WorldWideScience

Sample records for amplitude proportional coulomb

  1. Optimal Tuning of Amplitude Proportional Coulomb Friction Damper for Maximum Cable Damping

    DEFF Research Database (Denmark)

    Weber, Felix; Høgsberg, Jan Becker; Krenk, Steen

    2010-01-01

    This paper investigates numerically the optimal tuning of Coulomb friction dampers on cables, where the optimality criterion is maximum additional damping in the first vibration mode. The expression for the optimal friction force level of Coulomb friction dampers follows from the linear viscous...... damper via harmonic averaging. It turns out that the friction force level has to be adjusted in proportion to cable amplitude at damper position which is realized by amplitude feedback in real time. The performance of this adaptive damper is assessed by simulated free decay curves from which the damping...... to higher modes evoked by the amplitude proportional Coulomb friction damper which clamps the cable at its upper and lower positions. The resulting nonsinusoidal cable motion clearly violates the assumption of pure harmonic motion and explains why such dampers have to be tuned differently from optimal...

  2. Exact solution to the Coulomb wave using the linearized phase-amplitude method

    Directory of Open Access Journals (Sweden)

    Shuji Kiyokawa

    2015-08-01

    Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.

  3. Amplitude Function of Asymptotic Correlations Along Charged Wall in Coulomb Fluids

    Science.gov (United States)

    Šamaj, Ladislav

    2016-07-01

    In classical semi-infinite Coulomb fluids, two-point correlation functions exhibit a slow inverse-power law decay along a uniformly charged wall. In this work, we concentrate on the corresponding amplitude function which depends on the distances of the two points from the wall. Recently Šamaj (J Stat Phys 161:227-249 2015), applying a technique of anticommuting variables to a 2D system of charged rectilinear wall with "counter-ions only", we derived a relation between the amplitude function and the density profile which holds for any temperature. In this paper, using the Möbius conformal transformation of particle coordinates in a disc, a new relation between the amplitude function and the density profile is found for that model. In all exactly solvable cases, the amplitude function factorizes itself in the two distances from the wall. Presupposing this factorization property at any temperature and using specific sum rules for semi-infinite geometries, a relation between the amplitude function of the charge-charge structure function and the charge profile is derived for many-component Coulomb fluids in any dimension.

  4. Influence of the coulomb vertex effects on peripheral partial wave amplitudes in the mechanism of successive two-proton transfer in the peripheral nuclear A(X,Y)B reaction induced by weakly bound light nuclei at low energies

    International Nuclear Information System (INIS)

    Full text: In the present work the peripheral two-proton (p1 and p2) transfer A(X,Y)B reaction induced by weakly bound light nuclei at low energies is considered. Herein X = ((Yp2 ) +p1) and B = ((Ap1)+p2). We consider the case when the proton p1(p2) is loosely bound in the nucleus X (B) with the binding energy εX (εB) and the binding energies of the protons p2 and p1, ε(Yp2) and ε(Yp1), in the bound (Yp2 ) and (Ap1) states, respectively, satisfy the conditions ε(Yp2) >>εX, ε(Yp1)>>εB, εX ≅εB. One of the main mechanisms of the investigated reaction corresponds to that, the amplitude of which is described by the square diagram. We have taken into account the fact that the main contribution to the amplitude of that reaction comes from the peripheral partial-wave amplitudes (l>>1), which are determined by the nearest to the physical region -1≤ cosθ≤ 1 singular point cosθ = ζ >1 ( θ is the scattering angle in the c.m.s.). In the case under consideration, the nearest singular point corresponds to the singularity of the Coulomb vertex form factors for the virtual decays X→(Yp2)+p1 and (Ap1)+p2→B (an anomalous mechanism).The explicit forms of the peripheral partial-wave amplitudes Ml (l>>1), which are determined by this singularity, as well as the peripheral partial-wave amplitudes MIDWBA corresponding to the same mechanism of the successive transfer within the conventional DWBA (a usual mechanism), have been found. One notes that the behavior of MIDWBA is determined by the singularity ζp, and ζp>ζ since a value of ζp is determined by the binding energies of εX and ε(Yp2). The asymptotic expressions for Ml and MIDWBA for l>>1 show the different dependence on l. Besides, the explicit forms of the exact amplitude at cosθ→ζ and the singular part of the amplitude corresponding to the usual mechanism of DWBA at cosθ→ζp have been derived. Investigation of analytic properties of the amplitudes of the peripheral transfer reactions 6Li(12N,10B

  5. Proportionality lost - proportionality regained?

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2010-01-01

    In recent years, the European Court of Justice (the ECJ) seems to have accepted restrictions on the freedom of establishment and other basic freedoms, despite the fact that a more thorough proportionality test would have revealed that the restriction in question did not pass the 'rule of reason' ...

  6. Coulomb Damping

    Science.gov (United States)

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  7. Coulomb-Blockade Oscillations in Semiconductor Nanostructures

    OpenAIRE

    Houten, van, H.; Beenakker, C. W. J.; Staring, A.A.M.

    2005-01-01

    I. Introduction (Preface, Basic properties of semiconductor nanostructures). II. Theory of Coulomb-blockade oscillations (Periodicity of the oscillations, Amplitude and lineshape). III. Experiments on Coulomb-blockade oscillations (Quantum dots, Disordered quantum wires, Relation to earlier work on disordered quantum wires). IV. Quantum Hall effect regime (The Aharonov-Bohm effect in a quantum dot, Coulomb blockade of the Aharonov-Bohm effect, Experiments on quantum dots, Experiments on disor...

  8. Proportional reasoning

    DEFF Research Database (Denmark)

    Dole, Shelley; Hilton, Annette; Hilton, Geoff;

    2015-01-01

    Proportional reasoning is widely acknowledged as a key to success in school mathematics, yet students’ continual difficulties with proportion-related tasks are well documented. This paper draws on a large research study that aimed to support 4th to 9th grade teachers to design and implement tasks...

  9. Ion Coulomb Crystals

    CERN Document Server

    Thompson, Richard C

    2014-01-01

    Ion Coulomb crystals (ICC), formed by atomic ions at low temperatures in radiofrequency and Penning ion traps, are structures that have remarkable properties and many applications. Images of Coulomb crystals are striking and reveal the crystal structure, which arises from a balance between the trapping forces acting on the ions and their mutual Coulomb repulsion. Applications of these structures range from frequency standards and quantum simulation through to measurement of the cross sections of chemical reactions of ions.

  10. Adventures in Coulomb Gauge

    International Nuclear Information System (INIS)

    We study the phase structure of SU(2) gauge theories at zero and high temperature, with and without scalar matter fields, in terms of the symmetric/broken realization of the remnant gauge symmetry which exists after fixing to Coulomb gauge. The symmetric realization is associated with a linearly rising color Coulomb potential (which we compute numerically), and is a necessary but not sufficient condition for confinement.

  11. Traceable Coulomb Blockade Thermometry

    CERN Document Server

    Hahtela, Ossi; Kemppinen, Antti; Meschke, Matthias; Prunnila, Mika; Gunnarsson, David; Roschier, Leif; Penttila, Jari; Pekola, Jukka

    2016-01-01

    We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods, the numerical fitting of the full conductance curve and measuring the height of the conductance dip yield almost identical results. The complete uncertainty analysis shows that the relative expanded uncertainty (k = 2) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 1 %. A good agreement within the measurement uncertainty is experimentally demonstrated between the Coulomb blockade thermometer and a superconducting reference point device that has been directly calibrated against the Provisional Low Temperature Scale of 2000.

  12. Coulomb Effects in Femtoscopy

    CERN Document Server

    Maj, Radoslaw

    2009-01-01

    The correlation function of two identical particles - pions or kaons - interacting via Coulomb potential is computed. The particles are emitted from an anisotropic particle's source of finite lifetime. In the case of pions, the effect of halo is taken into account as an additional particle's source of large spatial extension. The relativistic effects are discussed in detail. The Bowler-Sinyukov procedure to remove the Coulomb interaction is carefully tested. In the absence of halo the procedure is shown to work very well even for an extremely anisotropic source. When the halo is taken into account the free correlation function, which is extracted by means of the Bowler-Sinyukov procedure, is distorted at small relative momenta but the source parameters are still correctly reproduced.

  13. Coulomb drag in topological insulator films

    Science.gov (United States)

    Liu, Hong; Liu, Weizhe Edward; Culcer, Dimitrie

    2016-05-01

    We study Coulomb drag between the top and bottom surfaces of topological insulator films. We derive a kinetic equation for the thin-film spin density matrix containing the full spin structure of the two-layer system, and analyze the electron-electron interaction in detail in order to recover all terms responsible for Coulomb drag. Focusing on typical topological insulator systems, with a film thicknesses d up to 6 nm, we obtain numerical and approximate analytical results for the drag resistivity ρD and find that ρD is proportional to T2d-4 na-3/2 np-3/2 at low temperature T and low electron density na,p, with a denoting the active layer and p the passive layer. In addition, we compare ρD with graphene, identifying qualitative and quantitative differences, and we discuss the multi-valley case, ultra thin films and electron-hole layers.

  14. Non-linear conductivity in Coulomb glasses

    Energy Technology Data Exchange (ETDEWEB)

    Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.

    2009-12-15

    We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  15. On Calculation of Amplitudes in Quantum Electrodynamics

    OpenAIRE

    Karplyuk, Kostyantyn; Zhmudsky, Oleksandr

    2012-01-01

    A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.

  16. Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)

  17. Coulomb Control of Polygonal Linkages

    NARCIS (Netherlands)

    Khimshiashvili, Giorgi N.; Panina, Gaiane Yu; Siersma, Dirk

    2014-01-01

    Equilibria of polygonal linkage with respect to Coulomb potential of point charges placed at the vertices of linkage are considered. It is proved that any convex configuration of a quadrilateral linkage is the point of global minimum of Coulomb potential for appropriate values of charges of vertices

  18. Coulomb interactions within halo EFT

    International Nuclear Information System (INIS)

    Preliminary results of an effective field theory applied to nuclear cluster systems are presented, where Coulomb interactions play a significant role. Presented at the 20th Few-Body Conference, Pisa, Italy, 10-14 September 2007. (author)

  19. Toward a Universal Model of Damping--Modified Coulomb Friction

    OpenAIRE

    Peters, Randall D.

    2002-01-01

    A modification of Coulomb's law of friction uses a variable coefficient of friction that depends on a power law in the energy of mechanical oscillation. Through the use of three different exponents: 0, 1/2 and 1; all commonly encountered non-viscous forms of damping are accommodated. The nonlinear model appears to yield good agreement with experiment in cases of surface, internal, and amplitude dependent damping.

  20. Suitability of linear quadrupole ion traps for large Coulomb crystals

    OpenAIRE

    Tabor, D. A.; Rajagopal, V.; Lin, Y-W.; Odom, B.

    2011-01-01

    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial co...

  1. Coulomb explosion of "hot spot"

    CERN Document Server

    Oreshkin, V I; Chaikovsky, S A; Artyomov, A P

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  2. Renormalization in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Research highlights: → The Hamiltonian in the Coulomb gauge of QCD contains a non-linear Christ-Lee term. → We investigate the UV divergences from higher order graphs. → We find that they cannot be absorbed by renormalization of the Christ-Lee term. - Abstract: In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.

  3. Coulomb gap at finite temperatures

    Science.gov (United States)

    Sarvestani, Masoud; Schreiber, Michael; Vojta, Thomas

    1995-08-01

    The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ɛ,T) close to the chemical potential μ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(μ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75+/-0.1 for the two-dimensional model and 2.7+/-0.1 for the three-dimensional model. Nevertheless, the relation g(μ,T)~g(ɛ,T=0) with ||ɛ-μ||=kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.

  4. Interpolating the Coulomb Phase of Little String Theory

    CERN Document Server

    Lin, Ying-Hsuan; Wang, Yifan; Yin, Xi

    2015-01-01

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.

  5. Adaptation through proportion

    Science.gov (United States)

    Xiong, Liyang; Shi, Wenjia; Tang, Chao

    2016-08-01

    Adaptation is a ubiquitous feature in biological sensory and signaling networks. It has been suggested that adaptive systems may follow certain simple design principles across diverse organisms, cells and pathways. One class of networks that can achieve adaptation utilizes an incoherent feedforward control, in which two parallel signaling branches exert opposite but proportional effects on the output at steady state. In this paper, we generalize this adaptation mechanism by establishing a steady-state proportionality relationship among a subset of nodes in a network. Adaptation can be achieved by using any two nodes in the sub-network to respectively regulate the output node positively and negatively. We focus on enzyme networks and first identify basic regulation motifs consisting of two and three nodes that can be used to build small networks with proportional relationships. Larger proportional networks can then be constructed modularly similar to LEGOs. Our method provides a general framework to construct and analyze a class of proportional and/or adaptation networks with arbitrary size, flexibility and versatile functional features.

  6. Proportional Representation with Uncertainty

    OpenAIRE

    Francesco De Sinopoli; Giovanna Iannantuoni; Elena Manzoni; Carlos Pimienta

    2014-01-01

    We introduce a model with strategic voting in a parliamentary election with proportional representation and uncertainty about voters’ preferences. In any equilibrium of the model, most voters only vote for those parties whose positions are extreme. In the resulting parliament, a consensus government forms and the policy maximizing the sum of utilities of the members of the government is implemented.

  7. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms.

  8. Coulomb-Born-Oppenheimer approximation in Ps-H scattering

    Indian Academy of Sciences (India)

    Hasi Ray

    2006-02-01

    To improve the Coulomb-Born approximation (CBA) theory of ionization in positronium (Ps) and atom scattering, the effect of exchange is introduced. The nine-dimensional exchange amplitude for ionization of Ps in Ps-H scattering is reduced to a two-dimensional integral using the present Coulomb-Born-Oppenheimer approximation (CBOA). The methodology is extremely useful to evaluate ionization parameters for different target systems and for different types of ionization processes. It is then applied to evaluate the Ps-ionization cross-section and to estimate the effect of exchange on Ps-ionization in Ps-H system. We establish the importance of exchange at lower energy region.

  9. Renormalization group analysis of graphene with a supercritical Coulomb impurity

    CERN Document Server

    Nishida, Yusuke

    2016-01-01

    We develop a field theoretical approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.

  10. Suitability of linear quadrupole ion traps for large Coulomb crystals

    CERN Document Server

    Tabor, D A; Odom, B

    2011-01-01

    Growing and studying large Coulomb crystals, composed of tens to hundreds of thousands of ions, in linear quadrupole ion traps presents new challenges for trap implementation. We consider several trap designs, first comparing the total driven micromotion amplitude as a function of location within the trapping volume; total micromotion is an important point of comparison since it can limit crystal size by transfer of radiofrequency drive energy into thermal energy. We also compare the axial component of micromotion, which leads to first-order Doppler shifts along the preferred spectroscopy axis in precision measurements on large Coulomb crystals. Finally, we compare trapping potential anharmonicity, which can induce nonlinear resonance heating by shifting normal mode frequencies onto resonance as a crystal grows. We apply a non-deforming crystal approximation for simple calculation of these anharmonicity-induced shifts, allowing a straightforward estimation of when crystal growth can lead to excitation of diff...

  11. Antiproton-Nucleus Interaction and Coulomb Effect at High Energies

    Institute of Scientific and Technical Information of China (English)

    ZHOU Li-Juan; WU Qing; GU Yun-Ting; MA Wei-Xing; TAN Zhen-Qiang; HU Zhao-Hui

    2005-01-01

    The Coulomb effect in high energy antiproton-nucleus elastic and inelastic scattering from 12C and 16O is studied in the framework of Glauber multiple scattering theory for five kinetic energies ranged from 0.23 to 1.83 GeV.A microscopic shell-model nuclear wave functions, Woods-Saxon single-particle wave functions, and experimental pN amplitudes are used in the calculations. The results show that the Coulomb effect is of paramount importance for filling up the dips of differential cross sections. We claim that the present result for inelastic scattering of antiproton-12C is sufficiently reliable to be a guide for measurements in the very near future. We also believe that antiproton nucleus elastic and inelastic scattering may produce new information on both the nuclear structure and the antinucleon-nucleon interaction, in particular the p-neutron interaction.

  12. Renormalization group analysis of graphene with a supercritical Coulomb impurity

    Science.gov (United States)

    Nishida, Yusuke

    2016-08-01

    We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.

  13. Coulomb dissociation of N,2120

    Science.gov (United States)

    Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamaño, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkäll, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Datta Pramanik, Ushasi; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Gonzalez Diaz, D.; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hâkan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Sanchez del Rio Saez, Jose; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai; R3B Collaboration

    2016-06-01

    Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N,2120 are reported. Relativistic N,2120 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19N (n ,γ )20N and 20N (n ,γ ) 21N excitation functions and thermonuclear reaction rates have been determined. The 19 (n ,γ )20N rate is up to a factor of 5 higher at T <1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.

  14. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  15. Strong-Field S-Matrix Theory With Coulomb-Volkov Final State in All Orders

    CERN Document Server

    Faisal, F H M

    2016-01-01

    Despite its long standing usefulness for the analysis of various processes in intense laser fields, it is well-known that the so-called strong-field KFR or SFA ansatz does not account for the final-state Coulomb interaction. Due to its importance for the ubiquitous ionisation process, numerous heuristic attempts have been made during the last several decades to account for the final state Coulomb interaction with in the SFA. Also to this end an ad hoc model with the so-called Coulomb-Volkov final state was introduced a long time ago. However, till now, no systematic strong-field S-matrix expansion using the Coulomb-Volkov final state could be found. Here we solve this long standing problem by determining the Coulomb-Volkov Hamiltonian, identifying the rest-interaction in the final state, and explicitly constructng the Coulomb-Volkov propagator (or Green's function). We employ them to derive the complete S-matrix series for the ionisation amplitude governed by the Coulomb-Volkov final state in all orders. The ...

  16. The divine proportion

    CERN Document Server

    Huntley, H E

    1970-01-01

    Using simple mathematical formulas, most as basic as Pythagoras's theorem and requiring only a very limited knowledge of mathematics, Professor Huntley explores the fascinating relationship between geometry and aesthetics. Poetry, patterns like Pascal's triangle, philosophy, psychology, music, and dozens of simple mathematical figures are enlisted to show that the ""divine proportion"" or ""golden ratio"" is a feature of geometry and analysis which awakes answering echoes in the human psyche. When we judge a work of art aesthetically satisfying, according to his formulation, we are making it c

  17. Restrictions and Proportionality

    DEFF Research Database (Denmark)

    Werlauff, Erik

    2009-01-01

    The article discusses three central aspects of the freedoms under European Community law, namely 1) the prohibition against restrictions as an important extension of the prohibition against discrimination, 2) a prohibition against exit restrictions which is just as important as the prohibition...... against host country restrictions, but which is often not recognised to the same extent by national law, and 3) the importance of also identifying and recognising an exit restriction, so that it is possible to achieve the required test of appropriateness and proportionality in relation to the rule...

  18. Proportional counter radiation camera

    Science.gov (United States)

    Borkowski, C.J.; Kopp, M.K.

    1974-01-15

    A gas-filled proportional counter camera that images photon emitting sources is described. A two-dimensional, positionsensitive proportional multiwire counter is provided as the detector. The counter consists of a high- voltage anode screen sandwiched between orthogonally disposed planar arrays of multiple parallel strung, resistively coupled cathode wires. Two terminals from each of the cathode arrays are connected to separate timing circuitry to obtain separate X and Y coordinate signal values from pulse shape measurements to define the position of an event within the counter arrays which may be recorded by various means for data display. The counter is further provided with a linear drift field which effectively enlarges the active gas volume of the counter and constrains the recoil electrons produced from ionizing radiation entering the counter to drift perpendicularly toward the planar detection arrays. A collimator is interposed between a subject to be imaged and the counter to transmit only the radiation from the subject which has a perpendicular trajectory with respect to the planar cathode arrays of the detector. (Official Gazette)

  19. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas

  20. Isospin Effect of Coulomb Interaction on Momentum Dissipation in Intermediate Energy Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Ye; GUO Wen-Jun; XING Yong-Zhong; Li Xi-Guo

    2004-01-01

    We investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. We also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section.In this case, Coulomb interaction does not change obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential.

  1. PREFACE: Strongly Coupled Coulomb Systems

    Science.gov (United States)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within

  2. Coulomb correction calculations of pp Bremsstrahlung

    International Nuclear Information System (INIS)

    The effects of the Coulomb interaction upon the photon cross section and analyzing power from pp Bremsstrahlung have been studied in detail. Off-shell properties of the Coulomb T matrices have been considered but the associated, Coulomb modified, hadronic T matrices are important elements in any analyses of low energy, forward proton scattering data. At the lowest energy considered (5 MeV), the full calculations gave cross sections that were half the size of those found without Coulomb effects or with a simple model approximation to them. With increasing energy, the cross sections varied to those characteristic of magnetic interaction dominance and the specific differences due to Coulomb effects diminished. 47 refs., 7 figs

  3. Coulomb Potentials between Spherical and Deformed Nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gao-Long; LE Xiao-Yun; LIU Zu-Hua

    2008-01-01

    @@ Coulomb potentials for spherical-deformed reaction partners are calculated in terms of the double folding model as well as the conventional formulas. Our results show that the Coulomb potentials calculated with different approaches have quite different behaviours in the internal region of the potential. Because fusion process is sensitive to the barrier height and the internal part of the potential, the fusion excitation function, especially the fusion barrier distribution, should provide a strict test of the interaction potentiaLs. Therefore, we calculate the fusion excitation function and barrier distribution for the 16O+154 Sm system with different versions of the Coulomb potentials, in comparison with the experimental results. It is found that the fusion excitation function and barrier distribution of 16 O+154 Sm are obviously different for the different versions of the Coulomb potentials.By means of this comparison, we may conclude that the double folding model with the accurate approximate form can provide rather reasonable Coulomb potentials.

  4. Effect of Coulomb Interaction on Dynamical Localization in a Two-Electron Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi

    2004-01-01

    The combined interaction of Coulomb interaction and ac fields with two electrons in a quantum dot molecule is studied respectively with numerical simulation, perturbation theory and the approximation of driven two-level model. The dynamical localization occurs with the ac field whose ratio of the amplitude to the angular frequency is a root of n-order Bessel functions, where n is determined by the Coulomb interaction energy. Such results are explained with either the driven two-level approximation or the degenerated three-level model and verified by the numerical simulations.

  5. Amplitude mediated chimera states

    OpenAIRE

    Sethia, Gautam C.; Sen, Abhijit; Johnston, George L.

    2013-01-01

    We investigate the possibility of obtaining chimera state solutions of the non-local Complex Ginzburg-Landau Equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our numerical studies reveal the existence of a variety of amplitude mediated chimera states (including stationary and non-stationary two cluster chimera states), that display intermittent emergence and decay of amplitude dips in their phase incoherent regions. The existence regions of t...

  6. Periods and Feynman amplitudes

    CERN Document Server

    Brown, Francis

    2016-01-01

    Feynman amplitudes in perturbation theory form the basis for most predictions in particle collider experiments. The mathematical quantities which occur as amplitudes include values of the Riemann zeta function and relate to fundamental objects in number theory and algebraic geometry. This talk reviews some of the recent developments in this field, and explains how new ideas from algebraic geometry have led to much progress in our understanding of amplitudes. In particular, the idea that certain transcendental numbers, such as $\\pi$, can be viewed as a representation of a group, provides a powerful framework to study amplitudes which reveals many hidden structures.

  7. Smooth models for the Coulomb potential

    CERN Document Server

    González-Espinoza, Cristina E; Karwowski, Jacek; Savin, Andreas

    2016-01-01

    Smooth model potentials with parameters selected to reproduce the spectrum of one-electron atoms are used to approximate the singular Coulomb potential. Even when the potentials do not mimic the Coulomb singularity, much of the spectrum is reproduced within the chemical accuracy. For the Hydrogen atom, the smooth approximations to the Coulomb potential are more accurate for higher angular momentum states. The transferability of the model potentials from an attractive interaction (Hydrogen atom) to a repulsive one (Harmonium and the uniform electron gas) is discussed.

  8. Coulomb Friction Driving Brownian Motors

    International Nuclear Information System (INIS)

    We review a family of models recently introduced to describe Brownian motors under the influence of Coulomb friction, or more general non-linear friction laws. It is known that, if the heat bath is modeled as the usual Langevin equation (linear viscosity plus white noise), additional non-linear friction forces are not sufficient to break detailed balance, i.e. cannot produce a motor effect. We discuss two possibile mechanisms to elude this problem. A first possibility, exploited in several models inspired to recent experiments, is to replace the heat bath's white noise by a “collisional noise”, that is the effect of random collisions with an external equilibrium gas of particles. A second possibility is enlarging the phase space, e.g. by adding an external potential which couples velocity to position, as in a Klein—Kramers equation. In both cases, non-linear friction becomes sufficient to achieve a non-equilibrium steady state and, in the presence of an even small spatial asymmetry, a motor effect is produced. (general)

  9. Logarithmic torus amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Michael [Physikalisches Institut, University of Bonn, Nussallee 12, D-53115 Bonn (Germany); Gaberdiel, Matthias R [Institut fuer Theoretische Physik, ETH Zuerich, ETH-Hoenggerberg, 8093 Zurich (Switzerland)

    2006-02-24

    For the example of the logarithmic triplet theory at c = -2, the chiral vacuum torus amplitudes are analysed. It is found that the space of these torus amplitudes is spanned by the characters of the irreducible representations, as well as a function that can be associated with the logarithmic extension of the vacuum representation. A few implications and generalizations of this result are discussed.

  10. Dimension two condensates in the Gribov-Zwanziger theory in the Coulomb gauge

    CERN Document Server

    Guimaraes, M S; Sorella, S P

    2015-01-01

    We investigate the dimension two condensate $$ within the Gribov-Zwanziger approach to Euclidean Yang-Mills theories in the Coulomb gauge, in both 3 and 4 dimensions. An explicit calculation shows that, at the first order, the condensate $$ is plagued by a non-integrable IR divergence in 3D, while in 4D it exhibits a logarithmic UV divergence, being proportional to the Gribov parameter $\\gamma^2$. These results indicate that in 3D the transverse spatial Coulomb gluon two-point correlation function exhibits a scaling behaviour, in agreement with Gribov's expression. In 4D, however, they suggest that, next to the scaling behaviour, a decoupling solution might emerge too.

  11. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  12. Comments on Coulomb pairing in aromatic hydrocarbons

    CERN Document Server

    Huber, D L

    2013-01-01

    Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.

  13. Numerical path integration with Coulomb potential

    OpenAIRE

    Myrheim, Jan

    2003-01-01

    A simple and efficient method for quantum Monte Carlo simulation is presented, based on discretization of the action in the path integral, and a Gaussian averaging of the potential, which works well e.g. with the Coulomb potential.

  14. Coulomb Interaction Does Not Spread Instantaneously

    CERN Document Server

    Tzontchev, R I; Rivera-Juarez, J M

    2000-01-01

    The experiment is described which shows that Coulomb interaction spreads with a limit velocity and thus this kind of interaction cannot be considered as so called "instantaneous action at a distance".

  15. Cavity QED experiments with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan;

    2009-01-01

    Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....

  16. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  17. Gaussian expansion approach to Coulomb breakup

    CERN Document Server

    Egami, T; Matsumoto, T; Iseri, Y; Kamimura, M; Yahiro, M

    2004-01-01

    An accurate treatment of Coulomb breakup reactions is presented by using both the Gaussian expansion method and the method of continuum discretized coupled channels. As $L^2$-type basis functions for describing Coulomb breakup processes, we take complex-range Gaussian functions, which form in good approximation a complete set in a large configuration space being important for the processes. Accuracy of the method is tested quantitatively for $^{8}{\\rm B}+^{58}$Ni scattering at 25.8 MeV.

  18. 16O Coulomb decomposition project '93

    International Nuclear Information System (INIS)

    The adaptability of magnetic analyzers in Japan to this research project was compared and investigated, and the Coulomb decomposition process and the experimental conditions for 16O were examined. By the measurement of the delayed-α spectrum in 16N decay, a new restriction was set to the E1 reaction rate of 12C(α, γ)16O reaction. Hereafter, the research on the E2 reaction rate is urgently needed. There is large expectation for the Coulomb decomposition reaction of 16O as the probe especially sensitive to the E2 reaction rate of the important reaction for celestial body physics. At the meeting held on July 30, the RIKEN SMART spectrometer (F2) was judged as optimal, and its merits are explained. Also a demerit is pointed out. The ion optic parameters of the SMART F2 are shown. In the meeting held on December 17, investigation was carried out on α-12C coincidence count rate and projectile fragmentation background, Coulomb decomposition process and focal plane detector. The reaction cross section of Coulomb E2 excitation was evaluated by Monte Carlo method. As to the possibility of applying Coulomb decomposition process under the circumstance that nuclear force and Coulomb force compete, the new direction was indicated. The experimental plan is shown. (K.I.)

  19. Scattering amplitudes in four- and six-dimensional gauge theories

    International Nuclear Information System (INIS)

    We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.

  20. Properties of nuclear and Coulomb breakup of 8B

    CERN Document Server

    Ogata, K; Iseri, Y; Yahiro, M

    2008-01-01

    Dependence of breakup cross sections of 8B at 65 MeV/nucleon on target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than in preceding study. The scaling law of the nuclear breakup cross section as A_T^(1/3) is found to be satisfied only in the middle A_T region of 40 < A_T < 150. Interference between nuclear and Coulomb breakup amplitudes turns out to vanish at very forward angles with respect to the center-of-mass of 8B, independent of target nucleus. Truncation of the relative energy between the p and 7Be fragments slightly reduces contribution from nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.

  1. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  2. Universal Correlations of Coulomb Blockade Conductance Peaks and the Rotation Scaling in Quantum Dots

    OpenAIRE

    Alhassid, Y.; Attias, H.

    1996-01-01

    We show that the parametric correlations of the conductance peak amplitudes of a chaotic or weakly disordered quantum dot in the Coulomb blockade regime become universal upon an appropriate scaling of the parameter. We compute the universal forms of this correlator for both cases of conserved and broken time reversal symmetry. For a symmetric dot the correlator is independent of the details in each lead such as the number of channels and their correlation. We derive a new scaling, which we ca...

  3. Relativistic Scattering States of Coulomb Potential Plus a New Ring-Shaped Potential

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yuan; LU Fa-Lin; SUN Dong-Sheng

    2006-01-01

    In this paper, exact solutions of scattering states of the Klein-Gordon equation with Coulomb potential plus a new ring-shaped potential are studied under the condition that the scalar potential is equal to the vector potential.The normalized wave functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed.

  4. Primakoff production of $\\pi^0$, $\\eta$ and $\\eta'$ in the Coulomb field of a nucleus

    OpenAIRE

    Kaskulov, Murat M.; Mosel, Ulrich

    2011-01-01

    Photoproduction of neutral pseudoscalar mesons $\\pi^0,\\eta(547)$ and $\\eta'(958)$ in the Coulomb field of an atomic nucleus is studied using a model which describes the Primakoff and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of $C$-parity odd Regge trajectories. In the coherent production the isospin filtering makes the $\\omega(782)$ a dominant trajectory. The calculations are in agreement with $\\pi^0$ data from JLAB provid...

  5. Observation of multistep Coulomb excitation during ion-atom collisions

    International Nuclear Information System (INIS)

    Well below the Coulomb barrier energies two colliding nuclei may share the energy via electromagnetic interactions and it can lead to excite the nuclear states of one or both the participating nuclei. This long range Coulombic interaction leading to nuclear excitation is called Coulomb excitation. In the present work, we have studied heavy ion induced Coulomb excitation process in 12C nuclei at the sub-Coulomb barrier energies using x-ray spectroscopy technique in combination with the nuclear techniques.

  6. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2007-04-01

    The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.

  7. Coulomb screening in graphene with topological defects

    Science.gov (United States)

    Chakraborty, Baishali; Gupta, Kumar S.; Sen, Siddhartha

    2015-06-01

    We analyze the screening of an external Coulomb charge in gapless graphene cone, which is taken as a prototype of a topological defect. In the subcritical regime, the induced charge is calculated using both the Green's function and the Friedel sum rule. The dependence of the polarization charge on the Coulomb strength obtained from the Green's function clearly shows the effect of the conical defect and indicates that the critical charge itself depends on the sample topology. Similar analysis using the Friedel sum rule indicates that the two results agree for low values of the Coulomb charge but differ for the higher strengths, especially in the presence of the conical defect. For a given subcritical charge, the transport cross-section has a higher value in the presence of the conical defect. In the supercritical regime we show that the coefficient of the power law tail of polarization charge density can be expressed as a summation of functions which vary log periodically with the distance from the Coulomb impurity. The period of variation depends on the conical defect. In the presence of the conical defect, the Fano resonances begin to appear in the transport cross-section for a lower value of the Coulomb charge. For both sub and supercritical regime we derive the dependence of LDOS on the conical defect. The effects of generalized boundary condition on the physical observables are also discussed.

  8. "Safe" Coulomb excitation of $^{30}$Mg

    CERN Document Server

    Niedermaier, O; Alvarez, C; Ames, F; Äystö, J; Behrens, T; Bildstein, V; Boie, H; Bollen, G; Butler, P A; Cederkäll, J; Davinson, T; Delahaye, P; Eberth, J; Emhofer, S; Fitting, J; Forstner, O; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Gerl, J; Gernhäuser, R; Gersch, G; Habs, D; Hess, H; Huber, G; Hurst, A; Huyse, M; Ivanov, O; Iwanicki, J; Jonson, B; Kester, O; Köck, F; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lieb, P; Liljeby, L; Lutter, R; Mayet, P; Münch, M; Nilsson, T; Oinonen, M; Pal, U K; Pantea, M; Pasini, M; Podlech, H; Reiter, P; Repnow, R; Richter, A; Rudolph, K; Scheit, H; Schempp, A; Scherillo, A; Schmidt, P; Schrieder, G; Schwalm, D; Sieber, T; Simon, H; Thelen, O; Thirolf, P G; Van Duppen, P; Van de Walle, J; Van den Bergh, P; Walter, G; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Von Hahn, R

    2005-01-01

    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient gamma spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25 MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2$^{+}$ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\\gamma$- ray yields the B(E2; 0$_{gs}^{+} \\rightarrow 2_{1}^{+}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$ fm$^{4}$. Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the theoretical conjecture that the neutron-rich magnesium isotope $^{30}$Mg resides outside the "island of inversion".

  9. "Safe" Coulomb Excitation of $^{30}$Mg

    CERN Document Server

    Niedermaier, O; Bildstein, V; Boie, H; Fitting, J; Von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Äystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile-Prieto, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G

    2005-01-01

    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \\rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-energy Coulomb excitation method and confirms that the theoretical conjecture that the neutron-rich magnesium isotope $^{30}$Mg lies still outside the "island of inversion".

  10. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  11. Leading order QCD in Coulomb gauge

    CERN Document Server

    Watson, Peter

    2011-01-01

    Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.

  12. Orbital Ordering Induced by Direct Coulomb Repulsion

    Institute of Scientific and Technical Information of China (English)

    HUANG Yuan-Yie; ZHANG Yu-Heng

    2011-01-01

    We consider the covalence characters of the 3d electron with the eg orbital freedoms and put forward a new mechanism of the orbital ordering (OO) based on the direct coulomb repulsion in this article. The results show that the orbital-orbital interaction (OO-I) between the adjacent ions in 180-degree configuration is dominated by the superexchange energy accompanied by a weak orbital-spin coupling, and the OO-I in 90-degree configuration is monitored by the oxygen on-site coulomb repulsion. The ferro-OO is the stable ground state for the one-dimensional chain in the case of the 90-degree configuration.

  13. Testing of Coulomb-Volkov functions

    International Nuclear Information System (INIS)

    A time-dependent generalization of the Siegert theorem is applied to test the accuracy of the Coulomb-Volkov functions (CVFs) widely used for the description of electron motion in a laser field combined with the Coulomb field of the atomic core. Free-free transitions in the case of arbitrary elliptic polarization of the electromagnetic field are investigated. It is shown that the ratio between the strength of the light wave electric field and its frequency (in atomic units) has crucial importance for estimation of the CVF accuracy. (author)

  14. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-01

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  15. Proportional smile design using the recurring esthetic dental (red) proportion.

    Science.gov (United States)

    Ward, D H

    2001-01-01

    Dentists have needed an objective way in which to evaluate a smile. A method for determining the ideal size and position of the anterior teeth has been presented here. Use of the FIVE to evaluate the RED proportion and the width-to-height ratio, tempered with sound clinical judgment, gives pleasing and consistent results. With the diversity that exists in nature, rarely does the final result follow all the mathematical rules of proportional smile design. This approach may serve as a foundation on which to base initial smile design, however. When one begins to understand the relationship between beauty, mathematics, and the surrounding world, one begins to appreciate their interdependence.

  16. The impact of sharp screening on the Coulomb scattering problem in three dimensions

    CERN Document Server

    Yakovlev, S L; Yarevsky, E; Elander, N

    2010-01-01

    The scattering problem for two particles interacting via the Coulomb potential is examined for the case where the potential has a sharp cut-off at some distance. The problem is solved for two complimentary situations, firstly when the interior part of the Coulomb potential is left in the Hamiltonian and, secondly, when the long range tail is considered as the potential. The partial wave results are summed up to obtain the wave function in three dimensions. It is shown that in the domains where the wave function is expected to be proportional to the known solutions, the proportionality is given by an operator acting on the angular part of the wave function. The explicit representation for this operator is obtained in the basis of Legendre polynomials. We proposed a driven Schr\\"odinger equation including an inhomogeneous term of the finite range with purely outgoing asymptotics for its solution in the case of the three dimensional scattering problem with long range potentials.

  17. Bayesian inference on proportional elections.

    Science.gov (United States)

    Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio

    2015-01-01

    Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259

  18. Development of multiwire proportional chambers

    CERN Multimedia

    Charpak, G

    1969-01-01

    It has happened quite often in the history of science that theoreticians, confronted with some major difficulty, have successfully gone back thirty years to look at ideas that had then been thrown overboard. But it is rare that experimentalists go back thirty years to look again at equipment which had become out-dated. This is what Charpak and his colleagues did to emerge with the 'multiwire proportional chamber' which has several new features making it a very useful addition to the armoury of particle detectors. In the 1930s, ion-chambers, Geiger- Muller counters and proportional counters, were vital pieces of equipment in nuclear physics research. Other types of detectors have since largely replaced them but now the proportional counter, in new array, is making a comeback.

  19. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  20. Module of System Galactica with Coulomb's Interaction

    OpenAIRE

    Smulsky, Joseph J

    2014-01-01

    The system Galactica of free access is supplemented module for the Coulomb interaction. It is based on a high-precision method for solving differential equations of motion of N charged particles. The paper presents all the theoretical and practical issues required to use this module of system Galactica so that even the beginning researcher could study the motion of particles, atoms and molecules.

  1. BRST invariance in Coulomb gauge QCD

    CERN Document Server

    Andrasi, A

    2015-01-01

    In the Coulomb gauge, the Hamiltonian of QCD contains terms of order h^2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g^4), example.

  2. BRST invariance in Coulomb gauge QCD

    Science.gov (United States)

    Andraši, A.; Taylor, J. C.

    2015-12-01

    In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.

  3. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  4. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    , such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  5. Bound - states for truncated Coulomb potentials

    OpenAIRE

    Odeh, Maen; Mustafa, Omar

    2000-01-01

    The pseudoperturbative shifted - $l$ expansion technique PSLET is generalized for states with arbitrary number of nodal zeros. Bound- states energy eigenvalues for two truncated coulombic potentials are calculated using PSLET. In contrast with shifted large-N expansion technique, PSLET results compare excellently with those from direct numerical integration.

  6. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...

  7. Proportional Reasoning with a Pyramid

    Science.gov (United States)

    Mamolo, Ami; Sinclair, Margaret; Whiteley, Walter J.

    2011-01-01

    Proportional reasoning pops up in math class in a variety of places, such as while making scaled drawings; finding equivalent fractions; converting units of measurement; comparing speeds, prices, and rates; and comparing lengths, areas, and volume. Students need to be exposed to a variety of representations to develop a sound understanding of this…

  8. Body proportions in Turner's syndrome.

    OpenAIRE

    Hughes, P C; Ribeiro, J; Hughes, I A

    1986-01-01

    Body proportion was studied in Turner's syndrome by measurement of standing an sitting heights in relation to chronological and bone age. The mean standard deviation score for standing height was -3.8. Disproportionate growth of the legs was not a major determinant of short stature, either before or after oestrogen replacement.

  9. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; de Lima, H Pedroso; Rae, T D; Sachrajda, C T; Samways, B

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  10. Periods and Superstring Amplitudes

    CERN Document Server

    Stieberger, S

    2016-01-01

    Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...

  11. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    Science.gov (United States)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  12. Spin diffusion in doped semiconductors: the role of Coulomb interactions

    OpenAIRE

    D'Amico, Irene; Vignale, Giovanni

    2000-01-01

    We examine the effect of the Coulomb interaction on the mobility and diffusion of spin packets in doped semiconductors. We find that the diffusion constant is reduced, relative to its non-interacting value, by the combined effect of Coulomb-enhanced spin susceptibility and spin Coulomb drag. In ferromagnetic semiconductors, the spin diffusion constant vanishes at the ferromagnetic transition temperature.

  13. Amplitude scaling of asymmetry-induced transport

    International Nuclear Information System (INIS)

    Our initial experiments on asymmetry-induced transport in non-neutral plasmas found the radial particle flux at small radii to be proportional to φa2, where φa is the applied asymmetry amplitude. Other researchers, however, using the global expansion rate as a measure of the transport, have observed a φa1 scaling when the rigidity (the ratio of the axial bounce frequency to the azimuthal rotation frequency) is in the range one to ten. In an effort to resolve this discrepancy, we have extended our measurements to different radii and asymmetry frequencies. Although the results to date are generally in agreement with those previously reported (φa2 scaling at low asymmetry amplitudes falling off to a weaker scaling at higher amplitudes), we have observed some cases where the low amplitude scaling is closer to φa1. Both the φa2 and φa1 cases, however, have rigidities less than ten. Instead, we find that the φa1 cases are characterized by an induced flux that is comparable in magnitude but opposite in sign to the background flux. This suggests that the mixing of applied and background asymmetries plays an important role in determining the amplitude scaling of this transport

  14. Disease proportions attributable to environment

    Directory of Open Access Journals (Sweden)

    Vineis Paolo

    2007-11-01

    Full Text Available Abstract Population disease proportions attributable to various causal agents are popular as they present a simplified view of the contribution of each agent to the disease load. However they are only summary figures that may be easily misinterpreted or over-interpreted even when the causal link between an exposure and an effect is well established. This commentary discusses several issues surrounding the estimation of attributable proportions, particularly with reference to environmental causes of cancers, and critically examines two recently published papers. These issues encompass potential biases as well as the very definition of environment and of environmental agent. The latter aspect is not just a semantic question but carries implications for the focus of preventive actions, whether centred on the material and social environment or on single individuals.

  15. Proportional counter as neutron detector

    Science.gov (United States)

    Braby, L. A.; Badhwar, G. D.

    2001-01-01

    A technique to separate out the dose, and lineal energy spectra of neutrons and charged particles is described. It is based on using two proportional counters, one with a wall, and the other with similar characteristics but wall made from a non-hydrogen containing material. Results of a calibration in a neutron field are also shown. c2001 Elsevier Science Ltd. All rights reserved.

  16. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states

    International Nuclear Information System (INIS)

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when ℎω > Ip: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with ℎω p: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  17. Coulomb bound states of strongly interacting photons

    CERN Document Server

    Maghrebi, M F; Bienias, P; Choi, S; Martin, I; Firstenberg, O; Lukin, M D; Büchler, H P; Gorshkov, A V

    2015-01-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wavefunction resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  18. Feynman rules for Coulomb gauge QCD

    International Nuclear Information System (INIS)

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ–Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as ‘pseudo-Feynman’ integrals. We also explain how energy divergences cancel. - Highlights: ► In Coulomb gauge QCD, we re-express Christ–Lee terms in the Hamiltonian as pseudo-Feynman integrals. ► This gives a subgraph structure, and allows the ordinary renormalization process. ► It also leads to cancellation of energy-divergences.

  19. Coulomb dissociation of $^{20,21}$N

    CERN Document Server

    Röder, Marko; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J G; Burgunder, G; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A; Farinon, F; Fraile, Luis M; Freer, Martin; Freudenberger, M; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Diaz, Diego Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Bleis, Tudi Le; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Caro, Magdalena Mostazo; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S; Plag, Ralf; Prochazka, A; Rahaman, Md Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Saez, Jose Sanchez del Rio; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G; Wimmer, Christine; Winfield, J S; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai

    2016-01-01

    Neutron-rich light nuclei and their reactions play an important role for the creation of chemical elements. Here, data from a Coulomb dissociation experiment on $^{20,21}$N are reported. Relativistic $^{20,21}$N ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ and $^{20}\\mathrm{N}(\\mathrm{n},\\gamma)^{21}\\mathrm{N}$ excitation functions and thermonuclear reaction rates have been determined. The $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ rate is up to a factor of 5 higher at $T<1$\\,GK with respect to previous theoretical calculations, leading to a 10\\,\\% decrease in the predicted fluorine abundance.

  20. Manifestation of nuclear cluster structure in Coulomb sums

    CERN Document Server

    Buki, A Yu

    2016-01-01

    Experimental Coulomb sum values of 6^Li and 7^Li nuclei have been obtained, extending the earlier reported momentum transfer range of Coulomb sums for these nuclei up to q = 0.750 ... 1.625 fm^-1. The dependence of the Coulomb sums on the momentum transfers of 6^Li and 7^Li is shown to differ substantially from similar dependences for all the other nuclei investigated. Relationship between the nuclear cluster structure and Coulomb sums has been considered. The momentum transfer value, above which the Coulomb sum becomes constant, is found to be related to the cluster isolation parameter x, which characterizes the degree of nuclear clusterization.

  1. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field and the temperature dependence of rho(21). Numerical results are compared with recent experiments....

  2. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  3. Module of System Galactica with Coulomb's Interaction

    Directory of Open Access Journals (Sweden)

    Joseph J. Smulsky

    2014-12-01

    Full Text Available The system Galactica of free access is supplemented module for the Coulomb interaction. It is based on a high-precision method for solving differential equations of motion of N charged particles. The paper presents all the theoretical and practical issues required to use this module of system Galactica so that even the beginning researcher could study the motion of particles, atoms and molecules.

  4. Lorenz or Coulomb in Galilean Electromagnetism ?

    OpenAIRE

    Rousseaux, Germain

    2005-01-01

    PDF version International audience Galilean Electromagnetism was discovered thirty years ago by Levy-Leblond & Le Bellac. However, these authors only explored the consequences for the fields and not for the potentials. Following De Montigny & al., we show that the Coulomb gauge condition is the magnetic limit of the Lorenz gauge condition whereas the Lorenz gauge condition applies in the electric limit of Lévy-Leblond & Le Bellac. Contrary to De Montigny & al. who used Galilean tensor c...

  5. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  6. Dynamics of Coulombic and gravitational periodic systems

    Science.gov (United States)

    Kumar, Pankaj; Miller, Bruce N.

    2016-04-01

    We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.

  7. Elastic Coulomb breakup of $^{34}$Na

    CERN Document Server

    Singh, G; Chatterjee, R

    2016-01-01

    Purpose : The aim of this paper is to study the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb to give us a core of $^{33}$Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of $^{34}$Na. Method : A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb at 100 MeV/u. The triple differential cross-section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum and angular distributions as well as the average momenta, along with the energy-angular distributions. Results : The total one neutron removal cross-section is calculated to test the possible ground state configurations of $^{34}$Na. The average momentum results along with energy-angular calculations indicate $^{34}$Na to ha...

  8. Quantum Amplitude Amplification and Estimation

    CERN Document Server

    Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain

    2000-01-01

    Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...

  9. Statistical inference on mixing proportion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the interval estimation and hypothesis testing of the mixing proportion in mixture distributions are considered. A statistical inferential method is proposed which is inspired by the generalized p-values and generalized pivotal quantity. In some situations, the true levels of the tests given in the paper are equal to nominal levels, and the true coverage of the interval estimation or confidence bounds is also equal to nominal one. In other situations, under mild conditions, the tests are consistent and the coverage of the interval estimations or the confidence bounds is asymptotically equal to nominal coverage. Meanwhile, some simulations are performed which show that our method is satisfactory.

  10. Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.

    2015-10-15

    Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.

  11. Constant Proportion Debt Obligations (CPDOs)

    DEFF Research Database (Denmark)

    Cont, Rama; Jessen, Cathrine

    2012-01-01

    Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...... approach allows us to compute default probabilities, loss distributions and other tail risk measures for the CPDO strategy and analyse the dependence of these risk measures on various parameters describing the risk factors. We find that the probability of the CPDO defaulting on its coupon payments can...

  12. Statistical inference on mixing proportion

    Institute of Scientific and Technical Information of China (English)

    XU XingZhong; LIU Fang

    2008-01-01

    In this paper,the interval estimation and hypothesis testing of the mixing proportion in mixture distributions are considered.A statistical inferential method is proposed which is inspired by the generalized p-values and generalized pivotal quantity.In some situations,the true levels of the tests given in the paper are equal to nominal levels,and the true coverage of the interval estimation or confidence bounds is also equal to nominal one.In other situations,under mild conditions,the tests are consistent and the coverage of the interval estimations or the confidence bounds is asymptotically equal to nominal coverage.Meanwhile,some simulations axe performed which show that our method is satisfactory.

  13. Scalar-QED {Dirac_h}-corrections to the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Helayel-Neto, J.A. [Centro Brasileiro de Pesquisas Fisica (CBPF), Rio de Janeiro, RJ (Brazil). E-mail: helayel@cbpf.br; Penna-Firme, A.B. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Educacao. E-mail: andrepf@cbpf.br; Shapiro, I.L. [Juiz de Fora Univ., MG (Brazil). Dept. de Fisica. E-mail: shapiro@fisica.ufjf.br

    2000-05-01

    The leading long-distance 1-loop quantum corrections to the Coulomb potential are derived for scalar QED and their gauge-independence is explicitly checked. The potential is obtained from the direct calculation of the 2-particle scattering amplitude, taking into account all relevant 1-loop diagrams. Our investigation should be regarded as first step towards the same programme for effective Quantum Gravity. In particular, with our calculation in the framework of scalar QED, we are able to demonstrate the incompleteness of some previous studies concerning the quantum Gravity counterpart. (author)

  14. Heavy ion reactions around the Coulomb barrier

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.

  15. Action principle for Coulomb collisions in plasmas

    Science.gov (United States)

    Hirvijoki, Eero

    2016-09-01

    An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.

  16. Overlap Quark Propagator in Coulomb Gauge QCD

    CERN Document Server

    Mercado, Ydalia Delgado; Schröck, Mario

    2014-01-01

    The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.

  17. Coulombic dragging of molecular assemblies on nanotubes

    Science.gov (United States)

    Kral, Petr; Sint, Kyaw; Wang, Boyang

    2009-03-01

    We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).

  18. Coulomb field in a constant electromagnetic background

    CERN Document Server

    Adorno, T C; Shabad, A E

    2016-01-01

    Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.

  19. Resonances in the two centers Coulomb system

    Energy Technology Data Exchange (ETDEWEB)

    Seri, Marcello

    2012-09-14

    In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.

  20. Feynman rules for Coulomb gauge QCD

    CERN Document Server

    Andrasi, A

    2012-01-01

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the subgraph structure of ordinary Feynamn graphs. The CL terms do not have subgraph structure. We show how to carry out enormalization in the presene of CL erms, by re-expressing these as `pseudo-Feynman' inegrals. We also explain how energy divergences cancel.

  1. Coulomb drag in multiwall armchair carbon nanotubes

    DEFF Research Database (Denmark)

    Lunde, A.M.; Jauho, Antti-Pekka

    2004-01-01

    We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...

  2. Electroweak Sudakov logarithms in the Coulomb gauge

    OpenAIRE

    Beenakker, W.; Werthenbach, A.

    2000-01-01

    We describe a formalism for calculating electroweak Sudakov logarithms in the Coulomb gauge. This formalism is applicable to arbitrary electroweak processes. For illustration we focus on the specific reactions e^+e^- -> f \\bar{f} and e^+e^- -> W_T^+W_T^-, W_L^+W_L^-, which contain all the salient details of dealing with the various types of particles. We discuss an explicit two-loop calculation and have a critical look at the (non-)exponentiation and factorisation properties of the Sudakov lo...

  3. Green's operator for Hamiltonians with Coulomb plus polynomial potentials

    Science.gov (United States)

    Kelbert, E.; Hyder, A.; Demir, F.; Hlousek, Z. T.; Papp, Z.

    2007-07-01

    The Hamiltonian of a Coulomb plus polynomial potential in the Coulomb-Sturmian basis has an infinite symmetric band-matrix structure. A band matrix can always be considered as a block-tridiagonal matrix. So, the corresponding Green's operator can be given as a matrix-valued continued fraction. As examples, we calculate Green's operator for the Coulomb plus linear and quadratic confinement potential problems and determine the energy levels.

  4. Vacuum structure of the Coulomb gas in two dimensions

    International Nuclear Information System (INIS)

    We study the plasma phase of the two-dimensional Coulomb gas in the small density limit. The analysis is done using the correspondence of the Coulomb gas with the 1 + 1 sine-Gordon model, which has been exactly solved by the quantum inverse method. We construct the correct vacuum of the field theory, improving the former results. We obtain exact results for the Coulomb gas, which confirm the previous perturbative calculations. (orig.)

  5. Coulomb excitation of radioactive {sup 79}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others

    1995-08-01

    The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.

  6. Transport Through a Coulomb Blockaded Majorana Nanowire

    Science.gov (United States)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  7. Coulomb dissociation in nonrelativistic and relativistic collisions

    International Nuclear Information System (INIS)

    Electromagnetic excitations in the Coulomb field of nuclei have been studied using quantum as well as semiclassical methods. Even at relatively modest incident energies, the Coulomb dissociation cross sections of projectiles with relatively low particle thresholds could be of sizeable order of magnitude. Such a study complements our knowledge about radiative capture processes, which are of interest for nuclear astrophysics. Quite a few questions remain to be answered, like the importance of nuclear interactions for small angle scattering, interference of different multipolarities for triple differentiial cross sections and distortion effects on the three-body final states. In the case of dissociation at relativistic energies it is shown that only for the total cross section both semiclassical and quantim-mechanical methods yield the same results. As an example the Primakoff effect is considered, where in an M1 excitation of ≅ 80 MeV a Λ hyperion is converted into a Σo hyperion by means of the virtual photon field of heavy target nuclei. Virtual photon spectra for all multipolarities can be calculated. This provides a sound basis for the analysis of electromagnetic dissociation experiments at relativistic heavy ion accelerators, like the BEVALAC. 10 figs., 25 refs

  8. Effect of Coulomb interaction on multi-electronwave packet dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)

    2013-12-04

    We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.

  9. The mystery of Coulomb friction in sediment transport

    Science.gov (United States)

    Pähtz, Thomas; Duran, Orencio

    Nearly all analytical models of sediment transport in Newtonian fluid (e.g., air or water) are based on Bagnold's assumption of a constant Coulomb friction coefficient (particle-shear-pressure-ratio, μ) at the interface (zb) between sediment bed and transport layer. In fact, this assumption is the main reason why these models predict the sediment load (and subsequently the sediment transport rate) to be proportional to the excess shear stress (τ -τt), a scaling which has been confirmed in many wind-tunnel and flume experiments. Attempts to explain why μ (zb) is constant have usually been based on the sliding-friction analogy or rheology arguments. However, here we analytically derive μ (zs) √{ 3} - 1 , where zs is the location at which the production rate of particle fluctuation energy is maximal. Our derivation is based on the assumption that the rate of collisional transfer of horizontal into vertical kinetic energy is typically much larger than the rate of energy dissipation. Using state-of-the-art numerical simulations of sediment transport in Newtonian fluid, we validate all assumptions and approximation involved in our derivation. Interestingly, the location zs can significantly deviate from zb depending on the simulated conditions. We acknowledge support from grants National Natural Science Foundation of China (Nos. 1151101041 and 41376095) and Natural Science Foundation of Zhejiang Province (No. LR16E090001).

  10. CHY formula and MHV amplitudes

    CERN Document Server

    Du, Yi-jian; Wu, Yong-shi

    2016-01-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.

  11. A Brief Comment on Multi-Gluon Amplitudes and Double Parton Interactions

    CERN Document Server

    Treleani, Daniele

    2016-01-01

    A typical contribution to a color ordered multi-gluon amplitude, which can split into two weakly correlated two-body gluon scattering amplitudes and may thus contribute to a Double Parton Interaction, is briefly discussed. We find that the color ordered amplitude is not enhanced in the typical configuration generated by a DPI, where the transverse momenta of final state gluons are compensated pairwise, while a dominant contribution to the multi-gluon amplitude is due to terms proportional to the fusion amplitude of two initial state gluons. Which corresponds to an amplitude effectively describing a two rather than a three-body partonic interaction.

  12. Hidden Beauty in Multiloop Amplitudes

    OpenAIRE

    Cachazo, Freddy(Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada); Spradlin, Marcus; Volovich, Anastasia

    2006-01-01

    Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying the iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and argue that t...

  13. Motivic amplitudes and cluster coordinates

    OpenAIRE

    J.K. Golden; Goncharov, A. B.; M. Spradlin; C. Vergu; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes--objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf_n(P^3) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MH...

  14. Elastic scattering of vortex electrons provides direct access to the Coulomb phase

    CERN Document Server

    Ivanov, I P; Surzhykov, A; Fritzsche, S

    2016-01-01

    Vortex electron beams are freely propagating electron waves carrying adjustable orbital angular momentum with respect to the propagation direction. Such beams were experimentally realized just a few years ago and are now used to probe various electromagnetic processes. So far, these experiments used the single vortex electron beams, either propagating in external fields or impacting a target. Here, we investigate the elastic scattering of two such aligned vortex electron beams and demonstrate that this process allows one to experimentally measure features which are impossible to detect in the usual plane-wave scattering. The scattering amplitude of this process is well approximated by two plane-wave scattering amplitudes with different momentum transfers, which interfere and give direct experimental access to the Coulomb phase. This phase (shift) affects the scattering of all charged particles and has thus received significant theoretical attention but was never probed experimentally. We show that a properly ...

  15. Coherence, interference and the Pauli principle: Coulomb scattering of carbon from carbon

    International Nuclear Information System (INIS)

    When nuclei are scattered from each other at energies far below the Coulomb barrier, the angular distribution of the scattered intensity does not necessarily correspond to the familiar sin-4 1/2theta dependence of Rutherford scattering. When projectile and target nuclei are of the same kind, pronounced angular oscillations are generated by quantum interference of the two coherent amplitudes f(theta) and f(π-theta). The relative sign of the two amplitudes is given by the Pauli principle, i.e. by whether the identical particles are bosons or fermions. This article describes the observation and interpretation of such quantum interference effects in scattering processes with nuclei of the carbon isotopes 12C and 13C. All the data shown were taken by students with no previous training in the field. The educational aspects are emphasised of this realistic version of the famous 'two slits' Gedanken experiment. (author)

  16. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  17. Elastic Coulomb breakup of 34Na

    Science.gov (United States)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2016-08-01

    Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our

  18. Collision between two ortho-positronium (Ps) atoms: A four-body Coulomb problem

    Indian Academy of Sciences (India)

    RAY HASI

    2016-05-01

    The elastic collision between two ortho-positronium (e.g. $S = 1$) atoms is studied using an {\\it ab-initio} static exchange model (SEM) in the centre of mass (CM) frame by considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly. A coupled channel methodology in momentum space is used to solve Lippman–Schwinger equation following the integral approach. A new SEM code is developed in which the Born–Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude adapting the partial wave analysis. The $s$-, $p$- and $d$-wave elastic phase shifts and the corresponding partial cross-sections for the spin alignment $S = 0$, i.e., singlet (+) and $S = 2$, i.e., triplet (−) states are studied. An augmented Born approximation is used to includethe contribution of higher partial waves more accurately to determine the total/integrated elastic cross-section $(\\sigma)$, the quenching cross-section (σq) and ortho-to-para conversion ratio $(\\sigma/\\sigma q)$. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The theory includes the non-adiabatic short-range effects due to exchange.

  19. Gauge Theories on the Coulomb branch

    CERN Document Server

    Schwarz, John H

    2014-01-01

    We construct the world-volume action of a probe D3-brane in $AdS_5 \\times S^5$ with $N$ units of flux. It has the field content, symmetries, and dualities of the $U(1)$ factor of ${\\cal N} =4$ $U(N+1)$ super Yang--Mills theory, spontaneously broken to $U(N) \\times U(1)$ by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a `highly effective action' (HEA). We construct an $SL(2,Z)$ multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that it reproduces the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a `soliton bubble', which is interpreted as a phase boundary.

  20. Coulomb blockade of spin-dependent shuttling

    Science.gov (United States)

    Park, Hee Chul; Kadigrobov, Anatoli M.; Shekhter, Robert I.; Jonson, M.

    2013-12-01

    We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow.

  1. Coulomb excitation of {sup 107}Sn

    Energy Technology Data Exchange (ETDEWEB)

    DiJulio, D.D.; Cederkall, J.; Fahlander, C. [Lund University, Physics Department, 118, Lund (Sweden); Ekstroem, A. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Hjorth-Jensen, M. [University of Oslo, Department of Physics and Center of Mathematics for Applications, Oslo (Norway); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Albers, M.; Blazhev, A.; Fransen, C.; Geibel, K.; Hess, H.; Reiter, P.; Seidlitz, M.; Taprogge, J.; Warr, N. [University of Cologne, Institute of Nuclear Physics, Cologne (Germany); Bildstein, V.; Gernhaeuser, R.; Wimmer, K. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Darby, I.; Witte, H. de [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Davinson, T. [University of Edinburgh, Department of Physics and Astronomy, Edinburgh (United Kingdom); Diriken, J. [Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Studiecentrum voor Kernenergie/Centre d' Etude de l' energie Nucleaire (SCK CEN), Mol (Belgium); Goergen, A.; Siem, S.; Tveten, G.M. [University of Oslo, Department of Physics, Oslo (Norway); Iwanicki, J. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Lutter, R. [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Garching (Germany); Scheck, M. [University of Liverpool, Oliver Lodge Laboratory, Liverpool (United Kingdom); Walle, J.V. de [PH Department, Geneva 23 (Switzerland); Voulot, D.; Wenander, F. [AB Department, Geneva 23 (Switzerland)

    2012-07-15

    The radioactive isotope {sup 107}Sn was studied using Coulomb excitation at the REX-ISOLDE facility at CERN. This is the lightest odd-Sn nucleus examined using this technique. The reduced transition probability of the lowest-lying 3/2{sup +} state was measured and is compared to shell-model predictions based on several sets of single-neutron energies relative to {sup 100}Sn. Similar to the transition probabilities for the 2{sup +} states in the neutron-deficient even-even Sn nuclei, the measured value is underestimated by shell-model calculations. Part of the strength may be recovered by considering the ordering of the d{sub 5/2} and g{sub 7/2} single-neutron states. (orig.)

  2. The ghost propagator in Coulomb gauge

    CERN Document Server

    Watson, P

    2010-01-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  3. Coulomb dissociation of light unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki

    1997-05-01

    The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)

  4. Ferroelectric instability under screened Coulomb interactions.

    Science.gov (United States)

    Wang, Yong; Liu, Xiaohui; Burton, J D; Jaswal, Sitaram S; Tsymbal, Evgeny Y

    2012-12-14

    We explore the effect of charge carrier doping on ferroelectricity using density functional calculations and phenomenological modeling. By considering a prototypical ferroelectric material, BaTiO(3), we demonstrate that ferroelectric displacements are sustained up to the critical concentration of 0.11 electron per unit cell volume. This result is consistent with experimental observations and reveals that the ferroelectric phase and conductivity can coexist. Our investigations show that the ferroelectric instability requires only a short-range portion of the Coulomb force with an interaction range of the order of the lattice constant. These results provide a new insight into the origin of ferroelectricity in displacive ferroelectrics and open opportunities for using doped ferroelectrics in novel electronic devices. PMID:23368377

  5. Ion Coulomb Crystals and Their Applications

    Science.gov (United States)

    Drewsen, Michael

    The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].

  6. Simplistic Coulomb Forces in Molecular Dynamics

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.

    2012-01-01

    In this paper we compare the Wolf method to the shifted forces (SF) method for efficient computer simulation of bulk systems with Coulomb forces, taking results from the Ewald summation and particle mesh Ewald methods as representing the true behavior. We find that for the Hansen–McDonald molten...... salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...... measures for the convergence of the Wolf method to the Ewald summation method. The SF approximation is also tested for the SPC/Fw model of liquid water at room temperature, showing good agreement with both the Wolf and the particle mesh Ewald methods; this confirms previous findings [Fennell, C. J...

  7. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Darus, L.; Hamelers, H.V.M.; Buisman, C.J.N.

    2011-01-01

    To create an efficient bioelectrochemical system, a high Coulombic efficiency is required. This efficiency is a direct measure for the competition between electrogens and methanogens when acetate is used as substrate. In this study the Coulombic efficiency in a microbial electrolysis cell was invest

  8. Coulomb interaction between a spherical and a deformed nuclei

    CERN Document Server

    Takigawa, N; Ihara, N; Takigawa, Noboru; Rumin, Tamanna; Ihara, Naoki

    2000-01-01

    We present analytic expressions of the Coulomb interaction between a spherical and a deformed nuclei which are valid for all separation distance. We demonstrate their significant deviations from commonly used formulae in the region inside the Coulomb radius, and show that they remove various shortcomings of the conventional formulae.

  9. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum;

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  10. ATOMIC SCREENING AND INTERSITE COULOMB REPULSION IN STRONGLY CORRELATED SYSTEMS

    NARCIS (Netherlands)

    Meinders, M.B J; van den Brink, J.; Lorenzana, J.; Sawatzky, G.A

    1995-01-01

    We consider the influence of a nearest-neighbor Coulomb interaction in an extended Hubbard model and introduce an interaction term which simulates atomic polarizabilities. The inclusion of atomic polarizabilities in the model has the effect of screening the on-site Coulomb interaction for charged ex

  11. Magneto-Coulomb effect in spin-valve devices

    NARCIS (Netherlands)

    van der Molen, SJ; Tombros, N; van Wees, BJ

    2006-01-01

    We discuss the influence of the magneto-Coulomb effect (MCE) on the magnetoconductance of spin-valve devices. We show that the MCE can induce magnetoconductances of several percent or more, depending on the strength of the Coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sig

  12. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  13. Coulomb vs. physical string tension on the lattice

    CERN Document Server

    Burgio, G; Reinhardt, H; Vogt, H

    2015-01-01

    We investigate the precise relationship between the Coulomb and the physical (Wilson) string tension on the lattice, as the former is generally known to give an upper bound for the latter. We give evidence that the two string tensions are in a one to one correspondence at zero temperature, while they become unrelated at finite temperatures. More precisely, we show that the standard lattice calculations of the Coulomb gauge confinement scenario are always tied to the spatial string tension, which is known to survive the deconfinement phase transition and to cause screening effects in the quark-gluon plasma. Our analysis is based on the identification and elimination of center vortices which allows to control the physical string tension and study its effect on the Coulomb gauge observables. We also show how alternative definitions of the Coulomb potential may sense the deconfinement transition, although a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.

  14. Cold transfer between deformed, Coulomb excited nuclei; Kalter Transfer zwischen deformierten, Coulomb-angeregten Kernen

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, H.

    1998-12-31

    The scattering system {sup 162}Dy {yields} {sup 116}Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high {gamma}-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in {sup 162}Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  15. Impossibility Theorem in Proportional Representation Problem

    Science.gov (United States)

    Karpov, Alexander

    2010-09-01

    The study examines general axiomatics of Balinski and Young and analyzes existed proportional representation methods using this approach. The second part of the paper provides new axiomatics based on rational choice models. New system of axioms is applied to study known proportional representation systems. It is shown that there is no proportional representation method satisfying a minimal set of the axioms (monotonicity and neutrality).

  16. CHY formula and MHV amplitudes

    Science.gov (United States)

    Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi

    2016-05-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl supports the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula produces the Parke-Taylor formula for MHV Yang-Mills amplitudes as well as the Hodges formula for MHV gravitational amplitudes, with an arbitrary number of external gluons/gravitons. This is achieved by developing techniques, in a manifestly Möbius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other ( n - 3)! - 1 solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes. Our results reveal a mysterious feature of the CHY formalism that in Yang-Mills and gravity theory, solutions of scattering equations, involving only external momenta, somehow know about the configuration of external polarizations of the scattering amplitudes.

  17. The collision between two positronium (Ps) atoms: the exact evaluation of a four-body Coulomb problem

    CERN Document Server

    Ray, Hasi

    2014-01-01

    The collision between two positronium (Ps) atoms is a four-body Coulomb problem with all the particles of equal masses. It is very difficult to compute the Born-Oppenheimer (BO) scattering amplitude involving the nine-dimensional integrals with four Coulomb interaction terms between the atoms. It is extremely difficult in the electron-electron correlation term to include the exchange or antisymmetry between two system electrons exactly. Earlier the Ps and H system was easily approximated as a three-body problem, due to the light mass of Ps the center of mass of the system was confined in the H-nucleus. A simple substitution of variables using no approximation has enabled to evaluate the electron-electron Coulomb exchange-correlation term exactly in such a four-center problem in the center of mass frame involving a nine dimensional integral. The present code of Ps-Ps collision using an ab-initio and exact static-exchange model (SEM) that uses the BO amplitude as input, can reproduce exactly the same data of Ps...

  18. Teleporting Superpositions of Chiral Amplitudes

    CERN Document Server

    Maierle, C S; Harris, R A; Maierle, Christopher S.; Lidar, Daniel A.; Harris, Robert A.

    1998-01-01

    Chiral molecules may exist in superpositions of left- and right-handed states. We show how the amplitudes of such superpositions may be teleported to the polarization degrees of freedom of a photon. Two experimental schemes are proposed, one leading to perfect, the other to state-dependent teleportation. Both methods yield complete information about the amplitudes. This is the first explicit example of "inter-species" teleportation, where the amplitudes of the quantum superposition of one species are transferred at the end of the process to a different species. The latter is then easily accessible for measurement.

  19. Cluster Functions and Scattering Amplitudes for Six and Seven Points

    CERN Document Server

    Harrington, Thomas

    2015-01-01

    Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. We explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4,6) and Gr(4,7) cluster polylogarithm functions of arXiv:1401.6446 at weight 4.

  20. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  1. The impact of sharp screening on the Coulomb scattering problem in three dimensions

    Science.gov (United States)

    Yakovlev, S. L.; Volkov, M. V.; Yarevsky, E.; Elander, N.

    2010-06-01

    The scattering problem for two particles interacting via the Coulomb potential is examined for the case where the potential has a sharp cut-off at some distance. The problem is solved for two complementary situations, firstly, when the interior part of the Coulomb potential is left in the Hamiltonian and, secondly, when the long-range tail is considered as the potential. The partial wave results are summed up to obtain the wavefunction in three dimensions. It is shown that in the domains where the wavefunction is expected to be proportional to the known solutions, the proportionality is given by an operator acting on the angular part of the wavefunction. The explicit representation for this operator is obtained in the basis of Legendre polynomials. We proposed a driven Schrödinger equation including an inhomogeneous term of the finite range with purely outgoing asymptotics for its solution in the case of the three-dimensional scattering problem with long-range potentials.

  2. Ionic Coulomb Blockade and Resonant Conduction in Biological Ion Channels

    CERN Document Server

    Kaufman, I Kh; Eisenberg, R S

    2014-01-01

    The conduction and selectivity of calcium/sodium ion channels are described in terms of ionic Coulomb blockade, a phenomenon based on charge discreteness and an electrostatic model of an ion channel. This novel approach provides a unified explanation of numerous observed and modelled conductance and selectivity phenomena, including the anomalous mole fraction effect and discrete conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic Coulomb blockade and resonant tunnelling in quantum dots. The model is equally applicable to other nanopores.

  3. Nuclear Interference effects in 8B sub-Coulomb breakup

    OpenAIRE

    Nunes, F. M.; Thompson, I.J.

    1998-01-01

    The breakup of $^8$B on $^{58}$Ni below the Coulomb barrier was measured recently with the aim of determining the Coulomb breakup components. We reexamine this reaction, and perform one step quantum-mechanical calculations that include E1, E2 and nuclear contributions. We show that the nuclear contribution is by no means negligible at the intermediate angular range where data was taken. Our results indicate that, for an accurate description of this reaction, Coulomb E1, E2 and nuclear process...

  4. Coulomb crystals in the harmonic lattice approximation

    CERN Document Server

    Baiko, D A; De Witt, H E; Slattery, W L

    2000-01-01

    The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is di...

  5. Dirac Hamiltonian with superstrong Coulomb field

    CERN Document Server

    Voronov, B L; Tyutin, I V

    2006-01-01

    We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...

  6. Electron attraction mediated by Coulomb repulsion

    Science.gov (United States)

    Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.

    2016-07-01

    One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.

  7. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  8. Quark sector of Coulomb gauge Quantum Chromodynamics

    CERN Document Server

    Popovici, Carina

    2011-01-01

    The quark sector of Coulomb gauge quantum chromodynamics is considered within the functional integral approach. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented. The problem of confinement is addressed in the heavy quark limit, by rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion. By restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact. Analytic nonperturbative solutions to the Bethe-Salpeter equation for quark-antiquark bound states and Faddeev equation for three-quark bound states, in the case of equal quark separations, are presented. The quark-antiquark and three-quark confining potentials are derived and a direct connection between the temporal gluon propagator and the corresponding string tensions is ...

  9. Strong Coulomb Coupling in the Todorov Equation

    Science.gov (United States)

    Bawin, M.; Cugnon, J.; Sazdjian, H.

    A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.

  10. Coulomb-Born calculation of the triple-differential cross section for inner-shell electron-impact ionization of carbon

    International Nuclear Information System (INIS)

    A Coulomb-Born approximation is used to compute the triple-differential cross section for electron-impact inner-shell (1s) ionization of carbon. We employ a perturbation series that allows the use of Coulomb waves with arbitrary Zeff for the incoming, scattered, and ejected electrons. Most of the features of the triple-differential cross section observed experimentally are reproduced, even though these wave functions are distorted by an effective Coulomb potential and therefore do not satisfy the plane-wave boundary conditions at infinity. In order to explain some features that appear in the cross section, and in order to probe the validity of a dipole approximation, we make a multipole expansion of the transition matrix and show that the amplitudes of the multipole components are similar to those obtained in the Born approximation, while the relative phases of the multipoles differ greatly

  11. The generalized Coulomb interactions for relativistic scalar bosons

    Science.gov (United States)

    Zarrinkamar, S.; Panahi, H.; Rezaei, M.

    2016-07-01

    Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.

  12. Fano effect through parallel-coupled double Coulomb islands

    International Nuclear Information System (INIS)

    By means of the nonequilibrium Green function and equation of motion method, the electronic transport is theoretically studied through a parallel-coupled double quantum dot (DQD) in the presence of on-dot Coulomb interaction U. With focus on the quantum interference in the U-dominant parallel-coupled DQD, we find two types of Fano interferences in the conductance spectra. If the one-particle DQD bonding and antibonding bands are well separated from their Coulomb blockade counterparts, the main features of Fano interference in usual DQD systems are recovered with minor revisions. The most interesting is the hybridization between the antibonding state and the Coulomb counterpart of the bonding state, which gives rises to two new channels for Fano resonance. The Fano interference in the Coulomb hybridized systems can be controlled by the electrostatic and magnetic approaches, and exhibits properties quite different from what are reported in the noninteracting Fano-Anderson model

  13. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  14. Coulomb screening effect on the nuclear-pasta structure

    OpenAIRE

    Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi; Maruyama, Tomoyuki

    2004-01-01

    Using the density functional theory (DFT) with the relativistic mean field (RMF) model, we study the non-uniform state of nuclear matter, ``nuclear pasta''. We self-consistently include the Coulomb interaction together with other interactions. It is found that the Coulomb screening effect is significant for each pasta structure but not for the bulk equation of state (EOS) of the nuclear pasta phase.

  15. COULOMB BLOCKADE OSCILLATIONS OF Si SINGLE-ELECTRON TRANSISTORS

    Institute of Scientific and Technical Information of China (English)

    王太宏; 李宏伟; 周均铭

    2001-01-01

    Coulomb blockade oscillations of Si single-electron transistors, which are fabricated completely by the conventional photolithography technique, have been investigated. Most of the single-electron transistors clearly show Coulomb blockade oscillations and these oscillations can be periodic by applying negative voltages to the in-plane gates. A shift of the peak positions is observed at high temperatures. It is also found that the fluctuation of the peak spacing cannot be neglected.

  16. Primakoff effect: synchrotron and coulomb mechanisms of axion emission

    International Nuclear Information System (INIS)

    For the first time the axion radiative emission by alternating electromagnetic field Fa → γa is considered due to Primakoff effect. As a concrete supplement, the synchrotron and Coulomb mechanisms are discussed and in the last case the alternating field is formed at the infinite motion of a charge in a Coulomb center field. The estimates for contributions of these effects into axion luminosity of magnetic neutron stars and the Sun are determined

  17. Primakoff effect: Synchrotron and Coulomb mechanisms of axion emission

    International Nuclear Information System (INIS)

    The Primakoff effect-induced radiative emission of axions by an alternating electromagnetic field, Fa → γa, is considered for the first time. The synchrotron mechanism and the Coulomb mechanism--in the latter case, the alternating field is formed when a charge executes an infinite motion in the field of a Coulomb center--are considered as specific examples. The contributions of these effects to the axion emissivity of magnetic neutron stars and of the Sun are estimated

  18. Coulomb's law modification in nonlinear and in noncommutative electrodynamics

    OpenAIRE

    Gaete, Patricio(Departmento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaiso, Chile); Schmidt, Iván

    2003-01-01

    We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the $\\theta$-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction ($1/r^5$-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order $e^2$) is preserved in noncommutative electrodynamics.

  19. Functional theory of extended Coulomb systems

    International Nuclear Information System (INIS)

    A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society

  20. Efros-Shklovskii variable range hopping conductivity without Coulomb gap

    Science.gov (United States)

    Chen, Tianran; Skinner, Brian

    In doped semiconductors and Coulomb glasses, in the limit of weak coupling, the electron conductivity primarily proceeds by phonon-assisted tunneling or hopping between different sites through the insulating gaps that separate them. Electron conduction can occur both through nearest-neighbor hopping and through cotunneling of electrons between distant sites via a chain of intermediate virtual states. In the presence of some disorder, the latter mechanism dominates at low temperatures, where the length of the hops grows to optimize the conductivity. This transport mechanism was introduced by Mott, and is called variable range hopping. When the Coulomb interaction between localized electrons is taken into account, it can be shown that at a sufficiently low temperature, variable range hopping conductivity obeys the Efros-Shklovskii (ES) law, which has been observed in a number of amorphous semiconductors and granular metal systems at low temperatures. ES conductivity has been long understood as the result of a soft, Coulomb gap at the Fermi level. However, such a theory overlooks the presence of spatial correlations between site energies and their possible effects on electrical conductivity. In this talk, we show both analytically and numerically that in systems where spatial correlations must be taken into account, ES conductivity may persist far outside the Coulomb gap, in contrast to conventional transport theory for doped semiconductors and Coulomb glasses where ES conductivity only occurs within the Coulomb gap.

  1. Coulomb sink effect on coarsening of metal nanostructures on surfaces

    Institute of Scientific and Technical Information of China (English)

    Yong HAN; Feng LIU

    2008-01-01

    We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neu-tral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient fea-tures of coarsening of charged Pb mesas on the Si(111) sur-face, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hol-lowed or half-hollowed nanowells can be created.

  2. Factorization of chiral string amplitudes

    Science.gov (United States)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  3. Factorization of Chiral String Amplitudes

    CERN Document Server

    Huang, Yu-tin; Yuan, Ellis Ye

    2016-01-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  4. Nonsinglet pentagons and NMHV amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu

    2015-07-15

    Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  5. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  6. Working Memory Mechanism in Proportional Quantifier Verification

    Science.gov (United States)

    Zajenkowski, Marcin; Szymanik, Jakub; Garraffa, Maria

    2014-01-01

    The paper explores the cognitive mechanisms involved in the verification of sentences with proportional quantifiers (e.g. "More than half of the dots are blue"). The first study shows that the verification of proportional sentences is more demanding than the verification of sentences such as: "There are seven blue and eight yellow…

  7. Relating arithmetical techniques of proportion to geometry

    DEFF Research Database (Denmark)

    Wijayanti, Dyana

    2015-01-01

    The purpose of this study is to investigate how textbooks introduce and treat the theme of proportion in geometry (similarity) and arithmetic (ratio and proportion), and how these themes are linked to each other in the books. To pursue this aim, we use the anthropological theory of the didactic...

  8. Proportional Reasoning and the Visually Impaired

    Science.gov (United States)

    Hilton, Geoff; Hilton, Annette; Dole, Shelley L.; Goos, Merrilyn; O'Brien, Mia

    2012-01-01

    Proportional reasoning is an important aspect of formal thinking that is acquired during the developmental years that approximate the middle years of schooling. Students who fail to acquire sound proportional reasoning often experience difficulties in subjects that require quantitative thinking, such as science, technology, engineering, and…

  9. Prospective Elementary School Teachers' Proportional Reasoning

    Science.gov (United States)

    Valverde, Gabriela; Castro, Encarnación

    2012-01-01

    We present the findings of a study on prospective elementary teachers' proportional reasoning. After describing some of the teachers' performance in solving multiplicative structure problems that involve ratios and relations of direct proportionality between quantities, we were able to establish classifications of their answers according to…

  10. Employing helicity amplitudes for resummation

    Science.gov (United States)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.

    2016-05-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d -dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for p p →H +0 , 1, 2 jets, p p →W /Z /γ +0 , 1, 2 jets, and p p →2 , 3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  11. Discontinuity formulas for multiparticle amplitudes

    International Nuclear Information System (INIS)

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations

  12. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  13. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  14. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    + Lambda[1 - cos( 2 pi Omega(epsilon) over dot(0)t)] where epsilon is the Hencky strain, (epsilon) over dot(0) is a constant elongational rate for the base elongational flow, Lambda the strain amplitude ( Lambda >= 0), and Omega the strain frequency. A narrow molecular mass distribution linear polystyrene...

  15. Discontinuity formulas for multiparticle amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1976-03-01

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations.

  16. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (eiS) rather than imaginary-time e-S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  17. Extracting amplitudes from photoproduction data

    Science.gov (United States)

    Workman, R. L.

    2011-09-01

    We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).

  18. |m| Partial wave treatment for two-dimensional Coulomb-scattering and Regge pole

    Institute of Scientific and Technical Information of China (English)

    WANG; Jing; ZENG; Jinyan

    2004-01-01

    The symmetry and |m| partial-wave analysis for two-dimensional (2D) Coulomb-scattering is investigated. As a function of energy E, the |m| partial-wave scattering amplitude f|m|(θ) is analytically continuated to the negative E (complex k) plane, and it is found that the bound state energy eigenvalues (E<0) are just located at the poles of f|m|(θ) on the positive imaginary k axis as is expected. In addition, as a function of |m|, f|m|(θ) is analytically continuated to the complex |m| plane, the bound state energy eigenvalues are just located at the poles of f|m|(θ) on the positive real |m| axis.

  19. Primakoff production of $\\pi^0$, $\\eta$ and $\\eta'$ in the Coulomb field of a nucleus

    CERN Document Server

    Kaskulov, Murat M

    2011-01-01

    Photoproduction of neutral pseudoscalar mesons $\\pi^0,\\eta(547)$ and $\\eta'(958)$ in the Coulomb field of an atomic nucleus is studied using a model which describes the Primakoff and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of $C$-parity odd Regge trajectories. In the coherent production the isospin filtering makes the $\\omega(782)$ a dominant trajectory. The calculations are in agreement with $\\pi^0$ data from JLAB provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in $\\eta$ and $\\eta'$ photoproduction off nuclei are further discussed. We also give predictions for the higher energies available at the JLAB upgrade.

  20. Primakoff production of π0, η, and η' in the Coulomb field of a nucleus

    International Nuclear Information System (INIS)

    Photoproduction of neutral pseudoscalar mesons π0,η(547), and η'(958) in the Coulomb field of an atomic nucleus is studied using a model which describes the Primakoff and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of C-parity odd Regge trajectories. In the coherent production the isospin filtering makes the ω(782) a dominant trajectory. The calculations are in agreement with π0 data from JLAB provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in η and η' photoproduction off nuclei are further discussed. We also give predictions for the higher energies available at the JLAB upgrade.

  1. Primakoff production of π0, η and η' in the Coulomb field of a nucleus

    International Nuclear Information System (INIS)

    The Primakoff production of neutral pseudoscalar mesons π0, η(587) and η'(958) in the Coulomb field of an atomic nucleus is studied using a model which describes the coherent electromagnetic and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of C-parity odd Regge trajectories. In the coherent production the isospin filtering makes the ω(782) a dominant trajectory. We revise the production of pions which has been used to measure the π0→γγ decay width at JLAB. The calculations are in agreement with data provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in η and η' photoproduction off nuclei are further discussed.

  2. Human skeleton proportions from monocular data

    Institute of Scientific and Technical Information of China (English)

    PENG En; LI Ling

    2006-01-01

    This paper introduces a novel method for estimating the skeleton proportions ofa human figure from monocular data.The proposed system will first automatically extract the key frames and recover the perspective camera model from the 2D data.The human skeleton proportions are then estimated from the key frames using the recovered camera model without posture reconstruction. The proposed method is tested to be simple, fast and produce satisfactory results for the input data. The human model with estimated proportions can be used in future research involving human body modeling or human motion reconstruction.

  3. Solving the three-body Coulomb breakup problem using exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  4. Root-mean-square pulse-amplitude-to-number converters

    International Nuclear Information System (INIS)

    The amplitude dispersion of pulses from gas-discharge and other detectors of ionizing radiation is determined by the sum of the analog additive noise and is proportional to the amplitude of the Poisson component. Losses of energy resolution or overexpenditure of channels are reduced by conversion of pulse amplitude to code by comparison of the peak value with a periodic parabolic voltage. The described converter has a scale that is linear with respect to atomic number and provides a constancy peak width that is acceptable for a digital spectrum filter with constant parameters. With 256 channels, the dead time is less than or equal to 25.6 microseconds and the error of the root-mean-square scale is less than 0.1% of the instantaneous value. The described converter has undergone prolonged testing under laboratory and field conditions in conjunction with an AMA-8 portable x-ray spectrometer and has shown sufficiently high metrological characteristics

  5. Proportionality and employment discrimination in the UK.

    OpenAIRE

    Baker, Aaron

    2008-01-01

    This paper argues that the justification defence in UK statutory indirect discrimination cases should incorporate proportionality as applied by the European Court of Human Rights (ECtHR). It first analyses the evolution of the UK approach to proportionality before the enactment of the Human Rights Act 1998 (HRA), when its primary influence was the jurisprudence of the European Court of Justice (ECJ) applying EC equal treatment directives. This assessment shows that the UK judiciary was alread...

  6. COULOMB SCATTERING IN NON-COMMUTATIVE QUANTUM MECHANICS

    Directory of Open Access Journals (Sweden)

    Veronika Gáliková

    2013-10-01

    Full Text Available Recently we formulated the Coulomb problem in a rotationally invariant NC configuration space specified by NC coordinates xi, i = 1, 2, 3, satisfying commutation relations [xi, xj ] = 2iλεijkxk (λ being our NC parameter. We found that the problem is exactly solvable: first we gave an exact simple formula for the energies of the negative bound states Eλn < 0 (n being the principal quantum number, and later we found the full solution of the NC Coulomb problem. In this paper we present an exact calculation of the NC Coulomb scattering matrix Sλj (E in the j-th partial wave. As the calculations are exact, we can recognize remarkable non-perturbative aspects of the model: 1 energy cut-off — the scattering is restricted to the energy interval 0 < E < Ecrit = 2/λ2; 2 the presence of two sets of poles of the S-matrix in the complex energy plane — as expected, the poles at negative energy EIλn = Eλn for the Coulomb attractive potential, and the poles at ultra-high energies EIIλn = Ecrit − Eλn for the Coulomb repulsive potential. The poles at ultra-high energies disappear in the commutative limit λ→0.

  7. Gauge and Gravity Amplitude Relations

    CERN Document Server

    Carrasco, John Joseph M

    2015-01-01

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.

  8. Features of non-congruent phase transition in modified Coulomb model of the binary ionic mixture

    CERN Document Server

    Stroev, N E

    2016-01-01

    Non-congruent gas-liquid phase transition (NCPT) have been studied in modified Coulomb model of a binary ionic mixture C(+6) + O(+8) on a \\textit{uniformly compressible} ideal electronic background /BIM($\\sim$)/. The features of NCPT in improved version of the BIM($\\sim$) model for the same mixture on background of \\textit{non-ideal} electronic Fermi-gas and comparison it with the previous calculations are the subject of present study. Analytical fits for Coulomb corrections to EoS of electronic and ionic subsystems were used in present calculations within the Gibbs--Guggenheim conditions of non-congruent phase equilibrium.Parameters of critical point-line (CPL) were calculated on the entire range of proportions of mixed ions $0

  9. Pulse amplitude modulated chlorophyll fluorometer

    Science.gov (United States)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  10. Amplitude of Perturbations from Inflation

    OpenAIRE

    Parker, Leonard

    2007-01-01

    The observed power spectrum of the cosmic microwave background (CMB) is consistent with inflationary cosmology, which predicts a nearly scale-invariant power spectrum of quantum fluctuations of the inflaton field as they exit the Hubble horizon during inflation. Here we report a very significant correction (of several orders of magnitude) to the predicted amplitude of the power spectrum. This correction does not alter the near scale-invariance of the spectrum, but is crucial for testing predi...

  11. Proportion congruency effects: Instructions may be enough

    Directory of Open Access Journals (Sweden)

    Olga eEntel

    2014-10-01

    Full Text Available Learning takes time, namely, one needs to be exposed to contingency relations between stimulus dimensions in order to learn, whereas intentional control can be recruited through task demands. Therefore showing that control can be recruited as a function of experimental instructions alone, that is, adapting the processing according to the instructions before the exposure to the task, can be taken as evidence for existence of control recruitment in the absence of learning. This was done by manipulating the information given at the outset of the experiment. In the first experiment, we manipulated list-level congruency proportion. Half of the participants were informed that most of the stimuli would be congruent, whereas the other half were informed that most of the stimuli would be incongruent. This held true for the stimuli in the second part of each experiment. In the first part, however, the proportion of the two stimulus types was equal. A proportion congruent effect was found in both parts of the experiment, but it was larger in the second part. In our second experiment, we manipulated the proportion of the stimuli within participants by applying an item-specific design. This was done by presenting some color words most often in their congruent color, and other color words in incongruent colors. Participants were informed about the exact word-color pairings in advance. Similar to Experiment 1, this held true only for the second experimental part. In contrast to our first experiment, informing participants in advance did not result in an item-specific proportion effect, which was observed only in the second part. Thus our results support the hypothesis that instructions may be enough to trigger list-level control, yet learning does contribute to the proportion congruent effect under such conditions. The item-level proportion effect is apparently caused by learning or at least it is moderated by it.

  12. CubeSat testing of Coulomb drag propulsion

    CERN Document Server

    Janhunen, Pekka; Toivanen, Petri; Rauhala, Timo; Haeggström, Edward; Grönland, Tor-Arne

    2016-01-01

    In Coulomb drag propulsion, a long high voltage tether or system of tethers gathers momentum from a natural plasma stream such as solar wind or ionospheric plasma ram flow. A positively polarised tether in the solar wind can be used for efficient general-purpose interplanetary propellantless propulsion (the electric solar wind sail or E-sail), whereas a negatively polarised tether in LEO can be used for efficient deorbiting of satellites (the plasma brake). Aalto-1 is a 3-U cubesat to be launched in May 2016. The satellite carries three scientific experiments including 100 m long Coulomb drag tether experiment. The tether is made of four 25 and 50 micrometre diameter aluminium wires that are ultrasonically bonded together every few centimetre intervals. The tether can be charged by an onboard voltage source up to one kilovolt positive and negative. The Coulomb drag is measured by monitoring the spin rate.

  13. Gribov horizon and Gribov copies effect in lattice Coulomb gauge

    CERN Document Server

    Burgio, Giuseppe; Reinhardt, Hugo; Vogt, Hannes

    2016-01-01

    Following a recent proposal by Cooper and Zwanziger we investigate via lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e. the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g. the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.

  14. Imaging quantum Hall Coulomb islands inside a quantum ring

    Science.gov (United States)

    Martins, Frederico; Hackens, Benoit; Faniel, Sebastien; Bayot, Vincent; Pala, Marco; Sellier, Hermann; Huant, Serge; Desplanque, Ludovic; Wallart, Xavier

    2011-03-01

    In the quantum Hall regime near integer filling factors, electrons are transmitted through edge states confined at the borders of the device. In mesoscopic samples, however, edge states may be sufficiently close to allow electrons to tunnel, or to be transmitted through localized states (``Coulomb islands''). Here, we use the biased tip of a low temperature scanning gate microscope to alter tunneling through quantum Hall Coulomb islands localized inside a quantum ring patterned in an InGaAs/InAlAs heterostructure. Simultaneously, we map the quantum ring resistance and observe different sets of concentric resistance fringes, due to charging/discharging of each Coulomb island. Tuning the magnetic field and the tip voltage, we reveal the rich and complex behaviour of these fringes.

  15. Progress in studying scintillator proportionality: Phenomenological model

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, Gregory; Cherepy, Nerine; Choong, Woon-Seng; Hull, Giulia; Moses, William; Payne, Sephen; Singh, Jai; Valentine, John; Vasilev, Andrey; Williams, Richard

    2009-04-30

    We present a model to describe the origin of non-proportional dependence of scintillator light yield on the energy of an ionizing particle. The non-proportionality is discussed in terms of energy relaxation channels and their linear and non-linear dependences on the deposited energy. In this approach, the scintillation response is described as a function of the deposited energy deposition and the kinetic rates of each relaxation channel. This mathematical framework allows both a qualitative interpretation and a quantitative fitting representation of scintillation non-proportionality response as function of kinetic rates. This method was successfully applied to thallium doped sodium iodide measured with SLYNCI, a new facility using the Compton coincidence technique. Finally, attention is given to the physical meaning of the dominant relaxation channels, and to the potential causes responsible for the scintillation non-proportionality. We find that thallium doped sodium iodide behaves as if non-proportionality is due to competition between radiative recombinations and non-radiative Auger processes.

  16. Melting and shock wave creation in uranium oxide due to Coulomb explosion after a pulsed ionization

    International Nuclear Information System (INIS)

    By means of molecular dynamics simulations, we study the effects of pulsed ionization in uranium oxide (UO2), which occurs when UO2 is bombarded with swift ions or fission fragments. A general formula is developed to predict melting radius under various conditions due to electron stripping and Coulomb explosion (CE). A critical density model is suggested in which the melting volume is proportional to ionization period, if the period is above a critical value. The maximum melting radius depends on the time period of structural relaxation above the melting temperature, which increases with increasing initial substrate temperatures due to a lower heat dissipation rate. Furthermore, shock waves are observed to emit from CE core but the kinetic energy wave peak exists only in U sublattices. The absence of kinetic energy waves in O sublattices is explained by their relatively higher thermal vibration which cancels the work done from the compression waves

  17. Coulomb collisional effects on high energy particles in the presence of driftwave turbulence

    CERN Document Server

    Huang, B; Cheng, C Z

    2013-01-01

    High energy particles' behavior including fusion born alpha particles in an ITER like tokamak in the presence of background driftwave turbulence is investigated by an orbit following calculation. The background turbulence is given by the toroidal driftwave eigenmode combined with a random number generator. The transport level is reduced as the particle energy increase; the widths of the guiding center islands produced by the passing particles are inverse proportional to the square root of parallel velocities. On the other hand, the trapped particles are sensitive to $E \\times B$ drift at the banana tips whose radial displacement is larger for lower energy particles. Coulomb collisional effects are incorporated which modifies the transport process of the trapped high energy particles whose radial excursion resides in limited radial domains without collisions.

  18. Dynamic properties of {sup 172}Yb{sup +} ion Coulomb crystals in Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlmann, Kristijan; Pyka, Karsten; Keller, Jonas; Meier, David-Marcel [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany). Quest-Inst.; Mehlstaeubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany). Quest-Inst.; Physikalisch-Technische Bundesanstalt, Braunschweig (Germany). Department of Time and Frequency

    2012-07-01

    Towards building an {sup 172}Yb{sup +}/{sup 115}In{sup +} optical clock yielding a frequency standard with a relative inaccuracy {Delta}v/v{proportional_to}10{sup -18}, we study the dynamic properties of {sup 172}Yb{sup +} ion Coulomb crystals in a linear Paul trap and the stability of linear ion chains close to the 'zigzag' phase transition. Furthermore, we present our new apparatus, the characterisation of our ion trap and results of micromotion measurements. In order to obtain large secular frequencies, a helical resonator with a loaded Q=640 has been developed. In our experimental setup with a background pressure of 1 . 10{sup -10} mbar, single ion life times of up to 33 h, linear chains of 50 ions and large 3D crystals have been realised. Also, using secular frequency measurements, decays in fluorescence of large laser cooled crystals were identified as YbOH{sup +} molecule formations.

  19. Observation of ionic Coulomb blockade in nanopores.

    Science.gov (United States)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; Di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels. PMID:27019385

  20. Geometrically-frustrated pseudogap phase of Coulomb liquids

    International Nuclear Information System (INIS)

    We study a class of models with long-range repulsive interactions of the generalized Coulomb form V(r)∼1/rα. We show that decreasing the interaction exponent in the regime αc in any dimension d≥2, reflecting the strong geometric frustration produced by long-range interactions. A nearly frozen Coulomb liquid then survives in a broad pseudogap phase found at T>Tc, which is characterized by an unusual temperature dependence of all quantities. In contrast, the leading critical behavior very close to the charge-ordering temperature remains identical as in models with short-range interactions.

  1. Lyapunov spectra of Coulombic and gravitational periodic systems

    CERN Document Server

    Kumar, Pankaj

    2016-01-01

    We compute Lyapunov spectra for Coulombic and gravitational versions of the one-dimensional systems of parallel sheets with periodic boundary conditions. Exact time evolution of tangent-space vectors are derived and are utilized toward computing Lypaunov characteristic exponents using an event-driven algorithm. The results indicate that the energy dependence of the largest Lyapunov exponent emulates that of Kolmogorov-entropy density for each system at different degrees of freedom. Our approach forms an effective and approximation-free tool toward studying the dynamical properties exhibited by the Coulombic and gravitational systems and finds applications in investigating indications of thermodynamic transitions in large versions of the spatially periodic systems.

  2. Coulomb Blockade in an Ultrathin Ti Nanowire at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAIQiyu; YANGTao; CAIBingchu; YINYou; JIANGJianfei

    2003-01-01

    A scanning tunneling microscope operated in ambient air was employed to fabricate a~ 30nm-wide and ~ 700nm-long Ti nanowire connecting the source and drain electrodes on a 3nm-thick Ti film. The ultraflne but nonuniform Ti nanowire was well defined between two ox-idized lines. The gate electrode was capacitively coupled to the nanowire by a ~150nm-wide oxidized line. The electrical properties measured at room temperature of the Ti nanowire showed Coulomb blockade in highly nonlinear Ids-Vds characteristics and Coulomb oscillation in Ids - Vgs characteristics.

  3. The effect of Coulombic friction on spatial displacement statistics

    CERN Document Server

    Menzel, Andreas M

    2010-01-01

    The phenomenon of Coulombic friction enters the stochastic description of dry friction between two solids and the statistic characterization of vibrating granular media. Here we analyze the corresponding Fokker-Planck equation including both velocity and spatial components, exhibiting a formal connection to a quantum mechanical harmonic oscillator in the presence of a delta potential. Numerical solutions for the resulting spatial displacement statistics show a crossover from exponential to Gaussian displacement statistics. We identify a transient intermediate regime that exhibits multiscaling properties arising from the contribution of Coulombic friction. These results are relevant to recent experimental studies of the displacement of colloidal particles along bilayer membrane tubes.

  4. Coulomb chronometry to probe the decay mechanism of hot nuclei

    CERN Document Server

    Gruyer, Diego; Bonnet, E; Chbihi, A; Ademard, G; Boisjoli, M; Borderie, B; Bougault, R; Galichet, E; Gauthier, J; Guinet, D; Lautesse, Philippe; Neindre, N Le; Legouée, E; Lopez, O; Marini, P; Mazurek, K; Nadtochy, P N; Pârlog, M; Rivet, M F; Roy, R; Rosato, E; Spadaccini, G; Verde, G; Vient, E; Vigilante, M; Wileczko, J -P

    2013-01-01

    In $^129$Xe+$^{nat}$Sn central collisions from 12 to 25 MeV/A, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is unambiguously determined. Strong Coulomb proximity effects are observed in the three fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming quasi-simultaneous above excitation energy $E^*=4.0\\pm0.5$ MeV/A.

  5. An algebraic model of Coulomb scattering with spin

    Energy Technology Data Exchange (ETDEWEB)

    Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary); Amos, K. [School of Physics, University of Melbourne, Parkville (Australia)

    2001-05-11

    A new matrix-valued realization for the so(3,1) algebra leads to a natural generalization of the Coulomb scattering problem of a particle with spin. The underlying su(2) gauge structure of this realization recasts the scattering problem into a familiar form, namely, the Coulomb scattering problem of a collection of dyons (particles having both electric and magnetic charges). Using this equivalent form and the results of Zwanziger for such systems, the scattering matrix can be calculated in the helicity formalism. (author)

  6. Correlated Coulomb drag in capacitively coupled quantum-dot structures

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Jauho, Antti-Pekka

    2016-01-01

    We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...

  7. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  8. Pion-nucleus forward scattering amplitudes from total cross section measurements

    Science.gov (United States)

    Jeppesen, R. H.; Jakobson, M. J.; Cooper, M. D.; Hagerman, D. C.; Johnson, M. B.; Redwine, R. P.; Burleson, G. R.; Johnson, K. F.; Marrs, R. E.; Meyer, H. O.; Halpern, I.; Knutson, L. D.

    1983-02-01

    Measurements have been made of the attenuation cross sections for both π+ and π- mesons on Al, 40Ca, Cu, Sn, Ho, and Pb nuclei. The measurements were made at several energies between 114 and 215 MeV. A new method of data analysis has been used to extract both the real and the imaginary parts of a Coulomb-distorted forward scattering amplitude fN(0). Insight into the nature of fN(0) is obtained by the comparison of experimental data with theoretical values calculated from a simple absorption model. This comparison demonstrates that much of the observed rotation of the forward amplitude, when plotted on an Argand diagram, can be attributed to the Coulomb phase contained in fN(0). Comparison is also made with results of similar experiments. Although the present results are in general agreement with previously published ones, some differences are noted for the heavier elements. NUCLEAR REACTIONS Measured pion forward scattering amplitudes; Al, 40Ca, Cu, Sn, Ho, and Pb; E=114-215 MeV; strong absorption model.

  9. A variational approach to the structure and thermodynamics of linear polyelectrolytes with Coulomb and screened Coulomb interactions

    CERN Document Server

    Jönsson, B; Söderberg, B

    1993-01-01

    A variational approach is used to calculate free energy and conformational properties in polyelectrolytes. The true bond and Coulomb potentials are approximated by a trial isotropic harmonic energy containing monomer-monomer force constants as variational parameters. By a judicious choice of representation and the use of incremental matrix inversion, an efficient and fast-convergent iterative algorithm is constructed, that optimizes the free energy. The computational demand scales as N^3. The method has the additional advantage that the entropy is easily computed. An analysis of the high and low temperature limits is given. Also, the variational formulation is shown to respect the appropriate virial identities. The accuracy of the approximations introduced are tested against Monte Carlo simulations for problem sizes ranging from N=20 to 1024. Very good performance is obtained for chains with unscreened Coulomb interactions. The addition of salt is described through a screened Coulomb interaction, for which th...

  10. LTR design of proportional-integral observers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob; Shafai, B.;

    1995-01-01

    This paper applies the proportional-integral (PI) observer in connection with loop transfer recovery (LTR) design for continuous-time systems. We show that a PI observer makes it possible to obtain time recovery, i.e., exact recovery for t -+ -, under mild conditions. Based on an extension of the...... LQG/LTR method of proportional (P) observers, a systematic LTR design method is derived for the PI observer. Our recovery design method allows time recovery and frequency (normal) recovery to be done independently. Furthermore, we give explicit expressions for the recovery error when asymptotic...

  11. Proportional hazards models with discrete frailty.

    Science.gov (United States)

    Caroni, Chrys; Crowder, Martin; Kimber, Alan

    2010-07-01

    We extend proportional hazards frailty models for lifetime data to allow a negative binomial, Poisson, Geometric or other discrete distribution of the frailty variable. This might represent, for example, the unknown number of flaws in an item under test. Zero frailty corresponds to a limited failure model containing a proportion of units that never fail (long-term survivors). Ways of modifying the model to avoid this are discussed. The models are illustrated on a previously published set of data on failures of printed circuit boards and on new data on breaking strengths of samples of cord.

  12. Energy resolution of the proportional counter

    International Nuclear Information System (INIS)

    Resolution values 11.6% and 12.2% for 5.9 keV have been obtained experimentally for proportional counters with gas fillings Ne+0.5% Ar or Ar+0.5% C2H2. This is appreciably better than earlier measurements which exceed 14%. Theoretical computation indicates that even better resolutions can be obtained. (Auth.)

  13. Augmented mixed models for clustered proportion data.

    Science.gov (United States)

    Bandyopadhyay, Dipankar; Galvis, Diana M; Lachos, Victor H

    2014-12-01

    Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.

  14. Indices of body proportionality in neonates.

    Science.gov (United States)

    Tsou Yau, K I; Chang, M H

    1993-01-01

    The inadequacy of using body weight alone to evaluate fetal skeletal and soft-tissue growth has long been recognized. Body proportionality indices could identify symptomatic newborn infants better than size-for-date classification. Lack of normative data precludes its being used, practically, in Chinese newborns. Thus body weight, body length, head circumference and mid-arm circumference were measured in 240 neonates appropriate for gestational age, 27-42 weeks, 960-3918 g, to construct reference indices of body proportionality: ponderal index (PI), body mass index (BMI), weight/length ratio (W/L), head circumference/body length ratio (HC/L) and mid-arm circumference/head circumference ratio (MAC/HC). All the five indices of body proportionality but HC/L were statistically correlated with gestational age (GA). For full-term newborns, PI did not correlate with GA. Furthers, the MAC/HC ratio decreased after 40 weeks' gestation. Therefore, when these indices of body proportionality are used to evaluate intrauterine nutritional status of a newborn, the appropriate standard for GA should be considered. PMID:8372678

  15. Large-Scale Analysis of Art Proportions

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2014-01-01

    While literature often tries to impute mathematical constants into art, this large-scale study (11 databases of paintings and photos, around 200.000 items) shows a different truth. The analysis, consisting of the width/height proportions, shows a value of rarely if ever one (square) and with majo...

  16. Kitchen Gardens: Contexts for Developing Proportional Reasoning

    Science.gov (United States)

    Hilton, Annette; Hilton, Geoff; Dole, Shelley; Goos, Merrilyn; O'Brien, Mia

    2013-01-01

    It is great to see how the sharing of ideas sparks new ideas. In 2011 Lyon and Bragg wrote an "Australian Primary Mathematics Classroom" (APMC) article on the mathematics of kitchen gardens. In this article the authors show how the kitchen garden may be used as a starting point for proportional reasoning. The authors highlight different…

  17. A proportional-scintillation counter beta spectrometer

    International Nuclear Information System (INIS)

    Using a proportional counter for coincidence gating of events in a plastic scintillator provides selective registration of beta interactions in the scintillator. This technique has been used to construct a field instrument that can selectively collect beta spectra (coincidence gating) or gamma spectra (anticoincidence gating). Associated dose rates are calculated from the spectra

  18. Amplitude recruitment of cochlear potential

    Institute of Scientific and Technical Information of China (English)

    LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang

    2001-01-01

    Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.

  19. Empirical parametrizations of the resonance amplitudes based on the Siegert's theorem

    CERN Document Server

    Ramalho, G

    2016-01-01

    We present parametrizations of the $\\gamma^\\ast N \\to N(1535)1/2^-$, $\\gamma^\\ast N \\to N(1520)3/2^-$ and $\\gamma^\\ast N \\to \\Delta(1232)3/2^+$ transition amplitudes that are compatible with the analytic constraints at the pseudothreshold (Siegert's theorem). The presented parametrizations also provide a fair description of the experimental data. For the case of the $\\gamma^\\ast N \\to \\Delta(1232)3/2^+$ transition, we discuss how the pion cloud parametrizations of the electric and the Coulomb quadrupole form factors can be adjusted according to the Siegert's theorem.

  20. A Brief Comment on Multi-Gluon Amplitudes and Double Parton Interactions

    CERN Document Server

    Treleani, Daniele

    2015-01-01

    A simplest case, where a contribution to a color ordered multi-gluon amplitude, describing a three body partonic interaction, can split into two weakly correlated two-body gluon scattering amplitudes and may thus contribute to a Double Parton Interaction, is briefly discussed. We find that the color ordered amplitude is not enhanced in the typical configuration generated by a DPI, where the transverse momenta of final state gluons are compensated pairwise, while a dominant contribution to the multi-gluon amplitude is due to terms proportional to the fusion amplitude of two initial state gluons. Which corresponds to an amplitude effectively describing a two rather than a three-body partonic interaction.

  1. Molecular integrals for slater type orbitals using coulomb sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil; Avery, John Scales

    2014-01-01

    The use of Slater type orbitals in molecular calculations is hindered by the slowness of integral evaluation. In the present paper, we introduce a method for overcoming this problem by expanding STO's in terms of Coulomb Sturmians, for which the problem of evaluating molecular integrals rapidly has...

  2. Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians

    DEFF Research Database (Denmark)

    Avery, James Emil

    2013-01-01

    of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...

  3. Finiteness of the Coulomb gauge QCD perturbative effective action

    Energy Technology Data Exchange (ETDEWEB)

    Andraši, A., E-mail: aandrasi@irb.hr [Vlaška 58, Zagreb (Croatia); Taylor, J.C., E-mail: jct@damtp.cam.ac.uk [DAMTP, University of Cambridge, Cambridge (United Kingdom)

    2015-05-15

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.

  4. Finiteness of the Coulomb gauge QCD perturbative effective action

    CERN Document Server

    Andrasi, A

    2015-01-01

    At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ-Lee term which was inserted into the Hamiltonian.

  5. Revised variational approach to QCD in Coulomb gauge

    CERN Document Server

    Campagnari, Davide R; Reinhardt, Hugo; Vastag, Peter

    2016-01-01

    The variational approach to QCD in Coulomb gauge is revisited. By assuming the non-Abelian Coulomb potential to be given by the sum of its infrared and ultraviolet parts, i.e.~by a linearly rising potential and an ordinary Coulomb potential, and by using a Slater determinant ansatz for the quark wave functional, which contains the coupling of the quarks and the gluons with two different Dirac structures, we obtain variational equations for the kernels of the fermionic vacuum wave functional, which are free of ultraviolet divergences. Thereby, a Gaussian type wave functional is assumed for the gluonic part of the vacuum. By using the results of the pure Yang--Mills sector for the gluon propagator as input, we solve the equations for the fermionic kernels numerically and calculate the quark condensate and the effective quark mass in leading order. Assuming a value of $\\sigma_{\\mathrm{C}} = 2.5 \\sigma$ for the Coulomb string tension (where $\\sigma$ is the usual Wilsonian string tension) the phenomenological valu...

  6. Existence of the thermodynamic limit for disordered quantum Coulomb systems

    CERN Document Server

    Blanc, Xavier

    2012-01-01

    Following a recent method introduced by C. Hainzl, J.P. Solovej and the second author of this article, we prove the existence of the thermodynamic limit for a system made of quantum electrons, and classical nuclei whose positions and charges are randomly perturbed in an ergodic fashion. All the particles interact through Coulomb forces.

  7. Coulomb and nuclear effects in breakup and reaction cross sections

    CERN Document Server

    Descouvemont, Pierre; Hussein, Mahir S

    2016-01-01

    We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...

  8. The Coulomb law and atomic levels in a superstrong B

    Directory of Open Access Journals (Sweden)

    Vysotsky M.I.

    2014-04-01

    Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.

  9. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  10. Coulomb potential from a particle in uniform ultrarelativistic motion

    OpenAIRE

    Baltz, A. J.

    1995-01-01

    The Coulomb potential produced by an ultrarelativistic particle (such as a heavy ion) in uniform motion is shown in the appropriate gauge to factorize into a longitudinal Dirac delta function of (z - t) times the simple two dimensional potential solution in the transverse direction. This form makes manifest the source of the energy independence of the interaction.

  11. Plasmon-mediated Coulomb drag between graphene waveguides

    DEFF Research Database (Denmark)

    Shylau, Artsem A.; Jauho, Antti-Pekka

    2014-01-01

    We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...

  12. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  13. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  14. A Note on AdS/SYM Correspondence on the Coulomb Branch

    OpenAIRE

    Wu, Yi-Yen

    1998-01-01

    We study Maldacena's conjecture and the AdS/SYM correspondence on the Coulomb branch. Several interesting aspects of this conjectured AdS/SYM correspondence on the Coulomb branch are pointed out and clarified.

  15. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  16. Proportional Reasoning of Preservice Elementary Education Majors: An Epistemic Model of the Proportional Reasoning Construct.

    Science.gov (United States)

    Fleener, M. Jayne

    Current research and learning theory suggest that a hierarchy of proportional reasoning exists that can be tested. Using G. Vergnaud's four complexity variables (structure, content, numerical characteristics, and presentation) and T. E. Kieren's model of rational number knowledge building, an epistemic model of proportional reasoning was…

  17. Proportional reasoning competence among different student populations

    Science.gov (United States)

    Wong, King

    2012-10-01

    A collaborative project between Western Washington University, Rutgers University, and New Mexico State University seeks to understand student's competence level on proportional reasoning. We have been collecting and analyzing data from introductory physics and science education courses using a set of assessment tasks. We utilize the notion of constructs to categorize student thinking according to repetitive patterns. Results suggest that, when students confront ratio and proportion problems, they often experience a gap between the mechanics of the mathematical operations and the conscious understanding of what they are doing. In this poster we will share results of our findings from different courses, institutions, and student populations. Supported by NSF grants DUE-1045227, DUE-1045231, DUE-1045250..

  18. Neutron spectroscopy with the Spherical Proportional Counter

    CERN Document Server

    Bougamont, E; Derre, J; Galan, J; Gerbier, G; Giomataris, I; Gros, M; Katsioulas, I; Jourde, D; Magnier, P; Navick, X F; Papaevangelou, T; Savvidis, I; Tsiledakis, G

    2015-01-01

    A novel large volume spherical proportional counter, recently developed, is used for neutron measurements. Gas mixtures of $N_{2}$ with $C_{2}H_{6}$ and pure $N_{2}$ are studied for thermal and fast neutron detection, providing a new way for the neutron spectroscopy. The neutrons are detected via the ${}^{14}N(n, p)C^{14}$ and ${}^{14}N(n, \\alpha)B^{11}$ reactions. Here we provide studies of the optimum gas mixture, the gas pressure and the most appropriate high voltage supply on the sensor of the detector in order to achieve the maximum amplification and better resolution. The detector is tested for thermal and fast neutrons detection with a ${}^{252}Cf$ and a ${}^{241}Am-{}^{9}Be$ neutron source. The atmospheric neutrons are successfully measured from thermal up to several MeV, well separated from the cosmic ray background. A comparison of the spherical proportional counter with the current available neutron counters is also given.

  19. Band Control of Mutual Proportional Reinsurance

    OpenAIRE

    Liu, John; Taksar, Michael; Yuan, Jiguang

    2011-01-01

    In this paper, we investigate the optimization of mutual proportional reinsurance --- a mutual reserve system that is intended for the collective reinsurance needs of homogeneous mutual members, such as P&I Clubs in marine mutual insurance and reserve banks in the U.S. Federal Reserve. Compared to general (non-mutual) insurance models, which involve one-sided impulse control (i.e., either downside or upside impulse) of the underlying insurance reserve process that is required to be positive, ...

  20. The political proportions of public knowledge

    OpenAIRE

    Corsín Jiménez, Alberto

    2010-01-01

    The article offers a critique of the proportional epistemology shaping political and economic theory about the public value of knowledge and opens up the potential for alternative descriptions afforded by ethnography. It does so by exploring one particular exemplification of the new public value of knowledge found in political calls for making Science and Society converge. Such convergence takes at least three forms: the public value of research; the economic public goodness of commercial sci...

  1. A review of EBMT using proportional analogies

    OpenAIRE

    Somers, Harold; Dandapat, Sandipan; Naskar, Sudip Kumar

    2009-01-01

    Some years ago a number of papers reported an experimental implementation of Example Based Machine Translation (EBMT) using Proportional Analogy. This approach, a type of analogical learning, was attractive because of its simplicity; and the papers reported considerable success with the method. This paper reviews what we believe to be the totality of research reported using this method, as an introduction to our own experiments in this framework, reported in a companion paper. We report first...

  2. Height and body proportions in child abuse.

    OpenAIRE

    Wales, J. K.; Herber, S M; Taitz, L S

    1992-01-01

    Abused children are said to retain 'infantile body proportions'. The presenting height, sitting height, and leg length standard deviation scores of 91 victims have been calculated from data derived from a study of local inner city schoolchildren. In the study population 31/91 (34%) were significantly short and all but two of these had relatively shorter legs than backs, this limb disproportion being significant in 17. In 25 patients of the original group followed up after various social inter...

  3. Proportional model calorimeters of the TPC facility

    International Nuclear Information System (INIS)

    Two wire proportional mode gas calorimeter modules have been tested as prototypes for the Pole Tip calorimeters of the TPC Facility at PEP. The results of the tests at several electron energies (0.25 to 12. GeV) and several pressures (1.0 to 30. atms) are presented, comparisons with a detailed simulation program are made, and results from the Pole Tip modules now operating at PEP are given

  4. Band Control of Mutual Proportional Reinsurance

    CERN Document Server

    Liu, John; Yuan, Jiguang

    2011-01-01

    In this paper, we investigate the optimization of mutual proportional reinsurance --- a mutual reserve system that is intended for the collective reinsurance needs of homogeneous mutual members, such as P&I Clubs in marine mutual insurance and reserve banks in the U.S. Federal Reserve. Compared to general (non-mutual) insurance models, which involve one-sided impulse control (i.e., either downside or upside impulse) of the underlying insurance reserve process that is required to be positive, a mutual insurance differs in allowing two-sided impulse control (i.e., both downside and upside impulse), coupled with the classical proportional control of reinsurance. We prove that a special band-type impulse control $(a,A,B,b)$ with $a=0$ and $aproportional reinsurance policy (classical control), is optimal when the objective is to minimize the total maintenance cost. That is, when the reserve position reaches a lower boundary of $a=0$, the reserve should immediately be raised to ...

  5. Blocage de Coulomb dans une boite quantique laterale contenant un faible nombre d'electrons

    Science.gov (United States)

    Gould, Charles

    Dans ce travail on utilise une nouvelle geometrie pour augmenter le controle sur le nombre d'electrons contenus dans une boite quantique laterale, et ainsi atteindre un regime de petit nombre d'electrons. Ces echantillons permettent une etude du blocage de Coulomb quand les electrons sont injectes a partir d'un gaz electronique a deux dimensions (2DEG). Les mesures a faible champ magnetique demontrent la grande flexibilite des echantillons et montrent que l'on peut faire varier le nombre d'electrons dans une boite quantique a partir de plus de 40 electrons jusqu'a un seul electron, ce qui est assez courant dans les boites quantiques verticales, mais ce qui n'avait jamais ete reussi dans une boite quantique laterale. Nos resultats montrent egalement que dans les boites quantiques laterales il est possible de determiner le spin du niveau qui participe au transport a l'aide du phenomene de blocage de spin. De plus, dans certaines circonstances il est meme possible de determiner le spin total de la boite quantique, ce qui peut avoir des applications pratiques dans des domaines tels l'informatique quantique. Les mesures dans le regime de renversement de spin a un champ magnetique plus eleve montrent l'importance des correlations electrons---electrons dans ces boites quantiques, qui menent a des depolarisations et a des structures de spins qui ont un effet sur le transport. En particulier, ces correlations menent a l'existence de niveaux excites de basse energie qui causent une dependance anormale de l'amplitude des pics de blocage de Coulomb en fonction de la temperature. Nos experiences demontrent egalement la possibilite d'utiliser ces boites quantiques comme sondes pour etudier les proprietes du bord d'un 2DEG. Une voie de recherche a etre exploree.

  6. On the role of deformed Coulomb potential in fusion using energy density formalism

    Indian Academy of Sciences (India)

    Lavneet Kaur; Raj Kumari

    2015-10-01

    Using the Skyrme energy density formalism, the effect of deformed Coulomb potential on fusion barriers and fusion cross-sections is studied. Our detailed study reveals that the fusion barriers as well as fusion probabilities depend on the shape deformation (due to deformed Coulomb potential) of the colliding nuclei. However, this dependence due to deformed Coulomb potential is found to be very weak.

  7. Charge-carrier dynamics and Coulomb effects in semiconductor tetrapods

    International Nuclear Information System (INIS)

    In this thesis the Coulomb interaction and its influence on localization effects and dynamics of charge carriers in semiconductor nanocrystals were studied. In the studied nanostructures it deals with colloidal tetrapod heterostructures, which consist of a cadmium selenide (CdSe) core and four tetraedrical grown cadmium sulfide (CdS) respectively cadmium telluride (CdTe) legs, which exhibit a type-I respectively type-II band transition. The dynamics and interactions were studied by means of photoluminescence (PL) and absorption measurements both on the ensemble and on single nanoparticles, as well as time-resolved PL and transient absorption spectroscopy. Additionally theoretical simulations of the wave-function distributions were performed, which are based on the effective-mass approximation. The special band structure of the CdSe/CdS tetrapods offers a unique possibility to study the Coulomb interaction. The flat conduction band in these heterostructures makes the electron via the Coulomb interaction sensitive to the localization position of the hole within the structure. The valence band has instead a potential maximum in the CdSe, which leads to a directed localization of the hole and the photoluminescence of the core. Polarization-resolved measurements showed hereby an anisotropy of the photoluminescence, which could be explained by means of simulations of the wave-function distribution with an asymmetry at the branching point. Charge-carrier localization occur mainly both in longer structures and in trap states in the CdS leg and can be demonstrated in form of a dual emission from a nanocrystal. The charge-carrier dynamics of electron and hole in tetrapods is indeed coupled by the Coulomb interaction, however it cannot be completely described in an exciton picture. The coupled dynamics and the Coulomb interaction were studied concerning a possible influence of the geometry in CdSe/CdS nanorods and compared with those of the tetrapods. The interactions of the

  8. Another point of view on proportional navigation

    Directory of Open Access Journals (Sweden)

    E. Duflos

    1998-01-01

    Full Text Available Proportional navigation is one of the most popular and one of the most used of the guidance laws. But the way it is studied is always the same: the acceleration needed to reach a known target is derived or analyzed. This way of studying guidance laws is called “the direct problem” by the authors. On the contrary, the problem considered here is to find, from the knowledge of a part of the trajectory of a maneuvering object, the target of this object. The authors call this way of studying guidance laws “the inverse problem”.

  9. Proportional Conflict Redistribution Rules for Information Fusion

    OpenAIRE

    Smarandache, Florentin; Dezert, Jean

    2004-01-01

    In this paper we propose five versions of a Proportional Conflict Redistribution rule (PCR) for information fusion together with several examples. From PCR1 to PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and also the exactitude of the redistribution of conflicting masses. PCR1 restricted from the hyper-power set to the power set and without degenerate cases gives the same result as the Weighted Average Operator (WAO) proposed recently by J{\\o}sang, Daniel and Vannoorenber...

  10. Cosmic Muon Detector Using Proportional Chambers

    CERN Document Server

    Varga, Dezső; Hamar, Gergő; Molnár, Janka Sára; Oláh, Éva; Pázmándi, Péter

    2015-01-01

    A set of classical multi-wire proportional chambers were designed and constructed with the main purpose of efficient cosmic muon detection. These detectors are relatively simple to construct, and at the same time are low cost, making them ideal for educational purposes. The detector layers have efficiencies above 99% for minimum ionizing cosmic muons, and their position resolution is about 1 cm, that is, particle trajectories are clearly observable. Visualization of straight tracks is possible using an LED array, with the discriminated and latched signal driving the display. Due to the exceptional operating stability of the chambers, the design can also be used for cosmic muon telescopes.

  11. Structural phase transitions and topological defects in ion Coulomb crystals

    International Nuclear Information System (INIS)

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation

  12. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Ulm Univ., Ulm (Germany); Burgermeister, Tobias [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Keller, Jonas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Ulm Univ., Ulm, (Germany):Institute for Theoretical Physics, Ulm Univ.,Ulm, (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram (Israel); Zurek, Wojciech Hubert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); del Campo, Adolfo [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Physics; Mehlstaubler, Tanja E. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2014-11-19

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed non-adiabatically. For a second order phase transition, the Kibble-Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  13. Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping

    CERN Document Server

    Card, D A

    2000-01-01

    The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...

  14. A Coulomb collision algorithm for weighted particle simulations

    Science.gov (United States)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  15. Coulomb Sturmians as a basis for molecular calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2012-01-01

    Almost all modern quantum chemistry programs use Gaussian basis sets even though Gaussians cannot accurately represent the cusp at atomic nuclei, nor can they represent the slow decay of the wave function at large distances. The reason that Gaussians dominate quantum chemistry today is the great ...... of hyperspherical harmonics. For the remaining many-centre integrals, Coulomb Sturmians are shown to have advantages over other ETOs. Pilot calculations are performed on N-electron molecules using the Generalized Sturmian Method....... mathematical difficulty of evaluating interelectron repulsion integrals when exponential-type orbitals (ETOs) are used. In this paper we show that when many-centre Coulomb Sturmian ETOs are used as a basis, the most important integrals can be evaluated rapidly and accurately by means of the theory...

  16. Structural phase transitions and topological defects in ion Coulomb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Partner, Heather L. [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Nigmatullin, Ramil [Institute of Quantum Physics, Albert-Einstein Allee-11, Ulm University, 89069 Ulm (Germany); Burgermeister, Tobias; Keller, Jonas; Pyka, Karsten [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Plenio, Martin B. [Center for Integrated Quantum Science and Technology, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Institute for Theoretical Physics, Albert-Einstein-Allee 11, Ulm University, 89069 Ulm (Germany); Retzker, Alex [Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Givat Ram (Israel); Zurek, Wojciech H. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Campo, Adolfo del [Department of Physics, University of Massachusetts Boston, Boston, MA 02125 (United States); Mehlstäubler, Tanja E., E-mail: tanja.mehlstaeubler@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2015-03-01

    We use laser-cooled ion Coulomb crystals in the well-controlled environment of a harmonic radiofrequency ion trap to investigate phase transitions and defect formation. Topological defects in ion Coulomb crystals (kinks) have been recently proposed for studies of nonlinear physics with solitons and as carriers of quantum information. Defects form when a symmetry breaking phase transition is crossed nonadiabatically. For a second order phase transition, the Kibble–Zurek mechanism predicts that the formation of these defects follows a power law scaling in the rate of the transition. We demonstrate a scaling of defect density and describe kink dynamics and stability. We further discuss the implementation of mass defects and electric fields as first steps toward controlled kink preparation and manipulation.

  17. Gauge dependence of calculations in relativistic Coulomb excitation

    CERN Document Server

    Bayman, B F

    2004-01-01

    Before a quantum-mechanical calculation involving electromagnetic interactions is performed, a choice must be made of the gauge to be used in expressing the potentials. If the calculation is done exactly, the observable results it predicts will be independent of the choice of gauge. However, in most practical calculations approximations are made, which can destroy the gauge invariance of the predictions. We compare here the results of coupled-channel time-dependent relativistic Coulomb excitation calculations, as performed in either Lorentz or Coulomb gauges. We find significant differences when the bombarding energy per nucleon is $\\geq$ 2 GeV, which indicates that the common practice of relying completely on the Lorentz gauge can be dangerous.

  18. Coulomb and Nuclear Breakup at Low Energies: Scaling Laws

    Directory of Open Access Journals (Sweden)

    Hussein M. S.

    2013-12-01

    Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.

  19. Applicability of the molecular dynamics technique to a Coulomb plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.G.; Galeev, R.Kh.

    1993-09-01

    In the present work, we report the calculations of the local Lyapunov parameter which determines the nature of the motion for a system of n particles interacting according to Coulomb`s law. These calculations have been performed for the most probable states of a fully ionized plasma, and they were performed using a Microvax-3 computer with the NAG(FO2) program package for a plasma consisting of particles with the same mass and for a fully ionized hydrogen plasma. The particle coordinates were prescribed as a uniformly distributed set of random numbers obtained using the NAG(GO5) routine. Results for the Lyapunov parameter are presented, and it is shown that the values of the parameter increases sharply as a function of particle number up to n=100 and then saturate. This latter observation is attributed to shielding, related to Debye effects.

  20. Coulomb Artifacts and Bottomonium Hyperfine Splitting in Lattice NRQCD

    CERN Document Server

    Liu, Tao; Rayyan, Ahmed

    2016-01-01

    We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a "na\\"ive" perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD [1, 2]. We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives $M_{\\Upsilon(1S)}-M_{\\eta_b(1S)}=52.9\\pm 5.5~{\\rm MeV}$ [1].

  1. Imaging Coulomb islands in a quantum Hall interferometer.

    Science.gov (United States)

    Hackens, B; Martins, F; Faniel, S; Dutu, C A; Sellier, H; Huant, S; Pala, M; Desplanque, L; Wallart, X; Bayot, V

    2010-01-01

    In the quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward the theory that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of QH Coulomb islands, and reveal the spatial structure of transport inside a QH interferometer. Locations of electron islands are found by modulating the tunnelling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high-magnetic-field magnetoresistance oscillations, and opens the way to further local-scale manipulations of QH localized states. PMID:20975700

  2. Effect of Coulomb Screening Length on Nuclear Pasta Simulations

    CERN Document Server

    Alcain, P N; Nichols, J I; Dorso, C O

    2013-01-01

    We study the role of the effective Coulomb interaction strength and length on the dynamics of nucleons in conditions according to those in a neutron star's crust. Calculations were made with a semi-classical molecular dynamics model, studying isospin symmetric matter at sub-saturation densities and low temperatures. The electrostatic interaction between protons interaction is included in the form of a screened Coulomb potential in the spirit of the Thomas-Fermi approximation, but the screening length is artificially varied to explore its effect on the formation of the non-homogeneous nuclear structures known as ``nuclear pasta''. As the screening length increases, we can a transition from a one-per-cell pasta regime (due exclusively to finite size effects) to a more appealing multiple pasta per simulation box. This shows qualitative difference in the structure of neutron star matter at low temperatures, and therefore, special caution should be taken when the screening length is estimated for numerical simulat...

  3. Characterization of ion Coulomb crystals for fundamental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kunihiro, E-mail: okada-k@sophia.ac.jp [Sophia University, Department of Physics (Japan); Ichikawa, Masanari [RIKEN Nishina Center for Accelerator-Based Science (Japan); Wada, Michiharu, E-mail: mw@riken.go.jp [Sophia University, Department of Physics (Japan)

    2015-11-15

    We performed classical molecular dynamics (MD) simulations in order to search the conditions for efficient sympathetic cooling of highly charged ions (HCIs) in a linear Paul trap. Small two-component ion Coulomb crystals consisting of laser-cooled ions and HCIs were characterized by the results of the MD simulations. We found that the spatial distribution is determined by not only the charge-to-mass ratio but also the space charge effect. Moreover, the simulation results suggest that the temperature of HCIs do not necessarily decrease with increasing the number of laser-cooled ions in the cases of linear ion crystals. We also determined the cooling limit of sympathetically cooled {sup 165}Ho{sup 14+} ions in small linear ion Coulomb crystals. The present results show that sub-milli-Kelvin temperatures of at least 10 Ho{sup 14+} ions will be achieved by sympathetic cooling with a single laser-cooled Be{sup +}.

  4. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    U Datta Pramanik; T Aumann; D Cortina; H Emling; H Geissel; M Hellström; R Holzmann; N Iwasa; Y Leifels; G Münzenberg; M Rejmund; C Scheidenberger; K Sümmerer; A Leistenschneider; Th W Elze; A Grünschloss; S Ilievski; K Boretzky; J V Kratz; R Kulessa; E Lubkiewicz; E Wajda; W Walus; P Reiter; H Simon

    2001-08-01

    Coulomb breakup of neutron-rich nuclei around mass ∼ 20 has been studied experimentally using secondary beams (∼ 500–600 MeV/u) of unstable nuclei produced at GSI. The spectroscopic factor deduced for the neutron occupying 1/2 level in 15C ground state is consistent with the earlier reported value. The data analysis for Coulomb breakup of 17C shows that most of the cross section yields the 16C core in its excited state. For 17-22O, the low-lying E1 strength amounts up to about 12% of the energy weighted dipole sum rule strength depending on neutron excess. The cluster sum rule limit with 16O as a core is almost exhausted for 17,18O, while for more neutron rich isotopes the strength with respect to that limit decreases.

  5. Coulomb Traps and Charge Transport in Molecular Solids

    Science.gov (United States)

    Scher, Harvey

    2000-03-01

    A major result of experimental studies of a diverse assortment of disordered molecular solids is the observation of a common pattern in the charge transport properties. The transport ranges from charge transfer between molecules doped in an inert polymer to motion along the silicon backbone of polysilylenes. The pattern is the unusual combination of Poole Frenkel-like electric field dependence and non-Arrhenius temperature dependence of the mobility. The latter feature has been especially puzzling. We study the drift mobility of a molecular polaron in the presence of an applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. The key electric field and temperature dependencies of the mobility measurements are well reproduced by this model. Our conclusion is that this nearly universal transport behavior arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.

  6. Cooling of cryogenic electron bilayers via the Coulomb interaction

    Science.gov (United States)

    Gamble, John King; Friesen, Mark; Joynt, Robert; Coppersmith, S. N.

    2011-09-01

    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure and analyze the power transfer. We show that, across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.

  7. Coulomb effects in low-energy nuclear fragmentation

    Science.gov (United States)

    Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah

    1993-01-01

    Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.

  8. Interplay of Coulomb interaction and spin-orbit coupling

    Science.gov (United States)

    Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian

    2016-07-01

    We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .

  9. Coulomb field of an accelerated charge physical and mathematical aspects

    CERN Document Server

    Alexander, F J; Alexander, Francis J.; Gerlach, Ulrich H.

    1991-01-01

    The Maxwell field equations relative to a uniformly accelerated frame, and the variational principle from which they are obtained, are formulated in terms of the technique of geometrical gauge invariant potentials. They refer to the transverse magnetic (TM) and the transeverse electric (TE) modes. This gauge invariant "2+2" decomposition is used to see how the Coulomb field of a charge, static in an accelerated frame, has properties that suggest features of electromagnetism which are different from those in an inertial frame. In particular, (1) an illustrative calculation shows that the Larmor radiation reaction equals the electrostatic attraction between the accelerated charge and the charge induced on the surface whose history is the event horizon, and (2) a spectral decomposition of the Coulomb potential in the accelerated frame suggests the possibility that the distortive effects of this charge on the Rindler vacuum are akin to those of a charge on a crystal lattice.

  10. Scaling laws for near barrier Coulomb and Nuclear Breakup

    CERN Document Server

    Hussein, M S; Lubian, J; Otomar, D R; Canto, L F

    2013-01-01

    We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_{\\mathrm{\\scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{\\mathrm{% \\scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.

  11. Reconfiguration and Control of Non-Equal Mass Three-Craft Coulomb Formation

    Science.gov (United States)

    Ting, Wang; Guangqing, Xia; Nan, Zhao

    2016-03-01

    The paper studied reconfiguration of Coulomb formation from three-craft system to four-craft system. Assumed that three-craft Coulomb system already formed a triangle configuration, then, the fourth Coulomb craft is scheduled to join the existing system so as to form a new static configuration. New possible configurations such as quadrilateral in 2-dimension and tetrahedron in 3-dimension for four-craft Coulomb formation are discussed in the paper. The processing of reconfiguration will not change the original origin and triangle formation. Through the Particle Swarm Optimization (PSO) algorithm, the mass, the charge and the position of the fourth Coulomb craft can be calculated for these configurations.

  12. Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater—Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    F.Oner; R.A.Mamedoy

    2002-01-01

    Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of the average Coulomb interaction between two particles.Coulomb energy difference according to shell model of light mirror nuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions.In this study,using the one-center expansion of exponential-type wavefunctions in terms of Slater-type orbitals with the same center,we derived formula for Coulomb energy difference of light mirror nuclei.

  13. Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater-Type Orbitals

    Institute of Scientific and Technical Information of China (English)

    F. Oner; B.A. Mainedov

    2002-01-01

    Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of theaverage Coulomb interaction between two particles. Coulomb energy difference according to shell model of light mirrornuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions. Inthis study, using the one-center expansion of exponential-type wavcfunctions in terms of Slater-type orbitals with thesame center, we derived formula for Coulomb energy difference of light mirror mulei.

  14. Dynamical Coulomb blockade and spin-entangled electrons

    OpenAIRE

    Recher, Patrik; Loss, Daniel

    2003-01-01

    We consider the production of mobile and nonlocal pairwise spin-entangled electrons from tunneling of a BCS-superconductor (SC) to two normal Fermi liquid leads. The necessary mechanism to separate the two electrons coming from the same Cooper pair (spin-singlet) is achieved by coupling the SC to leads with a finite resistance. The resulting dynamical Coulomb blockade effect, which we describe phenomenologically in terms of an electromagnetic environment, is shown to be enhanced for tunneling...

  15. Coulomb excitation of 144,146,148,150Nd

    NARCIS (Netherlands)

    Ahmad, A.; Bomar, G.; Crowell, H.; Hamilton, J. H.; Kawakami, H.; Maguire, C. F.; Nettles, W. G.; Piercey, R. B.; Ramayya, A. V.; Soundranayagam, R.; Ronningen, R. M.; Scholten, O.; Stelson, P. H.

    1988-01-01

    Coulomb excitation of 144,146,148,1605060Nd by 10.5 and 11 MeV alpha particles was studied by magnetic analysis of particles scattered into 150°. Values of B(E20+-->2+) for the 2+ states at 696, 454, 302, and 130 keV are 0.58(1), 0.78(1), 1.390(20), and 2.816(35) e2b2, respectively. For 148,150Nd, v

  16. Quantum calculation of Coulomb reorientation and near-barrier fusion

    OpenAIRE

    Simenel, Cédric; Bender, Michael; Chomaz, P.; Duguet, Thomas; de France, G.

    2006-01-01

    6pages, 2 figures. Proceeding of FUSION06 International audience We investigate the role of deformation on the fusion probability around the barrier using the Time-Dependent Hartree-Fock theory with a full Skyrme force. We obtain a distribution of fusion probabilities around the nominal barrier due to the different contributions of the various orientations of the deformed nucleus at the touching point. It is also shown that the long range Coulomb reorientation reduces the fusion probabi...

  17. Intermediate-energy Coulomb excitation of Fe-52

    OpenAIRE

    Yurkewicz, KL; Bazin, D.; Brown, BA; Campbell, CM; Church, JA; Dinca, DC; A. Gade; Glasmacher, T.(National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824, United States); Honma, M.; Mizusaki, T.; Mueller, WF; Olliver, H; Otsuka, Taka; Riley, LA; Terry, Jr., Jeffrey H.

    2004-01-01

    The nucleus 52 Fe with s N = Z =26 d has been investigated using intermediate-energy Coulomb excitation in inverse kinematics. A reduced transition probability of B s E 2;0 1 + ! 2 1 + d = 817 s 102 d e 2 fm 4 to the first excited 2 + state at 849.0 ( 5 ) keV was deduced. The increase in excitation strength B s E 2 " d with respect to the even-mass neighbor 54...

  18. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid

    OpenAIRE

    Buyukdagli, Sahin; Blossey, Ralf

    2013-01-01

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent generalizing the point-like Dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (J. Phys. Chem 100, 2612 (1996)) and Abrashkin et al. (Phys. Rev. Lett. 99, 077801 (2007)). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevanc...

  19. Coulombic potentials in the semi-classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Chantelau, K. (Technische Univ. Berlin (Germany, F.R.). Fachbereich 3 - Mathematik)

    1990-05-01

    This paper is devoted to Schroedinger operators in two dimensions with singular (Coulombic) potentials. We investigate the behaviour of the eigenvalues at the bottom of the spectrum in the semi-classical limit. To overcome the difficulties due to the singularities, we use some kind of generalisation of the Levi-Civita transform. After this regularisation, we apply the theory of Helffer and Sjoestrand to get the full asymptotics for the eigenvalues. (orig.).

  20. Two Approaches to Accelerated Monte Carlo Simulation of Coulomb Collisions

    OpenAIRE

    Ricketson, Lee

    2014-01-01

    In plasma physics, the direct simulation of inter-particle Coulomb collisions is often necessary to capture the relevant physics, but presents a computational bottleneck because of the complexity of the process. In this thesis, we derive, test and discuss two methods for accelerating the simulation of collisions in plasmas in certain scenarios. The first is a hybrid fluid-Monte Carlo scheme that reduces the number of collisions that must be simulated. Coupling between the fluid and particl...

  1. Imaging Coulomb Islands in a Quantum Hall Interferometer

    OpenAIRE

    Hackens, B.; Martins, F.; Faniel, S.; Dutu, C. A.; Sellier, H.; S. Huant; Pala, M; L. Desplanque; Wallart, X; Bayot, V.

    2010-01-01

    In the Quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially-separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we ...

  2. Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study

    DEFF Research Database (Denmark)

    Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka

    2005-01-01

    effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...... zigzaglike or armchairlike, which have two different nonzero crystal angular momenta m(a), M-b and only zero angular momentum, respectively....

  3. Molecular Dynamics Simulation of Shear Moduli for Coulomb Crystals

    CERN Document Server

    Horowitz, C J

    2008-01-01

    Torsional (shear) oscillations of neutron stars may have been observed in quasiperiodic oscillations of Magnetar Giant Flares. The frequencies of these modes depend on the shear modulus of neutron star crust. We calculate the shear modulus of Coulomb crystals from molecular dynamics simulations. We find that electron screening reduces the shear modulus by about 10% compared to previous Ogata et al. results. Our MD simulations can be extended to calculate the effects of impurities and or polycrystalline structures on the shear modulus.

  4. Resonances in the two-center Coulomb systems

    Science.gov (United States)

    Seri, Marcello; Knauf, Andreas; Esposti, Mirko Degli; Jecko, Thierry

    2016-09-01

    We investigate the existence of resonances for two-center Coulomb systems with arbitrary charges in two dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. We construct the resolvent kernels of the operators and prove that they can be extended analytically to the second Riemann sheet. The resonances are then analyzed by means of perturbation theory and numerical methods.

  5. Leptoproduction of neutrino pairs in the nuclear coulomb field

    OpenAIRE

    Pich, Antonio; Bernabéu, José

    1985-01-01

    [IT] Si calcola la sezione d'urto per la produzione di coppie v-V per leptoni ad alta energia nel campo nucleare di Coulomb nella teoria standard, tenendo conto della polarizzazione arbitraria nel fascio leptonico incidente. Si studiano le distribuzioni differenziali del leptone canco uscente, mostrando che il leptone diffuso forma un picco ad alta energia ed emerge per angoli di un'ampiezza notevole. Si discutono anche i contributi incoerenti alla sezione d'urto.

  6. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    OpenAIRE

    Isobe, Hiroki; Nagaosa, Naoto

    2015-01-01

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor $\\alpha$-(BEDT-TTF)$_2$I$_3$ and three-dimensional WTe$_2$. The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the...

  7. AXAF calibration: the HXDS flow proportional counters

    Science.gov (United States)

    Wargelin, Bradford J.; Kellogg, Edwin M.; McDermott, Walter C.; Evans, Ian N.; Vitek, S. A.

    1997-07-01

    The design, performance, and calibration of the seven flow proportional counters (FPCs) used during AXAF ground calibration are described. Five of the FPCs served as beam normalization detectors (BNDs), and two were used in the telescope focal plane in combination with a set of apertures to measure the point response functions and effective areas of the AXAF mirrors and transmission gratings. The BNDs also provide standards for determining the effective areas of the several telescope/grating/flight-detector combinations. With useful energy resolution and quantum efficiency over the entire 100-eV to 10 keV AXAF energy band, the FPCs provided most of the data acquired during AXAF calibration. Although the principles of proportional counter operation are relatively simple, AXAF's stringent calibration goals require detailed calibration and modeling of such effects as window- support-wire obscuration, window deformation between the support wires, electron diffusion and avalanche processes, gain nonuniformities, and gas pressure and temperature variations. Detector aperture areas and signal processing deadtime must also be precisely determined, and detector degradation during the many months of AXAF calibration must be prevented. The FPC calibration program is based on measurement of individual components (such as window transmission and aperture size) and the relative quantum efficiencies of complete detector systems, as well as absolute QE calibration of selected detectors at the BESSY synchrotron, an x-ray source of precisely known intensity.

  8. Kalman-predictive-proportional-integral-derivative (KPPID)

    International Nuclear Information System (INIS)

    With third generation synchrotron X-ray sources, it is possible to acquire detailed structural information about the system under study with time resolution orders of magnitude faster than was possible a few years ago. These advances have generated many new challenges for changing and controlling the state of the system on very short time scales, in a uniform and controlled manner. For our particular X-ray experiments on crystallization or order-disorder phase transitions in metallic alloys, we need to change the sample temperature by hundreds of degrees as fast as possible while avoiding over or under shooting. To achieve this, we designed and implemented a computer-controlled temperature tracking system which combines standard Proportional-Integral-Derivative (PID) feedback, thermal modeling and finite difference thermal calculations (feedforward), and Kalman filtering of the temperature readings in order to reduce the noise. The resulting Kalman-Predictive-Proportional-Integral-Derivative (KPPID) algorithm allows us to obtain accurate control, to minimize the response time and to avoid over/under shooting, even in systems with inherently noisy temperature readings and time delays. The KPPID temperature controller was successfully implemented at the Advanced Photon Source at Argonne National Laboratories and was used to perform coherent and time-resolved X-ray diffraction experiments.

  9. Energy Proportionality for Disk Storage Using Replication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  10. The simplest model for non-congruent fluid-fluid phase transition in Coulomb system

    Science.gov (United States)

    Stroev, N. E.; Iosilevskiy, I. L.

    2015-11-01

    The simplest model for non-congruent phase transition of gas-liquid type was developed in frames of modified model with no associations of a binary ionic mixture (BIM) on a homogeneous compressible ideal background (or non-ideal) electron gas /BIM(˜)/. The analytical approximation for equation of state equation of state of Potekhin and Chabrier of fully ionized electron-ionic plasma was used for description of the ion-ion correlations (Coulomb non-ideality) in combination with “linear mixture” (LM) approximation. Phase equilibrium for the charged species was calculated according to the Gibbs-Guggenheim conditions. The presently considered BIM(˜) model allows to calculate full set of parameters for phase boundaries of non-congruent variant of phase equilibrium and to study all features for this non-congruent phase transition realization in Coulomb system in comparison with the simpler (standard) forced-congruent evaporation mode. In particular, in BIM(˜) there were reproduced two-dimensional remarkable (“banana-like”) structure of two-phase region P — T diagram and the characteristic non-monotonic shape of caloric phase enthalpy-temperature diagram, similar to the non-congruent evaporation of reactive plasma products in high-temperature heating with the uranium-oxygen system. The parameters of critical points (CP) line were calculated on the entire range of proportions of ions 0 < X < 1, including two reference values, when CP coincides with a point of extreme temperature and extreme pressure, XT and Xp. Finally, it is clearly demonstrated the low-temperature property of non-congruent gas-liquid transition — “distillation”, which is weak in chemically reactive plasmas.

  11. Exponential representation in the Coulomb three-body problem

    International Nuclear Information System (INIS)

    The exponential representation in the Coulomb three-body problem is considered. It is shown that the exponential variational expansion in relative coordinates r32, r31 and r21 has a number of advantages for the bound state calculations in Coulomb three-body systems. Moreover, it appears that the exponential (or Laplace-Fourier) representation of the Coulomb three-body problem is an optimal approach to analyse and solve various three-body problems. The optimization of nonlinear parameters in the trial wavefunctions is also considered. The developed methods are used to determine the highly accurate ground 11S(L = 0)-state energies and other bound state properties for a number of He-like two-electron ions (Li+, Be2+, B3+, C4+, N5+, O6+, F7+ and Ne8+). To represent the ground state energies of these He-like ions we apply the Z-1 expansion. The asymptotic form of the ground state wavefunctions at large electron-nuclear distances for the He-like ions is briefly discussed. Considered hypervirial theorems are of great interest for these ions, since they allow one to obtain some useful relations between different expectation values. The generalization of the exponential variational expansion in relative coordinates to the four-body non-relativistic systems is also considered

  12. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  13. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  14. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    Science.gov (United States)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  15. Relativistic and Nuclear Medium Effects on the Coulomb Sum Rule.

    Science.gov (United States)

    Cloët, Ian C; Bentz, Wolfgang; Thomas, Anthony W

    2016-01-22

    In light of the forthcoming high precision quasielastic electron scattering data from Jefferson Lab, it is timely for the various approaches to nuclear structure to make robust predictions for the associated response functions. With this in mind, we focus here on the longitudinal response function and the corresponding Coulomb sum rule for isospin-symmetric nuclear matter at various baryon densities. Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement, we find a dramatic quenching of the Coulomb sum rule for momentum transfers |q|≳0.5  GeV. The main driver of this effect lies in changes to the proton Dirac form factor induced by the nuclear medium. Such a dramatic quenching of the Coulomb sum rule was not seen in a recent quantum Monte Carlo calculation for carbon, suggesting that the Jefferson Lab data may well shed new light on the explicit role of QCD in nuclei. PMID:26849589

  16. Vacuum polarization of planar Dirac fermions by a superstrong Coulomb potential

    CERN Document Server

    Khalilov, V R

    2016-01-01

    We study the vacuum polarization of planar charged Dirac fermions by a strong Coulomb potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. For the massless case the induced vacuum charge density is localized at the origin when the Coulomb center charge is subcritical while it has a power-law tail when the Coulomb center charge is supercritical. The finite mass contribution into the induced charge due to the vacuum polarization is small and insignificantly distorts the Coulomb potential only at distances of order of the Compton length. The induced vacuum charge has a screening sign. As is known the quantum electrodynamics vacuum becomes unstable when the Coulomb center charge is increased from subcritical to supercritical values. In the supercritical Coulomb potential the quantum electrodynamics vacuum acquires the charge due to the so-called real vacuum polarization. We calculate the real vacuum polarizat...

  17. Tri-state Modulation Power Driving of Electro-hydraulic Proportional Amplifier

    Institute of Scientific and Technical Information of China (English)

    NIE Yong; WANG Qingfeng

    2009-01-01

    Switch electro-hydraulic proportional amplifier(PA) widely employs single switch modulation power driving(SSMPD) or reverse discharging power driving(RDPD) at present. SSMPD has slow dynamic response, and can't adjust independently the dither signal's amplitude and frequency;RDPD accelerates the current decay;consequently, it increases current ripple and power loss. For the purpose of solving the above mentioned problem, the tri-state modulation power driving(TSMPD) scheme was proposed for improving the performance of power driving. Detailedly, the hardware circuit for the tri-state modulation power driving is designed;the tri-state modulation algorithm is realized by digital signal processor(DSP). The tri-state modulation power driving is investigated by experiments, comparetive experiments among the single switch modulation power driving(SSMPD), reverse discharging power driving(RDPD), and the TSMPD are implemented, and the experimental results demonstrate that the linearity error of TSMDP meets the requirement of PA;the current response of TSMSP is the best;the amplitude of ripple current of the TSMPD can be reduced without increasing frequency of PWM, in addition, dither signal amplitude and frequency can be adjusted independently for each other. It is very meaningful to guide the development of high performance proportional amplifier for high frequency response proportional solenoid.

  18. A comparison of Coulomb and pseudo-Coulomb friction implementations: Application to the table contact phase of gymnastics vaulting.

    Science.gov (United States)

    Jackson, M I; Hiley, M J; Yeadon, M R

    2011-10-13

    In the table contact phase of gymnastics vaulting both dynamic and static friction act. The purpose of this study was to develop a method of simulating Coulomb friction that incorporated both dynamic and static phases and to compare the results with those obtained using a pseudo-Coulomb implementation of friction when applied to the table contact phase of gymnastics vaulting. Kinematic data were obtained from an elite level gymnast performing handspring straight somersault vaults using a Vicon optoelectronic motion capture system. An angle-driven computer model of vaulting that simulated the interaction between a seven segment gymnast and a single segment vaulting table during the table contact phase of the vault was developed. Both dynamic and static friction were incorporated within the model by switching between two implementations of the tangential frictional force. Two vaulting trials were used to determine the model parameters using a genetic algorithm to match simulations to recorded performances. A third independent trial was used to evaluate the model and close agreement was found between the simulation and the recorded performance with an overall difference of 13.5%. The two-state simulation model was found to be capable of replicating performance at take-off and also of replicating key contact phase features such as the normal and tangential motion of the hands. The results of the two-state model were compared to those using a pseudo-Coulomb friction implementation within the simulation model. The two-state model achieved similar overall results to those of the pseudo-Coulomb model but obtained solutions more rapidly. PMID:21889150

  19. TRIAC/SCR proportional control circuit

    Science.gov (United States)

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  20. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  1. Covariant method for calculating helicity amplitudes

    International Nuclear Information System (INIS)

    We present an alternative approach for calculating helicity amplitudes for processes involving both massless and massive fermions. With this method one can easily obtain covariant expressions for the helicity amplitudes. The final expressions involve only four-vector products and are independent of the basis for γ matrices or specific form of the spinors. We use the method to obtain the helicity amplitudes for several processes involving top quark production. copyright 1996 The American Physical Society

  2. The Trace Formula of the Spinoriel Amplitude

    OpenAIRE

    Mekhfi, M.

    2009-01-01

    We re express the fermion's probability amplitude as a trace over spinor indices, which formulation surprisingly does not exist in literature. This formulation puts the probabilty amplitude and the the probabilty(squared amplitude) of a given process on equal footing at the compuational level and this is our principal motivation to write the present paper. We test the power of the trace formula in three applications: Calculation of the charge-current of fermions by using symbolic programs, wh...

  3. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  4. On the singularities of massive superstring amplitudes

    OpenAIRE

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: these can be defined only with massless external states. Consistent massive amplitudes require an off-shell formalism.

  5. Determination of $S_{17}$ from systematic analyses on $^8$B Coulomb breakup with the Eikonal-CDCC method

    CERN Document Server

    Ogata, K; Iseri, Y; Matsumoto, T; Yamashita, N; Kamimura, M; Ogata, Kazuyuki

    2003-01-01

    A new version of the method of Continuum-Discretized Coupled-Channels method (CDCC) is proposed, that is, the Eikonal-CDCC method (E-CDCC). The E-CDCC equation, for Coulomb dissociation in particular, can easily and safely be solved, since it is a first-order differential equation and contains no huge angular momentum in contrast to the CDCC one. The scattering amplitude calculated by E-CDCC has a similar form to that by CDCC. Then one can construct hybrid amplitude in an intuitive way, i.e., CDCC amplitude is adopted for a smaller angular momentum $L$ and E-CDCC one for a larger $L$ related to an impact parameter $b$. The hybrid calculation is found to perfectly reproduce the quantum mechanical result for $^{58}$Ni($^8$B,$^7$Be$+p$)$^{58}$Ni at 240 MeV, which shows its applicability to systematic analysis of $^8$B dissociation to extract the astrophysical factor $S_{17}$ with high accuracy.

  6. Coulomb breakup of 22C in a four-body model

    CERN Document Server

    Pinilla, E C

    2016-01-01

    Breakup cross sections are determined for the Borromean nucleus 22C by using a four-body eikonal model, including Coulomb corrections. Bound and continuum states are constructed within a 20C + n + n three-body model in hyperspherical coordinates. We compute continuum states with the correct asymptotic behavior through the R-matrix method. For the n+ n potential, we use the Minnesota interaction. As there is no precise experimental information on 21C, we define different parameter sets for the 20C + n potentials. These parameter sets provide different scattering lengths, and resonance energies of an expected 3/2+ excited state. Then we analyze the 22C ground-state energy and rms radius, as well as E1 strength distributions and breakup cross sections. The E1 strength distribution presents an enhancement at low energies. Its amplitude is associated with the low binding energy, rather than with a three-body resonance. We show that the shape of the cross section at low energies is sensitive to the ground-state pro...

  7. No signature of nuclear-Coulomb interference in the proton-proton elastic scattering via the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Tumino, A. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); DMFCI, Universita di Catania (Italy); Spitaleri, C. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); DMFCI, Universita di Catania (Italy); Rapisarda, G.G. [Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania (Italy); DMFCI, Universita di Catania (Italy)] (and others)

    2007-05-01

    The Trojan Horse Method (THM) was applied to the p+d interaction in order to study the p+p scattering, the simplest case where the suppression of the Coulomb amplitude due to off-shell effects can be observed. The three-body p+d->p+p+n experiment was performed at 5 and 6 MeV and the shape of the quasi-free cross-section was investigated as a function of both the outgoing proton energy and the p-p relative energy. Preliminary results show a behaviour which turns out to be much similar to that of n+n, n+p and nuclear p+p cross-sections.

  8. Tangential velocity corrections to a second-order Coulomb-modified eikonal model for heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    We present the tangential velocity corrections to the second-order Coulomb-modified eikonal model at the distance of closest approach. It has been applied to elastic angular distributions of the 16O+16O system at Elab=350 and 480 MeV. The calculated results with tangential velocity show better agreements with the experimental data compared to those with asymptotic velocity. The Fraunhofer oscillations observed in the elastic angular distributions can be explained by the strong interference between the near- and the far-side amplitudes. Airy structures can be shown by reducing the effective imaginary potential strength. It is found that the Airy minimum is more visible as the effective imaginary potential strength is reduced. Deep real potentials associated with rather weak imaginary ones are found to be essential to describe the refractive 16O+16O elastic scatterings at Elab=350 and 480 MeV. (author)

  9. Primakoff production of {pi}{sup 0}, {eta} and {eta}' in the Coulomb field of a nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Kaskulov, Murat; Mosel, Ulrich [Institut fuer Theoretische Physik, Universitaet Giessen (Germany)

    2011-07-01

    The Primakoff production of neutral pseudoscalar mesons {pi}{sup 0}, {eta}(587) and {eta}'(958) in the Coulomb field of an atomic nucleus is studied using a model which describes the coherent electromagnetic and nuclear parts of the production amplitude. At high energies the nuclear background is dominated by the exchange of C-parity odd Regge trajectories. In the coherent production the isospin filtering makes the {omega}(782) a dominant trajectory. We revise the production of pions which has been used to measure the {pi}{sup 0}{yields}{gamma}{gamma} decay width at JLAB. The calculations are in agreement with data provided the photon shadowing and final state interactions of mesons are taken into account. The kinematic conditions which allow to study the Primakoff effect in {eta} and {eta}' photoproduction off nuclei are further discussed.

  10. Measurement of analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region with a 22-GeV/c polarized proton beam.

    Science.gov (United States)

    Tojo, J; Alekseev, I; Bai, M; Bassalleck, B; Bunce, G; Deshpande, A; Doskow, J; Eilerts, S; Fields, D E; Goto, Y; Huang, H; Hughes, V; Imai, K; Ishihara, M; Kanavets, V; Kurita, K; Kwiatkowski, K; Lewis, B; Lozowski, W; Makdisi, Y; Meyer, H-O; Morozov, B V; Nakamura, M; Przewoski, B; Rinckel, T; Roser, T; Rusek, A; Saito, N; Smith, B; Svirida, D; Syphers, M; Taketani, A; Thomas, T L; Underwood, D; Wolfe, D; Yamamoto, K; Zhu, L

    2002-07-29

    The analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region of momentum transfer, 9.0x10(-3)<-t<4.1x10(-2) (GeV/c)(2), was measured with a 21.7 GeV/c polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to nonflip amplitude, r(5), was obtained from the analyzing power to be Rer(5)=0.088+/-0.058 and Imr(5)=-0.161+/-0.226. PMID:12144435

  11. Measurement of analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region with a 22-GeV/c polarized proton beam

    International Nuclear Information System (INIS)

    The analyzing power for proton-carbon elastic scattering in the Coulomb-nuclear interference region of momentum transfer, 9.0x10-3-2 (GeV/c)2, was measured with a 21.7 GeV/c polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to nonflip amplitude, r5, was obtained from the analyzing power to be Rer5=0.088±0.058 and Imr5=-0.161±0.226

  12. Coherence of Auger and inter-Coulombic decay processes in the photoionization of Ar@C60 versus Kr@C60

    CERN Document Server

    Magrakvelidze, Maia; Javani, Mohammad H; Madjet, Mohamed E; Manson, Steven T; Chakraborty, Himadri S

    2015-01-01

    For the asymmetric spherical dimer of an endohedrally confined atom and a host fullerene, an innershell vacancy of either system can decay through the continuum of an outer electron hybridized between the systems. Such decays, viewed as coherent superpositions of the single-center Auger and two-center inter-Coulombic (ICD) amplitudes, are found to govern leading decay mechanisms in noble-gas endofullerenes, and are likely omnipresent in this class of nanomolecules. A comparison between resulting autoionizing resonances calculated in the photoionization of Ar@C60 and Kr@C60 exhibits details of the underlying processes.

  13. Improved proportional counters for practical applications

    International Nuclear Information System (INIS)

    Gas filled proportional counters are useful room-temperature X-ray detectors in various gauges and spectrometers. New gas mixtures have made it possible to improve the properties of these detectors. Penning mixtures offer some special advantages. These mixtures are formed when parent gas is diluted with a small amount of impurity whose ionization energy is lower than the lowest excited state of the parent atoms. The excitations of these atoms can subsequently be turned into ionizations. The result of this additional ionization is that the average ionization energy of the mixture falls below that of the pure gases. This also improves the energy resolution of the detector. Another feature of Penning mixtures is the fact that the first Townsend ionization coefficient is high. This in turn is reflected by an unusually low anode voltage required by the detector. This makes it possible to use high filling pressures and to realize the advantages such pressures offer: the achievement of good energy resolution with a commercial low noise preamplifier; a decrease in the background caused by the wall effect because of the subsequently shorter photoelectron traces; and an increase in the efficiency of the detector. The type of detector used in this paper is a sealed side window counter. Some of its properties, when filled with the mixtures Ar-C4H10, Ar-Xe, and Ne-Ar, are presented

  14. Proportional chambers for the Σ installation

    International Nuclear Information System (INIS)

    Two types of proportional chambers used in experiments with SIGMA set are considered. The main parameters of detecting electronics, high-voltage, low-voltage and gas supplies are presented. The first type chambers consist of the round or square frames of sheet foiled glass-cloth-base laminate, on which surface electrode lands and joints between them are applied by photographic printing. The second type chamber electrodes are also made of the sheet foiled glass-cloth-base laminate as strips arranged at the ends of two rectangular metallic profiles. The chamber sensitive regions vary from 64x64 mm to 768x2500 mm. The chambers are used for more than 15 years in different experiments, such as determination of elastic scattering, study of J/ψ and ψ' particle production, search for charm particles in hadron interactions, measuring the change of π--meson polarizability, study of μ+μ-π- system production. The experience of past years manifested their high efficiency and reliability

  15. An ellipsoidal grid gas proportional scintillation counter

    International Nuclear Information System (INIS)

    Gas Proportional Scintillation Counters using curved grids for solid angle and reflection compensation have been described in the recent literature. They allow large radiation windows with diameters of 25 mm keeping at the same time the good energy resolutions characteristic of those X-ray detectors. However, the grids used have a spherical curvature, which does not correspond to the optimal curvature. In the present work we have calculated by computer simulation an improved shape for the curved grid. This shape can be well fitted to an ellipsoid of revolution, with a large eccentricity. A detector was designed with such an ellipsoidal grid and a radiation window 40 mm in diameter, filled with pure xenon at 927 Torr coupled to an EMI D676QB VUV photomultiplier tube having a 2'' diameter window. For the experiments envisaged, detection of solar X-rays in the 20-80 keV energy range, a 7 cm thick drift region was used, leading to efficiencies from 80% to 20%, respectively. Such a thick drift region reduces the performance mainly for soft X-rays. For 22 keV X-rays the energy resolution obtained, for a broad X-ray beam entering the full 40 mm diameter detector window, is 6.0%. Results are presented showing the variation of the energy resolution with the window diameter and a performance, for ellipsoidal grids superior to that for spherical grids. A discussion of the results obtained is presented

  16. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy;

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic...

  17. Amplitude death in steadily forced chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Feng Guo-Lin; He Wen-Ping

    2007-01-01

    Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant.

  18. Interlimb coupling strength scales with movement amplitude.

    Science.gov (United States)

    Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J

    2008-05-23

    The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.

  19. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n

  20. Consistent Off-Shell Tree String Amplitudes

    CERN Document Server

    Liccardo, A; Marotta, R

    1999-01-01

    We give a construction of off-shell tree bosonic string amplitudes, based on the operatorial formalism of the N-string Vertex, with three external massless states both for open and closed strings by requiring their being projective invariant. In particular our prescription leads, in the low-energy limit, to the three-gluon amplitude in the usual covariant gauge.

  1. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...

  2. Multiple Coulomb excitation experiment of sup 6 sup 6 Zn

    CERN Document Server

    Koizumi, M; Oshima, M; Osa, A; Kimura, A; Hatsukawa, Y; Shizuma, T; Hayakawa, T; Matsuda, M; Katakura, J; Seki, A; Czosnyka, T; Sugawara, M; Morikawa, T; Kusakari, H

    2003-01-01

    A Coulomb excitation experiment was carried out with a sup 6 sup 6 Zn beam bombarding a sup n sup a sup t Pb target. Four E2 matrix elements and the quadrupole moment of the 2 sub 1 sup + state were derived with the least-squares search code GOSIA. According to the B(E2) values, the ground band can be interpreted as a quasirotational band. It was found that the 2 sub 1 sup + level has a positive quadrupole moment, which may be interpreted as a soft triaxial deformation.

  3. Coulomb excitation of the N=50 nucleus 80Zn

    OpenAIRE

    van de Walle, Jarno; Aksouh, Farouk; Ames, F.; Behrens, Thomas; Bildstein, V.; Blazhev, A.; Cederkall, Joakim; Clement, Emmanuel; Cocolios, Thomas Elias; Davinson, T.; Delahaye, Pierre; Eberth, J.; Ekstrom, Andreas; Fedorov, Dima V; Fedosseev, Valentin N.

    2008-01-01

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+->01+) values are compared to two sets of large scale shell model calcula...

  4. Screening corrections to the Coulomb crystal elastic moduli

    CERN Document Server

    Baiko, D A

    2016-01-01

    Corrections to elastic moduli, including the effective shear modulus, of a solid neutron star crust due to electron screening are calculated. At any given mass density, the crust is modelled as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of a single type with a polarizable charge-compensating electron background. Motion of the nuclei is neglected. The electron polarization is described by a simple Thomas-Fermi model of exponential electron screening. The results of numerical calculations are fitted by convenient analytic formulae. They should be used for precise neutron star oscillation modelling, a rapidly developing branch of stellar seismology.

  5. Hydrogenoid orbitals revisited: From Slater orbitals to Coulomb Sturmians

    Indian Academy of Sciences (India)

    Danilo Calderini; Simonetta Cavalli; Cecilia Coletti; Gaia Grossi; Vincenzo Qquilanti

    2012-01-01

    The simple connection between the Slater orbitals, venerable in quantum chemistry, and the Coulomb Sturmian orbitals, more recently employed in atomic and molecular physics, is pointed out explicitly in view of the renewed interest in both as basis sets in applied quantum mechanics. Research in Slater orbitals mainly concerns multicentre, many-body integrals, whereas that on Sturmians exploits their orthonormality and completeness with no need of continuum states. An account of recent progress is outlined, also with reference to relationships between the two basis sets, and with the momentum space and hyperspherical harmonics representations.

  6. On the Analysis of Intermediate-Energy Coulomb Excitation Experiments

    CERN Document Server

    Scheit, Heiko; Glasmacher, Thomas; Motobayashi, Tohru

    2008-01-01

    In a recent publication (Bertulani et al., PLB 650 (2007) 233 and arXiv:0704.0060v2) the validity of analysis methods used for intermediate-energy Coulomb excitation experiments was called into question. Applying a refined theory large corrections of results in the literature seemed needed. We show that this is not the case and that the large deviations observed are due to the use of the wrong experimental parameters. We furthermore show that an approximate expression derived by Bertulani et al. is in fact equivalent to the theory of Winther and Alder (NPA 319 (1979) 518), an analysis method often used in the literature.

  7. Analytical approach to quasiperiodic beam Coulomb field modeling

    Science.gov (United States)

    Rubtsova, I. D.

    2016-09-01

    The paper is devoted to modeling of space charge field of quasiperiodic axial- symmetric beam. Particle beam is simulated by charged disks. Two analytical Coulomb field expressions are presented, namely, Fourier-Bessel series and trigonometric polynomial. Both expressions permit the integral representation. It provides the possibility of integro-differential beam dynamics description. Consequently, when beam dynamics optimization problem is considered, it is possible to derive the analytical formula for quality functional gradient and to apply directed optimization methods. In addition, the paper presents the method of testing of space charge simulation code.

  8. Resonant and nonresonant Coulomb break up of 6Li

    International Nuclear Information System (INIS)

    The resonant and nonresonant cross section for break up of 6Li in the Coulomb field of a heavy nucleus is theoretically studied on the basis of a DWBA approach and analysed in view of a possible experimental access to electromagnetic transition matrix elements between the ground state of the projectile and α+d continuum states at small relative energies. The calculation explicitly uses some simplifications appearing in the particular case of quadrupole transitions which dominate the considered case. Various sensitivities of the cross sections are discussed. (orig.)

  9. Relation between the Fukui function and the Coulomb hole

    Indian Academy of Sciences (India)

    P Senet; M Yang

    2005-09-01

    By using a coarse-grain representation of the molecular electronic density, we demonstrate that the value of the condensed Fukui function at an atomic site is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the atom. The link between the formation of an electron-hole pair and the condensed Fukui function provides insights on the possible negativity of the Fukui function which is interpreted in terms of two phenomena: overscreening and overstrengthening.

  10. Improving Student Understanding of Coulomb's Law and Gauss's Law

    CERN Document Server

    Singh, Chandralekha

    2016-01-01

    We discuss the development and evaluation of five research-based tutorials on Coulomb's law, superposition, symmetry and Gauss's Law to help students in the calculus-based introductory physics courses learn these concepts. We discuss the performance of students on the pre-/post-tests given before and after the tutorials in three calculus-based introductory physics courses. We also discuss the performance of students who used the tutorials and those who did not use it on a multiple-choice test which employs concepts covered in the tutorials.

  11. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Laboratory

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  12. Coulomb Interaction in Quantum Dot with a Precessing Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study electronic transport through a quantum dot (QD) with a precessing magnetic field. By using the Keldysh nonequilibrium Green function method, formulas of local density of states (LDOS) and conductance of QD are derived self-consistently. It shows that the LDOS and conductance have obvious changes with the Coulomb blockade interaction. The intensity and angle of the magnetic field or temperatures, which reflect the mesoscopic structure of the QD are derived. The superiority of this device is that the QD can be controlled easily by the magnetic field, so it is valuable to apply in generating, manipulating and probing spin state.

  13. Aspects of nuclear collectivity studied in projectile Coulomb excitation experiments

    OpenAIRE

    Möller, Thomas

    2014-01-01

    Projectile Coulomb excitation experiments have been performed on the nuclei 130,132Ba, 154Sm, and 194,196Pt. A detailed description of the experiments and the data analysis is given. The results on absolute decay rates of the low-lying collective states of these nuclei allow for a comparison with predictions from different theoretical models of nuclear quadrupole collectivity. For the nucleus 154Sm the data on the decay rates of the states of the first K=0 band support the assignment of this ...

  14. COULOMB BLOCKADE EFFECT IN SELF-ASSEMBLED GOLD QUANTUM DOTS

    Institute of Scientific and Technical Information of China (English)

    Shu-Fen Hu; Ru-Ling Yeh; Ru-Shi Liu

    2004-01-01

    Nanometer-scale Au quantum dots have been assembled on SiO2 by controlling the reaction of raw materials to form a citrate Au sol and an aminosilane/dithiol-treated patterned Si wafer. The detailed formation mechanism has been studied. Three gold colloidal particles (~15 nm), aligned in a chain to form a one-dimensional current path, was bridged across an 80-nm gap between source and drain metal electrodes. The device exhibited a Coulomb blockade effect at 33 K.

  15. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  16. Challenges in calculating molecular systems with Coulomb interactions

    Science.gov (United States)

    Kirnosov, Nikita; Sharkey, Keeper; Adamowicz, Ludwik

    2014-03-01

    The highly accurate quantum mechanical calculations are not only crucial for high-resolution experimental data verification, but may also serve as a guide in the field of exotic systems exploration. Including all non-relativistic effects in a single-step variational approach and rigorously separating out the center of mass motion allows us to build a reliable model for calculating bound states of molecular systems with Coulomb interactions. In these calculations the wave function of the system is expanded in terms of explicitly correlated Gaussian (ECG) basis functions. Examples of calculations of energies and other properties of some molecular systems will be presented.

  17. Estimating Sighting Proportions of American Alligator Nests during Helicopter Survey

    OpenAIRE

    Rice, Kenneth G.; Percival, H. Franklin; Woodward, Allan R.

    2000-01-01

    Proportions of American alligator (Alligator mississippiensis) nests sighted during aerial survey in Florida were estimated based upon multiple surveys by different observers. We compared sighting proportions across habitats, nesting seasons, and observer experience levels. The mean sighting proportion across all habitats and years was 0.736 (SE=0.024). Survey counts corrected by the mean sighting proportion reliably predicted total nest counts (R2=0.933). Sighting proportions ...

  18. Coulomb Corrections to the Parameters of the Landau-Pomeranchuk-Migdal Effect Theory and its Analogue

    CERN Document Server

    Kuraev, E A; Torosyan, H T

    2013-01-01

    Using the Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory we obtained analytically and numerically the Coulomb corrections to the quantities of the Migdal LPM effect theory. We showed that the Coulomb corrections to the spectral bremsstrahlung rate allow completely to eliminate the discrepancy between the predictions of the LPM effect theory and its measuremens and also additionally improve the agreement between predictions of the LPM effect theory analogue for a thin target and experimental data.

  19. Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras

    CERN Document Server

    Kodera, Ryosuke

    2016-01-01

    We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic rational Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $\\mathfrak{gl}(1)$.

  20. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals

    Science.gov (United States)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-01

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γH = 2) and eight (γ1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (α _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems

  1. Cumulative Coulomb Stress Triggering as an Explanation for the Canterbury (New Zealand) Aftershock Sequence: Initial Conditions Are Everything?

    Science.gov (United States)

    Bebbington, Mark; Harte, David; Williams, Charles

    2016-01-01

    Using 2 years of aftershock data and three fault-plane solutions for each of the initial M7.1 Darfield earthquake and the larger (M >6) aftershocks, we conduct a detailed examination of Coulomb stress transfer in the Canterbury 2010-2011 earthquake sequence. Moment tensor solutions exist for 283 of the events with M ≥ 3.6, while 713 other events of M ≥ 3.6 have only hypocentre and magnitude information available. We look at various methods for deciding between the two possible mechanisms for the 283 events with moment tensor solutions, including conformation to observed surface faulting, and maximum ΔCFF transfer from the Darfield main shock. For the remaining events, imputation methods for the mechanism including nearest-neighbour, kernel smoothing, and optimal plane methods are considered. Fault length, width, and depth are arrived at via a suite of scaling relations. A large (50-70 %) proportion of the faults considered were calculated to have initial loading in excess of the final stress drop. The majority of faults that accumulated positive ΔCFF during the sequence were `encouraged' by the main shock failure, but, on the other hand, of the faults that failed during the sequence, more than 50 % of faults appeared to have accumulated a negative ΔCFF from all preceding failures during the sequence. These results were qualitatively insensitive to any of the factors considered. We conclude that there is much unknown about how Coulomb stress triggering works in practice.

  2. Recoil ions from molecular targets: sequential Coulomb explosions

    International Nuclear Information System (INIS)

    Fast ion collision processes appear to be ideal for producing multiply charged molecular ions. The advantage of this technique has not been appreciated so far and very little work has been carried out so far. We have initiated a programme to study the formation of multiply charged molecular ions and their dissociation dynamics using fast ion beam from the pelletron. Measurements have been carried out on several molecules including N2, CO, CO2, CS2, CH4 and CH3I. Measurements of the kinetic energy distributions of the fragment ions provided novel results on the fragmentation of CS2 and CO2 ions. As expected the positive ions of S and O possessed very large kinetic energies resulting from the Coulomb explosion of highly charged molecular ions. The surprising result was that the positive ions (C+ and C2+) from the central carbon atom of the linear symmetric molecules possessed much larger energies that what is expected from the conventional physical picture of Coulomb explosion. It is concluded that the observed high kinetic energy C+ and C2+ ions are formed by sequential fragmentation of CO2n+ ions through an intermediate K-shell excited CO+* ions. (author). 4 refs., 1 fig

  3. Coulomb dissociation reactions on molybdenum isotopes for astrophysics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ershova, Olga

    2012-03-09

    Within the present work, photodissociation reactions on {sup 100}Mo, {sup 93}Mo and {sup 92}Mo isotopes were studied by means of the Coulomb dissociation method at the LAND setup at GSI. As a result of the analysis of the present experiment, integrated Coulomb excitation cross sections of the {sup 100}Mo({gamma},n), {sup 100}Mo({gamma},2n), {sup 93}Mo({gamma},n) and {sup 92}Mo({gamma},n) reactions were determined. A second important topic of the present thesis is the investigation of the efficiency of the CsI gamma detector. The data taken with the gamma calibration sources shortly after the experiment were used for the investigation. In addition, a test experiment in refined conditions was conducted within the framework of this thesis. Numerous GEANT3 simulations of the detector were performed in order to understand various aspects of its performance. As a result, the efficiency of the detector was determined to be approximately a factor of 2 lower than the efficiency expected from the simulation. (orig.)

  4. Quasiequilibrium Characterization of Mixed-Ion Coulomb Crystals

    Science.gov (United States)

    Okada, Kunihiro; Ichikawa, Masanari; Wada, Michiharu; Schuessler, Hans A.

    2015-11-01

    We demonstrate the application of reliable methods to determine both the average micromotion energies and the number of sympathetically cooled ions (SCIs) embedded in mixed-ion Coulomb crystals in a linear Paul trap. The number of the SCIs and the micromotion energies for the observed mixed-ion crystals are determined by comparing experimentally obtained images with molecular-dynamics simulations, where the kinetic energies of SCIs trapped in rf fields are averaged in cold elastic collisions between the laser-cooled ions and virtual very light atoms. This combined method quickly achieves the quasiequilibrium state of large mixed Coulomb crystals with over 103 ions, regardless of the initial conditions, and shows that the previously used pseudopotential-based adiabatic approximations should be replaced by such molecular-dynamics simulations. In addition, a pattern-matching recognition procedure is introduced which objectively ascertains the number of ions. We also apply the presented characterization method to determine the reaction-rate constant between slow acetonitrile molecules and sympathetically cooled Ne+ ions at a translational temperature lower than 10 K.

  5. Theory of Coulomb drag for massless Dirac fermions

    International Nuclear Information System (INIS)

    Coulomb drag between two unhybridized graphene sheets separated by a dielectric spacer has recently attracted considerable theoretical interest. We first review, for the sake of completeness, the main analytical results which have been obtained by other authors. We then illustrate pedagogically the minimal theory of Coulomb drag between two spatially separated two-dimensional systems of massless Dirac fermions which are both away from the charge-neutrality point. This relies on second-order perturbation theory in the screened interlayer interaction and on Boltzmann-transport theory. In this theoretical framework and in the low-temperature limit, we demonstrate that, to leading (i.e. quadratic) order in temperature, the drag transresistivity is completely insensitive to the precise intralayer momentum-relaxation mechanism (i.e. to the functional dependence of the transport scattering time on energy). We also provide analytical results for the low-temperature drag transresistivity for both cases of ‘thick’ and ‘thin’ spacers and for arbitrary values of the dielectric constants of the media surrounding the two Dirac-fermion layers. Finally, we present numerical results for the low-temperature drag transresistivity for the case when one of the media surrounding the Dirac-fermion layers has a frequency-dependent dielectric constant. We conclude by suggesting an experiment that can potentially allow for the observation of departures from the canonical quadratic-in-temperature behavior of the transresistivity. (paper)

  6. Super-Coulombic atom-atom interactions in hyperbolic media

    CERN Document Server

    Cortes, Cristian L

    2016-01-01

    Dipole-dipole interactions which govern phenomena like cooperative Lamb shifts, superradiant decay rates, Van der Waals forces, as well as resonance energy transfer rates are conventionally limited to the Coulombic near-field. Here, we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic (QED) interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a Super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media and propose practical implementations with phonon-polaritonic hexagonal boron nitride in the infrared spectral range and plasmonic super-lattice structures in the visible range. Our work paves the way for the control of cold atoms in hyperbolic media and the study of many-body atomic states where optical phonons mediate qua...

  7. Coulomb dissociation of a fast pion into two jets

    CERN Document Server

    Ivanov, D Yu

    2001-01-01

    We calculate the electromagnetic contribution to the scattering amplitude of pion diffractive dissociation into di-jets which is described by one photon exchange. The result shows that the factorization procedure known for the description of exclusive reactions holds also for this quasi-exclusive process. We find that the longitudinal momentum distribution of di-jets does not depend on the form of the pion distribution amplitude. We discuss the magnitude of the cross section.

  8. Effects of strength training on mechanomyographic amplitude

    International Nuclear Information System (INIS)

    The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)

  9. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  10. Coulomb ensemble of diamagnetic dust particles in a cusp magnetic trap under microgravity conditions

    Science.gov (United States)

    Myasnikov, Maxim

    Strongly coupled Coulomb systems (SCCS) are of considerable fundamental and applied interest. They have been theoretically and experimentally investigated during many decades. In recent years, ordered dust structures of liquid-like and crystalline type in discharge plasma is often considered as a physical model of SCCS that can visually be observed. Using such structures of charged dust particles, one can investigate the processes of phase transitions, waves, and instabilities on kinetic level. For confinement and investigation of strongly coupled systems of charged dust particles, we propose to use a trap based on the known possibility of the levitation of diamagnetic bodies in a nonuniform steady-state magnetic field. For the investigation of Coulomb clusters of diamagnetic particles in nonuniform magnetic field the experimental setup with the region of stable levitation about 400 cm(3) and magnetic field gradient of 0.04 T/cm was produced. Preliminary experiments were carried out on the board of International Space Station with carbon particles with sizes of 100, 200, 300 and 400 mum in the argon atmosphere under atmospheric pressure. The preliminary analysis of the experiments allowed us to determine the formation of large cluster of carbon particles in the magnet trap. A number of particles in the cluster was about 2000. The oscillations of the cluster were observed, the maximum amplitude of the oscillations was 0.49 cm, the oscillation period - 10 s and damping factor - 0.07 s(-1) . From the balance of electrostatic and magnetic forces the dust charges were evaluated. The charge value for the particles with size of 400 mum was q_{p}≈ 4* 10(4) e. Next we performed MD simulation of the observed processes of the cluster formation and oscillation. To account for the magnetic forces confining a cluster we have numerically calculated the magnetic field distribution in the cusp trap and approximate it by a simple expression with reasonable accuracy. Results of the

  11. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  12. Softness and Amplitudes' Positivity for Spinning Particles

    CERN Document Server

    Bellazzini, Brando

    2016-01-01

    We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than $O(p^4)$ do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.

  13. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  14. Color-Flavor Locked Strangelets in a New Quark Model with Linear Confinement and Coulomb-Type Interactions

    Institute of Scientific and Technical Information of China (English)

    陈世武; 彭光雄

    2012-01-01

    The color-flavor locked (CFL) strangelets have been investigated in a new quark model with linear con- finement and one-gluon-exchange interactions. Considering Coulomb energy, we have studied the properties of three kinds of CFL strangelets, namely, positively charged, negatively charged and nearly neutral CFL strangelets. It is found that the one-gluon-exchange effect lowers the energy of a strangelet considerably and thus makes it much more stable than without considering the effect. The charge of a positive strangelet is larger than 0.15A^2/3 with A being the baryon number, but smaller than that in bag model. The charge of a negatively charged or nearly neutral CFL strangelet is nearly proportional to A^1/3.

  15. Stora's fine notion of divergent amplitudes

    CERN Document Server

    Várilly, Joseph C

    2016-01-01

    Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  16. Amplitudes for left-handed strings

    CERN Document Server

    Siegel, W

    2015-01-01

    We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.

  17. Holomorphic Factorization of Superstring Scattering Amplitudes

    Institute of Scientific and Technical Information of China (English)

    Simon Davis

    2011-01-01

    The holomorphic factorization of the superstring partition function is verified at arbitrary genus.The evaluation of scattering amplitudes and the implications of genus-dependent estimates on the string coupling are given.

  18. Off-shell amplitudes in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019 (India)

    2015-04-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for type II and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter in superstring perturbation theory. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Open string amplitudes of closed topological vertex

    International Nuclear Information System (INIS)

    The closed topological vertex is the simplest ‘off-strip’ case of non-compact toric Calabi–Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an ‘on-strip’ subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive q-difference equations for generating functions of special subsets of the amplitudes. These q-difference equations may be interpreted as the defining equation of a quantum mirror curve. (paper)

  20. Off-shell Amplitudes in Superstring Theory

    CERN Document Server

    Sen, Ashoke

    2014-01-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.

  1. Scattering Amplitudes via Algebraic Geometry Methods

    CERN Document Server

    Søgaard, Mads; Damgaard, Poul Henrik

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...

  2. Effective gluon interactions from superstring disk amplitudes

    International Nuclear Information System (INIS)

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  3. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  4. Mechanical models of amplitude and frequency modulation

    Energy Technology Data Exchange (ETDEWEB)

    Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)

    2005-05-01

    This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.

  5. Path integral evaluation of Dbrane amplitudes

    OpenAIRE

    Chaudhuri, Shyamoli

    1999-01-01

    We extend Polchinski's evaluation of the measure for the one-loop closed string path integral to open string tree amplitudes with boundaries and crosscaps embedded in Dbranes. We explain how the nonabelian limit of near-coincident Dbranes emerges in the path integral formalism. We give a careful path integral derivation of the cylinder amplitude including the modulus dependence of the volume of the conformal Killing group.

  6. Nucleon distribution amplitudes from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)

    2008-04-15

    We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)

  7. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  8. Employing Helicity Amplitudes for Resummation in SCET

    CERN Document Server

    Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J

    2016-01-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  9. Quartic amplitudes for Minkowski higher spin

    CERN Document Server

    Bengtsson, Anders K H

    2016-01-01

    The problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.

  10. Amplitudes for Multiple M5 Branes

    CERN Document Server

    Czech, Bartlomiej; Rozali, Moshe

    2011-01-01

    We study N=(n,0) super-Poincare invariant six-dimensional massless and five-dimensional massive on-shell amplitudes. We demonstrate that in six dimensions all possible three-point amplitudes involving tensor multiplets are uniquely determined by super-Poincare invariance and are necessarily embedded in gravitational theories. For non-gravitational amplitudes we consider instead five-dimensional massive amplitudes with N=(2,0) supersymmetry, corresponding to compactifying the theory on a circle. Super-Poincare invariance and constraints motivated by four-dimensional S-duality uniquely fix the amplitude as well as the participating multiplets. The on-shell degrees of freedom are shown to match those of the massive particle states that arise from self-dual strings wrapping a circle. Along the way we find interesting hints of a fermionic symmetry in the (2,0) theory, which accompanies the self-dual tensor gauge symmetry. We also discuss novel theories with (3,0) and (4,0) supersymmetry. The three-point amplitudes...

  11. Mathematically modelling proportions of Japanese populations by industry

    Science.gov (United States)

    Hirata, Yoshito

    2016-10-01

    I propose a mathematical model for temporal changes of proportions for industrial sectors. I prove that the model keeps the proportions for the primary, the secondary, and the tertiary sectors between 0 and 100% and preserves their total as 100%. The model fits the Japanese historical data between 1950 and 2005 for the population proportions by industry very well. The model also predicts that the proportion for the secondary industry becomes negligible and becomes less than 1% at least around 2080.

  12. Relativistic Coulomb excitation within Time Dependent Superfluid Local Density Approximation

    CERN Document Server

    Stetcu, I; Bulgac, A; Magierski, P; Roche, K J

    2014-01-01

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus $^{238}$U. The approach is based on Superfluid Local Density Approximation (SLDA) formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We have computed the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance and giant quadrupole modes were excited during the process. The one body dissipation of collective dipole modes is shown to lead a damping width $\\Gamma_\\downarrow \\approx 0.4$ MeV and the number of pre-equilibrium neutrons emitted has been quantified.

  13. Laser-driven recollisions under the Coulomb barrier

    CERN Document Server

    Keil, Th; Bauer, D

    2016-01-01

    Photoelectron spectra obtained from the ab initio solution of the time-dependent Schr\\"odinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA) not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is reasonably good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking branch cuts due to soft-recollisions properly into account.

  14. Imaging of Coulomb-Driven Quantum Hall Edge States

    KAUST Repository

    Lai, Keji

    2011-10-01

    The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.

  15. Ion-induced molecular fragmentation: beyond the Coulomb explosion picture

    International Nuclear Information System (INIS)

    The fragmentation of the CO molecule by O7+ ion impact is investigated in two different energy regimes by fragment ion momentum spectroscopy. The improved resolution of the present kinetic energy release measurement together with application of a time-dependent wave packet dynamics method used in conjunction with new high-level computations of a large number of dication potential energy curves enables one to unambiguously assign each line to an excited state of the transient molecular dication produced during the collision. This is the first direct experimental evidence of the limitations of the Coulomb explosion model to reproduce the molecular fragmentation dynamics induced by ion impact. Electron removal due to a capture process is shown to transfer less excitation to the target than direct ionization. At low collision velocity, the three-body interaction between the projectile and the two fragments is also clearly highlighted. (author). Letter-to-the-editor

  16. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices.

    Science.gov (United States)

    Lotkhov, Sergey V

    2013-06-14

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ~ 20 mK for films with sheet resistivities as high as ~7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. PMID:23670293

  17. Classical Kepler-Coulomb problem on SO(2, 2) hyperboloid

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, D., E-mail: petrosyan@theor.jinr.ru; Pogosyan, G. S., E-mail: pogosyan@ysu.am [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics (Russian Federation)

    2013-10-15

    In the present work, the problem of the motion of the classical particle in the Kepler-Coulomb field in three-dimensional hyperbolic space H{sub 2}{sup 2}: z{sub 2}{sup 0} + z{sub 2}{sup 1} - z{sub 2}{sup 2} - z{sub 2}{sup 3} = R{sup 2} is solved in the framework of Hamilton-Jacobi equation. The requirements for the existence of bounded motion of particle are formulated. The equation of the trajectory of particle is obtained, and it is shown that all the finite trajectories are closed. It is also demonstrated that under the certain values (zero or negative) of the separation constant A the fall of the particle onto the center takes place.

  18. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Directory of Open Access Journals (Sweden)

    J. Marganiec

    2016-08-01

    Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  19. Coulomb blockade in turnstile with multiple tunnel junctions

    CERN Document Server

    Lee, S C; Kang, D S; Kim, D C; Choi, C K; Ryu, J Y

    1999-01-01

    On the basis of the analytic solutions to the electrostatic problem of the multi-grated-small-junction systems, the stable domain for the Coulomb blockade of turnstile with multiple tunnel junctions at zero temperature has been analyzed as a function of the number of tunnel junction, the ratio of the gate capacitance to the junction capacitance, and the asymmetric factor. Our results show that domains form various shaped regions according to the asymmetric factor and their size depends on the number of junction and the ratio of the gate capacitance to the junction capacitance. In particular, it is shown that electrons can be transferred in positive and/or negative bias voltage depending on the asymmetric factor when an appropriate gate cycle is applied. Thus, the asymmetric factor plays an important role in determining the turnstile operation.

  20. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  1. Spectrum (super-)symmetries of particles in a Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    D' Hoker, E.; Vinet, L.

    1985-10-14

    The Schroedinger equation for a spin-O particle in the field of a dyon is obtained by dimensional reduction of the four-dimensional harmonic oscillator; the reduction is effected by imposing an equivariance condition on the wave functions of the latter system. This geometrical construction allows for a simple derivation of the SO(4,2) spectrum symmetry of the dyon system. A supermultiplet of one spin-1/2 and two spin-O particles in a Coulomb potential is demonstrated to possess an N=2 conformal supersymmetry through a generalization of the same method. The states and wave functions for these systems can be obtained from the representation theory of the corresponding symmetry algebras. A particular case for which this approach provides a complete group theoretical analysis is that of the Pauli equation for a spin-1/2 particle in the field of a dyon. (orig.).

  2. Quantum mechanics of Drude oscillators with full Coulomb interaction

    Science.gov (United States)

    Sadhukhan, M.; Manby, Frederick R.

    2016-09-01

    Drude oscillators provide a harmonic description of charge fluctuations and are widely studied as a model system and for ab initio calculations. In the dipole approximation the Hamiltonian describing the interaction of Drudes is quadratic, so it can be diagonalized exactly, but the energy diverges at short range. Here we consider the quantum mechanics of Drude oscillators interacting through the full Coulombic Hamiltonian for which the interaction energy does not have this defect. This protypical model for interactions between matter includes electrostatics, induction, and dispersion. Potential energy curves for rare-gas dimers are very closely matched by Drude correlation energies plus a single exponential function. The exact and accurate results presented here help to delineate between the basic properties of the physical model and the effects that arise from the dipole approximation.

  3. The Coulomb gauge ghost Dyson-Schwinger equation

    CERN Document Server

    Watson, Peter

    2010-01-01

    A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery ...

  4. Coulomb and nuclear excitations of narrow resonances in 17Ne

    Science.gov (United States)

    Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.

    2016-08-01

    New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.

  5. Bound States at Threshold resulting from Coulomb Repulsion

    CERN Document Server

    Gridnev, Dmitry K

    2011-01-01

    The eigenvalue absorption for a many-particle Hamiltonian depending on a parameter is analyzed in the framework of non-relativistic quantum mechanics. The long-range part of pair potentials is assumed to be pure Coulomb and no restriction on the particle statistics is imposed. It is proved that if the lowest dissociation threshold corresponds to the decay into two likewise non-zero charged clusters then the bound state, which approaches the threshold, does not spread and eventually becomes the bound state at threshold. The obtained results have applications in atomic and nuclear physics. In particular, we prove that atomic ion with atomic critical charge $Z_{cr}$ and $N_e$ electrons has a bound state at threshold given that $Z_{cr} \\in (N_e -2, N_e -1)$, whereby the electrons are treated as fermions and the mass of the nucleus is finite.

  6. Thermoelectric properties of Coulomb-blockaded fractional quantum Hall islands

    Directory of Open Access Journals (Sweden)

    Lachezar S. Georgiev

    2015-05-01

    Full Text Available We show that it is possible and rather efficient to compute at non-zero temperature the thermoelectric characteristics of Coulomb blockaded fractional quantum Hall islands, formed by two quantum point contacts inside of a Fabry–Pérot interferometer, using the conformal field theory partition functions for the chiral edge excitations. The oscillations of the thermopower with the variation of the gate voltage as well as the corresponding figure-of-merit and power factors, provide finer spectroscopic tools which are sensitive to the neutral multiplicities in the partition functions and could be used to distinguish experimentally between different universality classes sharing the same electric properties. We also propose a procedure for measuring the ratio r=vn/vc of the Fermi velocities of the neutral and charged edge modes for filling factor νH=5/2 from the power-factor data in the low-temperature limit.

  7. On the analysis of intermediate energy Coulomb excitation experiments

    Science.gov (United States)

    Scheit, Heiko; Gade, Alexandra; Glasmacher, Thomas; Motobayashi, Tohru

    2008-01-01

    In a recent publication [C.A. Bertulani, G. Cardella, M. De Napoli, G. Raciti, E. Rapisarda, Phys. Lett. B 650 (2007) 233] the validity of analysis methods used for intermediate-energy Coulomb excitation experiments was called into question. Applying a refined theory large corrections of results in the literature seemed needed. We show that this is not the case and that the large deviations observed in above mentioned reference are due to the use of the wrong experimental parameters in that publication. We furthermore show that an approximate expression derived in above mentioned reference is in fact equivalent to the theory of Winther and Alder, an analysis method often used in the literature.

  8. Phase diagram of a bulk 1d lattice Coulomb gas

    Science.gov (United States)

    Démery, V.; Monsarrat, R.; Dean, D. S.; Podgornik, R.

    2016-01-01

    The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreening, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble. We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density ordered phases, separated by a first-order phase transition at low temperature; the solid state at full packing can be ordered or not, depending on the temperature. This phase diagram, which is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the confined system.

  9. Electric and Magnetic Coulomb Potentials in the Deuteron

    Directory of Open Access Journals (Sweden)

    Bernard Schaeffer

    2013-02-01

    Full Text Available After one century of nuclear physics, the underlying fun- damental laws of nuclear physics are still missing. Bohr had found a formula for the H atom and another for the H2 molecule but no equivalent formula exists for the deuteron 2H. The only known Coulomb interaction in a nucleus by the mainstream nuclear physics is the long range repulsion between protons, forgetting that the neutron contains elec- tric charges with no net charge. The neutron is attracted by the proton in a way discovered two millenaries ago by the Greeks. This attraction is equilibrated by the repulsion between the opposite magnetic moments of the proton and of the neutron in the deuteron. The bare application of ge- ometry together with electric and magnetic Coulomb’s in- teractions accounts for the binding energy of the deuteron, without fitting, with only 4 per cent discrepancy, proving the electromagnetic nature of the nuclear energy. 

  10. Attractive Coulomb interaction of two-dimensional Rydberg excitons

    Science.gov (United States)

    Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.

    2016-06-01

    We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron and hole exchange interaction between excited excitons has an attractive character both for s - and p -type two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons, the direct interaction of 2D Rydberg excitons exhibits van der Waals-type long-range interaction. The results predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.

  11. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  12. Quasi-exactly solvable relativistic soft-core Coulomb models

    CERN Document Server

    Agboola, Davids

    2013-01-01

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials $V_q(r)=-Z/\\left(r^q+\\beta^q\\right)^{1/q}$, $Z>0$, $\\beta>0$, $q\\geq 1$. We consider cases $q=1$ and $q=2$ and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtain using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derive in terms of the roots of a set of Bethe ansatz equations.

  13. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.

    Science.gov (United States)

    Lehtinen, J S; Zakharov, K; Arutyunov, K Yu

    2012-11-01

    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.

  14. Coulomb gauge Gribov copies and the confining potential

    International Nuclear Information System (INIS)

    We study the approach, initiated by Marinari et al., to the static interquark potential based on Polyakov lines of finite temporal extent, evaluated in Coulomb gauge. We show that, at small spatial separations, the potential can be understood as being between two separately gauge invariant color charges. At larger separations Gribov copies obstruct the nonperturbative identification of individually gauge invariant color states. We demonstrate, for the first time, how gauge invariance can be maintained quite generally by averaging over Gribov copies. This allows us to extend the analysis of the Polyakov lines and the corresponding, gauge invariant quark-antiquark state to all distance scales. Using large scale lattice simulations, we show that this interpolating state possesses a good overlap with the ground state in the quark-antiquark sector and yields the full static interquark potential at all distances. A visual representation of the Gribov copies on the lattice is also presented

  15. Coulomb Excitation of the N = 50 nucleus 80Zn

    International Nuclear Information System (INIS)

    Neutron rich Zinc isotopes, including the N = 50 nucleus 80Zn, were produced and post-accelerated at the Radioactive Ion Beam (RIB) facility REX-ISOLDE (CERN). Low-energy Coulomb excitation was induced on these isotopes after post-acceleration, yielding B(E2) strengths to the first excited 2+ states. For the first time, an excited state in 80Zn was observed and the 21+ state in 78Zn was established. The measured B(E2,21+→01+) values are compared to two sets of large scale shell model calculations. Both calculations reproduce the observed B(E2) systematics for the full Zinc isotopic chain. The results for N = 50 isotones indicate a good N = 50 shell closure and a strong Z = 28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus 78Ni

  16. Coulomb interaction effect in tilted Weyl fermion in two dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  17. Investigation of uncertainty components in Coulomb blockade thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Hahtela, O. M.; Heinonen, M.; Manninen, A. [MIKES Centre for Metrology and Accreditation, Tekniikantie 1, 02150 Espoo (Finland); Meschke, M.; Savin, A.; Pekola, J. P. [Low Temperature Laboratory, Aalto University, Tietotie 3, 02150 Espoo (Finland); Gunnarsson, D.; Prunnila, M. [VTT Technical Research Centre of Finland, Tietotie 3, 02150 Espoo (Finland); Penttilä, J. S.; Roschier, L. [Aivon Oy, Tietotie 3, 02150 Espoo (Finland)

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  18. A study of the oscillator strengths and line strenghts of Agl and AuI Using the Coulomb approximation

    Directory of Open Access Journals (Sweden)

    M. Soltanolkotabi

    1998-04-01

    Full Text Available   Single-valence electron atoms are an important class of atoms. Their oscillator strengths are their important properties. Knowing the oscillator strengths one can easity calculate the transition probabilities of the spectral lines and hence the lifetimes of energy levels of most atoms. The oscillator strengths of the spectral lines of most atoms are not knoen with sufficient accuracy due to the experimental difficulties. The results of most measurements are subject to large inaccuracies due to uncertainties in vapor pressure data. A quick and simple theoretical method for calculation of atomic oscillator strength seems to be the Coulomb approximation of Bates and Damagaard. This method reveals some interesting properties that are generally confirmed by experimental results. In this paper, we have studied oscillator strengths and line strengths of the different allowed transitions in AgI and AuI using the Coulomb approximation. The log (λfg curves(λ, f and g are the wavelength of transition, oscillator strength and statistical weight of upper level, respectively versus the reciprocal of the principal quantum number of upper level, 1/n, show a linear behavior only for large values of the principal quantum number of lower level. The effect of change of total angular momentum,Δ J, in the curvature and slope of the plotted curves has been also investigated. The deviation of the curves from straight lines, which indicates failure of the Coulomb approximation is due to the exchange forces. In addition, the n3fg curves   (n , the effective total quantum number of upper level have been plotted versus n for different allowed transitions in AgL and AuI. It has been found that f is proportional to 1/n and this proportionality is linear for large values of n . For some transitions, however, there is a significant deviation from the linear dependence for large values of n , which can be attributed to the signature of total angular momentum quantum

  19. Quantum Effects on the Coulomb Logarithm for Energetic IonsDuring the Initial Thermalization Phase

    Institute of Scientific and Technical Information of China (English)

    邓柏权; 严建成; 邓梅根; 彭利林

    2002-01-01

    We have discussed the quantum mechanical effects for the energetic charged particles produced in D - He3 fusionreactions. Our results show that it is better to use the proper Coulomb logarithm at the high-energy end indescribing the thermalization process, because the quantum mechanical effects on the Coulomb logarithm are notnegligible, based on an assumption of binary collision.

  20. A Simple And Efficient FEM-Implementation Of The Modified Mohr-Coulomb Criterion

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars

    2006-01-01

    This paper presents a conceptually simple finite element implementation of the combined elasto-plastic Mohr-Coulomb and Rankine material models, also known as Modified Mohr-Coulomb plasticity. The stress update is based on a return mapping scheme where all manipulations are carried out in principal...

  1. Three- and Four-Body Scattering Calculations including the Coulomb Force

    OpenAIRE

    Deltuva, A

    2009-01-01

    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.

  2. Role of transfer reactions in heavy-ion collisions at the Coulomb barrier

    Directory of Open Access Journals (Sweden)

    Pollarolo Giovanni

    2011-10-01

    Full Text Available One and two neutron transfer reactions are discussed in the semiclassical formalism. The twoneutrons transfer cross sections are calculated in the successive approximation. Comparisons with new experimental data below the Coulomb barrier are discussed in term of transfer probabilities as a function of the distance of closest approach for Coulomb scattering.

  3. The influence of the Coulomb exchange term on nuclear single-proton resonances

    CERN Document Server

    Wang, Shu-Yang; Niu, Zhong-Ming

    2015-01-01

    Nuclear single-proton resonances are sensitive to the Coulomb field, while the exchange term of Coulomb field is usually neglected due to its nonlocality. By combining the complex scaling method with the relativistic mean-field model, the influence of the Coulomb exchange term on the single-proton resonances is investigated by taking Sn isotopes and $N=82$ isotones as examples. It is found that the Coulomb exchange term reduces the single-proton resonance energy within the range of $0.4-0.6$ MeV, and lead to similar isotopic and isotonic trends of the resonance energy as those without the Coulomb exchange term. Moreover, the single-proton resonance width is also reduced by the Coulomb exchange term, whose influence generally decreases with the increasing neutron number and increases with the increasing proton number. However, the influence of the Coulomb exchange term cannot change the trend of the resonance width with respect to the neutron number and proton number. Furthermore, the influence of the Coulomb ...

  4. Evaluation of facial divine proportion in North Indian Population

    Directory of Open Access Journals (Sweden)

    Naseem Ahmad Khan

    2016-01-01

    Full Text Available Objective: To evaluate the facial divine proportion and its relationship with facial attractiveness in North Indian population. Materials and Methods: For evaluation of various facial proportions, standardized frontal facial photographs of total 300 subjects between 18 and 30 years of age were obtained. Black and white copies of these photographs were presented in front of an evaluation jury for assigning scores of facial attractiveness and finally 130 attractive subjects were selected. These subjects were divided into two groups, Group I (attractive females n = 65 and Group II (attractive males n = 65 and they were further analyzed for various parameters of facial proportions. Unpaired Student′s t-test was used to compare both groups. Results: Group I showed that five of seven vertical facial proportions were close to divine proportion (1.618 whereas only two vertical proportions in Group II were close to it. Transverse facial proportions in both groups deviated more from divine proportion (1.618 and were closer to silver proportion (1.414. Conclusions: Most of the facial proportions of attractive females in the North-Indian population were close to the divine proportion. Thus, facial divine proportion could be an important factor in the perception of facial attractiveness of North-Indian attractive females.

  5. Spatial Proportional Reasoning Is Associated with Formal Knowledge about Fractions

    Science.gov (United States)

    Möhring, Wenke; Newcombe, Nora S.; Levine, Susan C.; Frick, Andrea

    2016-01-01

    Proportional reasoning involves thinking about parts and wholes (i.e., about fractional quantities). Yet, research on proportional reasoning and fraction learning has proceeded separately. This study assessed proportional reasoning and formal fraction knowledge in 8- to 10-year-olds. Participants (N = 52) saw combinations of cherry juice and water…

  6. Using Literature as a Vehicle to Explore Proportional Reasoning.

    Science.gov (United States)

    Thompson, Denisse R.; Austin, Richard A.; Beckmann, Charlene E.

    The development of proportional reasoning is a major focus of the middle grades curriculum. The challenge for educators is to find contexts that engage students and that facilitate the study of proportional reasoning. This chapter explores proportional thinking with students in grades 3-8 by using a number of books in which the underlying stories…

  7. Growth of long fatigue cracks under non-proportional loadings – experiment and simulation

    Directory of Open Access Journals (Sweden)

    Y. Hos

    2016-07-01

    Full Text Available An experimental campaign was carried out on thin-walled tubes under tension and torsion. The results from experiments are measured and compared. It is observed that cracks follow a shear-dominated growth pattern with increasing crack length, instead of a tension-dominated one. The experiments are performed with high amplitudes applied to the specimens, resulting in large cyclic plastic deformations and crack growth rates up to 10-3 mm/cycle. Stress intensity factors were calculated for the proportional loading case.

  8. π- and K-meson Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Independent of assumptions about the form of the quark-quark scattering kernel K, we derive the explicit relation between the flavor-nonsinglet pseudoscalar-meson Bethe-Salpeter amplitude ΓH and the dressed-quark propagator in the chiral limit. In addition to a term proportional to γ5, ΓH necessarily contains qualitatively and quantitatively important terms proportional to γ5γ·P and γ5γ·kk·P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by ΓH, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues, with the Gell-Mann endash Oakes endash Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behavior of the scalar functions in the meson Bethe-Salpeter amplitude is fully determined by the behavior of the chiral limit quark mass function, and is characteristic of the QCD renormalization group. The rainbow-ladder Ansatz for K, with a simple model for the dressed-quark-quark interaction, is used to illustrate and elucidate these general results. The model preserves the one-loop renormalization group structure of QCD. The numerical studies also provide a means of exploring procedures for solving the Bethe-Salpeter equation without a three-dimensional reduction. copyright 1997 The American Physical Society

  9. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    Science.gov (United States)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-07-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  10. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Roy Chowdhury, Dibakar, E-mail: dibakar.roychowdhury@anu.edu.au [Center for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra 0200 (Australia); College of Engineering, Mahindra Ecole Centrale, Jeedimetla, Hyderabad, 500043 (India); Xu, Ningning; Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)

    2015-07-14

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.

  11. Plane density of induced vacuum charge in a supercritical Coulomb potential

    CERN Document Server

    Khalilov, V R

    2016-01-01

    An expression for the density of a planar induced vacuum charge is obtained in a strong Coulomb potential in coordinate space. Treatment is based on a self-adjoint extension approach for constructing of the Green's function of a charged fermion in this potential. Induced vacuum charge density is calculated and analyzed at the subcritical and supercritical Coulomb potentials for massless and massive fermions. The behavior of the obtained vacuum charge density is investigated at long and short distances from the Coulomb center. The induced vacuum charge has a screening sign. Screening of a Coulomb impurity in graphene is briefly discussed. We calculate the real vacuum polarization charge density that acquires the quantum electrodynamics vacuum in the supercritical Coulomb potential due to the so-called real vacuum polarization. It is shown that the vacuum charge densities essentially differ in massive and massless cases. We expect that our results can, as a matter of principle, be tested in graphene with a supe...

  12. Scattering amplitudes in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver

    2011-07-15

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  13. Scattering amplitudes in open superstring theory

    International Nuclear Information System (INIS)

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  14. A Variational Approach to the Structure and Thermodynamics of Linear Polyelectrolytes with Coulomb and Screened Coulomb Interactions

    CERN Document Server

    Jönsson, B; Söderberg, B

    1995-01-01

    A variational approach, based on a discrete representation of the chain, is used to calculate free energy and conformational properties in polyelectrolytes. The true bond and Coulomb potentials are approximated by a trial isotropic harmonic energy containing force constants between {\\em all}monomer-pairs as variational parameters. By a judicious choice of representation and the use of incremental matrix inversion, an efficient and fast-convergent iterative algorithm is constructed, that optimizes the free energy. The computational demand scales as $N^3$ rather than $N^4$ as expected in a more naive approach. The method has the additional advantage that in contrast to Monte Carlo calculations the entropy is easily computed. An analysis of the high and low temperature limits is given. Also, the variational formulation is shown to respect the appropriate virial identities.The accuracy of the approximations introduced are tested against Monte Carlo simulations for problem sizes ranging from $N=20$ to 1024. Very g...

  15. Coulomb breakup effects on the elastic cross section of $^6$He+$^{209}$Bi scattering near Coulomb barrier energies

    CERN Document Server

    Matsumoto, T; Iseri, Y; Kamimura, M; Ogata, K; Yahiro, M

    2006-01-01

    We accurately analyze the $^6$He+$^{209}$Bi scattering at 19 and 22.5 MeV near the Coulomb barrier energy, using the continuum-discretized coupled-channels method (CDCC) based on the $n$+$n$+$^4$He+$^{209}$Bi four-body model. The three-body breakup continuum of $^6$He is discretized by diagonalizing the internal Hamiltonian of $^6$He in a space spanned by the Gaussian basis functions. The calculated elastic and total reaction cross sections are in good agreement with the experimental data, while the CDCC calculation based on the di-neutron model of $^6$He, i.e., the $^2n$+$^{4}$He+$^{209}$Bi three-body model, does not reproduce the data.

  16. Parameter tuning method for dither compensation of a pneumatic proportional valve with friction

    Science.gov (United States)

    Wang, Tao; Song, Yang; Huang, Leisheng; Fan, Wei

    2016-05-01

    In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal (using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.

  17. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R

    2007-12-15

    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  18. Connecting physical resonant amplitudes and lattice QCD

    Science.gov (United States)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 02) -i/2 129 (3) (1) (7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  19. Analytic Representations of Yang-Mills Amplitudes

    CERN Document Server

    Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo

    2016-01-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  20. Nonlinear (Super)Symmetries and Amplitudes

    CERN Document Server

    Kallosh, Renata

    2016-01-01

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E_{7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N\\geq 5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

  1. Spinfoam cosmology with the proper vertex amplitude

    CERN Document Server

    Vilensky, Ilya

    2016-01-01

    The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.

  2. A description of seismic amplitude techniques

    Science.gov (United States)

    Shadlow, James

    2014-02-01

    The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.

  3. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter;

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  4. On Arbitrary Phases in Quantum Amplitude Amplification

    CERN Document Server

    Hoyer, P

    2000-01-01

    We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.

  5. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  6. Gluon scattering amplitudes at strong coupling

    CERN Document Server

    Alday, Luis F

    2007-01-01

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N=4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  7. Topographic quantitative EEG amplitude in recovered alcoholics.

    Science.gov (United States)

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  8. Softness, Polynomial Boundedness and Amplitudes' Positivity

    CERN Document Server

    Bai, Dong

    2016-01-01

    In this note, we study the connection between infrared (IR) and ultraviolet (UV) behaviors of scattering amplitudes of massless channels by exploiting dispersion relations and positivity bounds. Given forward scattering amplitudes which scale as $\\mathcal{A}(s)\\sim s^M$ in the IR ($s\\to0$) and could be embedded into UV completions satisfying unitarity, analyticity, crossing symmetry and polynomial boundedness $|\\mathcal{A}(s)|< c\\, |s|^N$ ($|s|\\to\\infty$), with $M$ and $N$ integers, we show that the inequality $2\\ceil*{\\frac{N}{2}}\\ge M \\ge 0$ must hold, where $\\ceil*{x}$ is the smallest integer greater than or equal to $x$.

  9. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  10. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution...... for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...

  11. $\\pi$ and K-meson Bethe-Salpeter Amplitudes

    CERN Document Server

    Maris, P

    1997-01-01

    Independent of assumptions about the form of the quark-quark scattering kernel, K, we derive the explicit relation between the flavour-nonsinglet pseudoscalar meson Bethe-Salpeter amplitude, Gamma_H, and the dressed-quark propagator in the chiral limit. In addition to a term proportional to gamma_5, Gamma_H necessarily contains qualitatively and quantitatively important terms proportional to gamma_5 gamma.P and gamma_5 gamma.k k.P, where P is the total momentum of the bound state. The axial-vector vertex contains a bound state pole described by Gamma_H, whose residue is the leptonic decay constant for the bound state. The pseudoscalar vertex also contains such a bound state pole and, in the chiral limit, the residue of this pole is related to the vacuum quark condensate. The axial-vector Ward-Takahashi identity relates these pole residues; with the Gell-Mann--Oakes--Renner relation a corollary of this identity. The dominant ultraviolet asymptotic behaviour of the scalar functions in the meson Bethe-Salpeter a...

  12. Amplitude Correction Factors of KVN Observations

    CERN Document Server

    Lee, Sang-Sung; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan

    2015-01-01

    We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3 and NRAO~512, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combinat...

  13. Connected formulas for amplitudes in standard model

    CERN Document Server

    He, Song

    2016-01-01

    Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  14. Holographic Corrections to the Veneziano Amplitude

    CERN Document Server

    Armoni, Adi

    2016-01-01

    We propose a holographic computation of the $2\\rightarrow 2$ meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.

  15. Generalised Unitarity for Dimensionally Regulated Amplitudes

    CERN Document Server

    Bobadilla, W J Torres; Mastrolia, P; Mirabella, E

    2015-01-01

    We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.

  16. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...

  17. Hyperlogarithms and periods in Feynman amplitudes

    CERN Document Server

    Todorov, Ivan

    2016-01-01

    The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990's. The present lecture provides a concise introduction to a fast developing subjects that attracts the attention to a wide range of specialists - from number theorists to particle physicists.

  18. Microwave Imaging using Amplitude-only Data

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...

  19. Investigation of Adding Proportion of RAP in Recycled Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Cao He

    2016-01-01

    Full Text Available According to the relationship between gradation and proportion of Reclaimed Asphalt Pavement (RAP and design gradation of recycled mixture, the authors discussed the influence of proportion of RAP on gradation adjustment of recycled mixture. And then, recycled mixture with 0%, 30%, 50%, 70% of RAP were made, and Influence of proportion of RAP on high and low temperature performance, water stability and anti-aging performance of recycled mixture were discussed. The results and analysis indicate that gradation of recycled mixture would not be adjusted to aiming gradation if proportion of RAP was too big. With the increase of proportion of RAP, high temperature performance and anti-aging performance of recycled mixture enhanced, but low temperature performance and water stability decayed sharply. In practical application, reasonable proportion of RAP should be determined according to gradation, performance demand and economy of recycled mixture.

  20. ABJM amplitudes and the positive orthogonal Grassmannian

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, CongKao [Centre for Research in String Theory, Department of Physics,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-02-25

    A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG{sub 2} orthogonal Grassmannian to form a larger OG{sub k}, where 2k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG{sub k} that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of dlog forms, over the positive orthogonal Grassmannian.

  1. Gribov horizon and the one-loop color-Coulomb potential

    DEFF Research Database (Denmark)

    Golterman, Maarten; Greensite, Jeffrey Paul; Peris, Santiago;

    2012-01-01

    We recalculate the color-Coulomb potential to one-loop order, under the assumption that the effect of the Gribov horizon is to make (i) the transverse gluon propagator less singular and (ii) the color-Coulomb potential more singular than their perturbative behavior in the low-momentum limit. As a...... first guess, the effect of the Gribov horizon is mimicked by introducing a transverse momentum-dependent gluon mass term, leading to a propagator of the Gribov form, with the prescription that the mass parameter should be adjusted to the unique value where the infrared behavior of the Coulomb potential...

  2. Multiwire proportional chamber for Moessbauer spectroscopy: development and results

    International Nuclear Information System (INIS)

    A new Multiwere proportional Chamber designed for Moessbauer Spectroscopy is presented. This detector allows transmission backscattering experiments using either photons or electrons. The Moessbauer data acquisition system, partially developed for this work is described. A simple method for determining the frontier between true proportional and semi-proportional regions of operation in gaseous detectors is proposed. The study of the tertiary gas mixture He-Ar-CH4 leads to a straight forward way of energy calibration of the electron spectra. Moessbauer spectra using Fe-57 source are presented. In particular those obtained with backsattered electrons show the feasibility of depth selective analysis with gaseous proportional counters. (author)

  3. The proportionality as legal limit the right negotiating

    Directory of Open Access Journals (Sweden)

    Lucas Augusto da Silva Zolet

    2015-06-01

    Full Text Available This paper proposes a maximum of proportionality study and its maximum partial, especially of the Negotiating law perspective and in the sphere of legal limitation for proportionality in the practice of commercial freedoms. The constant use of the maximum of proportionality, as the basis of judicial decisions without proper methodological rigor, triggers a debate about the use of the Theory of Fundamental Rights as a mere rhetorical reference, including criticism of an incomplete legal basis of the principle of proportionality, which by means of judicial decisions can take on a different character or subverted that provided in the doctrine of Robert Alexy.     

  4. Accurate approximate solution to nonlinear oscillators in which the restoring force is inversely proportional to the dependent variable

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Gimeno, E; Mendez, D I; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2008-06-15

    A modified generalized, rational harmonic balance method is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one is lower than 0.40%.

  5. Many-Body Coulomb Gauge Exotic and Charmed Hybrids

    CERN Document Server

    Llanes-Estrada, F J; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.

    2001-01-01

    Utilizing a QCD Coulomb gauge Hamiltonian with linear confinement specified by lattice, we report a relativistic many-body calculation for the light exotic and charmed hybrid mesons. The Hamiltonian successfully describes both quark and gluon sectors, with vacuum and quasiparticle properties generated by a BCS transformation and more elaborate TDA and RPA diagonalizations for the meson ($q\\bar{q}$) and glueball ($gg$) masses. Hybrids entail a computationally intense relativistic three quasiparticle ($q\\bar{q}g$) calculation with the 9 dimensional Hamiltonian matrix elements evaluated variationally by Monte Carlo techniques. Our new TDA spectrum for the nonexotic $1^{--}$ charmed ($c\\bar{c}$ and $c\\bar{c}g$) system provides an explanation for the overpopulation of the observed $J/\\psi$ states. For the important $1^{-+}$ light exotic channel we obtain hybrid masses above 2 $GeV$, in broad agreement with lattice and flux tube models, indicating that the recently observed resonances at 1.4 and 1.6 $GeV$ are of di...

  6. Coulomb pairing resonances in multiple-ring aromatic molecules

    CERN Document Server

    Huber, D L

    2015-01-01

    We present an analysis of the Coulomb pairing resonances observed in photo-double-ionization studies of CnHm aromatic molecules with multiple benzene-like rings. It is applied to naphthalene, anthracene, phenanthrene, pyrene and coronene, all of which have six-member rings, and azulene which is comprised of a five-member and a seven-member ring. There is a high energy resonance at ~ 40 eV that is found in all of the molecules cited and is associated with paired electrons localized on carbon sites on the perimeter of the molecule, each of which having two carbon sites as nearest neighbors. The low energy resonance at 10 eV, which is found only in pyrene and coronene, is attributed to the formation of paired electrons localized on arrays of interior carbon atoms that have the point symmetry of the molecule with each carbon atom having three nearest neighbors. The origin of the anomalous increase in the doubly charged to singly charged parent-ion ratio that is found above the 40 eV resonance in all of the cited ...

  7. Dark Coulomb binding of heavy neutrinos of fourth family

    Science.gov (United States)

    Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.

    2015-11-01

    Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the “neutrinium” atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive Ū antiquarks, forming (ŪŪŪ)-- charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.

  8. Scattering of 11Be around the Coulomb barrier

    International Nuclear Information System (INIS)

    The 11Be is a halo nucleus composed of a 10Be core and a weakly bound neutron. Due to its loosely bound structure, the coupling of the ground and exited states to the continuum should strongly affect the elastic cross sections at energies around the Coulomb barrier [1, 2]. Another important issue is the role played by the highly deformed 10Be core on the scattering cross sections [3]. Accurate data on 11Be scattering are needed to study these effects. However, existing data for 11Be + 209Bi scattering [4, 5], suffer of large experimental uncertainties, and elastic and other reaction channels could not be studied separately. Aiming to improve the experimental situation we have recently performed measurements of 11Be scattered on 120Sn at 32 MeV (Lab) at the REX-ISOLDE facility at CERN (Geneva), covering a wide angular range. In this work, we present preliminary results of the experiment for the 11Be+120Sn quasi-elastic scattering as well as for the 11Be→ 10Be + n breakup. The accuracy and angular range of the presented results provide stronger constrains to the theoretical interpretation than existing published results. We compare the experimental results with CDCC and DWBA calculations performed as in references [6-8] for the 6He + 208Pb system. The role played by transfer and breakup channels in the elastic scattering is discussed.(author)

  9. Shape determination in Coulomb excitation of $^{72}$Kr

    CERN Multimedia

    Reiter, P; Kruecken, R; Paul, E S; Wadsworth, R; Heenen, P

    Nuclei with oblate shapes at low spins are very special in nature because of their rarity. Both theoretical and experimental shape co-existence studies in the mass 70 region for near proton drip-line nuclei suggest $^{72}$Kr to be the unique case with oblate low-lying and prolate high-lying levels. However, there is no direct experimental evidence in the literature to date for the oblate nature predicted for the first 2$^+$ state in $^{72}$Kr. We propose to determine the sign of the spectroscopic quadrupole moment of this state via the re-orientation effect in a low-energy Coulomb excitation measurement. In the inelastic excitation of the 2$^+$ state in $^{72}$Kr beam of 3.1 MeV/u with an intensity of 800 pps at REX-ISOLDE impinging on $^{104}$Pd target, the re-orientation effect plays a significant role. The cross section measurement for the 2$^+$ state should thus allow the model-independent determination of the sign of the quadrupole moment unambiguously and will shed light on the co-existing prolate and o...

  10. Le probleme quantique bicomplexe du potentiel de Coulomb

    Science.gov (United States)

    Mathieu, Jeremie

    In this master's thesis, is gathered a great part of my work on bicomplex quantum mechanics. Bicomplex numbers are the second order multicomplex generalization of complex numbers. Equipped with the standard addition and multiplication, they form an algebraic structure called a commutative ring with unity and are one of many known generalizations of the real number system. It has been almost eighty years since it's been proposed to use an algebra of a superior dimension than the one of complex numbers to construct the mathematical formalism of quantum mechanics. However it's only been since less than a decade ago that the idea of using the bicomplex numbers to do so has been seriously considered. In that sense, the complete resolution of the quantum harmonic oscillator in a bicomplex Hilbert space was the first major achievement of this ambitious project. This thesis, by article style, is a continuation of this work of generalization. It presents, by an axiomatic approach, the complete differential solution of the bicomplex quantum Coulomb potential problem and half of its algebraic solution.

  11. Coulomb nuclear interference with deuterons in even palladium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Rodrigues, C.L.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J. L.M. [Sao Paulo Univ., SP (Brazil); Ukita, G.M. [Universidade de Santo Amaro, SP (Brazil). Faculdade de Psicologia

    2004-09-15

    Angular distributions for the inelastic scattering of 13.0 MeV deuterons on {sup 104,106,108,110}Pd were measured with the Sao Paulo Pelletron-Enge-Spectrograph facility in the range of 12{sup 0} {<=}{theta}{sub lab} {<=}64{sup 0}. A Coulomb-Nuclear Interference analysis, employing the Distorted Wave Born Approximation with the Deformed Optical Model as transition potential, under well established global optical parameters, was applied to the first quadrupolar excitations. The values of C = {delta}{sub LC}/{delta}{sub LN}, the ratio of charge to isoscalar deformation lengths, and of ({delta}{sub LN}){sup 2} were extracted through the comparison of experimental and predicted cross section angular distributions. The ratios of reduced charge to isoscalar transition probabilities, B(EL) to B(ISL) respectively, are related to the square of the parameter C and were thus obtained with the advantage of scale uncertainties cancellation. For {sup 104}Pd, and preliminary for {sup 108}Pd, the respective values of C = 1.18(3) and C = 1.13(4) reveal an enhanced contribution of the protons relative to the neutrons to the excitation, while a smaller effect is found for {sup 106}Pd, C = 1.06(3) and for {sup 110}Pd, C 1.07(3), in comparison with the value C 1.00 expected for homogenous collective excitations. (author)

  12. Coulomb drag and tunneling studies in quantum Hall bilayers

    Science.gov (United States)

    Nandi, Debaleena

    The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.

  13. Tilted Foils Nuclear Spin Polarization and Measurement with Coulomb Excitation

    CERN Document Server

    Törnqvist, Hans; Kowalska, M; Wenander, F

    2012-01-01

    Developing new experimental tools is essential to expand the possibilities of probing the structure of atomic nuclei. The better the currently known properties of nuclei can be manipulated, the more information can be extracted from data collected in nuclear reaction experiments. One property that has been controlled for many years is the nuclear spin, but this has only been viable for a certain set of isotopes with restrictions on for example specific atomic excitation schemes or half-lives. This thesis will provide details on an evaluation project using thin tilted foils after the REX-ISOLDE linac at the CERN-ISOLDE experimental facility, to polarize the spin of nuclei in-flight. The nuclear polarization is then measured with a technique based on Coulomb excitation, which is a flexible and readily available experimental method at ISOLDE with the MINIBALL spectrometer. The tilted foils technique may be beneficial to polarize the nuclear spin of short-lived radioactive beams that can be difficult by other mea...

  14. Enhanced current noise correlations in a Coulomb-Majorana device

    Science.gov (United States)

    Lü, Hai-Feng; Lu, Hai-Zhou; Shen, Shun-Qing

    2016-06-01

    Majorana bound states (MBSs) nested in a topological nanowire are predicted to manifest nonlocal correlations in the presence of a finite energy splitting between the MBSs. However, the signal of the nonlocal correlations has not yet been detected in experiments. A possible reason is that the energy splitting is too weak and seriously affected by many system parameters. Here we investigate the charging energy induced nonlocal correlations in a hybrid device of MBSs and quantum dots. The nanowire that hosts the MBSs is assumed in proximity to a mesoscopic superconducting island with a finite charging energy. Each end of the nanowire is coupled to one lead via a quantum dot with resonant levels. With a floating superconducting island, the devices show a negative differential conductance and giant super-Poissonian shot noise, due to the interplay between the nonlocality of the MBSs and dynamical Coulomb blockade effect. When the island is strongly coupled to a bulk superconductor, the current cross correlations at small lead chemical potentials are negative by tuning the dot energy levels. In contrast, the cross correlation is always positive in a non-Majorana setup. This difference may provide a signature for the existence of the MBSs.

  15. Experimental Study on Non-proportional Multiaxial Strain Cyclic Characteristics and Ratcheting of U71Mn Rail Steel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An experimental study was carried out on the strain cyclic characteristics and ratcheting of U71Mn rail steel subjectedto non-proportional multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled circular load path. The ratcheting was investigated for the stress-controlled multiaxial circular, ellipticaland rhombic load paths with different mean stresses, stress amplitudes and their histories. The experiment showsthat U71Mn rail steel features the cyclic non-hardening/softening, and its strain cyclic characteristics depend greatlyon the strain amplitude but slightly on its history. However, the ratcheting of U71Mn rail steel depends greatly notonly on the values of mean stress and stress amplitude, but also on their histories. In the meantime, the shape ofload path and its history also apparently influence the ratcheting. The ratcheting changes with the different loadingpaths.

  16. An improved correlation method for amplitude estimation of gravitational background signal with time-varying frequency

    Science.gov (United States)

    Wu, Wei-Huang; Tian, Yuan; Luo, Jie; Shao, Cheng-Gang; Xu, Jia-Hao; Wang, Dian-Hong

    2016-09-01

    In the measurement of the gravitational constant G with angular acceleration method, the accurate estimation of the amplitude of the useful angular acceleration generated by source masses depends on the effective subtraction of the spurious gravitational signal caused by room fixed background masses. The gravitational background signal is of time-varying frequency, and mainly consists of the prominent fundamental frequency and second harmonic components. We propose an improved correlation method to estimate the amplitudes of the prominent components of the gravitational background signal with high precision. The improved correlation method converts a sinusoidal signal with time-varying frequency into a standard sinusoidal signal by means of the stretch processing of time. Based on Gaussian white noise model, the theoretical result shows the uncertainty of the estimated amplitude is proportional to /σ √{ N T } , where σ and N are the standard deviation of noise and the number of the useful signal period T, respectively.

  17. Effect of frequency on amplitude-dependent internal friction in niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Naoki [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)]. E-mail: ide@nitech.ac.jp; Atsumi, Tomohiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Nishino, Yoichi [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2006-12-20

    Amplitude-dependent internal friction (ADIF) was measured in a polycrystalline niobium using four modes of flexural vibration from the fundamental to the third-order resonance at room temperature. The ADIF was detected in each vibration mode. The internal-friction versus strain-amplitude curve of the ADIF shifted to a larger strain-amplitude range as frequency increased. The stress-strain curves were derived from the ADIF data, and the microplastic flow stress defined as the stress required to produce a plastic strain of 1 x 10{sup -9} was read from the stress-strain curves. It was found that the microplastic flow stress was proportional to the frequency.

  18. The principle of proportionality and European contract law

    NARCIS (Netherlands)

    Cauffman, C.; Rutgers, J.; Sirena, P.

    2015-01-01

    The paper investigates the role of the principle of proportionality within contract law, in balancing the rights and obligations of the contracting parties. It illustrates that the principle of proportionality is one of the general principles which govern contractual relations, and as such it is an

  19. The influence of lower face vertical proportion on facial attractiveness.

    Science.gov (United States)

    Johnston, D J; Hunt, O; Johnston, C D; Burden, D J; Stevenson, M; Hepper, P

    2005-08-01

    This study investigated the influence of changing lower face vertical proportion on the attractiveness ratings scored by lay people.Ninety-two social science students rated the attractiveness of a series of silhouettes with normal, reduced or increased lower face proportions. The random sequences of 10 images included an image with the Eastman normal lower face height relative to total face height [lower anterior face height/total anterior face height (LAFH/TAFH) of 55 per cent], and images with LAFH/TAFH increased or decreased by up to four standard deviations (SD) from the Eastman norm. All the images had a skeletal Class I antero-posterior (AP) relationship. A duplicate image in each sequence assessed repeatability. The participants scored each image using a 10 point numerical scale and also indicated whether they would seek treatment if the image was their own profile. The profile image with normal vertical facial proportions was rated by the lay people as the most attractive. Attractiveness scores reduced as the vertical facial proportions diverged from the normal value. Images with a reduced lower face proportion were rated as significantly more attractive than the corresponding images with an increased lower face proportion. Images with a reduced lower face proportion were also significantly less likely to be judged as needing treatment than the corresponding images with an increased lower face proportion. PMID:15961569

  20. Understanding Proportional Reasoning in Pre-Service Teachers

    Science.gov (United States)

    Johnson, Kim H.

    2013-01-01

    The purpose of this study is to examine the proportional reasoning of pre-service teachers at the beginning of their teacher preparation program using the developmental shifts described by Lobato and Ellis (2010). They cast changes in proportional reasoning as transitions or "shifts" in students' thinking and these shifts can serve as…

  1. Effects of projectile resonances on the total, Coulomb, and nuclear breakup cross sections in the 6Li+152Sm reaction

    Science.gov (United States)

    Mukeru, B.; Lekala, M. L.

    2016-08-01

    In this paper we analyze the effects of the projectile resonances on the total, Coulomb, and nuclear breakup cross sections as well as on the Coulomb-nuclear interferences at different arbitrary incident energies. It is found that these resonances have non-negligible effects on the total, Coulomb, and nuclear breakup cross sections. Qualitatively, they have no effects on the constructiveness or destructiveness of the Coulomb-nuclear interferences. Quantitatively, we obtained that these resonances increase by 7.38%, 7.58%, and 20.30% the integrated total, Coulomb, and nuclear breakup cross sections, respectively at Elab=35 MeV . This shows that the nuclear breakup cross sections are more affected by the effects of the projectile resonances than their total and Coulomb breakup counterparts. We also obtain that the effects of the resonances on the total, Coulomb, and nuclear breakup cross sections decrease as the incident energy increases.

  2. Parameterized cross sections for Coulomb dissociation in heavy-ion collisions

    Science.gov (United States)

    Norbury, John W.; Cucinotta, F. A.; Townsend, L. W.; Badavi, F. F.

    1988-01-01

    Simple parameterizations of Coulomb dissociation cross sections for use in heavy-ion transport calculations are presented and compared to available experimental dissociation data. The agreement between calculation and experiment is satisfactory considering the simplicity of the calculations.

  3. Deconvoluting nonaxial recoil in Coulomb explosion measurements of molecular axis alignment

    Science.gov (United States)

    Christensen, Lauge; Christiansen, Lars; Shepperson, Benjamin; Stapelfeldt, Henrik

    2016-08-01

    We report a quantitative study of the effect of nonaxial recoil during Coulomb explosion of laser-aligned molecules and introduce a method to remove the blurring caused by nonaxial recoil in the fragment-ion angular distributions. Simulations show that nonaxial recoil affects correlations between the emission directions of fragment ions differently from the effect caused by imperfect molecular alignment. The method, based on analysis of the correlation between the emission directions of the fragment ions from Coulomb explosion, is used to deconvolute the effect of nonaxial recoil from experimental fragment angular distributions. The deconvolution method is then applied to a number of experimental data sets to correct the degree of alignment for nonaxial recoil, to select optimal Coulomb explosion channels for probing molecular alignment, and to estimate the highest degree of alignment that can be observed from selected Coulomb explosion channels.

  4. On the effect of Coulomb interaction on the multiphoton ionization probability

    International Nuclear Information System (INIS)

    The nonresonant multiphoton ionization problem is considered in the case of one-dimensional Coulomb potential. The continuous spectrum wave function in the presence of electromagnetic field and Coulomb interaction is calculated in the quasiclassical approximation. The Coulomb interaction is taken into account by the use of the perturbation theory in that part of action which arises due to interaction with an electromagnetic field. Criteria of this approximation validity are found and it is shown that such an approach allows the process of nonresonant multiphoton ionization to be described in the field range εa (εa is the characteristic atomic field) for arbitrary values of the adiabaticity parameter γ. Within the range γ>>1 the Coulomb factor in the ionization probability is independing of the field strength and has to be taken into account

  5. Partial-wave Coulomb transition matrices for attractive interaction by Fock's method

    CERN Document Server

    Kharchenko, V F

    2016-01-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states. Keywords: Partial wave Coulomb transition matrix; Lippmann-Schwinger equation; Fock method; Analytical solution PACS Nos. 03.65.-w; 03.65.Nk; 34.20.Cf

  6. Coulomb Potential Recapture Effect in Above-Barrier Ionization in Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    WANG Bing-Bing; LI Xiao-Feng; FU Pan-Ming; CHEN Jing; LIU Jie

    2006-01-01

    @@ The Coulomb potential recapture effect in above-barrier ionization with ultrashort long-wavelength laser pulses is investigated theoretically by solving the one-dimensional time-dependent Schrodinger equation.

  7. Dynamic adjustment: an electoral method for relaxed double proportionality

    CERN Document Server

    Linusson, Svante

    2013-01-01

    We describe an electoral system for distributing seats in a parliament. It gives proportionality for the political parties and close to proportionality for constituencies. The system suggested here is a version of the system used in Sweden and other Nordic countries with permanent seats in each constituency and adjustment seats to give proportionality on the national level. In the national election of 2010 the current Swedish system failed to give proportionality between parties. We examine here one possible cure for this unwanted behavior. The main difference compared to the current Swedish system is that the number of adjustment seats is not fixed, but rather dynamically determined to be as low as possible and still insure proportionality between parties.

  8. Differential Equations, Associators, and Recurrences for Amplitudes

    CERN Document Server

    Puhlfuerst, Georg

    2015-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for epsilon-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different epsilon-orders of a power series solution in epsilon of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the epsilon-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also setup up our tools for computing epsilon-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we apply our methods to systematically get compact and explicit alpha'-expansions of tree-level superstring amplitudes to any order in alpha'.

  9. Differential equations, associators, and recurrences for amplitudes

    Science.gov (United States)

    Puhlfürst, Georg; Stieberger, Stephan

    2016-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.

  10. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  11. Planar scattering amplitudes from Wilson loops

    International Nuclear Information System (INIS)

    We derive an expression for parton scattering amplitudes of planar gauge theory in terms of sums of Wilson loops. We study in detail the example of Yang-Mills theory with an adjoint Higgs field. The expression exhibits the T-duality performed by Alday and Maldacena in the AdS dual as a Fourier transform in loop space. When combined with the AdS/CFT correspondence for Wilson loops and a strong coupling argument for the dominance of 1PI diagrams, this leads to a derivation of the Alday-Maldacena holographic prescription for scattering amplitudes in terms of momentum Wilson loops. The formula leads to a conjecture for a relationship between position-space and momentum-space Wilson loops in N = 4 SYM at finite coupling.

  12. New structures in scattering amplitudes: a review

    CERN Document Server

    Benincasa, Paolo

    2013-01-01

    We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE

  13. Critical Initial Amplitude of Langmuir Wave Damping

    Institute of Scientific and Technical Information of China (English)

    徐慧; 盛政明

    2012-01-01

    By one-dimensional Vlasov-Poisson simulation, the critical initial state marking the transition between the Landau scenario, in which the electric fields definitively damped to zero and the O'NEIL scenario, in which the Landau damping is stopped after a certain damping stage, is studied. It is found that the critical initial amplitude e* can only exist when the product of the wave number (k~) and the electron thermal velocity (vth) is moderate, that is, 0.2 〈 k~vth 〈 0.7. Otherwise, no critical initial amplitude is found. The value c* increases with the increase in km for a fixed Vth, and also increases with the increase in Vth for a fixed kin. When kmVth is fixed, the value s* also changes with the wave number and the electron thermal velocity, even though the damping rate and the oscillation frequency are the same in this case.

  14. Evaluation of the CHY Gauge Amplitude

    CERN Document Server

    Lam, C S

    2016-01-01

    The Cachazo-He-Yuan (CHY) formula for $n$-gluon scattering is known to give the same amplitude as the one obtained from Feynman diagrams, though the former contains neither vertices nor propagators explicitly. The equivalence was shown by indirect means, not by a direct evaluation of the $(n\\! - \\!3)$-dimensional integral in the CHY formula. The purpose of this paper is to discuss how such a direct evaluation can be carried out. There are two basic difficulties in the calculation: how to handle the large number of terms in the reduced Pfaffian, and how to carry out the integrations in the presence of a $\\sigma$-dependence much more complicated than the Parke-Taylor form found in a CHY double-color scalar amplitude. We have solved both of these problems, and have formulated a method that can be applied to any $n$. Many examples are provided to illustrate these calculations.

  15. Integrable spin chains and scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)

    2011-04-15

    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  16. Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections

    International Nuclear Information System (INIS)

    We present the two-loop virtual amplitudes for the production of a top-quark pair in gluon fusion. The evaluation method is based on a numerical solution of differential equations for master integrals in function of the quark velocity and scattering angle starting from a boundary at high-energy. The results are given for the renormalized infrared finite remainders on a large grid and have recently been used in the calculation of the total cross sections at the next-to-next-to-leading order. For convenience, we also give the known results for the quark annihilation case on the same grid. Outside of the kinematical range covered by the grid, we provide threshold and high-energy expansions. From expansions of the two-loop virtual amplitudes, we determine the threshold behavior of the total cross sections at next-to-next-to-leading order for the quark annihilation and gluon fusion channels including previously unknown constant terms. In our analysis of the quark annihilation channel, we uncover the presence of a velocity enhanced logarithm of Coulombic origin, which was missed in a previous study

  17. Ward identities for amplitudes with reggeized gluons

    Energy Technology Data Exchange (ETDEWEB)

    Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-05-15

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  18. Inverse amplitude method and Adler zeros

    OpenAIRE

    Gómez Nicola, Ángel; Peláez Sagredo, José Ramón; Rios, G.

    2008-01-01

    The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spur...

  19. Automation of 2-loop Amplitude Calculations

    CERN Document Server

    Jones, S P

    2016-01-01

    Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.

  20. Connecting physical resonant amplitudes and lattice QCD

    CERN Document Server

    Bolton, Daniel R; Wilson, David J

    2015-01-01

    We present a determination of the isovector, $P$-wave $\\pi\\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\\pi =236$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\\rho$-resonance pole at $E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.