modulators must be developed. In this work, we present a room temperature external THz amplitude modulator based on plasmonic bow-tie antenna arrays with graphene. By applying a modulating bias to a back gate electrode, the conductivity of graphene is changed, which modifies the reflection characteristics of the incoming THz radiation. The broadband response of the device was characterized by using THz time-domain spectroscopy, and the modulation characteristics such as the modulation depth and cut-off frequency were investigated with a 2.0 THz single frequency emission quantum cascade laser. An optical modulation cut-off frequency of 105 ± 15 MHz is reported. The results agree well with a lumped element circuit model developed to describe the device.

  13. Parametric resonances in the amplitude-modulated probe-field absorption spectrum of a two-level atom driven by a resonance amplitude- and phase-modulated pumping field

    International Nuclear Information System (INIS)

    Sushilov, N.V.; Kholodkevich, E.D.

    1995-01-01

    An analytical expression is derived for the polarization induced by a weak probe field with periodically modulated amplitude in a two-level medium saturated by a strong amplitude-and phase-modulated resonance field. It is shown that the absorption spectrum of the probe field includes parametric resonances, the maxima corresponding to the condition δ= 2nΓ-Ω w and the minima to that of δ= (2n + 1)Γ- w , where δ is the probe-field detuning front the resonance frequency, Ω w is the modulation frequency of the probe-field amplitude, and Γ is the transition line width, n = 1, 2, 3, hor-ellipsis. At the specific modulation parameters, a substantial region of negative values (i.e., the region of amplification without the population inversion) exists in the absorption spectrum of the probe field

  14. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  15. Statistical measurements of fast changing electromagnetic fields

    NARCIS (Netherlands)

    Serra, Ramiro; Serra, Ramiro; Leferink, Frank Bernardus Johannes

    2010-01-01

    The present works aims at describing important statistical indexes such as the field uniformity, the field inhomogeneity and the statistics near the cavity walls for a special case of fast changing random electromagnetic fields. We generate this kind of electromagnetic environment by means of a

  16. Quantization of Electromagnetic Fields in Cavities

    Science.gov (United States)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  17. Invariants in electromagnetic and gravitational adjoint fields

    OpenAIRE

    Weng, Zihua

    2008-01-01

    The paper discusses the impact of adjoint fields on the conservation laws in the gravitational field and electromagnetic field, by means of the characteristics of octonions. When the adjoint field can not be neglected, it will cause the predictions to departure slightly from the conservation laws, which include mass continuity equation, charge continuity equation, and conservation of spin. The adjoint field of electromagnetic field has an effect on conservation of mass, and that of gravitatio...

  18. Modulator-free quadrature amplitude modulation signal synthesis

    Science.gov (United States)

    Liu, Zhixin; Kakande, Joseph; Kelly, Brian; O'Carroll, John; Phelan, Richard; Richardson, David J.; Slavík, Radan

    2014-12-01

    The ability to generate high-speed on-off-keyed telecommunication signals by directly modulating a semiconductor laser’s drive current was one of the most exciting prospective applications of the nascent field of laser technology throughout the 1960s. Three decades of progress led to the commercialization of 2.5 Gbit s-1-per-channel submarine fibre optic systems that drove the growth of the internet as a global phenomenon. However, the detrimental frequency chirp associated with direct modulation forced industry to use external electro-optic modulators to deliver the next generation of on-off-keyed 10 Gbit s-1 systems and is absolutely prohibitive for today’s (>)100 Gbit s-1 coherent systems, which use complex modulation formats (for example, quadrature amplitude modulation). Here we use optical injection locking of directly modulated semiconductor lasers to generate complex modulation format signals showing distinct advantages over current and other currently researched solutions.

  19. Noninvasive valve monitor using alternating electromagnetic field

    Science.gov (United States)

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  20. Medical applications of electromagnetic fields

    Science.gov (United States)

    Lai, Henry C.; Singh, Narendra P.

    2010-04-01

    In this article, we describe two possible applications of low-intensity non-ionizing electromagnetic fields (EMF) for the treatment of malaria and cancer, respectively. In malaria treatment, a low-intensity extremely-low frequency magnetic field can be used to induce vibration of hemozoin, a super-paramagnetic polymer particle, inside malaria parasites. This disturbance could cause free radical and mechanical damages leading to the death of the parasite. This concept has been tested in vitro on malaria parasites and found to be effective. This may provide a low cost effective treatment for malaria infection in humans. The rationale for cancer treatment using low-intensity EMF is based on two concepts that have been well established in the literature: (1) low-intensity non-thermal EMF enhances cytotoxic free radicals via the iron-mediated Fenton reaction; and (2) cancer cells have higher amounts of free iron, thus are more susceptible to the cytotoxic effects of EMF. Since normal cells contain minimal amount of free iron, the effect would be selectively targeting cancer cells. Thus, no adverse side effect would be expected as in traditional chemotherapy and radiation therapy. This concept has also been tested on human cancer cell and normal cells in vitro and proved to be feasible.

  1. Generating highly uniform electromagnetic field characteristics

    Science.gov (United States)

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  2. Scattering by an electromagnetic radiation field

    Science.gov (United States)

    Bini, D.; Geralico, A.

    2012-02-01

    Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term à la Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle’s rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the electromagnetic wave, i.e., scalar (spin 0), massless spin (1)/(2) and electromagnetic (spin 1) fields, is studied too.

  3. Interactions between electromagnetic fields and matter

    CERN Document Server

    Steiner, Karl-Heinz

    2013-01-01

    Interactions between Electromagnetic Fields and Matter deals with the principles and methods that can amplify electromagnetic fields from very low levels of signals. This book discusses how electromagnetic fields can be produced, amplified, modulated, or rectified from very low levels to enable these for application in communication systems. This text also describes the properties of matter and some phenomenological considerations to the reactions of matter when an action of external fields results in a polarization of the particle system and changes the bonding forces existing in the matter.

  4. Genetic effects of nonionizing electromagnetic fields

    International Nuclear Information System (INIS)

    Lai, Henry

    2001-01-01

    Due to the increased use of electricity and wireless communication devices, there is a concern on whether exposure to nonionizing electromagnetic fields (50/60 Hz fields and radiofrequency radiation) can lead to harmful health effects, particularly, genetic effects and cancer development. This presentation will review recent research on genetic effects of power line frequency and radiofrequency electromagnetic fields. Even though the mechanism of interaction is still unknown, there is increasing evidence that these electromagnetic fields at low intensities can cause genetic damage in cells. There is also evidence suggesting that the effects are caused by oxidative stress. (author)

  5. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  6. Electromagnetic-gravitational conversion cross sections in external electromagnetic fields

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Dang Van Soa; Tuan Tran, A.

    1994-09-01

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condenser and the magnetic field of the solenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario. (author). 11 refs

  7. [Electromagnetic fields--effects on health].

    Science.gov (United States)

    Stepansky, R; Jahn, O; Windischbauer, G; Zeitlhofer, J

    2000-01-01

    This literature review shows the current knowledge of health effects on humans concerning static, low frequency electric and magnetic fields and high frequency electromagnetic fields up to 300 GHz. Basic physical knowledge and the current thresholds are demonstrated. Different frequency ranges of electromagnetic fields, their natural and technical origins and the different biological effects, especially possible hazards such as cancerogenity or risks for the brain, are discussed. Open questions and future research aspects are demonstrated. Finally electrosensibility and psychological aspects are shown.

  8. Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2015-01-01

    Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.

  9. Biological Effects of Electromagnetic Fields

    Science.gov (United States)

    2006-11-27

    of 5.5 mT (Bmax) were generated by a doughnut -shaped annular electromagnet device. A rabbit in a holder was placed into the annular electromagnets...powerful tools to stimulate a range of benefits for society, in addition to economic development. However, technological progress in the broadest sense...disease is one of the biggest, if not the biggest problem and challenge, economically as well as in terms of animal welfare and environmental pressure

  10. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  11. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  12. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    Science.gov (United States)

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P.; Landes, Christy F.

    2013-09-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors.

  13. Extending single molecule fluorescence observation time by amplitude-modulated excitation

    International Nuclear Information System (INIS)

    Kisley, Lydia; Chang, Wei-Shun; Cooper, David; Mansur, Andrea P; Landes, Christy F

    2013-01-01

    We present a hardware-based method that can improve single molecule fluorophore observation time by up to 1500% and super-localization by 47% for the experimental conditions used. The excitation was modulated using an acousto-optic modulator (AOM) synchronized to the data acquisition and inherent data conversion time of the detector. The observation time and precision in super-localization of four commonly used fluorophores were compared under modulated and traditional continuous excitation, including direct total internal reflectance excitation of Alexa 555 and Cy3, non-radiative Förster resonance energy transfer (FRET) excited Cy5, and direct epi-fluorescence wide field excitation of Rhodamine 6G. The proposed amplitude-modulated excitation does not perturb the chemical makeup of the system or sacrifice signal and is compatible with multiple types of fluorophores. Amplitude-modulated excitation has practical applications for any fluorescent study utilizing an instrumental setup with time-delayed detectors. (technical note)

  14. Wireless data transmission from inside electromagnetic fields.

    Science.gov (United States)

    Huertas, José Ignacio; Barraza, Roberto; Echeverry, Julian Mauricio

    2010-01-01

    This paper describes analytical and experimental work developed to evaluate the effects of the electromagnetic fields produced by high-voltage lines (400 kV) on wireless data transmission at the 900MHz band. In this work the source of the data transmission is located inside the electromagnetic field and the reception station is located at different distances from the power lines. Different atmospheric conditions are considered.

  15. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  16. Narrow field electromagnetic sensor system and method

    Science.gov (United States)

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  17. Fluid/Gravity Correspondence with Scalar Field and Electromagnetic Field

    OpenAIRE

    Chou, Chia-Jui; Wu, Xiaoning; Yang, Yi; Yuan, Pei-Hung

    2016-01-01

    We consider fluid/gravity correspondence in a general rotating black hole background with scalar and electromagnetic fields. Using the method of Petrov-like boundary condition, we show that the scalar and the electromagnetic fields contribute external forces to the dual Navier-Stokes equation and the rotation of black hole induces the Coriolis force.

  18. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  19. Calculating Electromagnetic Fields Of A Loop Antenna

    Science.gov (United States)

    Schieffer, Mitchell B.

    1987-01-01

    Approximate field values computed rapidly. MODEL computer program developed to calculate electromagnetic field values of large loop antenna at all distances to observation point. Antenna assumed to be in x-y plane with center at origin of coordinate system. Calculates field values in both rectangular and spherical components. Also solves for wave impedance. Written in MicroSoft FORTRAN 77.

  20. Program For Displaying Computed Electromagnetic Fields

    Science.gov (United States)

    Hom, Kam W.

    1995-01-01

    EM-ANIMATE computer program specialized visualization displays and animates output data on near fields and surface currents computed by electromagnetic-field program - in particular MOM3D (LAR-15074). Program based on windows and contains user-friendly, graphical interface for setting viewing options, selecting cases, manipulating files, and like. Written in FORTRAN 77. EM-ANIMATE also available as part of package, COS-10048, includes MOM3D, IRIS program computing near-field and surface-current solutions of electromagnetic-field equations.

  1. Electromagnetic radiation field of an electron avalanche

    Science.gov (United States)

    Cooray, Vernon; Cooray, Gerald

    2012-11-01

    Electron avalanches are the main constituent of electrical discharges in the atmosphere. However, the electromagnetic radiation field generated by a single electron avalanche growing in different field configurations has not yet been evaluated in the literature. In this paper, the electromagnetic radiation fields created by electron avalanches were evaluated for electric fields in pointed, co-axial and spherical geometries. The results show that the radiation field has a duration of approximately 1-2 ns, with a rise time in the range of 0.25 ns. The wave-shape takes the form of an initial peak followed by an overshoot in the opposite direction. The electromagnetic spectrum generated by the avalanches has a peak around 109 Hz.

  2. INVESTIGATION OF ELECTROMAGNETIC FIELDS IN RESIDENTIAL AREAS

    Directory of Open Access Journals (Sweden)

    Dušan MEDVEĎ

    2017-09-01

    Full Text Available This article is devoted to investigation of impact of electromagnetic fields around the electrical equipment used in a residential area and their impact on the human body. This paper was based on sets of measurements of magnetic induction B with magnetometer and on computational simulations in ANSYS for particular appliances often used in household. The results from measurements and simulations led to setting out the recommendations for practical action in the form of elimination of harmful electromagnetic radiation.

  3. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  4. Electromagnetic fields in fractal continua

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Mena, Baltasar [Instituto de Ingeniería, Universidad Nacional Autónoma de México, México D.F. (Mexico); Patiño, Julián [Grupo “Mecánica Fractal”, Instituto Politécnico Nacional, México D.F., 07738 Mexico (Mexico); Morales, Daniel [Instituto Mexicano del Petróleo, México D.F., 07730 Mexico (Mexico)

    2013-04-01

    Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum Φ{sub D}{sup 3}⊂E{sup 3} with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space F{sup α} accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.

  5. Charged particles in external electromagnetic fields

    International Nuclear Information System (INIS)

    Giovannini, N.P.D.

    1976-01-01

    The present study contains a general theoretical group analysis of the problem of a charged massive particle moving in an (arbitrary) classical external electromagnetic field. This analysis is essentially based on the space-time symmetry properties of e.m. fields and e.m. field equations, as well as the fact that the considered equations of motion depend on the field via a potential

  6. Differential form representation of stochastic electromagnetic fields

    Science.gov (United States)

    Haider, Michael; Russer, Johannes A.

    2017-09-01

    In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.

  7. Highly excited atom in the electromagnetic field

    International Nuclear Information System (INIS)

    Delone, N.B.; Krajnov, V.P.; Shepelyanskij, D.L.; AN SSSR, Novosibirsk. Inst. Yadernoj Fiziki)

    1983-01-01

    Properties of highly excited atom placed in electromagnetic field are reviewed. Probabilities of bound-boUnd and bound-free transition between quasi-classical atomic states, as well approximate rules of selection for such transitions, are considered. Properties of dynamic polarization of highly excited atomic states are investigated. Quantum mechanisms of ionization (multiphoton and tunnel) of highly excited states are discussed. A considerable part of the review is devoted to the consideration of the stochastic dynamics of the classic atomic electron in the variable monochromatic electromagnetic field. Threshold values of field intensity for the appearance of stochastic electron motion and atom ionization depending on field frequency, its polarization and the main quantum number of the atomic state considered are presented. The effect of the orbital moment of the ionized state on the process of stochasticity appearance is discussed. In the framework of classical mechanics and quasiclassical approximation of quantum mechanics the classical diffusion ionization of highly excited atom in electromagnetic field is considered. The problem on the application of classical mechanics in the investigation of properties of highly excited atom in electromagnetic field is discussed. Conditions for the realization of quantum and quasiclassic ionization of highly excited atoms are considered. In the last part of the review experimental data on the behaviour of highly excited atoms in the field of radiofrequency range are analyzed. The comparison of the data of experiments and those of the theory given in the revieW deronstrate their good agreement

  8. Amplitude Modulation in the δ Sct star KIC 7106205

    Directory of Open Access Journals (Sweden)

    Bowman Dominic. M.

    2015-01-01

    Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.

  9. External and internal limitations in amplitude-modulation processing

    DEFF Research Database (Denmark)

    Ewert, Stephan; Dau, Torsten

    2004-01-01

    Three experiments are presented to explore the relative role of "external" signal variability and "internal" resolution limitations of the auditory system in the detection and discrimination of amplitude modulations (AM). In the first experiment, AM-depth discrimination performance was determined......-term average envelope power spectrum was held constant. The experiment examined the validity of a long-term average quantity as the decision variable, and the role of memory in experiments with frozen-noise maskers. The empirical results were compared to predictions obtained with two modulation...

  10. Tadpole diagrams in constant electromagnetic fields

    Science.gov (United States)

    Karbstein, Felix

    2017-10-01

    We show how all possible one-particle reducible tadpole diagrams in constant electromagnetic fields can be constructed from one-particle irreducible constant-field diagrams. The construction procedure is essentially algebraic and involves differentiations of the latter class of diagrams with respect to the field strength tensor and contractions with derivatives of the one-particle irreducible part of the Heisenberg-Euler effective Lagrangian in constant fields. Specific examples include the two-loop addendum to the Heisenberg-Euler effective action as well as a novel one-loop correction to the charged particle propagator in constant electromagnetic fields discovered recently. As an additional example, the approach devised in the present article is adopted to derive the tadpole contribution to the two-loop photon polarization tensor in constant fields for the first time.

  11. Scattering by an electromagnetic radiation field

    OpenAIRE

    Bini, Donato; Geralico, Andrea

    2014-01-01

    Motion of test particles in the gravitational field associated with an electromagnetic plane wave is investigated. The interaction with the radiation field is modeled by a force term {\\it \\`a la} Poynting-Robertson entering the equations of motion given by the 4-momentum density of radiation observed in the particle's rest frame with a multiplicative constant factor expressing the strength of the interaction itself. Explicit analytical solutions are obtained. Scattering of fields by the elect...

  12. Atom collisions in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Smirnov, V.S.; Chaplik, A.V.

    1976-01-01

    It is shown that the long-range part of interatomic interaction is considerably altered in a strong electromagnetic field. Instead of the van der Waals law the potential asymptote can best be described by a dipole-dipole R -3 law. Impact broadening and the line shift in a strong nonresonant field are calculated. The possibility of bound states of two atoms being formed in a strong light field is discussed

  13. Electromagnetic field representation in inhomogeneous anisotropic media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.

  14. Modulo 2 periodicity of complex Clifford algebras and electromagnetic field

    OpenAIRE

    Varlamov, Vadim V.

    1997-01-01

    Electromagnetic field is considered in the framework of Clifford algebra $\\C_2$ over a field of complex numbers. It is shown here that a modulo 2 periodicity of complex Clifford algebras may be connected with electromagnetic field.

  15. Relativistic motion in a constant electromagnetic field

    International Nuclear Information System (INIS)

    Chin, Siu A.

    2009-01-01

    For a relativistic charged particle moving in a constant electromagnetic field, its velocity 4-vector has been well studied. However, despite the fact that both the electromagnetic field and the equations of motion are purely real, the resulting 4-velocity is seemingly due to a complex electromagnetic field. This work shows that this is not due to some complex formalism used (such as Clifford algebra) but is intrinsically due to the fact that the o(3,1) Lie algebra of the Lorentz group is equivalent to two commuting complex su(2) algebras. Expressing the complex su(2) generators in terms of the boost and rotation operators then naturally introduces a complex electromagnetic field. This work solves the equation of motion not as a matrix equation, but as an operator evolution equation in terms of the generators of the Lorentz group. The factorization of the real evolution operator into two commuting complex evolution operators then directly gives the time evolution of the velocity 4-vector without any reference to an intermediate field

  16. Electromagnetics

    CERN Document Server

    Rothwell, Edward J

    2009-01-01

    Introductory concepts Notation, conventions, and symbology The field concept of electromagneticsThe sources of the electromagnetic field Problems Maxwell's theory of electromagnetism The postulate Maxwell's equations in moving frames The Maxwell-Boffi equations Large-scale form of Maxwell's equationsThe nature of the four field quantities Maxwell's equations with magnetic sources Boundary (jump) conditions Fundamental theorems The wave nature of the electromagnetic field ProblemsThe static electromagnetic field Static fields and steady currents ElectrostaticsMagnetostatics Static field theorem

  17. Temporal response properties of retinal ganglion cells in rd1 mice evoked by amplitude-modulated electrical pulse trains.

    Science.gov (United States)

    Ryu, Sang Baek; Ye, Jang Hee; Goo, Yong Sook; Kim, Chi Hyun; Kim, Kyung Hwan

    2010-12-01

    The electrophysiological properties of degenerated retinas responding to amplitude-modulated electrical pulse trains were investigated to provide a guideline for the development of a stimulation strategy for retinal prostheses. The activities of retinal ganglion cells (RGCs) in response to amplitude-modulated pulse trains were recorded from an in vitro model of retinal prosthesis, which consisted of an rd1 mouse retinal patch attached to a planar multielectrode array. The ability of the population activities of RGCs to effectively represent, or encode, the information on the visual intensity time series, when the intensity of visual input is transformed to pulse amplitudes, was investigated. An optimal pulse amplitude range was selected so that RGC firing rates increased monotonically and linearly. An approximately 10-Hz rhythm was observed in the field potentials from degenerated retinas, which resulted in a rhythmic burst of spontaneous spikes. Multiple peaks were present in poststimulus time histograms, with interpeak intervals corresponding to the oscillation frequency of the field potentials. Phase resetting of the field potential oscillation by stimulation was consistently observed. Despite a prominent alteration of the properties of electrically evoked firing with respect to normal retinas, RGC response strengths could be modulated by pulse amplitude. Accordingly, the temporal information of stimulation could be faithfully represented in the RGC firing patterns by an amplitude-modulated pulse train. The results suggest that pulse amplitude modulation is a feasible means of implementing a stimulation strategy for retinal prostheses, despite the marked change in the physiological properties of RGCs in degenerated retinas.

  18. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  19. Annoyance of wind-turbine noise as a function of amplitude-modulation parameters

    DEFF Research Database (Denmark)

    Ioannidou, Christina; Santurette, Sébastien; Jeong, Cheol-Ho

    Amplitude modulation (AM) has been suggested as an important factor for the perceived annoyance of wind-turbine noise (WTN). Two AM types, typically referred to as “normal AM” and “other AM,” depending on the AM extent and frequency region, have been proposed to characterize WTN AM. The extent...... the spectrotemporal characteristics of the original far-field stimuli were included in the model and the temporal AM variations were taken into account by varying the modulation index over time, neither AM frequency nor AM type were found to significantly affect annoyance. These findings suggest that the effect of AM...

  20. At the heart of the waves - Electromagnetic fields in question

    International Nuclear Information System (INIS)

    Ndagijimana, Fabien; Gaudaire, Francois

    2013-01-01

    This document briefly presents a book in which the author describes what an electromagnetic wave is, the use of electromagnetic waves, how an information is transmitted by means of an electromagnetic wave, what wave modulation is, what multiplexing is, what the characteristics of an antenna are, how waves propagate, how electromagnetic shielding works, what the CEM (electromagnetic compatibility) is, and how a cellular phone network works, in the framework of electromagnetic fields risk assessment

  1. Gene transcription and electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  2. Ionization in a quantized electromagnetic field

    International Nuclear Information System (INIS)

    Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.

    2007-01-01

    An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field

  3. Electromagnetic fields - introduction to relevant issues

    International Nuclear Information System (INIS)

    Brueggemeyer, H.; Csicsaky, M.

    1993-01-01

    This introductory paper surveys potential sources of electric magnetic, and electro-magnetic fields. Various cases are discussed to exemplify the total frequency range: nuclear magnetic resonance tomography, high-voltage transmission lines, transformer stations, effect lighting balls, military transmitters, transmitter towers of the Postal Services and other operators, mobile radiotelephone equipment, large broadcasting transmitters, radar radiation, high-frequency heat therapy. There is evidence suggesting that electric, magnetic and electro-magnetic fields may possibly represent a certain nuisance or health hazard even at field strength occuring in equipment used for every-day-life purposes, with an emphasis on their possible actions and effects in children and adolescents. The author discusses, in conclusion, the aerial equipment ordinance issued by Lower Saxony. (Uhe) [de

  4. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia

    Directory of Open Access Journals (Sweden)

    Yolanda Peñaloza-López

    2016-04-01

    Full Text Available ABSTRACT Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA and Sinusoidal amplitude modulation (SAM threshold in children with Phonological dyslexia (PD. Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  5. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.

    Science.gov (United States)

    Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián

    2016-04-01

    Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  6. Topology optimization of nanoparticles for localized electromagnetic field enhancement

    DEFF Research Database (Denmark)

    Christiansen, Rasmus Ellebæk; Vester-Petersen, Joakim; Madsen, Søren Peder

    2017-01-01

    We consider the design of individual and periodic arrangements of metal or semiconductor nanoparticles for localized electromagnetic field enhancement utilizing a topology optimization based numerical framework as the design tool. We aim at maximizing a function of the electromagnetic field...

  7. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  8. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  9. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  10. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  11. 78 FR 33633 - Human Exposure to Radiofrequency Electromagnetic Fields

    Science.gov (United States)

    2013-06-04

    ..., and 15, et al. Human Exposure to Radiofrequency Electromagnetic Fields; Reassessment of Exposure to Radiofrequency Electromagnetic Fields Limits and Policies; Final Rule and Proposed Rule #0;#0;Federal Register... Radiofrequency Electromagnetic Fields AGENCY: Federal Communications Commission. ACTION: Final rule. SUMMARY...

  12. Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.

    Science.gov (United States)

    Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta

    2014-01-01

    Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas

  13. Electromagnetic fields in a thermal background

    CERN Document Server

    Elmfors, Per; Per Elmfors; Bo-Sture Skagerstam

    1994-01-01

    The one-loop effective action for a slowly varying electromagnetic field is computed at finite temperature and density using a real-time formalism. Some earlier errors in the literature are corrected. The effective coupling constant, defined from a purely electric weak-field expansion, behaves at high temperature very differently from the case of a magnetic field, and does not satisfy the renormalization group equation. No thermal corrections to pair production are found at the one-loop level in this formalism.

  14. Electromagnetic fields: principles of exposure mitigation.

    Science.gov (United States)

    Falsaperla, Rosaria; Spagnoli, Giuseppe; Rossi, Paolo

    2006-01-01

    Basic principles of reducing exposure to electromagnetic fields are reviewed in this article. Measures to reduce exposure can be divided into organisational/administrative and technical/engineering actions. Both strategies are briefly analysed and the basic principles of the theory of shielding are presented. A definition of shielding effectiveness (SE) is given, and the results from the general Transmission Lines Theory are presented. Practical situations of shielding static and time-varying electric and magnetic fields are discussed on the basis of the physical properties of the fields and of the shield.

  15. Electromagnetic fields with vanishing scalar invariants

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-01-01

    Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein-Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010

  16. Electromagnetic fields with vanishing scalar invariants

    Czech Academy of Sciences Publication Activity Database

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-01-01

    Roč. 33, č. 11 (2016), s. 115010 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : electromagnetic fields * n-dimensional spacetime * Einstein -Maxwell equations Subject RIV: BA - General Mathematics Impact factor: 3.119, year: 2016 http://dx.doi.org/10.1088/0264-9381/33/11/115010

  17. [Safety and electromagnetic compatibility in sanitary field].

    Science.gov (United States)

    Bini, M; Feroldi, P; Ferri, C; Ignesti, A; Olmi, R; Priori, S; Riminesi, C; Tobia, L

    2012-01-01

    In sanitary field and especially in a hospital, multiple sources of non ionizing radiation are used for diagnostic and therapeutic aims. In sanitary sector both workers and users are present at the same time, and in some cases general population could need higher protection than workers in relationship to the exposition to electromagnetic fields. In order to protect health and safety of patients, general population and workers of hospitals and with the aim to identify, analyze, evaluate and study its level of significance, electrical, magnetic and electromagnetic sources Research Italian project Si.C.E.O. (Safety And Electromagnetic Compatibility In Sanitary Field) was instituted. Target of our research project was to deepen risk of exposition elements with analysis of outdoor (e.g. power lines, transmission cabinets) and indoor (e.g. equipment for physical therapy) sources, located in sanitary structures and to verify the level exposition of workers and common population end the respect of specific regulation, and finally to define technical and organizational measures really useful for protection and reduction of risk.

  18. The automatic electromagnetic field generating system

    Science.gov (United States)

    Audone, B.; Gerbi, G.

    1982-07-01

    The technical study and the design approaches adopted for the definition of the automatic electromagnetic field generating system (AEFGS) dedicated to EMC susceptibility testing are presented. The AEFGS covers the frequency range 10 KHz to 40 GHZ and operates successfully in the two EMC shielded chambers at ESTEC. The performance of the generators/amplifiers subsystems, antennas selection, field amplitude and susceptibility feedback and monitoring systems is described. System control modes which guarantee the AEFGS full operability under different test conditions are discussed. Advantages of automation of susceptibility testing include increased measurement accuracy and testing cost reduction.

  19. Electromagnetic fields with vanishing quantum corrections

    Science.gov (United States)

    Ortaggio, Marcello; Pravda, Vojtěch

    2018-04-01

    We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.

  20. On electromagnetic field problems in inhomogeneous media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Analysis of electromagnetic fields in inhomogeneous media is of practical interest in general scattering and propagation problems and in the study of lenses. For certain types of inhomogeneities, the fields may be represented in terms of two scalars. In a general orthogonal coordinate system, these potentials satisfy second order differential equations. Exact solutions of these equations are known only for a few particular cases and in general, an approximate or numerical technique must be employed. The present work reviews and generalizes some of the main methods of attack of the problem. The results are presented in a form appropriate for numerical computation.

  1. High range electromagnetic fields. Experimental investigations

    International Nuclear Information System (INIS)

    Comino, E.; Boccardo, D.; Quaglino, A.

    2001-01-01

    It has been often discussed on the health effects from the electromagnetic fields, and nowadays this theme is particularly controlled and studied by the research-workers. It needs to know what is the risk connected to the exposure to the electromagnetism during a short or a long quantity of time and what are the health pathologies caused by the continue exposure. On one hand the results from epidemiological research can not still define the effect of the dose, on the other hand the legislative frame is variously fragmented and based on cautious concepts. But in this work, under the collaboration of Energy Resources Laboratory in Lausanne and the Geo resources and Territory Department in Turin University, are presented the early results on the experiments got out on high frequency (950 MHZ) in order to give a contribution to the debate between the scientific community and the public opinion [it

  2. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, T.; Estrada, T.; Luna, E. de la.

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  3. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  4. Electromagnetic fields, pacemakers and defibrillators; Champs electromagnetiques, cardiostimulateurs et defibrillateurs

    Energy Technology Data Exchange (ETDEWEB)

    Guiguet, J.C. [Agence Nationale des Frequences (ANFR), 94 - Maisons Alfort (France); Dodinot, B.; Sadoul, N.; Blangy, H. [Centre Hospitalier Universitaire Nancy-Brabois, Clinique Cardiologique, 54 - Vandoeuvre Brabois (France); Nadi, M.; Hedjiedj, A.; Schmitt, P. [Universite Henri Poincare-Nancy, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France); Joly, L.; Dodinot, B.; Aliot, E. [Centre Hospitalier Universitaire Nancy-Brabois, Service de Cardiologie, 54 - Vandoeuvre-les-Nancy (France); Silny, J. [Aachen University (Germany); Franck, R.; Himbert, C.; Hidden-Lucet, F.; Petitot, J.C.; Fontaine, G. [Hopital Pitie-Salpetriere, Institut de Cardiologie, Service de Rythmologie, 75 - Paris (France); Souques, M.; Lambrozo, J. [Electricite de France (EDF-Gaz de France), Service des Etudes Medicales, 75 - Paris (France); Magne, I.; Bailly, J.M. [Electricite de France (EDF-Gaz de France), Div. Recherche Developpement, 77 - Moret sur Loing (France); Trigano, J.A. [Centre Hospitalier Universitaire, Hopital Nord, 13 - Marseille (France); Burais, N. [CEGELY, Ecole Centrale de Lyon, 69 - Ecully (France); Gaspard, J.Y. [Magtech, 69 - Ecully (France); Andrivet, Ph. [Societe Medtronic France, 92 - Boulogne-Billancourt (France)

    2004-07-01

    Presentation of electromagnetic sources constituted by various radio transmitters contributing to different radio communication services in the environment. Results of a measures campaign to assess the electromagnetic field in the close neighbourhood of various stations. Analysis by frequency domains. (author)

  5. Electromagnetic Fields and Waves in Fractional Dimensional Space

    CERN Document Server

    Zubair, Muhammad; Naqvi, Qaisar Abbas

    2012-01-01

    This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's

  6. Low frequency electromagnetic fields and health problems

    International Nuclear Information System (INIS)

    Zahedi, A.; Cosic, I.

    1996-01-01

    Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when

  7. Electromagnetic fields on a quantum scale. I.

    Science.gov (United States)

    Grimes, Dale M; Grimes, Craig A

    2002-10-01

    This is the first in a series of two articles, the second of which provides an exact electro-magnetic field description of photon emission, absorption, and radiation pattern. Photon energy exchanges are analyzed and shown to be the triggered, regenerative response of a non-local eigenstate electron. This first article presents a model-based, hidden variable analysis of quantum theory that provides the statistical nature of wave functions. The analysis uses the equations of classical electro-magnetism and conservation of energy while modeling an eigenstate electron as a nonlocal entity. Essential to the analysis are physical properties that were discovered and analyzed only after the historical interpretation of quantum mechanics was established: electron non-locality and the standing electro-magnetic energy that accompanies and encompasses an active, electrically small volume. The standing energy produces a driving radiation reaction force that, under certain circumstances, is many orders of magnitude larger than currently accepted values. These properties provide a sufficient basis for the Schrödinger equation as a descriptor of non-relativistic eigenstate electrons in or near equilibrium. The uncertainty principle follows, as does the exclusion principle. The analysis leads to atomic stability and causality in the sense that the status of physical phenomena at any instant specifies the status an instant later.

  8. Child leukaemia and low frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Clavel, J.

    2009-01-01

    The author discusses the possible causes of child leukaemia: exposure to natural ionizing radiation (notably radon), to pesticides, and to hydrocarbons emitted by road traffic. Some studies suggested that an inadequate reaction of the immune system to an ordinary infection could result in leukaemia. Other factors are suspected, notably extremely low frequency electromagnetic fields, the influence of which is then discussed by the author. She evokes and discusses results of different investigations on this topic which have been published since the end of the 1970's. It appears that a distance less than 50 meters from high voltage lines or the vicinity of transformation stations may double the risk of child leukaemia

  9. Electromagnetic processes in strong crystalline fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  10. Electromagnetic Processes in strong Crystalline Fields

    CERN Multimedia

    2007-01-01

    We propose a number of new investigations on aspects of radiation from high energy electron and positron beams (10-300 GeV) in single crystals and amorphous targets. The common heading is radiation emission by electrons and positrons in strong electromagnetic fields, but as the setup is quite versatile, other related phenomena in radiation emission can be studied as well. The intent is to clarify the role of a number of important aspects of radiation in strong fields as e.g. observed in crystals. We propose to measure trident 'Klein-like' production in strong crystalline fields, 'crystalline undulator' radiation, 'sandwich' target phenomena, LPM suppression of pair production as well as axial and planar effects in contributions of spin to the radiation.

  11. Auditory stream segregation using amplitude modulated bandpass noise

    Directory of Open Access Journals (Sweden)

    Yingjiu eNie

    2015-08-01

    Full Text Available The purpose of this study was to investigate the roles of spectral overlap and amplitude modulation (AM rate for stream segregation for noise signals, as well as to test the build-up effect based on these two cues. Segregation ability was evaluated using an objective paradigm with listeners’ attention focused on stream segregation. Stimulus sequences consisted of two interleaved sets of bandpass noise bursts (A and B bursts. The A and B bursts differed in spectrum, AM-rate, or both. The amount of the difference between the two sets of noise bursts was varied. Long and short sequences were studied to investigate the build-up effect for segregation based on spectral and AM-rate differences. Results showed the following: 1. Stream segregation ability increased with greater spectral separation. 2. Larger AM-rate separations were associated with stronger segregation abilities. 3. Spectral separation was found to elicit the build-up effect for the range of spectral differences assessed in the current study. 4. AM-rate separation interacted with spectral separation suggesting an additive effect of spectral separation and AM-rate separation on segregation build-up. The findings suggest that, when normal-hearing listeners direct their attention toward segregation, they are able to segregate auditory streams based on reduced spectral contrast cues that vary by the amount of spectral overlap. Further, regardless of the spectral separation they were able to use AM-rate difference as a secondary/weaker cue. Based on the spectral differences, listeners can segregate auditory streams better as the listening duration is prolonged—i.e. sparse spectral cues elicit build-up segregation; however, AM-rate differences only appear to elicit build-up when in combination with spectral difference cues.

  12. Electron diffusion due to electromagnetic field fluctuations

    International Nuclear Information System (INIS)

    Yamagishi, T.

    1986-01-01

    Cross field electron diffusion induced by low frequency electromagnetic field fluctuations is investigated by the test particle approach based on the drift kinetic equation with the number conserving Krook collision term within the limit of quasilinear analysis in slab geometry. The diffusion coefficient is described in terms of a form factor which consists of three portions; the wave number and frequency spectra of density fluctuations, the effect of longitudinal wave-particle interaction, and the transverse dispersion function. The transverse dispersion gives the plasma skin depth as the characteristic scale length, which yields the Alcator-like scaling of the diffusion coefficient. The form factor shows a resonance-like behavior due to the magnetic part of fluctuations at the drift frequency, which indicates the importance of density fluctuations near the frequency in the electromagnetic plasma turbulence. This resonance is enhanced with increasing the plasma pressure, and finally the transition of the Alcator scaling is possible in the case of narrow band turbulence. The transitions of the Alcator scaling by the effect of collision is also derived in the single mode approximation. (author)

  13. Electromagnetic multipole fields of neutron stars

    Science.gov (United States)

    Roberts, W. J.

    1979-01-01

    A formalism is developed for treating general multipole electromagnetic fields of neutron stars. The electric multipoles induced in a neutron star by its rotation with an arbitrary magnetic multipole at its center are presented. It is shown how to express a family of off-centered multipoles having the same l weight as an infinite array of centered multipoles of increasing l weight referred to the rotational axis. General expressions are given for the linear momentum present in the superposition of arbitrary multipole fields, and the results are combined to compute the radiation rate of linear momentum by an off-centered dipole to zeroth order in the parameter Omega x R/c. The general Deutsch (1955) solution is then rederived in a clear consistent manner, and some minor additions and corrections are provided.

  14. Exposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow.

    Science.gov (United States)

    Huber, R; Treyer, V; Schuderer, J; Berthold, T; Buck, A; Kuster, N; Landolt, H P; Achermann, P

    2005-02-01

    We investigated the effects of radio frequency electromagnetic fields (RF EMF) similar to those emitted by mobile phones on waking regional cerebral blood flow (rCBF) in 12 healthy young men. Two types of RF EMF exposure were applied: a 'base-station-like' and a 'handset-like' signal. Positron emission tomography scans were taken after 30 min unilateral head exposure to pulse-modulated 900 MHz RF EMF (10 g tissue-averaged spatial peak-specific absorption rate of 1 W/kg for both conditions) and sham control. We observed an increase in relative rCBF in the dorsolateral prefrontal cortex on the side of exposure. The effect depended on the spectral power in the amplitude modulation of the RF carrier such that only 'handset-like' RF EMF exposure with its stronger low-frequency components but not the 'base-station-like' RF EMF exposure affected rCBF. This finding supports our previous observation that pulse modulation of RF EMF is necessary to induce changes in the waking and sleep EEG, and substantiates the notion that pulse modulation is crucial for RF EMF-induced alterations in brain physiology.

  15. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    Science.gov (United States)

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  16. Open bosonic string in background electromagnetic field

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1987-01-01

    The classical and quantum dynamics of an open string propagating in the D-dimensional space-time in the presence of a background electromagnetic field is investigated. An important point in this consideration is the use of the generalized light-like gauge. There are considered the strings of two types; the neutral strings with charges at their ends obeying the condition q 1 +q 2 =0 and the charged strings having a net charge q 1 +q 2 ≠ 0. The consistency of theory demands that the background electric field does not exceed its critical value. The distance between the mass levels of the neutral open string decreases (1-e 2 ) times in comparison with the free string, where e is the dimensionless strength of the electric field. The magnetic field does not affect this distance. It is shown that at a classical level the squared mass of the neutral open string has a tachyonic contribution due to the motion of the string as a whole in transverse directions. The tachyonic term disappears if one considers, instead of M 2 , the string energy in a special reference frame where the projection of the total canonical momentum of the string onto the electric field vanishes. The contributions due to zero point fluctuations to the energy spectrum of the neutral string and to the Virasoro operators in the theory of charged string are found

  17. The electromagnetic field equations for moving media

    International Nuclear Information System (INIS)

    Ivezić, T

    2017-01-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F ( x ) and ℳ ( x ) are presented and then these equations are written with the 4D vectors E ( x ), B ( x ), P ( x ) and M ( x ). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime (paper)

  18. Visualizing electromagnetic fields in metals by MRI

    Directory of Open Access Journals (Sweden)

    Chandrika Sefcikova Chandrashekar

    2017-02-01

    Full Text Available Based upon Maxwell’s equations, it has long been established that oscillating electromagnetic (EM fields incident upon a metal surface, decay exponentially inside the conductor, leading to a virtual absence of EM fields at sufficient depths. Magnetic resonance imaging (MRI utilizes radiofrequency (r.f. EM fields to produce images. Here we present a visualization of a virtual EM vacuum inside a bulk metal strip by MRI, amongst several findings. At its simplest, an MRI image is an intensity map of density variations across voxels (pixels of identical size (=Δx Δy Δz. By contrast in bulk metal MRI, we uncover that despite uniform density, intensity variations arise from differing effective elemental volumes (voxels from different parts of the bulk metal. Further, we furnish chemical shift imaging (CSI results that discriminate different faces (surfaces of a metal block according to their distinct nuclear magnetic resonance (NMR chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expected to grow in importance. The findings here may impact further development of bulk metal MRI and CSI.

  19. Electromagnetic fields produced by simulated spacecraft discharges

    Science.gov (United States)

    Nonevicz, J. E.; Adamo, R. C.; Beers, B. L.; Delmer, T. N.

    1980-01-01

    The initial phase of a broader, more complete program for the characterization of electrical breakdowns on spacecraft insulating materials is described which consisted of the development of a discharge simulator and characterization facility and the performance of a limited number of discharge measurements to verify the operation of the laboratory setup and to provide preliminary discharge transient field data. A preliminary model of the electromagnetic characteristics of the discharge was developed. It is based upon the "blow off" current model of discharges, with the underlying assumption of a propagating discharge. The laboratory test facility and discharge characterization instrumentation are discussed and the general results of the "quick look" tests are described on quartz solar reflectors aluminized Kapton and silver coated Teflon are described.

  20. Electromagnetic field and mechanical stress analysis code

    International Nuclear Information System (INIS)

    1978-01-01

    Analysis TEXMAGST is a two stage linear finite element code for the analysis of static magnetic fields in three dimensional structures and associated mechanical stresses produced by the anti J x anti B forces within these structures. The electromagnetic problem is solved in terms of magnetic vector potential A for a given current density anti J as curl 1/μ curl anti A = anti J considering the magnetic permeability as constant. The Coulombian gauge (div anti A = o) was chosen and was implemented through the use of Lagrange multipliers. The second stage of the problem - the calculation of mechanical stresses in the same three dimensional structure is solved by using the same code with few modifications - through a restart card. Body forces anti J x anti B within each element are calculated from the solution of the first stage run and represent the input to the second stage run which will give the solution for the stress problem

  1. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  2. Geometrization of the electromagnetic field and dark matter

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2005-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field

  3. The Universal C*-Algebra of the Electromagnetic Field

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2016-02-01

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of the field such as Maxwell's equations, Poincaré covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  4. Electromagnetic field, excited by monodirected X-radiation pulse

    International Nuclear Information System (INIS)

    Zhemerov, A.V.; Metelkin, E.V.

    1994-01-01

    Parameters of electromagnetic field, generated in the atmosphere by monodirected pulse source of X radiation located at the altitude of approximately several kilometers have been estimated by the method of delayed potentials. The source radiation is directed towards the Earth surface. The conclusion was made that restricted areas of approximately 1 km with considerable pulse electromagnetic fields can be created on the Earth surface

  5. Assessment of Electromagnetic Fields at NASA Langley Research Center

    Science.gov (United States)

    Ficklen, Carter B.

    1995-01-01

    This report presents the results of an assessment of ElectroMagnetic Fields (EMF) completed at NASA Langley Research Center as part of the Langley Aerospace Research Summer Scholars Program. This project was performed to determine levels of electromagnetic fields, determine the significance of the levels present, and determine a plan to reduce electromagnetic field exposure, if necessary. This report also describes the properties of electromagnetic fields and their interaction with humans. The results of three major occupational epidemiological studies is presented to determine risks posed to humans by EMF exposure. The data for this report came from peer-reviewed journal articles and government publications pertaining to the health effects of electromagnetic fields.

  6. Interacting massless scalar and source-free electromagnetic fields

    International Nuclear Information System (INIS)

    Ayyangar, B.R.N.; Mohanty, G.

    1985-01-01

    The relativistic field equations for interacting massless attractive scalar and source-free electromagnetic fields in a cylindrically symmetric spacetime of one degree of freedom with reflection symmetry have been reduced to a first order implicit differential equation depending on time which enables one to generate a class of solution to the field equations. The nature of the scalar and electromagnetic fields is discussed. It is shown that the geometry of the spacetime admits of an irrotational stiff fluid distribution without prejudice to the interacting electromagnetic fields. 10 refs. (author)

  7. Exposure to power frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Skotte, J.

    1993-01-01

    The purpose was to asses personal exposure to power frequency electromagnetic fields in Denmark. Exposure to electrical and magnetic 50 Hz fields were measured with personal dosimeters in periods of 24 hours covering both occupational and residential environments. The study included both highly exposed and 'normal' exposed jobs. Measurements were carried out with dosimeters, which sample electrical and magnetic fields every 5 sec. Participants also wore the dosimeter during transportation. The dynamic range of the dosimeters was 0.01-200 μT and 0.6-10000 V/m. The highest average exposure in homes near high power lines was 2.24 μT. In most homes without nearby high power lines the average exposure was below 0.05 μT. Average values of '24-hour-dose' (μT times hours) for the generator facility, transmission line and substation workers were approximately the same as for the people living near high power lines (5 μT x hours). Electric field measurements with personal dosimeters involve several factors of uncertainty, as the body, posture, position of dosimeter etc. influence the results. The highest exposed groups were transmission line workers (GM: 44 V/m) and substation workers (GM: 23 V/m) but there were large variations (GSD: 4.7-4.8). In the work time the exposure level was the same for office workers and workers in the industry groups (GM: 12-13 V/m). In homes near high power lines (GM: 23 V/m) there was a non-significant tendency to higher exposure compared to homes without nearby high power lines. (AB) (11 refs.)

  8. The universal C*-algebra of the electromagnetic field

    OpenAIRE

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-01-01

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwell's equations, Poincar\\'e covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with f...

  9. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  10. Exposure of Nurses to Electromagnetic Fields

    International Nuclear Information System (INIS)

    Zmyslony, M.; Mamrot, P.; Politanski, P.

    2004-01-01

    Devices that produce electromagnetic fields (EMF) within the range of 0-300 GHz are widely used in surgical and diagnostic procedures. As a result a large number of physicians and other groups of medical personnel may be exposed to EMF. Even if patients' exposure, sometimes quite high, is inevitable or even recommended, medical personnel should be substantially protected against EMF exposure. Evaluation of nurses' exposure to EMF was based on an analysis of EMF magnitudes in the surrounding of magnetic resonance imaging (MRI) and electrosurgical units. These two kinds of apparatus are the strongest EMF sources in health service facilities. The measurements were performed according to the norms and hygiene regulations binding in Poland. Measurements performed by the Nofer Institute of Medicine in Lodz, and data collected by the Central Database on EMF Sources were used in the analysis. The Central Database is run by the Nofer Institute of Medicine at the behest of the Chief Sanitary Inspector. The study showed that nurses' exposure to EMF emitted by MRI and electrosurgical units complies with Polish norms and hygiene regulations and can be classified as negligible or allowable. It was found that work of nurses in exposure to EMF emitted by MRI and electrosurgical units can be regarded as safe, which means that their health should not be endangered by the performed job. (author)

  11. [Dynamics of biomacromolecules in coherent electromagnetic radiation field].

    Science.gov (United States)

    Leshcheniuk, N S; Apanasevich, E E; Tereshenkov, V I

    2014-01-01

    It is shown that induced oscillations and periodic displacements of the equilibrium positions occur in biomacromolecules in the absence of electromagnetic radiation absorption, due to modulation of interaction potential between atoms and groups of atoms forming the non-valence bonds in macromolecules by the external electromagnetic field. Such "hyperoscillation" state causes inevitably the changes in biochemical properties of macromolecules and conformational transformation times.

  12. Integrated field equations methods for the computation of electromagnetic fields in strongly inhomogeneous media

    NARCIS (Netherlands)

    Jorna, P.

    2005-01-01

    Electromagnetic field theory plays a very important role in present-day technology; examples of technologies based on electromagnetism that are inextricably bound up with every day life are: radar, remote sensing, geoelectromagnetics, bioelectromagnetics, antennas, wireless communication, optics,

  13. Schwinger mechanism in electromagnetic field in de Sitter spacetime

    Directory of Open Access Journals (Sweden)

    Bavarsad Ehsan

    2018-01-01

    Full Text Available We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.

  14. Schwinger mechanism in electromagnetic field in de Sitter spacetime

    Science.gov (United States)

    Bavarsad, Ehsan; Pyo Kim, Sang; Stahl, Clément; Xue, She-Sheng

    2018-01-01

    We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.

  15. A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  16. Algebraic structure of general electromagnetic fields and energy flow

    International Nuclear Information System (INIS)

    Hacyan, Shahen

    2011-01-01

    Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  17. A novel injection-locked amplitude-modulated magnetron at 1497 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Muons Inc., Batavia, IL (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-12-15

    Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of six to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.

  18. A Unified Field Theory of Gravity, Electromagnetism, and theA Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold $S_4$ via the connection, with the generalized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  19. Geometrization of the Electromagnetic Field and Dark Matter

    CERN Document Server

    Pestov, I B

    2005-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...

  20. On quantization of the electromagnetic field in radiation gauge

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper contains a detailed description of quantization of the electromagnetic field (in radiation gauge) and quantization of some basic physical variables connected with radiation field as energy, momentum and spin. The dynamics of the free quantum radiation field and the field interacting with external classical sources is described. The canonical formalism is not used explicity. (author)

  1. Impact of electromagnetic field on the pathogenicity of selected ...

    African Journals Online (AJOL)

    Rhipicephalus decoloratus) to variable intensities of electromagnetic field for different periods of time was examined on their pathogenicity on tick. Some bacterial isolates from the macerate of tick cadavers were used in the infection of healthy engorged ...

  2. Rydberg atoms ionization by microwave field and electromagnetic pulses

    International Nuclear Information System (INIS)

    Kaulakys, B.; Vilutis, G.

    1995-01-01

    A simple theory of the Rydberg atoms ionization by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionization of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionization theory

  3. [Pulsed electromagnetic fields (PEMF)--results in evidence based medicine].

    Science.gov (United States)

    Pieber, Karin; Schuhfried, Othmar; Fialka-Moser, Veronika

    2007-01-01

    Therapy with electromagnetic fields has a very old tradition in medicine. The indications are widespread, whereas little is known about the effects. Controlled randomizied studies with positive results for pulsed electromagnetic fields (PEMF) are available for osteotomies, the healing of skin wounds, and osteoarthritis. Comparison of the studies is difficult because of the different doses applied and intervals of therapy. Therefore recommendations regarding an optimal dosis and interval are, depending on the disease, quite variable.

  4. Open bosonic strings in a background isotropic electromagnetic field

    International Nuclear Information System (INIS)

    Koshkarov, A.L.; Nesterenko, V.V.

    1989-01-01

    The first-quantized theory of open bosonic strings in a background isotropic electromagnetic field is constructed. Two types of the open strings, neutral and charged, are considered. The modified light-like gauge conditions are introduced, general solutions of the equations of motion are obtained and the consistency of the theory does not entails the constraints on the strength of an external isotropic electromagnetic field. 11 refs

  5. Quantized motion of Rydberg atoms in an amplitude-modulated lattice potential

    Science.gov (United States)

    Malinovsky, Vladimir; Moore, Kaitlin; Ramos, Andira; Georg, Georg

    2017-04-01

    We present a model description of the spectroscopic line shape of Rydberg transitions in an amplitude-modulated Rydberg-atom lattice taking into account the quantization of the center-of-mass motion. In our model, the wave function of both ground and excited states are subject to the periodic potentials that arise from the optical-lattice fields. In contrast to other spectroscopic scheme, in our work the coupling (the effective Rabi frequency) is also periodic as function of the translational coordinate, and it is perfectly phase-locked to the lattice trapping potential. By solving the time-dependent Schrödinger equation in momentum representation we obtain the spectrum of the excited-state population. The numerical results for the momentum components of the ground and excited wave functions are averaged over the thermal momentum distribution of the Rydberg atoms. The effect of the lattice parameters and the interaction strength on the line shape of the Rydberg transitions is discussed.

  6. The power and beauty of electromagnetic fields

    CERN Document Server

    Morgenthaler, Frederic R

    2011-01-01

    Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems.

  7. Cooling of BITTER-type electromagnetic coils with intense field

    International Nuclear Information System (INIS)

    Fournier, Jacques

    1966-01-01

    After having outlined the various problems faced when designing BITTER-type electromagnetic coils with axial cooling (evacuation of the power dissipated in the coil, electromagnetic forces, fabrication and machining technologies, corrosion and erosion due to the presence of water and to potential differences), the author of this research thesis reports the study of the cooling of such an electromagnetic coil. In order to know the heat power to be evacuated for a given field, both the power and the field must be computed, but the influence of cooling holes on these both values is not well known. Thus, the author reports the study of the influence of these holes on the power to be dissipated by these holes, and on the magnetic field. Then, he studies how this power is evacuated, and determines heat exchange relationships for the coil canals. He finally discusses how the obtained results can be used to design an advanced electromagnetic coil [fr

  8. Responses to amplitude modulated infrared stimuli in the guinea pig inferior colliculus

    Science.gov (United States)

    Richter, Claus-Peter; Young, Hunter

    2013-03-01

    Responses of units in the central nucleus of the inferior colliculus of the guinea pig were recorded with tungsten electrodes. The set of data presented here is limited to high stimulus levels. The effect of changing the modulation frequency and the modulation depth was explored for acoustic and laser stimuli. The selected units responded to sinusoidal amplitude modulated (AM) tones, AM trains of clicks, and AM trains of laser pulses with a modulation of their spike discharge. At modulation frequencies of 20 Hz, some units tended to respond with 40 Hz to the acoustic stimuli, but only at 20 Hz for the trains of laser pulses. For all modes of stimulation the responses revealed a dominant response to the first cycle of the modulation, with decreasing number of action potential during successive cycles. While amplitude modulated tone bursts and amplitude modulated trains of acoustic clicks showed similar patterns, the response to trains of laser pulses was different.

  9. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    Science.gov (United States)

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  10. Cytological effects of pulsed electromagnetic fields and static ...

    African Journals Online (AJOL)

    Background: There is a trend towards the use of magnetic fields in medicine. Pulsed electromagnetic fields (PEMFs) technology was based upon 20 years of fundamental studies on the electromechanical properties of bone and other connective tissues. More recently, these magnetic fields have been used to treat several ...

  11. Computationally Efficient Amplitude Modulated Sinusoidal Audio Coding using Frequency-Domain Linear Prediction

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jensen, Søren Holdt

    2006-01-01

    A method for amplitude modulated sinusoidal audio coding is presented that has low complexity and low delay. This is based on a subband processing system, where, in each subband, the signal is modeled as an amplitude modulated sum of sinusoids. The envelopes are estimated using frequency......-domain linear prediction and the prediction coefficients are quantized. As a proof of concept, we evaluate different configurations in a subjective listening test, and this shows that the proposed method offers significant improvements in sinusoidal coding. Furthermore, the properties of the frequency...

  12. Wave electromagnetic fields induced by instantaneous braking of charges

    International Nuclear Information System (INIS)

    Kon'kov, V.L.; Novikova, G.P.

    1981-01-01

    Exact expressions for wave electromagnetic fields during instantaneous braking of two differently charged discs uniformly moving in the opposite directions have been derived. Analysis of their properties has been made. It is shown that electromagnetic wave fields during instantaneous braking of charges have a tearing nature and the Umov-Poynting theorem in the integral form is realized only at a certain value of parameter α which determines charges rates at the moment of braking. The value of parameter α is in the ranges from 0.5 to √3/2. The wave field is formed already in the absence of motion of charged discs. It is a good example confirming the conclusion that in the case of nonstationary electromagnetic fields, performance of reaction force of the wave field can differ fram radiation energy [ru

  13. Electromagnetic waves in optical fibres in a magnetic field

    International Nuclear Information System (INIS)

    Gorelik, V S; Burdanova, M G

    2016-01-01

    A new method is reported of recording the secondary radiation of luminescent substances based on the use of capillary fibres of great length. Theoretical analysis of the dispersion curves of electromagnetic radiation in capillary fibres doped with erbium ions Er 3+ has been established. The Lorentz model is used for describing the dispersion properties of electromagnetic waves in a homogeneous medium doped with rare-earth ions. The dispersion dependencies of polariton and axion–polariton waves in erbium nitrate hydrate are determined on the basis of the model of the interaction between electromagnetic waves and the resonance electronic states of erbium ions in the absence and presence of a magnetic field. (paper)

  14. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    International Nuclear Information System (INIS)

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  15. MESA: a new configuration for measuring electromagnetic field fluctuations.

    Science.gov (United States)

    Harte, T M; Black, D L; Hollinshead, M T

    1999-11-01

    This paper describes how the multi-energy sensor array has been refitted to meet the needs of measuring geomagnetic and other types of electromagnetic phenomena in an environment. This portable laptop computer system was designed to measure the interaction of multiple frequencies with the psychological and physiological processes that underlie human exposure to electromagnetic fields across the spectra. New sensors and analytical software have been implemented in the new configuration.

  16. Suppression and control of leakage field in electromagnetic helical microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Ohigashi, N. [Kansai Univ., Osaka (Japan); Tsunawaki, Y. [Osaka Sangyo Univ. (Japan); Imasaki, K. [Institute for Laser Technology, Osaka (Japan)] [and others

    1995-12-31

    Shortening the period of electromagnetic wiggler introduces both the radical increase of the leakage field and the decrease of the field in the gap region. The leakage field is severer problem in planar electromagnetic wiggler than in helical wiggler. Hence, in order to develop a short period electromagnetic wiggler, we have adopted {open_quotes}three poles per period{close_quotes} type electromagnetic helical microwiggler. In this work, we inserted the permanent magnet (PM) blocks with specific magnetized directions in the space between magnetic poles, for suppressing the leakage field flowing out from a pole face to the neighboring pole face. These PM-blocks must have higher intrinsic coersive force than saturation field of pole material. The gap field due to each pole is adjustable by controlling the leakage fields, that is, controlling the position of each iron screw set in each retainer fixing the PM-blocks. At present time, a test wiggler with period 7.8mm, periodical number 10 and gap length 4.6mm has been manufactured. Because the ratio of PM-block aperture to gap length is important parameter to suppress the leakage field, the parameter has been surveyed experimentally for PM-blocks with several dimensions of aperture. The field strength of 3-5kG (K=0.2-0.4) would be expected in the wiggler.

  17. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  18. Effect of an electromagnetic field on the spectra and elliptic flow of particles

    OpenAIRE

    Feng, Bohao; Wang, Zeyan

    2017-01-01

    In 2+1 dimensions, the evolution of flow under the influence of an external electromagnetic field is simulated. The external electromagnetic field is exponentially decaying with time. Under the same initial conditions, flow evolution with and without the external electromagnetic field is compared. It was found that the production of particles was enhanced when the external electromagnetic field was present. As the strength of the electromagnetic field increased, more particles were produced. ...

  19. Reasearch and Evaluation of Electromagnetic Fields of Refrigerators

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2013-12-01

    Full Text Available The use of refrigerators causes the occurence of electromagnetic fields that are invisible and intangible, which therefore makes difficulties in protecting ourselves from them. A refrigerator is an irreplaceable item in domestic household and thus can be hardly ignored by a modern way of human life. In order to preserve the characteristics of products, the refrigerator must operate continuously (24 hrs a day, regardless of the time of the year. This results in a huge increase in electricity consumption, which leads to energy consumption related pollution of the environment emitting CO2 gas. On these grounds, it is necessary to assess electromagnetic fields created by the refrigerator. Studies on electromagnetic fields produced by refrigerators were conducted in domestic premises where people spent a significant part of the day. For comparison purposes, five different power refrigerators were chosen (1 – 0.20 kW; 2 – 0.25 kW; 3 – 0.30 kW; 4 – 0.35 kW; 5 – 0.40 kW. The obtained results, according to the parameters of their electromagnetic fields, were presented in graphs and charts and showed that the values of electric and magnetic intensity of refrigerators depended on the distance and the power of the refrigerator. The conducted research also disclosed that none of tested refrigerators exceeded the permissible limits of electromagnetic fields.Article in Lithuanian

  20. Radar transponder operation with compensation for distortion due to amplitude modulation

    Science.gov (United States)

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  1. A New Selective Harmonic Elimination Pulse- Width and Amplitude Modulation (SHEPWAM) for Drive Applications

    DEFF Research Database (Denmark)

    Ghoreishy, Hoda; Varjani, Ali Yazdian; Mohamadian, Mustafa

    2013-01-01

    Compared to the conventional selective harmonic elimination-pulse width modulation (SHE-PWM), the selective harmonic elimination-pulse width and amplitude modulation (SHE-PWAM) control strategy results in significant improvements in the performance of CHB inverters. This fact is due to considerin...

  2. Cyclic pitch for the control of wind turbine noise amplitude modulation

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2014-01-01

    that can model the different aerodynamic and aeroacoustic aspects of the study is presented. Parameters controlling the cyclic pitch are optimized in order to reduce amplitude modulation and/or fatigue load to a minimum. It is shown that such a minimum can be found and that benefit may be achieved...

  3. Multipole interactions of charged particles with the electromagnetic field

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    The full multipole expansion for the lagrangian and hamiltonian of a system of point charges interacting with the electromagnetic field is studied in detail. Both classical and quantum theory are described for external and dynamical fields separately. One improvement with respect to the known Fiutak's paper is made. (author)

  4. Pregnancy and electromagnetic fields; Grossesse et champs electromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Bisseriex, Ch. [CARSAT Auvergne (France); Laurent, P. [Caisse d' Assurance Retraite et de la Sante au Travail - CARSAT Centre-Ouest (France); Cabaret, Ph. [CARSAT Languedoc-Roussillon (France); Bonnet, C. [CARSAT Centre (France); Marteau, E. [CRAM ile-de-France (France); Le Berre, G. [CARSAT Bretagne (France); Tirlemont, S. [CARSAT Nord-Picardie (France); Castro, H. [CARSAT Midi-Pyrenees (France); Becker, A.; Demaret, Ph.; Donati, M. [INRS Lorraine (France); Ganem, Y.; Moureaux, P. [INRS Paris (France)

    2011-07-15

    This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields

  5. Electromagnetic Field in Some Anisotropic Stiff Fluid Universes

    OpenAIRE

    O, Pimentel L

    1995-01-01

    The electromagnetic field is studied in a family of exact solutions of the Einstein equations whose material content is a perfect fluid with stiff equation of state (p = $\\epsilon $ ). The field equations are solved exactly for several members of the family.

  6. The U(1) Higgs model in an external electromagnetic field

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1988-01-01

    An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)

  7. Apparatus for measuring the strength of an electromagnetic field

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes; Buesink, Frederik Johannes Karel; Serra, Ramiro

    2011-01-01

    There is disclosed an apparatus for measuring the strength of an electromagnetic field. The apparatus comprises a plurality of antennas arranged such that the field is received from all directions, each antenna supplying an RF signal as output.The apparatus also compromises a plurality of

  8. Electromagnetic field computation at fractal dimensions

    Science.gov (United States)

    Zubair, M.; Ang, Y. S.; Ang, L. K.

    According to Mandelbrot's work on fractals, many objects are in fractional dimensions that the traditional calculus or differential equations are not sufficient. Thus fractional models solving the relevant differential equations are critical to understand the physical dynamics of such objects. In this work, we develop computational electromagnetics or Maxwell equations in fractional dimensions. For a given degree of imperfection, impurity, roughness, anisotropy or inhomogeneity, we consider the complicated object can be formulated into a fractional dimensional continuous object characterized by an effective fractional dimension D, which can be calculated from a self-developed algorithm. With this non-integer value of D, we develop the computational methods to design and analyze the EM scattering problems involving rough surfaces or irregularities in an efficient framework. The fractional electromagnetic based model can be extended to other key differential equations such as Schrodinger or Dirac equations, which will be useful for design of novel 2D materials stacked up in complicated device configuration for applications in electronics and photonics. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).

  9. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields

    International Nuclear Information System (INIS)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)

  10. Biological effects of electromagnetic fields and recently updated safety guidelines for strong static magnetic fields.

    Science.gov (United States)

    Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo

    2011-01-01

    Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.

  11. On guided versus deflected fields in controlled-source electromagnetics

    Science.gov (United States)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  12. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    Science.gov (United States)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times

  13. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips

    Science.gov (United States)

    Clerico, Andrea; Tiwari, Abhishek; Gupta, Rishabh; Jayaraman, Srinivasan; Falk, Tiago H.

    2018-01-01

    The quantity of music content is rapidly increasing and automated affective tagging of music video clips can enable the development of intelligent retrieval, music recommendation, automatic playlist generators, and music browsing interfaces tuned to the users' current desires, preferences, or affective states. To achieve this goal, the field of affective computing has emerged, in particular the development of so-called affective brain-computer interfaces, which measure the user's affective state directly from measured brain waves using non-invasive tools, such as electroencephalography (EEG). Typically, conventional features extracted from the EEG signal have been used, such as frequency subband powers and/or inter-hemispheric power asymmetry indices. More recently, the coupling between EEG and peripheral physiological signals, such as the galvanic skin response (GSR), have also been proposed. Here, we show the importance of EEG amplitude modulations and propose several new features that measure the amplitude-amplitude cross-frequency coupling per EEG electrode, as well as linear and non-linear connections between multiple electrode pairs. When tested on a publicly available dataset of music video clips tagged with subjective affective ratings, support vector classifiers trained on the proposed features were shown to outperform those trained on conventional benchmark EEG features by as much as 6, 20, 8, and 7% for arousal, valence, dominance and liking, respectively. Moreover, fusion of the proposed features with EEG-GSR coupling features showed to be particularly useful for arousal (feature-level fusion) and liking (decision-level fusion) prediction. Together, these findings show the importance of the proposed features to characterize human affective states during music clip watching. PMID:29367844

  14. How can the neutrino interact with the electromagnetic field?

    Science.gov (United States)

    Novello, M.; Ducap, C. E. L.

    2018-01-01

    Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic metric (e-metric for short). After showing such geometric equivalence we investigate the possibility that new processes dependent on the e-metric are allowed. In particular, for very high values of the field, a direct coupling of uncharged particles to the electromagnetic field may appear. Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FAPERJ (Fundação do Amparo Pesquisa do Rio de Janeiro, FINEP (Financiadora de Estudos e Projetos) and Coordenação do Aperfeiçoamento do Pessoal do Ensino Superior (CAPES)

  15. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  16. Heteronuclear refocusing by nonlinear phase and amplitude modulation on a single transmitter channel.

    Science.gov (United States)

    Moore, Jay; Colón, Raul D; Tadanki, Sasidhar; Waddell, Kevin W

    2014-08-01

    The application of low magnetic fields to heteronuclear NMR has expanded recently alongside the emergence of methods for achieving near unity polarization of spin ensembles, independent of magnetic field strength. The parahydrogen induced hyperpolarization methods in particular, often use a hybrid arrangement where a high field spectrometer is used to detect or image polarized molecules that have been conjured on a separate, dedicated polarizer instrument operating at fields in the mT regime where yields are higher. For controlling polarizer chemistry, spare TTL channels of portable NMR spectrometers can be used to pulse program reaction timings in synchrony with heteronuclear RF transformations. The use of a spectrometer as a portable polarizer control module has the advantage of allowing detection in situ, simplifying the process of optimizing polarization yields prior to in vivo experimental trials. Suitable heteronuclear spectrometers compatible with this application are becoming more common, but are still sparsely available in comparison to a large existing infrastructure of single channel NMR consoles. With the goal of expanding the range of these systems to multinuclear applications, the feasibility of rotating a pair of heteronuclear spins ((13)C and (1)H) at 12mT was investigated in this study. Nonlinear phase and amplitude modulated waveforms designed to simultaneously refocus magnetization at 128kHz ((13)C) and 510kHz ((1)H) were generated numerically with optimal control. Although precise quantitative comparisons were not attempted due to limitations of the experimental setup, signals refocused at heteronuclear frequencies with this PANORAMIC approach (Precession And Nutation for Observing Rotation At Multiple Intervals about the Carrier) yielded amplitudes comparable to signals which were refocused using traditional block pulses on heteronuclear channels. Using this PANORAMIC approach to heteronuclear NMR at low field would reduce expense as well as

  17. Heteronuclear refocusing by nonlinear phase and amplitude modulation on a single transmitter channel

    Science.gov (United States)

    Moore, Jay; Colón, Raul D.; Tadanki, Sasidhar; Waddell, Kevin W.

    2014-08-01

    The application of low magnetic fields to heteronuclear NMR has expanded recently alongside the emergence of methods for achieving near unity polarization of spin ensembles, independent of magnetic field strength. The parahydrogen induced hyperpolarization methods in particular, often use a hybrid arrangement where a high field spectrometer is used to detect or image polarized molecules that have been conjured on a separate, dedicated polarizer instrument operating at fields in the mT regime where yields are higher. For controlling polarizer chemistry, spare TTL channels of portable NMR spectrometers can be used to pulse program reaction timings in synchrony with heteronuclear RF transformations. The use of a spectrometer as a portable polarizer control module has the advantage of allowing detection in situ, simplifying the process of optimizing polarization yields prior to in vivo experimental trials. Suitable heteronuclear spectrometers compatible with this application are becoming more common, but are still sparsely available in comparison to a large existing infrastructure of single channel NMR consoles. With the goal of expanding the range of these systems to multinuclear applications, the feasibility of rotating a pair of heteronuclear spins (13C and 1H) at 12 mT was investigated in this study. Nonlinear phase and amplitude modulated waveforms designed to simultaneously refocus magnetization at 128 kHz (13C) and 510 kHz (1H) were generated numerically with optimal control. Although precise quantitative comparisons were not attempted due to limitations of the experimental setup, signals refocused at heteronuclear frequencies with this PANORAMIC approach (Precession And Nutation for Observing Rotation At Multiple Intervals about the Carrier) yielded amplitudes comparable to signals which were refocused using traditional block pulses on heteronuclear channels. Using this PANORAMIC approach to heteronuclear NMR at low field would reduce expense as well as

  18. Effect of pulsed electromagnetic fields on orthodontic tooth movement.

    Science.gov (United States)

    Stark, T M; Sinclair, P M

    1987-02-01

    The purpose of this study was to determine whether the application of a simple surgically noninvasive, pulsed electromagnetic field could increase both the rate and amount of orthodontic tooth movement observed in guinea pigs. In addition, the objective was to evaluate the electromagnetic field's effects on bony physiology and metabolism and to search for possible systemic side effects. Laterally directed orthodontic force was applied to the maxillary central incisors of a sample of 40 young male, Hartley guinea pigs (20 experimental, 20 control) by means of a standardized intraoral coil spring inserted under constricting pressure into holes drilled in the guinea pigs' two maxillary central incisors. During the experimental period, the guinea pigs were placed in specially constructed, plastic animal holders with their heads positioned in an area of uniform electromagnetic field. Control animals were placed in similar plastic holders that did not carry the electrical apparatus. The application of a pulsed electromagnetic field to the experimental animals significantly increased both the rate and final amount of orthodontic tooth movement observed over the 10-day experimental period. The experimental animals also demonstrated histologic evidence of significantly greater amounts of bone and matrix deposited in the area of tension between the orthodontically moved maxillary incisors. This increase in cellular activity was also reflected by the presence of significantly greater numbers of osteoclasts in the alveolar bone surrounding the maxillary incisors of the experimental animals. After a 10-day exposure to pulsed electromagnetic field, minor changes in serologic parameters relating to protein metabolism and muscle activity were noted. The results of this study suggest that it is possible to increase the rate of orthodontic tooth movement and bone deposition through the application of a noninvasive, pulsed electromagnetic field.

  19. Phenomenological Mechanochemistry of Damage in Electromagnetic Fields

    Science.gov (United States)

    Grinfeld, Michael; Grinfeld, Pavel

    2017-06-01

    Basic principles of Phenomenological Mechanochemistry of Damage (PMD) have been formulated in Grinfeld and Wright. To some extent, it is a natural extension of the traditional damage theory, presented by Kachanov. Contrary to Kachanov's approach, the PMD theory includes, in addition to the bulk elastic energy, the energy associated with braking/recovery of chemical bonds. Therefore, in addition to the elasticity equations it includes the equation, describing evolution/dynamics of chemical bonds. Although ``chemical bonds'' is a nano-scale concept, we treat the bonds using phenomenological approach. The additional equation of damage evolution is of the rate type, thus, making the whole model rate-dependent (even in quasi-static approach.) In the paper, we review some earlier results and generalized them by taking into account electromagnetic effects.

  20. The effect of gravitational wave on electromagnetic field and the possibility about electromagnetic detection of gravitational wave

    International Nuclear Information System (INIS)

    Tao Fuzhen; He Zhiqiang

    1983-01-01

    If the effect of gravitational wave on electromagnetic fields is used, and the gravitational wave is detected through the changes in electromagnetic fields, one can expect that the difficulty about the weakness of the signal of mechanical receiver can be avoided. Because of the effect of gravitational wave, the electromagnetic field emits energy, therefore, the energy which is detected will be higher than that by the mechanical receiver. The authors consider the Maxwell equations on the curved spacetime. They give solutions when the detecting fields are a free electromagnetic wave, standing wave and a constant field. (Auth.)

  1. Electromagnetic instabilities attributed to a cross-field ion drift

    Science.gov (United States)

    Chang, C. L.; Wong, H. K.; Wu, C. S.

    1990-01-01

    Instabilities due to a cross-field ion flow are reexamined by including the electromagnetic response of the ions, which has been ignored in existing discussions. It is found that this effect can lead to significant enhancement of the growth rate. Among the new results, a purely growing, electromagnetic unstable mode with a wave vector k parallel to the ambient magnetic field is found. The plasma configuration under consideration is similar to that used in the discussion of the well-known modified-two-stream instability. This instability has a growth rate faster than the ion cyclotron frequency, and is not susceptible to high-plasma-beta stabilization.

  2. Measuring the quantum state of the electromagnetic field

    International Nuclear Information System (INIS)

    Davidovich, L.

    1999-01-01

    Recent experiments in cavity QED have allowed the monitoring of the decoherence process, which is at heart of the quantum theory of measurement and plays an essential role in the classical limit of quantum mechanics. An important ingredient of these experiments is the ability to probe the quantum state of the electromagnetic field in a cavity, and to distinguish a coherent superposition of two distinct coherent states of the field from a statistical mixture of the same states. After reviewing some of the methods recently developed to measure the quantum state of the electromagnetic field, it is shown here that the technique of Ramsey interferometry central to those experiments, may be used to determine completely the quantum state of an electromagnetic field in a cavity. This new method, which allows the direct measurement of the Wigner function of the field, is a useful tool for probing the quantum-classical transition and, in particular, the decoherence of superpositions of distinguishable coherent states of the electromagnetic field in the cavity. (author)

  3. A five dimensional unification of the vierbein and electromagnetic fields

    International Nuclear Information System (INIS)

    Kawai, Toshiharu

    1982-01-01

    A Kaluza-Klein type unification of the vierbein and electromagnetic fields is developed on the basis of the principal fiber bundle over the four dimensional space-time with the group U(1). A parameter γ which is directly related to the ''length'' of the fifth dimensional side of the bundle space is introduced. A spinor field PHI on the bundle space is introduced, and a pullback psi of PHI by a cross section to the base space is identified with the Dirac field. A spinor field PSI (not equal PHI) on the bundle space is defined from PHI, and its five dimensional Lagrangian density which leads to the Dirac equation for psi is given. The vierbein fields and electromagnetic vector potential are unified into the ''funfbein'' fields on the bundle space. The most general Lagrangian density of the funfbein fields, which is a function of these fields and of their first derivatives and is quadratic in the derivatives, is given. It has four parameters in addition to γ and is reduced to a linear sum of the Lagrangian densities of the vierbein fields and of the electromagnetic fields. Restrictions on the parameters imposed by experimental data and by a physical requirement are given. We discuss also a Lagrangian density which is reducible to the Einstein-Maxwell Lagrangian density. We can safely say that the bundle space is a five dimensional Lorentzian manifold and that the length of its fifth dimensional side is of the order of the Planck length or less. Any Dirac field defined as a pullback of the spinor field on the bundle space is expected to have an electric dipole moment with the magnitude h/2πc√x/8, if the gravitational and electromagnetic fields are described by the Einstein-Maxwell theory. (author)

  4. Electrodynamics of a hydrogenlike atom in a strong electromagnetic field

    International Nuclear Information System (INIS)

    Kovarskij, V.A.; Perel'man, N.F.

    1974-01-01

    The quasienergy spectrum of the hydrogen atom in strong electromagnetic radiation is studied, the luminescence of the atom under these conditions is considered. It is shown that in a strong field the atom, being even in the ground state, radiates a spectrum of frequencies corresponding to transitions from the ground state into excited states, the strong field photons being involved. The intensity of such a luminescence is basically a non-linear function of the strong field. The exposure of the atom to two strong electromagnetic fields Ω and ω (Ω>>ω) is considered, the Ω coinciding with one of the natural frquencies of the atom. The effct of modulation of the resonance shift for an atomic level by the ω-field strength is predicted. The dependence of Ω-absorption in the ω-field on the statistic properties of the latter is investigated. (author)

  5. Method for imaging with low frequency electromagnetic fields

    Science.gov (United States)

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  6. Occupational exposure to electromagnetic fields in the Polish Armed Forces.

    Science.gov (United States)

    Sobiech, Jaromir; Kieliszek, Jarosław; Puta, Robert; Bartczak, Dagmara; Stankiewicz, Wanda

    2017-06-19

    Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems). Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Portable radios emit the electric field strength between 20-80 V/m close to a human head. The manpack radio operator's exposure is 60-120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF) band radios, the electric field strength is between 7-30 V/m and inside the radar cabin it ranges between 9-20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7-15 V/m and the personnel of non-directional radio beacons - 100-150 V/m. In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% - only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4):565-577. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. Occupational exposure to electromagnetic fields in the Polish Armed Forces

    Directory of Open Access Journals (Sweden)

    Jarosław Kieliszek

    2017-08-01

    Full Text Available Objectives: Standard devices used by military personnel that may pose electromagnetic hazard include: radars, missile systems, radio navigation systems and radio transceivers. The aim of this study has been to evaluate the exposure of military personnel to electromagnetic fields. Material and Methods: Occupational exposure to electromagnetic fields was analyzed in the work environment of personnel of 204 devices divided into 5 groups (surface-to-air missile system radars, aircraft and helicopters, communication devices, surveillance and height finder radars, airport radars and radio navigation systems. Measurements were carried out at indicators, device terminals, radio panels, above vehicle seats, in vehicle hatches, by cabinets containing high power vacuum tubes and other transmitter components, by transmission lines, connectors, etc. Results: Portable radios emit the electric field strength between 20–80 V/m close to a human head. The manpack radio operator’s exposure is 60–120 V/m. Inside vehicles with high frequency/very high frequency (HF/VHF band radios, the electric field strength is between 7–30 V/m and inside the radar cabin it ranges between 9–20 V/m. Most of the personnel on ships are not exposed to the electromagnetic field from their own radar systems but rather by accidental exposure from the radar systems of other ships. Operators of surface-to-air missile systems are exposed to the electric field strength between 7–15 V/m and the personnel of non-directional radio beacons – 100–150 V/m. Conclusions: In 57% of military devices Polish soldiers work in the occupational protection zones. In 35% of cases, soldiers work in intermediate and hazardous zones and in 22% – only in the intermediate zone. In 43% of devices, military personnel are not exposed to electromagnetic field. Int J Occup Med Environ Health 2017;30(4:565–577

  8. Uniqueness of time-independent electromagnetic fields

    DEFF Research Database (Denmark)

    Karlsson, Per W.

    1974-01-01

    As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics......As a comment on a recent paper by Steele, a more general uniqueness theorem for time-independent fields is mentioned. ©1974 American Institute of Physics...

  9. A physically motivated quantization of the electromagnetic field

    International Nuclear Information System (INIS)

    Bennett, Robert; Barlow, Thomas M; Beige, Almut

    2016-01-01

    The notion that the electromagnetic field is quantized is usually inferred from observations such as the photoelectric effect and the black-body spectrum. However accounts of the quantization of this field are usually mathematically motivated and begin by introducing a vector potential, followed by the imposition of a gauge that allows the manipulation of the solutions of Maxwell’s equations into a form that is amenable for the machinery of canonical quantization. By contrast, here we quantize the electromagnetic field in a less mathematically and more physically motivated way. Starting from a direct description of what one sees in experiments, we show that the usual expressions of the electric and magnetic field observables follow from Heisenberg’s equation of motion. In our treatment, there is no need to invoke the vector potential in a specific gauge and we avoid the commonly used notion of a fictitious cavity that applies boundary conditions to the field. (paper)

  10. Electromagnetic fields and Green functions in elliptical vacuum chambers

    CERN Document Server

    AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department

    2017-01-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...

  11. Electromagnetic time reversal focusing of near field waves in metamaterials

    Science.gov (United States)

    Chabalko, Matthew J.; Sample, Alanson P.

    2016-12-01

    Precise control of electromagnetic energy on a deeply subwavelength scale in the near field regime is a fundamentally challenging problem. In this letter we demonstrate the selective focusing of electromagnetic energy via the electromagnetic time reversal in the near field of a metamaterial. Our analysis begins with fundamental mathematics, and then is extended to the experimental realm where focusing in space and time of the magnetic fields in the near field of a 1-Dimensional metamaterial is shown. Under time reversal focusing, peak instantaneous fields at receiver locations are at minimum ˜200% greater than other receivers. We then leverage the strong selective focusing capabilities of the system to show individual and selective powering of light emitting diodes connected to coil receivers placed in the near field of the metamaterial. Our results show the possibility of improving display technologies, near field imaging systems, increasing channel capacity of near field communication systems, and obtaining a greater control of energy delivery in wireless power transfer systems.

  12. Ionization of atoms in strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V. P.

    2010-01-01

    The ionization of atoms in a low-frequency linearly polarized electromagnetic field (the photon energy is much lower than the ionization potential of an atom) is considered under new conditions, in which the Coulomb interaction of an electron with the atomic core in the final state of the continuum cannot be considered in perturbation theory in the interaction of the electron with the electromagnetic field. The field is assumed to be much weaker that the atomic field. In these conditions, the classical motion of the electron in the final state of the continuum becomes chaotic (so-called dynamic chaos). Using the well-known Chirikov method of averaging over chaotic variations of the phase of motion, the problem can be reduced to non-linear diffusion on the energy scale. We calculate the classical electron energy in the final state, which is averaged over fast chaotic oscillations and takes into account both the Coulomb field and the electromagnetic field. This energy is used to calculate the probability of ionization from the ground state of the atom to a lower-lying state in the continuum using the Landau-Dykhne approximation (to exponential accuracy). This ionization probability noticeably depends on the field frequency. Upon a decrease in frequency, a transition to the well-known tunnel ionization limit with a probability independent of the field frequency is considered.

  13. New theory of radiative energy transfer in free electromagnetic fields

    International Nuclear Information System (INIS)

    Wolf, E.

    1976-01-01

    A new theory of radiative energy transfer in free, statistically stationary electromagnetic fields is presented. It provides a model for energy transport that is rigorous both within the framework of the stochastic theory of the classical field as well as within the framework of the theory of the quantized field. Unlike the usual phenomenological model of radiative energy transfer that centers around a single scalar quantity (the specific intensity of radiation), our theory brings into evidence the need for characterizing the energy transport by means of two (related) quantities: a scalar and a vector that may be identified, in a well-defined sense, with ''angular components'' of the average electromagnetic energy density and of the average Poynting vector, respectively. Both of them are defined in terms of invariants of certain new electromagnetic correlation tensors. In the special case when the field is statistically homogeneous, our model reduces to the usual one and our angular component of the average electromagnetic energy density, when multiplied by the vacuum speed of light, then acquires all the properties of the specific intensity of radiation. When the field is not statistically homogeneous our model approximates to the usual phenomenological one, provided that the angular correlations between plane wave modes of the field extend over a sufficiently small solid angle of directions about the direction of propagation of each mode. It is tentatively suggested that, when suitably normalized, our angular component of the average electromagnetic energy density may be interpreted as a quasi-probability (general quantum-mechancial phase-space distribution function, such as Wigner's) for the position and the momentum of a photon

  14. Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide

    International Nuclear Information System (INIS)

    Rybachek, S.T.

    1985-01-01

    This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented

  15. Effect of Electromagnetic Fields on Transfer Processes in Heterogeneous Systems

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Kim, H. Y.; Kim, H. C.; Smolík, Jiří; Moravec, Pavel

    2001-01-01

    Roč. 44, č. 5 (2001), s. 1065-1071 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : electromagnetic field * transfer processes * heterogeneous system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.240, year: 2001

  16. Motion of Charged Particles in Electromagnetic Fields and Special ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 7. Motion of Charged Particles in Electromagnetic Fields and Special Theory of Relativity. P Chaitanya Das G Srinivasa Murthy P C Deshmukh K Satish Kumar T A Venkatesh. Classroom Volume 9 Issue 7 July 2004 pp 77-85 ...

  17. Effects of extremely low frequency electromagnetic fields on growth ...

    African Journals Online (AJOL)

    Electromagnetic fields are an important environmental factor that can influence the growth and development of plants. Exposure to EMFs was performed by a locally designed EMF generator. Our investigations were focused on plants grown from wet pretreated seeds with 3 and 10 mT for a 4 h exposure time and compared ...

  18. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  19. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  20. Multistage ionization of atoms in a very strong electromagnetic field

    International Nuclear Information System (INIS)

    Krajnov, V.P.; Manykin, Eh.A.

    1980-01-01

    Considered is a problem of multiple ionization of middle and heavy atoms as a function of the intensity of an electromagnetic field. The atom is considered in the Thomas -Fermi approximation. Presented are estimates of ionization degree for lead, tungsten and tantalum

  1. What Message Should Health Educators Give regarding Electromagnetic Fields?

    Science.gov (United States)

    Al-Khamees, Nedaa A.

    2008-01-01

    The possibility of extremely low frequency electromagnetic fields (ELF EMF) causing a number of medical conditions and common symptoms remains a concern and presents somewhat of a quandary to health educators in view of conflicting results. This study investigated the relationship of a number of EMF sources to reported symptoms in an attempt to,…

  2. Electromagnetic field for an open magnetosphere

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions. 23 references

  3. The electromagnetic field for an open magnetosphere

    Science.gov (United States)

    Heikkila, W. J.

    1984-01-01

    The boundary-layer-dominated models of the earth EM field developed by Heikkila (1975, 1978, 1982, and 1983) and Heikkila et al. (1979) to account for deficiencies in the electric-field descriptions of quasi-steady-state magnetic-field-reconnection models (such as that of Cowley, 1980) are characterized, reviewing the arguments and indicating the most important implications. The mechanisms of boundary-layer formation and field direction reversal are explained and illustrated with diagrams, and it is inferred that boundary-layer phenomena rather than magnetic reconnection may be the cause of large-scale magnetospheric circulation, convection, plasma-sheet formation and sunward convection, and auroras, the boundary layer acting basically as a viscous process mediating solar-wind/magnetosphere interactions.

  4. Autoionizing states driven by stochastic electromagnetic fields

    Science.gov (United States)

    Mouloudakis, G.; Lambropoulos, P.

    2018-01-01

    We have examined the profile of an isolated autoionizing resonance driven by a pulse of short duration and moderately strong field. The analysis has been based on stochastic differential equations governing the time evolution of the density matrix under a stochastic field. Having focused our quantitative analysis on the 2{{s}}2{{p}}({}1{{P}}) resonance of helium, we have investigated the role of field fluctuations and of the duration of the pulse. We report surprisingly strong distortion of the profile, even for peak intensity below the strong field limit. Our results demonstrate the intricate connection between intensity and pulse duration, with the latter appearing to be the determining influence, even for a seemingly short pulse of 50 fs. Further effects that would arise under much shorter pulses are discussed.

  5. Amplitude modulation in δ Sct stars: statistics from an ensemble of Kepler targets

    Science.gov (United States)

    Bowman, Dominic M.; Kurtz, Donald W.; Breger, Michel; Murphy, Simon J.; Holdsworth, Daniel L.

    2017-10-01

    The results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ⩽ Teff ⩽ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr, are presented. A total of 603 δ Sct stars (61.3 per cent) are found to exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Furthermore, it is found that amplitude modulation is not restricted to a specific region within the classical instability strip in the HR diagram, therefore its cause is not necessarily dependent on stellar parameters such as Teff or log g. On the other hand, many δ Sct stars show constant pulsation amplitudes demonstrating that the cause of pulsational non-linearity in these stars is not well understood.

  6. Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides

    Science.gov (United States)

    Zografopoulos, D. C.; Sinatkas, G.; Lotfi, E.; Shahada, L. A.; Swillam, M. A.; Kriezis, E. E.; Beccherelli, R.

    2018-02-01

    A class of electro-optically tunable metamaterial absorbers is designed and theoretically investigated in the infrared regime towards realizing free-space amplitude modulators. The spacer between a subwavelength metallic stripe grating and a back metal reflector is occupied by a bilayer of indium tin oxide (ITO) and hafnium oxide (HfO_2). The application of a bias voltage across the bilayer induces free-carrier accumulation at the HfO_2/ITO interface that locally modulates the ITO permittivity and drastically modifies the optical response of the absorber owing to the induced epsilon-near-zero (ENZ) effect. The carrier distribution and dynamics are solved via the drift-diffusion model, which is coupled with optical wave propagation studies in a common finite-element method platform. Optimized structures are derived that enable the amplitude modulation of the reflected wave with moderate insertion losses, theoretically infinite extinction ratio, sub-picosecond switching times and low operating voltages.

  7. Electromagnetic fields from mobile phone base station - variability analysis.

    Science.gov (United States)

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  8. A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots

    International Nuclear Information System (INIS)

    Arrayás, Manuel; Trueba, José L

    2015-01-01

    An electromagnetic knot is an electromagnetic field in vacuum in which the magnetic lines and the electric lines coincide with the level curves of a pair of complex scalar fields ϕ and θ (see equations (A.1), (A.2)). When electromagnetism is expressed in terms of electromagnetic knots, it includes mechanisms for the topological quantization of the electromagnetic helicity, the electric charge, the electromagnetic energy inside a cavity and the magnetic flux through a superconducting ring. In the case of electromagnetic helicity, its topological quantization depends on the linking number of the field lines, both electric and magnetic. Consequently, to find solutions of the electromagnetic knot equations with nontrivial topology of the field lines has important physical consequences. We study a new class of solutions of Maxwell's equations in vacuum Arrayás and Trueba (2011 arXiv:1106.1122) obtained from complex scalar fields that can be interpreted as maps S 3 →S 2 , in which the topology of the field lines is that of the whole torus-knot set. Thus this class of solutions is built as electromagnetic knots at initial time. We study some properties of those fields and consider if detection based on the energy and momentum observables is possible. (paper)

  9. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  10. Telemetry Standards, RCC Standard 106-17, Annex A.1, Pulse Amplitude Modulation Standards

    Science.gov (United States)

    2017-07-01

    Standard 106-17 Annex A.1, July 2017 A.1-iii Acronyms dB decibel FM frequency modulation IF intermediate frequency PAM pulse amplitude...standard defines the recommended pulse train structure and design characteristics for the implementation of pulse amplitude modulation (PAM) telemetry...between transitions in the PAM pulse train shall be limited by whichever is the narrower of the following: a. One-half of the 3-dB frequency of the

  11. A novel amplitude modulated triangular carrier gain linearization technique for SPWM inverter

    OpenAIRE

    Ramkumar Subburam; Jeevananthan Seenithangam; Kamaraj Vijayarajan

    2009-01-01

    This paper presents a new method to extend the linearity of the sinusoidal pulse width modulation (SPWM) to full range of the pulse dropping region. The proposed amplitude modulated triangular carrier PWM method (AMTCPWM) increases the dynamic range of the SPWM control and eliminates the need of nonlinear modulation in the pulse dropping region to reach the square wave boundary. The novel method combines the spectral quality of SPWM with the efficient single-mode linear control. A simple anal...

  12. Classical electromagnetic field theory in the presence of magnetic sources

    OpenAIRE

    Chen, Wen-Jun; Li, Kang; Naón, Carlos

    2001-01-01

    Using two new well defined 4-dimensional potential vectors, we formulate the classical Maxwell's field theory in a form which has manifest Lorentz covariance and SO(2) duality symmetry in the presence of magnetic sources. We set up a consistent Lagrangian for the theory. Then from the action principle we get both Maxwell's equation and the equation of motion of a dyon moving in the electro-magnetic field.

  13. The study on electromagnetic field of an RFQ

    CERN Document Server

    Ouyang Hua Fu; Luo Zi Hua; Xu Tao Guang; Xu Wen Wu

    2002-01-01

    Computer simulations are carried out for calculating the electromagnetic field distribution and frequency in either 2-D coordinates (by SUPERFISH) or 3-D coordinates (by MAFIA), by which the tuners, the end cells, the coupling cells and other components of the radio-frequency quadrupole (RFQ) are designed. The designing principle is that the E-field longitudinal distribution and the local quadrupole cut-off frequency should be kept as constant as possible

  14. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  15. Electromagnetic radiation by quark-gluon plasma in magnetic field

    OpenAIRE

    Tuchin, Kirill

    2012-01-01

    The electromagnetic radiation by quark-gluon plasma in strong magnetic field is calculated. The contributing processes are synchrotron radiation and one--photon annihilation. It is shown that in relativistic heavy--ion collisions at RHIC and LHC synchrotron radiation dominates over the annihilation. Moreover, it constitutes a significant part of all photons produced by the plasma at low transverse momenta; its magnitude depends on the plasma temperature and the magnetic field strength. Electr...

  16. On Huygens' principle for Dirac operators associated to electromagnetic fields

    Directory of Open Access Journals (Sweden)

    CHALUB FABIO A.C.C.

    2001-01-01

    Full Text Available We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation with m = 0 in the presence of an electromagnetic field. Our main result (Theorem 1 is that for purely real or imaginary fields any Huygens type (in Hadamard's sense Dirac operators is equivalent to the free Dirac operator, equivalence given by changes of variables and multiplication (right and left by nonzero functions.

  17. Effects of RF low levels electromagnetic fields on Paramecium primaurelia

    International Nuclear Information System (INIS)

    Tofani, S.; Testa, B.; Agnesod, G.; Tartagbino, L.; Bonazzola, G.C.

    1988-01-01

    In the last years many studies have been performed to examine biological effects of prolonged exposure at electric field low levels. This great interest is linked to a specific interaction possibility, also related to the exposure length, between electromagnetic fields and biological systems without remarkable enhancement of organism's temperature. Hence the need to investigate in vitro the possible cellular regulation mechanisms involved in these interactions, varying physical exposure parameters

  18. On the invariance properties of the Klein-Gordon equation with external electromagnetic field

    International Nuclear Information System (INIS)

    Sen Gupta, N.D.

    2003-01-01

    Here we attempt to find the nature of the external electromagnetic field such that the KG equation with external electromagnetic field is invariant. Lie's extended group method is applied to obtain the class of external electromagnetic field which admits the invariance of the KG equation. Though, the field potential only explicitly appears in the equation, the constraints for the invariance are only on the electromagnetic field. (author)

  19. Occupational exposure to electromagnetic fields in physiotherapy departments

    International Nuclear Information System (INIS)

    Macca, I.; Scapellato, M. L.; Carrieri, M.; Di Bisceglie, A. P.; Saia, B.; Bartolucci, G. B.

    2008-01-01

    To assess occupational exposure to electromagnetic fields, 11 microwave (MW), 4 short-wave diathermy and 15 magneto therapy devices were analysed in eight physiotherapy departments. Measurements taken at consoles and environmental mapping showed values above European Directive 2004/40/EC and ACGIH exposure limits at ∼50 cm from MW applicators (2.45 GHz) and above the Directive magnetic field limit near the diathermy unit (27.12 MHz). Levels in front of MW therapy applicators decreased rapidly with distance and reduction in power; this may not always occur in work environments where nearby metal structures (chairs, couches, etc.) may reflect or perturb electromagnetic fields. Large differences in stray field intensities were found for various MW applicators. Measurements of power density strength around MW electrodes confirmed radiation fields between 30 deg. and 150 deg., with a peak at 90 deg., in front of the cylindrical applicator and maximum values between 30 deg. and 150 deg. over the whole range of 180 deg. for the rectangular parabolic applicator. Our results reveal that although most areas show substantially low levels of occupational exposure to electromagnetic fields in physiotherapy units, certain cases of over-occupational exposure limits do exist. (authors)

  20. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    Science.gov (United States)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  1. Interaction of Electromagnetic Fields with Magnetized Plasmas

    Science.gov (United States)

    1994-03-31

    collisions, the constancy of the mag- vermity, Sfax , Tunisia. netic moment makes it possible to obtain a relationship Phys. Fluds 8 1 (5), May 1969 0699-6221...Engineering. Technical Uni- where 6 is the field modulation factor and E, is the initial versify. Sfax . Tunisia. energy in electron-volts. The...in Sfax , of the original organizing committee which set up the Nuclear and Plasma Tunisia, on August 9, 1955. He received the B.S. Sciences Society

  2. Electromagnetic Field Effects in Semiconductor Crystal Growth

    Science.gov (United States)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  3. Particles in spherical electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Mitter, H.; Thaller, B.

    1984-03-01

    If the time-dependence of a Hamiltonian can be compensated by an appropriate symmetry transformation, the corresponding quantum mechanical problem can be reduced to an effectively stationary one. With this result we investigate the behavior of nonrelativistic particles in a spherical radiation field produced by a rotating source. Then the symmetry transformation corresponds to a rotation. We calculate the transition probabilities in Born approximation. The extension to problems involving an additional Coulomb potential is briefly discussed. (Author)

  4. DATA ACQUISITION AND ANALYSIS OF LOW FREQUENCY ELECTROMAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    PETRICA POPOV

    2016-06-01

    Full Text Available In recent years more and more studies have shown that, the low frequency field strength (particularly magnetic, 50 / 60Hz are a major risk factor; according to some specialists - even more important as the radiation field. As a result, the personnel serving equipment and facilities such as: electric generators, synchronous, the motors, the inverters or power transformers is subjected continually to intense fields, in their vicinity, with possible harmful effects in the long term by affecting metabolism cell, espectively, the biological mechanisms.Therefore, finding new methods and tools for measurement and analysis of low frequency electromagnetic fields may lead to improved standards for exposure limits of the human body.

  5. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.

    Science.gov (United States)

    Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil

    2014-10-28

    Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency.

  6. [Operational aspects of risk perception in the electromagnetic fields exposition].

    Science.gov (United States)

    Pennarola, E; Barletta, R; Quarto, E; Pennarola, R

    2007-01-01

    The increase of electromagnetic fields exposition is being associated with the increase of risk perception in the people exposed due to the uncertainty of the biological and sanitary effects. Research is being carried out on the symptomatology shown by the 45 people living near power-lines in the Benevento area and consequently exposed to electromagnetic fields. The measure of the magnetic and electric field was in the normal range while the people showed most symptoms in the subjective and behavioural sphere. The research findings suggest that risk assessement should take into account the subjectivity of the people exposed as shown in the special questionnaires with the aim of reducing the subjective and behavioural symptomatology for developing a new environmental medicine.

  7. Tunnel ionization of complex atoms and atomic ions in electromagnetic field

    International Nuclear Information System (INIS)

    Ammosov, M.V.; Delone, N.B.; Krainov, V.P.

    1986-01-01

    The expressions for tunnel ionization probability of the complex atoms and atomic ions from arbitrary states in electromagnetic field are obtained. These expressions correctly describe the experimental data on rare gases atoms ionization in an infrared electromagnetic field

  8. The gravitational and electromagnetic fields in a space-time with torsion

    International Nuclear Information System (INIS)

    Oancea, S.

    1992-01-01

    The equation of gravitational and electromagnetic field in a space-time with torsion are discussed. In a particular case the equations that define the metric and electromagnetic field are obtained. (Author)

  9. [Problems of hygienic standardization of electromagnetic fields produced by teletransmitting objects].

    Science.gov (United States)

    Karachev, I I

    1989-10-01

    Maximum allowable electromagnetic field levels produced by teletransmitting stations and differentiated by frequency have been described. The prospects of further studies on the improvement of hygienic standardization of electromagnetic fields have been set forth.

  10. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  11. Modeling Atmospheric Electromagnetic Field Following a Lightning Discharge

    Science.gov (United States)

    Davydenko, S.; Mareev, E.; Sergeev, A. S.

    2013-12-01

    A numerical model describing the electromagnetic field in the vicinity of an isolated lightning discharge is developed. Both the slow transient (quasistatic) electric field caused by the Maxwell relaxation of the charge disturbance and fast transient (electromagnetic pulse) are calculated in a plane atmosphere using the FDTD method. The lightning discharge is presented as a pulse current producing a distributed charge dipole inside the thundercloud in a case of intra-cloud (IC) flash or monopole charge in a case of cloud-to-ground (CG) flash. A temporal profile of the discharge current implies an existence of the return stroke, continuous current, and its fine features like the M-component. Temporal and spatial dependences of the atmospheric electric field on the flash type (IC or CG), distance to the discharge, disturbance of the electric conductivity inside the thundercloud, altitude(s) and lateral scale(s) of the charge region(s), temporal profile of the discharge current, and velocity of the return stroke are considered. A dependence of the net electric charge transferred to the upper atmospheric layers on the parameters of IC and CG flashes is studied. It is shown that both IC and CG flashes could serve as effective sources in the global electric circuit. A retrieval of the basic discharge parameters on the results of the one- or multipoint measurements of the both electromagnetic and quasistatic electric fields is discussed.

  12. Electromagnetic multipole fields in a finite, spherically symmetric region

    International Nuclear Information System (INIS)

    Steiger, A.D.

    1980-01-01

    The electromagnetic eigenfields for the region bounded by two concentric spheres are discussed and compared with the corresponding eigenfields of a spherical cavity. These characteristic fields are the solenoidal and irrotational multiple solutions of the vector Helmholtz equation that satisfy the source-free boundary conditions. They constitute a complete set for the expansion of an arbitrary, square-integrable electromagnetic field, which may be generated by surface and volume sources. The frequencies of the solenoidal and irrotational eigenfields for the angular region are analyzed as functions of the radius ratio, α=r 1 /r 2 (r 1 2 =constant), of the two concentric spheres. The results are illustrated by graphs and tables. Two relations obtained by applying the implicit function theorem to the transcendental eigenfrequency equations are also derived by calculating the work performed against the radiation pressure as the electromagnetic field is compressed adiabatically. The multipoles. Two formulas for the reduction of vector products of multipole fields to sums of vector spherical harmonics are derived

  13. Electromagnetic processes in strong crystalline fields

    CERN Document Server

    Uggerhoj, U I; Esberg, J; Knudsen, H; Lund, M; Møller, S P; Sørensen, A H; Thomsen, A H; Uggerhøj, U I; Geissel, H; Scheidenberger, C; Weick, H; Winfield, J; Sona, P; Connell S; Ballestrero, S; Ketel, T; Dizdar, A; Mangiarotti, A

    2009-01-01

    As an addendum to the NA63 proposal cite{Ande05}, we propose to measure 1) the Landau-Pomeranchuk-Migdal (LPM) effect in low-$Z$ targets, 2) Magnetic suppression of incoherent bremsstrahlung resulting from exposure to an external field during the emission event, and 3) the bremsstrahlung emission from relativistic ($gamma=170$), fully stripped Pb nuclei penetrating various amorphous targets. Concerning the LPM effect, both the 'traditional' Migdal approach and the modern treatment by Baier and Katkov display inaccuracies, i.e. a possible lack of applicability in low-$Z$ targets. Moreover, the LPM effect has been shown to have a significant impact on giant air showers for energies in the EeV range - evidently processes in a low-$Z$ material. A measurement of magnetic suppression is demanding in terms of necessary accuracy (an expected $lesssim$15% effect), but would prove the existence of a basic interplay between coherent and incoherent processes, also believed to be significant in beamstrahlung emission. For...

  14. Biological effects of electromagnetic fields | Yalçın | African Journal ...

    African Journals Online (AJOL)

    Recently, the possible effects of extra low frequency electromagnetic fields on the public health have become an interesting subject. Generally, electromagnetic fields occur around the high voltage lines. However, electromagnetic fields also occur with some electrical machines use for fun and TV used routinely at our home ...

  15. Media coverage on electromagnetic fields and health: Content analysis of Dutch newspaper articles and websites

    NARCIS (Netherlands)

    Claassen, E.A.M.; Smid, T.; Woudenberg, F.; Timmermans, D.R.M.

    2012-01-01

    The way health risks of electromagnetic fields are portrayed in the media may shape public concerns that the growing exposure to electromagnetic fields in daily life constitutes a health hazard. We analysed the content of information on electromagnetic fields and health in Dutch media to identify

  16. Cubic interaction vertex of higher-spin fields with external electromagnetic field

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Snegirev, T.V.; Zinoviev, Yu.M.

    2012-01-01

    We fulfill the detailed analysis of coupling the charged bosonic higher-spin fields to external constant electromagnetic field in first order in external field strength. Cubic interaction vertex of arbitrary massive and massless bosonic higher-spin fields with external field is found. Construction is based on deformation of free Lagrangian and free gauge transformations by terms linear in electromagnetic field strength. In massive case a formulation with Stueckelberg fields is used. We begin with the most general form of deformations for Lagrangian and gauge transformations, admissible by Lorentz covariance and gauge invariance and containing some number of arbitrary coefficients, and require the gauge invariance of the deformed theory in first order in strength. It yields the equations for the coefficients which are exactly solved. As a result, the complete interacting Lagrangian of arbitrary bosonic higher-spin fields with constant electromagnetic field in first order in electromagnetic strength is obtained. Causality of massive spin-2 and spin-3 fields propagation in the corresponding electromagnetic background is proved.

  17. Ionization of highly excited hydrogen atoms by intense electromagnetic fields

    International Nuclear Information System (INIS)

    Gersten, J.; Mittleman, M.H.

    1975-01-01

    A previous theory of atomic transition in ultrastrong electromagnetic fields is applied to the problem of the ionization of highly excited hydrogen atoms. The magnitude of the fields necessary for the validity of the theory is greatly reduced by using excited hydrogen in the initial state, and the requirement of only multiphoton ionization limits the application to low frequency (microwave) fields. The requirement can probably be satisfied with currently available equipment. A result of the calculation is that the average number of photons absorbed is twice the minimum number. (U.S.)

  18. Two-Dimensional Electron System in Electromagnetic Radiation Field

    Science.gov (United States)

    Lungu, Radu Paul; Manolescu, Andrei

    We consider a two-dimensional electron gas in the presence of a monochromatic linear polarized electromagnetic field, within the Floquet formalism. The Floquet states have a simple relation with the energy eigenstates in the absence of the field. Therefore the single-particle and the two-particle Green functions of the many-body system with Coulomb interactions, in the radiation field, can be formally calculated by the standard diagrammatic techniques, as for the conservative system. We derive the elementary excitations of quasi-particle type, the plasma dispersion relation, and the ground state quasi-energy, and we relate them to the corresponding results for the conservative system.

  19. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  20. Difference of observability between classical electromagnetic and gravitational gauge fields

    International Nuclear Information System (INIS)

    Asorey, M.; Boya, L.J.

    1979-01-01

    An analysis of the observability of the classical electromagnetic gauge field based in its quantum effects shows that this is physically determined up to equivalences. By contrast a similar analysis of the gravitational gauge field from Einstein's General Relativity theory shows that this field is univocally determined by the trajectories of material particles provided they feel only that gravitational field, and its proper gravitational and quantum effects are negligible. This difference of observability in both kinds of gauge fields is caused by the attachment of the gravitational field in the Einstein theory to the space-time, and this difference must be taken into account to formulate unified gauge theories with both kinds of fields. (author)

  1. Numerical Modeling of Electromagnetic Field Effects on the Human Body

    Directory of Open Access Journals (Sweden)

    Zuzana Psenakova

    2006-01-01

    Full Text Available Interactions of electromagnetic field (EMF with environment and with tissue of human beings are still under discussion and many research teams are investigating it. The human simulation models are used for biomedical research in a lot of areas, where it is advantage to replace real human body (tissue by the numerical model. Biological effects of EMF are one of the areas, where numerical models are used with many advantages. On the other side, this research is very specific and it is always quite hard to simulate realistic human tissue. This paper deals with different possibilities of numerical modelling of electromagnetic field effects on the human body (especially calculation of the specific absorption rate (SAR distribution in human body and thermal effect.

  2. Retraction: Evaluation of Carcinogenic Effects of Electromagnetic Fields (Emf

    Directory of Open Access Journals (Sweden)

    Bakir Mehic

    2010-08-01

    Full Text Available This retracts the article "EVALUATION OF CARCINOGENIC EFFECTS OF ELECTROMAGNETIC FIELDS (EMF" on page 245. The Editor-in-chief of the Bosnian Journal ofBasic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: “Evaluation of carcinogenic effects of electromagnetic fields (EMF” published in Bosn J Basic Med Sci. 2010 Aug;10(3:245-50.After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  3. Energy-momentum tensor of the electromagnetic field

    International Nuclear Information System (INIS)

    Horndeski, G.W.; Wainwright, J.

    1977-01-01

    In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources

  4. Radiofrequency electromagnetic fields in the Cookridge area of Leeds

    CERN Document Server

    Fuller, K; Judd, P M; Lowe, A J; Shaw, J

    2002-01-01

    On the 8 and 9 May 2002 representatives of the National Radiological Protection Board (NRPB) performed a radiofrequency electromagnetic field survey in the Cookridge area of Leeds in order to assess exposure to radio signals from transmitters mounted on a water tower/a lattice tower and a radio station tower. Guidelines on limiting exposure to radio signals have been published by NRPB and the International Commission on Non-Ionizing Radiation Protection (ICNIRP). These guidelines are designed to prevent established adverse effects on human health. During this survey, the total exposures due to all radio signals from 30 MHz to 18000 MHz (18 GHz) were measured. This frequency range was chosen as it includes mobile phone base station transmissions, which are at around 900 and 1800 MHz and super high frequency (SHF) transmissions from most of the large microwave dish antennas mounted on the towers. In addition, other major sources of radiofrequency electromagnetic fields in the environment such as broadcast radio...

  5. Uniform electromagnetic field as viscous medium for moving particles

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Baltenkov, A.S.; Felfli, Z.; Msezane, A.Z.; Voitkiv, A.B.

    2002-01-01

    The mechanism of transverse radiation viscosity acting on free charges, atomic, and small macroscopic particles in uniform electromagnetic fields is analyzed. It is shown that in the process of light scattering by these particles, besides the force accelerating them in the direction of propagation of the radiation, there is a force in the transverse direction slowing them down. The general expression for this force is obtained. It is considered how this force can influence: (i) the motion of ultrarelativistic electrons in transverse photon fluxes; (ii) the behavior of a beam of nonrelativistic electrons moving in a copropagating uniform electromagnetic field; (iii) the transverse motion of atoms under the action of resonant radiation and (iv) the motion of small macroscopic particles

  6. Decay of a weakly bound level in a monochromatic electromagnetic field and a static magnetic field

    International Nuclear Information System (INIS)

    Rylyuk, V.M.; Ortner, J.

    2003-01-01

    We consider an electron that is bound by a zero-range potential and a constant magnetic field and which becomes disturbed by a monochromatic laser beam with elliptical polarization. The exact solution of the Schroedinger equation for an electron in the presence of an arbitrary electromagnetic wave and a static magnetic field is obtained. Exact expressions have been found for the complex energy, whose real and imaginary parts yield the level position and the width of an electron in a zero-range force field, a constant magnetic field, and a monochromatic electromagnetic field. These expressions have been analyzed in details for the case of a circularly polarized laser light

  7. Electromagnetic fields and health impact: measurements, monitoring and environmental indicators

    International Nuclear Information System (INIS)

    Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.

    2008-01-01

    Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the

  8. Effects of Pulsed Electromagnetic Fields on Osteoporosis Model

    Science.gov (United States)

    Xiaowei, Yang; Liming, Wang; Guan, Z. C.; Yaou, Zhang; Xiangpeng, Wang

    The purpose of this paper was to investigate the preventive effects and long term effects of extremely low frequency pulsed electromagnetic fields (PEMFs), generated by circular coils and pulsed electromagnetic fields stimulators, on osteoporosis in bilaterally ovariectomized rats. In preventive experiment, thirty three-month old female Sprague-Dawley rats were randomly divided into three different groups: sham (SHAM), ovariectomy (OVX), PEMFs stimulation (PEMFs). All rats were subjected to bilaterally ovariectomy except those in SHAM group. The PEMFs group was exposed to pulsed electromagnetic fields with frequency 15 Hz, peak magnetic induction density 2.2mT and exposure time 2 hours per day. The bone mineral density (BMD) of vertebra and left femur were measured by dual energy X-ray absorptiometry at eighth week, twelfth week and sixteenth week after surgery. In long term effects experiment, forty four rats were randomly divided into sham (14 rats, SHAM), ovariectomy group (10 rats, OVX), 15Hz PEMFs group(10 rats, 15Hz) and 30Hz PEMFs group(10 rats, 30Hz) at twenty-sixth week after surgery. Rats in PEMFs groups were stimulated sixteen weeks. In preventive experiment, the Corrected BMD of vertebra and femur was significantly higher than that of OVX group after 16 weeks (P<0.001, P<0.001 respectively). In long term effects experiment, the vertebral BMD of 15Hz PEMFs group and 30Hz PEMFs group was significantly higher than that of OVX groups (P<0.01, P<0.05 respectively). The experimental results demonstrated that extremely low intensity, low frequency, single pulsed electromagnetic fields significantly slowed down the loss of corrected vertebral and femoral BMD in bilaterally ovariectomized rats and suggest that PEMFs may be beneficial in the treatment of osteoporosis.

  9. Electromagnetic field and the theory of conformal and biholomorphic invariants

    International Nuclear Information System (INIS)

    Lawrynowicz, J.

    1976-01-01

    This paper contains sections on: 1. Conformal invariance and variational principles in electrodynamics. 2. The principles of Dirichlet and Thomson as a physical motivation for the methods of conformal capacities and extremal lengths. 3. Extension to pseudoriemannian manifolds. 4. Extension to hermitian manifolds. 5. An extension of Schwarz's lemma for hermitian manifolds and its physical significance. 6. Variation of ''complex'' capacities within the admissible class of plurisubharmonic functions. The author concentrates on motivations and interpretations connected with the electromagnetic field. (author)

  10. On the geometry of electromagnetic fields of second class

    International Nuclear Information System (INIS)

    Duggal, K.L.

    1983-01-01

    The notion of almost contingent manifolds was introduced by the author (1978) with a view to modify the standard Hermitian and Kaehlerian geometry applicable in relativity. The purpose of this paper is to use this extension as a free-way for developing the geometry of electromagnetic fields of second class under the framework of Hlavaty's (1961) classification. A mathematical model of the universe, called D-universe, having constant curvature has been created. (author)

  11. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    Science.gov (United States)

    Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán

    2008-08-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.

  12. Immune Response to Electromagnetic Fields through Cybernetic Modeling

    International Nuclear Information System (INIS)

    Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan

    2008-01-01

    We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen

  13. Electromagnetic and transient shielding effectiveness for near-field sources

    Directory of Open Access Journals (Sweden)

    C. Möller

    2007-06-01

    Full Text Available The contribution deals with an investigation of the recently proposed definitions for the electromagnetic and transient shielding effectiveness (SE in the case of an electric-dipole near-field source. To this end, new factors are introduced which depend on the distance between the dipole source and the measurement point inside the shield and which are valid for perpendicularly (with respect to the distance vector polarized dipoles. Numerical results support and confirm the theoretical derivations.

  14. NEW APPROACH OF ELECTROMAGNETIC FIELDS OF THE LIGHTNING DISCHARGE

    OpenAIRE

    Dib Djalel; Mordjaoui Mourad; Hocine Labar

    2013-01-01

    Despite the significant developments in the protection means of electrical and electronic systems against the lightning and its effects. With its unpredictability and aggress if character, the lightning is the most dangerous phenomenon for electrical systems, which requires more interest and greater effort by researchers and designers means of protection. We present in this study a new analytic model of transient electromagnetic fields radiated by the lightning channel. To better estimate our...

  15. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene.

    Science.gov (United States)

    Li, Keke; Liu, Anping; Wei, Dapeng; Yu, Keke; Sun, Xiaonan; Yan, Sheng; Huang, Yingzhou

    2018-04-25

    Benefiting from the induced image charge on metal film, the light energy is confined on a film surface under metal nanoparticle dimer, which is called electromagnetic field redistribution. In this work, electromagnetic field distribution of metal nanoparticle monomer or dimer on graphene is investigated through finite-difference time-domain method. The results point out that the electromagnetic field (EM) redistribution occurs in this nanoparticle/graphene hybrid system at infrared region where light energy could also be confined on a monolayer graphene surface. Surface charge distribution was analyzed using finite element analysis, and surface-enhanced Raman spectrum (SERS) was utilized to verify this phenomenon. Furthermore, the data about dielectric nanoparticle on monolayer graphene demonstrate this EM redistribution is attributed to strong coupling between light-excited surface charge on monolayer graphene and graphene plasmon-induced image charge on dielectric nanoparticle surface. Our work extends the knowledge of monolayer graphene plasmon, which has a wide range of applications in monolayer graphene-related film.

  16. Response of rat skin flaps to sinusoidal electromagnetic fields

    International Nuclear Information System (INIS)

    Herbst, E.

    1987-01-01

    Electrical stimulation to heal bone fractures has been used clinically since the early 1970s. As a result of treatment with either direct current or electromagnetic fields, there was an indication that the electrical signals enhanced the ingrowth of blood vessels into the treated area. This possibility was one of the reasons for the initial studies on the influence of pulsed electromagnetic fields (PEMFs) on healing of skin flaps. These investigations reported a decrease in the amount of necrosis of a skin flap after PEMF treatment. The skin flap model was chosen in these studies, as it is generally accepted for the investigation of the influence of different treatments on wound healing. The skin flap is a partially detached portion of the skin which retains part of its blood supply. However, if the flap is too long for its width, part of it will die after the transfer. Flap necrosis, therefore, represents a difficult clinical problem, especially in classes where a large area has to be covered. In the present study the authors address whether enhanced skin flap survival after treatment with PEMF is signal specific, that is , whether one could obtain similar results using various sinusoidal electromagnetic fields (SEMFs). Specifically, they investigated the influence on skin flap survival of SEMFs with different frequencies but the same maximum of dB/dt

  17. Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Da Ros, Francesco; Cristofori, Valentina

    2017-01-01

    (PAM) [3] signals. However, moving to 4-PAM,many of the impressive demonstrations reported so far rely heavily on off-line digital signal processing (DSP), which increases latency, power consumption and cost. In this talk, we report on (i) a detailed numerical analysis on the complex transfer function...... to their low dispersion tolerance and limited achievable extinction ratio (ER). A promising solution to this problem is optical spectral reshaping (OSR) since it is possible to increase the dispersion tolerance as well as to enhance the achievable ER for both on-of-keying [2] and 4-pulse amplitude modulation...

  18. Amplitude modulator of radio frequency system for 1.3 GeV Electron Synchrotron

    International Nuclear Information System (INIS)

    Fukushima, T.

    1977-01-01

    The amplitude modulator for the 8F68 VHF high power tetrode tube has been designed and constructed. The modulator was constructed with solid components such as transistors and integrated circuits. In case of changing circuit elements of the modulator to solid components from tubes, many attentions are paid for preventing the noise and the over load, due to connection between the low power circuits (modulator) and high power circuits (VHF amplifier). The new modulator is constructed with taking careful consideration into selection of the method of the power control and the protection system. (auth.)

  19. Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation.

    OpenAIRE

    Wallaert, Nicolas; Moore, Brian Cecil; Ewert, Stephan D; Lorenzi, Christian

    2017-01-01

    Amplitude-modulation detection thresholds (AMDTs) were measured at 40 dB sensation level for listeners with mild-to-moderate sensorineural hearing loss (age: 50-64 yr) for a carrier frequency of 500 Hz and rates of 2 and 20 Hz. The number of modulation cycles, N, varied between two and nine. The data were compared with AMDTs measured for young and older normal-hearing listeners [Wallaert, Moore, and Lorenzi (2016). J. Acoust. Soc. Am. 139, 3088-3096]. As for normal-hearing listeners, AMDTs we...

  20. Electro-Magnetic Fields and Plasma in the Cosmos

    International Nuclear Information System (INIS)

    Scott, Donald E.

    2006-01-01

    It is becoming widely recognized that a majority of baryons in the cosmos are in the plasma state. But, fundamental disagreements about the properties and behavior of electro-magnetic fields in these plasmas exist between the science of modern astronomy and the experimentally verified laws of electrical engineering and physics. Some astronomers claim that magnetic fields can be open-ended - that they begin on or beneath the Sun's surface and extend outward to infinity. Astrophysicists have claimed that galactic magnetic fields begin and end on molecular clouds. Electrical engineers, most physicists, and the pioneers in electromagnetic field theory disagree - magnetic fields have no beginning or end. Since these two viewpoints are mutually exclusive, both cannot be correct; one must be completely false. Many astrophysicists claim that magnetic fields are 'frozen into' electric plasma. We also examine the basis for this claim. It has been shown to be incorrect in the laboratory. The hypothetical 'magnetic merging' mechanism is also reviewed in light of both theoretical and experimental investigations. The cause of large-scale filamentation in the cosmos is also simply revealed by experimental results obtained in plasma laboratories

  1. Mechanism for action of electromagnetic fields on cells.

    Science.gov (United States)

    Panagopoulos, Dimitris J; Karabarbounis, Andreas; Margaritis, Lukas H

    2002-10-18

    A biophysical model for the action of oscillating electric fields on cells, presented by us before [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640], is extended now to include oscillating magnetic fields as well, extended to include the most active biological conditions, and also to explain why pulsed electromagnetic fields can be more active biologically than continuous ones. According to the present theory, the low frequency fields are the most bioactive ones. The basic mechanism is the forced-vibration of all the free ions on the surface of a cell's plasma membrane, caused by an external oscillating field. We have shown that this coherent vibration of electric charge is able to irregularly gate electrosensitive channels on the plasma membrane and thus cause disruption of the cell's electrochemical balance and function [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640]. It seems that this simple idea can be easily extended now and looks very likely to be able to give a realistic basis for the explanation of a wide range of electromagnetic field bioeffects.

  2. Additional external electromagnetic fields for laser microprocessing of metals.

    Science.gov (United States)

    Schütz, V; Bischoff, K; Brief, S; Koch, J; Suttmann, O; Overmeyer, L

    2016-11-14

    Ultra-short pulsed laser processing is a potent tool for microstructuring of a lot of materials. At certain laser parameters, particular periodical and/or quasi-periodical µm-size surface structures evolve apparently during processing. With extended plasmonics theory, it is possible to predict the structure formation, and a systematic technology can be derived to alter the surface for laser processing. In this work, we have demonstrated the modification of the laser processing with applying tailored dynamic surface electro-magnetic fields. Possible improvement in applications is seen in the fields of process efficiency of laser ablation and a superior control of the surface topography.

  3. Interaction of Electromagnetic Radiation with Supercritical Magnetic Field

    OpenAIRE

    Shabad, A. E.

    2003-01-01

    It is pointed, that effects of refraction of electromagnetic radiation in the medium, formed by the magnetized vacuum, become essential already for relatively soft photons, not hard enough to create an electron-positron pair, including those belonging to soft gamma-, X-ray, optic and radio- range, if the magnetic field B exceeds the critical value of Bcr=m^2/e=4.4 10^13 Gauss. Three leading terms in the asymptotic expansion of the one-loop polarization operator in a constant magnetic field ar...

  4. Electromagnetic Fields at the Surface of Human-Body Cylinders

    DEFF Research Database (Denmark)

    Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren H.; Thaysen, Jesper

    2016-01-01

    The electromagnetic fields around an infinitely long cylinder with different material parameters are analyzed. The cylinder is modeled as muscle, skin, fat, and perfect electric conductor respectively. The cylinder is illuminated by a plane wave incident from different angles and with both...... transverse electric and transverse magnetic polarization. The results show that the material assumption when modeling the human body as a homogeneous material is very important. Furthermore, it is shown that one assumption might lead to higher fields for a specific polarization, angle of incidence...

  5. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  6. Electromagnetic plasma wave emissions from the auroral field lines

    Science.gov (United States)

    Gurnett, D. A.

    1978-01-01

    The most important types of auroral radio emissions are reviewed. Particular attention is given to the following four types of electromagnetic emissions: auroral hiss, saucers, ELF noise bands, and auroral kilometric radiation. It is shown that the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances in the range of 2.5-5 earth radii, probably in direct association with auroral-particle acceleration by parallel electric fields. The auroral hiss appears to be generated by amplified Cerenkov radiation. Several mechanisms are proposed for the auroral kilometric radiation, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  7. On a remarkable electromagnetic field in the Einstein Universe

    Science.gov (United States)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  8. Radiation reaction force and unification of electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Lo, C.Y.; Goldstein, G.R.; Napier, A.

    1981-04-01

    A unified theory of electromagnetic and gravitational fields should modify classical electrodynamics such that the radiation reaction force is accounted for. The analysis leads to a five-dimensional unified theory of five variables. The theory is supported by showing that, for the case of a charged particle moving in a constant magnetic field, the radiation reaction force is indeed included. Moreover, this example shows explicitly that physical changes are associated with the fifth variable. Thus, the notion of a physical five-dimensional space should be seriously taken into consideration

  9. Electromagnetic field properties in the vicinity of a massive wormhole

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, I. D.; Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru [Russian Academy of Sciences, Astro Space Centre, Lebedev Physical Institute (Russian Federation)

    2011-12-15

    It is proved that not only massless but also traversable massive wormholes can have electromagnetic 'hair.' An analysis is also presented of the passage from a traversable wormhole to the limit of a Reissner-Nordstroem black hole, with the corresponding disappearance of 'hair.' A general method is developed for solving stationary axisymmetric Maxwell's equations in the field of a massive, spherically symmetric wormhole. As a particular example of application of the method, a solution is found to the axisymmetric magnetostatic problem for a current loop in the field of the Bronnikov-Ellis-Morris-Thorne wormhole.

  10. Magnetization reversal in ferromagnetic film through solitons by electromagnetic field

    International Nuclear Information System (INIS)

    Veerakumar, V.; Daniel, M.

    2001-07-01

    We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)

  11. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber.

    Science.gov (United States)

    Hwang, Chi-Young; Yi, Yoonsik; Choi, Choon-Gi

    2016-03-01

    We present a method for reflection-type spatial amplitude modulation using a sub-wavelength plasmonic absorber structure that can operate in the visible region. We utilize a pixelated array of absorbing elements based on a two-dimensional sub-wavelength metal grating, and the reflectance of each pixel is controlled by simple structural modification. For the purpose of validation, numerical simulations were performed on an amplitude modulation hologram fabricated using our method.

  12. Conversion of phase-modulated signals to amplitude-modulated signals in SOAs due to mirror reflections

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors.......We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors....

  13. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    Science.gov (United States)

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  14. Sound absorption in a field of a strong electromagnetic wave in a quantizied magnetic field

    International Nuclear Information System (INIS)

    Chajkovskij, I.A.

    1974-01-01

    A coefficient of sound absorption GAMMA in a semiconductor and semi-metal in the quantized magnetic field is calculated for a system exposed to a field of strong electromagnetic radiation. The cases E parallel H and E orthogonal H are considered. Along with the already known strong oscillations of sound absorption in magnetic fields, the absorption spectrum GAMMAsub(par) and GAMMAsub(orth) shows new oscillations representing a manifestation of the quasi-energetic electron spectrum in the field of a strong electromagnetic wave. The oscillation height at E parallel H is modulated by the electromagnetic field. It is shown that the ratio GAMMAsub(par)/GAMMAsub(orth) allows the determination of the effective mass of the carriers

  15. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  16. Atom ionization in a nonclassical intense electromagnetic field

    International Nuclear Information System (INIS)

    Popov, A.M.; Tikhonova, O.V.

    2002-01-01

    The atoms ionization process in the intense nonclassical electromagnetic field is considered. It is shown that depending on the field quantum state the probability of ionization may essentially change even by one and the same average quantum number in the radiation mode, whereby the difference in the ionization rates is especially significant in the case, when the ionization process is of a multiphoton character. It is demonstrates in particular, that the nonclassical field may be considerably more intensive from the viewpoint of the atoms ionization, than the classical field with the same intensity. The peculiarities of the decay, related to the atomic system state in the strong nonclassical field beyond the perturbation theory frames are studied [ru

  17. Seminal magnetic fields from inflato-electromagnetic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Membiela, Federico Agustin; Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Buenos Aires (Argentina)

    2012-10-15

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B{sub ij} in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)

  18. Seminal magnetic fields from inflato-electromagnetic inflation

    International Nuclear Information System (INIS)

    Membiela, Federico Agustin; Bellini, Mauricio

    2012-01-01

    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive at appreciable magnetic strengths. We also identify a new magnetic tensor field B ij in this kind of extra dimensional theory. Our results are in very good agreement with observational requirements, in particular from TeV blazars and CMB radiation limits we see that primordial cosmological magnetic fields should be close to scale invariance. (orig.)

  19. Shielding of electromagnetic fields of current sources by spherical enclosures

    Science.gov (United States)

    Shastry, S. V. K.; Rao, M. N.; Katti, V. R.

    Expressions for the shielding effectiveness of a conductive spherical enclosure excited by a Hertzian dipole have been derived using the dyadic Green's function technique. This technique has the advantage that the fields inside or outside the enclosure due to arbitrary current distribution may be found by employing the same set of dyadic Green's functions. The shielding effectiveness for plane wave incidence has been determined by considering the limiting case of the current source external to the spherical shell. Computed values of shielding effectiveness deduced in this manner have been compared with those obtained by the numerical evaluation of the expressions derived by earlier authors. The theory presented here may be useful to EMC (electromagnetic compatibility) engineers who must consider electromagnetic coupling from current sources in the vicinity of shielding enclosures.

  20. Effects of Bluetooth device electromagnetic field on hearing: pilot study.

    Science.gov (United States)

    Balachandran, R; Prepageran, N; Prepagaran, N; Rahmat, O; Zulkiflee, A B; Hufaida, K S

    2012-04-01

    The Bluetooth wireless headset has been promoted as a 'hands-free' device with a low emission of electromagnetic radiation. To evaluate potential changes in hearing function as a consequence of using Bluetooth devices, by assessing changes in pure tone audiography and distortion production otoacoustic emissions. Prospective study. Thirty adult volunteers were exposed to a Bluetooth headset device (1) on 'standby' setting for 6 hours and (2) at full power for 10 minutes. Post-exposure hearing was evaluated using pure tone audiography and distortion production otoacoustic emission testing. There were no statistically significant changes in hearing, as measured above, following either exposure type. Exposure to the electromagnetic field emitted by a Bluetooth headset, as described above, did not decrease hearing thresholds or alter distortion product otoacoustic emissions.

  1. Influence of different types of electromagnetic fields on skin reparatory processes in experimental animals.

    Science.gov (United States)

    Matic, Milan; Lazetic, Bogosav; Poljacki, Mirjana; Djuran, Verica; Matic, Aleksandra; Gajinov, Zorica

    2009-05-01

    Wound healing is a very complex process, some phases of which have only recently been explained. Magnetic and electromagnetic fields can modulate this process in a non-thermal way. The aim of this research was to compare the influence of constant and pulsed electromagnetic fields and low-level laser therapy (LLLT) on wound healing in experimental animals. The experiment was conducted on 120 laboratory rats divided into four groups of 30 animals each (constant electromagnetic field, pulsed electromagnetic field, LLLT and control group). It lasted for 21 days. Under the influence of the constant electromagnetic field the healing of the skin defect was accelerated in comparison with the control group. The difference was statistically significant in all the weeks of the experiment at the P electromagnetic field (P electromagnetic fields have a promoting effect on the wound healing process.

  2. Electromagnetic fields in small systems from a multiphase transport model

    Science.gov (United States)

    Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang

    2018-02-01

    We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.

  3. Effects of electromagnetic fields on fecundity in the chicken.

    Science.gov (United States)

    Krueger, W F; Giarola, A J; Bradley, J W; Shrekenhamer, A

    1975-02-28

    Egg production was reduced when young laying hens were kept in contact with metal cages while being continuously exposed to the following cw fields: a vhf field at a frequency of 260 MHz, with an incident power that decreased from 100 to 4mW during the experiment; a uhf field at a frequency of 915 MHz, with an incident power of 800 mW during the first 2.5 weeks, zero during the following week, and 200 mW for the remainder of the experiment; a uhf field at 2.435 GHz, with an incident power of 800 mW; an elf electric field at a frequency of 60 Hz, with a calculated value of field strength of 1600 V/m; an elf magnetic field at 60 Hz, with a value of magnetic flux density of 1.4G. With the exception of the hens exposed to the uhf field at 915 MHz, all other treated groups laid significantly less eggs than the controls (p smaller than or equal to 0.01). This reduction (similar 15% less than the controls) began with the first 4-week production period. The egg production curves for the hens exposed to the vhf field at 260 MHz and to the uhf field at 2.435 GHz were approximately the same beginning with the sixth week of production, and they maintained comparable production levels for the remainder of the experiment. An 8% total drop in production also was experienced in the group of birds exposed to the 915-MHz field, which pulsed because of equipment failure. Egg production rate curves for the birds in the elf electric and magnetic fields were substantially different from those exhibited by birds in the other electromagnetic fields. The birds in the E-field regained a production level comparable to the controls after 11 weeks production, whereas those in the B-field dropped to 31% production, which was approximately 40% poorer than the controls by the twelfth week of production. Fertility of cocks and hens was not affected by continuous low-power vhf and uhf near-zone electromagnetic exposure or elf electric or magnetic field treatment. Fertility was exceptionally good

  4. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  5. A microscopic approach to amplitude modulation with small signal of current

    International Nuclear Information System (INIS)

    Chiaretti, G.; Brambilla, M.; Milani, M.

    1988-01-01

    A microscopic approach to semiconductor injection laser dynamics is discussed to investigate the amplitude modulation with a small current signal in semiconductor lasers. An expression for the resonance frequency ν r is obtained as a function of microscopic parameters which characterize the laser system. This expression can be compared with the one derived from a standard rate equations approach, showing the existence of an additional factor. This factor leads to the prediction of a larger resonance frequency and consequently to a better agreement with the experimental data. The authors investigate the problem of amplitude modulation with small current signal in semiconductor lasers deriving an expression for the resonance frequency as a function of microscopic parameters which characterize the laser system and as a function of the injected current. This approach is based on the analysis of the competition among the fundamental microscopic processes typical of light-matter interaction and of the loss and pumping mechanisms that are at work in a laser system

  6. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    International Nuclear Information System (INIS)

    Nigam, R.; Kosovichev, A. G.

    2010-01-01

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  7. Alterations in adenylate kinase activity in human PBMCs after in vitro exposure to electromagnetic field: comparison between extremely low frequency electromagnetic field (ELF) and therapeutic application of a musically modulated electromagnetic field (TAMMEF).

    Science.gov (United States)

    Albanese, Antonietta; Battisti, Emilio; Vannoni, Daniela; Aceto, Emilia; Galassi, Gianmichele; Giglioni, Stefania; Tommassini, Valentina; Giordano, Nicola

    2009-01-01

    This study investigated the effects of electromagnetic fields on enzymes involved in purine metabolism in human peripheral blood mononuclear cells in vitro. Cells were obtained from 20 volunteers. We tested both low-energy, extremely low frequency (ELF; 100-Hz) electromagnetic fields and the Therapeutic Application of Musically Modulated Electromagnetic Fields (TAMMEFs); the latter is characterized by variable frequencies, intensities, and wave shapes. Adenylate kinase activity was increased after ELF field exposure but decreased slightly after TAMMEF exposure. Neither of the two electromagnetic field affected the activities of the purine metabolism enzymes ecto-5'-nucleotidase, adenosine deaminase, and adenosine kinase. We concluded that ELF fields may influence cellular electrical charge stability; stimulation of adenylate kinase activity could restore the cell to a state of equilibrium. In contrast, TAMMEF fields may be useful for maintaining and regulating the cellular electrical charge.

  8. Behavior of radon progeny in low frequency electromagnetic fields

    CERN Document Server

    Oda, K; Yamamoto, T

    1999-01-01

    Whether the electro-magnetic (EM) fields are carcinogenic or not still remains to be discussed from scientific point of view. Recently a possibility was pointed out that increased deposition of radon progeny in the EM-fields should enhance exposure dose to internal body. We investigated the behavior of charged sup 2 sup 2 sup 2 Rn progeny and aerosols containing them by measuring the pattern and the magnitude of the deposition rate of decay products on both CR-39 track detectors and imaging plates under various conditions. We concluded that the attachment to wire cables should be increased mainly by electric component of low frequency EM-fields and possibly by electric field induced by strong changing magnetic ones.

  9. ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.

    Energy Technology Data Exchange (ETDEWEB)

    BELEGGIA,M.; POZZI, G.; TONOMURA, A.

    2007-01-01

    It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.

  10. An electromagnetic field measurement protocol for monitoring power lines

    International Nuclear Information System (INIS)

    Lubritto, C.; Iavazzo, A.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.

    2002-01-01

    In the actions aiming to prevent risks related to the exposure to Low Frequencies Non Ionising electromagnetic Radiations (ELF-NIR), always arises the need to perform measurements in order to assess the field level existing in the considered sites. As a matter of fact very often it turns out difficult to predict, on the base of calculations, with sufficient approximation the field levels, due to extended variability of environmental conditions (e.g. coexistence of several sources, ground and building conformation, etc..). The measurement procedures must follow a methodology that could allow to minimise the interferences with the measurement set-up and the systematic and accidental errors. Risks for the operator and damages to the instrument should also be taken into account. One of the goal set for this research program was then the definition of the measurement protocol for electromagnetic field generated by low frequency non ionising radiation sources. In particular sources like power lines will be considered in order to validate the protocol by means of in-field measurements

  11. Quantification and Measurement of Internal Electromagnetic Fields Induced in Finite Biological Bodies by Nonuniform Electromagnetic Fields.

    Science.gov (United States)

    1978-10-15

    implantable EM field probes which can be used to measure the internal EM fields induced in simulated biological bod ies. Major topics of this program include...be used to measure the internal EM fields induced in simulated biological bodies with a high degree of accuracy. Most of the originally planned topics...following papers: (1) "Focal hyperthermia as induced by RF radiation of simulacra with embedded tumors and as induced by EM fields in a model of a human

  12. Mapping the absolute electromagnetic field strength of individual field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; Vos, Willem L.; Boller, Klaus J.; van der Slot, Petrus J.M.

    2013-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We demonstrate our method by applying it to map the electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to create a

  13. An Optimization of Pulsed ElectroMagnetic Fields Study

    Science.gov (United States)

    Goodwin, Thomas J.

    2006-01-01

    To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.

  14. International conference on electromagnetic fields hazard protection of the human being

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.G.

    1999-01-01

    The Second International conference concerning the problems of electromagnetic protection of the human being, fundamental and applied studies, normalization of the EMP: philosophy, criteria and harmonization which took place in Moscow in September 1999 is reported. The topics of reports covered both the mechanism of biological action of electromagnetic fields and aspects of impact of electromagnetic fields from various household appliances on the health of practically all modern people (television, radio, energetic, communication). The plenary section on evaluation of hazards of the mobile communication electromagnetic fields and the round table meeting dealing with evaluation of hazards of electromagnetic fields of the cellular communication base stations were conducted in the course of the conference. The plenary meetings were devoted to harmonization of the electromagnetic protection standards of Russia and western countries. The above conference constitutes one of the stages of the WHO international program concerning electromagnetic fields and the human being [ru

  15. Accuracy Improvement in Magnetic Field Modeling for an Axisymmetric Electromagnet

    Science.gov (United States)

    Ilin, Andrew V.; Chang-Diaz, Franklin R.; Gurieva, Yana L.; Il,in, Valery P.

    2000-01-01

    This paper examines the accuracy and calculation speed for the magnetic field computation in an axisymmetric electromagnet. Different numerical techniques, based on an adaptive nonuniform grid, high order finite difference approximations, and semi-analitical calculation of boundary conditions are considered. These techniques are being applied to the modeling of the Variable Specific Impulse Magnetoplasma Rocket. For high-accuracy calculations, a fourth-order scheme offers dramatic advantages over a second order scheme. For complex physical configurations of interest in plasma propulsion, a second-order scheme with nonuniform mesh gives the best results. Also, the relative advantages of various methods are described when the speed of computation is an important consideration.

  16. Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field.

    Science.gov (United States)

    Campisi, Agata; Gulino, Marisa; Acquaviva, Rosaria; Bellia, Paolo; Raciti, Giuseppina; Grasso, Rosaria; Musumeci, Francesco; Vanella, Angelo; Triglia, Antonio

    2010-03-31

    The exposure of primary rat neocortical astroglial cell cultures to acute electromagnetic fields (EMF) in the microwave range was studied. Differentiated astroglial cell cultures at 14 days in vitro were exposed for 5, 10, or 20min to either 900MHz continuous waves or 900MHz waves modulated in amplitude at 50Hz using a sinusoidal waveform and 100% modulation index. The strength of the electric field (rms value) at the sample position was 10V/m. No change in cellular viability evaluated by MTT test and lactate dehydrogenase release was observed. A significant increase in ROS levels and DNA fragmentation was found only after exposure of the astrocytes to modulated EMF for 20min. No evident effects were detected when shorter time intervals or continuous waves were used. The irradiation conditions allowed the exclusion of any possible thermal effect. Our data demonstrate, for the first time, that even acute exposure to low intensity EMF induces ROS production and DNA fragmentation in astrocytes in primary cultures, which also represent the principal target of modulated EMF. Our findings also suggest the hypothesis that the effects could be due to hyperstimulation of the glutamate receptors, which play a crucial role in acute and chronic brain damage. Furthermore, the results show the importance of the amplitude modulation in the interaction between EMF and neocortical astrocytes. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Sensor Interaction as a Source of the Electromagnetic Field Measurement Error

    Directory of Open Access Journals (Sweden)

    Hartansky R.

    2014-12-01

    Full Text Available The article deals with analytical calculation and numerical simulation of interactive influence of electromagnetic sensors. Sensors are components of field probe, whereby their interactive influence causes the measuring error. Electromagnetic field probe contains three mutually perpendicular spaced sensors in order to measure the vector of electrical field. Error of sensors is enumerated with dependence on interactive position of sensors. Based on that, proposed were recommendations for electromagnetic field probe construction to minimize the sensor interaction and measuring error.

  18. Cellular effects of extremely low frequency (ELF) electromagnetic fields.

    Science.gov (United States)

    Santini, Maria T; Rainaldi, Gabriella; Indovina, Pietro L

    2009-04-01

    The major areas of research that have characterised investigation of the impact of extremely low frequency (ELF) electromagnetic fields on living systems in the past 50 years are discussed. In particular, selected studies examining the role of these fields in cancer, their effects on immune and nerve cells, and the positive influence of these ELF fields on bone and nerve cells, wound healing and ischemia/reperfusion injury are explored. The literature indicates that there is still no general agreement on the exact biological detrimental effects of ELF fields, on the physical mechanisms that may be behind these effects or on the extent to which these effects may be harmful to humans. Nonetheless, the majority of the in vitro experimental results indicate that ELF fields induce numerous types of changes in cells. Whether or not the perturbations observed at the cellular level can be directly extrapolated to negative effects in humans is still unknown. However, the myriad of effects that ELF fields have on biological systems should not be ignored when evaluating risk to humans from these fields and, consequently, in passing appropriate legislation to safeguard both the general public and professionally-exposed workers. With regard to the positive effects of these fields, the possibility of testing further their efficacy in therapeutic protocols should also not be overlooked.

  19. Nuclear beta decay induced by intense electromagnetic fields: Basic theory

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A basic formalism is developed for the theory of the effect on nuclear beta decay of an intense, plane-wave electromagnetic field. Interactions of the field with both the nuclear particles and the decay electron are included. The formalism is developed from first principles, including a derivation of transition probabilities between explicitly time-dependent asymptotic states. Interaction of the field with the nucleus is analyzed in terms of separation of the nucleus into an inert core and a fragment. The field interacts with the fragment, consisting of the nucleons which are candidates for beta decay, plus any other nucleons angular-momentum coupled to them in initial or final states. A separation of variables in the dynamical equations for the nucleus into center-of-mass and relative coordinates for the core and fragment shows direct charge coupling even for a fragment consisting entirely of neutrons. The transition formalism involves specific intense-field wave functions both for the nucleus and for the beta particle. Complete results are presented for total transition probability per unit time for intense-field-coupled nuclear beta decay. A much simplified formalism is given for the special case of very high field intensity at very low frequency. The results then bear a formal resemblance to ordinary beta decay theory, but they contain specific field effects in the beta particle spectral function, and in the nuclear interaction matrix elements. This is the first of a series of papers on this subject

  20. Instrument Reflections and Scene Amplitude Modulation in a Polychromatic Microwave Quadrature Interferometer

    Science.gov (United States)

    Dobson, Chris C.; Jones, Jonathan E.; Chavers, Greg

    2003-01-01

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 1096, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high- density measurements is 7.596, and the mean phase shift error for low-density measurements is 1.2". .

  1. Evoked responses of the superior olive to amplitude-modulated signals.

    Science.gov (United States)

    Andreeva, N G; Lang, T T

    1977-01-01

    Evoked potentials of some auditory centers of Rhinolophidae bats to amplitude-modulated signals were studied. A synchronization response was found in the cochlear nuclei (with respect to the fast component of the response) and in the superior olivary complex (with respect to both fast and slow components of the response) within the range of frequency modulation from 50 to 2000 Hz. In the inferior colliculus a synchronized response was recorded at modulation frequencies below 150 Hz, but in the medial geniculate bodies no such response was found. Evoked responses of the superior olivary complex were investigated in detail. The lowest frequencies of synchronization were recorded within the carrier frequency range of 15-30 and 80-86 kHz. The amplitude of the synchronized response is a function of the frequency and coefficient of modulation and also of the angle of stimulus presentation.

  2. The Effect of Amplitude Modulation on the Axial Resolution of Doppler-Based Ultrasonic Topography Measurement

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid

    2016-01-01

    Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance...... of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement...

  3. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    International Nuclear Information System (INIS)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-01-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  4. A novel amplitude modulated triangular carrier gain linearization technique for SPWM inverter

    Directory of Open Access Journals (Sweden)

    Ramkumar Subburam

    2009-01-01

    Full Text Available This paper presents a new method to extend the linearity of the sinusoidal pulse width modulation (SPWM to full range of the pulse dropping region. The proposed amplitude modulated triangular carrier PWM method (AMTCPWM increases the dynamic range of the SPWM control and eliminates the need of nonlinear modulation in the pulse dropping region to reach the square wave boundary. The novel method combines the spectral quality of SPWM with the efficient single-mode linear control. A simple analytical characterization of the exact method is presented and its effectiveness is demonstrated using simulation for the basic single-phase H-bridge inverter circuit. The hardware results of the designed prototype inverter are presented to validate the betterment of the novel scheme. .

  5. Effects of Hearing Loss and Fast-Acting Compression on Amplitude Modulation Perception and Speech Intelligibility

    DEFF Research Database (Denmark)

    Wiinberg, Alan; Jepsen, Morten Løve; Epp, Bastian

    2018-01-01

    of the modulation detection thresholds, compression does not seem to provide a benefit for speech intelligibility. Furthermore, fast-acting compression may not be able to restore MDD thresholds to the values observed for listeners with NH, suggesting that the two measures of amplitude modulation sensitivity......Objective: The purpose was to investigate the effects of hearing-loss and fast-acting compression on speech intelligibility and two measures of temporal modulation sensitivity. Design: Twelve adults with normal hearing (NH) and 16 adults with mild to moderately severe sensorineural hearing loss......, the MDD thresholds were higher for the group with hearing loss than for the group with NH. Fast-acting compression increased the modulation detection thresholds, while no effect of compression on the MDD thresholds was observed. The speech reception thresholds obtained in stationary noise were slightly...

  6. Electromagnetic fields and Green's functions in elliptical vacuum chambers

    Science.gov (United States)

    Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.

    2017-10-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.

  7. String cloud cosmologies for Bianchi type-III models with electromagnetic field

    Science.gov (United States)

    Tripathy, S. K.; Sahu, S. K.; Routray, T. R.

    2008-06-01

    The Saez-Ballester field equations for spatially homogeneous and anisotropic Bianchi type-III cosmological models have been solved for pure geometric cosmic string cloud pervading the universe either in the absence or in presence of electromagnetic field. It has been established here that the model does not survive for geometric cosmic string cloud pervading the universe when there is no electromagnetic field. But in presence of electromagnetic field the model can have plausible solutions fostering the idea that strings forming the surface of the world sheet have to co-exist with electromagnetic field.

  8. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study

    Science.gov (United States)

    Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan

    2016-09-01

    Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.

  9. Electromagnetic dissipation during asymmetric reconnection with a moderate guide field

    Science.gov (United States)

    Genestreti, Kevin; Burch, James; Cassak, Paul; Torbert, Roy; Phan, Tai; Ergun, Robert; Giles, Barbara; Russell, Chris; Wang, Shan; Akhavan-Tafti, Mojtaba; Varsani, Ali

    2017-04-01

    We calculate the work done on the plasma by the electromagnetic (EM) field, ⃗Jṡ⃗E', and analyze the related electron currents and electric fields, focusing on a single asymmetric guide field electron diffusion region (EDR) event observed by MMS on 8 December 2015. For this event, each of the four MMS spacecraft observed dissipation of EM energy at the in-plane magnetic null point, though large-scale generation/dissipation was observed inconsistently on the magnetospheric side of the boundary. The current at the null was carried by a beam-like population of magnetosheath electrons traveling anti-parallel to the guide field, whereas the current on the Earthward side of the boundary was carried by crescent-shaped electron distributions. We also analyze the terms in Ohm's law, finding a large residual electric field throughout the EDR, inertial and pressure divergence fields at the null, and pressure divergence fields at the magnetosphere-side EDR. Our analysis of the terms in Ohm's law suggests that the EDR had significant three-dimensional structure.

  10. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  11. Electromagnetically Induced Transparency and Absorption of A Monochromatic Light Controlled by a Radio Frequency Field

    International Nuclear Information System (INIS)

    Cai Xun-Ming

    2015-01-01

    Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electromagnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities

    International Nuclear Information System (INIS)

    Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J.

    2003-01-01

    The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)

  13. Circadian neuroendocrine physiology and electromagnetic field studies: Precautions and complexities

    Energy Technology Data Exchange (ETDEWEB)

    Warman, G.R.; Tripp, H.M.; Harman, V.L.; Arendt, J

    2003-07-01

    The suppression of melatonin by exposure to low frequency electromagnetic fields (EMFs) 'the melatonin hypothesis' has been invoked as a possible mechanism through which exposure to these fields may result in an increased incidence of cancer. While the effect of light on melatonin is well established, data showing a similar effect due to EMF exposure are sparse and, where present, are often poorly controlled. The current review focuses on the complexities associated with using melatonin as a marker and the dynamic nature of normal melatonin regulation by the circadian neuroendocrine axis. These are issues which the authors believe contribute significantly to the lack of consistency of results in the current literature. Recommendations on protocol design are also made which, if followed, should enable researchers to eliminate or control for many of the confounding factors associated with melatonin being an output from the circadian clock. (author)

  14. The dielectric response to the magnetic field of electromagnetic radiation

    Science.gov (United States)

    Mukherjee, Shouvik; Mukhopadhyay, Sourabh; Datta, Prasanta Kumar

    2017-04-01

    Light-matter interaction in transparent dielectrics is revisited, including the magnetic force on bound charges in the Lorentz oscillator model. The parameter ranges of incident radiation and the medium on which the magnetic field of the electromagnetic radiation will have a significant effect are traced using Floquet theory. The analysis reveals that the threshold intensity for a significant response of the magnetic field of the radiation at the second harmonic of the incident radiation can be reduced to {10}12 {{W}}{{cm}}-2 for off resonant and even lower for resonant interaction. This phenomenon has already been observed indirectly in experiments [1, 2]. Induced magnetizing current due to the magnetic force is shown to originate from a modified dielectric response, which may be useful in future magneto-optic devices, solar energy harvesting, and studying the ultrafast dynamics in doped dielectrics.

  15. Electromagnetic field limits set by the V-Curve.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jorgenson, Roy Eberhardt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hudson, Howard Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  16. Theory of a ring laser. [electromagnetic field and wave equations

    Science.gov (United States)

    Menegozzi, L. N.; Lamb, W. E., Jr.

    1973-01-01

    Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.

  17. MINERAL HORIZONS, ELECTROMAGNETIC FIELDS AND CIRCULAR SHAPES IN THE GRASS

    Directory of Open Access Journals (Sweden)

    Valentino Straser

    2009-12-01

    Full Text Available The occasional appearance of circular shapes in meadows and farmland located on slopes usually affected by gravitational phenomena, offered an occasion for verifying the possible relation between the position of the circles in the grass, the gravitational movement of the slope affecting its mineral horizons and the variations of electric and static magnetic fields close to the circular shapes and in the surrounding area. The stress caused by the “creeping” movement in the uderlying ground turned out to be in direct relation with the variation in the electric and magnetic fields caused by piezoelectric and piezomagnetic minerals such as quartz. The onset of the electromagnetic process involves the conversion of electric energy on the surface into an area of spherical shape which is linked with a different growth of herbaceous species compared to the surrounding vegetation.

  18. Electromagnetic field triggered drug and chemical delivery via liposomes

    Science.gov (United States)

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  19. Simultaneous Electromagnetic Tracking and Calibration for Dynamic Field Distortion Compensation.

    Science.gov (United States)

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2016-08-01

    Electromagnetic (EM) tracking systems are highly susceptible to field distortion. The interference can cause measurement errors up to a few centimeters in clinical environments, which limits the reliability of these systems. Unless corrected for, this measurement error imperils the success of clinical procedures. It is therefore fundamental to dynamically calibrate EM tracking systems and compensate for measurement error caused by field distorting objects commonly present in clinical environments. We propose to combine a motion model with observations of redundant EM sensors and compensate for field distortions in real time. We employ a simultaneous localization and mapping technique to accurately estimate the pose of the tracked instrument while creating the field distortion map. We conducted experiments with six degrees-of-freedom motions in the presence of field distorting objects in research and clinical environments. We applied our approach to improve the EM tracking accuracy and compared our results to a conventional sensor fusion technique. Using our approach, the maximum tracking error was reduced by 67% for position measurements and by 64% for orientation measurements. Currently, clinical applications of EM trackers are hampered by the adverse distortion effects. Our approach introduces a novel method for dynamic field distortion compensation, independent from preoperative calibrations or external tracking devices, and enables reliable EM navigation for potential applications.

  20. ELECTROMAGNETIC SAFETY OF ELECTRIC TRANSPORT SYSTEMS: MAIN SOURCES AND PARAMETERS OF MAGNETIC FIELDS

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-03-01

    Full Text Available Magnetic fields produced by electric drive vehicles may break electromagnetic safety. For electromagnetic safety and electromagnetic compatibility knowledge about characteristics and sources of magnetic fields in the electric transport is necessary. The article deals with analysis of available data about magnetic fields in electric cars and comparison with results of our measurements carried out in the other types of electrified transport systems.

  1. The assessment of electromagnetic field radiation exposure for mobile phone users

    OpenAIRE

    Buckus Raimondas; Strukcinskiene Birute; Raistenskis Juozas

    2014-01-01

    Background/Aim. During recent years, the widespread use of mobile phones has resulted in increased human exposure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the...

  2. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Missevitch, O V; Yarman, T

    2011-01-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  3. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)

    2011-05-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  4. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  5. Effects of Pulse Electromagnetic Field on Corrosion Resistance of Al-5 % Cu Alloy

    Science.gov (United States)

    Wang, B.; Tang, L. D.; Qi, J. G.; Wang, J. Z.

    2013-03-01

    It was investigated that corrosion resistance of Al-5 % Cu alloy was influenced by pulse electromagnetic field (PEMF). The morphologies were observed by scanning election microscopy (SEM). The corrosion behaviors were investigated by potentiodynamic polarization tests and immersion tests. The results indicated that corrosion resistance of samples could be increased by using pulse electromagnetic field, moreover, the optimum parameter of pulse electromagnetic field in this experiment was showed as follows: 500 V, 3 Hz, 30 s. Decreasing the quantity of eutectic in grain boundaries and refining the grains were main causations for increasing corrosion resistance of Al-5 % Cu alloy with pulse electromagnetic field.

  6. Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI

    NARCIS (Netherlands)

    van den Bergen, B.; Stolk, C.C.; van den Berg, G.J.B.; Lagendijk, J.J.W.; van den Berg, C.A.T.

    2009-01-01

    A new, very fast, approach for calculations of the electromagnetic excitation field for MRI is presented. The calculation domain is divided in different homogeneous regions, where for each region a general solution is obtained by a summation of suitable basis functions. A unique solution for the

  7. Effects of extremely low frequency electromagnetic fields on human beings

    International Nuclear Information System (INIS)

    Lilien, J.L.; Dular, P.; Sabariego, R.; Beauvois, V.; Barbier, P.P.; Lorphevre, R.

    2010-01-01

    Since the early seventies, potential health risks from ELF (Extremely Low frequency electromagnetic Fields) exposure (50 Hz) have been extensively treated in the literature (more than 1000 references registered by WHO (World Health Organisation), 2007). After 30 years of worldwide research, the major epidemiological output is the possible modest increased risk (by a factor 2) of childhood leukaemia in case of a long exposure to an ambient magnetic flux density (B-field) higher than 0.4 μT. However, this fact has not been confirmed by in vivo and in vitro studies. Moreover it has not been validated by any adverse health biological mechanisms neither for adults nor for children. International recommendations (ICNIRP, International Commission on Non-Ionising Radiation Protection) are currently, for general public, not to exceed a B-field of 100 μT (50 Hz) and an E-field of 5 kV/m (50 Hz). Herein, a rough overview of typical values of ELF fields will be presented followed by a brief literature survey on childhood leukaemia and ELF The potential carcinogenic effect of ELF would be linked to electrical disturbances in cell behaviour. The major concern linking child-hood leukaemia and ELF is thus to determine the response of bone marrow cells under ELF fields. With that purpose, transmembrane potential will be targeted and linked to the E-field at that level. This paper is three-folded: (1) the electric interactions between ambient ELF fields and the body are studied both qualitatively and quantitatively. Different sources of internal E-field are analysed and classified according to their potential risk; (2) the hypothesis of contact current is detailed; (3) key actions to undertake are highlighted. Based on the current state of the art and some authors' own developments, this paper proposes simple low cost enhancements of private electrical installations in order to annihilate the major source of potential effects of ELF. (authors)

  8. Numerical modelling of GPR electromagnetic fields for locating burial sites

    Science.gov (United States)

    Carcione, José M.; Karczewski, Jerzy; Mazurkiewicz, Ewelina; Tadeusiewicz, Ryszard; Tomecka-Suchoń, Sylwia

    2017-11-01

    Ground-penetrating radar (GPR) is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability). The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.

  9. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay

    International Nuclear Information System (INIS)

    Franzellitti, Silvia; Valbonesi, Paola; Ciancaglini, Nicola; Biondi, Carla; Contin, Andrea; Bersani, Ferdinando; Fabbri, Elena

    2010-01-01

    One of the most controversial issue regarding high-frequency electromagnetic fields (HF-EMF) is their putative capacity to affect DNA integrity. This is of particular concern due to the increasing use of HF-EMF in communication technologies, including mobile phones. Although epidemiological studies report no detrimental effects on human health, the possible disturbance generated by HF-EMF on cell physiology remains controversial. In addition, the question remains as to whether cells are able to compensate their potential effects. We have previously reported that a 1-h exposure to amplitude-modulated 1.8 GHz sinusoidal waves (GSM-217 Hz, SAR = 2 W/kg) largely used in mobile telephony did not cause increased levels of primary DNA damage in human trophoblast HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations were considered of interest. In the present work, HTR-8/SVneo cells were exposed for 4, 16 or 24 h to 1.8 GHz continuous wave (CW) and different GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters in trophoblast cells after 16 and 24 h of exposure, while the un-modulated CW was ineffective. However, alterations were rapidly recovered and the DNA integrity of HF-EMF exposed cells was similar to that of sham-exposed cells within 2 h of recovery in the absence irradiation. Our data suggest that HF-EMF with a carrier frequency and modulation scheme typical of the GSM signal may affect the DNA integrity.

  10. Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay.

    Science.gov (United States)

    Franzellitti, Silvia; Valbonesi, Paola; Ciancaglini, Nicola; Biondi, Carla; Contin, Andrea; Bersani, Ferdinando; Fabbri, Elena

    2010-01-05

    One of the most controversial issue regarding high-frequency electromagnetic fields (HF-EMF) is their putative capacity to affect DNA integrity. This is of particular concern due to the increasing use of HF-EMF in communication technologies, including mobile phones. Although epidemiological studies report no detrimental effects on human health, the possible disturbance generated by HF-EMF on cell physiology remains controversial. In addition, the question remains as to whether cells are able to compensate their potential effects. We have previously reported that a 1-h exposure to amplitude-modulated 1.8 GHz sinusoidal waves (GSM-217 Hz, SAR=2 W/kg) largely used in mobile telephony did not cause increased levels of primary DNA damage in human trophoblast HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations were considered of interest. In the present work, HTR-8/SVneo cells were exposed for 4, 16 or 24h to 1.8 GHz continuous wave (CW) and different GSM signals, namely GSM-217 Hz and GSM-Talk (intermittent exposure: 5 min field on, 10 min field off). The alkaline comet assay was used to evaluate primary DNA damages and/or strand breaks due to uncompleted repair processes in HF-EMF exposed samples. The amplitude-modulated signals GSM-217 Hz and GSM-Talk induced a significant increase in comet parameters in trophoblast cells after 16 and 24h of exposure, while the un-modulated CW was ineffective. However, alterations were rapidly recovered and the DNA integrity of HF-EMF exposed cells was similar to that of sham-exposed cells within 2h of recovery in the absence irradiation. Our data suggest that HF-EMF with a carrier frequency and modulation scheme typical of the GSM signal may affect the DNA integrity.

  11. Retraction: Evaluation of carcinogenic effects of electromagnetic fields (EMF).

    Science.gov (United States)

    Mehic, Bakir

    2010-11-01

    The Editor-in-chief of the Bosnian Journal of Basic Medical Sciences has decided to retract the article from Bayazit V et al. [1] entitled as: "Evaluation of carcinogenic effects of electromagnetic fields (EMF)" published in Bosn J Basic Med Sci. 2010 Aug;10(3):245-50. After the editorial office was alerted of possible plagiarism in the article, it conducted thorough investigation and concluded that the article apparently represents plagiarized material from two World Health Organization reports, one European Commission report and other sources. Since this is considered scientific plagiarism and scientific misconduct, Editor-in-chief has decided to withdraw the article. The authors have agreed with the editorial office decision.

  12. The Analysis of Pulse Electromagnetic Field Effect on Solution Conductivity

    OpenAIRE

    Mahardiono, Novan Agung; Fakhrurroja, Hanif; Luvita, V; Cahyaningsih, Sudaryati

    2016-01-01

    This paper presents the observation of magnetization process variables influence the conductivity of a solution of FeSO4, MnSO4, MgCl2 and CaCl2. Some of the survey results reveal that there has been a decline in the rate of particle formation FeSO4, MnSO4, MgCl2 and CaCl2 of the ions in the hard water sample magnetized. The research method in this paper is to test the conductivity of a solution of FeSO4, MnSO4, MgCl2 and CaCl2 before and after a given pulse electromagnetic field with a conc...

  13. Finite element modeling of electromagnetic fields and waves using NASTRAN

    Science.gov (United States)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  14. Effects of electromagnetic fields on osteoporosis: A systematic literature review.

    Science.gov (United States)

    Wang, Rong; Wu, Hua; Yang, Yong; Song, Mingyu

    2016-01-01

    Electromagnetic fields (EMFs) as a safe, effective and noninvasive treatment have been researched and used for many years in orthopedics, and the common use clinically is to promote fracture healing. The effects of EMFs on osteoporosis have not been well concerned. The balance between osteoblast and osteoclast activity as well as the balance between osteogenic differentiation and adipogenic differentiation of bone marrow mesenchymal stem cells plays an important role in the process of osteoporosis. A number of recent reports suggest that EMFs have a positive impact on the balances. In this review, we discuss the recent advances of EMFs in the treatment of osteoporosis from basic research to clinical study and introduce the possible mechanism. In addition, we presented future perspectives of application of EMFs for osteoporosis.

  15. Effect of 910-MHz Electromagnetic Field on Rat Bone Marrow

    Directory of Open Access Journals (Sweden)

    George Demsia

    2004-01-01

    Full Text Available Aiming to investigate the possibility of electromagnetic fields (EMF developed by nonionizing radiation to be a noxious agent capable of inducing genotoxicity to humans, in the current study we have investigated the effect of 910-MHz EMF in rat bone marrow. Rats were exposed daily for 2 h over a period of 30 consecutive days. Studying bone marrow smears from EMF-exposed and sham-exposed animals, we observed an almost threefold increase of micronuclei (MN in polychromatic erythrocytes (PCEs after EMF exposure. An induction of MN was also observed in polymorphonuclear cells. The induction of MN in female rats was less than that in male rats. The results indicate that 910-MHz EMF could be considered as a noxious agent capable of producing genotoxic effects.

  16. Power frequency electromagnetic fields and health. Where's the evidence?

    Science.gov (United States)

    Preece, A W; Hand, J W; Clarke, R N; Stewart, A

    2000-09-01

    Twenty years ago concerns were raised that exposure to power frequency (or extremely low frequency (ELF)) electromagnetic fields (EMFs) may be associated with an increased risk of cancer or other health hazards. Subsequently no associations have been shown between laboratory magnetic field exposures and carcinogenesis in either animal or cellular models. Indeed, studies have demonstrated that magnetic fields are not associated with cancer. However, the puzzle remains that the results of some epidemiological studies may be interpreted as suggesting that living close to high-voltage transmission (HVT) lines appears to increase slightly the risk of childhood leukaemia. Alternatively, these results could result from small biases and errors in individual studies, which might not necessarily be the same in each study. The nature of the epidemiological studies (power-line, wire code, magnetic field or appliance based) appears to determine whether and how the EMFs associated with HVT lines might be a risk factor. It is possible that a simple association with either magnetic or electric field exposure may not be the whole answer, and an alternative mechanism is always a possibility. Although the interpretation of the available evidence by most expert bodies has led them to conclude that exposure to power frequency electric and magnetic fields is not a human health hazard, a working group under the auspices of the US National Institute of Environmental Health Sciences (NIEHS) concluded that there was a possible low risk associated with certain exposures to ELF magnetic fields. NIEHS itself interpreted the finding as insufficient to warrant aggressive regulatory concern but stated that, because virtually everyone is routinely exposed to ELF EMFs, passive regulatory action is warranted, such as a continued emphasis on educating both the public and the regulated community on means aimed at reducing exposures. These analyses, conclusions and advice are not contradicted by

  17. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Kardashev, N.S.; Polnarev, A.G.; Novikov, I.D.

    1989-12-01

    Propagation of an electromagnetic wave in the field of gravitational waves is considered. Attention is given to the principal difference between the electromagnetic wave propagation in the field of random gravitational waves and the electromagnetic wave propagation in a medium with a randomly-inhomogeneous refraction index. It is shown that in the case of the gravitation wave field the phase shift of an electromagnetic wave does not increase with distance. The capability of space radio interferometry to detect relic gravitational waves as well as gravitational wave bursts of non cosmological origin are analyzed. (author). 64 refs, 2 figs

  18. Current Understanding of the Health Effects of Electromagnetic Fields.

    Science.gov (United States)

    Miah, Tayaba; Kamat, Deepak

    2017-04-01

    There has been an exponential increase in the use of electronic devices over the past few decades. This has led to increased exposure to electromagnetic fields (EMF). Electric fields result from differences in voltage, whereas magnetic fields result from the flow of electric current. Higher-frequency waves of EMF have more energy than lower-frequency waves, and thus generally tend to be more harmful. An EMF activates cellular stress response and also causes breaks in DNA strands. There are many methodological barriers to effectively measuring the associations of EMF and childhood cancers. The consensus from multiple studies is that there is no causal role of extremely low-frequency EMFs in childhood cancers, including brain cancer. A recent study showed a link between EMF radiation and the development of malignant tumors in rats. In light of that study, the American Academy of Pediatrics set out new recommendations to decrease the adverse effects of cellphone exposure on children. [Pediatr Ann. 2017;46(4):e172-e174.]. Copyright 2017, SLACK Incorporated.

  19. Pulsed Electromagnetic Fields and Tissue Engineering of the Joints.

    Science.gov (United States)

    Iwasa, Kenjiro; Reddi, A Hari

    2018-04-01

    Bone and joint formation, maintenance, and regeneration are regulated by both chemical and physical signals. Among the physical signals there is an increasing realization of the role of pulsed electromagnetic fields (PEMF) in the treatment of nonunions of bone fractures. The discovery of the piezoelectric properties of bone by Fukada and Yasuda in 1953 in Japan established the foundation of this field. Pioneering research by Bassett and Brighton and their teams resulted in the approval by the Food and Drug Administration (FDA) of the use of PEMF in the treatment of fracture healing. Although PEMF has potential applications in joint regeneration in osteoarthritis (OA), this evolving field is still in its infancy and offers novel opportunities. We have systematically reviewed the literature on the influence of PEMF in joints, including articular cartilage, tendons, and ligaments, of publications from 2000 to 2016. PEMF stimulated chondrocyte proliferation, differentiation, and extracellular matrix synthesis by release of anabolic morphogens such as bone morphogenetic proteins and anti-inflammatory cytokines by adenosine receptors A2 A and A3 in both in vitro and in vivo investigations. It is noteworthy that in clinical translational investigations a beneficial effect was observed on improving function in OA knees. However, additional systematic studies on the mechanisms of action of PEMF on joints and tissues therein, articular cartilage, tendons, and ligaments are required.

  20. Wave-packet dynamics of noninteracting ultracold bosons in an amplitude-modulated parabolic optical lattice

    Science.gov (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi

    2015-06-01

    The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013), 10.1103/PhysRevA.88.023620] produced wave packets by applying amplitude modulation to a trapped Bose-Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper renders a theoretical account of this experimental production of wave packets and their subsequent time evolution, focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the "single-Q Rabi model" to give a simple and reliable description of the interband transition. As a natural extension, we demonstrate enhancement of the wave-packet production by the "two-step Rabi oscillation method" using either one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the Landau-Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302].

  1. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    International Nuclear Information System (INIS)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-01-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2π The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( ∼ 2π ). (Author) 2 refs

  2. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  3. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    Science.gov (United States)

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation.

  4. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-07-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2{pi} The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( {approx} 2{pi} ). (Author) 2 refs.

  5. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.

    Science.gov (United States)

    Rajapaksa, Anushi; Qi, Aisha; Yeo, Leslie Y; Coppel, Ross; Friend, James R

    2014-06-07

    A practical, commercially viable microfluidic device relies upon the miniaturization and integration of all its components--including pumps, circuitry, and power supply--onto a chip-based platform. Surface acoustic waves (SAW) have become popular in microfluidic manipulation, in solving the problems of microfluidic manipulation, but practical applications employing SAW still require more power than available via a battery. Introducing amplitude modulation at 0.5-40 kHz in SAW nebulization, which requires the highest energy input levels of all known SAW microfluidic processes, halves the power required to 1.5 W even while including the power in the sidebands, suitable for small lithium ion batteries, and maintains the nebulization rate, size, and size distributions vital to drug inhalation therapeutics. This simple yet effective means to enable an integrated SAW microfluidics device for nebulization exploits the relatively slow hydrodynamics and is furthermore shown to deliver shear-sensitive biomolecules--plasmid DNA and antibodies as exemplars of future pulmonary gene and vaccination therapies--undamaged in the nebulized mist. Altogether, the approach demonstrates a means to offer truly micro-scale microfluidics devices in a handheld, battery powered SAW nebulization device.

  6. Wavelet analysis of pulse-amplitude-modulated chlorophyll fluorescence for differentiation of plant samples.

    Science.gov (United States)

    Guo, Ya; Zhou, Yesen; Tan, Jinglu

    2015-04-07

    Pulse-amplitude-modulated (PAM) chlorophyll fluorescence (ChlF) from photosystem II (PSII) of plants has been routinely measured for the analysis of photosynthesis and environmental changes. PAM ChlF from PSII is non-stationary and has time-varying frequency characteristics; however, existing analysis of PAM ChlF has been limited to selected characteristic values in the time domain. Wavelet transform is recognized as an efficient tool for analyzing non-stationary signals. In this research, an attempt was made to analyze PAM ChlF through wavelet transform. Features of PAM ChlF signals were computed from wavelet decomposition to classify two tree species and to detect chilling and detachment stresses. The wavelet-based features were compared with the commonly-used maximal PSII efficiency Fv/Fm. Both the wavelet-based features and Fv/Fm could effectively classify two tree species, but the former showed superiority than the latter in detecting the stresses. Wavelet transform revealed chilling stress earlier than Fv/Fm and detected detachment stress Fv/Fm failed to show. The results show that wavelet transform is a useful technique for analysis of PAM ChlF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sustained selective attention to competing amplitude-modulations in human auditory cortex.

    Science.gov (United States)

    Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander

    2014-01-01

    Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.

  8. EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease

    Science.gov (United States)

    Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato

    2012-12-01

    Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.

  9. Circular birefringence/dichroism measurement of optical scattering samples using amplitude-modulation polarimetry

    Science.gov (United States)

    Liu, Wei-Chun; Lo, Yu-Lung; Phan, Quoc-Hung

    2018-03-01

    A method is proposed for extracting the circular birefringence (CB), circular dichroism (CD) and depolarization (Dep) properties of optical scattering samples using an amplitude-modulation polarimetry technique. The validity of the proposed method is demonstrated by extracting the CB property of pure glucose aqueous samples, the CB/Dep properties of glucose solutions containing 0.02% lipofundin particles, and the CD/Dep properties of chlorophyllin solutions containing suspended polystyrene microspheres. The results show that the proposed technique has the ability to detect pure glucose with a resolution of 66 mg/dL over a concentration range of 0-500 mg/dL. Moreover, the glucose concentration of the CB/Dep samples can be detected over the same range with a resolution of 168 mg/dL. Finally, the chlorophyllin concentration of the CD/Dep sample can be detected over the range of 0-200 μg/dL with a resolution of 6.5 × 10-5. In general, the results show that the proposed technique provides a reliable and accurate means of measuring the CB/CD properties of optical samples with scattering effects, and thus has significant potential for biological sensing applications.

  10. Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas

    Science.gov (United States)

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-09-01

    It is shown that the dynamics of amplitude-modulated compressional dispersive Alfvénic (CDA) waves in a collisional megnetoplasma is governed by a complex Ginzburg-Landau (CGL) equation. The nonlinear dispersion relation for the modulational instability of the CDA waves is derived and investigated numerically. It is found that the growth rate of the modulational instability decreases (increases) with the increase of the normalized electron-ion collision frequency α (the plasma β). The modulational instability criterion for the CGL equation is defined precisely and investigated numerically. The region of the modulational instability becomes narrower with the increase of α and β, indicating that the system dissipates the wave energy by collisions, and a stable CDA wave envelope packet in the form of a hole will be a dominant localized pulse. For a collisionless plasma, i.e., α=0, the CGL equation reduces to the standard nonlinear Schrödinger (NLS) equation. The latter is used to investigate the modulational (in)stability region for the CDA waves in a collisionless magnetoplasma. It is shown that, within unstable regions, a random set of nonlinearly interacting CDA perturbations leads to the formation of CDA rogue waves. In order to demonstrate that the characteristics of the CDA rogue waves are influenced by the plasma β, the relevant numerical analysis of the appropriate nonlinear solution of the NLS equation is presented. The application of our investigation to space and laboratory magnetoplasmas is discussed.

  11. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  12. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    NARCIS (Netherlands)

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.

    2014-01-01

    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil

  13. Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma

    DEFF Research Database (Denmark)

    Behrens, Thomas Flensted; Lynge, Elsebeth; Cree, Ian

    2010-01-01

    The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries.......The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries....

  14. Bianchi type-I model with conformally invariant scalar and electromagnetic field

    International Nuclear Information System (INIS)

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-01-01

    A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt

  15. Effects of electromagnetic fields on human beings. Technical aspects and research results. - Regulations

    International Nuclear Information System (INIS)

    Kieback, D.

    1996-01-01

    The present brochure of the Professional Association for Fine Mechanics and Electrical Engineering gives a selective account on the effects of electromagnetic fields on human beings. The second part deals with regulations for safety and health protection at working places exposed to electromagnetic fields. (VHE) [de

  16. The Analysis for Activations in the Brain during Hearing the Amplitude-Modulated Tone by fMRI Measurement

    Science.gov (United States)

    Fukami, Tadanori; Shimada, Takamasa; Akatsuka, Takao; Saito, Yoichi

    In audiometry, ABR (Auditory Brainstem Response) is widely used. However, it shows low accuracy in low frequency band. Meanwhile, AMFR (Amplitude-Modulation-Following Response), the response during hearing an amplitude-modulated tone, has high frequency specificity and is brought to attention. As the first step to clinical application of AMFR, we investigated the activated areas in a brain when the subjects hear SAM tone (Sinusoidally Amplitude-Modulated tone) with both ears. We measured following two signals. One is the difference of BOLD (Blood Oxygenation Level Dependent) signal between hearing SAM tone vs. silence, the other is the difference of BOLD signal between hearing SAM tone vs. unmodulated tone. As a result, in the case of SAM vs. silence, the bilaterally auditory cortex (Broadmann Area 41, 42), the biratelally BA 10, left superior frontal gyrus and right superior temporal gyrus were activated (pgyrus (BA 6) and precuneus (BA 7), neighboring area including the bilaterally inferior parietal lobule (BA 40), the bilaterally medial frontal gyrus and superior frontal gyrus were activated (pgyrus and inferior parietal lobule was the part related to perception of amplitude-modulation.

  17. Assessment of occupational exposure to radio frequency electromagnetic fields

    Directory of Open Access Journals (Sweden)

    Halina Aniołczyk

    2015-06-01

    Full Text Available Background: European Union Directive 2013/35/UE provides for the implementation of EU regulations into national legislation. Our aim is to assess actual health hazards from radiofrequency electromagnetic field (RF EMF (range: 100 kHz – 300 GHz and indicate workplaces with the highest risk to employee health. Material and Methods: Data from measurements of RF EMF performed by the Laboratory of Electromagnetic Hazards in Nofer Institute of Occupational Medicine (Łódź, Poland were analyzed. The analysis covered the results of electric field intensity (E for over 450 selected items. The ranges of protection zones and the extent to which maximum admissible intensity (MAI values were also analyzed. The determinations and measurements of EMF in the work environment met the requirements of Polish Standard, while Polish regulations on the MAI values were used as the criterion for the assessment of the exposure. Results: The highest values of E field intensity at workplaces were measured for: electrosurgery, to 400 V/m, and short-wave diathermy units, to 220 V/m, dielectric welders to 240 V/m, within the FM radio antenna systems, to 180 V/m. The widest protection zones were noted for prototype research instruments, short-wave diathermy units, and dielectric welders. The most excessive (up to 12-fold MAI values were recorded for dielectric welders, short-wave diathermy units (up to 11-fold and microwave diathermy units (up to 8-fold. Conclusions: Our results have confirmed the high RF EMF values for physiotherapists, operators of dielectric welders, and mast maintenance workers in radio communication facilities (especially radio and TV broadcasting stations. Med Pr 2015;66(2:199–212

  18. A Plane-Symmetric Inhomogeneous Cosmological Model of Perfect Fluid Distribution with Electromagnetic Field I

    OpenAIRE

    Pradhan, Anirudh; Singh, P. K.; Yadav, A. K.

    2007-01-01

    A plane-symmetric inhomogeneous cosmological model of perfect fluid distribution with electro-magnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. $F_{12}$ is the non-vanishing component of electromagnetic field tensor. To get a deterministic solution, we assume the free gravitational field is Petrov type-II non-degenerate. The behaviour of the electro-magnetic field tensor together with some physical aspects of the model are al...

  19. Amplitude modulation rate dependent topographic organization of the auditory steady-state response in human auditory cortex.

    Science.gov (United States)

    Weisz, Nathan; Lithari, Chrysoula

    2017-10-01

    Periodic modulations of an acoustic feature, such as amplitude over a certain frequency range, leads to phase locking of neural responses to the envelope of the modulation. Using electrophysiological methods this neural activity pattern, also called the auditory steady-state response (aSSR), is visible following frequency transformation of the evoked response as a clear spectral peak at the modulation frequency. Despite several studies employing the aSSR that show, for example, strongest responses for ∼40 Hz and an overall right-hemispheric dominance, it has not been investigated so far to what extent within auditory cortex different modulation frequencies elicit aSSRs at a homogenous source or whether the localization of the aSSR is topographically organized in a systematic manner. The latter would be suggested by previous neuroimaging works in monkeys and humans showing a periodotopic organization within and across distinct auditory fields. However, the sluggishness of the signal from these neuroimaging works prohibit inferences with regards to the fine-temporal features of the neural response. In the present study, we employed amplitude-modulated (AM) sounds over a range between 4 and 85 Hz to elicit aSSRs while recording brain activity via magnetoencephalography (MEG). Using beamforming and a fine spatially resolved grid restricted to auditory cortical processing regions, our study revealed a topographic representation of the aSSR that depends on AM rate, in particular in the medial-lateral (bilateral) and posterior-anterior (right auditory cortex) direction. In summary, our findings confirm previous studies that showing different AM rates to elicit maximal response in distinct neural populations. They extend these findings however by also showing that these respective neural ensembles in auditory cortex actually phase lock their activity over a wide modulation frequency range. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Electromagnetically induced transparency resonances inverted in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  1. Hyperthermic effect of magnetic nanoparticles under electromagnetic field

    Directory of Open Access Journals (Sweden)

    Giovanni Baldi

    2009-06-01

    Full Text Available Magnetic nanoparticles have attracted increasingly attention due to their potential applications in many industrial fields, even extending their use in biomedical applications. In the latter contest the main features of magnetic nanoparticles are the possibility to be driven by external magnetic fields, the ability to pass through capillaries without occluding them and to absorb and convert electromagnetic radiation in to heat (Magnetic Fluid Hyperthermia. The main challenges of the current works on hyperthermia deal with the achievement of highly efficiency magnetic nanoparticles, the surface grafting with ligands able to facilitate their specific internalisation in tumour cells and the design of stealth nanocomposites able to circulate in the blood compartment for a long time. This article presents the synthesis of cobalt ferrite nanoparticles dispersed in diethylene glycol via the so called polyol strategy and the crystal size control through successive synthesis steps. Preliminary heat dissipation evaluations on the prepared samples were carried out and the question of how particles sizes affect their magnetic and hyperthermic properties was addressed as well. Furthermore we will present how surface chemistry can be modified in order to change the dispersity of the product without affecting magnetic and hyperthermic properties.

  2. In vitro exposure of human chondrocytes to pulsed electromagnetic fields

    Directory of Open Access Journals (Sweden)

    V Nicolin

    2009-08-01

    Full Text Available The effect of pulsed electromagnetic fields (PEMFs on the proliferation and survival of matrix-induced autologous chondrocyte implantation (MACI®-derived cells was studied to ascertain the healing potential of PEMFs. MACI-derived cells were taken from cartilage biopsies 6 months after surgery and cultured. No dedifferentiation towards the fibroblastic phenotype occurred, indicating the success of the surgical implantation. The MACI-derived cultured chondrocytes were exposed to 12 h/day (short term or 4 h/day (long term PEMFs exposure (magnetic field intensity, 2 mT; frequency, 75 Hz and proliferation rate determined by flow cytometric analysis. The PEMFs exposure elicited a significant increase of cell number in the SG2M cell cycle phase. Moreover, cells isolated from MACI® scaffolds showed the presence of collagen type II, a typical marker of chondrocyte functionality. The results show that MACI® membranes represent an optimal bioengineering device to support chondrocyte growth and proliferation in surgical implants. The surgical implant of MACI® combined with physiotherapy is suggested as a promising approach for a faster and safer treatment of cartilage traumatic lesions.

  3. Convective heat transfer in engine coolers influenced by electromagnetic fields

    Science.gov (United States)

    Karcher, C.; Kühndel, J.

    2017-08-01

    In engine coolers of off-highway vehicles, convective heat transfer at the coolant side limits both efficiency and performance density of the apparatus. Here, due to restrictions in construction and design, backwater areas and stagnation regions cannot be avoided. Those unwanted changes in flow characteristics are mainly triggered by flow deflections and sudden cross-sectional expansions. In application, mixtures of water and glysantine are used as appropriate coolants. Such coolants typically show an electrical conductivity of a few S/m. Coolant flow and convective heat transfer can then be controlled using Lorentz forces. These body forces are generated within the conducting fluid by the interactions of an electrical current density and a localized magnetic field, both of which are externally superimposed. In future application, this could be achieved by inserting electrodes in the cooler wall and a corresponding arrangement of permanent magnets. In this paper we perform numerical simulations of such magnetohydrodynamic flow in three model geometries that frequently appear in engine cooling applications: Carnot-Borda diffusor, 90° bend, and 180° bend. The simulations are carried out using the software package ANSYS Fluent. The present study demonstrates that, depending on the electromagnetic interaction parameter and the specific geometric arrangement of electrodes and magnetic field, Lorentz forces are suitable to break up eddy waters and separation zones and thus significantly increase convective heat transfer in these areas. Furthermore, the results show that hydraulic pressure losses can be reduced due to the pumping action of the Lorentz forces.

  4. [Influence of electromagnetic field on chosen parameters of thrombocytes' oxygen metabolism--in vitro research].

    Science.gov (United States)

    Jankowski, Wojciech; Henrykowska, Gabriela; Smigielski, Janusz; Pacholski, Krzysztof; Dziedziczak-Buczyńska, Maria; Kałka, Krzysztof; Buczyński, Andrzej

    2008-06-01

    Being a natural environmental factor, an electromagnetic field exists from the beginning of the life on Earth and it has an influence on maintenance of life processes. Natural electromagnetic fields affect day and year rhythms of plants, animals and humans. As a result of an electromagnetic field's activity, there occurs a disorder of blood platelets' function, which may, in consequence, lead to acute and chronic conditions dangerous to health and life. The aim of this work was to assess the influence, which a shape of an electromagnetic field of low frequency has on generating free radicals and enzymatic activity of superoxide dismutase in human blood platelets. Suspension of human blood platelets was subjected to activity of electromagnetic field of different shapes, frequency of 50 Hz and induction of 10 mT for 15 and 30 minutes. An electromagnetic field was generated with Helmholtz coils arranged on a bracket, inside of which test tubes with the blood platelets' suspension were put. Next, they were subjected to an activity of a specific electromagnetic field. The measurement of free radicals generation indicated an increase, in comparison with the initial values, after 15 minutes as well as 30 minutes of exposition, regardless of the electromagnetic field's shape, whereas the enzymatic activity of superoxide dismutase decreased, in comparison with the initial values, after 15 minutes as well as 30 minutes of exposition, regardless of the applied electromagnetic field's shape. Basing on obtained results, it may be stated that the level of generating free radicals as well as the level of enzymatic activity of superoxide dismutase in tested blood cells indicates significant dependence on an electromagnetic field's shape. The greatest changes have been observed during the activity of a rectangular and triangular pulse.

  5. Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.

    1988-01-01

    A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak

  6. Electrochemotherapy by pulsed electromagnetic field treatment (PEMF in mouse melanoma B16F10 in vivo

    Directory of Open Access Journals (Sweden)

    Kranjc Simona

    2016-03-01

    Full Text Available Pulsed electromagnetic field (PEMF induces pulsed electric field, which presumably increases membrane permeabilization of the exposed cells, similar to the conventional electroporation. Thus, contactless PEMF could represent a promising approach for drug delivery.

  7. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.

    Science.gov (United States)

    Obermeier, Andreas; Matl, Florian Dominik; Friess, Wolfgang; Stemberger, Axel

    2009-05-01

    Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel-like medium were exposed to a low-frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel-like medium no significant difference between colony-forming units of exposed samples and non-exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low-frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel-like medium. The application of low-frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy. Copyright 2009 Wiley-Liss, Inc.

  8. Electro- and Magnetostatics of a Cosmic Pseudoscalar Field Coupled to Electromagnetism

    International Nuclear Information System (INIS)

    Caldwell, Robert; Motta, Leonardo dias da

    2009-01-01

    A spatially-inhomogeneous, time-varying cosmic pseudoscalar field coupled to electromagnetism via the Chern-Simons invariant F μν F-tilde μν acts as a new source of charge and current for electromagnetic fields. We evaluate the magnetic field produced by a static electric charge, and the electric field resulting from a stationary current. We show that the pseudoscalar exerts a torque on objects carrying both electric charge and a magnetic moment.

  9. Non-ionizing electromagnetic fields on offshore installations

    International Nuclear Information System (INIS)

    Stark, G.M.; Heaton, B.

    1996-01-01

    The concern over the effects of occupational exposure to non-ionizing electromagnetic fields (EMF) has greatly increased in recent years. A great deal of knowledge is known about the thermal effects of radiofrequency EMF's and at the moment, many epidemiological and laboratory studies are being performed on extremely low frequency (ELF) and very low frequency (VLF) EMF's. Some studies have reported an increased risk of leukaemia and other cancers in children living close to overhead power cables and power industry electrical workers. Wertheimer and Leeper reported cancer links in children residing near overhead power cables as early as 1979 and many subsequent studies have continued to make similar associations. These studies suggest that prolonged exposure to higher than normal magnetic fields increases the occurrence of certain cancers in both children and adults. The most common associations are between EMF's and leukaemia, other haematopoetic cancers, brain cancers, central nervous system cancers or melanomas. Studies of adults living near overhead lines by Youngson et al. and working in the electricity industry by Armstrong et al. and Savitz and Loomis have also shown associations with certain cancers. The epidemiological studies are incomplete in several areas and many have been openly criticized. As yet, there is no conclusive laboratory evidence but studies are ongoing. The Hendee and Boteler study suggested that 'EMF's might be cancer promoters but are unlikely to be cancer initiators'. In addition to ELF studies, there have been many reports investigating exposure to EMF's from visual display units with equivocal results. Laboratory studies have reported conflicting results and as yet the hazard, if any, is still uncertain. Reports have also recorded exposure levels of operators in broadcast radio stations showing a variety of levels dependent on the occupation. In December 1992, the Commission of the European Communities proposed a council Directive on

  10. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.

    Science.gov (United States)

    Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J

    This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This

  11. Coupled poroelastic waves and electromagnetic fields in layered media: Theory, Modeling, and Interferometric Synthesis

    OpenAIRE

    Grobbe, N.

    2016-01-01

    In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.2. Investigate the potential of seismo-electromagnetic interferometry.After presenting the governing equations that form the basis of the theoretical framework, I capture this system into a matrix-vector representation of the wave equation. I ...

  12. Neutral fermion possessing by electric and magnetic moments in external electromagnetic field

    International Nuclear Information System (INIS)

    Khalilov, V.R.

    2001-01-01

    It is shown that in 2+1 dimensions the Dirac equations for a neutral fermion, specified by electric and magnetic dipole moments, is reduced in the electromagnetic field to the Dirac equation for the charged fermion in the external field, characterized by some pseudovector potential. The neutral fermion charge is determined by its dipole moments. The exact solution is found for the Dirac equation for the massive neutral fermion with magnetic and electric dipole moments in the external electromagnetic plane-wave field. The problem on the neutral fermion vacuum polarization in presence of external electromagnetic fields is considered [ru

  13. Comparison of perceptual properties of auditory streaming between spectral and amplitude modulation domains.

    Science.gov (United States)

    Yamagishi, Shimpei; Otsuka, Sho; Furukawa, Shigeto; Kashino, Makio

    2017-07-01

    The two-tone sequence (ABA_), which comprises two different sounds (A and B) and a silent gap, has been used to investigate how the auditory system organizes sequential sounds depending on various stimulus conditions or brain states. Auditory streaming can be evoked by differences not only in the tone frequency ("spectral cue": ΔF TONE , TONE condition) but also in the amplitude modulation rate ("AM cue": ΔF AM , AM condition). The aim of the present study was to explore the relationship between the perceptual properties of auditory streaming for the TONE and AM conditions. A sequence with a long duration (400 repetitions of ABA_) was used to examine the property of the bistability of streaming. The ratio of feature differences that evoked an equivalent probability of the segregated percept was close to the ratio of the Q-values of the auditory and modulation filters, consistent with a "channeling theory" of auditory streaming. On the other hand, for values of ΔF AM and ΔF TONE evoking equal probabilities of the segregated percept, the number of perceptual switches was larger for the TONE condition than for the AM condition, indicating that the mechanism(s) that determine the bistability of auditory streaming are different between or sensitive to the two domains. Nevertheless, the number of switches for individual listeners was positively correlated between the spectral and AM domains. The results suggest a possibility that the neural substrates for spectral and AM processes share a common switching mechanism but differ in location and/or in the properties of neural activity or the strength of internal noise at each level. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    Science.gov (United States)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  15. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    Science.gov (United States)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Resolving the contribution of the uncoupled phycobilisomes to cyanobacterial pulse-amplitude modulated (PAM) fluorometry signals.

    Science.gov (United States)

    Acuña, Alonso M; Snellenburg, Joris J; Gwizdala, Michal; Kirilovsky, Diana; van Grondelle, Rienk; van Stokkum, Ivo H M

    2016-01-01

    Pulse-amplitude modulated (PAM) fluorometry is extensively used to characterize photosynthetic organisms on the slow time-scale (1-1000 s). The saturation pulse method allows determination of the quantum yields of maximal (F(M)) and minimal fluorescence (F(0)), parameters related to the activity of the photosynthetic apparatus. Also, when the sample undergoes a certain light treatment during the measurement, the fluorescence quantum yields of the unquenched and the quenched states can be determined. In the case of cyanobacteria, however, the recorded fluorescence does not exclusively stem from the chlorophyll a in photosystem II (PSII). The phycobilins, the pigments of the cyanobacterial light-harvesting complexes, the phycobilisomes (PB), also contribute to the PAM signal, and therefore, F(0) and F(M) are no longer related to PSII only. We present a functional model that takes into account the presence of several fluorescent species whose concentrations can be resolved provided their fluorescence quantum yields are known. Data analysis of PAM measurements on in vivo cells of our model organism Synechocystis PCC6803 is discussed. Three different components are found necessary to fit the data: uncoupled PB (PB(free)), PB-PSII complexes, and free PSI. The free PSII contribution was negligible. The PB(free) contribution substantially increased in the mutants that lack the core terminal emitter subunits allophycocyanin D or allophycocyanin F. A positive correlation was found between the amount of PB(free) and the rate constants describing the binding of the activated orange carotenoid protein to PB, responsible for non-photochemical quenching.

  17. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    Science.gov (United States)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  18. Effect of high-frequency electromagnetic fields on trophoblastic connexins.

    Science.gov (United States)

    Cervellati, Franco; Franceschetti, Guido; Lunghi, Laura; Franzellitti, Silvia; Valbonesi, Paola; Fabbri, Elena; Biondi, Carla; Vesce, Fortunato

    2009-07-01

    Connexins (Cx) are membrane proteins able to influence trophoblast functions. Here we investigated the effect of high-frequency electromagnetic fields (HF-EMF) on Cx expression and localization in extravillous trophoblast cell line HTR-8/SVneo. We also analysed cell ultrastructural changes induced by HF-EMF exposure. Samples were exposed to pulse-modulated 1817 MHz sinusoidal waves (GSM-217 Hz; 1h: SAR of 2 W/kg). Cx mRNA expression was assessed through semi-quantitative RT-PCR, protein expression by Western blotting, protein localization by indirect immunofluorescence, cell ultrastructure using electron microscopy. HF-EMF exposure significantly and selectively increased Cx40 and Cx43, without altering protein expression. Nevertheless, Cx40 and Cx43 lost their punctuate fluorescence within the cell membrane, becoming diffuse after HF-EMF exposure. Electron microscopy evidenced a sharp decrease in intercellular gap junction-like structures. This study is the first to indicate that exposure of extravillous trophoblast to GSM-217 Hz signals can modify Cx gene expression, Cx protein localization and cellular ultrastructure.

  19. Classical particles with spin in electromagnetic and gravitational fields

    International Nuclear Information System (INIS)

    Amorim, R.M. de.

    1977-02-01

    Following a review of several problems connected with classical particles with intrinsic angular momentum are reproduced the Frenkel equations (with the condition S sup(μν)U sub(ν)=0) by means of a holonomic variational principle, and have related them to Bargann, Michel and Tededgie equations. The treatment is then generalized to the case in wich S sup(μν)U sub(ν)=0 and the resulting equation coincide in the linearized limit with those obtained by Suttorp and de Groot. Also, by using variational principles, the generalizations to Frenkel equations are obtained, as well as to those of Suttorp and de Groot when electromagnetic and gravitational interactions are considered. Finally, those equations are analysed according to a scheme proposed by Oliveira and Tiommo where the gravitational interactions are described by gravielectric and gravimagnetic fields. The analogies in these equations of motion between the gravitational and eletromagnetic interactions, in the case in which the particle has a giromagnetic factor g=1, are shown. The last results complete a previous study by wald. (Author) [pt

  20. Effect of extremely low frequency electromagnetic fields on bacterial membrane.

    Science.gov (United States)

    Oncul, Sule; Cuce, Esra M; Aksu, Burak; Inhan Garip, Ayse

    2016-01-01

    The effect of extremely low frequency electromagnetic fields (ELF-EMF) on bacteria has attracted attention due to its potential for beneficial uses. This research aimed to determine the effect of ELF-EMF on bacterial membrane namely the membrane potential, surface potential, hydrophobicity, respiratory activity and growth. Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were subjected to ELF-EMF, 50 Hz, 1 mT for 2 h. Membrane potential was determined by fluorescence spectroscopy with or without EDTA (Ethylenediaminetetraacetic acid) with DisC3(5) (3,3-dipropylthiacarbocyanine iodide), zeta potential measurements were performed by electrophoretic mobility, hydrophobicity of the membrane was measured with MATH (Microbial Adhesion to Hydrocarbons) test, respiratory activity was determined with CTC (5-Cyano-2,3-ditolyl tetrazolium chloride), colony forming unit (CFU) and DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) was used for growth determinations. ELF-EMF caused changes in physicochemical properties of both Gram-positive and Gram-negative bacteria. Hyperpolarization was seen in S. aureus and EDTA-treated E. coli. Surface potential showed a positive shift in S. aureus contrariwise to the negative shift seen in EDTA-untreated E. coli. Respiratory activity increased in both bacteria. A slight decrease in growth was observed. These results show that ELF-EMF affects the crucial physicochemical processes in both Gram-positive and Gram-negative bacteria which need further research.

  1. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis.

    Science.gov (United States)

    Zhu, Siyi; He, Hongchen; Zhang, Chi; Wang, Haiming; Gao, Chengfei; Yu, Xijie; He, Chengqi

    2017-09-01

    Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Quaternion analysis of generalized electromagnetic fields in chiral media

    International Nuclear Information System (INIS)

    Bisht, P. S. . Email. ps_bisht123@rediffmail.com

    2007-01-01

    The time dependent Maxwell's equations in presence of electric and magnetic charges has been developed in chiral media and the solutions for the classical problem are obtained in unique, simple and consistent manner. The quaternionic reformulation of generalized electromagnetic fields in chiral media has also been developed in compact and consistent way. Simulation of neutron backscattering process applied to organic material detection. Forero Martinez, Nancy Carolina; Cristancho, Fernando (Nuclear Physics Group, Universidad Nacional de Colombia, Bogota D.C. (Colombia)) Abstract Atomic and nuclear physics based sensors might offer new possibilities in de-mining. There is a particular interest in the possibility of using neutrons for the non-intrusive detection of hidden contraband, explosives or illicit drugs. The Neutron Backscattering Technique, based on the detection of the produced thermal neutrons, is known to be a useful tool to detect hidden explosives which present an elevated concentration of light elements (H, C, N, O). In this way we present the simulated results using the program package Geant4. Different variables were modified including the soil composition and the studied materials. (Author)

  3. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. (Univ. di Modena (Italy))

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  4. Electromagnetic fields in neonatal incubators: the reasons for an alert.

    Science.gov (United States)

    Bellieni, Carlo Valerio; Nardi, Valentina; Buonocore, Giuseppe; Di Fabio, Sandra; Pinto, Iole; Verrotti, Alberto

    2017-10-23

    Neonatal incubators are important tools for sick newborns in the first few days of life. Nevertheless, their electric engine, often very close to the newborn's body, emits electromagnetic fields (EMF) to which newborns are exposed. Aim of this paper is to review the available literature on EMF exposure in incubators, and the effects of such exposures on newborns that have been investigated. We carried out a systematic review of studies about EMF emissions produced by incubators, using Medline and Embase databases from 1993 to 2017. We retrieved 15 papers that described the EMF exposure in incubators and their biological effects on babies. EMF levels in incubators appear to be between 2 and 100 mG, depending on the distance of the mattress from the electric engine. In some cases, they exceed this range. These values interfere with melatonin production or with vagal tone. Even caregivers are exposed to high EMF, above 200 mG, when working at close contact with the incubators. EMF have been described as potentially hazardous for human health, and values reported in this review are an alert to prevent babies' and caregivers' exposure when close to the incubators. A precautionary approach should be adopted in future incubator design, to prevent high exposures of newborns in incubators and of caregivers as well.

  5. The regenerative effects of electromagnetic field on spinal cord injury.

    Science.gov (United States)

    Ross, Christina L; Syed, Ishaq; Smith, Thomas L; Harrison, Benjamin S

    2017-01-01

    Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord. To date there is no FDA-approved pharmacological agent to prevent the development of secondary SCI and induce regenerative processes aimed at healing the spinal cord and restoring neurological function. An alternative method to electrically activate spinal circuits is the application of a noninvasive electromagnetic field (EMF) over intact vertebrae. The EMF method of modulating molecular signaling of inflammatory cells emitted in the extra-low frequency range of <100 Hz, and field strengths of <5 mT, has been reported to decrease inflammatory markers in macrophages, and increase endogenous mesenchymal stem cell (MSC) proliferation and differentiation rates. EMF has been reported to promote osteogenesis by improving the effects of osteogenic media, and increasing the proliferation of osteoblasts, while inhibiting osteoclast formation and increasing bone matrix in vitro. EMF has also been shown to increase chondrogenic markers and collagen and induce neural differentiation, while increasing cell viability by over 50%. As advances are made in stem cell technologies, stabilizing the cell line after differentiation is crucial to SCI repair. Once cell-seeded scaffolds are implanted, EMF may be applied outside the wound for potential continued adjunct treatment during recovery.

  6. Electromagnetic Ion Cyclotron Wavefields in a Realistic Dipole Field

    Science.gov (United States)

    Denton, R. E.

    2018-02-01

    The latitudinal distribution and properties of electromagnetic ion cyclotron (EMIC) waves determine the total effect of those waves on relativistic electrons. Here we describe the latitudinal variation of EMIC waves simulated self-consistently in a dipole magnetic field for a plasmasphere or plume-like plasma at geostationary orbit with cold H+, He+, and O+ and hot protons with temperature anisotropy. The waves grow as they propagate away from the magnetic equator to higher latitude, while the wave vector turns outward radially and the polarization becomes linear. We calculate the detailed wave spectrum in four latitudinal ranges varying from magnetic latitude (MLAT) close to 0° (magnetic equator) up to 21°. The strongest waves are propagating away from the magnetic equator, but some wave power propagating toward the magnetic equator is observed due to local generation (especially close to the magnetic equator) or reflection. The He band waves, which are generated relatively high up on their dispersion surface, are able to propagate all the way to MLAT = 21°, but the H band waves experience frequency filtering, with no equatorial waves propagating to MLAT = 21° and only the higher-frequency waves propagating to MLAT = 14°. The result is that the wave power averaged k∥, which determines the relativistic electron minimum resonance energy, scales like the inverse of the local magnetic field for the He mode, whereas it is almost constant for the H mode. While the perpendicular wave vector turns outward, it broadens. These wavefields should be useful for simulations of radiation belt particle dynamics.

  7. Exposure to electromagnetic fields from laptop use of "laptop" computers.

    Science.gov (United States)

    Bellieni, C V; Pinto, I; Bogi, A; Zoppetti, N; Andreuccetti, D; Buonocore, G

    2012-01-01

    Portable computers are often used at tight contact with the body and therefore are called "laptop." The authors measured electromagnetic fields (EMFs) laptop computers produce and estimated the induced currents in the body, to assess the safety of laptop computers. The authors evaluated 5 commonly used laptop of different brands. They measured EMF exposure produced and, using validated computerized models, the authors exploited the data of one of the laptop computers (LTCs) to estimate the magnetic flux exposure of the user and of the fetus in the womb, when the laptop is used at close contact with the woman's womb. In the LTCs analyzed, EMF values (range 1.8-6 μT) are within International Commission on Non-Ionizing Radiation (NIR) Protection (ICNIRP) guidelines, but are considerably higher than the values recommended by 2 recent guidelines for computer monitors magnetic field emissions, MPR II (Swedish Board for Technical Accreditation) and TCO (Swedish Confederation of Professional Employees), and those considered risky for tumor development. When close to the body, the laptop induces currents that are within 34.2% to 49.8% ICNIRP recommendations, but not negligible, to the adult's body and to the fetus (in pregnant women). On the contrary, the power supply induces strong intracorporal electric current densities in the fetus and in the adult subject, which are respectively 182-263% and 71-483% higher than ICNIRP 98 basic restriction recommended to prevent adverse health effects. Laptop is paradoxically an improper site for the use of a LTC, which consequently should be renamed to not induce customers towards an improper use.

  8. Thermal insulation and confinement of plasma with a high-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Vedenov, A.A.; Volkov, T.F.; Rudakov, L.I.; Sagdeyev, R.Z.; Glagolev, V.M.; Yeliseyev, G.A.; Khilil, V.V.

    1958-01-01

    At the Institute of Atomic Energy (Academy of Sciences, USSR) the problem of creating and thermally insulating plasma by means of high-frequency electromagnetic fields has been studied. Electromagnetic alternating fields which do not penetrate into plasma set up a pressure difference on the plasma boundary. There may be various ways of exciting alternating fields. One of the ways, most convenient from the radio engineering standpoint, is the setting up of a standing electromagnetic wave in a volume resonator partly filled with plasma. Such electromagnetic oscillations can be excited between the conductive walls of the resonator and the surface of plasma in such a way that the electromagnetic pressure, averaged over the high-frequency oscillations, with geometry specially selected, is the same at every point of the plasma surface

  9. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    Science.gov (United States)

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Coupled poroelastic waves and electromagnetic fields in layered media : Theory, Modeling, and Interferometric Synthesis

    NARCIS (Netherlands)

    Grobbe, N.

    2016-01-01

    In this thesis, I study coupled poroelastic waves and electromagnetic fields in layered media. The focus is two-fold:
    1. Increase the theoretical and physical understanding of the seismo-electromagnetic phenomenon by analytically-based numerical modeling.
    2. Investigate the potential of

  11. Interaction of plane gravitational and electromagnetic waves in an external gravitational field

    International Nuclear Information System (INIS)

    Denisov, V.I.; Eliseev, V.A.

    1987-01-01

    Interaction of gravitational and electromagnetic waves in an external gravitational field for two classes of metric gravitation theories is considered. As a result conditions for resonance interaction are determined, and possibility of continuous amplification of plane electromagnetic wave with plane gravitational wave is shown

  12. Relations between focusing power of space-charge lenses and external electromagnetic fields

    International Nuclear Information System (INIS)

    Yu Qingchang; Qiu Hong; Huang Jiachang

    1991-01-01

    Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed

  13. Microelectronic sensors for measurement of electromagnetic field of living cells and experimental results

    Czech Academy of Sciences Publication Activity Database

    Jelínek, František; Pokorný, Jiří; Šaroch, Jaroslav; Trkal, Viktor; Hašek, Jiří; Palán, B.

    1999-01-01

    Roč. 48, č. 2 (1999), s. 261-266 ISSN 0302-4598. [Electromagnetic Fields in Biological Systems. Prague, 13.09.1998-16.09.1998] R&D Projects: GA ČR GA102/97/0867 Grant - others:EU COST (XE) OC 244B.40 Institutional research plan: CEZ:AV0Z2067918 Keywords : electromagnetic fields * cellular biophysics * field strength measurement Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.085, year: 1999

  14. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    OpenAIRE

    Lewczuk, Bogdan; Redlarski, Grzegorz; Żak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest ...

  15. Rotation invariance of electromagnetic radiation generated by relativistic particles in magnetic fields

    CERN Document Server

    Smolyakov, M N

    2000-01-01

    This paper deals with electromagnetic radiation generated by relativistic particles in arbitrary planar magnetic field (in undulator for example). Magnetic system producing this field is assumed to be planar consisting of permanent magnets. It is shown that there is a special class of magnetic moment rotations in such system while magnetic field is varying but spontaneous radiation spectrum generated by relativistic particles remains the same. This property of electromagnetic radiation can be used in designing new undulators.

  16. Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports.

    Science.gov (United States)

    Eldridge-Thomas, Buffy; Rubin, G James

    2013-01-01

    Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF) is a controversial condition in which people describe symptoms following exposure to electromagnetic fields from everyday electrical devices. However, double-blind experiments have found no convincing evidence that electromagnetic fields cause these symptoms. In this study, we assessed whether recent newspaper reporting in the UK reflected this scientific evidence. We searched a database of newspaper articles to identify all those that contained IEI-EMF related keywords and selected a random sample of 60 for content analysis. For our primary outcomes, we assessed how many articles mainly or wholly presented an electromagnetic cause for IEI-EMF and how many discussed unproven treatments for the condition such as strategies intended to reduce exposure to electromagnetic fields or the use of complementary and alternative therapies. We also assessed whether the type of information source used by a newspaper article (e.g. scientist, person with IEI-EMF, politician) or the type of newspaper (broadsheet, tabloid, local or regional) was associated with either outcome. Of the 60 articles, 43 (71.7%) presented a mainly electromagnetic cause, compared to 13 (21.7%) which presented mainly non-electromagnetic causes and 4 (6.7%) which did not discuss a cause. 29 (48.3%) did not mention any potential treatment, while 24 (40.0%) mentioned eletromagnetic field related strategies and 12 (20.0%) mentioned complementary or alternative therapies. Articles which quoted someone with IEI-EMF were significantly more likely to report an electromagnetic cause and to present unproven treatments. Those which used a scientist as a source were more likely to present a non-electromagnetic cause for the condition. The widespread poor reporting we identified is disappointing and has the potential for to encourage more people to misattribute their symptoms to electromagnetic fields. Scientists should remain engaged

  17. Operator of pair electron-ion collisions in alternating electromagnetic fields

    International Nuclear Information System (INIS)

    Balakin, A. A.

    2008-01-01

    Collisions of electrons with ions in the presence of an alternating electromagnetic field are considered. Based on the first principles (the Liouville equations for N particles), a general expression for the collisional operator in the approximation of pair collisions at an arbitrary scattering potential, including that depending periodically on time, is derived. The problem of collisions in plasma in the presence of an electromagnetic field can be reduced to this case by introducing drift coordinates. It is shown that the method of test particles can be applied to the problem of particle collisions in an alternating electromagnetic field.

  18. Pair creation of neutral particles in a vacuum by external electromagnetic fields in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Qiong-gui Lin; Department of Physics, Zhongshan University, Guangzhou 510275

    1999-01-01

    Neutral fermions of spin-1/2 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. In 2 + 1 dimensions the electromagnetic field strength plays the same role to the magnetic moment as the vector potential to the electric charge. This duality enables one to obtain physical results for neutral particles from known ones for charged particles. We give the probability of neutral particle-antiparticle pair creation in a vacuum by non-uniform electromagnetic fields produced by constant uniform charge and current densities. (author)

  19. Examination of extremely low frequency electromagnetic fields on orthodontic tooth movement in rats

    OpenAIRE

    Dogru, Mehmet; Akpolat, Veysi; Dogru, Arzum Guler; Karadede, Beyza; Akkurt, Atilim; Karadede, M. Irfan

    2014-01-01

    The purpose of this study was to evaluate whether 50?Hz extremely low frequency electromagnetic fields (ELF-EMFs) affect the amount of orthodontic tooth movement in rats. The experiments were performed on 18 male Sprague-Dawley rats. The rats were randomly divided into three groups (n = 6): cage-control (Cg-Cnt) group (n = 6); sinusoidal electromagnetic field (SEMF) group (n = 6); and pulsed electromagnetic field (PEMF) group (n = 6). In SEMF and PEMF groups, rats were subjected to 1.5 mT EMF...

  20. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    Science.gov (United States)

    2015-09-01

    standards and other research on the safety to humans of short pulses of electromagnetic radiation . Special attention is paid to a ten nanosecond...excitation limits the Food and Drug Administration (FDA) applies to magnetic resonance imaging (MRI) machines and shows that in many cases they are...pulses of electromagnetic radiation have been considered. Considerations for implanted medical devices and implanted metal objects and the like are

  1. Resting charge potential in a magnetoactive plasma in an alternating electromagnetic field

    International Nuclear Information System (INIS)

    Uryupin, S.A.

    1982-01-01

    The effect of a strong constant magnetic field on the resting charge potential in plasma in a high-frequency electromagnetic field is investigated. The potential ''magnetic anysotropy'' caused by the change in electron trajectories in the alternating electromagnetic field under the effect of a constant magnetic field is revealed. The influence of the finite value of electromagnetic radiation wave length of the test charqe potential is studied. It is shown that at the distances from ion, small as compared with the wave length r > lambda and r >> rsub(D) (rsub(D)- Debye electron radius) the potential form essentially depends on wave length value as well as on direction of propagation of electromagnetic radiation. However the statement on existence of charge field ''descreening'' obtained under the conditions rsub(D) lambda distances as well

  2. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung; An, Soon-Il [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-06-15

    In this study, we classified two types of El Nino-Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states - strong and weak ENSO amplitude periods - and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Nino and La Nina events; the second is that the El Nino-La Nina asymmetry is reversed during strong and weak ENSO amplitude periods. El Nino events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Nino in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Nino is identical to that for weak (strong) La Nina, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east-west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Nino-La Nina asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Nino and weak La Nina over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode

  3. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  4. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-01-01

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F 0 /F v . Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F ′ q /F ′ m , EC 50 = 303 ± 64 μg U L −1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC 50 = 142 ± 98 μg U L −1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from

  5. Rayleigh noise mitigation in DWDM LR-PONs using carrier suppressed subcarrier-amplitude modulated phase shift keying.

    Science.gov (United States)

    Chow, C W; Talli, G; Ellis, A D; Townsend, P D

    2008-02-04

    We demonstrate a novel Rayleigh interferometric noise mitigation scheme for applications in carrier-distributed dense wavelength division multiplexed (DWDM) passive optical networks at 10 Gbit/s using carrier suppressed subcarrier-amplitude modulated phase shift keying modulation. The required optical signal to Rayleigh noise ratio is reduced by 12 dB, while achieving excellent tolerance to dispersion, subcarrier frequency and drive amplitude variations.

  6. Radiofrequency-electromagnetic field exposures in kindergarten children.

    Science.gov (United States)

    Bhatt, Chhavi Raj; Redmayne, Mary; Billah, Baki; Abramson, Michael J; Benke, Geza

    2017-09-01

    The aim of this study was to assess environmental and personal radiofrequency-electromagnetic field (RF-EMF) exposures in kindergarten children. Ten children and 20 kindergartens in Melbourne, Australia participated in personal and environmental exposure measurements, respectively. Order statistics of RF-EMF exposures were computed for 16 frequency bands between 88 MHz and 5.8 GHz. Of the 16 bands, the three highest sources of environmental RF-EMF exposures were: Global System for Mobile Communications (GSM) 900 MHz downlink (82 mV/m); Universal Mobile Telecommunications System (UMTS) 2100MHz downlink (51 mV/m); and GSM 900 MHz uplink (45 mV/m). Similarly, the three highest personal exposure sources were: GSM 900 MHz downlink (50 mV/m); UMTS 2100 MHz downlink, GSM 900 MHz uplink and GSM 1800 MHz downlink (20 mV/m); and Frequency Modulation radio, Wi-Fi 2.4 GHz and Digital Video Broadcasting-Terrestrial (10 mV/m). The median environmental exposures were: 179 mV/m (total all bands), 123 mV/m (total mobile phone base station downlinks), 46 mV/m (total mobile phone base station uplinks), and 16 mV/m (Wi-Fi 2.4 GHz). Similarly, the median personal exposures were: 81 mV/m (total all bands), 62 mV/m (total mobile phone base station downlinks), 21 mV/m (total mobile phone base station uplinks), and 9 mV/m (Wi-Fi 2.4 GHz). The measurements showed that environmental RF-EMF exposure levels exceeded the personal RF-EMF exposure levels at kindergartens.

  7. Effect of pulsed electromagnetic fields on endoplasmic reticulum stress.

    Science.gov (United States)

    Keczan, E; Keri, G; Banhegyi, G; Stiller, I

    2016-10-01

    The maintenance of protein homeostasis in the endoplasmic reticulum (ER) is crucial in cell life. Disruption of proteostasis results in ER stress that activates the unfolded protein response (UPR); a signalling network assigned to manage the accumulated misfolded or unfolded proteins. Prolonged or unresolved ER stress leads to apoptotic cell death that can be the basis of many serious diseases. Our aim was to study the effect of pulsed electromagnetic fields (PEMF), an alternative, non-invasive therapeutic method on ER stressed cell lines. First, the effect of PEMF treatment on the expression of ER stress markers was tested in three different cell lines. PEMF had no remarkable effect on ER stress protein levels in human embryonic kidney (HEK293T) and human liver carcinoma (HepG2) cell lines. However, the expression of BiP, Grp94 and CHOP were increased in HeLa cells upon PEMF exposure. Therefore, HepG2 cell line was selected for further experiments. Cells were stressed by tunicamycin and exposed to PEMF. Grp94, PDI, CHOP and PARP expression as markers of stress were monitored by Western blot and cell viability was also investigated. Tunicamycin treatment, as expected, increased the expression of Grp94, PDI, CHOP and inactivated PARP. Analysis of protein expression showed that PEMF was able to decrease the elevated level of ER chaperons Grp94, PDI and the apoptosis marker CHOP. The truncated, inactive form of PARP was also decreased. Accordingly, cell viability was also improved by PEMF exposure. These results indicate that PEMF is able to moderate ER stress induced by tunicamycin in HepG2 cells. However, our results clearly draw attention to that different cell lines may vary in the response to PEMF treatment.

  8. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies.

    Science.gov (United States)

    Midura, Ronald J; Ibiwoye, Michael O; Powell, Kimerly A; Sakai, Yoshitada; Doehring, Todd; Grabiner, Mark D; Patterson, Thomas E; Zborowski, Maciej; Wolfman, Alan

    2005-09-01

    This study tested the hypothesis that pulsed electromagnetic field (PEMF) treatments augment and accelerate the healing of bone trauma. It utilized micro-computed tomography imaging of live rats that had received bilateral 0.2 mm fibular osteotomies (approximately 0.5% acute bone loss) as a means to assess the in vivo rate dynamics of hard callus formation and overall callus volume. Starting 5 days post-surgery, osteotomized right hind limbs were exposed 3 h daily to Physio-Stim PEMF, 7 days a week for up to 5 weeks of treatment. The contralateral hind limbs served as sham-treated, within-animal internal controls. Although both PEMF- and sham-treatment groups exhibited similar onset of hard callus at approximately 9 days after surgery, a 2-fold faster rate of hard callus formation was observed thereafter in PEMF-treated limbs, yielding a 2-fold increase in callus volume by 13-20 days after surgery. The quantity of the new woven bone tissue within the osteotomy sites was significantly better in PEMF-treated versus sham-treated fibulae as assessed via hard tissue histology. The apparent modulus of each callus was assessed via a cantilever bend test and indicated a 2-fold increase in callus stiffness in the PEMF-treated over sham-treated fibulae. PEMF-treated fibulae exhibited an apparent modulus at the end of 5-weeks that was approximately 80% that of unoperated fibulae. Overall, these data indicate that Physio-Stim PEMF treatment improved osteotomy repair. These beneficial effects on bone healing were not observed when a different PEMF waveform, Osteo-Stim, was used. This latter observation demonstrates the specificity in the relationship between waveform characteristics and biological outcomes.

  9. Interferential current therapy in patients with knee osteoarthritis: comparison of the effectiveness of different amplitude-modulated frequencies.

    Science.gov (United States)

    Gundog, Meltem; Atamaz, Funda; Kanyilmaz, Selcen; Kirazli, Yesim; Celepoglu, Gunay

    2012-02-01

    This study aimed to compare the effectiveness of different amplitude-modulated frequencies of interferential current (IFC) and sham IFC on knee osteoarthritis. A randomized and single-blind study was performed on 60 patients diagnosed with knee osteoarthritis. The patients were allocated to three active IFC groups (40, 100, and 180 Hz), and one sham IFC group. Treatments were performed 5 times a week for 3 wks consecutively. Each patient was assessed at the end of the treatments and at the first month using the following measurements: visual analog scale (pain at rest, pain on movement and disability), physician and patient judgments regarding treatment effectiveness, 15-m walking time (in minutes), range of motion (ROM), the Western Ontario and McMaster University Osteoarthritis Index (WOMAC), and paracetamol intake (g/wk). Although there were significant improvements in all variables, except WOMAC stiffness and range of motion, measured in all groups at the end of the treatment and during the follow-up, this improvement was greater in active IFC groups than in the sham group. The improvement in WOMAC stiffness was observed only in active IFC treatment groups (P < 0.05). No significant difference between different amplitude-modulated frequencies of IFC treatments was observed. This study demonstrated the superiority of the IFC with some advantages on pain and disability outcomes when compared with sham IFC for the management of knee osteoarthritis. However, the effectiveness of different amplitude-modulated frequencies of IFC was not superior when compared with each other.

  10. The effect of extreme-low-frequency electromagnetic field on air ...

    African Journals Online (AJOL)

    Electromagnetic fields produce alternating electric fields and modify static electric fields in the vicinity. These electric fields, if large enough, can alter the concentration or transport of airborne particles (including particles harmful to health). In this study, the concentration of radioactive materials (gamma radiation) was ...

  11. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  12. Effect of radio frequency waves of electromagnetic field on the tubulin.

    Science.gov (United States)

    Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi

    2013-09-01

    Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.

  13. Peculiarities of natural electromagnetic field variations in the interval of periods of 60-240 min

    International Nuclear Information System (INIS)

    Kovtun, A.A.; Smirnov, M.Yu.

    1996-01-01

    Intensification of the oscillation amplitude of the natural electromagnetic field within 60-240 min period interval at practically all the latitudes was observed during the Earth re-entry to plasma high-speed flow

  14. UNESCO Seminar on Cellular Mechanism of Beneficial and Harmful Effects of Electromagnetic Fields

    National Research Council Canada - National Science Library

    2000-01-01

    This report is the Final Proceedings Report for UNESCO Seminar on Cellular Mechanisms of Beneficial and Harmful Effects of Electromagnetic Fields, held 24 September 2000 - 3 October 2000, in Yerevan, Armenia...

  15. Effect of electromagnetic fields on the chondrogenic differentiation under microgravity conditions

    Data.gov (United States)

    National Aeronautics and Space Administration — A combination therapy of electromagnetic fields (EMF) and simulated microgravity (SMG) has not been examined in regenerative medicine of cartilage. In the present...

  16. Use of Pulsing Electromagnetic Fields for the Treatment of Pelvic Stress Fractures Among Female Soldiers

    National Research Council Canada - National Science Library

    Jones, D

    1995-01-01

    .... Pulsing electromagnetic fields (PEMFs)have been shown to speed the healing of non-union fractures and we have used them successfully to treat stress fractures in the lower limbs. All women at Ft...

  17. Multiphoton excitations in vibrational rotational states of diatomic molecules in intense electromagnetic field

    Science.gov (United States)

    Faisal, F. H. M.; Rahman, N. K.

    1972-01-01

    A theory is presented and a calculational procedure is outlined for evaluating transition amplitudes of multiphoton excitations of vibrational-rotational levels in diatomic molecules. This theory can be utilized in studying behavior of molecules in intense electromagnetic fields.

  18. Elements particle decay in the field of an intense electromagnetic wave

    International Nuclear Information System (INIS)

    Lyul'ka, V.A.

    1975-01-01

    The μ +- →E +- +ν+ν tilde, π→μ(e)+ν, π +- →π deg +e +- +ν, decays and also the e +- →e +- +ν+ν tilde process in an intense electromagnetic field of a plane electromagnetic wave with an arbitrary polarization and in a field of linearly polarized waves with mutually perpendicular polarizations and with the same propagation are considered here. Expressions have been obtained for probabilities of the decays for both models of electromagnetic field, and numerical calculations have been carried out for specific values of invariant parameters, that determine the external field effect on elementary particle decays. Characteristic features of the dependence of total probabilities of particle decays on a frequency, and also on an external electromagnetic wave polarization are discussed

  19. Escape to infinity under the action of a potential and a constant electromagnetic field

    CERN Document Server

    Gascon, F G

    2003-01-01

    Escape to infinity is proved for a great variety of potentials, including the potential created by an infinite number of sources. Relativistic escape is studied. Escape in the presence of a constant electromagnetic field and a potential is also considered.

  20. Massive parallel electromagnetic field simulation program JEMS-FDTD design and implementation on jasmin

    International Nuclear Information System (INIS)

    Li Hanyu; Zhou Haijing; Dong Zhiwei; Liao Cheng; Chang Lei; Cao Xiaolin; Xiao Li

    2010-01-01

    A large-scale parallel electromagnetic field simulation program JEMS-FDTD(J Electromagnetic Solver-Finite Difference Time Domain) is designed and implemented on JASMIN (J parallel Adaptive Structured Mesh applications INfrastructure). This program can simulate propagation, radiation, couple of electromagnetic field by solving Maxwell equations on structured mesh explicitly with FDTD method. JEMS-FDTD is able to simulate billion-mesh-scale problems on thousands of processors. In this article, the program is verified by simulating the radiation of an electric dipole. A beam waveguide is simulated to demonstrate the capability of large scale parallel computation. A parallel performance test indicates that a high parallel efficiency is obtained. (authors)

  1. Effect of nonlinear-electrodynamic lagging of electromagnetic signals in the field of magnetic dipole

    International Nuclear Information System (INIS)

    Denisov, V.I.; Krivchenkov, I.V.; Denisov, I.P.

    2002-01-01

    The study on the electromagnetic waves propagation in the neutron star magnetic dipole and gravitation fields, taking place according to the vacuum nonlinear electrodynamics laws, is carried out. It is shown that depending on the polarization the electromagnetic signals in this field propagate by different beams and with various velocities. The law on these signals motion by beams is established. The calculation of differences in the times of the electromagnetic signals propagation, having the same source up to the detector, is presented. It is shown that this difference in some cases may reach enough measurable value of 1 μs [ru

  2. The views of primary care physicians on health risks from electromagnetic fields

    DEFF Research Database (Denmark)

    Berg-Beckhoff, Gabi; Heyer, Kristina; Kowall, Bernd

    2010-01-01

    The aim of this study was to find out what primary care physicians in Germany think about the possible health risks of electromagnetic fields (EMF) and how they deal with this topic in discussions with patients.......The aim of this study was to find out what primary care physicians in Germany think about the possible health risks of electromagnetic fields (EMF) and how they deal with this topic in discussions with patients....

  3. Nuclear β decay with a massive neutrino in an external electromagnetic field

    International Nuclear Information System (INIS)

    Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.

    1986-01-01

    Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)

  4. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  5. Energy-level transitions and emission of atom at interaction with ultrashort pulse of electromagnetic field

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2003-01-01

    The electron transitions and atom emission by its interaction with the ultrashort pulse of the electromagnetic field are considered on the basis of the sudden perturbations approximation. The probabilities of excitation and ionization as well as the spectra and cross sections of such a pulse over-emission by the atom are obtained. The conclusion is made on the coherent character of the process of the electromagnetic field ultrashort pulses over-emission by the multielectron atoms [ru

  6. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  7. [Ecological significance of electromagnetic fields: the 20th century--century of electricity, the 21st--century of magnetism].

    Science.gov (United States)

    Lazetić, Bogosav

    2003-01-01

    The biosphere consists of all ecosystems of earth and is characterized by electromagnetic fields of different frequencies. Physics and natural sciences and disciplines are focused on their origin and characteristics. NATURAL ELECTROMAGNETIC FIELDS: There is a well defined idea that natural electromagnetic activity of the Earth's atmosphere throughout evolution led to appearance of electromagnetic homeostasis, i.e. maintenance of inner electromagnetic mileu. It can be supposed that during the evolution of living organisms natural electromagnetic fields were associated with biochemical processes and as a result of natural selection became an important information system and obligatory component of life. The results presented here show that there is no reason to doubt that natural electromagnetic fields are an important ecologic factor. On the contrary, we have to emphasize that natural electromagnetic environment is necessary for life on the Earth. Today intensity of artificial electromagnetic fields is ten to hundred times higher than of natural electromagnetic fields. Danger from electromagnetic fields is an acute and actual problem which increases knowing that there won't be a spot without artificial electromagnetic field on our planet.

  8. Hearing aids' electromagnetic immunity to environmental RF fields

    International Nuclear Information System (INIS)

    Facta, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.

    2004-01-01

    In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range. (authors)

  9. Amplitude Modulation Detection and Speech Recognition in Late-Implanted Prelingually and Postlingually Deafened Cochlear Implant Users.

    Science.gov (United States)

    De Ruiter, Anke M; Debruyne, Joke A; Chenault, Michelene N; Francart, Tom; Brokx, Jan P L

    2015-01-01

    Many late-implanted prelingually deafened cochlear implant (CI) patients struggle to obtain open-set speech understanding. Because it is known that low-frequency temporal-envelope information contains important cues for speech understanding, the goal of this study was to compare the temporal-envelope processing abilities of late-implanted prelingually and postlingually deafened CI users. Furthermore, the possible relation between temporal processing abilities and speech recognition performances was investigated. Amplitude modulation detection thresholds were obtained in eight prelingually and 18 postlingually deafened CI users, by means of a sinusoidally modulated broadband noise carrier, presented through a loudspeaker to the CI user's clinical device. Thresholds were determined with a two-down-one-up three-interval oddity adaptive procedure, at seven modulation frequencies. Phoneme recognition (consonant-nucleus-consonant [CNC]) scores (percentage correct at 65 dB SPL) were gathered for all CI users. For the prelingually deafened group, scores on two additional speech tests were obtained: (1) a closed-set monosyllable-trochee-spondee test (percentage correct scores at 65 dB SPL on word recognition and categorization of the suprasegmental word patterns), and (2) a speech tracking test (number of correctly repeated words per minute) with texts specifically designed for this population. The prelingually deafened CI users had a significantly lower sensitivity to amplitude modulations than the postlingually deafened CI users, and the attenuation rate of their temporal modulation transfer function (TMTF) was greater. None of the prelingually deafened CI users were able to detect modulations at 150 and 200 Hz. High and significant correlations were found between the results on the amplitude modulation detection test and CNC phoneme scores, for the entire group of CI users. In the prelingually deafened group, CNC phoneme scores, word scores on the monosyllable

  10. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  11. Influence of electromagnetic field on soliton-mediated charge transport in biological systems.

    Science.gov (United States)

    Brizhik, Larissa

    2015-01-01

    It is shown that electromagnetic fields affect dynamics of Davydov's solitons which provide charge transport processes in macromolecules during metabolism of the system. There is a resonant frequency of the field at which it can cause the transition of electrons from bound soliton states into delocalised states. Such decay of solitons reduces the effectiveness of charge transport, and, therefore, inhibits redox processes. Solitons radiate their own electromagnetic field of characteristic frequency determined by their average velocity. This self-radiated field leads to synchronization of soliton dynamics and charge transport processes, and is the source of the coherence in the system. Exposition of the system to the oscillating electromagnetic field of the frequency, which coincides with the eigen-frequency of solitons can enhance eigen-radiation of solitons, and, therefore, will enhance synchronization of charge transpor, stimulate the redox processes and increase coherence in the system. Electromagnetic oscillating field causes also ratchet phenomenon of solitons, i.e., drift of solitons in macromolecules in the presence of unbiased periodic field. Such additional drift enhances the charge transport processes. It is shown that temperature facilitates the ratchet drift. In particular, temperature fluctuations lead to the lowering of the critical value of the intensity and period of the field, above which the drift of solitons takes place. Moreover, there is a stochastic resonance in the soliton dynamics in external electromagnetic fields. This means, that there is some optimal temperature at which the drift of solitons is maximal.

  12. Certain relativistic effects due to strong electromagnetic fields in plasmas

    International Nuclear Information System (INIS)

    Tsintsadze, N.L.

    1974-01-01

    It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)

  13. Design, Modeling, and Measurement of a Metamaterial Electromagnetic Field Concentrator

    Science.gov (United States)

    2012-03-22

    9 II. Theory ...existence of positive and negative charges and showed that unlike charges attract while like charges repel. In 1820, Hans Christian Oersted showed that a...electromagnetics occurred when Scottish scientist James Maxwell synthesized a set of four vector equations by uniting the theories of his contemporaries [69

  14. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  15. Photon electrodynamics and photon structure as a bunch of one of many possible states of electromagnetic field

    Science.gov (United States)

    Laptukhov, A. I.

    2017-10-01

    Fundamental laws of conservation are used to show that electromagnetic field is generally represented (even in vacuum at ρ = 0 and j = 0) using four vectors D, E, B, and H with different equations of state (material equations) that are linear for electromagnetic waves and nonlinear for photons and particles. An equation that describes different states of electromagnetic field (i.e., different but not arbitrary relationships of field vectors E, H, D, and B) is derived. It is shown that electromagnetic wave and photon are different states of electromagnetic field that exhibit different dependences of energy density on field vectors. Partial analytical solutions are obtained for a photon (spatially localized bunch of electromagnetic field energy) that propagates at a velocity of light along a single (as distinct from electromagnetic wave) direction.

  16. Electromagnetic field measurements in ULF-ELF-VLF [0.001 Hz─100 KHz] bands

    Directory of Open Access Journals (Sweden)

    C. Di Lorenzo

    2008-01-01

    Full Text Available We are reporting the technological and scientific objectives of the MEM project. The MEM project has been activated in the INGV Observatory of L'Aquila to create in Central Italy a network of observatories in order to monitoring the electromagnetic signals in the frequency band [0.001 Hz–100 kHz]. Some examples of the instrumentation developed in the frame of the project are reported. An innovative technique, based on the wide band interferometry is proposed to obtain detailed information concerning the several detected electromagnetic sources. Moreover, data from each station will be elaborated to investigate different sectors as the structure of ground electric conductibility, the electromagnetic phenomena connected with seismic activity, the separation of the electromagnetic fields originated in the Earth's interior and the electromagnetic phenomena originated in the magnetosphere, in the ionosphere and in the Earth-ionosphere cavity.

  17. An analysis of the electromagnetic field in multi-polar linear induction system

    International Nuclear Information System (INIS)

    Chervenkova, Todorka; Chervenkov, Atanas

    2002-01-01

    In this paper a new method for determination of the electromagnetic field vectors in a multi-polar linear induction system (LIS) is described. The analysis of the electromagnetic field has been done by four dimensional electromagnetic potentials in conjunction with theory of the magnetic loops . The electromagnetic field vectors are determined in the Minkovski's space as elements of the Maxwell's tensor. The results obtained are compared with those got from the analysis made by the finite elements method (FEM).With the method represented in this paper one can determine the electromagnetic field vectors in the multi-polar linear induction system using four-dimensional potential. A priority of this method is the obtaining of analytical results for the electromagnetic field vectors. These results are also valid for linear media. The dependencies are valid also at high speeds of movement. The results of the investigated linear induction system are comparable to those got by the finite elements method. The investigations may be continued in the determination of other characteristics such as drag force, levitation force, etc. The method proposed in this paper for an analysis of linear induction system can be used for optimization calculations. (Author)

  18. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    Science.gov (United States)

    Żak, Arkadiusz

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields. PMID:25136557

  19. Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge.

    Science.gov (United States)

    Lewczuk, Bogdan; Redlarski, Grzegorz; Zak, Arkadiusz; Ziółkowska, Natalia; Przybylska-Gornowicz, Barbara; Krawczuk, Marek

    2014-01-01

    One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms-two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  20. Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge

    Directory of Open Access Journals (Sweden)

    Bogdan Lewczuk

    2014-01-01

    Full Text Available One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.

  1. Monitoring of static and variable electromagnetic fields in a large magnetic fusion plasma experimental facility

    International Nuclear Information System (INIS)

    Uda, T.; Tanaka, M.; Kawano, T.; Kamimura, Y.; Wang, J.; Fujiwara, O.

    2008-01-01

    Full text: Nuclear fusion research has been increased worldwide to develop new reliable energy source. In order to occur nuclear fusion reaction extremely high temperature plasma must be confined by magnet. Plasma confinement physics and technology has been studied by such as the large helical device LHD, which is using super conducting magnet system and plasma heating devices by electromagnetic waves. In the large magnetic fusion experimental facility, various electric power devices have potential to exposure workers by leakage of electromagnetic fields. Regarding the environmental safety static magnetic field and variable electromagnetic fields had been monitored around the LHD and related devices. Many kinds of electric power devices of which frequencies distribute from static magnetic field to high frequency of electromagnetic waves. The magnetic strength of LHD is about 3 T and workers are restricted to enter into the LHD hall, but there are many workers in the building. Environmental magnetic strength at the fixed point, where is 23 m far from the center of LHD, had been continuously measured with Gauss Meter 9900 (F.W. Bell) since the first plasma in 1998. After the plasma experiment background level was increased to about 0.06 m T, which is a double of terrestrial magnetic field. It was increased to 0.1-0.2 m T on the plasma experiment and in the case of the super conducting magnet was quickly decreased for protection of the coils system it was increased to 1 m T in short time. Extremely low frequency ELF of electromagnetic fields are caused mainly around the coil electric power supplies. The ELF magnetic strength was measured with ELT-400 (Narda). Near the supplies it was increased to higher than the occupational restriction level of the ICNIRP guide line. In order to heat ion plasma 38 MHz electromagnetic wave heating are used. Around the electromagnetic wave generators, electromagnetic fields have been continuously measured using EMC-300 EP (Narda) with

  2. [The effect of electromagnetic fields on living organisms: plants, birds and animals].

    Science.gov (United States)

    Rochalska, Małgorzata

    2007-01-01

    Electromagnetic fields, constant and alternating, are a static element of the environment. They originate from both natural and man-made sources. Depending on the type of the field, its intensity and time of activity, they exert different effects on the natural world (plants and animals). Some animals utilize magnetic field of the earth for their own purposes.

  3. The superluminal velocities as the consequence of non-classical states of electromagnetic field

    Science.gov (United States)

    Veklenko, B. A.

    2017-06-01

    It was shown within the framework of conventional quantum electrodynamics, and without using perturbation theory, the presence of superluminal signals, transferring the information, while investigating the scattering of quantum electromagnetic field by excited atom. The superluminal signals are impossible in the theory of free fields, but their existence is predicted by the theory of interacting fields.

  4. Resonance interaction of two-level atoms with an electromagnetic field

    International Nuclear Information System (INIS)

    Fanchenko, S.S.

    1983-01-01

    A consistent investigation of two-level atom interaction with the quantum electromagnetic field is conducted. Radiation mechanism of two-level atom relaxation is described in the framework of Keldysh diagram technique. It is shown that equilibrium state in strong fields is established at the expense of radiation transitions between quaSi-enepgetic statrs. There is no full saturation in strong fields

  5. Diffusion mechanism of ionization of highly excited atoms in an alternating electromagnetic field

    International Nuclear Information System (INIS)

    Delone, N.B.; Zon, B.A.; Krajnov, V.P.

    1978-01-01

    A new mechanism is proposed to describe the ionization of highly excited atomic states by a strong low frequency electromagnetic field. It consists in electron diffusion along atomic states strongly perturbed by the field. The diffusion time is calculated. The range of field intensities for which the mechanism is predominant is estimated. The results are compared with the experimental data

  6. Occupational medicine and electromagnetic fields; Medecine du travail et champs electromagnetiques

    Energy Technology Data Exchange (ETDEWEB)

    Seze, R. de [Institut National de l' Environnement Industriel et des Risques, 60 - Verneuil en Halatte (INERIS) (France)

    2001-07-01

    Numerous industrial areas are concerned by electromagnetic fields exposures. The most intense sources are constituted by high frequencies. The most known are the relay antenna for cellular radio communications (type GSM). The principal sources of electromagnetic fields are given and the levels fields susceptible to be encountered at working posts. The interaction mechanisms of fields are given in function of frequencies, then the biological effects are studied. The results of epidemiological studies are synthesised. The recommendations in France and in Europe are presented as well the standardisation organisms. (N.C.)

  7. Electron Bloch oscillations and electromagnetic transparency of semiconductor superlattices in multi-frequency electric fields

    Science.gov (United States)

    Romanov, Yu. A.; Romanova, J. Yu.; Mourokh, L. G.

    2009-06-01

    We examine the phenomenon of electromagnetic transparency in semiconductor superlattices (having various miniband dispersion laws) in the presence of multi-frequency periodic and nonperiodic electric fields. Effects of induced transparency and spontaneous generation of static fields are discussed. We pay special attention to self-induced electromagnetic transparency and its correlation to dynamic electron localization. Processes and mechanisms of the transparency formation, collapse, and stabilization in the presence of external fields are studied. In particular, we present the numerical results of the time evolution of the superlattice current in an external biharmonic field showing main channels of transparency collapse and its partial stabilization in the case of low-electron-density superlattices.

  8. Report of the panel monitoring Ontario Hydro's electromagnetic field risk assessment program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Ontario Hydro has undertaken several studies to assess any possible risk of cancer resulting from electromagnetic fields. Study results appear to support the conclusion that there is a risk of cancer to humans from electromagnetic fields. The risk is small. The conclusions of the National Institute of Environmental Health Sciences are supported by the Royal Society of Canada, monitoring the Electromagnetic Fields Risk Assessment Program of Ontario Hydro. The following three studies sponsored by Ontario Hydro showed evidence for concern regarding possible cancer risk associated with electromagnetic fields: (1) a study by Stuchly on the effect of 60 Hertz (Hz) electric and magnetic fields on the induced electric fields in the body; (2) a study on malignancies among employees of Ontario Hydro; and (3) a study of pediatric leukemia in Ontario. It was recommended that long term maximum exposure to high electromagnetic fields be limited by following the guidelines published by the International Committee on Non-Ionizing Radiation. 55 refs., 1 tab., 8 figs.

  9. influence of electromagnetic waves produced by an amplitude ...

    African Journals Online (AJOL)

    PROF EKWUEME

    This article presents a one dimensional modeling of the influence of electromagnetic waves on the electric power delivered by a silicon solar cell under monochromatic illumination in steady state. The electromagnetic waves are produced by an amplitude modulation radio antenna of 2MW power of radiation and located at a ...

  10. Influence of electromagnetic waves produced by an amplitude ...

    African Journals Online (AJOL)

    This article presents a one dimensional modeling of the influence of electromagnetic waves on the electric power delivered by a silicon solar cell under monochromatic illumination in steady state. The electromagnetic waves are produced by an amplitude modulation radio antenna of 2MW power of radiation and located at a ...

  11. Radiation pressure and the linear momentum of the electromagnetic field

    OpenAIRE

    Mansuripur, Masud

    2013-01-01

    We derive the force of the electromagnetic radiation on material objects by a direct application of the Lorentz law of classical electro-dynamics. The derivation is straightforward in the case of solid metals and solid dielectrics, where the mass density and the optical constants of the media are assumed to remain unchanged under internal and external pressures, and where material flow and deformation can be ignored. For metallic mirrors, we separate the contribution to the radiation pressure...

  12. Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers

    Directory of Open Access Journals (Sweden)

    Josef Lakatos

    2006-01-01

    Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.

  13. Electromagnetic Near Field Measurements of Two Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  14. Environmental exposures to electromagnetic fields and health. Opinion note of the Institut de Veille Sanitaire

    International Nuclear Information System (INIS)

    2014-01-01

    This note states the opinion the French Institute for Health Survey (Institut de Veille Sanitaire, InVS) on the effect of electromagnetic fields (used in mobile phones, television and radio broadcasting, radar and satellite communication, or microwave ovens) on health. While distinguishing extremely low frequency and radio-frequency electromagnetic fields, it proposes an overview of acquired knowledge and commonly acknowledged elements on risks for health. It discusses what is supposed or claimed for these both types of fields in terms of carcinogenic and non carcinogenic effects, and also in the particular case of idiopathic environmental intolerance to electromagnetic fields. A third part presents actions undertaken by the InVS (epidemiological survey and field studies), actions to be pursued or supported

  15. A few categories of electromagnetic field problems treated through Fuzzy Logic

    Science.gov (United States)

    Lolea, M. S.; Dzitac, S.

    2018-01-01

    The paper deals with the problems of fuzzy logic applied in the field of electromagnetism. In the first part, there are presented some theoretical aspects regarding the characteristics and the application of the fuzzy logic in the general case. Are presented then, some categories of electromagnetic field problems treated by fuzzy logic. The accent is on the effects of exposure to the electromagnetic field on the human body. For this approach is dedicated a paragraph at the end of the paper. There is an application on how to treat by fuzzy logic the effects of electric field exposure. For this purpose, the fuzzy toolbox existing in the Matlab software and the results of some electric field strength measurements into a power substation are used. The results of the study and its conclusions are analyzed and exposed at the end of the paper.

  16. Effect of three common sources of electromagnetic fields on health

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.; Ahmadi, J.; Behnejad, B.

    2006-01-01

    Background And Aims: The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (E.M.F.) has increased rapidly during the past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and E.M.F. health hazards. Methods: Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (R.U.M.S.) and Vali-e-Asr University (V.A.U.). Questions ab out some major confounding factors such as age, gender, amount of video display terminal work were also included. All symptoms were self reported and there was no medical examination. Exact Fisher Test was used for data analysis. Results: 518 complete responses were collected. The responders comprised 317 Vali-e-Asr students (61.2%) and 201 R.U.M.S. students (38.8%). The gender distribution was male 175 33.8%), and female 343 (66.2 %). Thirty percent of the students had been using mobile phones (26% in female students and 38.2% in males, P<0.01). There was a significant difference between the frequency of mobile phone users in medical/par a medical (41.3%) and non-medical (23%) students (P<0. 001). Thirty six percent of the students had been using cord-less phones (no statistically significant gender difference). 56.3% used cathode ray tubes (C.R.T.) as computer monitors (47.1% in female students and 74.3% in males, P<0.001). Regarding self-reported symptoms, headache (52%), fatigue (35%), difficulties in concentration (31.7%), vertigo/dizziness (30%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.3%), and tinnitus (10%) were the main self-reported symptoms. There were significantly more women with headache, dizziness, myalgia, and nervousness than men (in each case P<0.001). No significant

  17. Effect of three common sources of electromagnetic fields on health

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, S.M.J.; Ahmadi, J.; Behnejad, B. [Rafsanjan Univ. of Medical Sciences, Rafsanjan (Iran, Islamic Republic of)

    2006-07-01

    Background And Aims: The number of people complaining about different symptoms that may be associated with exposure to electromagnetic fields (E.M.F.) has increased rapidly during the past years. Students use both mobile phones and video display terminals frequently. The purpose of this study was to investigate the association of mobile phone use and E.M.F. health hazards. Methods: Basic demographic data and self-reported symptoms were sought using a questionnaire administered to all apparently healthy students at Rafsanjan University of Medical Sciences (R.U.M.S.) and Vali-e-Asr University (V.A.U.). Questions ab out some major confounding factors such as age, gender, amount of video display terminal work were also included. All symptoms were self reported and there was no medical examination. Exact Fisher Test was used for data analysis. Results: 518 complete responses were collected. The responders comprised 317 Vali-e-Asr students (61.2%) and 201 R.U.M.S. students (38.8%). The gender distribution was male 175 33.8%), and female 343 (66.2 %). Thirty percent of the students had been using mobile phones (26% in female students and 38.2% in males, P<0.01). There was a significant difference between the frequency of mobile phone users in medical/par a medical (41.3%) and non-medical (23%) students (P<0. 001). Thirty six percent of the students had been using cord-less phones (no statistically significant gender difference). 56.3% used cathode ray tubes (C.R.T.) as computer monitors (47.1% in female students and 74.3% in males, P<0.001). Regarding self-reported symptoms, headache (52%), fatigue (35%), difficulties in concentration (31.7%), vertigo/dizziness (30%), attention disorders (28.8%), nervousness (28.1%), palpitation (14.7%), low back pain (14.3%), myalgia (12.3%), and tinnitus (10%) were the main self-reported symptoms. There were significantly more women with headache, dizziness, myalgia, and nervousness than men (in each case P<0.001). No significant

  18. Matrix elements and transition probabilities of interaction of electromagnetic field with a hydrogen-like atom

    International Nuclear Information System (INIS)

    Rajput, B.S.

    1977-01-01

    Using the reduced expansions of second quantized electromagnetic vector potential operator in terms of irreducible representations of Pioncare group in the interaction Hamiltonian, the exact matrix elements of interaction of electromagnetic field with a hydrogenic atom have been derived and the contributions of transitions for different combinations of angular momentum quantum numbers to the transition probabilities of various lines in Lyman-, Balmer-, and Paschen-series have been computed. (author)

  19. Biological and Human Health Effects of Extremely Low Frequency Electromagnetic Fields. Post-1977 Literature Review.

    Science.gov (United States)

    1985-03-01

    some variations at different clinical facilities. 0 Effects of Induced Pulsing Electromagnetic Fields ( PEMF ). Early studies of the electromagnetic...Bassett, Pilla, and Pawluk 1977). Subsequent larger series of clinical cases have reported success rates for PEMF approaching 90 percent 0 (Bassett...1982), even though Becker (1974, 1984) asserted that all possible risks of PEMF have rot yet been assessed. 0 There is very little support in the

  20. Analysis of the fields emitted by mobile communication systems in terms of electromagnetic security

    International Nuclear Information System (INIS)

    Kerimov, E.A.; Abdullayeva, T.M.; Bayramova, Sh.A.; Mardakhayev, A.V.; Khidirov, A.Sh.

    2009-01-01

    The main technical characteristics of digital communication systems of cellular bond are analyzed in this paper.The peculiarities of the electromagnetic fields near the antenna of digital communication systems of cellular bond with frequency, time and code interleaving of subscriber channels.It is shown that it is necessary to pay attention to relative broadbandness of digital signal spectrum on antenna radiation characteristics at carrying out of works on electromagnetic monitoring

  1. Gamma decay and nuclear reactions in a field of an intensive electromagnetic wave

    International Nuclear Information System (INIS)

    Dobrynin, Yu.L.; Zaretskij, D.F.; Lomonosov, V.V.

    1979-01-01

    The effect of a laser radiation field on the value of nuclear reaction cross sections is investigated. In the dipole nonrelativistic approximation considered is the interaction of an electromagnetic field with an ion, in the nucleus of which γ transition occurs from one energy level to another. The expression for the probability of γ transition in the laser field has been obtained. Resonance neutron scattering on the isolated level of a compound nucleus is considered. The conclusion has been done, that in strong electromagnetic fields the amplitudes of inelastic neutron scattering at the excited level of the compound nucleus obtain additional satellites, which are away the value, equal to +-ω (approximately 0.12 eV energy of CO 2 laser) from the main pole. It is shown, that in the field of a strong electromagnetic wave a nonrecoil emission of γ quanta is possible in laser plasma resulted from the stimulated emission (absorption) of quanta of an electromagnetic field by an ion. Considered is the effect of a strong electromagnetic wave on the value of the cross sections of inelastic neutron interaction with nucleus near the level of the compound nucleus. Laser parameters, which is necessary for the observation of the effects considered, are estimated

  2. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    International Nuclear Information System (INIS)

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  3. The directive on electromagnetic fields and its application; Die Verordnung ueber elektromagnetische Felder in der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemeyer, H. [Niedersaechsisches Landesamt fuer Oekologie, Hannover (Germany); Dib, R. [Fachhochschule Giessen-Friedberg, Friedberg (Germany); Eberle, W. [Hessisches Ministerium fuer Umwelt, Energie, Jugend, Familie und Gesundheit, Wiesbaden (Germany); Freund, H. [Teweratio Unternehmensberatung GmbH, Stuttgart (Germany); Hirsch, F. [FGH, Mannheim (Germany); Stamm, A. [PreussenElektra AG, Hannover (Germany); Wiedemann, P. [Forschungszentrum Juelich GmbH (Germany)

    1997-11-03

    On January 1, 1997 the directive concerning the implementation of the German Federal Emission Control Act (directive on electromagnetic fields) took effect. The article contains: Explanation of the directive, calculation and measurement of low frequency electric and magnetic fields, electromagnetic fields of high and medium voltage powerlines as well as medium voltage switching stations. Another aspect discussed is the risk perception of powerline frequency electromagnetic fields by laymen and information management in power utilities. (orig./RHM) [Deutsch] Am 1. Januar 1997 trat die Verordnung zur Durchfuehrung des Bundes-Immissionsschutzgesetzes (Verordnung ueber elektromagnetischer Felder) in Kraft. Im folgenden Beitrag wird nach der Erlaeuterung der 26. BImSchV auf die Berechnung und Messung elektromagnetischer Felder (EMF) sowie auf die Felder von Hoch- und Mittelspannungsleitungen, Schaltanlagen und Stationen eingegangen. Abschliessend werden die Themen Risikowahrnehmung in der Bevoelkerung und EMF-Informationsmanagement behandelt. (orig./RHM)

  4. Electromagnetic field of a bunch intersecting a vacuum gap in a dielectric loaded waveguide

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Alekhina

    2014-07-01

    Full Text Available The electromagnetic field of a bunch moving through a vacuum gap located in a dielectric loaded waveguide is under investigation. This paper focuses on the case when Cherenkov radiation is generated in the dielectric parts of the waveguide. Analysis of the field components of the waveguide mode is performed both analytically and numerically, and the electromagnetic field structure for different time moments and different gap lengths is demonstrated. In particular, it is shown that for dielectrics with permittivity ϵ2, restoration of the wakefield can only be realized for small lengths of the gap.

  5. Design and numerical simulation of the electromagnetic field of linear anode layer ion source

    International Nuclear Information System (INIS)

    Wang Lisheng; Tang Deli; Cheng Changming

    2006-01-01

    The principle of anode layer ion source for etching, pre-cleaning and ion beam assisted deposition was described. The influence of the magnetic field on the performance of anode layer ion source was analyzed. Design of the magnetic loop for the linear anode layer ion source was given. The electromagnetic field distribution of the ion source was simulated by means of ANSYS code and the simulation results were in agreement with experimental ones. The numerical simulation results of the electromagnetic field are useful for improving the anode layer ion source. (authors)

  6. Interaction of the superconducting domains induced by external electric field with electromagnetic waves

    International Nuclear Information System (INIS)

    Shapiro, B.Y.

    1992-01-01

    The behavior of a superconductor in time-independent electric field perpendicular to the surface and in the external electromagnetic wave is theoretically investigated. A new type of the resonance interaction between superconducting domains localized along the magnetic field (if the superconducting phase transition takes place in the external magnetic field perpendicular to the surface) and electromagnetic waves is predicted. The surface impedance of the superconductor with domains is calculated. It is shown that the real part of the impedance has a saturation if the skin length equals the domain size. (orig.)

  7. The nonextensive parameter for nonequilibrium electron gas in an electromagnetic field

    International Nuclear Information System (INIS)

    Yu, Haining; Du, Jiulin

    2014-01-01

    The nonextensive parameter for nonequilibrium electron gas of the plasma in an electromagnetic field is studied. We exactly obtained an expression of the q-parameter based on Boltzmann kinetic theories for plasmas, where Coulombian interactions and Lorentz forces play dominant roles. We show that the q-parameter different from unity is related by an equation to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the gas. The effect of the magnetic field on the q-parameter depends on the overall bulk velocity. Thus the q-parameter for the electron gas in an electromagnetic field represents the nonequilibrium nature or nonisothermal configurations of the plasma with electromagnetic interactions. - Highlights: • An expression of the q-parameter is obtained for nonequilibrium plasma with electromagnetic interactions. • The q-parameter is related to temperature gradient, electric field strength, magnetic induction as well as overall bulk velocity of the plasma. • The q-parameter represents the nonequilibrium nature of the complex plasma with electromagnetic interactions

  8. ELF electromagnetic fields and neurodegenerative disease. Report of an Advisory Group on Non-ionising radiation

    International Nuclear Information System (INIS)

    2001-01-01

    There are continuing concerns about the possible health effects that may arise as a consequence of exposure to electromagnetic fields and radiations (EMFs). In relation to exposures to power frequency (extremely low frequency, ELF) electromagnetic fields, the principal concern has been the possibility that they may be implicated in the development of cancer. In developing its advice for the Board of NRPB on the possible health effects of electromagnetic fields, the Advisory Group has reviewed a number of studies that have examined associations between Alzheimer's disease, motor neuron disease and Parkinson's disease and exposure to electromagnetic fields. These diseases may be classed as neurodegenerative disease as all involve the death of neurons, although their aetiology is different. This report examines first the biological basis of these neurodegenerative diseases, the location of the nerve cells implicated in their development, and the pathological changes that become manifest as they develop. lt then reviews the relevant epidemiological studies. These have examined the possibility of a relationship with exposure to ELF electromagnetic fields, particularly as a consequence of work involving the use of electricity (eg electric power line/cable workers, welders, electricians and dressmakers)

  9. EFFECT OF ELECTROMAGNETIC FIELD ON THE SPOILAGE FUNGI OF SOME SELECTED EDIBLE FRUITS IN SOUTHWESTERN, NIGERIA

    Directory of Open Access Journals (Sweden)

    Bamidele J. Akinyele

    2012-10-01

    Full Text Available The influence of electromagnetic field wave on the survival of spoilage fungi associated with some edible fruits consumed in southwestern, Nigeria was studied using cashew (Anacardium occidentale L., pineapple (Ananas comosus, carrot (Daucus carota, cucumber (Cucumis sativus, apple (Malus domestica and African star apple (Chrysophyllum africanum. The spoilage fungi used include the genera of Aspergillus, Penicillium, Articulospora, Mucor, Staphylotrichum, Bisbyopeltis, Fusarium, Rhizopus and a yeast, Saccharomyces cerevisiae. There was a general decrease in fungal growth as shown in the number of spores produced with increase in exposure time of isolates to electromagnetic field except in Articulospora inflata, Penicillium italicum and Mucor mucedo where there was stimulatory effect as there was increase in the fungal spores compared to the control. A decrease was also observed in growth of the fungal isolates with increase in the intensity of the electromagnetic field at voltage of 7 V to 10 V and from 10 V to 13 V. The highest percentage reduction was recorded by Bisbyopeltis phoebesii at intensity of voltage 13V after 60 minutes of exposure. Exposure of the fruits to electromagnetic field wave did not alter the nutrient components of the fruits as observed in the proximate and mineral contents of the treated and untreated fruits. The result of the study revealed that electromagnetic field wave has great potential for use in the control of fruits spoilage and food preservation.

  10. Theory of charged vector mesons interacting with the electromagnetic field

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    It is shown that starting from the usual canonical formalism for the electromagnetic interaction of a charged vector meson with arbitrary magnetic moment one is led to a set of rules for Feynman diagrams, which appears to contain terms that are both infinite and noncovariant. These difficulties, however, can be circumvented by introducing a xi-limiting process which depends on a dimensionless positive parameter xi → 0. Furthermore, by using the mathematical artifice of a negative metric the theory becomes renormalizable (for xi > 0)

  11. [Influence of electromagnetic fields on the emotional behaviour of rats].

    Science.gov (United States)

    Semenova, T P; Medvinskaia, N I; Bliskovka, G I; Akoev, I G

    2000-01-01

    The effects of ultra low power pulse-width + modulation electromagnetic radiation (EMR, power density 10 mc/Wt/cm2, carrying frequency 915 MHz, modulating pulses with frequency 4, 6, 16 and 20 Hz, duration 10 min) on the rat emotional behavior and motor activity in the elevated plus-maze were studied. It was established that EMR (frequency of modulation 4 and 6 Hz) significantly decreased the emotionally negative reactions of anxiety and fear by a factor of 3.7 (p negative reactions of anxiety and fear and decreased by a factor of 1.8 (p < 0.05) the exploratory activity in rats.

  12. Cometary dust dynamics and polarization in electromagnetic radiation fields

    Science.gov (United States)

    Herranen, J.; Markkanen, J.; Muinonen, K.

    2017-09-01

    In our work, we apply a fast solution of electromagnetic scattering to determine the induced spin and movement of a dust particle in a cometary coma. The resulted aligned spinning state is then used to determine the observable polarization of the dust, and compared against the randomly averaged polarization of the same particle. We find that measurable effects arise due to the alignment. In the future, similar methods can be used to model the dynamics and in turn the polarization of the whole coma.

  13. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  14. Electromagnetic field of a rotating closed singular magnetic flux-line

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1982-01-01

    The electromagnetic field due to the rotation of a circular singular magnetic flux-line is calculated. Averaging the resulting electric field over the period of rotation it is shown that by this procedure neither a static Coulumb charge nor an electric dipole moment can be generated. (Author)

  15. Dosimetry of Exposure to Electromagnetic Fields in Daily Life and Medical Applications

    NARCIS (Netherlands)

    J.F. Bakker (Jurriaan)

    2012-01-01

    textabstractElectromagnetic fields (EMF) are present everywhere in our environment but are usually invisible to the human eye. EMF for example generated by mobile phones and 50Hz power lines, can cause electric fields, currents and tissue heating in the human body. In the past, exposure limits were

  16. Investigation of energy spectrum structure in a system atom + strong external electromagnetic field

    International Nuclear Information System (INIS)

    Volkova, E.A.; Popov, A.M.; Tikhonova, O.V.

    1996-01-01

    Method of direct numerical integration of nonstationary Schroedinger equation is used for investigation into dynamics of quantum system with short-range potential under the cooperative effect of high-frequency electromagnetic field with super atomic value of intensity and low-frequency field with low radiation intensity

  17. Effects of electromagnetic field of 33 and 275 kV influences on ...

    African Journals Online (AJOL)

    The effects of electromagnetic fields (EMF) from 33 and 275 kV high voltage transmission line on biochemical and antioxidant system changes in mustard leaf (Brassica chinensis) were investigated under field condition. Mustard leaves were exposed to EMF from power lines at distances of 0, 3, 6, 9, 10, 12, 15, 18, 20, 21, ...

  18. Method to map individual electromagnetic field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing

  19. Higher-dimensional black holes with realistic asymptotes in the presence of dilatons and electromagnetic fields

    International Nuclear Information System (INIS)

    Ivanov, B.I.

    1988-12-01

    We find black hole solutions in higher dimensions with extra space in orthogonal coordinates, which compactifies at infinity. We study the effect of massless scalar fields, abelian electromagnetic fields and their interacting combination advocated by the heterotic string theory. The conditions under which the extra space blows up near the horizon are given. (author). 9 refs

  20. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current

    Science.gov (United States)

    Jimenez, J. L.; Campos, I.; Aquino, N.

    2008-01-01

    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…