WorldWideScience

Sample records for amplitude proportional coulomb

  1. Optimal Tuning of Amplitude Proportional Coulomb Friction Damper for Maximum Cable Damping

    DEFF Research Database (Denmark)

    Weber, Felix; Høgsberg, Jan Becker; Krenk, Steen

    2010-01-01

    This paper investigates numerically the optimal tuning of Coulomb friction dampers on cables, where the optimality criterion is maximum additional damping in the first vibration mode. The expression for the optimal friction force level of Coulomb friction dampers follows from the linear viscous...... is estimated. It is found that the damping efficiency agrees well with the expected value at the theoretical optimum. However, maximum damping is larger and achieved at a force to amplitude ratio of 1.4 times the analytical value. Investigations show that the increased damping results from energy spillover...

  2. Scattering amplitudes on the Coulomb branch of N=4 super Yang-Mills

    International Nuclear Information System (INIS)

    Henn, J.M.

    2010-01-01

    We discuss planar scattering amplitudes on the Coulomb branch of N=4 super Yang-Mills. The vacuum expectation values on the Coulomb branch can be used to regulate infrared divergences. We argue that this has a number of conceptual as well as practical advantages over dimensional regularisation.

  3. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  4. Calculation of the real part of the nuclear amplitude at high s and small t from the Coulomb amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P.; Nicolescu, B. [Universite Pierre et Marie Curie, Theory Group, Lab. de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS 75 - Paris (France)

    2005-07-01

    A new method for the determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton at small momentum transfer. This method allows us to decrease the number of model assumptions, to obtain the real part in a narrow region of momentum transfer and to test different models. The possible non-exponential behavior of the real part was found on the base of the analysis of the ISR experimental data. (authors)

  5. Experimental examination for microcrack lifetime calculation under proportionally multiaxial fatigue loading with constant and variable amplitudes

    International Nuclear Information System (INIS)

    Savaidis, G.; Seeger, T.

    1994-01-01

    Basic experimental examinations were performed in the frame of this work, for determining the deformation and failure behaviour of metallic materials at multiaxially proportional fatigue loading with variable amplitudes, using the materials StE 460 and AlMg4.5Mn. With the help of deformation controlled, varying single stage Woehler tests with Hour-glass and thin-walled tube specimens, applying pure normal force, pure torsion and composed normal force and torsion, the cyclic deformation behaviour, incipient cracking and crack opening and crack growth behaviour of the materials was examined. (orig.) [de

  6. Use of Dirac Coulomb Sturmians of the first order for relativistic calculations of two-photon bound bound transition amplitudes in hydrogen-like ions

    Science.gov (United States)

    Tetchou Nganso, H. M.; Njock, M. G. Kwato

    2007-03-01

    A fully relativistic treatment of the S-matrix elements describing two-photon bound-bound transition amplitudes in hydrogen-like ions is undertaken in the present work. Several selected transitions from the ground state |12Srang towards the L and M shells (|22Srang, |32Srang, |32D3/2rang and |32D5/2rang) are described. For that purpose, we use the complete set of relativistic Sturmian functions derived by Szmytkowski (1997 J. Phys. B: At. Mol. Opt. Phys. 30 825) from the first-order Sturm-Liouville problems for the Dirac equation. The method followed consists of writing the matrix elements in terms of Green functions expanded over the first-order Dirac-Coulomb Sturmians. Previous approaches used a Sturmian basis associated with the Gell-Mann-Feynman equation. On the other hand, a distinctive feature of our tensor treatment is that the expressions derived are quite general and could be applied to any multipole of the two-photon bound-bound transitions. In the case of dipole transitions, considered also by Szymanowski et al (1997 Phys. Rev. A 56 700) in their calculations, the selection rules derived from our method lead to two additional terms related to l1p = 2 and l2p = 2. The numerical results obtained for the transition from the ground state |12Srang towards the L and M shells enable us to draw inferences as to the improvements of our method.

  7. Measurement of the real part of the forward scattering amplitude by means of the Coulomb-nuclear interference in πsup(+-)p and Ksup(+-)p elastic scattering at incident momenta below 3 GeV/c

    International Nuclear Information System (INIS)

    Baillon, P.; Bricman, C.; Ferro-Luzzi, M.; Jenni, P.; Perreau, J.M.; Tripp, R.D.; Ypsilantis, T.; Declais, Y.; Seguinot, J.

    1975-01-01

    The differential cross sections for π + p elastic scattering at 0.6, 1.0, 1.5, 2.0 GeV/c, for π - p at 1.0, 1.5, 2.0 GeV/c, for K + p at 1.2, 1.8, 2.6 GeV/c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/c have been measured with an overall accuracy of the order of 1 to 2 per cent in a counter experiment over the angular region corresponding to momentum transfers t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, a determination has been done of the magnitude and sign of the real part of the scattering amplitude near t = 0. The πp real parts are compared to the values predicted by the dispersion relations and found to agree quite well. The Ksup(+-)p real parts have been used in a dispersion relation to derive the value of the KNA coupling constant. Two possible values of this coupling constant are found, both much larger than those commonly accepted. One of them agrees well with the value predicted by the SU(3) and SU(6) symmetry schemes. (Author)

  8. Proportionality lost - proportionality regained?

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2010-01-01

    In recent years, the European Court of Justice (the ECJ) seems to have accepted restrictions on the freedom of establishment and other basic freedoms, despite the fact that a more thorough proportionality test would have revealed that the restriction in question did not pass the 'rule of reason....... This often cannot be done without thorough knowledge of the particular legal field in which the case is anchored, and the ECJ is often left to flounder somewhat on this, with the result that we are suddenly faced with the Court’s acceptance of a restriction. The difficulty often lies - not in recognising...... result if the proportionality argument had been based on adequate insight. Proportionality-weak decisions are in the article be categorised as: (1) Cases in which the ECJ allows itself to be “talked into” accepting a restriction, and for which the question of proportionality actually has been considered...

  9. Proportional reasoning

    DEFF Research Database (Denmark)

    Dole, Shelley; Hilton, Annette; Hilton, Geoff

    2015-01-01

    Proportional reasoning is widely acknowledged as a key to success in school mathematics, yet students’ continual difficulties with proportion-related tasks are well documented. This paper draws on a large research study that aimed to support 4th to 9th grade teachers to design and implement tasks...

  10. pd Scattering Using a Rigorous Coulomb Treatment. Reliability of the Renormalization Method for Screened-Coulomb Potentials

    Science.gov (United States)

    Hiratsuka, Y.; Oryu, S.; Gojuki, S.

    2011-05-01

    Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of "two-potential theory" for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Møller function, and calculate it by using the Haeringen criterion, i.e. "the half-shell Coulomb amplitude is zero". By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Møller function is reasonable, and the Haeringen criterion is reliable.

  11. pd Scattering Using a Rigorous Coulomb Treatment: Reliability of the Renormalization Method for Screened-Coulomb Potentials

    International Nuclear Information System (INIS)

    Hiratsuka, Y.; Oryu, S.; Gojuki, S.

    2011-01-01

    Reliability of the screened Coulomb renormalization method, which was proposed in an elegant way by Alt-Sandhas-Zankel-Ziegelmann (ASZZ), is discussed on the basis of 'two-potential theory' for the three-body AGS equations with the Coulomb potential. In order to obtain ASZZ's formula, we define the on-shell Moller function, and calculate it by using the Haeringen criterion, i. e. 'the half-shell Coulomb amplitude is zero'. By these two steps, we can finally obtain the ASZZ formula for a small Coulomb phase shift. Furthermore, the reliability of the Haeringen criterion is thoroughly checked by a numerically rigorous calculation for the Coulomb LS-type equation. We find that the Haeringen criterion can be satisfied only in the higher energy region. We conclude that the ASZZ method can be verified in the case that the on-shell approximation to the Moller function is reasonable, and the Haeringen criterion is reliable. (author)

  12. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  13. Freezing of Coulomb liquids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1989-03-01

    Recent progress in the theory of liquid-solid coexistence as approached from the liquid phase in systems with Coulomb forces is reviewed. Main attention is given to (i) Wigner crystallization of the electron gas in the degenerate and classical limits, and (ii) localization of bond particles leading to freezing in a pseudoclassical liquid-state version of the bond-charge model for elemental semiconductors. These models serve to illustrate crystallization driven by pure Coulomb repulsions and crystallization resulting from the interplay of attraction and repulsions in multicomponent systems, respectively. (author). 29 refs, 4 figs

  14. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  15. Asymptotic coulombic conditions in the electron capture process

    International Nuclear Information System (INIS)

    Corchs, S.E.; Maidagan, J.M.; Rivarola, R.D.

    1990-01-01

    Several first order perturbative approximations of the transition amplitude for electronic capture are studied. Different models in which the long range Coulomb potential is represented by different internuclear dependent phases, in the initial and final wave functions, are analysed and compared. (Author). 8 refs., 2 figs

  16. Brachistochrone with Coulomb friction

    Science.gov (United States)

    Hayen, J.

    2005-10-01

    The classical brachistochrone is considered with the inclusion of a resistant force, which is due to Coulomb friction, in addition to the uniform gravitational force that is present. The solution to this problem is expressed in terms of standard functions, and it is developed in two separate ways by means of constrained variational calculus methods. These ways involve formulations of the problem in terms of temporal and spatial independent variables, respectively. The equations of motion that result in both cases are non-linear and coupled. The utilization of path variables is a central feature of the developments provided.

  17. Non-linear conductivity in Coulomb glasses

    Energy Technology Data Exchange (ETDEWEB)

    Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.

    2009-12-15

    We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)

  19. Gas proportional scintillation counter

    International Nuclear Information System (INIS)

    Iguchi, Tetsuo; Nakazawa, Masaharu; Sekiguchi, Akira

    1980-01-01

    As the trial in the first stage of utilizing recoil helium for the measurement of 2 - 14 MeV neutron spectra in the simulated blanket for a nuclear fusion reactor, the He-Xe system gas proportional scintillation counter (GPSC) has been manufactured for trial, giving consideration to the advantages of gas scintillators and further to improve the energy resolution. In GPSC, delayed secondary scintillation pulses are produced, and its amplitude gives the energy resolution the adverse effect. Thus, in order to improve the energy resolution, it is desirable to realize such geometry of proportional counters that the electric field in the vicinity of center wire is sufficiently intense to induce the secondary excitation or ionization. The counters of such construction are called GPSC, in which the actual energy resolution can be improved according to the secondary scintillation pulses without losing the fast primary scintillation pulses useful for fast coincidence technique. The experimental results and the consideration on them are described. As compared with proportional counters, GPSC can give large output pulses even at low voltage, improve the energy resolution greatly as compared with ordinary gas scintillators, and measure the time data by the primary scintillation and the energy data based on the secondary scintillation simultaneously. However, it is likely to be affected by gas impurities more than proportional counters, and inferior in the reproducibility and stability of measurement. (Wakatsuki, Y.)

  20. Coulomb-oscillator duality and 5-dimensional Coulomb problem

    CERN Document Server

    Karayan, K H

    2003-01-01

    It is shown that the Hurwitz transformation connects the eight-dimensional oscillator problem with the five-dimensional Coulomb problem. The hyperspherical and parabolic coordinates are applied for analyzing the five-dimensional Coulomb problem. We calculate the spherical and parabolic bases for this system, derive the Park's and Tarter's representations for the coefficients of the spherical-parabolic and parabolic-spherical interbasis expansions

  1. Three-body Coulomb effects in the direct Coulomb breakup of 8B into 7Be + p in the field of a 208Pb ion

    International Nuclear Information System (INIS)

    Irgaziev, B.F.; Alt, E.O.; Mukhamedzhanov, A.M.

    1999-01-01

    The amplitude for the Coulomb breakup of a light nucleus in the field of a highly charged ion is considered in the framework of the distorted wave approach, with particular emphasis being laid on correctly taking into account the three-body Coulomb interactions in the final state. Numerical calculations have been performed for the double differential cross section for the reaction 208 Pb( 8 B, 7 Be p) 208 Pb. They clearly demonstrate the importance of long-range three-body Coulomb correlations in the astrophysically interesting regime when the ejectiles have extremely small relative energies. Refs. 9 (author)

  2. Radiative capture versus Coulomb dissociation

    International Nuclear Information System (INIS)

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of 8 B have been used to infer the rate of the inverse radiative proton capture on 7 Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  3. Radiative Capture versus Coulomb Dissociation

    International Nuclear Information System (INIS)

    Esbensen, Henning

    2006-01-01

    Measurements of the Coulomb dissociation of 8B have been used to infer the rate of the inverse radiative proton capture on 7Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed

  4. Coulomb excitation of 189Os

    International Nuclear Information System (INIS)

    Brandao, S.B.

    1987-01-01

    The level structure of 189 Os has been studied by Coulomb excitation using 35 Cl, 28 Si, 16 O beams. GOSIA, a code written to analyze multiple Coulomb excitation, was used to obtain the reduced probabilities of transition B(E2). The results for interband and intraband turned out possible the classification of the states following Nilsson levels. Gamma-rays originating from deexcitation of 216.7 and 219.4 keV have been separated and the reduced probability of transition has been measured. (A.C.A.S.) [pt

  5. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  6. Effective temperature in relaxation of Coulomb glasses.

    Science.gov (United States)

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  7. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms

  8. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  9. Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field

    Science.gov (United States)

    Khalilov, V. R.

    2017-12-01

    Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.

  10. Assessment of Coulomb shifts in nucleon scattering resonances on light nuclei at low energies

    International Nuclear Information System (INIS)

    Takibaev, N.Zh.; Uzakova, Zh.; Abdanova, L.

    2003-01-01

    The assessments of the Coulomb forces contribution to position and width of the resonances at nucleons scattering on light nuclei within low energy field are given. In particular the shifts of resonances in amplitudes arising in the processes protons scattering on light nuclei relatively neutrons scattering resonance characteristics on these nuclei are considered

  11. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  12. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    plitude waves and finite amplitude waves. This article provides a brief introduction to finite amplitude wave theories. Some of the general characteristics of waves as well as the importance of finite amplitude wave theories are touched upon. 2. Small Amplitude Waves. The topmost and the lowest levels of the waves are re-.

  13. Coulomb dissociation of N-20,N-21

    NARCIS (Netherlands)

    Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Golubev, Pavel; Diaz, D. Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Bjorn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knoebel, Ronja; Kroell, Thorsten; Kruecken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; del Rio Saez, Jose Sanchez; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a

  14. Strongly coupled dust coulomb clusters

    International Nuclear Information System (INIS)

    Juan Wentau; Lai Yingju; Chen Mingheng; I Lin

    1999-01-01

    The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing

  15. Differential cross section measurements of the π-p elastic scattering in the Coulomb interference region between 30 and 140 GeV

    International Nuclear Information System (INIS)

    Ille, B.

    1979-01-01

    The differential cross section of elastic π - -p scattering in the Coulomb interference region from 30 GeV to 140 GeV has been measured at the CERN SPS using in conjunction an ionization chamber recoil spectrometer and a forward multiwire proportional chamber-magnet spectrometer. The phase of the π - -p forward hadronic amplitude was found to go four negative value (at 30 GeV) to positive value (at 140 GeV), passing through zero at about 60 GeV. The logarithmic slope at small /t/ (/t/ approximately 0.03 (GeV/c) 2 ) has also been measured and was found to be higher by about 3 (GeV/c) -2 than the values determined at higher /t/ (/t/ = 0.2 (GeV/c) 2 ) [fr

  16. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  17. Selfconsistent theory of Coulomb mixing in nuclei

    International Nuclear Information System (INIS)

    Pyatov, N.I.

    1978-01-01

    The theory of isobaric states is considered according to the Coulomb mixing in nuclei. For a given form of the isovestor potential the separable residual interactions are constructed by means of the isotopic invariance principle. The strength parameter of the force is found from a selfconsistency condition. The charge dependent force is represented by the Coulomb effective potential. The theory of the isobaric states is developed using the random phase approximation. The Coulomb mixing effects in the ground and isobaric 0 + states of even-mass nuclei are investigated

  18. Coulomb interaction in the supermultiplet basis

    International Nuclear Information System (INIS)

    Ruzha, Ya.Kh.; Guseva, T.V.; Tamberg, Yu.Ya.; Vanagas, V.V.

    1989-01-01

    An approximate expression for the matrix elements of the Coulomb interaction operator in the supermultiplet basis has been derived with the account for the orbitally-nonsymmetric terms. From the general expression a simplified formula for the Coulomb interaction energy has been proposed. On the basis of the expression obtained the contribution of the Coulomb interaction to the framework of a strongly restricted dynamic model in the light (4≤A≤40) and heavy (158≤A≤196) nuclei region has been studied. 19 refs.; 4 tabs

  19. The Principle of Proportionality

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Meisner Nielsen, Kasper

    2005-01-01

    Recent policy initiatives within the harmonization of European company laws have promoted a so-called "principle of proportionality" through proposals that regulate mechanisms opposing a proportional distribution of ownership and control. We scrutinize the foundation for these initiatives...... in relationship to the process of harmonization of the European capital markets.JEL classifications: G30, G32, G34 and G38Keywords: Ownership Structure, Dual Class Shares, Pyramids, EU companylaws....

  20. Coulomb excitation of 73Ga

    CERN Document Server

    Diriken, J; Balabanski, D; Blasi, N; Blazhev, A; Bree, N; Cederkäll, J; Cocolios, T E; Davinson, T; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V N; Fraille, L M; Franchoo, S; Georgiev, G; Gladnishki, K; Huyse, M; Ivanov, O V; Ivanov, V S; Iwanicki, V; Jolie, J; Konstantinopoulos, T; Kröll, Th; Krücken, R; Köster, U; Lagoyannis, A; Bianco, G Lo; Maierbeck, P; March, B A; Napiarkowski, P; Patronis, N; Pauwels, D; Reiter, P; Seliverstov, M; Sletten, G; Van de Walle, J; Van Duppen, P; Voulot, D; Walters, W B; Warr, N; Wenander, F; Wrzosek, K

    2010-01-01

    The B(E2; Ii ! If ) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If ) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga...

  1. Modelling Coulomb Collisions in Anisotropic Plasmas

    Science.gov (United States)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  2. Coulomb correction to elastic. alpha. -. alpha. scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bera, P.K.; Jana, A.K.; Haque, N.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India (IN))

    1991-02-01

    The elastic {alpha}-{alpha} scattering is treated within the framework of a generalized phase-function method (GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the comparison functions for developing the phase equation. Based on values of scattering phase shifts computed by the present method, it is concluded that the GPFM provides an uncomplicated approach to rigorous Coulomb correction in the {alpha}-{alpha} scattering.

  3. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  4. Diphoton generalized distribution amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.

  5. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  6. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  7. The divine proportion

    CERN Document Server

    Huntley, H E

    1970-01-01

    Using simple mathematical formulas, most as basic as Pythagoras's theorem and requiring only a very limited knowledge of mathematics, Professor Huntley explores the fascinating relationship between geometry and aesthetics. Poetry, patterns like Pascal's triangle, philosophy, psychology, music, and dozens of simple mathematical figures are enlisted to show that the ""divine proportion"" or ""golden ratio"" is a feature of geometry and analysis which awakes answering echoes in the human psyche. When we judge a work of art aesthetically satisfying, according to his formulation, we are making it c

  8. Treatment versus proportionality

    DEFF Research Database (Denmark)

    Sorensen, David Woodrow Mattson

    2010-01-01

    . This critique, which hinges on proportionality, led to a change in the law on July 1, 2000, after which the length of treatment for non-serious-violent crimes was limited to a maximum of five years. This change was itself criticized by the Council of Medical Forensic Specialists, who argued that time of release...... persons sentenced before and after the July 1, 2000 change in the law. The analysis is based on 1510 persons serving 1554 sentences and utilizes data from the criminal register, the central psychiatric register, the cause of death register, and the population register. The data do not support...

  9. Restrictions and Proportionality

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article discusses three central aspects of the freedoms under European Community law, namely 1) the prohibition against restrictions as an important extension of the prohibition against discrimination, 2) a prohibition against exit restrictions which is just as important as the prohibition...... against host country restrictions, but which is often not recognised to the same extent by national law, and 3) the importance of also identifying and recognising an exit restriction, so that it is possible to achieve the required test of appropriateness and proportionality in relation to the rule...

  10. Critical opalescence in the pure Coulomb system

    International Nuclear Information System (INIS)

    Bobrov, V.B.; Trigger, S.A.

    2011-01-01

    Highlights: → The review of the critical opalescence problem is presented. → Light scattering in a two-component electron-nuclear system is studied. → The exact relations between the structure factors and compressibility are found. → The obtained relations are valid for strong interaction for the Coulomb systems. → The experimental verification of these relations is possible for various elements. - Abstract: Based on the dielectric formalism and quantum field theory methods, the phenomenon of critical opalescence is explained for light scattering in pure matter as a two-component electron-nuclear system with Coulomb interaction. A similar phenomenon is shown to occur in the case of neutron scattering in pure substances as well. The obtained results are valid for quantum case and arbitrary strong Coulomb interaction. Thus, the relations between structure factors derived for the electron-nuclear system are the exact result of the quantum statistical mechanics.

  11. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  12. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  13. Observation of a Coulomb flux tube

    Science.gov (United States)

    Greensite, Jeff; Chung, Kristian

    2018-03-01

    In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.

  14. Coulomb dissociation of $^{20,21}$N

    OpenAIRE

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role for the creation of chemical elements. Here, data from a Coulomb dissociation experiment on $^{20,21}$N are reported. Relativistic $^{20,21}$N ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ and $^{20}\\mathrm{N}(\\mathrm{n},\\gamma)^{21}\\mathrm{N}$ excitati...

  15. Coulomb dissociation of N 20,21

    OpenAIRE

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N20,21 are reported. Relativistic N20,21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the N19(n,γ)N20 and N20(n,γ)N21 excitation functions and thermonuclear reaction rates have been determined. The N19(n,γ)N20 rate is...

  16. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...

  17. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  18. Coulomb Stress Accumulation along the San Andreas Fault System

    Science.gov (United States)

    Smith, Bridget; Sandwell, David

    2003-01-01

    Stress accumulation rates along the primary segments of the San Andreas Fault system are computed using a three-dimensional (3-D) elastic half-space model with realistic fault geometry. The model is developed in the Fourier domain by solving for the response of an elastic half-space due to a point vector body force and analytically integrating the force from a locking depth to infinite depth. This approach is then applied to the San Andreas Fault system using published slip rates along 18 major fault strands of the fault zone. GPS-derived horizontal velocity measurements spanning the entire 1700 x 200 km region are then used to solve for apparent locking depth along each primary fault segment. This simple model fits remarkably well (2.43 mm/yr RMS misfit), although some discrepancies occur in the Eastern California Shear Zone. The model also predicts vertical uplift and subsidence rates that are in agreement with independent geologic and geodetic estimates. In addition, shear and normal stresses along the major fault strands are used to compute Coulomb stress accumulation rate. As a result, we find earthquake recurrence intervals along the San Andreas Fault system to be inversely proportional to Coulomb stress accumulation rate, in agreement with typical coseismic stress drops of 1 - 10 MPa. This 3-D deformation model can ultimately be extended to include both time-dependent forcing and viscoelastic response.

  19. Constant Proportion Portfolio Insurance

    DEFF Research Database (Denmark)

    Jessen, Cathrine

    2014-01-01

    Portfolio insurance, as practiced in 1987, consisted of trading between an underlying stock portfolio and cash, using option theory to place a floor on the value of the position, as if it included a protective put. Constant Proportion Portfolio Insurance (CPPI) is an option-free variation...... on the theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio...... insurance largely died with the crash of 1987, but CPPI is still going strong. In the frictionless markets of finance theory, the issuer’s strategy to hedge its liability under the contract is clear, but in the real world with transactions costs and stochastic jump risk, the optimal strategy is less obvious...

  20. On energy calculation for Coulomb systems

    International Nuclear Information System (INIS)

    Rebane, T.K.

    1993-01-01

    The problem of energy calculation for a Coulomb atomic-molecular system with arbitrary number N of particles is studied. The exponential wave functions explicitly depending on all N(N-1)/2 interparticle separations and taking into account the effects of correlation and nonadiabaticity are used. Straightforward use of these functions in many-particle systems with N > 3 is faced by time-consuming calculations of various multidimensional integrals with nonseparable variables. The number of these integrals increases as N 3 . This main obstacle can be obviated in the approach developed, based on the model Schroedinger equation combined with the virial and Hellmann-Feynman theorems. In this way the number of integrals in the expression for the matrix element of the many-particle Coulomb system Hamiltonian is significantly reduced: indeed, for a system with N = 4 particles only 7 instead of 43 integrals must be evaluated, for N = 5 only 10 instead of 101 integrals, etc. The number of different types of integral is also reduced. For a calculation of the energy of a 4-particle Coulomb system it is sufficient to calculate only 6 integrals of interparticle Coulomb interaction and the normalization integral. The results obtained offer a practical possibility for high-precision calculations of many-particle atomic-molecular systems with a detailed account of correlation and nonadiabaticity. 9 refs

  1. Generalized Coulomb gauge without Gribov ambiguity

    Energy Technology Data Exchange (ETDEWEB)

    Fachin, S.; Parrinello, C. (New York Univ., NY (United States). Physics Dept.)

    1992-05-01

    We discuss a global gauge-fixing prescription that is free of the Gribov problem, preserves reflection positivity and contains as a limiting case the (maximal) Coulomb gauge. In such a formalism it is very easy to check that only color singlet states propagate in Euclidean time, for any value of [beta]. (orig.).

  2. Interatomic Coulombic decay in helium nanodroplets

    DEFF Research Database (Denmark)

    Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana

    2017-01-01

    , or in the droplet interior. ICD at the surface gives rise to energetic He+ ions as previously observed for free He dimers. ICD deeper inside leads to the ejection of slow He+ ions due to Coulomb explosion delayed by elastic collisions with neighboring He atoms, and to the formation of Hek+ complexes....

  3. Coulomb suppression of the stellar enhancement factor

    International Nuclear Information System (INIS)

    Kiss, G.G.; Gyuerky, Gy.; Simon, A.; Fueloep, Zs.; Somorjai, E.

    2008-01-01

    Complete text of publication follows. Modern p process studies require large reaction networks, often including hundreds and thousands of nuclei and their respective reactions with light particles. Astrophysical reaction rates employed in reaction network calculations are determined either directly from cross sections or from the rate for the inverse reaction by applying detailed balance. The cross sections are known from experiment or predicted by theory. However, even when a reaction is experimentally accessible, often astrophysical rates cannot be directly measured. Excited states are thermally populated in an astrophysical plasma whereas only reactions on the ground state of the target can be investigated in the laboratory. A measure of the influence of the excited target states is given by the stellar enhancement factor f = r stellar /r g.s. , defined by the ratio of the stellar rate to the ground state rate. The enhancement factor f rev for the reverse reaction B(b,a)A (defined by having negative reaction Q value) is usually larger than the enhancement f forw of the forward reaction A(a,b)B (being the one with positive Q value) because more excited states are energetically accessible in nucleus B than in nucleus A. Therefore, it was assumed so far that more astrophysically relevant transitions are neglected when experimentally studying a reaction with negative Q value. However, there are cases for which f rev forw due to Coulomb suppression of a part of the energetically allowed transitions. This effect will be most pronounced in reactions with a charged particle in one and a neutral particle in the other channel, e.g. (n,p), but it can also appear when the entrance channel and exit channel have Coulomb barriers of different height, e.g. (p,α). Transitions from excited states to the same state in a compound nucleus are proceeding at smaller relative energy and are stronger suppressed by the Coulomb barrier. Thus, a prerequisite is that /Q/ is low compared to

  4. Remote Spacecraft Attitude Control by Coulomb Charging

    Science.gov (United States)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to

  5. Electromagnetic energies of nuclei and the nuclear Compton amplitude

    International Nuclear Information System (INIS)

    Friar, J.L.

    1976-01-01

    The electromagnetic energy of a nucleus is derived in perturbation theory, which relates this quantity to the amplitude for the forward scattering of virtual photons on a nucleus (nuclear Compton amplitude). Through the use of the gauge invariance of this amplitude, the energy is separated into Coulomb and transverse components. Our formalism, although basically nonrelativistic, admits corrections of order (v/c) 2 to the nuclear charge operator. The energy is further separated into one-body terms, related to the n--p mass difference, and two-body terms which lead to the Breit interaction and the nuclear Lamb shift. These results are then related to electron scattering sum rules in the manner of Cottingham. Mesonic contributions to the electromagnetic energy are also discussed

  6. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  7. Dynamic polarization by coulomb excitation in the closed formalism for heavy ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hill, T.F.

    1978-01-01

    We present a closed-form treatment of the effects of dynamic polarization by Coulomb excitation on the elastic scattering of deformed heavy ions. We assume that this interaction can be represented by an absorptive polarization potential. The relatively long range of this potential entails a relatively slow variation of the associated reflection function in l-space. This feature leads to a simple generalization of the closed formula derived previously for the elastic scattering amplitude of spherical heavy nuclei. We use both the polarization potential of Love et al. and the recent improved potential of Baltz et al. to derive explicit expressions for the associated reflection functions in a Coulomb-distorted eikonal approximation. As an example we analyze the elastic scattering of 90-MeV 18 O ions by 184 W and show that both results give a quantitative description of the data. (orig.) [de

  8. Core polarization and Coulomb displacement energies

    International Nuclear Information System (INIS)

    Shlomo, S.; Love, W.G.

    1982-01-01

    The contributions of core polarization terms (other than the Auerbach-Kahana-Weneser (AKW) effect) to Coulomb displacement energies of mirror nuclei near A = 16 and A = 40 are examined within the particle-vibration coupling model. The parameters of the model are determined using updated data on the locations and strengths of multipole core excitations. In the absence of relevant data an energy-weighted sum rule (EWSR) is exploited. Taking into account multipole excitations up to L = 5 and subtracting the contributions which are due to short-range correlations, significant contributions (1-3%) to ΔEsub(c) are found. These corrections arise from particle coupling to low-lying collective states (long-range correlations). The implications of these results on the Coulomb energy problem are discussed. (Auth.)

  9. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...

  10. Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Mycek, M.A. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-12-01

    The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.

  11. Chaos near the Coulomb barrier. Nuclear molecules

    International Nuclear Information System (INIS)

    Strayer, M.R.

    1984-01-01

    The present work examines in detail the classical behavior of the α + 14 C and the 12 C + 12 C(O + ) collison at energies near the Coulomb barrier. The long-time motion of the compound nuclear system is identified in terms of its classical quasiperiodic and chaotic behavior. The consequences of this motion are discussed and interpreted in terms of the evolution of the system along a dynamical energy surface. 45 references

  12. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  13. Coulomb explosion of large penetrating molecular clusters

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1981-01-01

    The main purpose of these Coulomb explosion measurements is to determine what kind of structure these and other complex molecules may have and also to determine what other special phenomena may come into play as these complex molecules pass through matter. Although the first preliminary measurements involving the Coulomb explosion of these molecules was reported at this workshop last year, the results are briefly summarized before going on to the more recent measurements obtained with a completely new kind of detector system. This new image intensifier detector system, coupled with a microcomputer, has proven to be a valuable tool in the study of the Coulomb explosion of complex molecules that penetrate matter. In the future, with some additional improvements in the system, and much better statistics for most of the molecules studied to date, it is expected that much new information will be gained about the structure of many kinds of complex molecular ions including the special effects that may be encountered when these fast molecular ions penetrate matter

  14. Exciton condensation and perfect Coulomb drag.

    Science.gov (United States)

    Nandi, D; Finck, A D K; Eisenstein, J P; Pfeiffer, L N; West, K W

    2012-08-23

    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, double quantum well systems can support exciton condensates, which consist of electrons in one well tightly bound to holes in the other. 'Perfect' drag is therefore expected; a steady transport current of electrons driven through one quantum well should be accompanied by an equal current of holes in the other. Here we demonstrate this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunnelling of charge between the quantum wells, which can readily compromise drag measurements, is negligible. We note that, from an electrical engineering perspective, perfect Coulomb drag is analogous to an electrical transformer that functions at zero frequency.

  15. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  16. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    Shepherd, T.G.

    1994-01-01

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  17. Visual Manipulatives for Proportional Reasoning.

    Science.gov (United States)

    Moore, Joyce L.; Schwartz, Daniel L.

    The use of a visual representation in learning about proportional relations was studied, examining students' understandings of the invariance of a multiplicative relation on both sides of a proportion equation and the invariance of the structural relations that exist in different semantic types of proportion problems. Subjects were 49 high-ability…

  18. Electron capture by alpha particles from helium atoms in a Coulomb-Born distorted-wave approximation

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, E; Ghavaminia, H

    2012-01-01

    A three-body Coulomb-Born continuum distorted-wave approximation is applied to calculate the differential and total cross sections for single-electron exchange in the collision of fast alpha particles with helium atoms in their ground states. The applied first-order distorted wave theory satisfies correct Coulomb boundary conditions. Both post and prior forms of the transition amplitude are calculated. The nuclear-screening effect of the passive electron on the differential and total cross sections is investigated. The results are compared with those of other theories and with the available experimental data. For differential cross sections, the comparisons show a reasonable agreement with empirical measurements at higher impact energies. The agreement between experimental data and the present calculations for total cross sections with the average of the post and prior forms of the transition amplitude is reasonable at all the specified energies.

  19. Amplifier Design for Proportional Ionization Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. H.

    1950-08-24

    This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.

  20. Dynamic stresses, coulomb failure, and remote triggering: corrected

    Science.gov (United States)

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  1. High-energy scattering of particles with anomalous magnetic moments in the quantum field theory. πN scattering and Coulomb interference

    International Nuclear Information System (INIS)

    Nguen Suan Khan; Pervushin, V.N.

    1975-01-01

    An eikonal representation has been obtained for the amplitude of the πN-scattering in the asymptotic form into account the anomalous nucleon magnetic moment leads to the introduction of the additive term in to the eikonal phase which is responsible for the spin flip in the scattering process. The Coulomb interference is considered

  2. Energy dependence of the Coulomb-nuclear interference at small momentum transfers

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    1997-01-01

    The analyzing power of the elastic proton-proton scattering at small momentum transfers and the effect of the Coulomb-nuclear interference are examined on the basis of the available experimental data at p L from 6 up to 200 GeV/c taking account of a phenomenological analysis at p L =6 GeV/c and of the dynamic high energy spin model. The structure of the spin-dependent elastic scattering amplitude at small momentum transfers is obtained. The predictions for the analyzing power at RHIC energies are made

  3. A Particle-in-Cell simulation of temporal plasma echo in the presence of Coulomb collisions

    Science.gov (United States)

    Wu, B. Z.; Nishimura, Y.; Wang, C. P.

    2017-10-01

    Particle-in-Cell simulation is developed to study temporal plasma echo of electron plasma wave. By imposing two external pulse electric fields to the plasma (pulse-like in time) the echo signal is observed. Coulomb collisional effect manifests itself as a shift of the echo peak and the damping of the peak amplitude, which can be seen by adding (rather phenomenological) frictional force to the electron equation of motion. A first principle based binary collision model is incorporated into the numerical simulation.

  4. Coulomb excitation of {sup 8}Li

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear

    2012-07-01

    Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)

  5. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  6. Ordering transitions induced by Coulomb interactions

    International Nuclear Information System (INIS)

    Rovere, M.; Senatore, G.; Tosi, M.P.

    1988-11-01

    We briefly review recent progress in treating phase transitions to ordered states driven by Coulomb interactions. Wigner crystallization of the one-component plasma, in the degenerate Fermi limit and in the classical limit, is the foremost example and developments in its theory are discussed in some detail. Attention is also given to quasi-twodimensional realizations of the plasma model in the laboratory. The usefulness of these ideas in relation to freezing and ordering transitions is illustrated with reference to alkali metals, elemental and polar semiconductors, and various types of ionic systems (molten salts, colloidal suspensions and astrophysical plasmas). (author). 70 refs, 5 figs

  7. QCD Coulomb Gauge Approach to Exotic Hadrons

    OpenAIRE

    Cotanch, Stephen R.; General, Ignacio J.; Wang, Ping

    2006-01-01

    The Coulomb gauge Hamiltonian model is used to calculate masses for selected J^{PC} states consisting of exotic combinations of quarks and gluons: ggg glueballs (oddballs), q bar{q} g hybrid mesons and q bar{q} q bar{q} tetraquark systems. An odderon Regge trajectory is computed for the J^{--} glueballs with intercept much smaller than the pomeron, explaining its nonobservation. The lowest 1^{-+} hybrid meson mass is found to be just above 2.2 GeV while the lightest tetraquark state mass with...

  8. Hyperon excitation in nuclear coulomb field

    International Nuclear Information System (INIS)

    Vanyashin, A.V.; Nikitin, Yu.P.; Shan'gin, A.A.

    1981-01-01

    A possibility is studied to measure radiative decay partial widths from the 3/2 + decuplet hyperon resonances by means of the Coulomb excitation method of the octet hyperons. The expected contributions from the strong and electromagnetic interactions in the coherence range to the hyperon excitation cross sections on heavy nuclei and on the 4 He nucleus are estimated. The particle angular distributions in the reactions Σ-+A→Σ-(1385)+A and Λ+A→Σ 0 (1385)+A are analysed in order to determine the energy range where the background conditions are the most favorable to extract the electromagnetic mechanism of the hyperon excitation [ru

  9. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  10. Bound and resonant states in Coulomb-like potentials

    International Nuclear Information System (INIS)

    Papp, Z.

    1985-12-01

    The potential separable expansion method was generalized for calculating bound and resonant states in Coulomb-like potentials. The complete set of Coulomb-Sturmian functions was taken as the basis to expand the short-range potential. On this basis the matrix elements of the Coulomb-Green functions were given in closed form as functions of the (complex) energy. The feasibility of the method is demonstrated by a numerical example. (author)

  11. Coulomb implosion mechanism of negative ion acceleration in laser plasmas

    OpenAIRE

    Nakamura, T.; Fukuda, Y.; Yogo, A.; Tampo, M.; Kando, M.; Hayashi, Y.; Kameshima, T.; Pirozhkov, A. S.; Esirkepov, T. Zh.; Pikuz, T. A.; Faenov, A. Ya.; Daido, H.; Bulanov, S. V.

    2008-01-01

    Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are accelerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration...

  12. Introduction: Two Kinds of Proportion

    Directory of Open Access Journals (Sweden)

    Matthew A Cohen

    2014-06-01

    Full Text Available The subject of architectural proportional systems in the history of architecture, the topic of this special collection of essays in 'Architectural Histories', has long been characterized by a fundamental ambiguity: the word and concept of proportion simultaneously signify two unrelated and in some ways opposite meanings. Proportion can refer to ratios, or it can refer to architectural beauty. In this introduction to the papers that follow, Matthew A. Cohen proposes a simple clarification of this ambiguity as a framework for continued discussion of this subject: that whenever scholars use the word proportion, they specify whether they intend ‘proportion-as-ratio’ or ‘proportion-as-beauty’. The frequent blending of these meanings today, Cohen argues, is a survival of attitudes toward proportional systems in architecture that were prevalent as long ago as the early Renaissance. Cohen proposes an alternative to Rudolf Wittkower's paradigmatic ‘break-away’ theory of the history of proportional systems, according to which virtually everyone accepted proportional systems as sources of universal beauty in architecture until the mid-eighteenth century, and after that time virtually everyone believed that beauty and proportional systems were matters of individual preference. Rather than a long period respectful of tradition followed by a long period skeptical of it, Cohen argues, based in part on a new interpretation of Claude Perrault’s 1683 codification of the notion of positive beauty, that architects and others have always had access to two parallel strands of thought pertaining to proportional systems: a skeptical-pragmatic strand and a respectful-metaphysical strand. This new historical and historiographical interpretation of the problem of architectural proportional systems, and the new vocabulary with which to discuss it critically presented herein, helps to separate aesthetic from historical considerations.

  13. Color-singlet instantaneous potential in the coulomb gauge QCD

    International Nuclear Information System (INIS)

    Nakagawa, Yoshiyuki; Toki, Hiroshi; Nakamura, Atsushi; Saito, Takuya

    2007-01-01

    We study the Coulomb gauge confinement mechanism in the quenched lattice QCD simulations. It is found that the color-Coulomb instantaneous potential in the color-singlet channel between two quarks grows linearly at large distances; namely, the color-Coulomb interaction is a source of color confinement. However, the linearity of this potential remains even in the quark-gluon plasma phase. We discuss the relation between this thermal Coulomb-string tension and a magnetic scaling introduced as an infrared cutoff of the thermal QCD theory. (author)

  14. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (<~temperature × kB/h). This observation establishes the different nature of the quantum laws for thermal transport in nanocircuits.

  15. Transport Through a Coulomb Blockaded Majorana Nanowire

    Science.gov (United States)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  16. Coulomb explosion imaging of H+3

    International Nuclear Information System (INIS)

    Kreckel, H.

    2000-01-01

    The present work deals with the determination of the spatial structure of the H 3 + molecular ion. The structure of this molecule was investigated at the TSR storage ring of the Max Planck Institut fuer Kernphysik using the Coulomb Explosion Imaging (CEI) technique, which provides a relatively direct approach to the measurement of molecular configurations. The method of foil induced Coulomb Explosion Imaging and the experimental setup at the TSR are described. The classification of the vibrational levels of the H 3 + ion is described and the underlying group theoretical methods are developed. The results of the measurement are analyzed with regard to anisotropies and possible influences of the target foil and the detector are discussed. Then the subset of the data where these influences are small is selected and is compared to two different theoretical calculations. Finally the vibrational relaxation of the H 3 + ion in the storage ring is analysed and the lifetime of the metastable breathing mode A 1 (1, 0 0 ) is determined. (orig.) [de

  17. On Coulomb and Viscosity damped single-degree-of-freedom vibrating systems

    DEFF Research Database (Denmark)

    Jakobsen, J.; Sivebæk, Ion Marius

    2016-01-01

    with an assumption of a sin/cos behaviour of mass-amplitude (x) versus time (t) solution to the governing equation [M*acceleration = Sum of forces]. The solutions have all an equal sin/cos form. This may indicate that mass and spring are prime elements of the model and that damping mainly has an amplitude reducing...... with frequencies 1, 3, 5, … times the basic frequency of the square wave and with respective amplitudes: (4/π)∗(1, 1/3, 1/5... )∗Fμ(ωt). Fμ(ωt): the square wave amplitude. The governing equation for the sequence of a free vibration with Coulomb friction damping is nonlinear, but is linear within each ½ period...... the appearance of harmonics could be expected in the behaviour of the amplitude (x) of the mass versus the time (t) in the solution. Some authors may have considered this possibility previously. But the solutions for friction damping can be written as [(x + K1) / K2] cos(ωnt); K1 and K2 are constants, adjustable...

  18. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  19. ATOMIC SCREENING AND INTERSITE COULOMB REPULSION IN STRONGLY CORRELATED SYSTEMS

    NARCIS (Netherlands)

    Meinders, M.B J; van den Brink, J.; Lorenzana, J.; Sawatzky, G.A

    1995-01-01

    We consider the influence of a nearest-neighbor Coulomb interaction in an extended Hubbard model and introduce an interaction term which simulates atomic polarizabilities. The inclusion of atomic polarizabilities in the model has the effect of screening the on-site Coulomb interaction for charged

  20. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  1. 4-center STO interelectron repulsion integrals with Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2018-01-01

    Abstract We present a method for evaluating 4-center electron repulsion integrals (ERI) for Slater-type orbitals by way of expansions in terms of Coulomb Sturmians. The ERIs can then be evaluated using our previously published methods for rapid evaluation of Coulomb Sturmians through hyperspherical...

  2. Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems

    DEFF Research Database (Denmark)

    Badalyan, S. M.; Shylau, A. A.; Jauho, Antti-Pekka

    2017-01-01

    We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon...

  3. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling...

  4. Effective Coulomb interaction in multiorbital system

    International Nuclear Information System (INIS)

    Hase, Izumi; Yanagisawa, Takashi

    2013-01-01

    Transition metal atom generally takes various valences, and sometimes there are some 'missing valences', for example Fe usually takes 2+, 3+ and 5+, but does not take other valences so often. We have calculated the atomic multiplet energies for the high-spin and lowspin configurations within the ligand-field theory and the Hartree-Fock approximation, and found that the Coulomb interaction energy (U eff ) becomes small when the valence is 'missing'. In case U eff B /Fe only when U eff increased in most cases, but in some special cases U eff decreases and falls below the value U − 3J, which is the least value of the undistorted system.

  5. Powerful Coulomb-drag thermoelectric engine

    Science.gov (United States)

    Daré, A.-M.; Lombardo, P.

    2017-09-01

    We investigate a thermoelectric nanoengine whose properties are steered by Coulomb interaction. The device whose design decouples charge and energy currents is made up of two interacting quantum dots connected to three different reservoirs. We show that, by tailoring the tunnel couplings, this setup can be made very attractive for energy-harvesting prospects, due to a delivered power that can be of the order of the quantum bound [R. S. Whitney, Phys. Rev. Lett. 112, 130601 (2014), 10.1103/PhysRevLett.112.130601; Entropy 18, 208 (2016), 10.3390/e18060208], with a concomitant fair efficiency. To unveil its properties beyond the sequential quantum master equation, we apply a nonequilibrium noncrossing approximation in the Keldysh Green's function formalism, and a quantum master equation that includes cotunneling processes. Both approaches are rather qualitatively similar in a large operating regime where sequential tunneling alone fails.

  6. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  7. The Coulomb potential in quantum mechanics and related topics

    International Nuclear Information System (INIS)

    Haeringen, H. van.

    1978-01-01

    This dissertation consists of an analytic study of the Coulomb interaction in nonrelativistic quantum mechanics and some related topics. The author investigates in a number of self-contained articles various interesting and important properties of the Coulomb potential. Some of these properties are shared by other potentials which also play a role in quantum mechanics. For such related interactions a comparative study is made. The principal difficulties in the description of proton-deuteron scattering and break-up reactions, due to the Coulomb interaction, are studied by working out a simple model. The bound states are studied for the Coulomb plus Yamaguchi potential, for the symmetric shifted Coulomb potential, and for local potentials with an inverse-distance-squared asymptotic behaviour. (Auth.)

  8. Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit.

    Science.gov (United States)

    Gebremedhin, Daniel H; Weatherford, Charles A

    2014-05-01

    An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/sqrt[x(2)+β(2)], which becomes numerically intractable (because of extreme stiffness) as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β = 10(-8) using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as β → 0.

  9. Proportional counter end effects eliminator

    International Nuclear Information System (INIS)

    Meekins, J.F.

    1976-01-01

    An improved gas-filled proportional counter which includes a resistor network connected between the anode and cathode at the ends of the counter in order to eliminate ''end effects'' is described. 3 Claims, 2 Drawing Figures

  10. Electronics for proportional drift tubes

    International Nuclear Information System (INIS)

    Fremont, G.; Friend, B.; Mess, K.H.; Schmidt-Parzefall, W.; Tarle, J.C.; Verweij, H.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Geske, K.; Riege, H.; Schuett, J.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Semenov, Y.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration)

    1980-01-01

    An electronic system for the read-out of a large number of proportional drift tubes (16,000) has been designed. This system measures deposited charge and drift-time of the charge of a particle traversing a proportional drift tube. A second event can be accepted during the read-out of the system. Up to 40 typical events can be collected and buffered before a data transfer to a computer is necessary. (orig.)

  11. Analogical proportions: another logical view

    Science.gov (United States)

    Prade, Henri; Richard, Gilles

    This paper investigates the logical formalization of a restricted form of analogical reasoning based on analogical proportions, i.e. statements of the form a is to b as c is to d. Starting from a naive set theoretic interpretation, we highlight the existence of two noticeable companion proportions: one states that a is to b the converse of what c is to d (reverse analogy), while the other called paralogical proportion expresses that what a and b have in common, c and d have it also. We identify the characteristic postulates of the three types of proportions and examine their consequences from an abstract viewpoint. We further study the properties of the set theoretic interpretation and of the Boolean logic interpretation, and we provide another light on the understanding of the role of permutations in the modeling of the three types of proportions. Finally, we address the use of these proportions as a basis for inference in a propositional setting, and relate it to more general schemes of analogical reasoning. The differences between analogy, reverse-analogy, and paralogy is still emphasized in a three-valued setting, which is also briefly presented.

  12. Cold transfer between deformed, Coulomb excited nuclei; Kalter Transfer zwischen deformierten, Coulomb-angeregten Kernen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.

    1998-12-31

    The scattering system {sup 162}Dy {yields} {sup 116}Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high {gamma}-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in {sup 162}Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  13. Unifying relations for scattering amplitudes

    Science.gov (United States)

    Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao

    2018-02-01

    We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.

  14. Some studies in scatering by Coulomb modified nuclear potentials

    International Nuclear Information System (INIS)

    Laha, U.

    1988-01-01

    Recently, there has been a surge of interest in theoretical questions concerning the Coulomb nuclear problems with the main emphasis on their off-shell behaviour. Earlier approaches to the problem made use of a version of the two-potential formula as used by Bajzer. A slightly different point of view is presented here. An expression for the interacting Green's function for motion in the Coulomb plus Graz potential is constructed and used to obtain the half-off-shell T matrix in the ''maximal reduced form''. Similar results were also derived for the off-shell Jost functions. It is explicitly demonstrated that Coulomb and Coulomb-like potentials the half-off-shell T matrix can be expressed in terms of on-and off-shell Jost functions in the same way as one does for a purely short range interaction. In presenting the results for T matrix and other related quantities, the Coulomb effect is included rigorously. Results clearly delineate the branch point singularities originating from the long range nature of the Coulomb interaction and thus provide a better understanding of the off-shell two-body Coulomb-like T matrices. It is hoped that these results will form an adequate starting point for rigorous calculations on few-body systems with charges. (author). 16 refs

  15. Development of multiwire proportional chambers

    CERN Document Server

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  16. Bayesian Inference on Proportional Elections

    Science.gov (United States)

    Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio

    2015-01-01

    Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259

  17. The escape gated proportional counter

    International Nuclear Information System (INIS)

    Bibbo, G.; Sanford, P.W.

    1981-01-01

    Proportional counters, designed to detect hard X-rays, are generally filled with Xe or Kr or a mixture of Xe and Kr. In a large multichamber proportional counter the K-fluorescent radiation of these gases, which escapes the cell of origin, but is absorbed in other cells of the counter, provides an additional signal. A coincidence technique, which makes use of this signal to reduce the charged particle background and to correct the energy spectrum for the escape peak, has been evaluated. The detector has an improved energy resolution over that of the conventional proportional counter and preliminary results indicate that a reduction in the background by a factor of about 1000 can be obtained. Its combined properties of very efficient background reduction and improved energy resolution make this type of instrument most suitable for spectroscopic studies of astronomical X-ray sources in the energy range of 15-100 keV. (orig.)

  18. Bayesian inference on proportional elections.

    Directory of Open Access Journals (Sweden)

    Gabriel Hideki Vatanabe Brunello

    Full Text Available Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software.

  19. Theory and simulation of strong correlations in quantum Coulomb systems

    Science.gov (United States)

    Bonitz, M.; Semkat, D.; Filinov, A.; Golubnychyi, V.; Kremp, D.; Gericke, D. O.; Murillo, M. S.; Filinov, V.; Fortov, V.; Hoyer, W.; Koch, S. W.

    2003-06-01

    Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.

  20. Coulomb displacement energies in nuclei: a new approach

    International Nuclear Information System (INIS)

    Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.

    1978-04-01

    The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained

  1. Coulomb implosion mechanism of negative ion acceleration in laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: nakamura.tatsufumi@jaea.go.j [Kansai Photon Science Institute (JAEA), 8-1 Umemidai, Kizugawa, Kyoto 619-0215 (Japan); Fukuda, Y.; Yogo, A.; Tampo, M.; Kando, M.; Hayashi, Y.; Kameshima, T.; Pirozhkov, A.S.; Esirkepov, T.Zh.; Pikuz, T.A.; Faenov, A.Ya.; Daido, H.; Bulanov, S.V. [Kansai Photon Science Institute (JAEA), 8-1 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2009-07-06

    Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are accelerated inward. The maximum energy of negative ions is several times lower than that of positive ions. We present the theoretical description and Particle-in-Cell simulation results of the Coulomb implosion mechanism, and show the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets.

  2. Saving Money Using Proportional Reasoning

    Science.gov (United States)

    de la Cruz, Jessica A.; Garney, Sandra

    2016-01-01

    It is beneficial for students to discover intuitive strategies, as opposed to the teacher presenting strategies to them. Certain proportional reasoning tasks are more likely to elicit intuitive strategies than other tasks. The strategies that students are apt to use when approaching a task, as well as the likelihood of a student's success or…

  3. Social Justice and Proportional Reasoning

    Science.gov (United States)

    Simic-Muller, Ksenija

    2015-01-01

    Ratio and proportional reasoning tasks abound that have connections to real-world situations. Examples in this article demonstrate how textbook tasks can easily be transformed into authentic real-world problems that shed light on issues of equity and fairness, such as population growth and crime rates. A few ideas are presented on how teachers can…

  4. Correlation functions of Coulomb branch operators

    Energy Technology Data Exchange (ETDEWEB)

    Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-24

    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.

  5. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  6. Coulomb excitation of {sup 48}K

    Energy Technology Data Exchange (ETDEWEB)

    Siebeck, Burkhard; Blazhev, Andrey; Geibel, Kerstin; Hess, Herbert; Reiter, Peter; Seidlitz, Michael; Schneiders, David; Steinbach, Tim; Warr, Nigel [IKP, Universitaet zu Koeln (Germany); Bauer, Christopher [IKP, TU Darmstadt (Germany); Witte, Hilde de [KU Leuven (Belgium); Klintefjord, Malin [University of Oslo (Norway); Pakarinen, Janne [University of Jyvaeskylae (Finland); Rapisarda, Elisa [KU Leuven (Belgium); CERN, Genf (Switzerland); Scheck, Marcus [University of the West of Scotland, Paisley (United Kingdom); Voulot, Didier; Wenander, Frederik [CERN, Genf (Switzerland)

    2016-07-01

    Potassium isotopes in the direct vicinity of doubly-magic nuclei are of great interest and subject of recent shell model calculations. These show that the ground states of most K isotopes are dominated by a π0p0h configuration, while {sup 47}K and {sup 49}K have a major π2p2h contribution. However, the situation is not clear for the odd-odd isotope {sup 48}K, which shows a mixture between 0p0h and 2p2h. In order to study the coupling between the νp{sub 3/2}-shell and the πs{sub 1/2}-, πd{sub 3/2}-shells, transition matrix elements are deduced from a Coulomb excitation experiment performed with MINIBALL at REX-ISOLDE. A {sup 104}Pd target was irradiated by a radioactive {sup 48}K beam. γ rays of both target and projectile deexcitation have been observed. Those yields, together with available spectroscopic data, allow the detemination of transition matrix elements with GOSIA2. The new findings are compared to shell model calculations.

  7. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  8. Multilevel Monte Carlo simulation of Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rosin, M.S., E-mail: msr35@math.ucla.edu [Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036 (United States); Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States); Ricketson, L.F. [Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036 (United States); Dimits, A.M. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, CA 94511-0808 (United States); Caflisch, R.E. [Mathematics Department, University of California at Los Angeles, Los Angeles, CA 90036 (United States); Institute for Pure and Applied Mathematics, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Cohen, B.I. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, CA 94511-0808 (United States)

    2014-10-01

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε, the computational cost of the method is O(ε{sup −2}) or O(ε{sup −2}(lnε){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε{sup −3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10{sup −5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  9. Coulomb-interacting billiards in circular cavities

    International Nuclear Information System (INIS)

    Solanpää, J; Räsänen, E; Nokelainen, J; Luukko, P J J

    2013-01-01

    We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales. (paper)

  10. Multifragmentation: Surface and Coulomb instabilities of sheets, bubbles, and donuts

    International Nuclear Information System (INIS)

    Moretto, L.G.; Tso, Kin; Wozniak, G.J.

    1993-08-01

    Disks, bubbles, and donuts have been observed in dynamical calculations of heavy ion collisions. These shapes are subject to a variety of surface and Coulomb instabilities. These instabilities are identified and analyzed in terms of their relevance to multifragmentation

  11. Disease proportions attributable to environment

    Directory of Open Access Journals (Sweden)

    Vineis Paolo

    2007-11-01

    Full Text Available Abstract Population disease proportions attributable to various causal agents are popular as they present a simplified view of the contribution of each agent to the disease load. However they are only summary figures that may be easily misinterpreted or over-interpreted even when the causal link between an exposure and an effect is well established. This commentary discusses several issues surrounding the estimation of attributable proportions, particularly with reference to environmental causes of cancers, and critically examines two recently published papers. These issues encompass potential biases as well as the very definition of environment and of environmental agent. The latter aspect is not just a semantic question but carries implications for the focus of preventive actions, whether centred on the material and social environment or on single individuals.

  12. Metacarpal proportions in Australopithecus africanus.

    Science.gov (United States)

    Green, David J; Gordon, Adam D

    2008-05-01

    Recent work has shown that, despite being craniodentally more derived, Australopithecus africanus had more apelike limb-size proportions than A. afarensis. Here, we test whether the A. africanus hand, as judged by metacarpal shaft and articular proportions, was similarly apelike. More specifically, did A. africanus have a short and narrow first metacarpal (MC1) relative to the other metacarpals? Proportions of both MC breadth and length were considered: the geometric mean (GM) of articular and midshaft measurements of MC1 breadth was compared to those of MC2-4, and MC1 length was compared to MC3 length individually and also to the GM of MC2 and 3 lengths. To compare the extant hominoid sample with an incomplete A. africanus fossil record (11 attributed metacarpals), a resampling procedure imposed sampling constraints on the comparative groups that produced composite intrahand ratios. Resampled ratios in the extant sample are not significantly different from actual ratios based on associated elements, demonstrating the methodological appropriateness of this technique. Australopithecus africanus metacarpals do not differ significantly from the great apes in the comparison of breadth ratios but are significantly greater than chimpanzees and orangutans in both measures of relative length. Conversely, A. africanus has a significantly smaller breadth ratio than modern humans, but does not significantly differ from this group in either measure of relative length. We conclude that the first metacarpals of A. africanus are more apelike in relative breadth while also being more humanlike in relative length, a finding consistent with previous work on A. afarensis hand proportions. This configuration would have likely promoted a high degree of manipulative dexterity, but the relatively slender, apelike first metacarpal suggests that A. africanus did not place the same mechanical demands on the thumb as more recent, stone-tool-producing hominins.

  13. One-loop renormalization of Coulomb-gauge QED

    International Nuclear Information System (INIS)

    Adkins, G.S.

    1983-01-01

    In this article I present a physically motivated renormalization scheme for Coulomb-gauge QED. This scheme is useful in calculations involving QED bound states. I implement this scheme to one loop by calculating the electron self-energy, the electron self-mass, and the renormalization constants Z 1 and Z 2 . Formulas for the dimensional regularization of some noncovariant integrals useful in one-loop Coulomb-gauge calculations are given

  14. On the vacuum structure in the Coulomb and Landau gauges

    International Nuclear Information System (INIS)

    Niemi, Antti.

    1980-01-01

    Vacuum structure in the SU(N) Coulomb and Landau gauges is studied by using the methods of harmonic maps. The asymptotic conditions at infinity have been declared and a systematic way to solve the Gribov vacuum copy equation is presented. Many examples are given both in the SU(N) Coulomb and Landau gauges as applications of the method. Finally, the physical interpretation of Gribov ambiguities is discussed. (author)

  15. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  16. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  17. Taking into account the Coulomb effects in the four-body model in reactions of simultaneous two-neutron transfer induced by heavy ions

    International Nuclear Information System (INIS)

    Kayumov, S.S.; Mukhamedzhanov, A.M.; Yarmukhamedov, R.

    1988-01-01

    In the four-body model for partial amplitudes of two-neutron transfer induced by heavy ions we derive in the approximation of the mechanism of simultaneous transfer the expression for the senior term for l→∞ taking into account the Coulomb effects. The senior singular term of the amplitude at z = zeta is singled out explicitly (z = cos θ, θ is the scattering angle in the c.m.s. and zeta is the singularity closest to the physical region which corresponds to the mechanism of simultaneous transfer). We calculate differential cross sections for the transfer of two neutrons between heavy ions and estimate the accuracy of taking into account the Coulomb effects in the traditional method of distorted waves

  18. Motivic amplitudes and cluster coordinates

    International Nuclear Information System (INIS)

    Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity

  19. A pulse amplitude dividing circuit for nuclear applications

    International Nuclear Information System (INIS)

    Ediss, C.; McQuarrie, S.A.

    1981-01-01

    A pulse dividing circuit has been developed to provide analogue and digital outputs proportional to the ratio of the amplitudes of two nuclear pulses. Input pulses ranging from 200 mV to 10 V may be processed by the device. The pulse dividing circuit has been successfully incorporated as part of a small gamma camera. (orig.)

  20. Photodetectors for scintillator proportionality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W. [Lawrence Berkeley National Laboratory (United States)], E-mail: wwmoses@lbl.gov; Choong, Woon-Seng [Lawrence Berkeley National Laboratory (United States); Hull, Giulia; Payne, Steve; Cherepy, Nerine; Valentine, John D. [Lawrence Livermore National Laboratory (United States)

    2009-10-21

    We evaluate photodetectors for use in a Compton Coincidence apparatus designed for measuring scintillator proportionality. There are many requirements placed on the photodetector in these systems, including active area, linearity, and the ability to accurately measure low light levels (which implies high quantum efficiency and high signal-to-noise ratio). Through a combination of measurement and Monte Carlo simulation, we evaluate a number of potential photodetectors, especially photomultiplier tubes and hybrid photodetectors. Of these, we find that the most promising devices available are photomultiplier tubes with high ({approx}50%) quantum efficiency, although hybrid photodetectors with high quantum efficiency would be preferable.

  1. Coulomb interaction in atomic and nuclear physics: Inner-Shell excitation, Coulomb dissociation of nuclei, and nuclear polarizability in electronic atoms

    International Nuclear Information System (INIS)

    Hoffmann, B.

    1984-07-01

    In three chapters different physical situations are described which have commonly the Coulomb interaction as driving force. The first two chapters study the Coulomb interactions in connection with the excitation of inner electron shells and the Coulomb excitation of nuclei in first order. In the third part on effect ofthe Coulomb interaction between electronic shell and nucleus is treated in second order (nuclear polarization), and its effect on the isotopic and isomeric shift is studied. (orig./HSI) [de

  2. Solving the three-body Coulomb breakup problem using exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  3. Constant Proportion Debt Obligations (CPDOs)

    DEFF Research Database (Denmark)

    Cont, Rama; Jessen, Cathrine

    2012-01-01

    be made arbitrarily small—and thus the credit rating arbitrarily high—by increasing leverage, but the ratings obtained strongly depend on assumptions on the credit environment (high spread or low spread). More importantly, CPDO loss distributions are found to exhibit a wide range of tail risk measures......Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...

  4. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  5. Shape of Pion Distribution Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, Anatoly

    2009-11-01

    A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.

  6. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t...... with a molecular weight of 145 kg/ mol was subjected to the oscillative flow. The onset of the steady periodic regime is reached at the same Hencky strain as the onset of the steady elongational viscosity ( Lambda = 0). The integral molecular stress function formulation within the 'interchain pressure' concept...

  7. Scattering Amplitudes from Intersection Theory.

    Science.gov (United States)

    Mizera, Sebastian

    2018-04-06

    We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.

  8. Employing Helicity Amplitudes for Resummation

    NARCIS (Netherlands)

    Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.

    2015-01-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are

  9. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Amsterdam Univ.

    2015-08-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e + e - and e - p collisions.

  10. Scattering amplitudes in gauge theories

    International Nuclear Information System (INIS)

    Henn, Johannes M.; Plefka, Jan C.

    2014-01-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  11. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    Baez, John C; Christensen, J Daniel

    2002-01-01

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  12. Discontinuity formulas for multiparticle amplitudes

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1976-03-01

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations

  13. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...

  14. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  15. Phase-function method for Coulomb-distorted nuclear scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sett, G.C.; Laha, U.; Talukdar, B.

    1988-09-21

    The phase-function method is very effective in treating quantum mechanical scattering problems for short-range local potentials. We adapt the phase method to deal with Coulomb plus Graz non-local separable potentials and derive a closed-form expression for the scattering phase shift. Our approach to the problem circumvents in a rather natural way the typical difficulties of incorporating the Coulomb interaction in a nuclear phase-shift calculation. We demonstrate the usefulness of our constructed expression by means of a model calculation.

  16. Bose-Einstein interferometry and the Coulomb corrections

    International Nuclear Information System (INIS)

    Erazmus, B.; Lednicky, R; Lyuboshitz, V.; Martin, L.; Mikhailov, V.; Pluta, J.; Sinyukov, Y.; Stavinky, A.

    1997-01-01

    Two different methods are currently used to unfold the effects of the Coulomb interaction from the experimental correlation functions. Both the Gamow corrections and the method based on correlation function of opposite charge particles fail to reproduce exact calculations of Bose-Einstein correlation functions for two-pion and two-kaon pairs. The Gamow correction is a currently used technique by the physicists' community of ultra-relativistic heavy ions aiming at the deconvolution of the Coulomb interaction effects so allowing the occurrence of only the quantum statistics effects in the correlation functions.An improved formulation of the Gamow correction is presented which gives good agreements with the correct calculations

  17. Nuclear fusion induced by Coulomb explosion of heteronuclear clusters.

    Science.gov (United States)

    Last, I; Jortner, J

    2001-07-16

    We propose a new mechanism for the production of high-energy ( E>3 keV) deuterons, suitable to induce dd nuclear fusion, based on multielectron ionization and Coulomb explosion of heteronuclear deuterium containing molecular clusters, e.g., (D2O)n, in intense ( 10(16)-2x10(18) W/cm2) laser fields. Cluster size equations for E, in conjunction with molecular dynamics simulations, reveal important advantages of Coulomb explosion of (D2O)n heteronuclear clusters, as compared with (D)n clusters. These involve the considerably increased D+ kinetic energy and a narrow, high-energy distribution of deuterons.

  18. Coulomb breakup of 31Ne using finite range DWBA

    International Nuclear Information System (INIS)

    Shubhchintak; Chatterjee, R.

    2013-01-01

    Coulomb breakup of nuclei away from the valley of stability have been one of the most successful probes to unravel their structure. However, it is only recently that one is venturing into medium mass nuclei like 23 O and 31 Ne. This is a very new and exciting development which has expanded the field of light exotic nuclei to the deformed medium mass region. In this contribution, an extension of the previously proposed theory of Coulomb breakup within the post-form finite range distorted wave Born approximation to include deformation of the projectile is reported

  19. Seismic amplitude processing and inversion

    Science.gov (United States)

    Dev, Ashwani

    2008-10-01

    Hydrocarbon exploration requires reliable seismic amplitudes to identify oil and gas reservoirs. Erroneous seismic amplitude processing can potentially generate large economic losses. Correct seismic amplitude processing is pre-requisite for any amplitude dependent analysis. The accuracy of the subsurface image and estimation of the elastic properties of subsurface sediments depends upon the reliability of the amplitudes. Geophone groups are wavenumber filters that change the seismic amplitudes because of a wavenumber dependent information loss. Numerically defined filters deconvolve the recording group response from horizontal and the vertical component seismic data recorded with groups of uniform and non-uniform geophone sensitivity, different group lengths and spacing, and noise. The filtering effect of an array increases as the group length increases, and only the wavenumber range defined by the group interval can be correctly compensated for the group effect. A rigorous, explicit spatial antialias filter is designed and applied by removing the energy above the first Nyquist wavenumber in the horizontal slowness-frequency domain. The filter removes the spatially aliased frequencies selectively at each slowness. The aliased energy is dispersive and present at both small and large horizontal slownesses. The filter can be explicitly applied to regularly spaced or irregularly spaced traces and is independent of any event linearity assumption. An integrative interpretation approach defines the effect of the structural setting on gas hydrate and free-gas accumulation at a site at the East Casey fault zone in the Gulf of Mexico. At a well location, hydrates are interpreted as fracture fillings with maximum saturation ˜30% of the available pore space. Two low acoustic impedance (Ip) free-gas features terminating at the bottom simulating reflector (BSR) are interpreted from the 3D seismic data and the derived Ip volumes. The 2D Ip profile shows a contrast in BSR

  20. Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2017-05-15

    The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)

  1. Periodic instantons and scattering amplitudes

    International Nuclear Information System (INIS)

    Khlebnikov, S.Yu.; Rubakov, V.A.; Tinyakov, P.G.

    1991-04-01

    We discuss the role of periodic euclidean solutions with two turning points and zero winding number (periodic instantons) in instanton induced processes below the sphaleron energy E sph . We find that the periodic instantons describe certain multiparticle scattering events leading to the transitions between topologically distinct vacua. Both the semiclassical amplitudes and inital and final states of these transitions are determined by the periodic instantons. Furthermore, the corresponding probabilities are maximal among all states of given energy. We show that at E ≤ E sph , the periodic instantons can be approximated by infinite chains of ordinary instantons and anti-instantons, and they naturally emerge as deformations of the zero energy instanton. In the framework of 2d abelian Higgs model and 4d electroweak theory we show, however, that there is not obvious relation between periodic instantons and two-particle scattering amplitudes. (orig.)

  2. Coulomb focusing and path'' interference of autoionizing electrons produced in 10 keV He sup + + He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, J.K. (Lawrence Livermore National Lab., CA (USA)); Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (USA)); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. (Oak Ridge National Lab., TN (USA))

    1991-03-13

    Autoionizing electrons emitted following low energy ion-atom collisions may scatter significantly from the receding spectator ion's attractive Coulomb field. In such cases the observed electron intensity is focused'' in the direction of the scattering ion as a result of the effective compression of the emission solid angle. In addition, interference may occur between trajectories, corresponding to electrons scattering around opposite sides of the ion, which lead to the same final laboratory electron energy and emission angle. This Coulomb path'' interference mechanism manifests itself in the uncharacteristically rapid angular dependence of the He target 2s{sup 2} {sup 1}S autoionizing state measured near 0{degree} following low energy He{sup +} + He collisions. A classical trajectory model for Coulomb focusing is presented and a semi-classical approximation is used to model the Coulomb path'' interference mechanism. In this description we account for the evolution of the phase of the autoionizing state until its decay and the path dependence of the amplitude of the emitted electron following decay of the autoionizing state. Calculated model lineshapes, which include contributions from adjacent overlapping resonances, reproduce quite well the angular dependence observed in the data near 0{degree}. 14 refs., 7 figs.

  3. Coulomb repulsion in (TMTSF)2X and (TMTTF)2X

    DEFF Research Database (Denmark)

    Mortensen, Kell; Engler, E. M.

    1985-01-01

    On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF...

  4. Relation between the Fukui function and the Coulomb hole

    Indian Academy of Sciences (India)

    Unknown

    EEM5 where E(N) is a quadratic interpolation of the values of the energy at integer N. EEM uses a coarse- grain representation of the molecular electronic den- sity in which ρ(r) is represented by non-overlapping spherical atomic densities centered at the nuclei po- sitions interacting with each other via the Coulomb.

  5. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 57; Issue 2-3. Structure of light neutron-rich nuclei through Coulomb dissociation. U Datta Pramanik T Aumann D Cortina H Emling H Geissel M Hellström R Holzmann N Iwasa Y Leifels G Münzenberg M Rejmund C Scheidenberger K Sümmerer A Leistenschneider ...

  6. Spontaneous breakdown of PT symmetry in the complex Coulomb ...

    Indian Academy of Sciences (India)

    Keywords. Spontaneous breakdown of PT symmetry; Coulomb potential; complex en- ergy eigenvalues. PACS Nos 03.65.Ge; 03.65.Nk; 11.30.Er. 1. Introduction. One of the most intriguing features of PT -symmetric quantum mechanics is the spontaneous breakdown of PT symmetry. This phenomenon was noted in the first.

  7. Renormalizable Non-Covariant Gauges and Coulomb Gauge Limit

    CERN Document Server

    Baulieu, L

    1999-01-01

    To study ``physical'' gauges such as the Coulomb, light-cone, axial or temporal gauge, we consider ``interpolating'' gauges which interpolate linearly between a covariant gauge, such as the Feynman or Landau gauge, and a physical gauge. Lorentz breaking by the gauge-fixing term of interpolating gauges is controlled by extending the BRST method to include not only the local gauge group, but also the global Lorentz group. We enumerate the possible divergences of interpolating gauges, and show that they are renormalizable, and we show that the expectation value of physical observables is the same as in a covariant gauge. In the second part of the article we study the Coulomb-gauge as the singular limit of the Landau-Coulomb interpolating gauge. We find that unrenormalized and renormalized correlation functions are finite in this limit. We also find that there are finite two-loop diagrams of ``unphysical'' particles that are not present in formal canonical quantization in the Coulomb gauge. We verify that in the ...

  8. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    O, the low-lying E1 strength amounts up to about 12% of the energy weighted dipole sum rule strength depending on neutron excess. The cluster sum rule limit with. ½. O as a core is almost exhausted for. ½,½. O, while for more neutron rich isotopes the strength with respect to that limit decreases. Keywords. Coulomb ...

  9. Chaos in a coulombic muffin-tin potential

    International Nuclear Information System (INIS)

    Brandis, S.

    1994-04-01

    We study the two-dimensional classical scattering dynamics by a Muffin-Tin potential with 3 Coulomb singularities. A complete symbolic dynamics for the periodic orbits is derivd. The classical trajectories are shown to be hyperbolic everywhere in phase space and to carry no conjugate points. (orig.)

  10. Coulomb plus strong interaction bound states - momentum space numerical solutions

    International Nuclear Information System (INIS)

    Heddle, D.P.; Tabakin, F.

    1985-01-01

    The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)

  11. Generalized second-order Coulomb phase shift functions

    International Nuclear Information System (INIS)

    Rosendorff, S.

    1982-01-01

    Some specific properties and the evaluation of the generalized second-order Coulomb phase shift functions (two-dimensional integrals of four spherical cylinder functions) are discussed. The dependence on the three momenta k 1 ,k-bar,k 2 , corresponding to the final, intermediate, and initial states is illustrated

  12. Molecular integrals for slater type orbitals using coulomb sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2014-01-01

    The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...... been satisfactorily solved using methods based on the theory of hyperspherical harmonics....

  13. COULN, a program for evaluating negative energy Coulomb functions

    International Nuclear Information System (INIS)

    Noble, C.J.; Thompson, I.J.

    1984-01-01

    Program COULN calculates exponentially decaying Whittaker functions, Wsub(K,μ)(z) corresponding to negative energy Coulomb functions. The method employed is most appropriate for parameter ranges which commonly occur in atomic and molecular asymptotic scattering problems using a close-coupling approximation in the presence of closed channels. (orig.)

  14. C reaction from the Coulomb dissociation of C

    Indian Academy of Sciences (India)

    beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions .... [17] of this formalism to nuclear astrophysics was on the Coulomb dissociation of 9Li on. 534. Pramana ..... The approximation involves the replacement of del-operator by an effective local momentum, K(= ...

  15. Coulomb collisional relaxation process of ion beams in magnetized plasmas

    OpenAIRE

    Nishimura, Y.

    2010-01-01

    An orbit following code is developed to calculate ion beam trajectories in magnetized plasmas. The equation of motion (the Newton's equation) is solved including the Lorentz force term and Coulomb collisional relaxation term. Furthermore, a new algorithm is introduced by applying perturbation method regarding the collision term as a small term. The reduction of computation time is suggested.

  16. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  17. Coulomb explosion of methyl iodide clusters using giga watt laser ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Nanosecond laser-induced Coulomb explosion studies have been carried out for methyl iodide clusters at 532 and 563 nm under similar laser intensity (~5 × 10. 9. W/cm. 2. ) conditions. Multiply charged atomic ions of carbon and iodine having large kinetic energy (~ 100 s of eV) were observed in both the cases.

  18. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  19. Coulomb blockade due to quantum phase slips illustrated with devices

    NARCIS (Netherlands)

    Hriscu, A.M.; Nazarov, Y.V.

    2011-01-01

    To illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin superconducting wires, we propose and theoretically investigate two elementary setups, or devices. The setups are derived from the Cooper-pair box and Cooper-pair transistor, so we refer to them as the

  20. Coulomb torque - a general theory for electrostatic forces in many-body systems

    International Nuclear Information System (INIS)

    Khachatourian, Armik V M; Wistrom, Anders O

    2003-01-01

    In static experiments that comprise three conducting spheres suspended by torsion wires and held at constant electric potential, a net angular displacement about their centres has been observed. We demonstrate that the observed rotation is consistent with Coulomb's law of electrical forces complemented by Gauss' surface integrals for electrical potential. Analysis demonstrates that electrostatic torque is the result of electrostatic forces acting on an asymmetric distribution of charges residing on the surfaces of the spheres. The asymptotic value for electrostatic torque is proportional to the inverse of the fourth power of separation distance with the rotation direction, up or down taken perpendicular to a plane passing through sphere centres, given explicitly by the equation for torque. The identification of electrostatic torque prompts further analysis of models of matter at all size scales where electrostatic forces are the dominant operative force

  1. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  2. Blocage de Coulomb dans une boite quantique laterale contenant un faible nombre d'electrons

    Science.gov (United States)

    Gould, Charles

    Dans ce travail on utilise une nouvelle geometrie pour augmenter le controle sur le nombre d'electrons contenus dans une boite quantique laterale, et ainsi atteindre un regime de petit nombre d'electrons. Ces echantillons permettent une etude du blocage de Coulomb quand les electrons sont injectes a partir d'un gaz electronique a deux dimensions (2DEG). Les mesures a faible champ magnetique demontrent la grande flexibilite des echantillons et montrent que l'on peut faire varier le nombre d'electrons dans une boite quantique a partir de plus de 40 electrons jusqu'a un seul electron, ce qui est assez courant dans les boites quantiques verticales, mais ce qui n'avait jamais ete reussi dans une boite quantique laterale. Nos resultats montrent egalement que dans les boites quantiques laterales il est possible de determiner le spin du niveau qui participe au transport a l'aide du phenomene de blocage de spin. De plus, dans certaines circonstances il est meme possible de determiner le spin total de la boite quantique, ce qui peut avoir des applications pratiques dans des domaines tels l'informatique quantique. Les mesures dans le regime de renversement de spin a un champ magnetique plus eleve montrent l'importance des correlations electrons---electrons dans ces boites quantiques, qui menent a des depolarisations et a des structures de spins qui ont un effet sur le transport. En particulier, ces correlations menent a l'existence de niveaux excites de basse energie qui causent une dependance anormale de l'amplitude des pics de blocage de Coulomb en fonction de la temperature. Nos experiences demontrent egalement la possibilite d'utiliser ces boites quantiques comme sondes pour etudier les proprietes du bord d'un 2DEG. Une voie de recherche a etre exploree.

  3. Forward amplitude in pion deuteron

    International Nuclear Information System (INIS)

    Ferreira, E.M.; Munguia, G.A.P.; Rosa, L.P.; Thome, Z.D.

    1979-06-01

    The data on total cross section for πd scattering is analysed in terms of a single scattering calculation with Fermi motion dependence, in order to obtain a criterion to fix the value of the energy entering the two body meson nucleon amplitude. It is found that the prescription derived from the non-relativistic three body kinematics gives reasonable results. The introduction of a shift in the energy value, possibly representing nuclear binding effects, leads to a very good fitting of the data. The results are compared with those obtained in direct calculations of Faddeev equations and with the Brueckner model of fixed scatterers. (Author) [pt

  4. Superstring amplitudes and contact interactions

    International Nuclear Information System (INIS)

    Greensite, J.

    1987-08-01

    We show that scattering amplitudes computed from light-cone superstring field theory are divergent at tree level. The divergences can be eliminated, and supersymmetry restored, by the addition of certain counter terms to the light-cone Hamiltonian. These counter terms have the form of local contact interactions, whose existence we had previously deduced on grounds of vacuum stability, and closure of the super-Poincare algebra. The quartic contact interactions required in Type I and Type IIB superstring theories are constructed in detail. (orig.)

  5. Amplitude modulation reflectometer for FTU

    International Nuclear Information System (INIS)

    Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.

    1995-06-01

    Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed

  6. Global Drought Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Drought Proportional Economic Loss Risk Deciles is a 2.5 minute grid of drought hazard economic loss as proportions of Gross Domestic Product (GDP) per...

  7. Global Earthquake Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Earthquake Proportional Economic Loss Risk Deciles is a 2.5 minute grid of earthquake hazard economic loss as proportions of Gross Domestic Product (GDP) per...

  8. Global Landslide Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Landslide Proportional Economic Loss Risk Deciles is a 2.5 minute grid of landslide hazard economic loss as proportions of Gross Domestic Product (GDP) per...

  9. Global Multihazard Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Multihazard Proportional Economic Loss Risks is a 2.5 minute grid of a multihazard-based economic loss risk as a proportion of the economic productivity of...

  10. Global Volcano Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Volcano Proportional Economic Loss Risk Deciles is a 2.5 minute grid of volcano hazard economic loss as proportions of Gross Domestic Product (GDP) per...

  11. Global Flood Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Flood Proportional Economic Loss Risk Deciles is a 2.5 minute grid of flood hazard economic loss as proportions of Gross Domestic Product (GDP) per analytical...

  12. Global Cyclone Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Cyclone Proportional Economic Loss Risk Deciles is a 2.5 minute grid of cyclone hazard economic loss as proportions of Gross Domestic Product (GDP) per...

  13. Global Cyclone Proportional Economic Loss Risk Deciles

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Cyclone Proportional Economic Loss Risk Deciles is a 2.5 by 2.5 minute grid of cyclone hazard economic loss as proportions of gross domestic product (GDP) per...

  14. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    Mauser, Christian

    2011-01-01

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  15. Scattering amplitudes with off-shell quarks

    Science.gov (United States)

    van Hameren, A.; Kutak, K.; Salwa, T.

    2013-11-01

    We present a prescription to calculate manifestly gauge invariant tree-level scattering amplitudes for arbitrary scattering processes with off-shell initial-state quarks within the kinematics of high-energy scattering. Consider the embedding of the process, in which the off-shell u-quark is replaced by an auxiliary quark qA, and an auxiliary photon γA is added in final state. The momentum flow is as if qA carries momentum k1 and the momentum of γA is identical to 0. γA only interacts via Eq. (3), and qA further only interacts with gluons via normal quark-gluon vertices. qA-line propagators are interpreted as iℓ̸1/(2ℓ1ṡp), and are diagonal in color space. Sum the squared amplitude over helicities of the auxiliary photon. For one helicity, simultaneously assign to the external qA-quark and to γA the spinor and polarization vector |ℓ1], {, {}. Multiply the amplitude with √{-x1k12/2}. For the rest, normal Feynman rules apply.Some remarks are at order. Regarding the momentum flow, we stress, as in [20], that momentum components proportional to k1 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta flowing through qA-lines.Regarding the sum over helicities, one might argue that only one of them leads to a non-zero result for given helicity of the final-state quark, but there may, for example, be several identical such quarks in the final state with different helicities.In case of more than one quark in the final state with the same flavor as the off-shell quark, the rules as such admit graphs with γA-propagators. These must be omitted. They do not survive the limit Λ→∞ in the derivation, since the γA-propagators are suppressed by 1/Λ.The rules regarding the qA-line could be elaborated further like in [20], leading to simplified vertices for gluons attached to this line and reducing the numerator of the eikonal propagators to 1. Formulated as above, however, the prescription is more straightforward and

  16. Amplitude effects on the dynamic performance of hydrostatic gas thrust bearings

    Science.gov (United States)

    Stiffler, A. K.; Tapia, R. R.

    1979-01-01

    A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds' equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 - epsilon-squared) to the 1.5 power where epsilon is the amplitude relative to the film thickness.

  17. Cognitive and Metacognitive Aspects of Proportional Reasoning

    Science.gov (United States)

    Modestou, Modestina; Gagatsis, Athanasios

    2010-01-01

    In this study we attempt to propose a new model of proportional reasoning based both on bibliographical and research data. This is impelled with the help of three written tests involving analogical, proportional, and non-proportional situations that were administered to pupils from grade 7 to 9. The results suggest the existence of a…

  18. Analyzing power measurement of pp elastic scattering in the Coulomb-nuclear interference region with the 200-GeV/c polarized-proton beam at Fermilab

    International Nuclear Information System (INIS)

    Akchurin, N.; Langland, J.; Onel, Y.; Bonner, B.E.; Corcoran, M.D.; Cranshaw, J.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Roberts, J.B.; Skeens, J.; White, J.L.; Bravar, A.; Giacomich, R.; Penzo, A.; Schiavon, P.; Zanetti, A.; Bystricky, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Cossairt, J.D.; Read, A.L.; Derevschikov, A.A.; Matulenko, Y.A.; Meschanin, A.P.; Nurushev, S.B.; Patalakha, D.I.; Rykov, V.L.; Solovyanov, V.L.; Vasiliev, A.N.; Grosnick, D.P.; Hill, D.A.; Laghai, M.; Lopiano, D.; Ohashi, Y.; Shima, T.; Spinka, H.; Stanek, R.W.; Underwood, D.G.; Yokosawa, A.; Funahashi, H.; Goto, Y.; Imai, K.; Itow, Y.; Makino, S.; Masaike, A.; Miyake, K.; Nagamine, T.; Saito, N.; Yamashita, S.; Iwatani, K.; Kuroda, K.; Michalowicz, A.; Luehring, F.C.; Miller, D.H.; Maki, T.; Pauletta, G.; Rappazzo, G.F.; Salvato, G.; Takashima, R.

    1993-01-01

    The analyzing power A N of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5x10 -3 to 5.0x10 -2 (GeV/c) 2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed

  19. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  20. Conductance of a proximitized nanowire in the Coulomb blockade regime

    Science.gov (United States)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  1. Coulomb oscillations in three-layer graphene nanostructures

    International Nuclear Information System (INIS)

    Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K

    2008-01-01

    We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of ∼0.6 meV is extracted.

  2. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  3. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Science.gov (United States)

    Hussein, M. S.; Gomes, P. R. S.; Lubian, J.; Canto, L. F.

    2013-12-01

    We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  4. An entropic form for NLFP with coulombic-like potential

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, A., E-mail: agrassi@unict.it [Dipartimento di Scienze del Farmaco, Università di Catania, V.le A. Doria 6, 95125 Catania (Italy)

    2012-01-30

    Here it is proposed a new entropy form for which it is possible to obtain a stationary solution of the Non-Linear Fokker–Planck equation (NLFP) with coulombic-like potentials. The general properties of this new entropy form are shown and the results are compared with those obtained by other entropy forms. Finally, the behavior of the stationary solution in presence of two point charges is also shown. -- Highlights: ► In this Letter we have proposed a new form of entropy. ► Starting from this new entropy form a Non-Linear Fokker–Planck equation has been derived. ► The stationary solution of the Non-Linear Fokker–Planck equation is obtained by using an external coulombic-like potential. ► A comparison with other forms of entropies has been proposed in the case of a single or two point charges.

  5. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  6. An infinite family of superintegrable deformations of the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Post, Sarah [Centre de recherches mathematiques, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Winternitz, Pavel, E-mail: post@CRM.UMontreal.C, E-mail: wintern@CRM.UMontreal.C [Centre de recherches mathematiques and Departement de mathematiques et de statistique, CP 6128 succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2010-06-04

    We introduce a new family of Hamiltonians with a deformed Kepler-Coulomb potential dependent on an indexing parameter k. We show that this family is superintegrable for all rational k and compute the classical trajectories and quantum wavefunctions. We show that this system is related, via coupling constant metamorphosis, to a family of superintegrable deformations of the harmonic oscillator given by Tremblay, Turbiner and Winternitz. In doing so, we prove that all Hamiltonians with an oscillator term are related by coupling constant metamorphosis to systems with a Kepler-Coulomb term, both on Euclidean space. We also look at the effect of the transformation on the integrals of the motion, the classical trajectories and the wavefunctions, and give the transformed integrals explicitly for the classical system. (fast track communication)

  7. Unsafe Coulomb excitation of $^{240-244}Pu$

    CERN Document Server

    Wiedenhöver, I; Hackman, L; Ahmad, I; Greene, J P; Amro, H; Carpenter, M P; Nisius, D T; Reiter, P; Lauritsen, T; Lister, C J; Khoo, T L; Siem, S; Cizewski, J A; Seweryniak, D; Uusitalo, J; Macchiavelli, A O; Chowdhury, P; Seabury, E H; Cline, D; Wu, C Y

    1999-01-01

    The high spin states of /sup 240/Pu and /sup 244/Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a /sup 208/Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to /sup 242/Pu were obtained as well. In the case of /sup 244/Pu, the yrast band was extended to 34h(cross), revealing the completed pi i/sub 13/2/ alignment, a "first" for actinide nuclei. The yrast sequence of /sup 242/Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of /sup 240/Pu was measured up to the highest rotational frequencies ever reported in the actinide region (~300 keV), no sign of particle alignment was observed. (11 refs).

  8. Langevin Representation of Coulomb Collisions for bi-Maxwellian Plasmas

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2010-01-01

    Roč. 229, č. 14 (2010), s. 5432-5439 ISSN 0021-9991 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Institutional research plan: CEZ:AV0Z30420517 Keywords : Coulomb collisions * Langevin equation * Bi-Maxwellian distribution function * Stochastic differential equation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.345, year: 2010 http://www.elsevier.com/locate/jcp

  9. On Coulomb collisions in bi-Maxwellian plasmas

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2009-01-01

    Roč. 16, č. 5 (2009), 054501/1-054501/4 ISSN 1070-664X R&D Projects: GA AV ČR IAA300420702 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Coulomb collisions * transport coefficients * bi-Maxwellian distribution function Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/?PHPAEN/16/054501/1

  10. Langevin representation of Coulomb collisions for bi-Maxwellian plasmas

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2010-01-01

    Roč. 229, č. 14 (2010), s. 5432-5439 ISSN 0021-9991 Grant - others:Akademie věd - GA AV ČR(CZ) IAA300420702; Akademie věd - GA AV ČR(CZ) IAA300420602 Program:IA; IA Institutional research plan: CEZ:AV0Z10030501 Keywords : Coulomb collisions * Langevin equation * Bi-Maxwellian distribution function Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.345, year: 2010

  11. Coulomb excitation at shell-closure N = 40

    International Nuclear Information System (INIS)

    Leenhardt, S.; Azaiez, F.; Sorlin, O.

    1999-01-01

    The structure of exotic nuclei can be investigated by Coulomb excitation of radioactive beams. The value of the energy of the first 2 + and its excitation probability B(E2) can improve our knowledge about collective modes of even-even nuclei. The search of new regions of deformation and shape coexistence is also a strong motivation. Recent experiments have been performed with GANIL/LISE3 facility, using the detector 'Chateau de Cristal'. (authors)

  12. Full Coulomb collision operator in the moment expansion

    International Nuclear Information System (INIS)

    Ji, Jeong-Young; Held, Eric D.

    2009-01-01

    The full Coulomb collision operator and its moments including nonlinear terms are analytically calculated in the moment expansion. In coupling nonlinear terms, the product formula which expresses a product of two harmonic tensors as a series of single harmonic tensors is derived. The collision operators and moments are written in explicit formulas for arbitrary moments and for arbitrary temperature and mass ratios. These expressions easily reduce to formulas for the small mass-ratio approximation or for like species.

  13. Sine-Gordon mean field theory of a Coulomb gas

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, Alexandre; Barbosa, Marcia C.; Levin, Yan

    1997-12-31

    Full text. The Coulomb gas provides a paradigm for the study of various models of critical phenomena. In particular, it is well known that the two dimensional (2 D). Coulomb gas can be directly used to study the superfluidity transition in {sup 4} He films, arrays of Josephson junctions, roughening transition, etc. Not withstanding its versatility, our full understanding of the most basic model of Coulomb gas, namely an ensemble of hard spheres carrying either positive or negative charges at their center, is still lacking. It is now well accepted that at low density the two dimensional plasma of equal number of positive and negative particles undergoes a Kosterlitz-Thouless (KT) metal insulator transition. This transition is of an infinite order and is characterized by a diverging Debye screening length. As the density of particles increases, the validity of the KT theory becomes questionable and the possibility of the KT transition being replaced by some kind of first order discontinuity has been speculated for a long time. In this work sine-Gordon field theory is used to investigate the phase diagram of a neutral Coulomb gas. A variational mean-field free energy is constructed and the corresponding phase diagrams in two and three dimensions are obtained. When analyzed in terms of chemical potential, the sine-Gordon theory predicts the phase diagram topologically identical to the Monte Carlo simulations and a recently developed Debye-Huckel-Bjerrum theory. In 2D, we find that the infinite-order Kosterlitz-Thouless line terminates in a tricritical point, after which the metal-insulator transition becomes first order. However, when the transformation from chemical potential to the density is made the whole insulating phase is mapped onto zero density. (author)

  14. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    OpenAIRE

    Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2000-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasipa...

  15. A mean field approach to Coulomb blockade for a disordered ...

    Indian Academy of Sciences (India)

    CB is the energy price paid in adding an electron to a QD. Classically, this price is ≈e2/C, where e is the electron charge and C is the capacitance of the QD. In many-body quantum mechanics, this price is given a name, namely Hubbard U. The Coulomb blockade is the model led by an effective Hubbard U which in the.

  16. Optimal reconfigurations of two-craft Coulomb formations along manifolds

    Science.gov (United States)

    Jones, Drew R.; Schaub, Hanspeter

    2013-02-01

    Coulomb formations refer to swarms of closely flying spacecraft, in which the net electric charge of each vehicle is controlled. Active charge control is central to this concept and enables a propulsion system with highly desirable characteristics, albeit with limited controllability. Numerous Coulomb formation equilibria have been derived, but to maintain and maneuver these configurations, some inertial thrust is required to supplement the nearly propellant-less charge control. In this work, invariant manifold theory is applied to two-craft Coulomb equilibria, which are admitted in a linearized two-body gravity model. The manifolds associated with these systems are analyzed for the first time, and are then utilized as part of a general procedure for formulating optimal reconfigurations. Specifically, uncontrolled flows along the manifolds are sought which provide near continuous transfers from one equilibrium to another. Control is then introduced to match continuity, while minimizing inertial thrusting. This methodology aims to exploit uncontrolled motions and charge control to realize the shape-changing ability of these formations, without large inertial control efforts. Some variations in formulating and parameterizing the optimal transfers are discussed, and analytical expressions are derived to aid in establishing control parameter limits, under certain assumptions. Numerical results are provided, as demonstrative examples of the optimization procedure, using relatively simple control approximations. Finally, Particle Swarm Optimization, a novel stochastic method, is used with considerable success to solve the numerically difficult parameter optimization problems.

  17. Analytic T matrices for Coulomb plus rational separable potentials

    International Nuclear Information System (INIS)

    van Haeringen, H.; van Wageningen, R.

    1975-01-01

    The l=0 partial wave projected Coulomb off-shell T matrix T/subc,l=0/ in momentum representation is obtained in closed form. Problems existing in the literature concerning the half- and on-shell behavior of T/subc/ and T/subc/,/subl/ are discussed and clarified by means of explicit formulas. The remaining derivations in this paper are based on T/subc,l=0/. We consider the class of N-term separable potentials where the form factors are rational functions of p 2 (in momentum representation). We prove that the l=0 T matrix corresponding to the Coulomb potential plus any such so-called rational separable potential has a very simple form, namely, it can be written in terms of rational functions and the (simple) hypergeometric function with parameters (1, iγ; 1+iγ), where γ is the well-known Coulomb parameter. Explicit analytic formulas are derived for a number of simple members of the class, the Yamaguchi potential being one of them. In this particular case the expressions of Zachary and of Bajzer are reproduced which used a method based on the O 4 symmetry

  18. Interaction of charged 3D soliton with Coulomb center

    International Nuclear Information System (INIS)

    Rybakov, Yu.P.

    1996-03-01

    The Einstein - de Broglie particle-soliton concept is applied to simulate stationary states of an electron in a hydrogen atom. According to this concept, the electron is described by the localized regular solutions to some nonlinear equations. In the framework of Synge model for interacting scalar and electromagnetic fields a system of integral equations has been obtained, which describes the interaction between charged 3D soliton and Coulomb center. The asymptotic expressions for physical fields, describing soliton moving around the fixed Coulomb center, have been obtained with the help of integral equations. It is shown that the electron-soliton center travels along some stationary orbit around the Coulomb center. The electromagnetic radiation is absent as the Poynting vector has non-wave asymptote O(r -3 ) after averaging over angles, i.e. the existence of spherical surface corresponding to null Poynting vector stream, has been proved. Vector lines for Poynting vector are constructed in asymptotical area. (author). 22 refs, 2 figs

  19. Engineering drag currents in Coulomb coupled quantum dots

    Science.gov (United States)

    Lim, Jong Soo; Sánchez, David; López, Rosa

    2018-02-01

    The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.

  20. Expansion of Einstein-Yang-Mills amplitude

    Science.gov (United States)

    Fu, Chih-Hao; Du, Yi-Jian; Huang, Rijun; Feng, Bo

    2017-09-01

    In this paper, we study from various perspectives the expansion of tree level single trace Einstein-Yang-Mills amplitudes into linear combination of color-ordered Yang-Mills amplitudes. By applying the gauge invariance principle, a programable recursive construction is devised to expand EYM amplitude with arbitrary number of gravitons into EYM amplitudes with fewer gravitons. Based on this recursive technique we write down the complete expansion of any single trace EYM amplitude in the basis of color-order Yang-Mills amplitude. As a byproduct, an algorithm for constructing a polynomial form of the BCJ numerator for Yang-Mills amplitudes is also outlined in this paper. In addition, by applying BCFW recursion relation we show how to arrive at the same EYM amplitude expansion from the on-shell perspective. And we examine the EYM expansion using KLT relations and show how to evaluate the expansion coefficients efficiently.

  1. Constructing Amplitudes from Their Soft Limits

    Energy Technology Data Exchange (ETDEWEB)

    Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC

    2011-12-09

    The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.

  2. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  3. Coulomb- and nuclear-induced break-up of halo nuclei at bombarding energies around the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H. [Niels Bohr Inst., Copenhagen (Denmark); Guisado, J.L. [Niels Bohr Inst., Copenhagen (Denmark); Lenzi, S.M. [Niels Bohr Inst., Copenhagen (Denmark)]|[Padua Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy); Vitturi, A. [Padua Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padua (Italy)

    1996-02-05

    We investigate the relative importance of the Coulomb and nuclear fields to induce the break-up of neutron-rich nuclei such as {sup 11}Li at energies close to the Coulomb barrier. We assume that the mechanism that leads to the separation is the excitation of a low-lying dipole mode in which the weakly-bound neutron halo performs a collective oscillation against the residual nuclear core. To this end we exploit semiclassical prescriptions that are adequate to calculate not only the average break-up probabilities but also to estimate the size of fluctuations about the quantal expectation values. Possible outcomes are explored as a function of both bombarding energy and impact parameter. Consequences of the couplings for elastic scattering and fusion processes are also discussed. (orig.).

  4. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available is an extension of a previously reported orbital angular momentum (OAM) sorting device[1]. The interferometer induces a phase shift, , which is proportional to both the OAM of the incoming beam and the relative angle, θ, between the two Dove prisms... and is given by: =2l [1]. A phase mask which decreases the OAM by 1ħ is inserted into path B (depicted in Fig. 1). 2. Theoretical Background When a Gaussian mode (l=0) enters the interferometer, there is no relative phase shift resulting in the mode...

  5. The simplest model for non-congruent fluid–fluid phase transition in Coulomb system

    International Nuclear Information System (INIS)

    Stroev, N E; Iosilevskiy, I L

    2015-01-01

    The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM(∼)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with “linear mixture” (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM(∼) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM(∼) there were reproduced two-dimensional remarkable (“banana-like”) structure of two-phase region P — T diagram and the characteristic non-monotonic shape of caloric phase enthalpy-temperature diagram, similar to the non-congruent evaporation of reactive plasma products in high-temperature heating with the uranium-oxygen system. The parameters of critical points (CP) line were calculated on the entire range of proportions of ions 0 < X < 1, including two reference values, when CP coincides with a point of extreme temperature and extreme pressure, X T and X p . Finally, it is clearly demonstrated the low-temperature property of non-congruent gas-liquid transition — “distillation”, which is weak in chemically reactive plasmas. (paper)

  6. The 1sσ molecular orbital ionisation in asymmetric ion-atom collisions by direct Coulomb interaction

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Sigaud, G.M.

    1984-11-01

    The adiabatic perturbation theory is applied to the ionisation of the 1sσ molecular orbital (MO) and extended to less adiabatic collisions by imposing an asymptotic matching with the semi-classical approximation. The transient molecular state wavefunction is modelled using the concept of an 'effective' charge for the colliding system. Through this procedure, the transition amplitudes are evaluated simulating both the relaxation of the passive electrons and the modification of the active electron wave-function, as well as their connection with the motion of the centre of charge during the collision. The direct Coulomb ionisation of the 1sσ MO is calculated for projectiles following hyperbolic paths, in terms of this 'effective' charge, using the current-vector formalism. Comparison is made with a large amount of experimental data showing good agreement. (Author) [pt

  7. Mix Proportion Design of Asphalt Concrete

    Science.gov (United States)

    Wu, Xianhu; Gao, Lingling; Du, Shoujun

    2017-12-01

    Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.

  8. Relating arithmetical techniques of proportion to geometry

    DEFF Research Database (Denmark)

    Wijayanti, Dyana

    2015-01-01

    The purpose of this study is to investigate how textbooks introduce and treat the theme of proportion in geometry (similarity) and arithmetic (ratio and proportion), and how these themes are linked to each other in the books. To pursue this aim, we use the anthropological theory of the didactic...

  9. Quantum Coulomb Systems: Recombination, Screening, and van der Waals Forces

    International Nuclear Information System (INIS)

    Alastuey, A.

    2009-01-01

    Under standard Earth conditions, and also in many astrophysical situations, the properties of matter result from the interplay between non-relativistic quantum mechanics and Coulomb interactions. In that context, the derivation of exact results for equilibrium properties of quantum Coulomb systems is of crucial importance. First, I briefly review rigorous proofs about either stability or limiting behaviours, as well as various asymptotic expansions specific to almost fully ionized situations. Then, I present the Feynman-Kac path integral representation which is the most efficient tool for dealing with both recombination and screening. Within that representation, the grand-canonical partition function for a system of quantum particles with two-body interactions is shown to be equal to its equivalent counterpart for a system of classical loops. Equilibrium quantities for the gas of loops are then represented by straightforward generalizations of standard Mayer diagrammatics. Because of the Coulomb-like long range of the two-body loop potential, every Mayer graph diverges. Such divergences are first removed via systematic chain resummations, which amount to introduce an effective potential φ, the quantum analogue of Debye potential. In a second step, the whole resumed diagrammatical series is exactly reorganized in terms of graphs where particle clusters are connected by bonds built with φ. The corresponding screened cluster representation is particularly useful for studying partially ionized gases, as illustrated by its application to hydrogen in the atomic regime. Exact asymptotic expansions for thermodynamics are derived beyond familiar Saha theory. Also, the screening of van der Waals forces between two hydrogen atoms by ionized protons and ionized electrons is shown to be only partial. (author)

  10. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    Energy Technology Data Exchange (ETDEWEB)

    Brogi, Bharat Bhushan, E-mail: brogi-221179@yahoo.in; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla-171005 (India); Chand, Shyam [University Institute of Information Technology, H.P. University Shimla-171005 (India)

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  11. Chaotic motion at the nuclear Coulomb barrier; a quantal analysis

    International Nuclear Information System (INIS)

    Dasso, C.H.; Gallardo, M.; Saraceno, M.

    1995-01-01

    The coupling between relative motion and intrinsic surface vibrations in nuclear collisions introduces - at the classical level - a transition between ordered and disordered motion. Chaotic features set in near the Coulomb and centrifugal barriers in situations of weak absorption. We investigate here the solutions of the corresponding quantum scattering problem. The aim of this study is to identify possible manifestations of the underlying irregular structure in actual observables. To this end the correspondence between quantal wavefunctions and classical trajectories in phase space is explored. ((orig.))

  12. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    Almost all modern quantum chemistry programs use Gaussian basis sets even though Gaussians cannot accurately represent the cusp at atomic nuclei, nor can they represent the slow decay of the wave function at large distances. The reason that Gaussians dominate quantum chemistry today is the great...... mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...

  13. Approximation for a Coulomb-Volkov solution in strong fields

    Science.gov (United States)

    Reiss, H. R.; Krainov, V. P.

    1994-08-01

    A simple analytical approximation is found for the wave function of an electron simultaneously exposed to a strong, circularly polarized plane-wave field and an atomic Coulomb potential. The approximation is valid when α0>>1, where α0 is the classical radius of motion of a free electron in the plane-wave field. This constraint is sufficiently mild at low frequencies that it makes possible a major extension of the lower bound of laser intensities for which Volkov-solution-based approximations are useful.

  14. Quantum fluctuations and the single-junction Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, S.M. (Department of Physics, Indiana University, Bloomington, IN (USA)); Glazman, L.I. (Institute of Microelectronics Technology and High Purity Materials, U.S.S.R. Academy of Science, Moscow District (U.S.S.R.)); Jonson, M. (Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN (USA)); Penn, D.R.; Stiles, M.D. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

    1990-06-25

    We investigate the effect of quantum fluctuations on the Coulomb blockade in a single tunnel junction coupled to its environment by a transmission line of arbitrary impedance {ital Z}({omega}). The quantized oscillation modes of the transmission line are suddenly displaced when an electron tunnels through the junction. For small {ital Z} (relative to the quantum of resitance), a weak power-law zero-bias anomaly occurs associated with the infrared-divergent shakeup of low-frequency transmission-line modes. For large {ital Z}, the full blockade is recovered. Comparison with recent experiments is made.

  15. Hadronic correction to Coulomb potential between quarks and diquark structure

    Energy Technology Data Exchange (ETDEWEB)

    Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics

    1997-07-01

    We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.

  16. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  17. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    Science.gov (United States)

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  18. Coulomb-gas representation on higher-genus surfaces

    International Nuclear Information System (INIS)

    Bagger, J.; Goulian, M.

    1990-01-01

    In this paper we use the Coulomb-gas approach to construct the minimal-model conformal blocks on higher-genus Riemann surfaces. We define the higher-genus blocks by sewing, and write them in terms of the rational blocks of a compactified scalar field. We show that spurious states decouple, which implies that the blocks degenerate correctly. As an example, we compute the genus-two partition function, and verify modular invariance for the subset of minimal models which only require one type of screening charge. (orig.)

  19. Triaxiality near the 110Ru ground state from Coulomb excitation

    Directory of Open Access Journals (Sweden)

    D.T. Doherty

    2017-03-01

    Full Text Available A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2=12 s isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  20. Ice limit of Coulomb gauge Yang-Mills theory

    International Nuclear Information System (INIS)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; McMullan, D.

    2008-01-01

    In this paper we describe gauge invariant multiquark states generalizing the path integral framework developed by Parrinello, Jona-Lasinio, and Zwanziger to amend the Faddeev-Popov approach. This allows us to produce states such that, in a limit which we call the ice limit, fermions are dressed with glue exclusively from the fundamental modular region associated with Coulomb gauge. The limit can be taken analytically without difficulties, avoiding the Gribov problem. This is illustrated by an unambiguous construction of gauge invariant mesonic states for which we simulate the static quark-antiquark potential.

  1. Coulomb interactions via local dynamics: a molecular-dynamics algorithm

    International Nuclear Information System (INIS)

    Pasichnyk, Igor; Duenweg, Burkhard

    2004-01-01

    We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the molecular dynamics version of the method and show that it is intimately related to the Car-Parrinello approach, while being equivalent to solving Maxwell's equations with a freely adjustable speed of light. Unphysical self-energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented

  2. On low energy scattering theory with Coulomb potentials

    International Nuclear Information System (INIS)

    Gibson, A.G.

    1985-09-01

    The scattering length is a very useful characteristic of the scattering phenomena. But in the presence of a combined potential (e.g. in nuclear physics, when Coulomb, the polarization and the strong potentials are to be added), the analytical definition of the scattering length in not unambigous and strictly defined. This problem is discussed in detail, the various alternatives are examined and compared. A practical suggestion is given for the proper choice of the definition and for the calculation of scattering length. Numerical solutions of the Schroedinger equation are compared with the results of different definitions. Some questions of application to nuclear physics are discussed. (D.Gy.)

  3. Normally ordered expansion of 3-dimensional bipartite Coulomb potential operator

    Energy Technology Data Exchange (ETDEWEB)

    Fan Hongyi [CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200030 (China) and Department of Material Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: fhym@ustc.edu.cn; Fu Liang [Special Class for the Gifted Young, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2004-08-23

    We derive the normally ordered expansion formula of bipartite Coulomb potential operator vertical bar R->{alpha}-R->{beta} vertical bar -1 by virtue of the method of integral within an ordered product of operators and the entangled state representation, where vertical bar R->{alpha}-R->{beta} vertical bar is the distance between two particles' positions. The new expansion formula provides convenience for calculating its coherent states' matrix elements. The normally ordered expansion of vertical bar R->{alpha}-R->{beta} vertical bar k, k>=-2, is also deduced.

  4. Hadronic correction to Coulomb potential between quarks and diquark structure

    International Nuclear Information System (INIS)

    Xin-Heng, Guo; Xue-Qian, Li; Peng-Nian, Shen; Chuang, Wang

    1997-07-01

    We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author)

  5. Effects of the Coulomb potential in interference patterns of strong-field holography with photoelectrons

    Science.gov (United States)

    Shvetsov-Shilovski, N. I.; Lein, M.

    2018-01-01

    Using the semiclassical two-step model for strong-field ionization we investigate the interference structures emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core. For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference patterns significantly.

  6. Construction of Non-Perturbative, Unitary Particle-Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms

    International Nuclear Information System (INIS)

    Lindesay, James V

    2002-01-01

    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum

  7. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    ) and with majority of images having a proportion larger than one, but less than e.g. the golden ratio. Furthermore, more images have the inversed proportion, meaning that portrait paintings are more common than landscape paintings. The inverse is true for photographs, i.e. more landscape than portrait format......While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square...

  8. Composite superstring model for hadron amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, V.A. [Petersburg Nuclear Physics Institute, P.O. Box 188300, Gatchina (Russian Federation)

    2010-01-15

    Hadron dynamics is formulated in terms of interacting composite strings. These composite string amplitudes give other possible solution of duality equations for crossing channels in addition to classical string amplitudes. The composite strings carry quark flavour and spin degrees of freedom on edging two-dimensional surfaces. Consistent composite string models with extended N=3 Virasoro superconformal symmetry are found. Simple amplitudes for interaction of pi and K-mesons in this model are represented.

  9. New relations for graviton-matter amplitudes

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    I report on recent progress in finding compact expressions for scattering amplitudes involving gravitons and gluons as well as massive scalar and fermionic matter particles. At tree level the single graviton emission amplitudes may be expressed as linear combination of purely non-gravitational ones. At the one-loop level recent results on all four point Einstein-Yang-Mills amplitudes with at most one opposite helicity state using unitarity methods are reported. 

  10. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  11. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  12. DVCS amplitude with kinematical twist-3 terms

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Weiss, C.

    2000-01-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term

  13. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    Science.gov (United States)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  14. Proportional neutron counters for reactor engineering

    International Nuclear Information System (INIS)

    Artem'eva, I.V.; Zasadych, Yu.B.; Malyshev, E.K.

    1986-01-01

    Proportional neutron counters, designed for measuring the neutron flux density at nuclear reactors; position sensitive proportional neutron counters and recoil proton proportional counters, used at research reactors and accelerators are considered. Modern level of proportional neutron counters is described and trends in development of that field of engineering are determined. Specifications of detectors for industrial application are presented. The main trend in reactor detector development is the increase of service life, radiation resistance and thermal resistance. A particular place among the counters is occupied by position sensitive detectors, which appear to be the most rapidly developing detector type. Their further development and application sphere expansion depend on the production technology improvement, the development and lowering the price of the measuring electronic equipment

  15. Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ershova, Olga

    2012-03-09

    Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)

  16. Unsafe Coulomb excitation of 240-244Pu

    International Nuclear Information System (INIS)

    Ahmad, I.; Amro, H.; Carpenter, M. P.; Chowdhury, P.; Cizewski, J.; Cline, D.; Greene, J. P.; Hackman, G.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Macchiavelli, A. O.; Nisius, D. T.; Reiter, P.; Seabury, E. H.; Seweryniak, D.; Siem, S.; Uusitalo, J.; Wiedenhoever, I.; Wu, C. Y.

    1999-01-01

    The high spin states of 240 Pu and 244 Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a 208 Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to 242 Pu were obtained as well. In the case of 244 Pu, the yrast band was extended to 34h b ar revealing the completed πi 13/2 alignment, a ''first'' for actinide nuclei. The yrast sequence of 242 Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of 240 Pu was measured up to the highest rotational frequencies ever reported in the actinide region (approximately300 keV), no sign of particle alignment was observed. In this case, several observable such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the πi 13/2 particle alignment

  17. Adaptive time-stepping Monte Carlo integration of Coulomb collisions

    Science.gov (United States)

    Särkimäki, K.; Hirvijoki, E.; Terävä, J.

    2018-01-01

    We report an accessible and robust tool for evaluating the effects of Coulomb collisions on a test particle in a plasma that obeys Maxwell-Jüttner statistics. The implementation is based on the Beliaev-Budker collision integral which allows both the test particle and the background plasma to be relativistic. The integration method supports adaptive time stepping, which is shown to greatly improve the computational efficiency. The Monte Carlo method is implemented for both the three-dimensional particle momentum space and the five-dimensional guiding center phase space. Detailed description is provided for both the physics and implementation of the operator. The focus is in adaptive integration of stochastic differential equations, which is an overlooked aspect among existing Monte Carlo implementations of Coulomb collision operators. We verify that our operator converges to known analytical results and demonstrate that careless implementation of the adaptive time step can lead to severely erroneous results. The operator is provided as a self-contained Fortran 95 module and can be included into existing orbit-following tools that trace either the full Larmor motion or the guiding center dynamics. The adaptive time-stepping algorithm is expected to be useful in situations where the collision frequencies vary greatly over the course of a simulation. Examples include the slowing-down of fusion products or other fast ions, and the Dreicer generation of runaway electrons as well as the generation of fast ions or electrons with ion or electron cyclotron resonance heating.

  18. 8B + 208Pb Elastic Scattering at Coulomb Barrier Energies

    Science.gov (United States)

    La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.

    2018-02-01

    The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.

  19. Coulomb effects on pions produced in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.P.

    1981-11-01

    Double differential cross sections for the production of ..pi../sup +/ and ..pi../sup -/ near the velocity of the incident beam for pion lab angles less than 40 degrees are presented. The experimental apparatus and the techniques are discussed. Beams of /sup 20/Ne with E/A from 80 to 655 MeV and /sup 40/Ar with E/A = 535 MeV incident on Be, C, NaF, KC1, Cu, and U targets were used. A sharp peak in the ..pi../sup -/ spectrum and a depression in the ..pi../sup +/ spectrum were observed at zero degrees near the incident beam velocity. The effect is explained in terms of Coulomb interactions between the pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffman and an effective projectile fragment charge are made. The relationship between these data and previously measured pion production and projectile fragmentation data is discussed. The data are also compared to some theoretical models. A simple expression is given for the differential cross section as a function of the projectile mass, target mass, and beam energy.

  20. Frictional Sliding Along Coulombic Shear Faults in Ice

    Science.gov (United States)

    Fortt, A. L.; Schulson, E. M.

    2006-12-01

    There is increasing evidence that the processes underlying the deformation of the arctic sea ice cover are independent of spatial scale. Among them, and possibly the dominant one during winter, is frictional sliding. With the objective of characterizing and then understanding this process, we performed a series of sliding experiments along Coulombic shear faults that were created in the laboratory in both S2 freshwater ice and S2 first-year arctic sea ice. The principal variables were sliding velocity (4 × 10-3 m s-1 to 8 × 10-7 m s-1, temperature (-3 °C, -10 °C and -40 °C) and confinement (up to 2 MPa). The results show that in both materials Coulomb's failure criterion describes the relationship between the shear stress along the fault and the normal stress across it. The friction coefficient reaches a maximum at an intermediate velocity, at ~ 10-5 m s-1 for the fresh-water material and at ~ 10-4 s-1 for the sea ice, and it increases with decreasing temperature. We propose that at lower velocities where velocity-strengthening is observed, frictional resistance is governed by creep deformation within the damage zone that constitutes the fault, while at higher velocities additional fracture and frictional melting are at play.

  1. Multi-hit time-to-amplitude CAMAC module (MTAC)

    International Nuclear Information System (INIS)

    Kang, H.

    1980-10-01

    A Multi-Hit Time-to-Amplitude Module (MTAC) for the SLAC Mark III drift chamber system has been designed to measure drift time by converting time-proportional chamber signals into analog levels, and converting the analog data by slow readout via a semi-autonomous controller in a CAMAC crate. The single width CAMAC module has 16 wire channels, each with a 4-hit capacity. An externally generated common start initiates an internal precision ramp voltage which is then sampled using a novel shift register gating scheme and CMOS sampling switches. The detailed design and performance specifications are described

  2. Proportion congruency effects: Instructions may be enough

    Directory of Open Access Journals (Sweden)

    Olga eEntel

    2014-10-01

    Full Text Available Learning takes time, namely, one needs to be exposed to contingency relations between stimulus dimensions in order to learn, whereas intentional control can be recruited through task demands. Therefore showing that control can be recruited as a function of experimental instructions alone, that is, adapting the processing according to the instructions before the exposure to the task, can be taken as evidence for existence of control recruitment in the absence of learning. This was done by manipulating the information given at the outset of the experiment. In the first experiment, we manipulated list-level congruency proportion. Half of the participants were informed that most of the stimuli would be congruent, whereas the other half were informed that most of the stimuli would be incongruent. This held true for the stimuli in the second part of each experiment. In the first part, however, the proportion of the two stimulus types was equal. A proportion congruent effect was found in both parts of the experiment, but it was larger in the second part. In our second experiment, we manipulated the proportion of the stimuli within participants by applying an item-specific design. This was done by presenting some color words most often in their congruent color, and other color words in incongruent colors. Participants were informed about the exact word-color pairings in advance. Similar to Experiment 1, this held true only for the second experimental part. In contrast to our first experiment, informing participants in advance did not result in an item-specific proportion effect, which was observed only in the second part. Thus our results support the hypothesis that instructions may be enough to trigger list-level control, yet learning does contribute to the proportion congruent effect under such conditions. The item-level proportion effect is apparently caused by learning or at least it is moderated by it.

  3. Robust seismic images amplitude recovery using curvelets

    NARCIS (Netherlands)

    Moghaddam, Peyman P.; Herrmann, Felix J.; Stolk, C.C.

    2007-01-01

    In this paper, we recover the amplitude of a seismic image by approximating the normal (demigration-migration) operator. In this approximation, we make use of the property that curvelets remain invariant under the action of the normal operator. We propose a seismic amplitude recovery method that

  4. Correlation of amplitude modulation to inflow characteristics

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas

    2014-01-01

    Amplitude modulation (AM) of noise from wind turbines and its more extreme version named “other amplitude modulation” OAM have been investigated intensively during the last few years due to the additional annoyance impact this type of noise has compared to broad band noise. In a recent published...

  5. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are

  6. Amplitude image processing by diffractive optics.

    Science.gov (United States)

    Cagigal, Manuel P; Valle, Pedro J; Canales, V F

    2016-02-22

    In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.

  7. Temporal Control of Metabolic Amplitude by Nocturnin

    Directory of Open Access Journals (Sweden)

    Jeremy J. Stubblefield

    2018-01-01

    Full Text Available The timing of food intake and nutrient utilization is critical to health and regulated partly by the circadian clock. Increased amplitude of circadian oscillations and metabolic output has been found to improve health in diabetic and obesity mouse models. Here, we report a function for the circadian deadenylase Nocturnin as a regulator of metabolic amplitude across the day/night cycle and in response to nutrient challenge. We show that mice lacking Nocturnin (Noct−/− display significantly increased amplitudes of mRNA expression of hepatic genes encoding key metabolic enzymes regulating lipid and cholesterol synthesis, both over the daily circadian cycle and in response to fasting and refeeding. Noct−/− mice have increased plasma triglyceride throughout the night and increased amplitude of hepatic cholesterol levels. Therefore, posttranscriptional control by Nocturnin regulates the amplitude of these critical metabolic pathways, and loss of this activity results in increased metabolic flux and reduced obesity.

  8. Progress in studying scintillator proportionality: Phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  9. On the role of deformed Coulomb potential in fusion using energy ...

    Indian Academy of Sciences (India)

    Abstract. Using the Skyrme energy density formalism, the effect of deformed Coulomb potential on fusion barriers and fusion cross-sections is studied. Our detailed study reveals that the fusion barriers as well as fusion probabilities depend on the shape deformation (due to deformed Coulomb potential) of the colliding nuclei ...

  10. A Simple And Efficient FEM-Implementation Of The Modified Mohr-Coulomb Criterion

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars

    2006-01-01

    This paper presents a conceptually simple finite element implementation of the combined elasto-plastic Mohr-Coulomb and Rankine material models, also known as Modified Mohr-Coulomb plasticity. The stress update is based on a return mapping scheme where all manipulations are carried out in principal...

  11. On the Coulomb sum rule in the relativistic nuclear many-body problem

    International Nuclear Information System (INIS)

    Matsui, T.

    1983-01-01

    It is shown that the relativistic many-body theory the Coulomb sum rule value is never exhausted in the space-like momentum transfer region. This implies that the Coulomb sum rule should be used with a particular caution to analyze deep inelastic electron scattering from nuclei. (orig.)

  12. A new method for the determination of the real part of the hadron elastic scattering amplitude at small angles and high energies

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P. [Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS, and Universite Pierre et Marie Curie, Paris (France)]. E-mail: gauron@in2p3.fr; Nicolescu, B. [Theory Group, Laboratoire de Physique Nucleaire et des Hautes Energies (LPNHE), CNRS, and Universite Pierre et Marie Curie, Paris (France)]. E-mail: nicolesc@lpnhep.in2p3.fr; Selyugin, O.V. [BLTP, JINR, Dubna, Moscow region (Russian Federation)]. E-mail: selugin@thsun1.jinr.ru

    2005-11-24

    A new method for the determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton at small momentum transfer. This method allows us to decrease the number of model assumptions, to obtain the real part in a narrow region of momentum transfer and to test different models. The real part is computed at a given point t{sub min} near t=0 from the known Coulomb amplitude. Hence one obtains an important constraint on the real part of the forward scattering amplitude and therefore on the {rho}-parameter (measuring the ratio of the real to imaginary part of the scattering amplitude at t=0), which can be tested at LHC.

  13. Butane gas-flow proportional counter

    International Nuclear Information System (INIS)

    Han Jingquan; Ren Wei; Ma Liping

    2000-01-01

    It is experimentally proved that the butane can be used as an operating gas of the proportional counter. The operating performances of the counter with the butane are quite similar to that with the methane. A KX-50 butane flow proportional counter is described and its plateau characteristic is determined. For this counter, the plateau length, the slope of the plateau, the background count rate is 600 V, 1.7% per 100 V, 0.02s -1 for 239 Pu α source and about 500 V, 1.8% per 100 V, 3s -1 for 90 Sr- 90 Y source, respectively

  14. Time-lapse nanoscopy of friction in the non-Amontons and non-Coulomb regime.

    Science.gov (United States)

    Ishida, Tadashi; Sato, Takaaki; Ishikawa, Takahiro; Oguma, Masatsugu; Itamura, Noriaki; Goda, Keisuke; Sasaki, Naruo; Fujita, Hiroyuki

    2015-03-11

    Originally discovered by Leonard da Vinci in the 15th century, the force of friction is directly proportional to the applied load (known as Amontons' first law of friction). Furthermore, kinetic friction is independent of the sliding speed (known as Coulomb's law of friction). These empirical laws break down at high normal pressure (due to plastic deformation) and low sliding speed (in the transition regime between static friction and kinetic friction). An important example of this phenomenon is friction between the asperities of tectonic plates on the Earth. Despite its significance, little is known about the detailed mechanism of friction in this regime due to the lack of experimental methods. Here we demonstrate in situ time-lapse nanoscopy of friction between asperities sliding at ultralow speed (∼0.01 nm/s) under high normal pressure (∼GPa). This is made possible by compressing and rubbing a pair of nanometer-scale crystalline silicon anvils with electrostatic microactuators and monitoring its dynamical evolution with a transmission electron microscope. Our analysis of the time-lapse movie indicates that superplastic behavior is induced by decrystallization, plastic deformation, and atomic diffusion at the asperity-asperity interface. The results hold great promise for a better understanding of quasi-static friction under high pressure for geoscience, materials science, and nanotechnology.

  15. Coulomb blockade in turnstile with multiple tunnel junctions

    CERN Document Server

    Lee, S C; Kang, D S; Kim, D C; Choi, C K; Ryu, J Y

    1999-01-01

    On the basis of the analytic solutions to the electrostatic problem of the multi-grated-small-junction systems, the stable domain for the Coulomb blockade of turnstile with multiple tunnel junctions at zero temperature has been analyzed as a function of the number of tunnel junction, the ratio of the gate capacitance to the junction capacitance, and the asymmetric factor. Our results show that domains form various shaped regions according to the asymmetric factor and their size depends on the number of junction and the ratio of the gate capacitance to the junction capacitance. In particular, it is shown that electrons can be transferred in positive and/or negative bias voltage depending on the asymmetric factor when an appropriate gate cycle is applied. Thus, the asymmetric factor plays an important role in determining the turnstile operation.

  16. Characteristic features of net information measures for constrained Coulomb potentials

    International Nuclear Information System (INIS)

    Patil, S H; Sen, K D; Watson, N A; Jr, H E Montgomery

    2007-01-01

    The dimensional analyses of the position and momentum variance based quantum mechanical Heisenberg uncertainty measure and the other useful net entropic information measures for the bound states of two constrained Coulomb potentials are reported for the first time. The potentials describe an electron moving in the central field due to a nucleus of charge Z with radius R defining the constraints as (a) the truncated potential given by -Z/(r n +R n ) 1/n , and (b) the radius of the impenetrable spherical wall. The net information measures for the two potentials are explicitly shown to be independent of the scaling of the set [Z, R] at a fixed value of ZR. Analytic proof is presented, for the first time, showing the presence of a characteristic extremum in the variation of the net information entropy as a function of the radius R with its location scaling as Z -1 . Numerical results are presented which support the validity of the scaling properties

  17. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  18. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    International Nuclear Information System (INIS)

    Lotkhov, Sergey V

    2013-01-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage–current characteristics were measured at temperatures down to T ∼ 20 mK for films with sheet resistivities as high as ∼7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. (paper)

  19. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  20. Quantum Mayer Graphs: Application to Bose and Coulomb Gases

    International Nuclear Information System (INIS)

    Martin, P.A.

    2003-01-01

    The functional integral representation of quantum statistical mechanics by means of the Feynman-Kac formula leads to a classical-like description of the system. Point quantum particles are then described in terms of random loops (closed Brownian paths), and all techniques of classical statistical mechanics become available. One advantage of this formalism is that it is not perturbative with respect to the interaction strength, in contrast to the standard many-body perturbative treatment. We apply these ideas to the Coulomb gas by constructing an effective potential (the quantum analogue of the Debye potential) that incorporates both long distance collective screening effects as well as the short range quantum mechanical binding. For Bose systems, we show that mean field theory corresponds to summing all tree-graphs and investigate how to go beyond the mean field description. (author)

  1. Ionization and Coulomb explosion of small uranium oxide clusters

    International Nuclear Information System (INIS)

    Ross, Matt W; Castleman, A W Jr

    2012-01-01

    Femtosecond pulses are used to study the strong-field ionization and subsequent Coulomb explosion of small uranium oxide clusters. The resulting high atomic charge states are explored as a function of laser intensity and compared to ionization rates calculated using semi-classical tunneling theory with sequential ionization potential values. The gap in laser intensity between saturation intensity values for the 7s, 6d, and 5f orbitals are identified and quantified. Extreme charge states of oxygen up to O 4+ are observed indicating multiple ionization enhancement processes occurring within the clusters. The peak splittings of the atomic charge states are explored and compared to previous results on transition metal oxide species. Participation of the 5f orbitals in bonding is clearly identified based on the saturation intensity dependence of oxygen to uranium metal.

  2. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  3. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices

    Science.gov (United States)

    Lotkhov, Sergey V.

    2013-06-01

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ˜ 20 mK for films with sheet resistivities as high as ˜7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current.

  4. Coulomb blockade transport across lateral (Ga,Mn)As nanoconstrictions

    Science.gov (United States)

    Schlapps, Markus; Geissler, Stefan; Lermer, Teresa; Sadowski, Janusz; Wegscheider, Werner; Weiss, Dieter

    2010-09-01

    We report on magnetotransport measurements of nanoconstricted (Ga,Mn)As devices showing very large resistance changes that can be controlled by both an electric and a magnetic field. Based on the bias voltage and temperature dependent measurements down to the millikelvin range we compare the models currently used to describe transport through (Ga,Mn)As nanoconstrictions. We provide an explanation for the observed spin-valve like behavior during a magnetic field sweep by means of the magnetization configurations in the device. Furthermore, we prove that Coulomb blockade plays a decisive role for the transport mechanism and show that modeling the constriction as a granular metal describes the temperature and bias dependence of the conductance correctly and allows to estimate the number of participating islands located in the constriction.

  5. Influence of Coulomb screening on lateral lasing in VECSELs.

    Science.gov (United States)

    Wang, Chengao; Malloy, Kevin; Sheik-Bahae, Mansoor

    2015-12-14

    Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures.

  6. Coulomb breakup of nuclei-applications to astrophysics

    International Nuclear Information System (INIS)

    Baur, G.; Rebel, H.

    1996-04-01

    The Coulomb dissociation process, induced by the intense source of quasi-real photons acting as nuclear particles passing the field of a heavy nucleus, has attracted a great deal of attention. As specific application and access to information to the time-reversed radiative capture reactions of astrophysical interest at stellar energies, it provides several advantages based on larger cross sections and on the flexibilities of the breakup kinematics. Difficulties in the analysis arise from possible interference of nuclear interactions and final state effects through multiphoton exchange (post acceleration) which need careful consideration. Since the introduction of this novel approach as tool of nuclear astrophysics, a number of theoretical and experimental investigations have been performed, with interesting new information and results which provide an improved and detailed understanding of the experimental conditions and of the theoretical basis of the method. The progress in experiment and theory is reviewed, and various cases of actual interest and current applications are discussed. (orig.)

  7. Investigation of uncertainty components in Coulomb blockade thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Hahtela, O. M.; Heinonen, M.; Manninen, A. [MIKES Centre for Metrology and Accreditation, Tekniikantie 1, 02150 Espoo (Finland); Meschke, M.; Savin, A.; Pekola, J. P. [Low Temperature Laboratory, Aalto University, Tietotie 3, 02150 Espoo (Finland); Gunnarsson, D.; Prunnila, M. [VTT Technical Research Centre of Finland, Tietotie 3, 02150 Espoo (Finland); Penttilä, J. S.; Roschier, L. [Aivon Oy, Tietotie 3, 02150 Espoo (Finland)

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  8. Investigation of uncertainty components in Coulomb blockade thermometry

    International Nuclear Information System (INIS)

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-01-01

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin

  9. Effect of on-chip filter on Coulomb blockade thermometer

    International Nuclear Information System (INIS)

    Roschier, L; Penttilä, J S; Gunnarsson, D; Prunnila, M; Meschke, M; Savin, A

    2012-01-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  10. The Coulomb Branch Formula for Quiver Moduli Spaces

    CERN Document Server

    Manschot, Jan; Sen, Ashoke

    2014-01-01

    In recent series of works, by translating properties of multi-centered supersymmetric black holes into the language of quiver representations, we proposed a formula that expresses the Hodge numbers of the moduli space of semi-stable representations of quivers with generic superpotential in terms of a set of invariants associated to `single-centered' or `pure-Higgs' states. The distinguishing feature of these invariants is that they are independent of the choice of stability condition. Furthermore they are uniquely determined by the $\\chi_y$-genus of the moduli space. Here, we provide a self-contained summary of the Coulomb branch formula, spelling out mathematical details but leaving out proofs and physical motivations.

  11. Coulomb effects in deuteron stripping reactions as a three-body problem

    International Nuclear Information System (INIS)

    Osman, A.

    1981-08-01

    Deuteron stripping nuclear reactions are reconsidered as a three-body problem. The Coulomb effects between the proton and the target nucleus are investigated. The mathematical formalism introduces three-body integral equations which can be exactly calculated for such simple models. These coupled integral equations suitably include the Coulomb effects due to replusive or attractive Coulomb potential. Numerical calculations of the differential cross-sections of the reactions 28 Si(d,p) 29 Si and 40 Ca(d,p) 41 Ca are carried out showing the importance of the Coulomb effects. The angular distributions of these reactions are theoretically calculated and fitted to the experimental data. From this fitting, reasonable spectroscopic factors are obtained. Inclusion of Coulomb force in the three-body model are found to improve the results by a percentage of about 6.826%. (author)

  12. Canine Conjectures: Using Data for Proportional Reasoning

    Science.gov (United States)

    Westenskow, Arla; Moyer-Packenham, Patricia S.

    2011-01-01

    No person, place, or thing can capture the attention of a class of sixth graders like "man's best friend." To prompt students' interest in a series of lessons on proportional relationships, the authors brought in a unique teaching aid--a dog. A family dog was used to supply the measurements for scatter plots and variables so that students could…

  13. Obtaining a Proportional Allocation by Deleting Items

    NARCIS (Netherlands)

    Dorn, B.; de Haan, R.; Schlotter, I.; Röthe, J.

    2017-01-01

    We consider the following control problem on fair allocation of indivisible goods. Given a set I of items and a set of agents, each having strict linear preference over the items, we ask for a minimum subset of the items whose deletion guarantees the existence of a proportional allocation in the

  14. Proportional green time scheduling for traffic lights

    NARCIS (Netherlands)

    P. Kovacs; Le, T. (Tung); R. Núñez Queija (Rudesindo); Vu, H. (Hai); N. Walton

    2016-01-01

    textabstractWe consider the decentralized scheduling of a large number of urban traffic lights. We investigate factors determining system performance, in particular, the length of the traffic light cycle and the proportion of green time allocated to each junction. We study the effect of the length

  15. LTR design of proportional-integral observers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Shafai, B.

    1995-01-01

    This paper applies the proportional-integral (PI) observer in connection with loop transfer recovery (LTR) design for continuous-time systems. We show that a PI observer makes it possible to obtain time recovery, i.e., exact recovery for t -+ -, under mild conditions. Based on an extension...

  16. Adaptive bayesian analysis for binomial proportions

    CSIR Research Space (South Africa)

    Das, Sonali

    2008-10-01

    Full Text Available The authors consider the problem of statistical inference of binomial proportions for non-matched, correlated samples, under the Bayesian framework. Such inference can arise when the same group is observed at a different number of times with the aim...

  17. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  18. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  19. Analytic continuation of dual Feynman amplitudes

    International Nuclear Information System (INIS)

    Bleher, P.M.

    1981-01-01

    A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)

  20. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  1. Transition amplitudes within the stochastic quantization scheme

    International Nuclear Information System (INIS)

    Hueffel, H.

    1993-01-01

    Quantum mechanical transition amplitudes are calculated within the stochastic quantization scheme for the free nonrelativistic particle, the harmonic oscillator and the nonrelativistic particle in a constant magnetic field; we close with free Grassmann quantum mechanics. (authors)

  2. An analysis of heavy ion scattering amplitudes

    International Nuclear Information System (INIS)

    Marty, C.

    1979-01-01

    A heurisht method is derived for the analysis of light heavy ion systems. It consists in splitting an oscillatory amplitude into subamplitudes each of them being smooth, at least in modulus. Applications are given

  3. A new type time-amplitude converter

    International Nuclear Information System (INIS)

    Mou Haiwei; Han Jian; Li Zhongwei

    2004-01-01

    The time-amplitude converter is used mostly in nuclear physics experiments where require fast time measurement, such as the identify of particles, the measurement of excitated life-span and flying time of nucleon, and so on. According to the requirement of experiment, a new type time-amplitude converter composing of IC has been developed. It is precision is 100 ns. It has the merits of stable performance, higher precision and so on. (authors)

  4. Employing helicity amplitudes for resummation in SCET

    International Nuclear Information System (INIS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.; Nikhef, Amsterdam

    2016-05-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  5. Scattering amplitudes of regularized bosonic strings

    Science.gov (United States)

    Ambjørn, J.; Makeenko, Y.

    2017-10-01

    We compute scattering amplitudes of the regularized bosonic Nambu-Goto string in the mean-field approximation, disregarding fluctuations of the Lagrange multiplier and an independent metric about their mean values. We use the previously introduced Lilliputian scaling limit to recover the Regge behavior of the amplitudes with the usual linear Regge trajectory in space-time dimensions d >2 . We demonstrate a stability of this minimum of the effective action under fluctuations for d <26 .

  6. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  7. The Cepheid bump progression and amplitude equations

    International Nuclear Information System (INIS)

    Kovacs, G.; Buchler, J.R.

    1989-01-01

    It is shown that the characteristic and systematic behavior of the low-order Fourier amplitudes and phases of hydrodynamically generated radial velocity and light curves of Cepheid model sequences is very well captured not only qualitatively but also quantitatively by the amplitude equation formalism. The 2:1 resonance between the fundamental and the second overtone plays an essential role in the behavior of the models 8 refs

  8. A study of the oscillator strengths and line strenghts of Agl and AuI Using the Coulomb approximation

    Directory of Open Access Journals (Sweden)

    M. Soltanolkotabi

    1998-04-01

    Full Text Available   Single-valence electron atoms are an important class of atoms. Their oscillator strengths are their important properties. Knowing the oscillator strengths one can easity calculate the transition probabilities of the spectral lines and hence the lifetimes of energy levels of most atoms. The oscillator strengths of the spectral lines of most atoms are not knoen with sufficient accuracy due to the experimental difficulties. The results of most measurements are subject to large inaccuracies due to uncertainties in vapor pressure data. A quick and simple theoretical method for calculation of atomic oscillator strength seems to be the Coulomb approximation of Bates and Damagaard. This method reveals some interesting properties that are generally confirmed by experimental results. In this paper, we have studied oscillator strengths and line strengths of the different allowed transitions in AgI and AuI using the Coulomb approximation. The log (λfg curves(λ, f and g are the wavelength of transition, oscillator strength and statistical weight of upper level, respectively versus the reciprocal of the principal quantum number of upper level, 1/n, show a linear behavior only for large values of the principal quantum number of lower level. The effect of change of total angular momentum,Δ J, in the curvature and slope of the plotted curves has been also investigated. The deviation of the curves from straight lines, which indicates failure of the Coulomb approximation is due to the exchange forces. In addition, the n3fg curves   (n , the effective total quantum number of upper level have been plotted versus n for different allowed transitions in AgL and AuI. It has been found that f is proportional to 1/n and this proportionality is linear for large values of n . For some transitions, however, there is a significant deviation from the linear dependence for large values of n , which can be attributed to the signature of total angular momentum quantum

  9. Pulse triggering mechanism of air proportional counters

    International Nuclear Information System (INIS)

    Aoyama, T.; Mori, T.; Watanabe, T.

    1983-01-01

    This paper describes the pulse triggering mechanism of a cylindrical proportional counter filled with air at atmospheric pressure for the incidence of β-rays. Experimental results indicate that primary electrons created distantly from the anode wire by a β-ray are transformed into negative ions, which then detach electrons close to the anode wire and generate electron avalanches thus triggering pulses, while electrons created near the anode wire by a β-ray directly trigger a pulse. Since a negative ion pulse is triggered by a single electron detached from a negative ion, multiple pulses are generated by a large number of ions produced by the incidence of a single β-ray. It is therefore necessary not to count pulses triggered by negative ions but to count those by primary electrons alone when use is made of air proportional counters for the detection of β-rays. (orig.)

  10. General methods for analyzing bounded proportion data

    OpenAIRE

    Hossain, Abu

    2017-01-01

    This thesis introduces two general classes of models for analyzing proportion response variable when the response variable Y can take values between zero and one, inclusive of zero and/or one. The models are inflated GAMLSS model and generalized Tobit GAMLSS model. The inflated GAMLSS model extends the flexibility of beta inflated models by allowing the distribution on (0,1) of the continuous component of the dependent variable to come from any explicit or transformed (i.e. logit or truncated...

  11. Cylindrical geometry for proportional and drift chambers

    International Nuclear Information System (INIS)

    Sadoulet, B.

    1975-06-01

    For experiments performed around storage rings such as e + e - rings or the ISR pp rings, cylindrical wire chambers are very attractive. They surround the beam pipe completely without any dead region in the azimuth, and fit well with the geometry of events where particles are more or less spherically produced. Unfortunately, cylindrical proportional or drift chambers are difficult to make. Problems are discussed and two approaches to fabricating the cathodes are discussed. (WHK)

  12. 2 π gaseous flux proportional detector

    International Nuclear Information System (INIS)

    Guevara, E.A.; Costello, E.D.; Di Carlo, R.O.

    1986-01-01

    A counting system has been developed in order to measure carbon-14 samples obtained in the course of a study of a plasmapheresis treatment for diabetic children. The system is based on the use of a 2π gaseous flux proportional detector especially designed for the stated purpose. The detector is described and experiment results are given, determining the characteristic parameters which set up the working conditions. (Author) [es

  13. Study of counter E.M.F. on external cathodes proportional counters

    International Nuclear Information System (INIS)

    Tobias, C.C.B.

    1990-01-01

    Results previously obtained in our laboratory with Geiger-Mueller counters with external cathodes (Maze type), led us to build a cylindrical proportional counter around a tube of soda glass, covered by a thin layer of acquadag. The characteristics of this proportional counter were studied for argon and argon-methane mixture at atmospheric pressure, under continuous flow. Using alpha particles, emitted by an Am-241 source, the results obtained shown that its pulse amplitude decreases slowly with an increase of the counting rate, due to the counter e.m.f. which appears between the internal counter surface and the external cathode. This small effect, does not influence either the pulse amplitude distribution or the resolution, due to the large time constant of the distributed charge. (author)

  14. Coulombic and neutral trapping centers in silicon dioxide

    Science.gov (United States)

    Buchanan, D. A.; Fischetti, M. V.; Dimaria, D. J.

    1991-01-01

    Metal-oxide-semiconductor structures incorporating thermally grown silicon dioxide films were implanted with arsenic ions and then annealed at high temperatures. The subsequent trapping sites produced are amphoteric. Coulombic-attractive traps (for electrons) were produced with the avalanche injection of holes from the silicon substrate and the subsequent capture of some of these holes on the arsenic-related sites. During internal photoemission of electrons from a thin aluminum gate, the voltage shifts due to hole annihilation by electrons were recorded and the effective capture cross section was determined. This capture cross section was found to vary from ~10-12 to 3×10-15 cm2 for average electric fields ranging from 2×105 to 3×106 V/cm. An average field threshold (~1.2×106 V/cm) was found, below which the capture-cross-section-average-field dependence follows a power law with an exponent of approximately -1.5. Above the average field threshold, the power-law exponent was found to be approximately -3.0. Also, when the amphoteric arsenic-related sites are empty, they can form neutral trapping sites for electrons. For these trapping centers, it is found that the neutral capture cross section is relatively independent of the average electric field. For average fields ranging from 5×105 to 6×106 V/cm, the neutral cross section is found to be approximately constant at (1-2)×10-15 cm2. For the Coulombic electron traps, classical and quantum-mechanical Monte Carlo simulations agree qualitatively with the experimental results. These simulations suggest that the heating of the electron-energy distribution and tunnel detrapping are the primary cause of the decrease in the effective capture cross section in the high-field regime. For the neutral traps in the low-field regime, the classical Monte Carlo simulation also agrees with the experimental results. However, for fields above the electron-heating threshold, the simulation predicts an increase in the capture cross

  15. Scattering of an ion beam by charged fine particles with Coulomb force

    International Nuclear Information System (INIS)

    Amemiya, H.; Nakamura, Y.

    2002-01-01

    Fine particles satisfying critical limits act as Coulomb forces and scatter charged particles like beams due to the long-range force. Otherwise, fine particles behave as tiny probes. The energy loss and broadening rates of an ion beam by particles having Coulomb fields are investigated where the Coulomb logarithm is taken as a variable. Dependence of the energy loss and broadening on the plasma density, dust charge and beam energy is obtained. A method for measuring the dust surface charge is also given

  16. Polarons as stable solitary wave solutions to the Dirac-Coulomb system

    Science.gov (United States)

    Comech, Andrew; Zubkov, Mikhail

    2013-11-01

    We consider solitary wave solutions to the Dirac-Coulomb system both from physical and mathematical points of view. Fermions interacting with gravity in the Newtonian limit are described by the model of Dirac fermions with the Coulomb attraction. This model also appears in certain condensed matter systems with emergent Dirac fermions interacting via optical phonons. In this model, the classical soliton solutions of equations of motion describe the physical objects that may be called polarons, in analogy to the solutions of the Choquard equation. We develop analytical methods for the Dirac-Coulomb system, showing that the no-node gap solitons for sufficiently small values of charge are linearly (spectrally) stable.

  17. Impact of electron-electron Coulomb interaction on the high harmonic generation process in graphene

    Science.gov (United States)

    Avetissian, H. K.; Mkrtchian, G. F.

    2018-03-01

    Generation of high harmonics in a monolayer graphene initiated by a strong coherent radiation field, taking into account electron-electron Coulomb interaction, is investigated. A microscopic theory describing the nonlinear optical response of graphene is developed. The Coulomb interaction of electrons is treated in the scope of dynamic Hartree-Fock approximation. The closed set of integrodifferential equations for the single-particle density matrix of a graphene quantum structure is solved numerically. The obtained solutions show the significance of many-body Coulomb interaction on the high harmonic generation process in graphene.

  18. Study on scalable Coulombic degradation for estimating the lifetime of organic light-emitting devices

    International Nuclear Information System (INIS)

    Zhang Wenwen; Hou Xun; Wu Zhaoxin; Liang Shixiong; Jiao Bo; Zhang Xinwen; Wang Dawei; Chen Zhijian; Gong Qihuang

    2011-01-01

    The luminance decays of organic light-emitting diodes (OLEDs) are investigated with initial luminance of 1000 to 20 000 cd m -2 through a scalable Coulombic degradation and a stretched exponential decay. We found that the estimated lifetime by scalable Coulombic degradation deviates from the experimental results when the OLEDs work with high initial luminance. By measuring the temperature of the device during degradation, we found that the higher device temperatures will lead to instabilities of organic materials in devices, which is expected to result in the difference between the experimental results and estimation using the scalable Coulombic degradation.

  19. Coulomb scatter of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Myasnikov, M. I., E-mail: miasnikovmi@mail.ru; D’yachkov, L. G.; Petrov, O. F.; Vasiliev, M. M., E-mail: mixxy@mail.ru; Fortov, V. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Savin, S. F.; Serova, E. O. [Korolev Rocket and Space Corporation Energia, ul. Lenina 4A (Russian Federation)

    2017-02-15

    The effect of a dc electric field on strongly nonideal Coulomb systems consisting of a large number (~10{sup 4}) of charged diamagnetic dust particles in a cusp magnetic trap are carried out aboard the Russian segment of the International Space Station (ISS) within the Coulomb Crystal experiment. Graphite particles of 100–400 μm in size are used in the experiments. Coulomb scatter of a dust cluster and the formation of threadlike chains of dust particles are observed experimentally. The processes observed are simulated by the molecular dynamics (MD) method.

  20. Scattering amplitudes in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver

    2011-07-15

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  1. Acquisition and processing of proportional chamber data

    International Nuclear Information System (INIS)

    Kozhevnikov, Yu.A.

    1987-01-01

    A data acquisition unit for proportional chambers is described which can select data belonging to individual groups of simultaneously triggered adjacent channels (clusters) and encodes them into a format suitable for further processing. The unit is built as a standard CAMAC module of double width, was designed to operate with hardware reading significant data only, and can serve up to 8192 detection channels. The unit can be tested independently and can operate with an external storage without connection to the crate bus. Two types of errors associated with data reception are detected and diagnosed in the course of data acquisition

  2. Recent advances in gas scintillation proportional counters

    International Nuclear Information System (INIS)

    Palmer, H.E.

    1975-01-01

    Various geometrical configurations for gas scintillation proportional counters have been investigated in order to determine which is best for use in a large volume, high efficiency counter for measuring low energy gamma and x-rays. A xenon filled counter having a rod anode inside a cylindrical cathode appears to provide the best configuration for providing a uniform field and the best resolution over the total volume of the counter. The details of construction and operating characteristics of various shaped counters are described. (U.S.)

  3. High pressure BF3 proportional counter

    International Nuclear Information System (INIS)

    Mihara, Masaru; Gotoh, Eiichiro; Kodama, Masahiro

    1978-01-01

    Plateau and pulse characteristics of high pressure BF 3 proportional counter were investigated in terms of counter geometry and gas pressure, in order to develop a small-sized and high-sensitive one. Description is given of the construction of improved gas filling equipment with filling procedure. A tentative brass counter, 67 mm in cathode diameter, 40 micron in anode diameter, filled to 1.2 kg/cm 2 revealed characteristics of 150 volts plateau range, the slope of which being 3% per 100 volts at the operation voltage of around 3.3 kV, and 103% full width at half-maximum in the pulse height distribution. (auth.)

  4. Designing an optimally proportional inorganic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jai, E-mail: jai.singh@cdu.edu.au [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia); Koblov, Alexander [School of Engineering and IT, B-Purple-12, Faculty of EHSE, Charles Darwin University, NT 0909 (Australia)

    2012-09-01

    The nonproportionality observed in the light yield of inorganic scintillators is studied theoretically as a function of the rates of bimolecular and Auger quenching processes occurring within the electron track initiated by a gamma- or X-ray photon incident on a scintillator. Assuming a cylindrical track, the influence of the track radius and concentration of excitations created within the track on the scintillator light yield is also studied. Analysing the calculated light yield a guideline for inventing an optimally proportional scintillator with optimal energy resolution is presented.

  5. Direct amplitude detuning measurement with ac dipole

    Directory of Open Access Journals (Sweden)

    S. White

    2013-07-01

    Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.

  6. Coulomb blockade and transfer of electrons one by one

    International Nuclear Information System (INIS)

    Pothier, Hugues

    1991-01-01

    Zero point fluctuations of the charge on the capacitance of a tunnel junction connected to a bias circuit are in almost all experimental situations larger than the electron charge. As a consequence, the effects of charge granularity are hidden, but in circuits with 'islands', which are electrodes connected to the rest of the circuit only through tunnel junctions and capacitors. The island charge being quantized, its fluctuations are blocked. If the island capacitance is sufficiently small, no electron can enter the island because of the increase of electrostatic energy that would occur. We have observed this effect, called 'Coulomb blockade', in the 'single electron box', where an island is formed between a tunnel junction and a capacitor. A bias voltage source coupled to the island through the capacitor allows to control the number of electrons. We have designed and operated two devices with nano-scale tunnel junctions based on this principle, the 'turnstile' and the 'pump', through which the current is controlled electron by electron. In our experiments, the precision of the transfer is of the order of one percent. It should be a million time better in versions of these devices with more junctions. One could then use them for a new measurement of the fine structure constant alpha. (author) [fr

  7. Coulomb problem for a Z>Z_cr nucleus

    Science.gov (United States)

    Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Fedotov, A. M.; Lozovik, Yu E.; Popov, V. S.

    2015-08-01

    A closed-form equation is derived for the critical nucleus charge Z=Z_cr at which a discrete level with the Dirac quantum number touches the lower continuum of the Dirac equation solutions. For the Coulomb potential cut off rectangularly at the short distance r0 = R{\\hbar}/(mc), R \\ll {1}, the critical nucleus charge values are obtained for several values of κ and R. It is shown that the partial scattering matrix of elastic positron-nucleus scattering, Sκ = \\exp(2iδκ(\\varepsilon_p)), is also unitary for Z>Z_cr. For this range, the scattering phase δ κ (\\varepsilon _p) is calculated as a function of the positron energy E_p = \\varepsilonp mc2, as are the positions and widths of quasidiscrete levels corresponding to the scattering matrix poles. The implication is that the single-particle approximation for the Dirac equation is valid not only for Z but also for Z>Z_cr and that there is no spontaneous creation of e^+e^- pairs from the vacuum.

  8. Analytic quantum-interference conditions in Coulomb corrected photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Al-Jawahiry, A.; Lai, X. Y.; Figueira de Morisson Faria, C.

    2018-02-01

    We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions. These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure that extends up to relatively high photoelectron energies. We compare such expressions with the Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-dependent Schrödinger equation for different driving-field frequencies and intensities, and provide an in-depth analysis of the physical mechanisms behind specific holographic structures. Our results shed additional light on what aspects of the CQSFA must be prioritized in order to obtain the key holographic features, and highlight the importance of forward scattered trajectories. Furthermore, we find that the holographic patterns change considerably for different field parameters, even if the Keldysh parameter is kept roughly the same.

  9. Deuteron Coulomb Excitation in Peripheral Collisions with a Heavy Ion

    Science.gov (United States)

    Du, Weijie; Yin, Peng; Li, Yang; Chen, Guangyao; Zuo, Wei; Zhao, Xingbo; Vary, James P.

    2017-09-01

    We develop an ab initio time-dependent Basis Function (tBF) method to solve non-perturbative and time-dependent problems in non-relativistic quantum mechanics. As a test problem, we apply this method to the Coulomb excitation of a deuteron by an impinging heavy ion. We employ wave functions for the bound and excited states of the deuterium system based on a realistic nucleon-nucleon interaction and study the evolution of the transition probability, the r.m.s. radius and the r.m.s. momentum of the system during the scattering process. The dependencies of these quantities on the external field strength and the bombarding energy are also analyzed and compared to corresponding results obtained from first-order perturbation theory. The time evolution of both the charge and the momentum distributions is shown. This work was supported in part by the U. S. Department of Energy (DOE) under Grants No. DESC0008485 (SciDAC/NUCLEI) and DE-FG02-87ER40371. W. Zuo and P. Yin are supported by the National Natural Science Foundation of China (11435014).

  10. Shape determination in Coulomb excitation of $^{72}$Kr

    CERN Document Server

    Reiter, P; Kruecken, R; Paul, E S; Wadsworth, R; Heenen, P

    Nuclei with oblate shapes at low spins are very special in nature because of their rarity. Both theoretical and experimental shape co-existence studies in the mass 70 region for near proton drip-line nuclei suggest $^{72}$Kr to be the unique case with oblate low-lying and prolate high-lying levels. However, there is no direct experimental evidence in the literature to date for the oblate nature predicted for the first 2$^+$ state in $^{72}$Kr. We propose to determine the sign of the spectroscopic quadrupole moment of this state via the re-orientation effect in a low-energy Coulomb excitation measurement. In the inelastic excitation of the 2$^+$ state in $^{72}$Kr beam of 3.1 MeV/u with an intensity of 800 pps at REX-ISOLDE impinging on $^{104}$Pd target, the re-orientation effect plays a significant role. The cross section measurement for the 2$^+$ state should thus allow the model-independent determination of the sign of the quadrupole moment unambiguously and will shed light on the co-existing prolate and o...

  11. Coulomb excitation of $^{110}$Sn using REX-ISOLDE

    CERN Document Server

    Ekström, A; Hurst, A; Fahlander, C; Banu, A; Butler, P; Eberth, J; Górska, M; Habs, D; Huyse, M; Kester, O; Niedermayer, O; Nilsson, T; Pantea, M; Scheit, H; Schwalm, D; Sletten, G; Ushasi, D P; Van Duppen, P; Warr, N; Weisshaar, D

    2006-01-01

    In this paper, we report the preliminary result from the first Coulomb excitation experiment at REX-ISOLDE (Habs et al 1998 Nucl. Instrum. Methods B 139 128) using neutron-deficient Sn-beams. The motivation of the experiment is to deduce the reduced transition probability, B(E2 ; 2$^+\\rightarrow$ 0$^+$) , for the sequence of neutron deficient, unstable, even-even Sn-isotopes from using a radioactive beam opens up a new path to study the lifetime of the first excited 2$^+$ state in these isotopes. The de-excitation path following fusion-evaporation reactions will for the even-even Sn isotopes pass via an isomeric 6$^+$ state, located at higher energy, which thus hampers measurements of the lifetime of the first excited state using, e.g., recoil-distance methods. For this reason the reduced transition probability of the first excited 2$^+$ state has remained unknown in this chain of isotopes although the B(E2) value of the stable isotope $^{112}$Sn was measured approximately 30 years ago (see, e.g., Stelson et...

  12. Coulomb nuclear interference with deuterons in even palladium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M. [Sao Paulo Univ., SP (Brazil); Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2004-09-15

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on {sup 104,106,108,110}Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12{sup 0} {<=}{theta}{sub lab} {<=}64{sup 0}. A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = {delta}{sub LC}/{delta}{sub LN}, the ratio of charge to isoscalar deformation lengths, and of ({delta}{sub LN}){sup 2} were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For {sup 104}Pd, and preliminary for {sup 108}Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for {sup 106}Pd, C = 1.06(3) and for {sup 110}Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  13. Coulomb nuclear interference with deuterons in even palladium isotopes

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M.; Ukita, G.M.

    2004-01-01

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on 104,106,108,110 Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12 0 ≤θ lab ≤64 0 . A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = δ LC /δ LN , the ratio of charge to isoscalar deformation lengths, and of (δ LN ) 2 were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For 104 Pd, and preliminary for 108 Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for 106 Pd, C = 1.06(3) and for 110 Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  14. Energy Proportionality for Disk Storage Using Replication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  15. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  16. Spinfoam cosmology with the proper vertex amplitude

    Science.gov (United States)

    Vilensky, Ilya

    2017-11-01

    The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.

  17. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique bea...... for cold atoms and for optical manipulation of microscopic particles.......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...

  18. Cut-constructible part of QCD amplitudes

    International Nuclear Information System (INIS)

    Britto, Ruth; Feng Bo; Mastrolia, Pierpaolo

    2006-01-01

    Unitarity cuts are widely used in analytic computation of loop amplitudes in gauge theories such as QCD. We expand upon the technique introduced in hep-ph/0503132 to carry out any finite unitarity cut integral. This technique naturally separates the contributions of bubble, triangle and box integrals in one-loop amplitudes and is not constrained to any particular helicity configurations. Loop momentum integration is reduced to a sequence of algebraic operations. We discuss the extraction of the residues at higher-order poles. Additionally, we offer concise algebraic formulas for expressing coefficients of three-mass triangle integrals. As an application, we compute all remaining coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon amplitudes

  19. Nonlinear (super)symmetries and amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata [Physics Department, Stanford University,382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States)

    2017-03-07

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E{sub 7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N≥5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

  20. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  1. Relativistic amplitudes in terms of wave functions

    International Nuclear Information System (INIS)

    Karmanov, V.A.

    1978-01-01

    In the framework of the invariant diagram technique which arises at the formulation of the fueld theory on the light front the question about conditions at which the relativistic amplitudes may be expressed through the wave functions is investigated. The amplitudes obtained depend on four-vector ω, determining the light front surface. The way is shown to find such values of the four-vector ω, at which the contribution of diagrams not expressed through wave functions is minimal. The investigation carried out is equivalent to the study of the dependence of amplitudes of the old-fashioned perturbation theory in the in the infinite momentum frame on direction of the infinite momentum

  2. Scattering Amplitudes and Worldsheet Models of QFTs

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.

  3. Digital signal processing for He3 proportional counter

    International Nuclear Information System (INIS)

    Zeynalov, Sh.S.; Ahmadov, Q.S.

    2010-01-01

    Full text : Data acquisition systems for nuclear spectroscopy have traditionally been based on systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing make possible to replace the analog shaping and timing circuitry the numerical algorithms to derive properties of the pulse such as its amplitude. DSP is a fully numerical analysis of the detector pulse signals and this technique demonstrates significant advantages over analog systems in some circumstances. From a mathematical point of view, one can consider the signal evolution from the detector to the ADC as a sequence of transformations that can be described by precisely defined mathematical expressions. Digital signal processing with ADCs has the possibility to utilize further information on the signal pulses from radiation detectors. In the experiment each step of the signal generation in the 3He filled proportional counter was described using digital signal processing techniques (DSP). The electronic system has consisted of a detector, a preamplifier and a digital oscilloscope. The pulses from the detector were digitized using a digital storage oscilloscope. This oscilloscope allowed signal digitization with accuracy of 8 bit (256 levels) and with frequency of up to 5 * 10 8 samples/s. As a neutron source was used Cf-252. To obtain detector output current pulse I(t) created by the motions of the ions/electrons pairs was written an algorithm which can easily be programmed using modern computer programming languages.

  4. Quantitative Analysis of GPR Signals: Transmitted Wavelet, Amplitude Decay, and Sampling-Related Amplitude Distortions

    Science.gov (United States)

    Dossi, M.; Forte, Emanuele; Pipan, M.

    2017-12-01

    We study the importance of accurately recording signal amplitudes for the quantitative analysis of GPR data sets. Specifically, we measure the peak amplitudes of signals emitted by GPR antennas with different central frequencies and study their amplitude decay with distance, in order to extrapolate the peak amplitude of the wavelet initially transmitted by each antenna. The purpose is to compare the reference and reflected amplitudes in order to accurately estimate the subsurface EM impedance contrasts. Moreover, we study how sampling-related amplitude distortions can affect the quantitative analysis, and subsequently the resulting subsurface models, even in the absence of aliasing effects. The well-known Nyquist-Shannon theorem gives practical lower limits for the sampling rate in order to preserve the spectral content of a digitized signal; however, we show that it does not prevent possible amplitude distortions. In particular, we demonstrate that significant and unrecoverable loss of amplitude information occurs even at sampling rates well above the Nyquist-Shannon threshold. Interpolation may theoretically reduce such amplitude distortions; however, its accuracy would depend on the implemented algorithm and it is not verifiable in real data sets, since the actual amplitude information is limited to the sampled values. Moreover, re-sampling the interpolated signal simply reintroduces the initial problem, when a new sampling rate is selected. Our analysis suggests that, in order to limit the maximum peak amplitude error within 5%, the sampling rate selected during data acquisition must be at least 12 times the signal central frequency, which is higher than the commonly adopted standards.

  5. Quantitative Analysis of GPR Signals: Transmitted Wavelet, Amplitude Decay, and Sampling-Related Amplitude Distortions

    Science.gov (United States)

    Dossi, M.; Forte, Emanuele; Pipan, M.

    2018-03-01

    We study the importance of accurately recording signal amplitudes for the quantitative analysis of GPR data sets. Specifically, we measure the peak amplitudes of signals emitted by GPR antennas with different central frequencies and study their amplitude decay with distance, in order to extrapolate the peak amplitude of the wavelet initially transmitted by each antenna. The purpose is to compare the reference and reflected amplitudes in order to accurately estimate the subsurface EM impedance contrasts. Moreover, we study how sampling-related amplitude distortions can affect the quantitative analysis, and subsequently the resulting subsurface models, even in the absence of aliasing effects. The well-known Nyquist-Shannon theorem gives practical lower limits for the sampling rate in order to preserve the spectral content of a digitized signal; however, we show that it does not prevent possible amplitude distortions. In particular, we demonstrate that significant and unrecoverable loss of amplitude information occurs even at sampling rates well above the Nyquist-Shannon threshold. Interpolation may theoretically reduce such amplitude distortions; however, its accuracy would depend on the implemented algorithm and it is not verifiable in real data sets, since the actual amplitude information is limited to the sampled values. Moreover, re-sampling the interpolated signal simply reintroduces the initial problem, when a new sampling rate is selected. Our analysis suggests that, in order to limit the maximum peak amplitude error within 5%, the sampling rate selected during data acquisition must be at least 12 times the signal central frequency, which is higher than the commonly adopted standards.

  6. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  7. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  8. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  9. Chiral symmetry constraints on resonant amplitudes

    Science.gov (United States)

    Bruns, Peter C.; Mai, Maxim

    2018-03-01

    We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.

  10. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...

  11. Microwave Imaging using Amplitude-only Data

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using...... amplitude-only data are compared with images obtained using the same data sets in which the phase information has been retained. In addition to this, some modifications for the imaging algorithm is presented which to some extent counters the effects of excluding the phase information in the reconstruction....

  12. SUSY shape-invariant Hamiltonians for the generalized dirac-coulomb problem

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Vaidya, Arvind Narayan

    2007-02-01

    A spin 1/2 relativistic particle described by a general potential in terms of the sum of the Coulomb potential with a Lorentz scalar potential is investigated via supersymmetry in quantum mechanics. (author)

  13. The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials

    International Nuclear Information System (INIS)

    Li Qun; Chen Yiheng

    2008-01-01

    The role played by the Coulombic traction for an interface crack in dissimilar piezoelectric materials is clarified. Based on the extended Stroh theory, the Coulombic traction, usually neglected in piezoelectric fracture, is imposed on the interface crack surfaces. It is found that the low-capacitance medium (air or vacuum) inside the crack gap yields some large Coulombic traction as compared to the applied mechanical loading whether the remanent polarization of piezoelectric material is considered or not. Thus, previous investigations based on the traction-free condition underestimate the role of the Coulombic traction and in turn may yield unexpected errors for the effective stress intensity factor (SIF) and energy release rate (ERR) at the crack tip. (technical note)

  14. Generalized ladder operators for the Dirac-Coulomb problem via SUSY QM

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Universidade Federal de Campina Grande, PB

    2003-12-01

    The supersymmetry in quantum mechanics and shape invariance condition are applied as an algebraic method to solving the Dirac-Coulomb problem. The ground state and the excited states are investigated via new generalized ladder operators. (author)

  15. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    Energy Technology Data Exchange (ETDEWEB)

    García-Ravelo, J., E-mail: g.ravelo@hotmail.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Menéndez, A.; García-Martínez, J. [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D.F., 07738 (Mexico); Schulze-Halberg, A. [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States)

    2014-06-13

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated.

  16. Effective Kratzer and Coulomb potentials as limit cases of a multiparameter exponential-type potential

    International Nuclear Information System (INIS)

    García-Ravelo, J.; Menéndez, A.; García-Martínez, J.; Schulze-Halberg, A.

    2014-01-01

    We show that the effective Kratzer and Coulomb potentials can be obtained by taking particular limits of a multiparameter exponential potential that was studied recently. Moreover, we demonstrate that the bound state solutions of the exponential potential reduce correctly to their well-known counterparts associated with the Kratzer and Coulomb potentials. As a byproduct, we obtain a new limit relation for the hypergeometric function. - Highlights: • Kratzer and Coulomb potentials are limit cases of an exponential-type potential. • From exact s-waves, approximate solutions for l-waves are obtained. • l-waves of the potential tend to the solutions of the Kratzer and Coulomb potentials. • A non-evident identity between hypergeometric functions is demonstrated

  17. A Hamilton-like vector for the special-relativistic Coulomb problem

    International Nuclear Information System (INIS)

    Munoz, Gerardo; Pavic, Ivana

    2006-01-01

    A relativistic point charge moving in a Coulomb potential does not admit a conserved Hamilton vector. Despite this fact, a Hamilton-like vector may be developed that proves useful in the derivation and analysis of the particle's orbit

  18. Gribov horizon and the one-loop color-Coulomb potential

    DEFF Research Database (Denmark)

    Golterman, Maarten; Greensite, Jeffrey Paul; Peris, Santiago

    2012-01-01

    We recalculate the color-Coulomb potential to one-loop order, under the assumption that the effect of the Gribov horizon is to make (i) the transverse gluon propagator less singular and (ii) the color-Coulomb potential more singular than their perturbative behavior in the low-momentum limit....... As a first guess, the effect of the Gribov horizon is mimicked by introducing a transverse momentum-dependent gluon mass term, leading to a propagator of the Gribov form, with the prescription that the mass parameter should be adjusted to the unique value where the infrared behavior of the Coulomb potential...... is enhanced. We find that this procedure leads to a Coulomb potential rising asymptotically as a linear term modified by a logarithm....

  19. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of 98Sr

    NARCIS (Netherlands)

    Clément, E; Görgen, A.; Korten, W.; Walle J. van de, [No Value

    2010-01-01

    In this addendum we ask for beam time to perform Coulomb excitation of 98Sr in order to complete our program on the study of shape coexistence and evolution of collectivity in neutron rich strontium isotopes at N=60.

  20. Log curve amplitude slicing: Visualization of well log amplitudes for paleogeographic reconstruction of the Middle Devonian Traverse Group, Michigan Basin

    Science.gov (United States)

    Wylie, Albert Sidney, Jr.

    Well log curve shapes and amplitude trends are routinely used to correlate and map formations and reservoirs across petroleum basins or fields. The methods typically employed for correlation and mapping fail, however, to make full use of the vertical resolution of well log curves. A new technique, log curve amplitude slicing (LCAS) facilitates correlation by generating a series of subhorizontal slices through the log curves using sample-by-sample analysis of log curve amplitudes in all wells between two correlative time-surfaces. The slices represent approximate time lines and are relative chronostratigraphic surfaces that can be gridded and contoured to show trends and patterns in log curve amplitudes in map view. When appropriate logs are used (e.g. gamma ray, photoelectric effect, resistivity), the slices show the inferred distribution of lithofacies at the time of deposition. Animation allows visualization of changes in the distribution of lithofacies between successive slices. The log curves can be sliced through the interval of interest from the top-down, from the bottom-up, or proportionally depending upon the sequence stratigraphic interpretation. Application of the LCAS technique facilitates correlation because it highlights trends in log curve amplitudes that are not apparent using traditional methods to display and compare log curves. Gamma ray log data from 199 wells are used in this dissertation to identify the location, relative timing, and extent of significant fine-grained clastic influx into the carbonate/evaporite-dominated Michigan Basin during deposition of the Middle Devonian Traverse Group. LCAS maps are combined with outcrop stratigraphy to reconstruct the depositional history of the Traverse Group and to develop a relative water depth curve for the Michigan Basin during the Middle Devonian. Comparison of the relative water depth curve to a eustatic sea level curve suggests that although sea level fall may have resulted in formation of

  1. Numerical Investigations of the Three-Dimensional Proton-Proton Screened Coulomb t-Matrix

    International Nuclear Information System (INIS)

    Skibinski, R.; Golak, J.; Witala, H.

    2010-01-01

    We demonstrate behaviour of the momentum space screened Coulomb t-matrix, obtained by a numerical solution of the three-dimensional Lippmann- Schwinger equation. Examples are given for different types of screening. They prove that it is possible to obtain numerically a reliable three dimensional screened Coulomb t-matrix, what is important in view of its application in few-body calculations. (authors)

  2. Dependence of conductivity on thickness within the variable-range hopping regime for Coulomb glasses

    Directory of Open Access Journals (Sweden)

    M. Caravaca

    Full Text Available In this paper, we provide some computational evidence concerning the dependence of conductivity on the system thickness for Coulomb glasses. We also verify the Efros–Shklovskii law and deal with the calculation of its characteristic parameter as a function of the thickness. Our results strengthen the link between theoretical and experimental fields. Keywords: Coulomb glass, Conductivity, Density of states, Efros–Shklovskii law

  3. Zeeman splitting spin filter in a single quantum dot electron transport with Coulomb blockade effect

    OpenAIRE

    Lai, Wenxi

    2014-01-01

    Electron spin filter induced by Zeeman splitting in a few-electron quantum dot coupled to two normal electrodes is studied considering Coulomb blockade effect. Based on the Anderson model and Liouville-von Neumann equation, equation of motion of the system is derived and analytical solutions are achieved. Transport windows for perfectly polarized current, partially polarized current and non-polarized current induced by the Zeeman splitting energy and Coulomb blockade potential are exploited. ...

  4. Coulomb dissociation of {sup 8}B at 254 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Suemmerer, K.; Boue, F.; Baumann, T.; Geissel, H.; Hellstroem, M.; Koczon, P.; Schwab, E.; Schwab, W.; Senger, P.; Surowiecz, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Iwasa, N.; Ozawa, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[RIKEN Institute of Physical and Chemical Research, Saitama (Japan); Surowka, G. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Blank, B.; Czajkowski, S.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 (France); Foerster, A.; Lauer, F.; Oeschler, H.; Speer, J.; Sturm, C.; Uhlig, F.; Wagner, A. [Technische Univ. Darmstadt (Germany); Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Grosse, E. [Inst. fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden (Germany); Kohlmeyer, B. [Philipps Univ., Marburg (Germany). Fachbereich Physik; Kulessa, R.; Walus, W. [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Motobayashi, T. [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Teranishi, T. [RIKEN Institute of Physical and Chemical Research, Saitama (Japan)

    1998-06-01

    As an alternative method for determining the astrophysical S-factor for the {sup 7}Be(p,{gamma}){sup 8}B reaction we have measured the Coulomb dissociation of {sup 8}B at 254 A MeV. From our preliminary results, we obtain good agreement with both the accepted direct-reaction measurements and the low-energy Coulomb dissociation study of Iwasa et al. performed at about 50 A MeV. (orig.)

  5. Quantum effects on the coulomb logarithm for energetic ions during the initial thermalization phase

    CERN Document Server

    Deng Bai Quan; Deng Mei Gen; Peng Li Lin

    2002-01-01

    The authors have discussed the quantum mechanical effects for the energetic charged particles produced in D-He sup 3 fusion reactions. Authors' results show that it is better to use the proper Coulomb logarithm at the high-energy end in describing the thermalization process, because the quantum mechanical effects on the Coulomb logarithm are not negligible, based on an assumption of binary collision

  6. Alpha particles-and 3He inelastic scattering by 124Sn in the coulomb barrier region

    International Nuclear Information System (INIS)

    Appoloni, C.R.

    1976-01-01

    Angular distributions for inelastic scattering of α and 3 He particles in 124 Sn at the incident energies around Coulomb barrier were measured using the 8UD Pelletron Tandem Accelerator of The University of Sao Paulo. The results were analysed by DWBA with a collective form factor including the effects due to the interference between coulomb and nuclear excitations with the code PATIWEN (Ba75). The nuclear deformation parameters for the one phonon levels (2 + and 3 - ) have been obtained. (Author) [pt

  7. Elastic scattering of intermediate energy kaons from nuclei and its Coulomb effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhenqiu; Kong Lingjiang; Liu Xianhui

    1986-04-01

    In the frame of the eikonal multiple scattering theory, using the basic parameters which are given by the different authors, the elastic scattering of the intermediate energy kaon mesons on /sup 12/C and /sup 40/Ca is studied. The Coulomb effect is calculated too. The results are in agreement with the experimental data. The Coulomb effect not only enhances the small angle differential cross section, but also fills up the dip of the differential cross section.

  8. A uniform semi-classical approach to the Coulomb fission problem

    International Nuclear Information System (INIS)

    Levit, S.; Smilansky, U.

    1978-01-01

    A semi-classical theory based on the path integral formalism is applied to the description of Coulomb fission. Complex classical trajectories are used to compute the classically forbidden transitions from the target's ground state to fission. In a simple model the energy spectrum and angular distributions of the fragments are calculated for the Coulomb fission in the Xe + U collision. Theoretical predictions are made which may be checked experimentally. (author)

  9. Proportional representation apportionment methods and their applications

    CERN Document Server

    Pukelsheim, Friedrich

    2017-01-01

    The book offers an in-depth study of the translation of vote counts into seat numbers in proportional representation systems  – an approach guided by practical needs. It also provides plenty of empirical instances illustrating the results. It analyzes in detail the 2014 elections to the European Parliament in the 28 member states, as well as the 2009 and 2013 elections to the German Bundestag. This second edition is a complete revision and expanded version of the first edition published in 2014, and many empirical election results that serve as examples have been updated. Further, a final chapter has been added assembling biographical sketches and authoritative quotes from individuals who pioneered the development of apportionment methodology. The mathematical exposition and the interrelations with political science and constitutional jurisprudence make this an apt resource for interdisciplinary courses and seminars on electoral systems and apportionment methods.

  10. Stora's fine notion of divergent amplitudes

    Directory of Open Access Journals (Sweden)

    Joseph C. Várilly

    2016-11-01

    Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  11. Ward identities for amplitudes with reggeized gluons

    International Nuclear Information System (INIS)

    Bartles, J.; Vacca, G.P.

    2012-05-01

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  12. Particle Distribution Modification by Low Amplitude Modes

    International Nuclear Information System (INIS)

    White, R.B.; Gorelenkov, N.; Heidbrink, W.W.; Van Zeeland, M.A.

    2009-01-01

    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.

  13. Connected formulas for amplitudes in standard model

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)

    2017-03-17

    Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  14. Scattering amplitudes in super-renormalizable gravity

    International Nuclear Information System (INIS)

    Donà, Pietro; Giaccari, Stefano; Modesto, Leonardo; Rachwał, Lesław; Zhu, Yiwei

    2015-01-01

    We explicitly compute the tree-level on-shell four-graviton amplitudes in four, five and six dimensions for local and weakly nonlocal gravitational theories that are quadratic in both, the Ricci and scalar curvature with form factors of the d’Alembertian operator inserted between. More specifically we are interested in renormalizable, super-renormalizable or finite theories. The scattering amplitudes for these theories turn out to be the same as the ones of Einstein gravity regardless of the explicit form of the form factors. As a special case the four-graviton scattering amplitudes in Weyl conformal gravity are identically zero. Using a field redefinition, we prove that the outcome is correct for any number of external gravitons (on-shell n−point functions) and in any dimension for a large class of theories. However, when an operator quadratic in the Riemann tensor is added in any dimension (with the exception of the Gauss-Bonnet term in four dimensions) the result is completely altered, and the scattering amplitudes depend on all the form factors introduced in the action.

  15. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution for the init...

  16. Kaon decay amplitudes using staggered fermions

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1986-12-01

    A status report is given of an attempt, using staggered fermions to calculate the real and imaginary parts of the amplitudes for K → ππ,. Semi-quantitative results are found for the imaginary parts, and these suggest that ε' might be smaller than previously expected in the standard model

  17. Extremes of 2d Coulomb gas: universal intermediate deviation regime

    Science.gov (United States)

    Lacroix-A-Chez-Toine, Bertrand; Grabsch, Aurélien; Majumdar, Satya N.; Schehr, Grégory

    2018-01-01

    In this paper, we study the extreme statistics in the complex Ginibre ensemble of N × N random matrices with complex Gaussian entries, but with no other symmetries. All the N eigenvalues are complex random variables and their joint distribution can be interpreted as a 2d Coulomb gas with a logarithmic repulsion between any pair of particles and in presence of a confining harmonic potential v(r) \\propto r2 . We study the statistics of the eigenvalue with the largest modulus r\\max in the complex plane. The typical and large fluctuations of r\\max around its mean had been studied before, and they match smoothly to the right of the mean. However, it remained a puzzle to understand why the large and typical fluctuations to the left of the mean did not match. In this paper, we show that there is indeed an intermediate fluctuation regime that interpolates smoothly between the large and the typical fluctuations to the left of the mean. Moreover, we compute explicitly this ‘intermediate deviation function’ (IDF) and show that it is universal, i.e. independent of the confining potential v(r) as long as it is spherically symmetric and increases faster than \\ln r2 for large r with an unbounded support. If the confining potential v(r) has a finite support, i.e. becomes infinite beyond a finite radius, we show via explicit computation that the corresponding IDF is different. Interestingly, in the borderline case where the confining potential grows very slowly as v(r) ∼ \\ln r2 for r \\gg 1 with an unbounded support, the intermediate regime disappears and there is a smooth matching between the central part and the left large deviation regime.

  18. Phase variation of nucleon-nucleon amplitude for proton-12C elastic scattering

    International Nuclear Information System (INIS)

    Deng Yibing; Wang Shilai; Yin Gaofang

    2006-01-01

    Franco and Yin studied for α- 4 He, 3 He, 2 He, 1 He elastic-scattering by using the phase of the nucleon-nucleon elastic-scattering amplitude varies with momentum transfer in the framework of Glauber multiple scattering theory at intermediate energy. The phase variation leads to large changes in the differential cross sections, and brings the Glauber theory into agreement with experimental data. Later Lombard and Maillet is based on the suggestion by Franco and Yin studied for the p- 4 He elastic-scattering in the framework of Glauber theory, and found this phase to be actually important for the description of spin observables. Recently Wang Shilai and Deng Yibing et al studied for the p- 4 He elastic-scattering in the framework of KMT multiple scattering theory at intermediate energy, and found this phase lead to differential cross sections and polarization, which are in better agreement with experimental data. This paper is based on the suggestion by Franco and Yin that the phase of the nucleon-nucleon scattering amplitude should vary with momentum transfer. The proton elastic scattering on 12 C is studied in the KMT multiple scattering theory with microscopic momentum space first term optical potential. The Coulomb interactions are taken into account in our calculation. The theoretical calculation results show that the phase leads to differential cross section and polarization are in better agreement with experimental data. In conclusion this phase is actually important in the framework of KMT theory. (authors)

  19. Calibration of proportional counters in microdosimetry

    International Nuclear Information System (INIS)

    Varma, M.N.

    1982-01-01

    Many microdosimetric spectra for low LET as well as high LET radiations are measured using commercially available (similar to EG and G) Rossi proportional counters. This paper discusses the corrections to be applied to data when calibration of the counter is made using one type of radiation, and then the counter is used in a different radiation field. The principal correction factor is due to differences in W-value of the radiation used for calibration and the radiation for which microdosimetric measurements are made. Both propane and methane base tissue-equivalent (TE) gases are used in these counters. When calibrating the detectors, it is important to use the correct stopping power value for that gas. Deviations in y-bar/sub F/ and y-bar/sub D/ are calculated for 60 Co using different extrapolation procedures from 0.15 keV/μm to zero event size. These deviations can be as large as 30%. Advantages of reporting microdosimetric parameters such as y-bar/sub F/ and y-bar/sub D/ above a certain minimum cut-off are discussed

  20. Evaluation of craniofacial proportions: A pilot study.

    Science.gov (United States)

    Sadeghian, Saied; Motamedi, Ali Mohammad Kalantar; Haerian, Alireza; Rafiei, Elahe

    2015-01-01

    Regarding the need for determining the cephalometric norms for each population and the advantages of proportional analyses, we evaluated the variables of McNamara and Schwartz analyses and their relation in a pilot study on 6-17 years old Iranian students and provided formulas, which show these relations. In this descriptive-analytical study, a tatal of cephalometric radiographs from the archive documents of Orthodontic Department of Isfahan Dental School was selected and traced. The variables of McNamara and Schwartz analyses were investigated. The data were analyzed by t-test and linear regression and Spearman correlation coefficient tests using SPSS 12 software, and the significance was set at 0.05. Then, a formula was suggested for predicting the relation between the jaws, cranium and face. The variables measured in this study were significantly different between the genders (P < 0.05), except for Co-Gn (P = 0.055), and they were higher in boys. All variables significantly increased (P < 0.05) with age from 6 to 17 years. The formulas presented in this study can be used for calculating the amount of PNS-APmax, Go-APmax and the Co-Gn, anterior nasal spine-menton in the Iranian population. Within the limitation of this study, the formula presented in this study might be considered to predict the relation between jaw dimensions and cranial base and facial dimensions in the Iranian population.

  1. Proportional counter measurements in neutron therapy beams

    International Nuclear Information System (INIS)

    Menzel, H.G.

    1984-01-01

    Dosimetry for clinical neutron therapy requires a characterization of radiation quality in addition to the specification of absorbed dose. Generally, a very simple approach has been adopted which consists in separating total absorbed dose into neutron and photon fractions. This is explained by the requirement of clinical dosimetry to apply methods suitable for routine measurements, by the lack of generally accepted improved alternatives, and by the fact that radiation quality is only one of several problems in neutron therapy not sufficiently solved. Spectra measured with low-pressure tissue-equivalent proportional counters (experimental microdosimetry) provide a detailed description of the physical properties of the radiation field at neutron therapy facilities. These descriptions are suitable for explaining the influence of different parameters (collimation, field size, phantom) on radiation quality. Although the physical properties of the radiation field as described by the measured microdosimetric distributions and quantities are not the only properties relevant for radiation effects, in general there are reasons to believe that they provide a suitable radiation quality characterization for the limited range of applications in neutron therapy. (author)

  2. Exact tests for Hardy-Weinberg proportions.

    Science.gov (United States)

    Engels, William R

    2009-12-01

    Exact conditional tests are often required to evaluate statistically whether a sample of diploids comes from a population with Hardy-Weinberg proportions or to confirm the accuracy of genotype assignments. This requirement is especially common when the sample includes multiple alleles and sparse data, thus rendering asymptotic methods, such as the common chi(2)-test, unreliable. Such an exact test can be performed using the likelihood ratio as its test statistic rather than the more commonly used probability test. Conceptual advantages in using the likelihood ratio are discussed. A substantially improved algorithm is described to permit the performance of a full-enumeration exact test on sample sizes that are too large for previous methods. An improved Monte Carlo algorithm is also proposed for samples that preclude full enumeration. These algorithms are about two orders of magnitude faster than those currently in use. Finally, methods are derived to compute the number of possible samples with a given set of allele counts, a useful quantity for evaluating the feasibility of the full enumeration procedure. Software implementing these methods, ExactoHW, is provided.

  3. Validation of models with proportional bias

    Directory of Open Access Journals (Sweden)

    Salvador Medina-Peralta

    2017-01-01

    Full Text Available Objective. This paper presents extensions to Freese’s statistical method for model-validation when proportional bias (PB is present in the predictions. The method is illustrated with data from a model that simulates grassland growth. Materials and methods. The extensions to validate models with PB were: the maximum anticipated error for the original proposal, hypothesis testing, and the maximum anticipated error for the alternative proposal, and the confidence interval for a quantile of error distribution. Results. The tested model had PB, which once removed, and with a confidence level of 95%, the magnitude of error does not surpass 1225.564 kg ha-1. Therefore, the validated model can be used to predict grassland growth. However, it would require a fit of its structure based on the presence of PB. Conclusions. The extensions presented to validate models with PB are applied without modification in the model structure. Once PB is corrected, the confidence interval for the quantile 1-α of the error distribution enables a higher bound for the magnitude of the prediction error and it can be used to evaluate the evolution of the model for a system prediction.

  4. Characterization of neurons in the primate medial intraparietal area reveals a joint representation of intended reach direction and amplitude.

    Science.gov (United States)

    Rajalingham, Rishi; Musallam, Sam

    2017-01-01

    To support accurate memory-guided reaching, the brain must represent both the direction and amplitude of reaches in a movement plan. Several cortical areas have been shown to represent the direction of a planned reaching movement, but the neuronal representation of reach amplitude is still unclear, especially in sensory-motor integration areas. To investigate this, we recorded from neurons in the medial intraparietal area (MIP) of monkeys performing a variable amplitude memory reach task. In one monkey, we additionally recorded from the dorsal premotor cortex (PMd) for direct cross-area comparisons. In both areas, we found modest but significant proportions of neurons with movement-planning activity sensitive to reach amplitude. However, reach amplitude was under-represented relative to direction in the neuronal population, with approximately one third as many selective neurons. We observed an interaction between neuronal selectivity for amplitude and direction; neurons in both areas exhibited significant modulation of neuronal activity by reach amplitude in some but not all directions. Consistent with an encoding of reach goals as a position in visual space, the response patterns of MIP/PMd neurons were best predicted by 2D Gaussian position encoding model, in contrast to a number of alternative direction and amplitude tuning models. Taken together, these results suggest that amplitude and direction jointly modulate activity in MIP, as in PMd, to form representations of intended reach position.

  5. Direct evidence for a Coulombic phase in monopole-suppressed SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Grady, Michael

    2013-01-01

    Further evidence is presented for the existence of a non-confining phase at weak coupling in SU(2) lattice gauge theory. Using Monte Carlo simulations with the standard Wilson action, gauge-invariant SO(3)–Z2 monopoles, which are strong-coupling lattice artifacts, have been seen to undergo a percolation transition exactly at the phase transition previously seen using Coulomb gauge methods, with an infinite lattice critical point near β=3.2. The theory with both Z2 vortices and monopoles and SO(3)–Z2 monopoles eliminated is simulated in the strong-coupling (β=0) limit on lattices up to 60 4 . Here, as in the high-β phase of the Wilson-action theory, finite size scaling shows it spontaneously breaks the remnant symmetry left over after Coulomb gauge fixing. Such a symmetry breaking precludes the potential from having a linear term. The monopole restriction appears to prevent the transition to a confining phase at any β. Direct measurement of the instantaneous Coulomb potential shows a Coulombic form with moderately running coupling possibly approaching an infrared fixed point of α∼1.4. The Coulomb potential is measured to 50 lattice spacings and 2 fm. A short-distance fit to the 2-loop perturbative potential is used to set the scale. High precision at such long distances is made possible through the use of open boundary conditions, which was previously found to cut random and systematic errors of the Coulomb gauge fixing procedure dramatically. The Coulomb potential agrees with the gauge-invariant interquark potential measured with smeared Wilson loops on periodic lattices as far as the latter can be practically measured with similar statistics data

  6. Application of screened Coulomb potential in fitting DBV star PG 0112+104

    Science.gov (United States)

    Chen, Y. H.

    2018-03-01

    With 78.7 d of observations for PG 0112+104, a pulsating DB star, from Campaign 8 of Kepler 2 mission, Hermes et al. made a detailed mode identification. A reliable mode identification, with 5 l = 1 modes, 3 l = 2 modes, and 3 l = 1 or 2 modes, was identified. Grids of DBV star models are evolved by WDEC with element diffusion effect of pure Coulomb potential and screened Coulomb potential. Fitting the identified modes of PG 0112+104 by the calculated ones, we studied the difference of element diffusion effect between adopting pure Coulomb potential and screened Coulomb potential. Our aim is to reduce the fitting error by studying new input physics. The starting models including their chemical composition profile are from white dwarf models evolved by MESA. They were calculated following the stellar evolution from the main sequence to the start of the white dwarf cooling sequences. The optimal parameters are basically consistent with that of previous spectroscopic and asteroseismological studies. The pure and screened Coulomb potential lead to different composition profiles of the C/O-He interface area. High k modes are very sensitive to the area. However, most of the observed modes for PG 0112+104 are low k modes. The σRMS taking the screened Coulomb potential is reduced by 4 per cent compared with taking the pure Coulomb potential when fitting the identified low k modes of PG 0112+104. Fitting the Kepler 2 data with our models improved the σRMS of the fit by 27 per cent.

  7. Amplitude-dependency of response of SI cortex to flutter stimulation

    Directory of Open Access Journals (Sweden)

    Whitsel Barry L

    2005-06-01

    Full Text Available Abstract Background It is established that increasing the amplitude of a flutter stimulus increases its perceived intensity. Although many studies have examined this phenomenon with regard to the responding afferent population, the way in which the intensity of a stimulus is coded in primary somatosensory cortex (SI remains unclear. Results Optical intrinsic signal (OIS imaging was used to study the evoked responses in SI of anesthetized squirrel monkeys by 25 Hz sinusoidal vertical skin displacement stimulation. Stimuli were 10 sec duration with a 50 sec inter-stimulus interval. Stimulus amplitude ranged from 50 to 400 microns and different amplitudes were interleaved. Control levels of activity were measured in the absence of stimulation, and used to compare with activation levels evoked by the different stimulus amplitudes. Stimulation of a discrete skin site on the forelimb evoked a prominent increase in absorbance within the forelimb representational region in cytoarchitectonic areas 3b and 1 of the contralateral hemisphere. An increase in stimulus amplitude led to a proportional increase in the magnitude of the absorbance increase in this region of areas 3b and 1 while surrounding cortex underwent a decrease in absorbance. Correlation maps revealed that as stimulus amplitude is increased, the spatial extent of the activated region in SI remains relatively constant, and the activity within this region increases progressively. Additionally, as stimulus amplitude is increased to suprathreshold levels, activity in the surround of the activated SI territory decreases, suggesting an increase in inhibition of neuronal activity within these regions. Conclusion Increasing the amplitude of a flutter stimulus leads to a proportional increase in absorbance within the forelimb representational region of SI. This most likely reflects an increase in the firing rate of neurons in this region of SI. The relatively constant spatial extent of this stimulus

  8. Novel Intelligent and Sensorless Proportional Valve Control with Self-Learning Ability

    Directory of Open Access Journals (Sweden)

    Bayram Akdemir

    2016-01-01

    Full Text Available Linear control is widely used for any fluid or air flows in many automobile, robotics, and hydraulics applications. According to signal level, valve can be controlled linearly. But, for many valves, hydraulics or air is not easy to control proportionally because of flows dynamics. As a conventional solution, electronic driver has up and down limits. After manually settling up and down limits, control unit has proportional blind behavior between two points. This study offers a novel valve control method merging pulse width and amplitude modulation in the same structure. Proposed method uses low voltage AC signal to understand the valve position and uses pulse width modulation for power transfer to coil. DC level leads to controlling the valve and AC signal gives feedback related to core moving. Any amplitude demodulator gives core position as voltage. Control unit makes reconstruction using start and end points to obtain linearization at zero control signal and maximum control signal matched to minimum demodulated amplitude level. Proposed method includes self-learning abilities to keep controlling in hard environmental conditions such as dust, temperature, and corrosion. Thus, self-learning helps to provide precision control for hard conditions.

  9. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  10. Modified amplitude of the gravitational wave spectrum

    International Nuclear Information System (INIS)

    Ghayour, Basem; Suresh, P K

    2012-01-01

    The spectrum of thermal gravitational waves is obtained by including the high-frequency thermal gravitons created from extra-dimensional effects and is a new feature of the spectrum. The amplitude and spectral energy density of gravitational waves in a thermal vacuum state are found to be enhanced. The amplitude of the waves is modified in the frequency range (10 −16 –10 8 Hz) but the corresponding spectral energy density is less than the upper bound of various estimated results. With the addition of higher frequency thermal waves, the obtained spectral energy density of the wave in the thermal vacuum state does not exceed the upper bound put by the nucleosynthesis rate. The existence of cosmologically originated thermal gravitational waves due to extra dimension is not ruled out. (paper)

  11. Loop Amplitude Diagrams in Manifest, Maximal Supergravity

    Science.gov (United States)

    Karlsson, Anna

    The issue of finiteness of maximal supergravity has been subject to research for quite some time. Here, we approach that question through an examination of how to describe amplitude diagrams in D = 11 maximal supergravity from a field theory point of view. The strength of the formulation is the presence of manifest supersymmetry through the use of pure spinors. An initial analysis of what the subsequent characteristics turn out to be, partly in lower dimensions through dimensional reduction, gives at hand results that agree with previous work, pointing towards a first divergence for the 7-loop contribution to the 4-point amplitude in four dimensions. The text is mainly based on and may be regarded as an introduction to the main points presented there.

  12. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...

  13. A brief introduction to modern amplitude methods

    CERN Document Server

    Dixon, Lance J.

    2014-12-10

    I provide a basic introduction to modern helicity amplitude methods, including color organization, the spinor helicity formalism, and factorization properties. I also describe the BCFW (on-shell) recursion relation at tree level, and explain how similar ideas - unitarity and on-shell methods - work at the loop level. These notes are based on lectures delivered at the 2012 CERN Summer School and at TASI 2013.

  14. Phase analysis of amplitude binary mask structures

    Science.gov (United States)

    Puthankovilakam, Krishnaparvathy; Scharf, Toralf; Herzig, Hans Peter; Vogler, Uwe; Bramati, Arianna; Voelkel, Reinhard

    2016-03-01

    Shaping of light behind masks using different techniques is the milestone of the printing industry. The aerial image distribution or the intensity distribution at the printing distances defines the resolution of the structure after printing. Contrast and phase are the two parameters that play a major role in shaping of light to get the desired intensity pattern. Here, in contrast to many other contributions that focus on intensity, we discuss the phase evolution for different structures. The amplitude or intensity characteristics of the structures in a binary mask at different proximity gaps have been analyzed extensively for many industrial applications. But the phase evolution from the binary mask having OPC structures is not considered so far. The mask we consider here is the normal amplitude binary mask but having high resolution Optical Proximity Correction (OPC) structures for corners. The corner structures represent a two dimensional problem which is difficult to handle with simple rules of phase masks design and therefore of particular interest. The evolution of light from small amplitude structures might lead to high contrast by creating sharp phase changes or phase singularities which are points of zero intensity. We show the phase modulation at different proximity gaps and can visualize the shaping of light according to the phase changes. The analysis is done with an instrument called High Resolution Interference Microscopy (HRIM), a Mach-Zehnder interferometer that gives access to three-dimensional phase and amplitude images. The current paper emphasizes on the phase measurement of different optical proximity correction structures, and especially on corners of a binary mask.

  15. Deep Inelastic Scattering at the Amplitude Level

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances

  16. Transversity Amplitudes in Hypercharge Exchange Processes

    International Nuclear Information System (INIS)

    Aguilar Benitez de Lugo, M.

    1979-01-01

    ' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from K p and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs

  17. Accommodative Amplitude in School-Age Children

    Directory of Open Access Journals (Sweden)

    Ikaunieks Gatis

    2017-10-01

    Full Text Available In children, intensive near-work affects the accommodation system of the eye. Younger children, due to anatomical parameters, read at smaller distance than older children and we can expect that the accommodation system of younger can be affected more than that of older children. We wanted to test this hypothesis. Some authors showed that the norms of amplitude of accommodation (AA developed by Hofstetter (1950 not always could be applied for children. We also wanted to verify these results. A total of 106 (age 7-15 children participated in the study. Distance visual acuity was measured for all children and only data of children with good visual acuity 1.0 or more (dec. units were analysed (73 children. Accommodative amplitude was measured before and after lessons using subjective push-up technique (with RAF Near Point Ruler. The results showed that the amplitude of accommodation reduced significantly (p < 0.05 during the day and decrease of AA was similar in different age groups (about ~0.70 D. Additional measurements are needed to verify that the observed changes in AA were associated with fatigue effect. The results showed lower accommodation values compared to average values calculated according to the Hofstetter equation (p < 0.05.

  18. Differential equations for Feynman graph amplitudes

    International Nuclear Information System (INIS)

    Remiddi, E.

    1997-01-01

    It is by now well established that, by means of the integration by part identities all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first-order differential equations for the master integrals themselves. The equations con then be used for the numerical evaluation of the amplitudes as well as for investigating their analytic properties, such as the asymptotic and threshold behaviours and the corresponding expansions (and for analytic integration purposes, when possible). The new method is illustrated through its somewhat detailed application to the case of the one-loop self-mass amplitude, by explicitly working out expansions and quadrature formulas, both in arbitrary continuous dimension n and in the n→4 limit. It is then shortly discussed which features of the new method are expected to work in the more general case of multi-point, multi-loop amplitudes

  19. Amplitude analysis for hypercharge exchange reactions

    CERN Document Server

    Barger, V

    1972-01-01

    The s channel helicity non-flip amplitudes for the line reversed reactions pi N to K( Sigma , Lambda ) and KN to pi ( Sigma , Lambda ) are determined directly from cross-section and polarization data at 4 GeV/c. Rigorous bounds are obtained on the magnitudes of the flip amplitudes, whose phases are assumed to be given by an exchange degenerate K*-K** Regge trajectory. The solution for the non-flip amplitude is unique and shows the following characteristics: (i) Im K* ( Delta lambda =0) has a 'cross-over' zero at t approximately=-0.15 in both Sigma and Lambda reactions, (ii) Im K** ( Delta lambda =0) has an approximate double zero near t approximately=-0.6 in Sigma reactions and a positive minimum there in Lambda reactions, (iii) Re K* ( Delta lambda =0) and Re K** ( Delta lambda =0) are less peripheral in character than their imaginary counter-part and have similar behaviour at alpha =0 to simple Regge poles. (12 refs).

  20. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  1. Digital signal processing for He3 proportional counter

    International Nuclear Information System (INIS)

    Ahmadov, Q.S.; Institute of Radiation Problems, ANAS, Baku

    2011-01-01

    Full text: Data acquisition systems for nuclear spectroscopy have traditionally been based on systems with analog shaping amplifiers followed by analog-to-digital converters. Recently, however, new systems based on digital signal processing allow us to replace the analog shaping and timing circuitry the numerical algorithms to derive properties of the pulse such as its amplitude. DSP is a fully numerical analysis of the detector pulse signals and this technique demonstrates significant advantages over analog systems in some circumstances. From a mathematical point of view, one can consider the signal evolution from the detector to the ADC as a sequence of transformations that can be described by precisely defined mathematical expressions.Digital signal processing with ADCs has the possibility to utilize further information on the signal pulses from radiation detectors [1] [2]. In the experiment each step of the signal generation in the 3He filled proportional counter was described using digital signal processing techniques (DSP). The electronic system has consisted of a detector, a preamplifier and a digital oscilloscope. The pulses from the detector were digitized using a OTSZS-02 (250USB)-4 digital storage oscilloscope from ZAO R UDNEV-SHILYAYEV . This oscilloscope allowed signal digitization with accuracy of 8 bit(256 levels) and with frequency of up to 5.10''8 samples/s. As a neutron source was used Cf-252.To obtain detector output current pulse I(t) created by the motions of the ions/electrons pairs was written an algorithm which can easily be programmed using modern computer programming languages

  2. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  3. The three-point function in split dimensional regularization in the Coulomb gauge

    CERN Document Server

    Leibbrandt, G

    1998-01-01

    We use a gauge-invariant regularization procedure, called ``split dimensional regularization'', to evaluate the quark self-energy $\\Sigma (p)$ and quark-quark-gluon vertex function $\\Lambda_\\mu (p^\\prime,p)$ in the Coulomb gauge, $\\vec{\\bigtriangledown}\\cdot\\vec{A}^a = 0$. The technique of split dimensional regularization was designed to regulate Coulomb-gauge Feynman integrals in non-Abelian theories. The technique which is based on two complex regulating parameters, $\\omega$ and $\\sigma$, is shown to generate a well-defined set of Coulomb-gauge integrals. A major component of this project deals with the evaluation of four-propagator and five-propagator Coulomb integrals, some of which are nonlocal. It is further argued that the standard one-loop BRST identity relating $\\Sigma$ and $\\Lambda_\\mu$, should by rights be replaced by a more general BRST identity which contains two additional contributions from ghost vertex diagrams. Despite the appearance of nonlocal Coulomb integrals, both $\\Sigma$ and $\\Lambda_\\...

  4. Coulomb Fourier transformation: A novel approach to three-body scattering with charged particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Levin, S.B.; Yakovlev, S.L.

    2004-01-01

    A unitary transformation of the three-body Hamiltonian which describes a system of two charged and one neutral particles is constructed such that the Coulomb potential which acts between the charged particles is explicitly eliminated. The transformed Hamiltonian and, in particular, the transformed short-range pair interactions are worked out in detail. Thereby it is found that, after transformation, the short-range potentials acting between the neutral and either one of the charged particles become simply Fourier transformed but, in addition, multiplied by a function that represents the Coulombic three-body correlations originating from the action of the other charged particle on the considered pair. This function which is universal as it does not depend on any property of the short-range interaction is evaluated explicitly and its singularity structure is described in detail. In contrast, the short-range potential between the charged particles remains of two-body type but occurs now in the 'Coulomb representation'. Specific applications to Yukawa and Gaussian potentials are given. Since the Coulomb-Fourier-transformed Hamiltonian does no longer contain the Coulomb potential or any other effective interaction of long range, standard methods of short-range few-body scattering theory are applicable

  5. Calculation of the Trubnikov and Nanbu Collision Kernels: Implications for Numerical Modeling of Coulomb Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A M; Wang, C; Caflisch, R; Cohen, B I; Huang, Y

    2008-08-06

    We investigate the accuracy of and assumptions underlying the numerical binary Monte-Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997)]. The numerical experiments that resulted in the parameterization of the collision kernel used in Nanbu's operator are argued to be an approximate realization of the Coulomb-Lorentz pitch-angle scattering process, for which an analytical solution for the collision kernel is available. It is demonstrated empirically that Nanbu's collision operator quite accurately recovers the effects of Coulomb-Lorentz pitch-angle collisions, or processes that approximate these (such interspecies Coulomb collisions with very small mass ratio) even for very large values of the collisional time step. An investigation of the analytical solution shows that Nanbu's parameterized kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values of the time step. Careful numerical and analytical investigations are presented, which show that the time dependence of the relaxation of a temperature anisotropy by Coulomb-Lorentz collisions has a richer structure than previously thought, and is not accurately represented by an exponential decay with a single decay rate. Finally, a practical collision algorithm is proposed that for small-mass-ratio interspecies Coulomb collisions improves on the accuracy of Nanbu's algorithm.

  6. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  7. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models

    Science.gov (United States)

    Mehta, Neil A.; Levin, Deborah A.

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  8. Study of the nuclear-coulomb low-energy scattering parameters on the basis of the p-matrix approach

    International Nuclear Information System (INIS)

    Babenko, V.A.; Petrov, N.M.

    1993-01-01

    The P-matrix approach application to the description of two charged strongly interacting particles nuclear-Coulomb scattering parameters is considered. The nuclear-Coulomb scattering length and effective range explicit expressions in terms of the P-matrix parameters are found. The nuclear-Coulomb low-energy parameters expansions in powers of small parameter β ≡ R/a b , involving terms with big logarithms, are obtained. The nuclear-Coulomb scattering length and effective range for the square-well and the delta-shell short range potentials are found in an explicit form. (author). 21 refs

  9. A New Method for Maintaining Constant Dither Amplitude in Low Frequency PWM

    Directory of Open Access Journals (Sweden)

    KANG, H.

    2017-02-01

    Full Text Available Various controls for fluid flow and pressure are now required in related industries, and the pulse width modulation (PWM and dithering techniques have become essential for the proportional control of solenoids. However, there is a fatal drawback when the dither current signals are generated as a by-product of low frequency PWM. That is, the average current and the dither amplitude in low frequency PWM cannot be controlled independently. Therefore, a new method for maintaining constant dither amplitudes is proposed in this paper. Throughout the mathematical analysis, the effect of PWM frequency and duty cycle on the average current and dither amplitude was investigated, and the analysis result was validated by electrical experiments. Based on the mathematical analysis, a new method that properly varies both the duty cycle and the PWM frequency to obtain the desired average current and constant dither amplitude was established and verified. This method requires only the calculations for determining the proper PWM frequency and duty cycle, so it is possible to improve the performance of a proportional solenoid valve without additional devices or cost.

  10. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  11. Excitation probability and effective temperature in the stationary regime of conductivity for Coulomb Glasses

    Directory of Open Access Journals (Sweden)

    Caravaca Garratón Manuel

    2017-07-01

    Full Text Available In this paper, we shall illustrate the numerical calculation of the effective temperature in Coulomb glasses by excitation probability provided that the system has been placed in a stationary state after applying a strong electric field. The excitation probability becomes a better alternative than the occupation probability, which has been classically employed to calculate the effective temperature and characterize the thermodynamics of Coulomb glasses out of equilibrium. This is due to the fact that the excitation probability shows better statistics than the occupation probability. In addition, our simulations show that the excitation probability does not depend on the choice of the chemical potential, which critically affects the occupation probability. Our results allow us to propose the excitation probability as a standard procedure to determine the effective temperature in Coulomb glasses as well as in other complex systems such as spin glasses.

  12. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores.

    Science.gov (United States)

    Futamura, Ryusuke; Iiyama, Taku; Takasaki, Yuma; Gogotsi, Yury; Biggs, Mark J; Salanne, Mathieu; Ségalini, Julie; Simon, Patrice; Kaneko, Katsumi

    2017-12-01

    Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of a widely used ionic liquid (EMI-TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. Instead, equally charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications.

  13. Structure effects on the Coulomb dissociation of {sup 8}B at relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Shyam, R. [Saha Inst. of Nuclear Physics, Calcutta (India); Bennaceur, K.; Okolowicz, J.; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    1999-07-01

    The Coulomb dissociation of {sup 8}B on {sup 208}Pb target at the beam energy of 250 MeV/nucleon is investigated, employing the cross sections for the radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B calculated within the Shell Model Embedded in the Continuum (SMEC) approach. In contrast to the situation at lower beam energies, the Coulomb breakup cross sections are found to be sensitive to the M1 transitions. Comparisons of SMEC and single-particle potential model predictions show that the Coulomb breakup cross sections at these high energies are sensitive to the structure model of {sup 8}B. Analysis of the preliminary data taken recently at GSI reveal that E2 multipolarity contributes up to 25% to the cross sections even for the relative energies of p - {sup 7}Be below 0.25 MeV. (author)

  14. Hamiltonian approach to QCD in Coulomb gauge: Gribov’s confinement scenario at work*

    Directory of Open Access Journals (Sweden)

    Reinhardt H.

    2017-01-01

    Full Text Available I will review essential features of the Hamiltonian approach to QCD in Coulomb gauge showing that Gribov's confinement scenario is realized in this gauge. For this purpose I will discuss in detail the emergence of the horizon condition and the Coulomb string tension. I will show that both are induced by center vortex gauge field configurations, which establish the connection between Gribov’s confinement scenario and the center vortex picture of confinement. I will then extend the Hamiltonian approach to QCD in Coulomb gauge to finite temperatures, first by the usual grand canonical ensemble and second by the compactification of a spatial dimension. I will present results for the pressure, energy density and interaction measure as well as for the Polyakov loop.

  15. Hamiltonian approach to QCD in Coulomb gauge: Gribov's confinement scenario at work

    Science.gov (United States)

    Reinhardt, H.; Burgio, G.; Campagnari, D.; Quandt, M.; Vastag, P.; Vogt, H.; Ebadati, E.

    2017-12-01

    I will review essential features of the Hamiltonian approach to QCD in Coulomb gauge showing that Gribov's confinement scenario is realized in this gauge. For this purpose I will discuss in detail the emergence of the horizon condition and the Coulomb string tension. I will show that both are induced by center vortex gauge field configurations, which establish the connection between Gribov's confinement scenario and the center vortex picture of confinement. I will then extend the Hamiltonian approach to QCD in Coulomb gauge to finite temperatures, first by the usual grand canonical ensemble and second by the compactification of a spatial dimension. I will present results for the pressure, energy density and interaction measure as well as for the Polyakov loop.

  16. Coulomb excitation of neutron-deficient polonium isotopes studied at ISOLDE

    CERN Document Server

    Neven, Michiel

    The polonium isotopes represent an interesting region of the nuclear chart having only two protons outside the Z = 82 closed shell. These isotopes have already been extensively studied theoretically and experimentally. The heavier isotopes (A > 200) seem to follow a "regular seniority-type regime" while for the lighter isotopes (A < 200) a more collective behavior is observed. Many questions remain regarding the transition between these two regimes and the configuration mixing between quantum states. Experiments in the lighter polonium isotopes point to the presence of shape coexistence, however the phenomenon is not fully understood. A Coulomb excitation study of the polonium isotopes whereby the dynamic properties are investigated can provide helpful insights in understanding the shape coexistence phenomena. In this thesis $^{202}$Po was studied via Coulomb excitation. The $^{202}$Po isotope was part of an experimental campaign in which the $^{196,198,200,206}$Po isotopes were studied as well via Coulomb...

  17. Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores

    Science.gov (United States)

    Futamura, Ryusuke; Iiyama, Taku; Takasaki, Yuma; Gogotsi, Yury; Biggs, Mark J.; Salanne, Mathieu; Ségalini, Julie; Simon, Patrice; Kaneko, Katsumi

    2017-12-01

    Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of a widely used ionic liquid (EMI-TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can accommodate only a single layer of ions. Instead, equally charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications.

  18. Ethnic differences in electrocardiographic amplitude measurements

    International Nuclear Information System (INIS)

    Mansi, Ishak A.; Nash, Ira S.

    2004-01-01

    There is a controversy regarding ethnic differences in electrocardiographic (ECG) patterns because of the potentially confounding socioeconomic, nutritional, environmental and occupational factors. We reviewed the first 1000 medical files of a multiethnic community, where all individuals shared similar living conditions. Only healthy adults age 15 to 60 years were included. Wave amplitudes were measured manually from the standard 12lead ECG. Minnesota coding was used. ECG from 597 subjects were included in the study: 350 Saudi Arabians, 95 Indians, 17 Sri-Lankans, 39 Filipinos, and 57 Caucasians; 349 were men. the mean +-SD of Sokolow-Lyon voltage (SLV) in men was signifcantly different among ethnic groups (2.9+-0.86, 2.64+-0.79, 2.73+-0.72, 3.23+-0.61, 2.94+-0.6, 2.58+-0.79 mV, P=0.0006, for Saudi's, Indians, Jordanians, Filipinos, Sri-Lankans, and Caucasians, respectively). SLV was similar among ethnic groups in women. The prevalence of early transition pattern was also different among ethnic groups in men but not women (15.8%, 34.6%, 17.9%, 21.7%, 35.3%, 26.8% in Suadi, Indian, Jordanian, Filipino, Sri-Lankan, and Caucasian, respectively, P=0.037). T wave amplitude was significantly different among ethnic groups in selected lead. ECG wave amplitude differs with ethnic region even when other factors are similar. Using SLV of 3.5 mV as a criterion may overestimate the incidence of left ventricular hypertrophy in some ethnic groups. The pattern of high R wave in lead V1is common in healthy adults in certain ethnic groups. T wave height differs with ethnic origin and sex. (author)

  19. From correlation functions to scattering amplitudes

    Science.gov (United States)

    Eden, Burkhard; Korchemsky, Gregory P.; Sokatchev, Emery

    2011-12-01

    We study the correlation functions of half-BPS protected operators in mathcal{N} = {4} super-Yang-Mills theory, in the limit where the positions of adjacent operators become light-like separated. We compute the loop corrections by means of Lagrangian insertions. The divergences resulting from the light-cone limit are regularized by changing the dimension of the integration measure over the insertion points. Switching from coordinates to dual momenta, we show that the logarithm of the correlation function is identical with twice the logarithm of the matching MHV gluon scattering amplitude. We present a number of examples of this new relation, at one and two loops.

  20. Inlaying vertex function and scattering amplitude

    International Nuclear Information System (INIS)

    Naito, S.

    1997-01-01

    Scattering processes among strings are analyzed by using fundamental equations of three types, which divide the whole complex z-plane into various types of N punctured ring domains plus various unpunctured ring domains, where internal strings freely propagate. In order to calculate scattering amplitudes (among physical particles) in Witten close-quote s quantum string field theory, we derive and apply the open-quotes Gluing theorem,close-quote close-quote mathematical proof of which is given (in operator forms) by constructing various (inlint) conformal mapping operators. copyright 1997 American Institute of Physics

  1. Multiloop integrand reduction for dimensionally regulated amplitudes

    Science.gov (United States)

    Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano

    2013-12-01

    We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

  2. Measurement of the extracted electron beam profile by means of a proportional chamber

    International Nuclear Information System (INIS)

    Arakelyan, E.A.; Bayatyan, G.L.; Vartanyan, G.S.; Grigoryan, N.K.; Kechechyan, A.D.; Marikyan, G.G.

    1982-01-01

    The description is given of a system for charged particles beam profile measurement used for the extracted electron beam monitoring at the Erevan synchrotron. The system is based on a proportional chamber with dimensions of 128x128 mm and 2 mm spacing of signal wires. The coordinate is determined by the interwire delay method. The microelectronic cells are used as delay elements. The information is extracted for the amplitude analysis. The load of the system has been as high as 2x10 4 c -1 per wire

  3. Hamiltonian approach to QCD in Coulomb gauge at zero and finite temperature

    Directory of Open Access Journals (Sweden)

    Reinhardt H.

    2017-01-01

    Full Text Available I report on recent results obtained within the Hamiltonian approach to QCD in Coulomb gauge. By relating the Gribov confinement scenario to the center vortex picture of confinement it is shown that the Coulomb string tension is tied to the spatial string tension. For the quark sector a vacuum wave functional is used which results in variational equations which are free of ultraviolet divergences. The variational approach is extended to finite temperatures by compactifying a spatial dimension. For the chiral and deconfinement phase transition pseudo-critical temperatures of 170MeV and 198 MeV, respectively, are obtained.

  4. A new method of taking into account the Coulomb interaction in the Logunov - Tavkhelidze quasipotential approach

    International Nuclear Information System (INIS)

    Tyukhtyaev, Yu.N.

    1982-01-01

    The problem of taking into account the Coulomb interaction of the ladder type in the analysis of bound states in quantum electrodynamics is discussed in the framework of the quasipotential approach. The main qiasipotential equation and the quasipotential are expressed in the terms of the two-time positive frequency Coulomb Green functions. The corresponding perturbation theory is developed which makes it possible to calculate the shifts of the energy levels in hydrogen-like atoms up to α 6 lnα terms

  5. A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

    Directory of Open Access Journals (Sweden)

    Marcadet Stephane J.

    2015-01-01

    Full Text Available The Hosford-Coulomb model incorporates the important effect of the Lode angle parameter in addition to the stress triaxiality to predict the initiation of ductile fracture. A strain-rate dependent extension of the Hosford-Coulomb model is presented to describe the results from low, intermediate and high strain rate fracture experiments on advanced high strength steels (DP590 and TRIP780. The model predictions agree well with the experimental observation of an increase in ductility as function of strain rate for stress states ranging from uniaxial to equi-biaxial tension.

  6. SYMMETRY PROPERTIES OF THE COULOMB POTENTIAL WITH A LINEAR DEPENDENCE ON ENERGY

    Directory of Open Access Journals (Sweden)

    Radu Budaca

    2017-12-01

    Full Text Available The D-dimensional Schr ̈odinger equation for a Coulomb potential with a coupling constant depending linearly on energy is analytically solved. The energy spectrum in the asymptotic regime of the slope parameter is found to be fully determined up to a scale only by its quantum numbers. The raising and lowering operators for this limiting model are determined from the recurrence properties of the associated solutions. It is shown that they satisfy the commutation relations of an SU(1,1 algebra and act on wave-functions which are normalized differently from the case of the usual bound state problem for an energy independent Coulomb potential.

  7. Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.

    Science.gov (United States)

    Flambaum, V V; Romalis, M V

    2017-04-07

    Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.

  8. Stability of the three-body Coulomb systems with J=1 in the oscillator representation

    International Nuclear Information System (INIS)

    Dinejkhan, M.D.; Efimov, G.V.

    1995-01-01

    The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs

  9. Dynamical Coulomb blockade of the nonlocal conductance in normalmetal/superconductor hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Kolenda, Stefan; Wolf, Michael J.; Beckmann, Detlef [Institut fuer Nanotechnologie, KIT, 76021 Karlsruhe (Germany)

    2013-07-01

    In normalmetal/superconductor hybrid structures nonlocal conductance is determined by crossed Andreev reflection (CAR) and elastic cotunneling (EC). This was investigated recently both experimentally and theoretically. Dynamical Coulomb blockade of EC and CAR was predicted theoretically. Here we report on experimental investigations of these effects. We found signatures of dynamical Coulomb blockade in local and nonlocal conductance in the normal state. In the superconducting state, we find s-shaped nonlocal differential conductance curves as a function of bias applied on both contacts. These curves were observed for bias voltages both below and above the gap. We compare our results to theory.

  10. Importance of Coulomb interactions in bound-to-continuum THz quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, C; Matyas, A [Emmy Noether Research Group ' Modeling of Quantum Cascade Devices' , Technische Universitaet Muenchen, D-80333 Munich (Germany); Lugli, P, E-mail: jirauschek@tum.d [Institute for Nanoelectronics, Technische Universitaet Muenchen, D-80333 Munich (Germany)

    2009-11-15

    We demonstrate the importance of Coulomb interactions in bound-to-continuum THz quantum cascade lasers, employing an ensemble Monte-Carlo analysis. In such structures, the electron-electron interactions between the closely spaced energy levels in the minibands tend to play a more important role than in resonant-phonon depopulation designs, where the energy levels are more energetically separated and LO phonon scattering prevails. Also a significant conduction band bending due to space charge effects is observed. Thus, especially for bound-to-continuum structures careful modelling of Coulomb interactions is crucial to obtain good agreement with experiment.

  11. Coulomb excitation of $^{68}_{28}Ni_{40}$ at safe energies

    CERN Document Server

    Bree, N; Butler, P A; Cederkäll, J; Davinson, T; Delahaye, P; Eberth, J; Fedorov, D; Fedosseev, V; Fraile, L M; Franchoo, S; Georgiev, G; Gladnishki, K; Huyse, M; Ivanov, O; Iwanicki, J; Jolie, J; Köster, U; Kröll, T; Krücken, R; Marsh, B A; Niedermaier, O; Reiter, P; Scheit, H; Schwalm, D; Sieber, T; Vande Walle, J; Van Duppen, P; Warr, N; Weisshaar, D; Wenander, F; Zemlyanoy, S; Instituutvoor Kern-en Stralingsfysica; Leuven, K U

    2008-01-01

    The $B(E2;0^+\\to2^+)$ value in $^{68}$Ni has been measured using Coulomb excitation at safe energies. The $^{68}$Ni radioactive beam was post-accelerated at the ISOLDE facility (CERN) to 2.9 MeV/u. The emitted $\\gamma$ rays were detected by the MINIBALL detector array. A kinematic particle reconstruction was performed in order to increase the measured c.m. angular range of the excitation cross section. The obtained value of 2.8$\\pm$1.0 10$^2$ e$^2$fm$^4$ is in good agreement with the value measured at intermediate energy Coulomb excitation, confirming the low transition probability.

  12. Mesoscopic fluctuations of Coulomb drag between quasiballistic one-dimensional wires

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    Quasiballistic one-dimensional quantum wires are known to have a conductance of the order of 2e(2)/h, with small sample-to-sample fluctuations. We present a study of the transconductance G(12) Of two Coulomb-coupled quasiballistic wires; i.e., we consider the Coulomb drag geometry. We show...... that the fluctuations in G(12) differ dramatically from those of the diagonal conductance G(ii): the fluctuations are large and can even exceed the mean value, thus implying a possible reversal of the induced drag current. We report extensive numerical simulations elucidating the fluctuations for both correlated...

  13. Examination of the Coulomb-nuclear interference in inelastic scattering of 6Li in 76Ge

    International Nuclear Information System (INIS)

    Zhang, Xinxin

    2015-01-01

    The inelastic scattering of 28,0 MeV 6 Li on 76 Ge in the excitation of the 2 + 1 state, has been studied with the Coulomb-Nuclear Interference (CNI) analysis. The data were measured at the Pelletron-Enge-Spectrograph facility at LAFN-IFUSP. A solid-state position sensitive silicon detector (PSD) (500μm thickness and 47 × 8 mm 2 area) was used to measure the data at the spectrometer focal plane. Digital pulse processing (DPP) was implemented in the acquisition system. Twenty-six spectra were measured at carefully chosen scattering angles in the range of 10 deg ≤ θ Lab ≤ 55 deg to obtain an angular distribution. The analysis was performed with the Distorted Wave Born Approximation (DWBA) and applied for the nuclear transition potential, the Deformed Optical Potential Model (DOMP), under well-established global optical parameters. The fit of the predicted cross sections to the experimental data through χ 2 minimization, using the iterative method of Gauss, allowed for the extraction of the correlated parameters, δ N 2 , the mass deformation length, and C 2 = Ν C 2 /δ N 2 , the ratio between charge and mass deformation lengths. The correlated parameters obtained in the present work were C 2 = 1,101 (20) and δ N 2 = 1,08(21)fm. Statistical tests, through a Monte Carlo simulation of 5000 new data sets, validated the method employed in the correlated parameters fit. The methodology applied for the CNI analysis allowed the extraction of ratio B(EL)/B(ISL), which is proportional to the square of C 2 , with a good precision due to the scale uncertainties cancellation of the absolute cross sections. The values of B(IS2) and of the ratios B(E2)/B(IS2) obtained in the present work have not been reported before and allow the study of the evolution of the collectivity throughout the even-A germanium chain together with former results obtained for the 70 , 72 , 74 Ge isotopes. The results along the chain indicate that although the protons relative to the neutrons

  14. Small--radiation-amplitude dynamical voltage model of an irradiated, externally unbiased Josephson tunnel junction

    International Nuclear Information System (INIS)

    McAdory, R.T. Jr.

    1988-01-01

    A theory is presented for the nonequilibrium voltage states of an irradiated Josephson junction shunted by an external resistor but with no external current or voltage biasing. This device, referred to as a free-running Josephson junction, is modeled in a small--radiation-amplitude, deterministic regime extending the previous work of Shenoy and Agarwal. The time-averaged induced voltage is treated as a dynamical variable, the external radiation is modeled as a current source, and the induced junction-radiation vector potential, with and without a mode structure, is treated to first order in the driving currents. A dynamical equation for the time-averaged induced voltage yields a (nonequilibrium) steady-state relation between the time-averaged induced voltage and the incident radiation amplitude valid for a wide range of voltages, including zero. Regions of bistability occur in the voltage--versus--incident-amplitude curves, some of which are dependent on the external resistor. The zero-voltage state breaks down, as the external radiation amplitude is increased, at a critical value of the incident-radiation amplitude inversely proportional to the external resistance

  15. Getting superstring amplitudes by degenerating Riemann surfaces

    International Nuclear Information System (INIS)

    Matone, Marco; Volpato, Roberto

    2010-01-01

    We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly simplifies the computations. As a first application, starting from recent ansaetze for the chiral measure up to genus five, we compute the chiral two-point function for massless Neveu-Schwarz states at genus two, three and four. For genus higher than three, these computations include some new corrections to the conjectural formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus two and three, as expected from space-time supersymmetry arguments, but not at genus four. This suggests that the ansatz for the superstring measure should be corrected for genus higher than four.

  16. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  17. Wrist proprioception: amplitude or position coding?

    Directory of Open Access Journals (Sweden)

    Francesca Marini

    2016-10-01

    Full Text Available This work examines physiological mechanisms underlying the position sense of the wrist, namely the codification of proprioceptive information related to pointing movements of the wrist towards kinesthetic targets. Twenty-four healthy subjects participated to a robot-aided assessment of their wrist proprioceptive acuity to investigate if the sensorimotor transformation involved in matching targets located by proprioceptive receptors relies on amplitude or positional cues. A joint position matching test was performed in order to explore such dichotomy. In this test, the wrist of a blindfolded participant is passively moved by a robotic device to a preset target position and, after a removal movement from this position, the participant has to actively replicate and match it as accurately as possible. The test involved two separate conditions: in the first the matching movements started from the same initial location; in the second one the initial location was randomly assigned. Target matching accuracy, precision and bias in the two conditions were then compared. Overall results showed a consistent higher performance in the former condition than in the latter, thus supporting the hypothesis that the joint position sense is based on vectorial or amplitude coding rather than positional.

  18. Percept of the duration of a vibrotactile stimulus is altered by changing its amplitude

    Directory of Open Access Journals (Sweden)

    Eric M Francisco

    2015-05-01

    Full Text Available There have been numerous studies conducted on time perception. However, very few of these have involved tactile stimuli to assess a subject’s capacity for duration discrimination. Previous optical imaging studies in non-human primates demonstrated that increasing the duration of a vibrotactile stimulus resulted in a consistently longer and more well defined evoked SI cortical response. Additionally, and perhaps more interestingly, increasing the amplitude of a vibrotactile stimulus not only evoked a larger magnitude optical intrinsic signal, but the return to baseline of the evoked response was much longer in duration for larger amplitude stimuli. The authors hypothesized that the magnitude of a vibrotactile stimulus could influence the perception of its duration. In order to test this hypothesis, subjects were asked to compare two sets of vibrotactile stimuli. When vibrotactile stimuli differed only in duration, subjects typically had a difference limen (DL of approximately 13%, and this followed Weber’s Law for standards between 500 and 1500 ms, as increasing the value of the standard yielded a proportional increase in DL. However, the percept of duration was impacted by variations in amplitude of the vibrotactile stimuli. Specifically, increasing the amplitude of the standard stimulus had the effect of increasing the DL, while increasing the amplitude of the test stimulus had the effect of decreasing the DL. A pilot study, conducted on individuals who were concussed, found that increasing the amplitude of the standard did not have an impact on the DL of this group of individuals. Since this effect did not parallel what was predicted from the optical imaging findings in somatosensory cortex of non-human primates, the authors suggest that this particular measure or observation could be sensitive to neuroinflammation and that neuron-glial interactions, impacted by concussion, could have the effect of ignoring, or not integrating, the

  19. Multiple-sampling and tracking proportional chamber for nuclear reactions with low-energy radioactive isotope beams

    CERN Document Server

    Mizoi, Y; Matsuyama, Y; Miyachi, T; Nakano, J; Fukuda, N; Hirai, M; Kobinata, H; Watanabe, Y X; Sakuraï, H; Watanabe, Y; Yoshida, A

    1999-01-01

    Nuclear reactions with radioactive isotope beams at low energy near to the Coulomb barrier are very important for studying nuclear astrophysics, nuclear structure and the reaction mechanism involving unstable nuclei. Due to the limited intensity of low-energy radioactive isotope beams, a new device is required to carry out experiments with reasonable statistics. A multiple-sampling and tracking proportional chamber was constructed for measuring these reactions and tested with radioactive isotope beams. In addition, read-out electronics and a data-acquisition system were developed and tested along with the detector. It was proved that they are useful for detecting nuclear reactions in the low-energy region, like a fusion reaction and astrophysical nuclear reactions. (author)

  20. Proportional counters aged anode wire recovering using an 80%CF4 + 20%CO2 gas mixture

    CERN Document Server

    Gavrilov, Gennady; Conti, Richard; Fetisov, Andrey; Maysuzenko, Dmitry; Shvecova, Natalia; Vakhtel, Victor

    2011-01-01

    A technique to recover a gas proportional counter having an aged anode wire using a glow discharge in an 80%CF4 + 20%CO2 gas mixture has been developed and tested. Studies of aging effects were carried out under sustained irradiation by an intense 90Sr -source of the straw proportional counters operated with a 60%Ar + 30%CO2 + 10%CF4 gas mixture. Special attention was paid to the aging mechanism of the anode wires. Our experience showed that using a given gas mixture the swelling of the anode wires is a typical mode of aging that leads to degradation of the gas gain. The proposed method of recovery provided a complete restoration of the gas gain and the signal amplitude in the damaged zone of the wire. SEM/XEM analysis confirmed successful cleaning WOx deposits from the wire surface. The application of this method to recover the aged gaseous detectors in real experimental conditions is discussed.

  1. Amplitude of the rest–activity cycle in chronic obstructive pulmonary disease: an exploratory study

    Directory of Open Access Journals (Sweden)

    Chan-Thim E

    2016-10-01

    .05. There was no significant difference between the two groups for subjective or actigraphic estimates of sleep quality, sleep duration, or proportion of daytime sleep. This exploratory study is a first step toward the identification of larger rest–activity rhythm amplitude as a marker of better prognosis in COPD and as another potential target for exercise-based rehabilitation programs in this population. Keywords: actigraphy, accelerometry, circadian rhythms, COPD, respiratory disorders, prognosis, physical activity, sleep

  2. 11Li Breakup on 208Pb at Energies Around the Coulomb Barrier

    DEFF Research Database (Denmark)

    Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.

    2013-01-01

    The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbatio...

  3. A Logarithmic-Amplitude Polar Diagram

    Directory of Open Access Journals (Sweden)

    Trond Andresen

    2001-04-01

    Full Text Available A polar diagram where the amplitude of the transfer function is on a logarithmic scale, is presented. This gives a one-size-fits-all diagram with no need for zooming in and out, and no need for additional reasoning about infinite-radius encirclements when there are poles on the imaginary axis - as opposed to what is usually neccessary with the standard polar (Nyquist- diagram. All properties needed for stability considerations are upheld, such as encirclements, gain and phase margins. The path for s in the loop transfer function is carefully chosen with regard to possible poles on the imaginary axis. Small excursions into the right half plane in the form of arcs of different-sized logarithmic spirals result in corresponding large but finite arcs that do not overlap in the logarithmic polar plots.

  4. Subleading soft graviton theorem for loop amplitudes

    Science.gov (United States)

    Sen, Ashoke

    2017-11-01

    Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.

  5. Geological characteristics of low-amplitude faults

    Energy Technology Data Exchange (ETDEWEB)

    Matveyev, A.K.; Kozel' skiy, I.T.; Mazor, Yu.R.; Shimorina, Ye.F.; Stefanova, Ye.I.

    1982-01-01

    It is indicated that the faults which developed in the coal mass of the Kuznetsk Basin change the mineralogical-petrographic properties of the sedimentary rocks and coals. This results in a corresponding change in physical properties. The established local transformations of rocks associated with the formation of a fault (intensification of microfracturing in the quartz grains, increase in the content of quartz with structural defect, change in structural-textural features of rocks; decrease in the quantity of swelling blocks in mixed-stratified formations of the series montmorillonite-hydromica; change in the inner structure of coal, etc.) can be used to create new methods and techniques aimed at finding low amplitude disorders.

  6. Polynomial structures in one-loop amplitudes

    International Nuclear Information System (INIS)

    Britto, Ruth; Feng Bo; Yang Gang

    2008-01-01

    A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.

  7. More on the duality correlators/amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Durham University, Science Laboratories, South Rd, Durham DH1 3LE (United Kingdom); Korchemsky, Gregory P., E-mail: gregory.korchemsky@cea.fr [Institut de Physique Theorique (Unite de Recherche Associee au CNRS URA 2306), CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Sokatchev, Emery [LAPTH (Laboratoire d' Annecy-le-Vieux de Physique Theorique, UMR 5108), Universite de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France)

    2012-03-19

    We continue the study of n-point correlation functions of half-BPS protected operators in N=4 super-Yang-Mills theory, in the limit where the positions of the adjacent operators become light-like separated. We compute the l-loop corrections by making l Lagrangian insertions. We argue that there exists a simple relation between the (n+l)-point Born-level correlator with l Lagrangian insertions and the integrand of the n-particle l-loop MHV scattering amplitude, as obtained by the recent momentum twistor construction of Arkani-Hamed et al. We present several examples of this new duality, at one and two loops.

  8. Spatial Proportional Reasoning Is Associated with Formal Knowledge about Fractions

    Science.gov (United States)

    Möhring, Wenke; Newcombe, Nora S.; Levine, Susan C.; Frick, Andrea

    2016-01-01

    Proportional reasoning involves thinking about parts and wholes (i.e., about fractional quantities). Yet, research on proportional reasoning and fraction learning has proceeded separately. This study assessed proportional reasoning and formal fraction knowledge in 8- to 10-year-olds. Participants (N = 52) saw combinations of cherry juice and water…

  9. Amplitude correlations for inelastic proton scattering from 48Ti

    International Nuclear Information System (INIS)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.

    1981-01-01

    The magnitudes and relative signs of inelastic proton channel amplitudes were determined for three decay channels for 45 5/2 + resonances in 49 V. The reduced widths in each channel follow a Porter-Thomas distribution, but extremely large amplitude correlations are observed - for one pair of channel amplitudes the relative sign is positive for 43 of 45 resonances. These results provide the first direct test of the Krieger-Porter reduced width amplitude distribution. (orig.)

  10. Correlations for reduced-width amplitudes in 49V

    International Nuclear Information System (INIS)

    Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.

    1980-01-01

    Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution

  11. Nuclear reactions of the system 6 Li on 58 Ni near the Coulomb barrier

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E.

    2004-01-01

    Protons, alpha particles and deuterons coming from the reactions 6 Li + 58 Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system 6 Li + 59 Co. (Author)

  12. Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun; Kuna, Meinhard [TU Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, Freiberg (Germany); Ricoeur, Andreas [University of Kassel, Institute of Mechanics, Kassel (Germany)

    2011-06-15

    The axisymmetric problem of a penny-shaped crack embedded in an infinite three-dimensional (3D) piezoelectric body is considered. A general formulation of Coulomb traction on the crack surfaces can be obtained based on thermodynamical considerations of electromechanical systems. Three-dimensional electroelastic solutions are derived by the classical complex potential theory when Coulomb traction is taken into account and the poling direction of piezoelectric body is perpendicular to the crack surfaces. Numerical results show that the magnitude of Coulomb tractions can be large, especially when a large electric field in connection with a small mechanical load is applied. Unlike the traditional traction-free crack model, Coulomb tractions induced by an applied electric field influence the Mode I stress intensity factor for a penny-shaped crack in 3D piezoelectric body. Moreover, compared to the current model, the traditional traction-free crack model always overestimates the effect of the applied electric load on the field intensity factors and energy release rates, which has consequences for 3D piezoelectric fracture mechanics. (orig.)

  13. Lienard-Wiechert potentials as a consequence of Lorentz transformation of Coulomb potential

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1993-01-01

    A derivation of the electric potential of a moving charge as a result of the 'relativization' of the Coulomb potential is considered. The account of the Lorentz covariance demand and the action retardation of the electromagnetic field with necessity leads to the Lienard-Wiechert potentials. 11 refs. (author)

  14. Effect of Coulomb correlations on the electronic structure of PuCoGa.sub.5./sub.

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Janiš, Václav; Oppeneer, P.M.

    2005-01-01

    Roč. 94, č. 1 (2005), 016401/1-016401/4 ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA202/04/1055 Institutional research plan: CEZ:AV0Z10100520 Keywords : Coulomb correlations * PuCoGa 5 Subject RIV: BE - Theoretical Physics Impact factor: 7.489, year: 2005

  15. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 ...

    Indian Academy of Sciences (India)

    pp. 289–296. Nonlocal Coulomb interaction in the two-dimensional spin-1/2 Falicov–Kimball model. S K BHOWMICK and N K GHOSH. ∗. Department of Physics, University of Kalyani, Kalyani 741 235, India. ∗. Corresponding author. E-mail: nanda.ku@rediffmail.com. MS received 26 November 2010; revised 30 July 2011; ...

  16. Stability of Coulomb crystals in a linear Paul trap with storage-ring-like confinement

    DEFF Research Database (Denmark)

    Kjærgaard, Niels; Mølhave, Kristian; Drewsen, Michael

    2002-01-01

    We report experiments on the stability of ion Coulomb crystals in a linear Paul trap with storage-ring-like confinement. The transverse dynamics of charged particles in a trap of this type is analogous to that of a fast beam traveling through a channel with periodic, magnetic alternating gradient...

  17. Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects...

  18. Accurate Coulomb Potentials for Periodic and Molecular Systems through Density Fitting

    NARCIS (Netherlands)

    Franchini, M.; Philipsen, P.H.T.; van Lenthe, E.; Visscher, L.

    2014-01-01

    We present a systematically improvable density fitting scheme designed for accurate Coulomb potential evaluation of periodic and molecular systems. The method does not depend on the way the density is calculated, allowing for a basis set expansion as well as a numerical representations of the

  19. Probing single-particle and collective states in atomic nuclei with Coulomb excitation

    CERN Document Server

    DiJulio, Douglas

    A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...

  20. Splitting of Potential Curves in the Two-Coulomb-Centre Problem

    Science.gov (United States)

    Hnatič, Michal; Khmara, Viktor M.; Lazur, Volodymyr Yu.; Reity, Oleksandr K.

    2018-02-01

    The quasiclassical expression for the exchange interaction ΔE of potential curves at the points of their quasicrossing in the two-Coulomb-centre problem is found. It can be used for the calculation of cross sections of charge exchange processes between hydrogen or hydrogen-like atoms and bare nuclei.

  1. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  2. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    Science.gov (United States)

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  3. Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings

    DEFF Research Database (Denmark)

    Walldorf, Nicklas; Jauho, Antti-Pekka; Kaasbjerg, Kristen

    2017-01-01

    We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneling...

  4. The pushing gate in a planar Coulomb crystal using a flat-top laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, M., E-mail: kitaoka@lyman.q.t.u-tokyo.ac.j [Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Buluta, I.M. [Department of Quantum Engineering and Systems Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hasegawa, S., E-mail: hasegawa@sys.t.u-tokyo.ac.j [Department of Systems Innovation, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Quantum Engineering and Systems Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2009-08-10

    We propose a pushing gate for entangling two ions in a planar Coulomb crystal in the view of realizing large-scale quantum simulations. A tightly focused laser is irradiated from the direction perpendicular to the crystal plane and its spatial intensity profile generates a state-dependent force. We analyze the error sources in this scheme and obtain low infidelity.

  5. The pushing gate in a planar Coulomb crystal using a flat-top laser beam

    Science.gov (United States)

    Kitaoka, M.; Buluta, I. M.; Hasegawa, S.

    2009-08-01

    We propose a pushing gate for entangling two ions in a planar Coulomb crystal in the view of realizing large-scale quantum simulations. A tightly focused laser is irradiated from the direction perpendicular to the crystal plane and its spatial intensity profile generates a state-dependent force. We analyze the error sources in this scheme and obtain low infidelity.

  6. Coulomb correction to the screening angle of the Moliere multiple scattering theory

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Voskresenskaya, O.O.; Tarasov, A.V.

    2012-01-01

    Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory is found. Numerical calculations are presented in the range of nuclear charge 4 ≤ Z ≤ 82. Comparison with the Moliere result for the screening angle reveals up to 30% deviation from it for sufficiently heavy elements of the target material

  7. Observation of a structural transition for coulomb crystals in a linear Paul trap

    DEFF Research Database (Denmark)

    Kjærgaard, N.; Drewsen, M.

    2003-01-01

    A structural transition for laser cooled ion Coulomb crystals in a linear Paul trap just above the stability limit of parametrically resonant excitation of bulk plasma modes has been observed. In contrast to the usual spheroidal shell structures present below the stability limit, the ions arrange...

  8. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    NARCIS (Netherlands)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar Gelepordsari, M.; Salavati-Fard, T.

    2016-01-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned

  9. Non conventional screening of the Coulomb interaction in C-60 and in carbon nanotubes

    NARCIS (Netherlands)

    van den Brink, J; Sawatzky, GA; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We study the screening of the Coulomb interaction in C-60 and carbon nanotubes. It is shown that for these systems the screening deviates strongly from the Clausius-Mossotti behavior. The short range interaction is strongly screened and the long range interaction is anti-screened, thereby strongly

  10. Can Coulomb Sturmians Be Used as a Basis for N-Electron Molecular Calculations?

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2009-01-01

    A method is proposed for using isoenergetic configurations formed from many-center Coulomb Sturmians as a basis for calculations on N-electron molecules. Such configurations are solutions to an approximate N-electron Schrödinger equation with a weighted potential, and they are thus closely analog...

  11. Representation of the three-body Coulomb Green's function in parabolic coordinates: paths of integration

    International Nuclear Information System (INIS)

    Zaytsev, S A

    2010-01-01

    The possibility of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function is discussed. In our numerical examples two different kinds of integration contours in the complex energy planes are considered. It is demonstrated that straight-line paths, which cross the positive real axis, are suitable for numerical computation.

  12. Solvability of Static Contact Problems with Coulomb Friction for Orthotropic Material

    Czech Academy of Sciences Publication Activity Database

    Eck, C.; Jarušek, Jiří

    2008-01-01

    Roč. 93, č. 1 (2008), s. 93-104 ISSN 0374-3535 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10190503 Keywords : contact problem * Coulomb friction * orthotropic elasticity Subject RIV: BA - General Mathematics Impact factor: 1.277, year: 2008

  13. Proton optical potential and scattering matrix for tin nuclei at sub-coulomb energies

    International Nuclear Information System (INIS)

    Guzhovskij, B.Ya.; Dzyuba, B.M.

    1981-01-01

    A unified set of parameters of the proton optical potential (OP) for the n nuclei is searched for in the below-Coulomb-barrier energy range. The set must describe well the experimental data on the pn-reaction total cross sections and on the angular distributions of elastically scattered protons at E [ru

  14. On the integral representations of the Jost function and Coulomb off ...

    Indian Academy of Sciences (India)

    Abstract. The integral representations of the Jost function (on- and off-shell) are red- erived by the judicious use of the transposed operator relation on the particular integrals for Jost solution and using one of these particular integrals an analytical expression for the Coulomb off-shell Jost solution is presented in the maximal ...

  15. Dissociation of deuteron, 6He and 11Be from Coulomb dissociation ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 70; Issue 5. Dissociation of ... Diffraction dissociation; Coulomb effect; post-acceleration phenomenon; momentum distribution; bremsstrahlung integral; halo structure. ... Physics Department, Vivekananda College, 269, Diamond Harvour Road, Kolkata 700 063, India ...

  16. Linear-response theory of Coulomb drag in coupled electron systems

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    1995-01-01

    We report a fully microscopic theory for the transconductivity, or, equivalently, the momentum transfer rate, of Coulomb coupled electron systems. We use the Kubo linear-response formalism and our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which...

  17. Dissociation of deuteron, 6He and 11Be from Coulomb dissociation ...

    Indian Academy of Sciences (India)

    Abstract. The fragmentation of deuteron, 6He and 11Be have been studied during in- teraction with the 208Pb nucleus at various projectile energies. The Coulomb dissocia- tion cross-sections and the momentum distribution of the break-up fragments have been analysed within the framework of the direct fragmentation ...

  18. Coulomb explosion during the early stages of the reaction of alkali metals with water

    Czech Academy of Sciences Publication Activity Database

    Mason, Philip E.; Uhlig, Frank; Vaněk, Václav; Buttersack, T.; Bauerecker, S.; Jungwirth, Pavel

    2015-01-01

    Roč. 7, č. 3 (2015), s. 250-254 ISSN 1755-4330 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : sodium-potasium alloy * water * coulomb explosion * high-speed camera * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 27.893, year: 2015

  19. A quark model for nuclear matter and the Coulomb sum rule

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Massachusetts Inst. of Tech., Cambridge

    1985-01-01

    The quark correlation function g(r), of nuclear matter is calculated in a simple model with many of the essential composite features of nucleons. From g the Coulomb sum rule is calculated and found not to go to unity because there is substantial overlap of momentum scales describing NN correlations and nucleon substructure. (orig.)

  20. Born--Infeld theory of electroweak and gravitational fields: Possible correction to Newton and Coulomb laws

    OpenAIRE

    Palatnik, Dmitriy

    2002-01-01

    In this note one suggests a possibility of direct observation of the $\\theta$-parameter, introduced in the Born--Infeld theory of electroweak and gravitational fields, developed in quant-ph/0202024. Namely, one may treat $\\theta$ as a universal constant, responsible for correction to the Coulomb and Newton laws, allowing direct interaction between electrical charges and masses.

  1. MHV Vertices And Tree Amplitudes In Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward E-mail: witten@ias.edu

    2004-09-01

    As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)

  2. MHV Vertices And Tree Amplitudes In Gauge Theory

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space. (author)

  3. A damage cumulation method for crack initiation prediction under non proportional loading and overloading

    International Nuclear Information System (INIS)

    Taheri, S.

    1992-04-01

    For a sequence of constant amplitude cyclic loading containing overloads, we propose a method for damage cumulation in non proportional loading. This method uses as data cyclic stabilized states at non proportional loading and initiation or fatigue curve in uniaxial case. For that, we take into account the dependence of Cyclic Strain Stress Curves (C.S.S.C.) and mean cell size on prehardening and we define a stabilized uniaxial state cyclically equivalent to a non proportional stabilized state through a family of C.S.S.C. Although simple assumptions like linear damage function and linear cumulation is used we obtain a sequence effect for difficult cross slip materials as 316 stainless steel, but the Miner rule for easy cross-slip materials. We show then differences between a load-controlled test and a strain controlled test: for a 316 stainless steel in a load controlled test, the non proportional loading at each cycle is less damaging than the uniaxial one for the same equivalent stress, while the result is opposite in a strain controlled test. We show also that an overloading retards initiation in a load controlled test while it accelerates initiation in a strain controlled test. (author). 26 refs., 8 figs

  4. Application of the pulse-rise-time discriminator for background noise decreasing in proportional x-ray counters

    International Nuclear Information System (INIS)

    Goganov, D.A.; Guslina, A.G.; Korolev, V.F.; Lozinskij, B.S.; Sklyankin, V.A.

    1977-01-01

    The intrinsic background of commercial rising edge discriminator - based proportional counters has been measured. The block-diagram of the experimental apparatus comprises the detector to be tested, a charge-sensitive amplifier with an amplitude analyzer, a rising edge discriminator (RED) and a scaling device. The rising edges have been analyzed in the range between 0.2 to 0.7 of the pulse amplitude. The RED threshold has been preset to cut off all the edges longer than those of 55 Fe (to register 87% of the 55 Fe quanta). It has been found that by limiting the amplitude discriminator window to +-20% and using a RED the background of commercial counters can be reduced by about an order

  5. Generalization of experimental data on amplitude and frequency of oscillations induced by steam injection into a subcooled pool

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Walter; Li, Hua [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Puustinen, Markku [Nuclear Engineering, LUT School of Energy Systems, Lappeenranta University of Technology (LUT), FIN-53851 Lappeenranta (Finland); Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2015-12-15

    Highlights: • Available data on steam injection into subcooled pool is generalized. • Scaling approach is proposed on amplitude and frequency of chugging oscillations. • The scaled amplitude has a maximum at Froude number Fr ≈ 2.8. • The scaled frequency has a minimum at Fr ≈ 6. • Both amplitude and frequency has a strong dependence on pool bulk temperature. - Abstract: Steam venting and condensation into a subcooled pool of water through a blowdown pipe can undergo a phenomenon called chugging, which is an oscillation of the steam–water interface inside the blowdown pipe. The momentum that is generated by the oscillations is directly proportional to the oscillations’ amplitude and frequency, according to the synthetic jet theory. Higher momentum can enhance pool mixing and positively affect the pool's pressure suppression capacity by reducing thermal stratification. In this paper, we present a generalization of available experimental data on the amplitude and frequency of oscillations during chugging. We use experimental data obtained in different facilities at different scales to suggest a scaling approach for non-dimensional amplitude and frequency of the oscillations. We demonstrate that the Froude number Fr (which relates the inertial forces to gravitational forces) can be used as a scaling criterion in this case. The amplitude has maximum at Fr ≈ 2.8. There is also a strong dependence of the amplitude on temperature; the lower the bulk temperature is the higher the scaled amplitude. A known analytical theory can only capture the decreasing trend in amplitude for Fr > 2.8 and fails to capture the increasing trend and the temperature dependence. Similarly, there is a minimum of the non-dimensional frequency at Fr ≈ 6. A strong dependence on temperature is also observed for Fr > 6; the lower the bulk temperature is the higher the scaled frequency. The known analytical theory is able to capture qualitatively the general trend in

  6. Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

    Directory of Open Access Journals (Sweden)

    Jana Vlachová

    2015-03-01

    Full Text Available The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm. The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM, where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate (PMMA. The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor, which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting

  7. Dynamics of fission and Coulomb explosion of multicharged large finite systems

    Science.gov (United States)

    Levy, Y.; Last, I.; Jortner, J.

    This paper reports on studies of the fragmentation dynamics of multicharged (A+)55 Morse clusters, where the variation of the range of the Morse potential parameters induces cluster fission for a long-range potential and Coulomb explosion for a short-range potential. The multidimensional energy landscapes for these fragmentation processes were explored by constructing reduced coordinates utilizing the principal component analysis (PCA), which was previously applied for the energy landscapes and folding dynamics of biomolecules. The distance-matrix based PCA was applied to study the effects of the potential on the fragmentation dynamics and to explore the structural diversity of the fragmentation processes. The first principal coordinate (which captures 95% of the dynamic information content for each trajectory) constitutes an appropriate reaction coordinate for both fission and Coulomb explosion and was used to determine the temperature-dependent fragmentation rates. These obey the Arrhenius law, with the barrier for fission (0.36 eV) being higher than for Coulomb explosion (0.22 eV). Structural and energetic information on the radius of gyration and on the potential energy for small values of the reaction coordinate manifest considerably larger fluctuations for fission than for Coulomb explosion, indicating that in the former case the cluster shrinks and swells prior to dissociation. The joint projection of multiple trajectories for each fragmentation process allows for the description of the energy landscapes and fragmentation pathways in terms of two principal coordinates, which manifest a form of 'ski slopes'. Different collective coordinates describe the spatially isotropic Coulomb explosion and the spatially unisotropic fission.

  8. Estimating sighting proportions of American alligator nests during helicopter survey

    Science.gov (United States)

    Rice, Kenneth G.; Percival, H. Franklin; Woodward, Allan R.

    2000-01-01

    Proportions of American alligator (Alligator mississippiensis) nests sighted during aerial survey in Florida were estimated based upon multiple surveys by different observers. We compared sighting proportions across habitats, nesting seasons, and observer experience levels. The mean sighting proportion across all habitats and years was 0.736 (SE=0.024). Survey counts corrected by the mean sighting proportion reliably predicted total nest counts (7?2=0.933). Sighting proportions did not differ by habitat type (P=0.668) or year P=0.328). Experienced observers detected a greater proportion of nests (P<0.0001) than did either less experienced or inexperienced observers. Reliable estimates of nest abundance can be derived from aerial counts of alligator nests when corrected by the appropriate sighting proportion.

  9. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    Science.gov (United States)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  10. Monodromies and the structure of gauge and gravity amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Vanhove, Pierre [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Institut des Hautes Etudes Scientifiques - IHES, Le Bois-Marie 35, route de Chartres 91440 Bures-sur-Yvette (France)

    2010-07-01

    We show that different color-ordered tree-level amplitudes in gauge theories satisfy monodromy relations. These relations imply the existence of minimal basis of amplitude and provide the numerator factors of the amplitude for a parametrisation of the tree-level amplitude using only cubic vertices. Applications to supergravity amplitudes follow straightforwardly through the KLT-relations. Through the cuts, these tree-level relations give rise to non-trivial identities at loop level. At higher loop this constrains the critical ultraviolet behaviour of the four-graviton amplitude in N=8 supergravity to all order in perturbation. We argue this implies that the four-graviton N=8 amplitudes has a seven-loop logarithmic divergence in four dimensions. (author)

  11. Effects of amplitude modulation on perception of wind turbine noise

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Seong, Yeol Wan [Ammunition Engineering Team, Defense Agency for Technology and Quality, Daejeon (Korea, Republic of); Lee, Seung Hoon [Aerodynamics Research Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Hong, Ji Young [Transportation Environmental Research Team, Green Transport and Logistics Institute, Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2016-10-15

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation.

  12. Effects of amplitude modulation on perception of wind turbine noise

    International Nuclear Information System (INIS)

    Yoon, Ki Seop; Lee, Soo Gab; Gwak, Doo Young; Seong, Yeol Wan; Lee, Seung Hoon; Hong, Ji Young

    2016-01-01

    Wind turbine noise is considered to be easily detectable and highly annoying at relatively lower sound levels than other noise sources. Many previous studies attributed this characteristic to amplitude modulation. However, it is unclear whether amplitude modulation is the main cause of these properties of wind turbine noise. Therefore, the aim of the current study is to identify the relationship between amplitude modulation and these two properties of wind turbine noise. For this investigation, two experiments were conducted. In the first experiment, 12 participants determined the detection thresholds of six target sounds in the presence of background noise. In the second experiment, 12 participants matched the loudness of modified sounds without amplitude modulation to that of target sounds with amplitude modulation. The results showed that the detection threshold was lowered as the modulation depth increased; additionally, sounds with amplitude modulation had higher subjective loudness than those without amplitude modulation

  13. Coincidence measurements with the use of detectors measuring the energy of the radiances (proportional meters and scintillation counter)

    International Nuclear Information System (INIS)

    Sartory, M.

    1953-01-01

    In the setting of the realization of a set of installations permitting of the measures of coincidences between sorted radiances according to their energies, an installation understanding a proportional counter and a scintillation counter has been constructed and optimized. It has been used to do some measures of coincidences between X K photons and photons γ issued at the time of the radioactive transformation of the selenium 75 (electronic capture). The efficiency of the proportional meter has been determined roughly. Besides, a proportional counter of solid angle neighboring of 4π was able to achieve measures of coincidences while only doing one selection of amplitudes: indeed, the simultaneity of the detection of two radiances appear by an impulse whose amplitude is the sum of the amplitudes of the impulses resulting from each of the studied radiations. This method, applied to the coincidences between X-rays, permitted to bring the information on the diagram of decay of the arsenic 73. Besides, the coefficient of internal conversion of a consecutive transition to this decay has been valued. (author) [fr

  14. The pulsed amplitude unit for the SLC

    International Nuclear Information System (INIS)

    Rolfe, J.; Browne, M.J.; Jobe, R.K.

    1987-02-01

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed

  15. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  16. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  17. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  18. Casimir amplitudes in topological quantum phase transitions.

    Science.gov (United States)

    Griffith, M A; Continentino, M A

    2018-01-01

    Topological phase transitions constitute a new class of quantum critical phenomena. They cannot be described within the usual framework of the Landau theory since, in general, the different phases cannot be distinguished by an order parameter, neither can they be related to different symmetries. In most cases, however, one can identify a diverging length at these topological transitions. This allows us to describe them using a scaling approach and to introduce a set of critical exponents that characterize their universality class. Here we consider some relevant models of quantum topological transitions associated with well-defined critical exponents that are related by a quantum hyperscaling relation. We extend to these models a finite-size scaling approach based on techniques for calculating the Casimir force in electromagnetism. This procedure allows us to obtain universal Casimir amplitudes at their quantum critical points. Our results verify the validity of finite-size scaling in these systems and confirm the values of the critical exponents obtained previously.

  19. Open string topological amplitudes and gaugino masses

    International Nuclear Information System (INIS)

    Antoniadis, I.; Narain, K.S.; Taylor, T.R.

    2005-09-01

    We discuss the moduli-dependent couplings of the higher derivative F-terms (TrW 2 ) h-1 , where W is the gauge N =1 chiral superfield. They are determined by the genus zero topological partition function F (0,h) , on a world-sheet with h boundaries. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal N =(2,0) superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form Π n (TrW 2 ) h-2 , where Π's represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for h ≥ 3. As a result, once supersymmetry is broken by D-term expectation values, (TrW 2 ) 2 generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as m 1/2 ∼ m 0 4 in string units. Similarly, ΠTrW 2 generates Dirac masses for non-chiral brane fermions, of the same order of magnitude. This mechanism can be used for instance to obtain fermion masses at the TeV scale for scalar masses as high as m 0 ∼ O (10 13 ) GeV. We present explicit examples in toroidal string compactifications with intersecting D-branes. (author)

  20. Efficient reverse time migration with amplitude encoding

    Science.gov (United States)

    Hu, Jiangtao; Wang, Huazhong; Zhao, Lei; Shao, Yu; Wang, Meixia; Osen, Are

    2015-08-01

    Reverse time migration (RTM) is an accurate seismic imaging method for imaging the complex subsurface structure. Traditional common shot RTM suffers from low efficiency due to the large number of single shot gathers, especially for marine seismic data. Phase encoding is commonly used to reduce the computational cost of RTM. Phase encoding in the frequency domain is usually related to time shift in the time domain. Therefore, phase-encoding-based RTM needs time padding to avoid information loss which degrades the efficiency of the time-domain wavefield extrapolator. In this paper, an efficient time-domain RTM scheme based on the amplitude encoding is proposed. This scheme uses the orthogonal cosine basis as the encoding function, which has similar physical meaning to plane wave encoding (i.e. plane-wave components with different surface shooting angles). The proposed scheme can generate a qualified imaging result as well as common shot RTM but with less computational cost. Since this scheme does not need time padding, it is more efficient than the phase encoding schemes and can be conveniently implemented in the time domain. Numerical examples on the Sigsbee2a synthetic dataset demonstrate the feasibility of the proposed method.