WorldWideScience

Sample records for amplitude power oscillations

  1. Nuclear-Mechanical Coupling: Small Amplitude Mechanical Vibrations and High Amplitude Power Oscillations in Nuclear Reactors

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2008-11-01

    The cores of nuclear reactors, including its structural parts and cooling fluids, are complex mechanical systems able to vibrate in a set of normal modes and frequencies, if suitable perturbed. The cyclic variations in the strain state of the core materials may produce changes in density. Changes in density modify the reactivity. Changes in reactivity modify thermal power. Modifications in thermal power produce variations in temperature fields. Variations in temperature produce variations in strain due to thermal-elastic effects. If the variation of the temperature field is fast enough and if the Doppler Effect and other stabilizing prompt effects in the fuel are weak enough, a fast oscillatory instability could be produced, coupled with mechanical vibrations of small amplitude. A recently constructed, simple mathematical model of nuclear reactor kinetics, that improves the one due to A.S. Thompson, is reviewed. It was constructed in order to study, in a first approximation, the stability of the reactor: a nonlinear nuclear-thermal oscillator (that corresponds to reactor point kinetics with thermal-elastic feedback and with frozen delayed neutron effects) is coupled nonlinearly with a linear mechanical-thermal oscillator (that corresponds to the first normal mode of mechanical vibrations excited by thermo-elastic effects). This mathematical model is studied here from the standpoint of mechanical vibrations. It is shown how, under certain conditions, a suitable mechanical perturbation could elicit fast and growing oscillatory instabilities in the reactor power. Applying the asymptotic method due to Krylov, Bogoliubov and Mitropolsky, analytical formulae that may be used in the calculation of the time varying amplitude and phase of the mechanical oscillations are given, as functions of the mechanical, thermal and nuclear parameters of the reactor. The consequences for the mechanical integrity of the reactor are assessed. Some conditions, mainly, but not exclusively

  2. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  3. Frequency and amplitude stabilization in MEMS and NEMS oscillators

    Science.gov (United States)

    Chen, Changyao; Lopez, Omar Daniel; Czaplewski, David A.

    2017-06-14

    This invention comprises a nonlinear micro- and nano-mechanical resonator that can maintain frequency of operation and amplitude of operation for a period of time after all external power has been removed from the device. Utilizing specific nonlinear dynamics of the micromechanical resonator, mechanical energy at low frequencies can be input and stored in higher frequencies modes, thus using the multiple degrees of freedom of the resonator to extend its energy storage capacity. Furthermore, the energy stored in multiple vibrational modes can be used to maintain the resonator oscillating for a fixed period of time, even without an external power supply. This is the first demonstration of an "autonomous" frequency source that can maintain a constant frequency and vibrating amplitude when no external power is provided, making it ideal for applications requiring an oscillator in low power, or limited and intermittent power supplies.

  4. Photoacoustic microbeam-oscillator with tunable resonance direction and amplitude

    Science.gov (United States)

    Wu, Qingjun; Li, Fanghao; Wang, Bo; Yi, Futing; Jiang, J. Z.; Zhang, Dongxian

    2018-01-01

    We successfully design one photoacoustic microbeam-oscillator actuated by nanosecond laser, which exhibits tunable resonance direction and amplitude. The mechanism of laser induced oscillation is systematically analyzed. Both simulation and experimental results reveal that the laser induced acoustic wave propagates in a multi-reflected mode, resulting in resonance in the oscillator. This newly-fabricated micrometer-sized beam-oscillator has an excellent actuation function, i.e., by tuning the laser frequency, the direction and amplitude of actuation can be efficiently altered, which will have potential industrial applications.

  5. Slow oscillation amplitudes and up-state lengths relate to memory improvement.

    Directory of Open Access Journals (Sweden)

    Dominik P J Heib

    Full Text Available There is growing evidence of the active involvement of sleep in memory consolidation. Besides hippocampal sharp wave-ripple complexes and sleep spindles, slow oscillations appear to play a key role in the process of sleep-associated memory consolidation. Furthermore, slow oscillation amplitude and spectral power increase during the night after learning declarative and procedural memory tasks. However, it is unresolved whether learning-induced changes specifically alter characteristics of individual slow oscillations, such as the slow oscillation up-state length and amplitude, which are believed to be important for neuronal replay. 24 subjects (12 men aged between 20 and 30 years participated in a randomized, within-subject, multicenter study. Subjects slept on three occasions for a whole night in the sleep laboratory with full polysomnography. Whereas the first night only served for adaptation purposes, the two remaining nights were preceded by a declarative word-pair task or by a non-learning control task. Slow oscillations were detected in non-rapid eye movement sleep over electrode Fz. Results indicate positive correlations between the length of the up-state as well as the amplitude of both slow oscillation phases and changes in memory performance from pre to post sleep. We speculate that the prolonged slow oscillation up-state length might extend the timeframe for the transfer of initial hippocampal to long-term cortical memory representations, whereas the increase in slow oscillation amplitudes possibly reflects changes in the net synaptic strength of cortical networks.

  6. Amplitude oscillations in a non-equilibrium polariton condensate

    Science.gov (United States)

    Brierley, Richard; Littlewood, Peter; Eastham, Paul

    2011-03-01

    Like cold atomic gases, semiconductor nanostructures provide new opportunities for exploring non-equilibrium quantum dynamics. In semiconductor microcavities the strong coupling between trapped photons and excitons produces new quasiparticles, polaritons, which can undergo Bose-Einstein condensation. Quantum quenches can be realised by rapidly creating cold exciton populations with a laser [Eastham and Phillips, PRB 79 165303 (2009)]. The mean field theory of non-equilibrium polariton condensates predicts oscillations in the condensate amplitude due to the excitation of a Higgs mode. These oscillations are the analogs of those predicted in quenched cold atomic gases and may occur in the polariton system after performing a quench or by direct excitation of the amplitude mode. We have studied the stability of these oscillations beyond mean field theory. We show that homogeneous amplitude oscillations are unstable to decay into lower energy phase modes at finite wavevectors, suggesting the onset of chaotic behaviour. The resulting hierarchy of decay processes can be understood by analogy to optical parametric oscillators in microcavities. Polariton systems thus provide an interesting opportunity to study the dynamics of Higgs-like modes in a solid state system.

  7. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  8. Amplitude mediated chimera states with active and inactive oscillators

    Science.gov (United States)

    Mukherjee, Rupak; Sen, Abhijit

    2018-05-01

    The emergence and nature of amplitude mediated chimera states, spatio-temporal patterns of co-existing coherent and incoherent regions, are investigated for a globally coupled system of active and inactive Ginzburg-Landau oscillators. The existence domain of such states is found to shrink and shift in parametric space with the increase in the fraction of inactive oscillators. The role of inactive oscillators is found to be twofold—they get activated to form a separate region of coherent oscillations and, in addition, decrease the common collective frequency of the coherent regions by their presence. The dynamical origin of these effects is delineated through a bifurcation analysis of a reduced model system that is based on a mean field approximation. Our results may have practical implications for the robustness of such states in biological or physical systems where age related deterioration in the functionality of components can occur.

  9. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    OpenAIRE

    Ping Ju; Yongfei Liu; Feng Wu; Fei Dai; Yiping Yu

    2016-01-01

    According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO) mechanism is taken int...

  10. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    Science.gov (United States)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  11. Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System

    Directory of Open Access Journals (Sweden)

    Changhoon Lee

    2010-06-01

    Full Text Available In this paper, we developed a local oscillator (LO system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI receiver and single dish radio astronomy receiver at the 3 mm frequency band.

  12. Relaxation oscillations induced by amplitude-dependent frequency in dissipative trapped electron mode turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Ware, A.S.; Newman, D.E.

    1994-01-01

    A nonlinear frequency shift in dissipative trapped electron mode turbulence is shown to give rise to a relaxation oscillation in the saturated power density spectrum. A simple non-Markovian closure for the coupled evolution of ion momentum and electron density response is developed to describe the oscillations. From solutions of a nonlinear oscillator model based on the closure, it is found that the oscillation is driven by the growth rate, as modified by the amplitude-dependent frequency shift, with inertia provided by the memory of the growth rate of prior amplitudes. This memory arises from time-history integrals common to statistical closures. The memory associated with a finite time of energy transfer between coupled spectrum components does not sustain the oscillation in the simple model. Solutions of the model agree qualitatively with the time-dependent numerical solutions of the original dissipative trapped electron model, yielding oscillations with the proper phase relationship between the fluctuation energy and the frequency shift, the proper evolution of the wave number spectrum shape and particle flux, and a realistic period

  13. Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    OpenAIRE

    Muduli, P. K.; Pogoryelov, Ye.; Bonetti, S.; Consolo, G.; Mancoff, Fred; Åkerman, Johan

    2009-01-01

    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity ($d^{2}f/dI^{2}_{dc}$ being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.

  14. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    Science.gov (United States)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  15. Streaming vorticity flux from oscillating walls with finite amplitude

    Science.gov (United States)

    Wu, J. Z.; Wu, X. H.; Wu, J. M.

    1993-01-01

    How to describe vorticity creation from a moving wall is a long standing problem. This paper discusses relevant issues at the fundamental level. First, it is shown that the concept of 'vorticity flux due to wall acceleration' can be best understood by following fluid particles on the wall rather than observing the flow at fixed spatial points. This is of crucial importance when the time-averaged flux is to be considered. The averaged flux has to be estimated in a wall-fixed frame of reference (in which there is no flux due to wall acceleration at all); or, if an inertial frame of reference is used, the generalized Lagrangian mean (GLM) also gives the same result. Then, for some simple but typical configurations, the time-averaged vorticity flux from a harmonically oscillating wall with finite amplitude is analyzed, without appealing to small perturbation. The main conclusion is that the wall oscillation will produce an additional mean vorticity flux (a fully nonlinear streaming effect), which is partially responsible for the mechanism of vortex flow control by waves. The results provide qualitative explanation for some experimentally and/or computationally observed phenomena.

  16. Oscillations of non-isothermal N/S boundary with a high frequency and large amplitude

    International Nuclear Information System (INIS)

    Bezuglyj, A.I.; Shklovskij, V.A.

    2016-01-01

    Within the framework of the phenomenological approach based on the heat balance equation and the dependence of the critical temperature of the superconductor on the current value theoretically investigated the impact of high-frequency current of high amplitude and arbitrary shape on the non-isothermal balance of the oscillating N/S interface in a long superconductor. We introduce a self-consistent average temperature field of rapidly oscillating non-isothermal N/S boundary (heat kink), which allows to go beyond the well-known concept of mean-square heating and consider the impact of current waveform. With regard to experiments on the effects of microwave high-power radiation on the current-voltage characteristics (CVC) of superconducting films, we give the classification of the families of the CVC for inhomogeneous superconductors which carry a current containing a high frequency component of large amplitude. Several characteristics have hysteresis of thermal nature.

  17. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  18. General Forced Oscillations in a Real Power Grid Integrated with Large Scale Wind Power

    Directory of Open Access Journals (Sweden)

    Ping Ju

    2016-07-01

    Full Text Available According to the monitoring of the wide area measurement system, inter-area oscillations happen more and more frequently in a real power grid of China, which are close to the forced oscillation. Applying the conventional forced oscillation theory, the mechanism of these oscillations cannot be explained well, because the oscillations vary with random amplitude and a narrow frequency band. To explain the mechanism of such oscillations, the general forced oscillation (GFO mechanism is taken into consideration. The GFO is the power system oscillation excited by the random excitations, such as power fluctuations from renewable power generation. Firstly, properties of the oscillations observed in the real power grid are analyzed. Using the GFO mechanism, the observed oscillations seem to be the GFO caused by some random excitation. Then the variation of the wind power measured in this power gird is found to be the random excitation which may cause the GFO phenomenon. Finally, simulations are carried out and the power spectral density of the simulated oscillation is compared to that of the observed oscillation, and they are similar with each other. The observed oscillation is thus explained well using the GFO mechanism and the GFO phenomenon has now been observed for the first time in real power grids.

  19. Quantum effects in amplitude death of coupled anharmonic self-oscillators

    Science.gov (United States)

    Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph

    2018-05-01

    Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.

  20. Simulation of Oscillations in High Power Klystrons

    CERN Document Server

    Ko, K

    2003-01-01

    Spurious oscillations can seriously limit a klystron's performance from reaching its design specifications. These are modes with frequencies different from the drive frequency, and have been found to be localized in various regions of the tube. If left unsuppressed, such oscillations can be driven to large amplitudes by the beam. As a result, the main output signal may suffer from amplitude and phase instabilities which lead to pulse shortening or reduction in power generation efficiency, as observed during the testing of the first 150MW S-band klystron, which was designed and built at SLAC as a part of an international collaboration with DESY. We present efficient methods to identify suspicious modes and then test their possibility of oscillation. In difference to [3], where each beam-loaded quality-factor Qbl was calculated by time-consuming PIC simulations, now only tracking-simulations with much reduced cpu-time and less sensitivity against noise are applied. This enables the determination of Qbl for larg...

  1. The effect of airway pressure and oscillation amplitude on ventilation in pre-term infants

    NARCIS (Netherlands)

    Miedema, M.; de Jongh, Franciscus H.C.; Frerichs, I.; van Veenendaal, M.B.; van Kaam, A.H.

    2012-01-01

    We determined the effect of lung recruitment and oscillation amplitude on regional oscillation volume and functional residual capacity (FRC) in high-frequency oscillatory ventilation (HFOV) used in pre-term infants with respiratory distress syndrome (RDS). Changes in lung volume, oscillation volume

  2. Power Burst Facility: power oscillation problem

    International Nuclear Information System (INIS)

    Lussie, W.G.; Wadkins, R.P.; Wells, R.A.

    1975-01-01

    In late 1973 PBF achieved a power level of 15 MW. During this period of operation fluctuations in reactor power were observed. Many possible causes of these fluctuations were considered and a number of nuclear and non-nuclear tests were conducted. Initial instrumentation installed in the core showed coolant outlet temperature variations of 10 0 F for several fuel cannisters and approximately 10 percent power variations at 15 MW. Power spectral density analysis showed a predominant frequency of 0.05 to 0.06 HZ. The testing program to determine the cause of the power oscillations is described

  3. AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER

    International Nuclear Information System (INIS)

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; Kallinger, Thomas; Basu, Sarbani; Mosser, BenoIt; Hekker, Saskia; Mathur, Savita; GarcIa, Rafael A.; Kjeldsen, Hans; Grundahl, Frank; Christensen-Dalsgaard, Joergen; Gilliland, Ronald L.; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.; Meibom, Soeren; Molenda-Zakowicz, Joanna; Szabo, Robert

    2011-01-01

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters.

  4. Amplitude death and spatiotemporal bifurcations in nonlocally delay-coupled oscillators

    International Nuclear Information System (INIS)

    Guo, Yuxiao; Niu, Ben

    2015-01-01

    Amplitude death and spatiotemporal oscillations are remarkable patterns in coupled systems. We consider a ring of n identical oscillators with distance-dependent couplings and time delay. The amplitude death region is the intersection of three stable regions. Employing the method of multiple scales and normal form theory, the stability and criticality of spatiotemporal oscillations are determined. Around the amplitude death boundary there exist one branch of synchronized oscillations, n − 3 branches of co-existing phase-locked oscillations, n branches of mirror-reflecting oscillations, n branches of standing-wave oscillations, one branch of quasiperiodic oscillations and two branches of co-existing synchronized oscillations. It is proved that amplitude death is robust to small inhomogeneity of couplings, and the stability of synchronized or phase-locked oscillations inherits that of the individual decoupled oscillator. For the arbitrary form of coupling functions, some general results are also obtained for the thermodynamic limit. Finally, two examples are given to support the main results. (paper)

  5. Amplitudes of solar-like oscillations in red giants: Departures from the quasi-adiabatic approximation

    Directory of Open Access Journals (Sweden)

    Barban C.

    2013-03-01

    Full Text Available CoRoT and Kepler measurements reveal us that the amplitudes of solar-like oscillations detected in red giant stars scale from stars to stars in a characteristic way. This observed scaling relation is not yet fully understood but constitutes potentially a powerful diagnostic about mode physics. Quasi-adiabatic theoretical scaling relations in terms of mode amplitudes result in systematic and large differences with the measurements performed for red giant stars. The use of a non-adiabatic intensity-velocity relation derived from a non-adiabatic pulsation code significantly reduces the discrepancy with the CoRoT measurements. The origin of the remaining difference is still unknown. Departure from adiabatic eigenfunction is a very likely explanation that is investigated in the present work using a 3D hydrodynamical model of the surface layers of a representative red giant star.

  6. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    International Nuclear Information System (INIS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-01-01

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  7. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Bidesh K., E-mail: bideshbera18@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Hens, Chittaranjan, E-mail: chittaranjanhens@gmail.com [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Ghosh, Dibakar, E-mail: dibakar@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2016-07-15

    Highlights: • Amplitude death is observed using repulsive mean coupling. • Analytical conditions for amplitude death are derived. • Effect of asymmetry time delay coupling for death is discussed. - Abstract: We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey–Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart–Landau and Van der Pol oscillators.

  8. Power oscillations in BWR reactors

    International Nuclear Information System (INIS)

    Espinosa P, G.

    2002-01-01

    One of the main problems in the operation of BWR type reactors is the instability in power that these could present. One type of oscillations and that is the objective of this work is the named density wave, which is attributed to the thermohydraulic processes that take place in the reactor core. From the beginnings of the development of BWR reactors, the stability of these has been an important aspect in their design, due to its possible consequences on the fuel integrity. The reactor core operates in two phase flow conditions and it is observed that under certain power and flow conditions, power instabilities appear. Studying this type of phenomena is complex, due to that a reactor core is constituted approximately by 27,000 fuel bars with different distributions of power and flow. The phenomena that cause the instability in BWR reactors continue being matter of scientific study. In the literature mainly in nuclear subject, it can be observed that exist different methods and approximations for studying this type of phenomena, nevertheless, their results are focused to establish safety limits in the reactor operation, instead of studying in depth of the knowledge about. Also in this line sense of the reactor data analysis, the oscillations characteristic frequencies are obtained for trying to establish if the power is growing or decreasing. In addition to that before mentioned in this paper it is presented a rigorous study applying the volumetric average method, for obtaining the vacuum waves propagation velocities and its possible connection with the power oscillations. (Author)

  9. Detection of forced oscillations in power systems with multichannel methods

    Energy Technology Data Exchange (ETDEWEB)

    Follum, James D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-09-30

    The increasing availability of high fidelity, geographically dispersed measurements in power systems improves the ability of researchers and engineers to study dynamic behaviors in the grid. One such behavior that is garnering increased attention is the presence of forced oscillations. Power system engineers are interested in forced oscillations because they are often symptomatic of the malfunction or misoperation of equipment. Though the resulting oscillation is not always large in amplitude, the root cause may be serious. In this report, multi-channel forced oscillation detection methods are developed. These methods leverage previously developed detection approaches based on the periodogram and spectral-coherence. Making use of geographically distributed channels of data is shown to improved detection performance and shorten the delay before an oscillation can be detected in the online environment. Results from simulated and measured power system data are presented.

  10. Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation.

    Science.gov (United States)

    Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart

    2018-04-25

    To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Dynamic force microscopy with quartz tuning forks at high oscillation amplitudes

    International Nuclear Information System (INIS)

    Labardi, M

    2007-01-01

    Dynamic force microscopy (DFM) with the self-oscillator (SO) method allows reasonably high scanning rates even with high Q-factors of the resonant force sensor, typical of cantilevers in ultra-high vacuum and of quartz tuning forks. However, due to simpler interpretation of force spectroscopy measurements, small oscillation amplitudes (sub-nm level) are generally preferred. In applications like 'apertureless' scanning near-field optical microscopy (SNOM), oscillation amplitudes of the order of 5-10 nm are needed to increase optical sensitivity and to apply standard optical artefact suppression methods. This motivates the study of the behaviour of tuning forks driven at such high amplitudes, as compared to usual air-operated cantilevers. Both constant-excitation-amplitude (CE) and constant-oscillation-amplitude (CA) modes of SO-DFM are analysed, since the CA mode is more convenient for SNOM applications, denoting remarkable differences. In particular, possible instability effects, previously found in CE mode, are not anticipated for CA mode. It is shown how resonance and approach ('isophase') curves in both modes can be conveniently described in terms of the usual 'normalized frequency shift' γ and of a 'normalized gain' η, defined as a measurement of surface dissipation

  12. Remarks to the local power oscillation phenomenon at BWRs

    International Nuclear Information System (INIS)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio

    2011-01-01

    In the framework of BWR stability analysis, local neutron-flux oscillation events have attracted the attention of a number of researchers. In 1996, an unusual instability event occurred at Forsmark-1 in which superimposed on the classical, spatial mode oscillations, there were relatively large-amplitude, highly localised oscillations. Subsequent time-series analysis of the local power range monitor (LPRM) signals resulted in a space-dependent decay ratio, an inexplicable result. Furthermore, noise analysis-based localization techniques pointed towards the existence of two strong 'perturbation sources' in the two halves of the core, one of them coinciding with the radial position of an unseated bundle. In the scope of a theoretical work, the possibility of a space-dependent decay ratio was discussed but not comprehensively understood. Motivated by these findings the effect of local neutron-flux oscillations on the BWR stability behaviour is discussed and one possible interpretation is proposed which is able to explain the space dependent decay ratio and the long term oscillation pattern as well. The effect of the local neutron flux oscillating sources on the space and time dependent neutron field is described by a rigorous application of the mode expansion approach. The consequences to signal analysis are then discussed. It will be pointed out in the paper that when a BWR system is stable regarding power oscillations but driven by local neutron-flux oscillating sources, the decay ratio is on the one hand not space-dependent and on the other hand it does not indicate the real BWR stability behaviour. The RAM-ROM method is applied to the Forsmark case M2 and an operational point (KKB-B8) of NPP Brunsbüttel, where a local neutron-flux oscillation is superimposed on an unstable global power oscillation. The results of the bifurcation analysis, using BIFDD, and of the numerical integration are presented for KKB-B8 and Forsmark M2. (author)

  13. A pulse amplitude discriminator with very low-power consuming

    International Nuclear Information System (INIS)

    Deng Changming; Liu Zhengshan; Zhang Zhiyong; Cheng Chang

    2000-01-01

    A low-power pulse amplitude discriminator is described. The discriminator circuit is mainly composed of an integrated voltage comparator, MAX921, and owns the characters of very low-power and low operating voltage

  14. Multiphoton states and amplitude k-th power squeezing

    International Nuclear Information System (INIS)

    Buzek, V.; Jex, I.

    1991-01-01

    On the basis of the work of d'Ariano and coworkers a new type of multiphoton states is introduced. Amplitude k-th power squeezing of the multiphoton states are analysed. In particular, it is shown that even if the multiphoton states do not exhibit ordinary squeezing they can be amplitude k-th power squeezed

  15. The measurement of the amplitude of de Haas-van Alphen oscillations in indium

    International Nuclear Information System (INIS)

    Wilde, J. de; Meredith, D.J.

    1976-01-01

    A flux-gate magnetometer incorporating a superconducting flux transformer is described and its application to the measurement of de Haas-van Alphen oscillation amplitude is compared with conventional techniques. Measurements on the third zone Fermi surface of indium in magnetic fields of up to 4 T are given to show the advantages of the method. (author)

  16. A study of oscillation amplitude settling transients in a molecular beam maser

    International Nuclear Information System (INIS)

    Lefrere, P.R.; Laine, D.C.

    1977-01-01

    The dynamic behaviour of oscillation amplitude build-up from noise has been studied in a molecular beam maser (MBM). The three forms of growth curve, predicted theoretically, namely exponential, aperiodic and damped periodic have been observed with their associated 'times of silence'. (Auth.)

  17. Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.

    Science.gov (United States)

    Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk

    2017-08-01

    We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.

  18. Dependence of oscillational instabilities on the amplitude of the acoustic wave in single-axis levitators

    DEFF Research Database (Denmark)

    Orozco-Santillán, Arturo; Ruiz-Boullosa, Ricardo; Cutanda Henríquez, Vicente

    2007-01-01

    It is well known that acoustic waves exert forces on a boundary with which they interact; these forces can be so intense that they can compensate for the weight of small objects up to a few grams. In this way, it is possible to maintain solid or liquid samples levitating in a fluid, avoiding...... the use of containers, which may be undesirable for certain applications. Moreover, small samples can be manipulated by means of acoustic waves. In this paper, we report a study on the oscillational instabilities that can appear on a levitated solid sphere in single-axis acoustic devices. A theory...... proportional to the oscillation frequency of the levitated sample. We also present experimental results that show that the oscillational instabilities can be reduced if the amplitude of the acoustic wave is increased; as a result, stable conditions can be obtained where the oscillations of the sphere...

  19. Transition from amplitude to oscillation death in a network of oscillators

    International Nuclear Information System (INIS)

    Nandan, Mauparna; Hens, C. R.; Dana, Syamal K.; Pal, Pinaki

    2014-01-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics

  20. Transition from amplitude to oscillation death in a network of oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Mauparna [Dr. B. C. Roy Engineering College, Durgapur 713206 (India); Department of Mathematics, National Institute of Technology, Durgapur 713209 (India); Hens, C. R.; Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Pal, Pinaki [Department of Mathematics, National Institute of Technology, Durgapur 713209 (India)

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  1. A Survey on Forced Oscillations in Power System

    OpenAIRE

    Ghorbaniparvar, Mohammadreza

    2016-01-01

    Oscillations in a power system can be categorized into free oscillations and forced oscillations. Many algorithms have been developed to estimate the modes of free oscillations in a power system. Recently, forced oscillations caught many attentions. Techniques are proposed to detect forced oscillations and locate their sources. In addition, forced oscillations may have negative impact on the estimation of mode and mode-shape if they are not properly accounted for. To improve the power system ...

  2. High power RF oscillator with Marx generators

    International Nuclear Information System (INIS)

    Murase, Hiroshi; Hayashi, Izumi

    1980-01-01

    A method to maintain RF oscillation by using many Marx generators was proposed and studied experimentally. Many charging circuits were connected to an oscillator circuit, and successive pulsed charging was made. This successive charging amplified and maintained the RF oscillation. The use of vacuum gaps and high power silicon diodes improved the characteristics of RF current cut-off of the circuit. The efficiency of the pulsed charging from Marx generators to a condenser was theoretically investigated. The theoretical result showed the maximum efficiency of 0.98. The practical efficiency obtained by using a proposed circuit with a high power oscillator was in the range 0.50 to 0.56. The obtained effective output power of the RF pulses was 11 MW. The maximum holding time of the RF pulses was about 21 microsecond. (Kato, T.)

  3. Analytical approximations for the amplitude and period of a relaxation oscillator

    Directory of Open Access Journals (Sweden)

    Golkhou Vahid

    2009-01-01

    Full Text Available Abstract Background Analysis and design of complex systems benefit from mathematically tractable models, which are often derived by approximating a nonlinear system with an effective equivalent linear system. Biological oscillators with coupled positive and negative feedback loops, termed hysteresis or relaxation oscillators, are an important class of nonlinear systems and have been the subject of comprehensive computational studies. Analytical approximations have identified criteria for sustained oscillations, but have not linked the observed period and phase to compact formulas involving underlying molecular parameters. Results We present, to our knowledge, the first analytical expressions for the period and amplitude of a classic model for the animal circadian clock oscillator. These compact expressions are in good agreement with numerical solutions of corresponding continuous ODEs and for stochastic simulations executed at literature parameter values. The formulas are shown to be useful by permitting quick comparisons relative to a negative-feedback represillator oscillator for noise (10× less sensitive to protein decay rates, efficiency (2× more efficient, and dynamic range (30 to 60 decibel increase. The dynamic range is enhanced at its lower end by a new concentration scale defined by the crossing point of the activator and repressor, rather than from a steady-state expression level. Conclusion Analytical expressions for oscillator dynamics provide a physical understanding for the observations from numerical simulations and suggest additional properties not readily apparent or as yet unexplored. The methods described here may be applied to other nonlinear oscillator designs and biological circuits.

  4. A daily oscillation in the fundamental frequency and amplitude of harmonic syllables of zebra finch song.

    Directory of Open Access Journals (Sweden)

    William E Wood

    Full Text Available Complex motor skills are more difficult to perform at certain points in the day (for example, shortly after waking, but the daily trajectory of motor-skill error is more difficult to predict. By undertaking a quantitative analysis of the fundamental frequency (FF and amplitude of hundreds of zebra finch syllables per animal per day, we find that zebra finch song follows a previously undescribed daily oscillation. The FF and amplitude of harmonic syllables rises across the morning, reaching a peak near mid-day, and then falls again in the late afternoon until sleep. This oscillation, although somewhat variable, is consistent across days and across animals and does not require serotonin, as animals with serotonergic lesions maintained daily oscillations. We hypothesize that this oscillation is driven by underlying physiological factors which could be shared with other taxa. Song production in zebra finches is a model system for studying complex learned behavior because of the ease of gathering comprehensive behavioral data and the tractability of the underlying neural circuitry. The daily oscillation that we describe promises to reveal new insights into how time of day affects the ability to accomplish a variety of complex learned motor skills.

  5. Dynamics of a nonlinear oscillator and a low-amplitude frequency-modulated wave

    International Nuclear Information System (INIS)

    White, R.C.; McNamara, B.

    1987-01-01

    When the frequency of a small amplitude plane wave is varied slowly over a large enough bandwidth and this wave is incident upon a nonlinear oscillator, the resulting perturbed motion can exhibit stochastic behavior. Applications for the study of this system are wide and varied. We apply Lie-transform perturbation theory and mapping techniques in the analysis of the stochastic transition and the consequent induced diffusion in the oscillator phase space. A constant of the motion to the first order in a peturbation parameter is calculated, a mapping approximation is derived, and diffusion calculations from the mapping are given. Copyright 1987 Academic Press, Inc

  6. Amplitudes of solar-like oscillations: Constraints from red giants in open clusters observed by Kepler

    DEFF Research Database (Denmark)

    Stello, Dennis; Huber, Daniel; Kallinger, Thomas

    2011-01-01

    implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained......Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition...... with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective...

  7. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  8. Electronically Tunable Quadrature Sinusoidal Oscillator with Equal Output Amplitudes during Frequency Tuning Process

    Directory of Open Access Journals (Sweden)

    Den Satipar

    2017-01-01

    Full Text Available A new configuration of voltage-mode quadrature sinusoidal oscillator is proposed. The proposed oscillator employs two voltage differencing current conveyors (VDCCs, two resistors, and two grounded capacitors. In this design, the use of multiple/dual output terminal active building block is not required. The tuning of frequency of oscillation (FO can be done electronically by adjusting the bias current of active device without affecting condition of oscillation (CO. The electronic tuning can be done by controlling the bias current using a digital circuit. The amplitude of two sinusoidal outputs is equal when the frequency of oscillation is tuned. This makes the sinusoidal output voltages meet good total harmonic distortions (THD. Moreover, the proposed circuit can provide the sinusoidal output current with high impedance which is connected to external load or to another circuit without the use of buffer device. To confirm that the oscillator can generate the quadrature sinusoidal output signal, the experimental results using VDCC constructed from commercially available ICs are also included. The experimental results agree well with theoretical anticipation.

  9. Mitigation of Power System Oscillation Caused by Wind Power Fluctuation

    DEFF Research Database (Denmark)

    Su, Chi; Hu, Weihao; Chen, Zhe

    2013-01-01

    oscillation mitigation controllers are proposed and compared. A model of direct-drive-full-convertor-based wind farm connected to the IEEE 10-machine 39-bus system is adopted as the test system. The calculations and simulations are conducted in DIgSILENT PowerFactory 14.0. Results are presented to show......Wind power is increasingly integrated in modern power grids, which brings new challenges to the power system operation. Wind power is fluctuating because of the uncertain nature of wind, whereas wind shear and tower shadow effects also cause periodic fluctuations. These may lead to serious forced...... oscillation when the frequencies of the periodic fluctuations are close to the natural oscillation frequencies of the connected power system. By using modal analysis and time-domain simulations, this study studies the forced oscillation caused by the wind shear and tower shadow effects. Three forced...

  10. Output-Feedback Control of a Chaotic MEMS Resonator for Oscillation Amplitude Enhancement

    Directory of Open Access Journals (Sweden)

    Alexander Jimenez-Triana

    2014-01-01

    Full Text Available The present work addresses the problem of chaos control in an electrostatic MEMS resonator by using an output-feedback control scheme. One of the unstable orbits immersed in the chaotic attractor is stabilized in order to produce a sustained oscillation of the movable plate composing the microstructure. The orbit is carefully chosen so as to produce a high amplitude oscillation. This approach allows the enhancement of oscillation amplitude of the resonator at a reduced control effort, since the unstable orbit already exists in the system and it is not necessary to spend energy to create it. Realistic operational conditions of the MEMS are considered including parametric uncertainties in the model and constraints due to the difficulty in measuring the speed of the plates of the microstructure. A control law is constructed recursively by using the technique of backstepping. Finally, numerical simulations are carried out to confirm the validity of the developed control scheme and to demonstrate the effect of controlling orbits immersed in the chaotic attractor.

  11. Recurring events. Power oscillations in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    During almost two decennia, the recurrence of power oscillations in domestic and foreign BWRs has represented a challenge to one important design safety criterion, even if the occurred power oscillations have not resulted in conditions exceeding the specified fuel design limits. Several reasons may explain the recurrence. One reason has been a worldwide trend for an aggressive fuel economy optimisation, which from time to another has resulted in reduced core stability margins. Another reason relates to the analytical tools for prediction of core stability. These tools were scarce during many years. A third aspect is that adequate and reliable core monitors were not early available for installation at the plants. Issues related to power oscillations have during many years received attention from both the regulatory body and utilities, and from the fuel manufacturers. The present report provides examples of important corrective actions which support this conclusion. However, recent events indicate that the complex issue of BWR power oscillations has not been suitably solved, at least domestically.

  12. Recurring events. Power oscillations in BWRs

    International Nuclear Information System (INIS)

    2000-12-01

    During almost two decennia, the recurrence of power oscillations in domestic and foreign BWRs has represented a challenge to one important design safety criterion, even if the occurred power oscillations have not resulted in conditions exceeding the specified fuel design limits. Several reasons may explain the recurrence. One reason has been a worldwide trend for an aggressive fuel economy optimisation, which from time to another has resulted in reduced core stability margins. Another reason relates to the analytical tools for prediction of core stability. These tools were scarce during many years. A third aspect is that adequate and reliable core monitors were not early available for installation at the plants. Issues related to power oscillations have during many years received attention from both the regulatory body and utilities, and from the fuel manufacturers. The present report provides examples of important corrective actions which support this conclusion. However, recent events indicate that the complex issue of BWR power oscillations has not been suitably solved, at least domestically

  13. Power Oscillations Damping in DC Microgrids

    DEFF Research Database (Denmark)

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang

    2016-01-01

    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transi...... of the proposed control scheme is verified using hardware-in-the-loop (HIL) simulations carried out in OPAL-RT technologies....

  14. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    International Nuclear Information System (INIS)

    Geld, C.W.M. van der; Berg, R. van de; Peukert, P.

    2009-01-01

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R m √(ρL/σ) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 ± 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R 0 , and C is √12, while for attached boiling bubbles C is found to amount 1.9√12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  15. A new method for measuring the amplitude of de Haas-van Alphen oscillations

    International Nuclear Information System (INIS)

    Wilde, J. de; Meredith, D.J.

    1975-01-01

    Quantum (dHvA) oscillations in the diamagnetic susceptibility of a metal at low temperatures are usually studied by a torque balance or by the field modulation technique of Shoenberg and Stiles. A new method of measuring dHvA amplitudes in indium using a superconducting flux transformer and a ferrite core flux gate magnetometer is reported. The magnitude of the magnetization is typically 10 -6 T at 1K which is considerably greater than the minimum detectable signal of the magnetometer, and shielding the sensor from the magnetizing field of up to 4T is the main experimental problem. (Auth.)

  16. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  17. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  18. Justification of the averaging method for parabolic equations containing rapidly oscillating terms with large amplitudes

    International Nuclear Information System (INIS)

    Levenshtam, V B

    2006-01-01

    We justify the averaging method for abstract parabolic equations with stationary principal part that contain non-linearities (subordinate to the principal part) some of whose terms are rapidly oscillating in time with zero mean and are proportional to the square root of the frequency of oscillation. Our interest in the exponent 1/2 is motivated by the fact that terms proportional to lower powers of the frequency have no influence on the average. For linear equations of the same type, we justify an algorithm for the study of the stability of solutions in the case when the stationary averaged problem has eigenvalues on the imaginary axis (the critical case)

  19. Power Oscillations Damping in DC Microgrids

    OpenAIRE

    Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang; Sheshyekani, Keyhan; Guerrero, Josep M.

    2016-01-01

    This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to a...

  20. Critical Power Response to Power Oscillations in Boiling Water Reactors

    International Nuclear Information System (INIS)

    Farawila, Yousef M.; Pruitt, Douglas W.

    2003-01-01

    The response of the critical power ratio to boiling water reactor (BWR) power oscillations is essential to the methods and practice of mitigating the effects of unstable density waves. Previous methods for calculating generic critical power response utilized direct time-domain simulations of unstable reactors. In this paper, advances in understanding the nature of the BWR oscillations and critical power phenomena are combined to develop a new method for calculating the critical power response. As the constraint of the reactor state - being at or slightly beyond the instability threshold - is removed, the new method allows the calculation of sensitivities to different operation and design parameters separately, and thus allows tighter safety margins to be used. The sensitivity to flow rate and the resulting oscillation frequency change are given special attention to evaluate the extension of the oscillation 'detect-and-suppress' methods to internal pump plants where the flow rate at natural circulation and oscillation frequency are much lower than jet pump plants

  1. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    Science.gov (United States)

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  2. Nth-powered amplitude squeezing in fan-states

    CERN Document Server

    Duc, T M

    2002-01-01

    Squeezing properties of the Hillery-type N-powered amplitude are investigated in the fan-state vertical bar xi; 2k, f> sub F which is linearly superposed by 2k 2k-quantum nonlinear coherent states in the phase-locked manner. The general expression of squeezing is derived analytically for arbitrary xi, k, N and f showing a multi-directional character of squeezing. For a given k, squeezing may appear to the even power N=2k if f ident to 1 and N>=2k if f not =1 and the number of directions along with the Nth-powered amplitude is squeezed is exactly equal to N, for both f ident to 1 (the light field) and f not =1 (the vibrational motion of the trapped ion). Discussions are also given elucidating the qualitative difference between the cases of f ident to 1 and f not =1.

  3. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    Energy Technology Data Exchange (ETDEWEB)

    Geld, C.W.M. van der; Berg, R. van de; Peukert, P. [Eindhoven University of Technology, Eindhoven (Netherlands). Faculty of Mechanical Engineering], e-mail: C.W.M._v.d.Geld@tue.nl

    2009-07-01

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R{sup m} {radical}({rho}L/{sigma}) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 {+-} 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R{sub 0}, and C is {radical}12, while for attached boiling bubbles C is found to amount 1.9{radical}12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  4. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-03-15

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  5. Reducing pressure oscillations in discrete fluid power systems

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2016-01-01

    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article investi...... investigates how cylinder pressure oscillations may be reduced by shaping the valve opening trajectory without the need for closed loop pressure feedback. Furthermore the energy costs of reducing pressure oscillations are investigated....

  6. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    International Nuclear Information System (INIS)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-01-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh–Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h −1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h) −1 (improved by 1

  7. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    Atabak, Mehrdad; Unverdi, Ozhan; Ozer, H. Ozguer; Oral, Ahmet

    2009-01-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  8. Analysis of the spectrum distribution of oscillation amplitudes of the concrete mix at shock vibration molding

    Directory of Open Access Journals (Sweden)

    Sharapov Rashid

    2017-01-01

    Full Text Available In the production of concrete structures widespread shaking tables of various designs. The effectiveness of vibroforming concrete items largely depends on the choice of rational modes of vibroeffect to the compacting mixture. The article discusses the propagation of a wave packet in the concrete mixture under shock and vibration molding. Studies have shown that the spectrum of a wave packet contains a large number of harmonics. The main parameter influencing the amplitude-frequency spectrum is the stiffness of elastic gaskets between mold and forming machine vibrating table. By varying the stiffness of the elastic gaskets can widely change the spectrum of the oscillations propagating in the concrete mix. Thus, it is possible to adjust the intensity of the process of vibroforming.

  9. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  10. Remotely powered and controlled EAPap actuator by amplitude modulated microwaves

    International Nuclear Information System (INIS)

    Yang, Sang Yeol; Mahadeva, Suresha K; Kim, Jaehwan

    2013-01-01

    This paper reports on a remotely powered and controlled Electro-Active Paper (EAPap) actuator without onboard controller using amplitude modulated microwaves. A rectenna is a key element for microwave power transmission that converts microwaves into dc power through coupling and rectification. In this study, the concept of a remotely controlled and powered EAPap actuator is proposed by means of modulating microwaves with a control signal and demodulating it through the rectenna rectification. This concept is applied to a robust EAPap actuator, namely cellulose–polypyrrole–ionic liquid (CPIL) EAPap. Details of fabrication and characterization of the rectenna and the CPIL-EAPap actuator are explained. Also, the charge accumulation problem of the actuator is explained and resolved by connecting an additional resistor. Since this idea can eliminate the onboard controller by supplying the operating signal through modulation, a compact and lightweight actuator can be achieved, which is useful for biomimetic robots and remotely driven actuators. (technical note)

  11. eAMI: A Qualitative Quantification of Periodic Breathing Based on Amplitude of Oscillations

    Science.gov (United States)

    Fernandez Tellez, Helio; Pattyn, Nathalie; Mairesse, Olivier; Dolenc-Groselj, Leja; Eiken, Ola; Mekjavic, Igor B.; Migeotte, P. F.; Macdonald-Nethercott, Eoin; Meeusen, Romain; Neyt, Xavier

    2015-01-01

    Study Objectives: Periodic breathing is sleep disordered breathing characterized by instability in the respiratory pattern that exhibits an oscillatory behavior. Periodic breathing is associated with increased mortality, and it is observed in a variety of situations, such as acute hypoxia, chronic heart failure, and damage to respiratory centers. The standard quantification for the diagnosis of sleep related breathing disorders is the apnea-hypopnea index (AHI), which measures the proportion of apneic/hypopneic events during polysomnography. Determining the AHI is labor-intensive and requires the simultaneous recording of airflow and oxygen saturation. In this paper, we propose an automated, simple, and novel methodology for the detection and qualification of periodic breathing: the estimated amplitude modulation index (eAMI). Patients or Participants: Antarctic cohort (3,800 meters): 13 normal individuals. Clinical cohort: 39 different patients suffering from diverse sleep-related pathologies. Measurements and Results: When tested in a population with high levels of periodic breathing (Antarctic cohort), eAMI was closely correlated with AHI (r = 0.95, P Dolenc-Groselj L, Eiken O, Mekjavic IB, Migeotte PF, Macdonald-Nethercott E, Meeusen R, Neyt X. eAMI: a qualitative quantification of periodic breathing based on amplitude of oscillations. SLEEP 2015;38(3):381–389. PMID:25581914

  12. Application of modified homotopy perturbation method and amplitude frequency formulation to strongly nonlinear oscillators

    Directory of Open Access Journals (Sweden)

    seyd ghasem enayati

    2017-01-01

    Full Text Available In this paper, two powerful analytical methods known as modified homotopy perturbation method and Amplitude Frequency Formulation called respectively MHPM and AFF, are introduced to derive approximate solutions of a system of ordinary differential equations appear in mechanical applications. These methods convert a difficult problem into a simple one, which can be easily handled. The obtained solutions are compared with numerical fourth order runge-kutta method to show the applicability and accuracy of both MHPM and AFF in solving this sample problem. The results attained in this paper confirm the idea that MHPM and AFF are powerful mathematical tools and they can be applied to linear and nonlinear problems.

  13. Quasi-periodic bifurcations and “amplitude death” in low-dimensional ensemble of van der Pol oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emelianova, Yu.P., E-mail: yuliaem@gmail.com [Department of Electronics and Instrumentation, Saratov State Technical University, Polytechnicheskaya 77, Saratov 410054 (Russian Federation); Kuznetsov, A.P., E-mail: apkuz@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Turukina, L.V., E-mail: lvtur@rambler.ru [Kotel' nikov' s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, Zelyenaya 38, Saratov 410019 (Russian Federation); Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2014-01-10

    The dynamics of the four dissipatively coupled van der Pol oscillators is considered. Lyapunov chart is presented in the parameter plane. Its arrangement is discussed. We discuss the bifurcations of tori in the system at large frequency detuning of the oscillators. Here are quasi-periodic saddle-node, Hopf and Neimark–Sacker bifurcations. The effect of increase of the threshold for the “amplitude death” regime and the possibilities of complete and partial broadband synchronization are revealed.

  14. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown that t...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  15. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography-measured blood flow in fingertips

    International Nuclear Information System (INIS)

    Sagaidachnyi, A A; Skripal, A V; Fomin, A V; Usanov, D A

    2014-01-01

    It is well established that skin temperature oscillations in fingertips coexist with blood flow oscillations and there is a certain correlation between them. At the same time, the reasons for differences in waveform and the delay between the blood flow and temperature oscillations are far from being fully understood. In this study we determine the relationships between spectral components of the blood flow and temperature oscillations in fingertips, and we ascertain the frequency dependences of amplitude attenuation and delay time for the temperature oscillations. The blood flow oscillations were considered as a source of thermal waves propagating from micro-vessels towards the skin surface and manifesting as temperature oscillations. The finger temperature was measured by infrared thermography and blood flow was assessed by photoplethysmography for ten healthy subjects. The time–frequency analysis of oscillations was based on the Morlet wavelet transform. The frequency dependences of delay time and amplitude attenuation in temperature compared with blood flow oscillations have been determined in endothelial (0.005–0.02 Hz) and neurogenic (0.02–0.05 Hz) frequency bands using the wavelet spectra. We approximated the experimental frequency dependences by equations describing thermal wave propagation through the medium and taking into account the thermal properties and thickness of a tissue. Results of analysis show that with the increase of frequency f the delay time of temperature oscillations decreases inversely proportional to f 1/2 , and the attenuation of the amplitude increases directly proportional to exp f 1/2 . Using these relationships allows us to increase correlation between the processed temperature oscillations and blood flow oscillations from 0.2 to 0.7 within the frequency interval 0.005–0.05 Hz. The established experimental and theoretical relationships clarify an understanding of interrelation between the dynamics of blood flow and skin

  16. Power oscillator in the Tokamaks training

    International Nuclear Information System (INIS)

    Valencia A, R.

    1994-01-01

    This work reports the results obtained from the cleaning of the Novillo Tokamak Chamber, using an A.F. Taylor Discharge Cleaning (TDC) in H 2 with a power oscillator of 20 k W and 17.5 k Hz. The plasma temperature in the discharge was of one electron-volt (Te ≅ 1 eV) with a moderate electron density n e ≅ 4 x 10 11 cm -3 . This discharge cleaning was found helpful in the removal of C and O via the formation of pumping compounds such as CH 4 and H 2 O. A residual gas analyzer was used to monitor the partial pressure of these and other compounds, indicating removal rates as high as two monolayers/hour at the beginning of the discharge. A value of Z eff = 3 was estimated for a discharge of 7 k A after conditioning. (Author)

  17. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing

    Science.gov (United States)

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950

  18. Non-linear Relationship between BOLD Activation and Amplitude of Beta Oscillations in the Supplementary Motor Area during Rhythmic Finger Tapping and Internal Timing.

    Science.gov (United States)

    Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A

    2017-01-01

    Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.

  19. Development of copper bromide laser master oscillator power ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at ... The spectral distribution of power at .... It is evident from the voltage waveforms that the breakdown voltage drops.

  20. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  1. Investigation of power oscillation mechanisms based on noise analysis at Forsmark-1 BWR

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1996-01-01

    Noise analysis has been performed for stability test data collected during reactor start-up in January 1989 at the boiling water reactor (BWR) Forsmark unit 1. A unique instrumentation to measure local coolant flow in this reactor allowed investigation of dynamic interactions between neutron flux and coolant flow noise signals at different radial positions in the core. The causal relationship for these signals was evaluated based on a method called signal transmission path (STP) analysis with the aim of identifying the principal mechanism of power oscillations in this reactor. The results of the present study indicated that large amplitude power oscillations were induced by two instability mechanisms concurrent in the core. The first is the global void reactivity feedback effect which played the most significant role to power oscillations at a resonant frequency of about 0.53 Hz. The second is the thermal-hydraulics coupling with neutron kinetics, inducing resonant oscillations at about 0.45 Hz. The latter was found to be active only in a certain core region. A peculiar phenomenon of amplitude modulations observed in some local power range monitor (LPRM) signals was also examined. It was interpreted to occur as the consequence of these two resonant power oscillations, the frequencies of which lie close to each other. The noise analysis technique applied in the present study is expected to be useful to get a deeper understanding of the power oscillation mechanism which is active in the reactor under evaluation. The technique may be applicable to BWRs with instruments to measure local channel flow together with in-core neutron detectors. (Author)

  2. Stopping power. Projectile and target modeled as oscillators

    International Nuclear Information System (INIS)

    Stevanovic, N.; Nikezic, D.

    2005-01-01

    In this Letter the collision of two quantum harmonic oscillators was considered. The oscillators interact through the Coulomb interaction. Stopping power of projectile was calculated assuming that both, target and projectile may be excited. It has been shown that the frequency of the projectile oscillation, ω p influences on stopping power, particularly in the region of Bragg peak. If, ω p ->0 is substitute in the expression for stopping power derived in this Letter, then it comes to the form when the projectile has been treated as point like charged particle

  3. Qualitative analysis of nonlinear power oscillation in NSRR

    International Nuclear Information System (INIS)

    Suzudo, T.; Shinohara, Y.

    1994-01-01

    The performance of the automatic control system of NSRR is investigated experimentally and theoretically in connection with the power oscillation. A subsystem in the automatic control system relevant to the onset of the power oscillation is determined, and it is found that the subsystem possesses nonlinearity. Although the detailed mechanism of the nonlinearity cannot be identified because of lack of signals measured inside the subsystem, the input and output signals imply that the nonlinearity is a sort of backlash. A simplified reactor dynamic model with backlash simulates the dynamics of the NSRR power oscillation. (Author)

  4. Unified Power Flow Controller Placement to Improve Damping of Power Oscillations

    OpenAIRE

    M. Salehi; A. A. Motie Birjandi; F. Namdari

    2015-01-01

    Weak damping of low frequency oscillations is a frequent phenomenon in electrical power systems. These frequencies can be damped by power system stabilizers. Unified power flow controller (UPFC), as one of the most important FACTS devices, can be applied to increase the damping of power system oscillations and the more effect of this controller on increasing the damping of oscillations depends on its proper placement in power systems. In this paper, a technique based on controllability is pro...

  5. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  6. Study of the phase delay in the amplitude-modulated harmonic oscillator

    International Nuclear Information System (INIS)

    Krupska, Aldona; Krupski, Marcin

    2003-01-01

    The delayed response of a damped harmonic oscillator (RLC circuit) to a slow periodic disturbance is presented. This communication is supplementary to the paper published recently (Krupska et al 2001 Eur. J. Phys. 22 133-8)

  7. Power oscillation and stability in water cooled reactors

    International Nuclear Information System (INIS)

    Por, G.; Kis, G.

    1998-01-01

    Periodic oscillation in measured temperature fluctuation was observed near to surface of a heated rod in certain heat transfer range. The frequency of the peak found in power spectral density of temperature fluctuation and period estimated from the cross correlation function for two axially placed thermocouples change linearly with linear energy (or surface heat) production. It was concluded that a resonance of such surface (inlet) temperature oscillation with the pole of the reactor transfer function can be responsible for power oscillation in BWR and PWR, thus instability is not solely due to reactor transfer function. (author)

  8. Development of copper bromide laser master oscillator power

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at 110 W average power is reported. The spectral distribution of power at green (510.6 nm) and yellow (578.2 nm) components in the output of a copper bromide laser is studied as a function of ...

  9. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, B. [Institut de Physique Nucleaire, 91 - Orsay (France). Div. de Physique Theorique

    1997-12-31

    It is shown that the high precision dN/dt UA4/2 data at {radical}s = 541 GeV are compatible with the presence of Auberson - Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 x 10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. The necessity of specific future experiments in the crucially interesting TeV region of energy - at Tevatron, RHIC and LHC - is underlined. (author) 8 refs.

  10. X-ray determination of mean square amplitudes of lattice oscillations in compounds with ZnS structure

    International Nuclear Information System (INIS)

    Deus, P.; Schneider, H.A.; Voland, U.

    1980-01-01

    A general method of determination of the mean square amplitudes of lattice oscillations (MSA) for crystals with sphalerite structure is described and applied to InP. The linearity of suitable functions of the measured integral BRAGG intensities of sin 2 theta/lambda 2 is used for the verification of the parameters selected for the correction of extinction and DTS. In this way the accuracy of the results is increased. The MSAs of the InP-sublattices are evaluated. According to theoretical expectations the MSAs of the P-sublattice are larger because of the greater contributions of optical phonons. (author)

  11. Xenon spatial oscillation in nuclear power reactors:an analytical approach through non linear modal analysis

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2005-01-01

    It was proponed recently to apply an extension of Lyapunov's first method to the non-linear regime, known as non-linear modal analysis (NMA), to the study of space-time problems in nuclear reactor kinetics, nuclear power plant dynamics and nuclear power plant instrumentation and control(1). The present communication shows how to apply NMA to the study of Xenon spatial oscillations in large nuclear reactors. The set of non-linear modal equations derived by J. Lewins(2) for neutron flux, Xenon concentration and Iodine concentration are discussed, and a modified version of these equations is taken as a starting point. Using the methods of singular perturbation theory a slow manifold is constructed in the space of mode amplitudes. This allows the reduction of the original high dimensional dynamics to a low dimensional one. It is shown how the amplitudes of the first mode for neutron flux field, temperature field and concentrations of Xenon and Iodine fields can have a stable steady state value while the corresponding amplitudes of the second mode oscillates in a stable limit cycle. The extrapolated dimensions of the reactor's core are used as bifurcation parameters. Approximate analytical formulae are obtained for the critical values of this parameters( below which the onset of oscillations is produced), for the period and for the amplitudes of the above mentioned oscillations. These results are applied to the discussion of neutron flux and temperature excursions in critical locations of the reactor's core. The results of NMA can be validated from the results obtained applying suitable computer codes, using homogenization theory(3) to link the complex heterogeneous model of the codes with the simplified mathematical model used for NMA

  12. Power spectrum of an injection-locked Josephson oscillator

    International Nuclear Information System (INIS)

    Stancampiano, C.V.; Shapiro, S.

    1975-01-01

    Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf

  13. Scale-free amplitude modulation of neuronal oscillations tracks comprehension of accelerated speech

    NARCIS (Netherlands)

    Borges, Ana Filipa Teixeira; Giraud, Anne Lise; Mansvelder, Huibert D.; Linkenkaer-Hansen, Klaus

    2018-01-01

    Speech comprehension is preserved up to a threefold acceleration, but deteriorates rapidly at higher speeds. Current models posit that perceptual resilience to accelerated speech is limited by the brain’s ability to parse speech into syllabic units using δ/θ oscillations. Here, we investigated

  14. Self-Oscillating Wireless Power Transfer Systems

    OpenAIRE

    Tretyakov, Sergei A.; Simovski, Constantin R.; Valagiannopoulos, Constantinos A.; Ra'di, Younes

    2017-01-01

    Conventional wireless power transfer systems consist of a microwave power generator and transmitter located at one place and a microwave power receiver located at a distance. Here we show that wireless power transfer can be realized as a single distributed microwave generator with an over-the-air feedback, so that the microwave power is generated directly at the place where the energy needs to be delivered. We demonstrate that the use of this paradigm increases efficiency and dramatically red...

  15. A method of reactor power decrease by 2DOF control system during BWR power oscillation

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Suzuki, Katsuo

    1998-09-01

    Occurrence of power oscillation events caused by void feedback effects in BWRs operated at low-flow and high-power condition has been reported. After thoroughly examining these events, BWRs have been equipped with the SRI (Selected Rod Insertion) system to avoid the power oscillation by decreasing the power under such reactor condition. This report presents a power control method for decreasing the reactor power stably by a two degree of freedom (2DOF) control. Performing a numerical simulation by utilizing a simple reactor dynamics model, it is found that the control system designed attains a satisfactory control performance of power decrease from a viewpoint of setting time and oscillation. (author)

  16. A Novel Oscillating Rectenna for Wireless Microwave Power Transmission

    Science.gov (United States)

    McSpadden, J. O.; Dickinson, R. M.; Fan, L.; Chang, K.

    1998-01-01

    A new concept for solid state wireless microwave power transmission is presented. A 2.45 GHz rectenna element that was designed for over 85% RF to dc power conversion efficiency has been used to oscillate at 3.3 GHz with an approximate 1% dc to RF conversion efficiency.

  17. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  18. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Directory of Open Access Journals (Sweden)

    Zong Weikai

    2017-01-01

    Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  19. Power oscillation suppression by robust SMES in power system with large wind power penetration

    International Nuclear Information System (INIS)

    Ngamroo, Issarachai; Cuk Supriyadi, A.N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions

  20. Power oscillation suppression by robust SMES in power system with large wind power penetration

    Science.gov (United States)

    Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori

    2009-01-01

    The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.

  1. Electron diode oscillators for high-power RF generation

    International Nuclear Information System (INIS)

    Humphries, S.

    1989-01-01

    Feedback oscillators have been used since the invention of the vacuum tube. This paper describes the extension of these familiar circuits to the regime of relativistic electron beam diodes. Such devices have potential application for the generation of high power RF radiation in the range 50-250 MHz, 1-10 GW with 20-60% conversion efficiency. This paper reviews the theory of the oscillator and the results of a design study. Calculations for the four-electrode diode with EGUN and EBQ show that good modulations of 30 kA electron beam at 600 kV can be achieved with moderate field stress on the electrodes. Conditions for oscillation have been studied with an in-house transmission line code. A design for a 7.5 GW oscillator at 200 MHz with 25% conversion efficiency is presented

  2. Evaluation of Residue Based Power Oscillation Damping Control of Inter-area Oscillations for Static Power Sources

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Iov, Florin

    2012-01-01

    Low frequency inter-area oscillations are known stability issue of large interconnected electrical grids. It was demonstrated that additional control loop can be applied for static power sources, like FACTS, HVDC or modern Wind Power Plants, to modulate their power output and successfully attenuate......, it is proposed to give more attention to additional indices like transfer function zero location and interactions between mode of interest and other system dynamics. Consequently, additional rules are proposed for residue based damping control design....

  3. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  4. Braess's paradox in oscillator networks, desynchronization and power outage

    International Nuclear Information System (INIS)

    Witthaut, Dirk; Timme, Marc

    2012-01-01

    Robust synchronization is essential to ensure the stable operation of many complex networked systems such as electric power grids. Increasing energy demands and more strongly distributing power sources raise the question of where to add new connection lines to the already existing grid. Here we study how the addition of individual links impacts the emergence of synchrony in oscillator networks that model power grids on coarse scales. We reveal that adding new links may not only promote but also destroy synchrony and link this counter-intuitive phenomenon to Braess's paradox known for traffic networks. We analytically uncover its underlying mechanism in an elementary grid example, trace its origin to geometric frustration in phase oscillators, and show that it generically occurs across a wide range of systems. As an important consequence, upgrading the grid requires particular care when adding new connections because some may destabilize the synchronization of the grid—and thus induce power outages. (paper)

  5. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  6. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    International Nuclear Information System (INIS)

    Minati, Ludovico

    2014-01-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties

  7. Age, Amplitude of Accommodation and Near Addition Power of Adult ...

    African Journals Online (AJOL)

    When an individual changes fixa on from a distance to a near fixa on target, the op cal system of the eye has the ability to increase its focusing power. This enables the eye to bring the image of the object to a clear focus on the re na. This ability is referred to as accommoda on1 - 3 and the maximum amount of ...

  8. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  9. Damping of Low Frequency Power System Oscillations with Wind Power Plants

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz

    of wind power plants on power system low frequency oscillations and identify methods and limitations for potential contribution to the damping of such oscillations. Consequently, the first part of the studies focuses on how the increased penetration of wind power into power systems affects their natural...... oscillatory performance. To do so, at first a generic test grid displaying a complex inter-area oscillation pattern is introduced. After the evaluation of the test grid oscillatory profile for various wind power penetration scenarios, it is concluded that full-converter based wind power plant dynamics do......-synchronous power source. The main body of the work is devoted to the damping control design for wind power plants with focus on the impact of such control on the plant operation. It can be expected that the referred impact is directly proportional to the control effort, which for power processing devices should...

  10. Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials.

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín-Vázquez

    Full Text Available Fluctuations in successive waves of oscillatory local field potentials (LFPs reflect the ongoing processing of neuron populations. However, their amplitude, polarity and synaptic origin are uncertain due to the blending of electric fields produced by multiple converging inputs, and the lack of a baseline in standard AC-coupled recordings. Consequently, the estimation of underlying currents by laminar analysis yields spurious sequences of inward and outward currents. We devised a combined analytical/experimental approach that is suitable to study laminated structures. The approach was essayed on an experimental oscillatory LFP as the Schaffer-CA1 gamma input in anesthetized rats, and it was verified by parallel processing of model LFPs obtained through a realistic CA1 aggregate of compartmental units. This approach requires laminar LFP recordings and the isolation of the oscillatory input from other converging pathways, which was achieved through an independent component analysis. It also allows the spatial and temporal components of pathway-specific LFPs to be separated. While reconstructed Schaffer-specific LFPs still show spurious inward/outward current sequences, these were clearly stratified into distinct subcellular domains. These spatial bands guided the localized delivery of neurotransmitter blockers in experiments. As expected, only Glutamate but not GABA blockers abolished Schaffer LFPs when applied to the active but not passive subcellular domains of pyramidal cells. The known chemical nature of the oscillatory LFP allowed an empirical offset of the temporal component of Schaffer LFPs, such that following reconstruction they yield only sinks or sources at the appropriate sites. In terms of number and polarity, some waves increased and others decreased proportional to the concomitant inputs in native multisynaptic LFPs. Interestingly, the processing also retrieved the initiation time for each wave, which can be used to discriminate

  11. Cutting-Edge High-Power Ultrafast Thin Disk Oscillators

    Directory of Open Access Journals (Sweden)

    Thomas Südmeyer

    2013-04-01

    Full Text Available A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40 μJ pulses directly from the oscillator. In addition, another major milestone was recently achieved, with the demonstration of a TDL with nearly bandwidth-limited 96-fs long pulses. The progress achieved in terms of pulse duration of such sources enabled the first measurement of the carrier-envelope offset frequency of a modelocked TDL, which is the first key step towards full stabilization of such a source. We will present the key elements that enabled these latest results, as well as an outlook towards the next scaling steps in average power, pulse energy and pulse duration of such sources. These cutting-edge sources will enable exciting new applications, and open the door to further extending the current performance milestones.

  12. Power system distributed oscilation detection based on Synchrophasor data

    Science.gov (United States)

    Ning, Jiawei

    Along with increasing demand for electricity, integration of renewable energy and deregulation of power market, power industry is facing unprecedented challenges nowadays. Within the last couple of decades, several serious blackouts have been taking place in United States. As an effective approach to prevent that, power system small signal stability monitoring has been drawing more interests and attentions from researchers. With wide-spread implementation of Synchrophasors around the world in the last decade, power systems real-time online monitoring becomes much more feasible. Comparing with planning study analysis, real-time online monitoring would benefit control room operators immediately and directly. Among all online monitoring methods, Oscillation Modal Analysis (OMA), a modal identification method based on routine measurement data where the input is unmeasured ambient excitation, is a great tool to evaluate and monitor power system small signal stability. Indeed, high sampling Synchrophasor data around power system is fitted perfectly as inputs to OMA. Existing methods in OMA for power systems are all based on centralized algorithms applying at control centers only; however, with rapid growing number of online Synchrophasors the computation burden at control centers is and will be continually exponentially expanded. The increasing computation time at control center compromises the real-time feature of online monitoring. The communication efforts between substation and control center will also be out of reach. Meanwhile, it is difficult or even impossible for centralized algorithms to detect some poorly damped local modes. In order to avert previous shortcomings of centralized OMA methods and embrace the new changes in the power systems, two new distributed oscillation detection methods with two new decentralized structures are presented in this dissertation. Since the new schemes brought substations into the big oscillation detection picture, the proposed

  13. BWR power oscillation evaluation methodologies in core design

    International Nuclear Information System (INIS)

    Hotta, Akitoshi

    1995-01-01

    At the initial stage of BWR development, the power oscillation due to the nuclear-thermal interaction originated in random boiling phenomena and nuclear void feedback was feared. But it was shown that under the high pressure condition in the normal operation of recent commercial BWRs, the core is in very stable state. However, power oscillation events have been observed in actual machines, and it is necessary to do the stability evaluation that sufficiently reflects the detailed operation conditions of actual plants. As the cause of power oscillation events, the instability of control system and nuclear-thermal coupling instability are important, and their mechanisms are explained. As the model for analyzing the stability of BWR core, the nuclear-thermal coupling model in frequency domain is the central existence. As the information for the design, the parameters of fuel assemblies, and the nuclear parameters and the thermohydraulic parameters of cores are enumerated. LAPUR-TSI is a nuclear-thermal coupling model. The analysis system in the software of Tokyo Electric Power Co. is outlined, and the analysis model was verified. (K.I.)

  14. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Decreases in metabolites and increased motor-related, but decreased sensory-related activation of the sensorimotor cortex (SMC have been observed in patients with cervical myelopathy (CM using advanced MRI techniques. However, the nature of intrinsic neuronal activity in the SMC, and the relationship between cerebral function and structural damage of the spinal cord in patients with CM are not fully understood. The purpose of this study was to assess intrinsic neuronal activity by calculating the regional amplitude of low frequency fluctuations (ALFF using resting-state functional MRI (rs-fMRI, and correlations with clinical and imaging indices. Nineteen patients and 19 age- and sex-matched healthy subjects underwent rs-fMRI scans. ALFF measurements were performed in the SMC, a key brain network likely to impaired or reorganized patients with CM. Compared with healthy subjects, increased amplitude of cortical low-frequency oscillations (LFO was observed in the right precentral gyrus, right postcentral gyrus, and left supplementary motor area. Furthermore, increased z-ALFF values in the right precentral gyrus and right postcentral gyrus correlated with decreased fractional anisotropy values at the C2 level, which indicated increased intrinsic neuronal activity in the SMC corresponding to the structural impairment in the spinal cord of patients with CM. These findings suggest a complex and diverging relationship of cortical functional reorganization and distal spinal anatomical compression in patients with CM and, thus, add important information in understanding how spinal cord integrity may be a factor in the intrinsic covariance of spontaneous low-frequency fluctuations of BOLD signals involved in cortical plasticity.

  15. Nuclear engineering laboratory self regulated power oscillation experiments at the Health Physics Research Reactor

    International Nuclear Information System (INIS)

    Miller, L.F.; Mihalczo, J.T.; Bailiff, E.G.; Woody, N.D.; Gardner, G.D.

    1983-01-01

    Self regulated power oscillation experiments with a variety of initial conditions have been performed with the ORNL Health Physics Research Reactor (HPRR) by undergraduate nuclear engineering students from The University of Tennessee for several years. These experiments demonstrate the coupling between reactor kinetics and heat transfer and show how the temperature coefficient of reactivity affects reactor behavior. A model that consists of several coupled first order nonlinear differential equations is used to calculate the temperature of the core center and surface and power as a function of time which are compared with the experimental data; also, the model is also used to study the effects of various model parameters and initial conditions on the amplitude, frequency and damping of the power and temperature oscillations. A previous paper presented some limited experimental results and demonstrated the correspondence between a simple point model and the experimental data. This paper presents the results of experiments for: (1) the initial power fixed at 9 kW with central core temperatures of 300 0 F and 500 0 F, annd (2) the initial central core temperature fixed at 500 0 F with initial powers of 6 and 8 kW

  16. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  17. Experimental high power plasma-filled backward wave oscillator results

    International Nuclear Information System (INIS)

    Minami, K.; Lou, W.R.; Destler, W.W.; Kehs, R.A.; Granatstein, V.L.; Carmel, Y.

    1988-01-01

    Previous results have indicated that a background gas can be used to increase the output microwave power of relativistic backward wave oscillators (BWOs) two or three times the vacuum case. In their experiments, two methods of plasma production are investigated in detail: the use of the electron beam to ionize a background gas, and the use of a plasma gun to inject a background plasma into the slow-wave structure of a BWO. It is found in the first case that there was a resonant increase in microwave power at a particular pressure of the background gas by a factor of ten. In the second case, power also increased compared with power production in vacuum. Detailed results are presented and the relative merits of the two approaches is discussed and compared with theoretical expectations

  18. Analysis of stationary power/amplitude distributions for multiple channels of sampled FBGs.

    Science.gov (United States)

    Xing, Ya; Zou, Xihua; Pan, Wei; Yan, Lianshan; Luo, Bin; Shao, Liyang

    2015-08-10

    Stationary power/amplitude distributions for multiple channels of the sampled fiber Bragg grating (SFBG) along the grating length are analyzed. Unlike a uniform FBG, the SFBG has multiple channels in the reflection spectrum, not a single channel. Thus, the stationary power/amplitude distributions for these multiple channels are analyzed by using two different theoretical models. In the first model, the SFBG is regarded as a set of grating sections and non-grating sections, which are alternately stacked. A step-like distribution is obtained for the corresponding power/amplitude of each channel along the grating length. While, in the second model, the SFBG is decomposed into multiple uniform "ghost" gratings, and a continuous distribution is obtained for each ghost grating (i.e., each channel). After a comparison, the distributions obtained in the two models are identical, and the equivalence between the two models is demonstrated. In addition, the impacts of the duty cycle on the power/amplitude distributions of multiple channels of SFBG are presented.

  19. Minimizing Crosstalk in Self Oscillating Switch Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Ploug, Rasmus Overgaard

    2012-01-01

    a method to minimize this phenomenon by improving the integrity of the various power distribution systems of the amplifier. The method is then applied to an amplifier built for this investigation. The results show that the crosstalk is suppressed with 30 dB, but is not entirely eliminated......The varying switching frequencies of self oscillating switch mode audio amplifiers have been known to cause interchannel intermodulation disturbances in multi channel configurations. This crosstalk phenomenon has a negative impact on the audio performance. The goal of this paper is to present...

  20. An optimized low-power voltage controlled oscillator

    Science.gov (United States)

    Shah, Kriyang; Le, Hai Phuong; Singh, Jugdutt

    2007-01-01

    This paper presents an optimised low-power low-phase-noise Voltage Controlled Oscillator (VCO) for Bluetooth wireless applications. The system level design issues and tradeoffs related to Direct Conversion Receiver (DCR) and Low Intermediate Frequency (IF) architecture for Bluetooth are discussed. Subsequently, for a low IF architecture, the critical VCO performance parameters are derived from system specifications. The VCO presented in the paper is optimised by implementing a novel biasing circuit that employs two current mirrors, one at the top and the other one at the bottom of the cross-coupled complementary VCO, to give the exact replica of the current in both the arms of current mirror circuit. This approach, therefore, significantly reduces the system power consumption as well as improves the system performance. Results show that, the VCO consumes only 281μW of power at 2V supply. Its phase noise performance are -115dBc/Hz, -130dBc/Hz and -141dBc/Hz at the offset frequency of 1MHz, 3MHz and 5MHz respectively. Results indicate that 31% reduction in power consumption is achieved as compared to the traditional VCO design. These characteristics make the designed VCO a better candidate for Bluetooth wireless application where power consumption is the major issue.

  1. Oscillations in the hadron scattering amplitude at high energy and small momentum transfer; Oscillations dans l`amplitude de diffusion hadronique a haute energie et petites moments de transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1999-10-01

    We show that the high precision dN/dt UA4/2 data at {radical} = 541 GeV are compatible with the presence of Auberson-Kinoshita-Martin (AKM) type of oscillations at very small momentum transfer. These oscillations seem to be periodic in {radical}|t|, the corresponding period being {approx_equal} 2 {center_dot}10{sup -2} GeV. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (authors) 1 ref., 2 figs.

  2. Performance analysis of conventional PSS and fuzzy controller for damping power system oscillations

    OpenAIRE

    Banna, Hasan UI; Luna Alloza, Álvaro; Rodríguez Cortés, Pedro; Cabrera Tobar, Ana; Ghorbani, Hamidreza; Ying, Shaoqing

    2014-01-01

    Electro-mechanical oscillations are produced, in the machines of an interconnected power network, followed by a disturbance or due to high power transfer through weak tie lines. These oscillations should be damped as quickly as possible to ensure the reliable and stable operation of the network. To damp these oscillations different controllers, based on local or wide area signals, have been the subject of many papers. This paper presents the analysis of the performance of Conventional Power S...

  3. The AKM theorem and oscillations in the hadron scattering amplitude at high energy and small momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gauron, P.; Nicolescu, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Selyugin, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    1996-10-01

    It is shown that the high precision UA4/2 data for differential cross sections p-barp scattering are compatible with the presence of Auberson -Kinoshita - Martin (AKM) type of oscillations at very small momentum transfers. These oscillations seem to be periodic in {radical}|t|. The existence of such visible oscillations suggests a general mechanism of saturation of axiomatic bounds. As an illustration the consequences for extracting the parameter {rho} = ReF/ImF from dN/dt data are also discussed. (K.A.). 19 refs.

  4. SELECTIVE MODAL ANALYSIS OF POWER FLOW OSCILLATION IN LARGE SCALE LONGITUDINAL POWER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Wirindi -

    2009-06-01

    Full Text Available Novel selective modal analysis for the determination of low frequency power flow oscillation behaviour based on eigenvalues with corresponding damping ratio, cumulative damping index, and participation factors is proposed. The power system being investigated consists of three large longitudinally interconnected areas with some weak tie lines. Different modes, such as exciter modes, inter area modes, and local modes of the dominant poles are fully studied to find out the significant level of system damping and other factors producing power flow instability. The nature of the energy exchange between area is determined and strategic power flow stability improvement is developed and tested.

  5. Power Oscillation Damping Controller for Wind Power Plant Utilizing Wind Turbine Inertia as Energy Storage

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygård; Jensen, Kim Høj

    2011-01-01

    For a wind power plant (WPP) the upper limit for active power output is bounded by the instantaneous wind conditions and therefore a WPP must curtail its power output when system services with active power are delivered. Here, a power oscillation damping controller (POD) for WPPs is presented...... that utilizes the stored kinetic energy in the wind turbine (WT) mechanical system as energy storage from which damping power can be exchanged. This eliminates the need for curtailed active power production. Results are presented using modal analysis and induced torque coefficients (ITC) to depict the torques...... induced on the synchronous generators from the POD. These are supplemented with nonlinear time domain simulations with and without an auxiliary POD for the WPP. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power wind turbine....

  6. To Stabilize Power Systems from Various Kind of Oscillations using a State Feedback Controller

    International Nuclear Information System (INIS)

    Afridi, M. A.

    2012-01-01

    Damping of electromechanical oscillations in power systems is one of the major concerns in the operation of power system since many years. These oscillations cause improper of the power system incorporating losses. This thesis work presents the coordinated AVR+PSS structure, called the Desensitized four loops Regulator, designed to damp these oscillations in the power system. It is shown here that it is possible to transform the structure of this controller into any standard IEEE AVR+PSS structure. The AVR+PSS structure obtained through this structure is efficient to damp out many types of oscillations present in the Power system. These models are to be incorporated with the generator models to get a power system model with state feedback control. On simulating the system in Simulink with the controllers we have obtained the power system model with state feedback control and observed that how these controllers are helpful in damping the oscillations. (author)

  7. Analysis of the Power oscillations event in Laguna Verde Nuclear Power Plant. Preliminary Report

    International Nuclear Information System (INIS)

    Gonzalez M, V.M.; Amador G, R.; Castillo, R.; Hernandez, J.L.

    1995-01-01

    The event occurred at Unit 1 of Laguna Verde Nuclear Power Plant in January 24, 1995, is analyzed using the Ramona 3 B code. During this event, Unit 1 suffered power oscillation when operating previous to the transfer at high speed recirculating pumps. This phenomenon was timely detected by reactor operator who put the reactor in shut-down doing a manual Scram. Oscillations reached a maximum extent of 10.5% of nominal power from peak to peak with a frequency of 0.5 Hz. Preliminary evaluations show that the event did not endangered the fuel integrity. The results of simulating the reactor core with Ramona 3 B code show that this code is capable to moderate reactor oscillations. Nevertheless it will be necessary to perform a more detailed simulation of the event in order to prove that the code can predict the beginning of oscillations. It will be need an additional analysis which permit the identification of factors that influence the reactor stability in order to express recommendations and in this way avoid the recurrence of this kind of events. (Author)

  8. Power Oscillation Damping from VSC-HVDC Connected Offshore Wind Power Plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Eriksson, Robert; Goumalatsos, Spyridon

    2016-01-01

    The implementation of power oscillation damping service on offshore wind power plants connected to onshore grids by voltage-source-converter-based high voltage direct current transmission is discussed. Novel design guidelines for damping controllers on voltage-source converters and wind power plant...... regarding real wind power plants are discussed: 1) robustness against control/communication delays; 2) limitations due to mechanical resonances in wind turbine generators; 3) actual capability of wind power plants to provide damping without curtailing production; and 4) power-ramp rate limiters....... controllers are derived, using phasor diagrams and a test network model and are then verified on a generic power system model. The effect of voltage regulators is analyzed, which is important for selecting the most robust damping strategy. Furthermore, other often disregarded practical implementation aspects...

  9. Effects of equilibrium point displacement in limit cycle oscillation amplitude, critical frequency and prediction of critical input angular velocity in minimal brake system

    Science.gov (United States)

    Ganji, Hamed Faghanpour; Ganji, Davood Domiri

    2017-04-01

    In the present paper, brake squeal phenomenon as a noise resource in automobiles was studied. In most cases, the modeling work is carried out assuming that deformations were small; thus, equilibrium point is set zero and linearization is performed at this point. However, the equilibrium point under certain circumstances is not zero; therefore, huge errors in prediction of brake squeal may occur. In this work, large motion domains with respect to linearization importance were subjected to investigation. Nonlinear equations of motion were considered and behavior of system for COF's model was analyzed by studying amplitude and frequency of limited cycle oscillation.

  10. Simultaneous measurement of the maximum oscillation amplitude and the transient decay time constant of the QCM reveals stiffness changes of the adlayer.

    Science.gov (United States)

    Marxer, C Galli; Coen, M Collaud; Bissig, H; Greber, U F; Schlapbach, L

    2003-10-01

    Interpretation of adsorption kinetics measured with a quartz crystal microbalance (QCM) can be difficult for adlayers undergoing modification of their mechanical properties. We have studied the behavior of the oscillation amplitude, A(0), and the decay time constant, tau, of quartz during adsorption of proteins and cells, by use of a home-made QCM. We are able to measure simultaneously the frequency, f, the dissipation factor, D, the maximum amplitude, A(0), and the transient decay time constant, tau, every 300 ms in liquid, gaseous, or vacuum environments. This analysis enables adsorption and modification of liquid/mass properties to be distinguished. Moreover the surface coverage and the stiffness of the adlayer can be estimated. These improvements promise to increase the appeal of QCM methodology for any applications measuring intimate contact of a dynamic material with a solid surface.

  11. Analysis of Disturbance Source Inducing by The Variable Speed Wind Turbine System Forced Power Oscillations

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2015-01-01

    The main focus of forced low frequency oscillations is to analyze the disturbance source and the origin of forced oscillations. In this paper, the origin of low-frequency periodical oscillations induced by wind turbines’ mechanical power is investigated and the mechanism is studied of fluctuating...... power transfer through permanent magnet generator wind turbine system. Considering the tower shadow and the wind shear effect, the mechanical and generator coupling model is developed by PSCAD. Simulation is done to analyze the impacts on output power of operation points and mechanical fluctuation...... components. It is shown that when the oscillation frequency of tower shadow coincides with the system natural frequency, it may cause forced oscillations, whereas, the wind shear and natural wind speed fluctuation are not likely to induce forced oscillations....

  12. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  13. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2002-01-01

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  14. A PSO based unified power flow controller for damping of power system oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Shayeghi, H. [Technical Engineering Dept., Univ. of Mohaghegh Ardabili, Daneshgah Street, P.O. Box 179, Ardabil (Iran); Shayanfar, H.A. [Center of Excellence for Power Automation and Operation, Electrical Engineering Dept., Iran Univ. of Science and Technology, Tehran (Iran); Jalilzadeh, S.; Safari, A. [Technical Engineering Dept., Zanjan Univ., Zanjan (Iran)

    2009-10-15

    On the basis of the linearized Phillips-Herffron model of a single-machine power system, we approach the problem of select the best input control signal of the unified power flow controller (UPFC) and design optimal UPFC based damping controller in order to enhance the damping of the power system low frequency oscillations. The potential of the UPFC supplementary controllers to enhance the dynamic stability is evaluated. This controller is tuned to simultaneously shift the undamped electromechanical modes to a prescribed zone in the s-plane. The problem of robustly UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multiobjective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using particle swarm optimization technique (PSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The effectiveness of the proposed controller is demonstrated through eigenvalue analysis, nonlinear time-domain simulation and some performance indices studies. The results analysis reveals that the tuned PSO based UPFC controller using the proposed multiobjective function has an excellent capability in damping power system low frequency oscillations and enhance greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions show that the {delta}{sub E} based controller is superior to the m{sub B} based controller. (author)

  15. Chaotic solar oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blacher, S; Perdang, J [Institut d' Astrophysique, B-4200 Cointe-Ougree (Belgium)

    1981-09-01

    A numerical experiment on Hamiltonian oscillations demonstrates the existence of chaotic motions which satisfy the property of phase coherence. It is observed that the low-frequency end of the power spectrum of such motions is remarkably similar in structure to the low-frequency SCLERA spectra. Since the smallness of the observed solar amplitudes is not a sufficient mathematical ground for inefficiency of non-linear effects the possibility of chaos among solar oscillations cannot be discarded a priori.

  16. DC-link voltage oscillations reduction during unbalanced grid faults for high power wind turbines

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    During unbalanced grid voltage faults the Power injected to the grid experiences 100Hz oscillations as a result of interactions between positive and negative sequence components of three-phase voltages and currents. These oscillations can become as high as %50 percent of the rated power....... In this article an improved controller is proposed which present different behavior during normal operation and faults to keep track of non-sinusoidal current reference signals. The reference signals are calculated to obtain zero power oscillations. Reconfigurable resonant controllers are used for this purpose...

  17. Solar-cycle period-amplitude relation as evidence of hysteresis of the solar-cycle nonlinear magnetic oscillation and the long-term (55 year) cyclic modulation

    International Nuclear Information System (INIS)

    Yoshimura, H.

    1979-01-01

    A new dynamical model of the solar cycle has predicted that the cycle should have a hysteretic nature: the behavior of each 11 year cycle should depend on previous cycles. In the light of this new understanding of the dynamical mechanism of the solar cycle, Waldmeier's (hypothetical) law was examined as a yet unexplained characteristic of the cycle by studying the observed sunspot frequency curve. Contrary to this hypothetical law, however, it was found that sunspot cycle curves did not form a single-parameter family characterized by the maximum amplitude of the cycle. The evolutionary trajectories in period-amplitude phase space verified the hysteretic nature of the observed cycle and revealed long-term (55 year instead of the previously claimed 80 year) periodic modulations, called here 55 year grand cycles. Each 55 year grand cycle forms a loop in the phase space, and the characteristics of each 11 year cycle depend on its position in the ascending or descending phase of the grand cycle. This new law was analyzed by the nonlinear multiple-period dynamo oscillation model which has predicted the hysteretic nature. The era from cycle 11 to cycle 15 turned out to be an anomalous one characterized by alternating amplitudes for odd and even cycles. Cycles 16--20 seem to constitute one grand cycle. If this is true, cycle 21 would be the beginning of another grand maximum and the model predicts that its duration would be short

  18. Power spectrum density of stochastic oscillating accretion disk

    Indian Academy of Sciences (India)

    46

    2015-11-11

    Nov 11, 2015 ... National Natural Science Foundation of. China. (11463007) .... may be an alternative interpretation of the persistent low-frequency quasi-periodic oscillations (Wang ..... In this vision, we should revise our manuscript according.

  19. Xenon-induced axial power oscillations in the 400 MW PBMR

    International Nuclear Information System (INIS)

    Strydom, Gerhard

    2008-01-01

    The redistribution of the spatial xenon concentration in the 400 MW Pebble Bed Modular Reactor (PBMR) core has a non-linear, time-dependent feedback effect on the spatial power density during several types of operational transient events. Due to the inherent weak coupling that exists between the iodine and xenon formation and destruction rates, as well as the complicating effect of spatial variance in the thermal flux field, reactor cores have been analyzed for a number of decades for the occurrence and severity of xenon-induced axial power oscillations. Of specific importance is the degree of oscillation damping exhibited by the core during transients, which involves axial variations in the local power density. In this paper the TINTE reactor dynamics code is used to assess the stability of the current 400 MW PBMR core design with regard to axial xenon oscillations. The focus is mainly on the determination of the inherent xenon and power oscillation damping properties by utilizing a set of hypothetical control rod insertion transients at various power levels. The oscillation damping properties of two 100%-50%-100% load-follow transients, one of which includes the de-stabilizing axial effects of moving control rods, are also discussed in some detail. The study shows that, although first axial mode oscillations do occur in the 400 MW PBMR core, the inherent damping of these oscillations is high, and that none of the investigated load-follow transients resulted in diverging oscillations. It is also shown that the PBMR core exhibits no radial oscillation components for these xenon-induced axial power oscillations

  20. Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium

    Directory of Open Access Journals (Sweden)

    Jana Vlachová

    2015-03-01

    Full Text Available The stiffness of micron-sized sphere–plate contacts was studied by employing high frequency, tangential excitation of variable amplitude (0–20 nm. The contacts were established between glass spheres and the surface of a quartz crystal microbalance (QCM, where the resonator surface had been coated with either sputtered SiO2 or a spin-cast layer of poly(methyl methacrylate (PMMA. The results from experiments undertaken in the dry state and in water are compared. Building on the shifts in the resonance frequency and resonance bandwidth, the instrument determines the real and the imaginary part of the contact stiffness, where the imaginary part quantifies dissipative processes. The method is closely analogous to related procedures in AFM-based metrology. The real part of the contact stiffness as a function of normal load can be fitted with the Johnson–Kendall–Roberts (JKR model. The contact stiffness was found to increase in the presence of liquid water. This finding is tentatively explained by the rocking motion of the spheres, which couples to a squeeze flow of the water close to the contact. The loss tangent of the contact stiffness is on the order of 0.1, where the energy losses are associated with interfacial processes. At high amplitudes partial slip was found to occur. The apparent contact stiffness at large amplitude depends linearly on the amplitude, as predicted by the Cattaneo–Mindlin model. This finding is remarkable insofar, as the Cattaneo–Mindlin model assumes Coulomb friction inside the sliding region. Coulomb friction is typically viewed as a macroscopic concept, related to surface roughness. An alternative model (formulated by Savkoor, which assumes a constant frictional stress in the sliding zone independent of the normal pressure, is inconsistent with the experimental data. The apparent friction coefficients slightly increase with normal force, which can be explained by nanoroughness. In other words, contact splitting

  1. Frequency-dependent changes in amplitude of low-frequency oscillations in depression: A resting-state fMRI study.

    Science.gov (United States)

    Wang, Li; Kong, Qingmei; Li, Ke; Su, Yunai; Zeng, Yawei; Zhang, Qinge; Dai, Wenji; Xia, Mingrui; Wang, Gang; Jin, Zhen; Yu, Xin; Si, Tianmei

    2016-02-12

    We conducted this fMRI study to examine whether the alterations in amplitudes of low-frequency oscillation (LFO) of major depressive disorder (MDD) patients were frequency dependent. The LFO amplitudes (as indexed by amplitude of low-frequency fluctuation [ALFF] and fractional ALFF [fALFF]) within 4 narrowly-defined frequency bands (slow-5: 0.01-0.027Hz, slow-4: 0.027-0.073Hz, slow-3: 0.073-0.198Hz, and slow-2: 0.198-0.25Hz) were computed using resting-state fMRI data of 35 MDD patients and 32 healthy subjects. Repeated-measures analysis of variance (ANOVA) was performed on ALFF and fALFF both within the low frequency bands of slow-4 and slow-5 and within all of the four bands. We observed significant main effects of group and frequency on ALFF and fALFF in widely distributed brain regions. Importantly, significant group and frequency interaction effects were observed in the ventromedial prefrontal cortex, inferior frontal gyrus, precentral gyrus, in a left-sided fashion, the bilateral posterior cingulate and precuneus, during ANOVA both within slow-4 and slow-5 bands and within all the frequency bands. The results suggest that the alterations of LFO amplitudes in specific brain regions in MDD patients could be more sensitively detected in the slow-5 rather than the slow-4 bands. The findings may provide guidance for the frequency choice of future resting-state fMRI studies of MDD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Eigenstates of the higher power of the annihilation operator of two-parameter deformed harmonic oscillator

    International Nuclear Information System (INIS)

    Wang Jisuo; Sun Changyong; He Jinyu

    1996-01-01

    The eigenstates of the higher power of the annihilation operator a qs k (k≥3) of the two-parameter deformed harmonic oscillator are constructed. Their completeness is demonstrated in terms of the qs-integration

  3. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  4. Effect of full converter wind turbines on inter-area oscillation of power systems

    DEFF Research Database (Denmark)

    Askari, Hanieh Hajizadeh; Hashemi Toghroljerdi, Seyedmostafa; Eriksson, Robert

    2015-01-01

    By increasing in the penetration level of wind turbines, the influence of these new added generation units on the power system oscillations specifically inter-area oscillations has to be thoroughly investigated. In this paper, the impact of increasing in the penetration of full rate converter wind...... turbines (FRC-WTs) on the inter-area oscillations of power system is examined. In order to have a comprehensive evaluation of the effects of FRC-WT on the inter-area oscillations, different scenarios associated with the wind power penetration levels, wind farm locations, strength of interconnection line......, and different operating conditions of synchronous generators are investigated. The synchronous generators, exciter systems and power system stabilizers (PSSs) as well as the FRC-WT grid-side converter and its related controllers are modelled in detail in Matlab in order to evaluate the effects of FRC...

  5. Increased power of resting-state gamma oscillations in autism spectrum disorder detected by routine electroencephalography

    NARCIS (Netherlands)

    van Diessen, Eric; Senders, Joeky; Jansen, Floor E.; Boersma, Maria; Bruining, Hilgo

    2015-01-01

    Experimental studies suggest that increased resting-state power of gamma oscillations is associated with autism spectrum disorder (ASD). To extend the clinical applicability of this finding, we retrospectively investigated routine electroencephalography (EEG) recordings of 19 patients with ASD and

  6. Mitigation of voltage dip and power system oscillations damping using dual STATCOM for grid connected DFIG

    OpenAIRE

    D.V.N. Ananth; G.V. Nagesh Kumar

    2017-01-01

    During grid fault, transmission lines reach its thermal limit and lose its capability to transfer. If this fault current enters generator terminals, it will lead to dip in stator voltage and consequently produces torque and real power oscillations. This further affects in the form of internal heat in rotor windings and finally damages the generator. A new control strategy is proposed to limit fault current using dual STATCOM, which will damp power oscillations and mitigate the voltage dip due...

  7. Time dependent analysis of Xenon spatial oscillations in small power reactors

    International Nuclear Information System (INIS)

    Decco, Claudia Cristina Ghirardello

    1997-01-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  8. Investigation of crosstalk in self oscillating switch mode audio power amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Haagen; Ploug, Rasmus Overgaard; Iversen, Niels Elkjær

    2012-01-01

    channel self oscillating switch mode power amplier (class D). A step by step reduction of elements in an amplier built for this task, is used for methodically determining the actual presence and origins of crosstalk. The investigation shows that the crosstalk is caused by couplings in the self oscillating......Self oscillating switch mode power ampliers are known to be susceptible to interchannel disturbances also known as crosstalk. This phenomenon has a signicant impact on the performance of an amplier of this type. The goal of this paper is to investigate the presence and origins of crosstalk in a two...

  9. Reactor noise analysis based on nonlinear dynamic theory - application to power oscillation

    International Nuclear Information System (INIS)

    Suzudo, Tomoaki

    1993-01-01

    The information dimension is one of the simplest quantities that can be used to determine the asymptotic motion of the time evolution of a nonlinear system. The application of this quantity to reactor noise analysis is proposed, and the possibility of its application to power oscillation analysis is examined. The information dimension of this regime is equal to the number of independent oscillating modes, which is an intuitive physical variable. Time series data from computer experiments and experiments with an actual physical system are used for the analysis. The results indicate that the method is useful for a detailed analysis of reactor power oscillation

  10. Self-oscillating modulators for direct energy conversion audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating...

  11. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  12. Model based PI power system stabilizer design for damping low frequency oscillations in power systems.

    Science.gov (United States)

    Salgotra, Aprajita; Pan, Somnath

    2018-05-01

    This paper explores a two-level control strategy by blending local controller with centralized controller for the low frequency oscillations in a power system. The proposed control scheme provides stabilization of local modes using a local controller and minimizes the effect of inter-connection of sub-systems performance through a centralized control. For designing the local controllers in the form of proportional-integral power system stabilizer (PI-PSS), a simple and straight forward frequency domain direct synthesis method is considered that works on use of a suitable reference model which is based on the desired requirements. Several examples both on one machine infinite bus and multi-machine systems taken from the literature are illustrated to show the efficacy of the proposed PI-PSS. The effective damping of the systems is found to be increased remarkably which is reflected in the time-responses; even unstable operation has been stabilized with improved damping after applying the proposed controller. The proposed controllers give remarkable improvement in damping the oscillations in all the illustrations considered here and as for example, the value of damping factor has been increased from 0.0217 to 0.666 in Example 1. The simulation results obtained by the proposed control strategy are favourably compared with some controllers prevalent in the literature. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Power adaptive multi-filter carrierless amplitude and phase access scheme for visible light communication network

    Science.gov (United States)

    Li, Wei; Huang, Zhitong; Li, Haoyue; Ji, Yuefeng

    2018-04-01

    Visible light communication (VLC) is a promising candidate for short-range broadband access due to its integration of advantages for both optical communication and wireless communication, whereas multi-user access is a key problem because of the intra-cell and inter-cell interferences. In addition, the non-flat channel effect results in higher losses for users in high frequency bands, which leads to unfair qualities. To solve those issues, we propose a power adaptive multi-filter carrierless amplitude and phase access (PA-MF-CAPA) scheme, and in the first step of this scheme, the MF-CAPA scheme utilizing multiple filters as different CAP dimensions is used to realize multi-user access. The character of orthogonality among the filters in different dimensions can mitigate the effect of intra-cell and inter-cell interferences. Moreover, the MF-CAPA scheme provides different channels modulated on the same frequency bands, which further increases the transmission rate. Then, the power adaptive procedure based on MF-CAPA scheme is presented to realize quality fairness. As demonstrated in our experiments, the MF-CAPA scheme yields an improved throughput compared with multi-band CAP access scheme, and the PA-MF-CAPA scheme enhances the quality fairness and further improves the throughput compared with the MF-CAPA scheme.

  14. Low-power crystal and MEMS oscillators the experience of watch developments

    CERN Document Server

    Eric Vittoz

    2010-01-01

    Electronic oscillators using an electromechanical device as a frequency reference are irreplaceable components of systems-on-chip for time-keeping, carrier frequency generation and digital clock generation. With their excellent frequency stability and very large quality factor Q, quartz crystal resonators have been the dominant solution for more than 70 years. But new possibilities are now offered by micro-electro-mechanical (MEM) resonators, that have a qualitatively identical equivalent electrical circuit. Low-Power Crystal and MEMS Oscillators concentrates on the analysis and design of the most important schemes of integrated oscillator circuits. It explains how these circuits can be optimized by best exploiting the very high Q of the resonator to achieve the minimum power consumption compatible with the requirements on frequency stability and phase noise. The author has 40 years of experience in designing very low-power, high-performance quartz oscillators for watches and other battery operated systems an...

  15. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  16. Field and power dependence of auto-oscillations in yttrium-iron-garnet films

    International Nuclear Information System (INIS)

    McMichael, R.D.; Wigen, P.E.

    1988-01-01

    The nonlinear response of the magnetic spin system in yttrium-iron-garnet (YIG) thin films to high-power ferromagnetic resonance (FMR) at perpendicular resonance was studied and the results are presented. A diagram of the regions of auto-oscillation of the system as a function of field and power is presented which shows the modes that appear in low-power FMR becoming unstable to auto-oscillations with increased power. The auto-oscillations exhibit periodic, quasiperiodic, period doubling, and chaotic behavior with typical frequencies in the MHz range. The domains of oscillatory behavior due to individual resonance modes are seen to merge and shift to lower fields as power is increased. Possible mechanisms for the behavior are proposed

  17. Energy Cost of Avoiding Pressure Oscillations in a Discrete Fluid Power Force System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen

    2015-01-01

    In secondary valve controlled discrete fluid power force systems the valve opening trajectory greatly influences the pressure dynamics in the actuator chambers. For discrete fluid power systems featuring hoses of significant length pressure oscillations due to fast valve switching is well......-known. This paper builds upon theoretical findings on how shaping of the valve opening may reduce the cylinder pressure oscillations. The current paper extents the work by implementing the valve opening characteristics reducing the pressure oscillations on a full scale power take-off test-bench for wave energy...... will present measurements comparing pressure dynamics for two valve opening algorithms. In addition the paper will give a theoretical investigation of the energy loss during valve shifting and finally measurements of average power output from the power take-off system in various sea states are compared...

  18. Reactor oscillator - I - III, Part III - Electronic device

    International Nuclear Information System (INIS)

    Lolic, B.; Jovanovic, S.

    1961-12-01

    This report describes functioning of the reactor oscillator electronic system. Two methods of oscillator operation were discussed. The first method is so called method of amplitude modulation of the reactor power, and the second newer method is phase method. Both methods are planned for the present reactor oscillator

  19. Reactor oscillator - I - III, Part III - Electronic device; Reaktorski oscilator - I-III, III Deo - Elektronski uredjaj

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    This report describes functioning of the reactor oscillator electronic system. Two methods of oscillator operation were discussed. The first method is so called method of amplitude modulation of the reactor power, and the second newer method is phase method. Both methods are planned for the present reactor oscillator.

  20. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    International Nuclear Information System (INIS)

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-01-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  1. A high power picosecond Nd:YVO4 master oscillator power amplifier system pumped by 880 nm diodes

    International Nuclear Information System (INIS)

    Yan, S; Yan, X; Yu, H; Zhang, L; Guo, L; Sun, W; Hou, W; Lin, X

    2013-01-01

    We present a high power 880 nm diode-pumped passively mode-locked Nd:YVO 4 oscillator, followed by an 880 nm diode-pumped Nd:YVO 4 amplifier. In the oscillator, a maximum power of 8.7 W was obtained with a repetition rate of 63 MHz and pulse duration of 32 ps, corresponding to an optical efficiency of 36%. The beam quality factors M 2 were measured to be M x 2 =1.2 and M y 2 =1.1 9, respectively. The amplifier generated up to 19.1 W output power with the pulse width and repetition rate remaining unaltered after amplification. (paper)

  2. Power System Oscillation Modes Identifications: Guidelines for Applying TLS-ESPRIT Method

    Science.gov (United States)

    Gajjar, Gopal R.; Soman, Shreevardhan

    2013-05-01

    Fast measurements of power system quantities available through wide-area measurement systems enables direct observations for power system electromechanical oscillations. But the raw observations data need to be processed to obtain the quantitative measures required to make any inference regarding the power system state. A detailed discussion is presented for the theory behind the general problem of oscillatory mode indentification. This paper presents some results on oscillation mode identification applied to a wide-area frequency measurements system. Guidelines for selection of parametes for obtaining most reliable results from the applied method are provided. Finally, some results on real measurements are presented with our inference on them.

  3. Power oscillation of the Mod-0 wind turbine

    Science.gov (United States)

    Seidel, R. C.

    1978-01-01

    The Mod-0 power has noise components with varying frequency patterns. Magnitudes reach more than forty percent power at the frequency of twice per rotor revolution. Analysis of a simple torsional model of the power train predicts less than half the observed magnitude and does not explain the shifting frequencies of the noise patterns.

  4. RAMONA-3B calculations of core-wide and regional power/flow oscillations - comparison with Oskarshamn 3 natural circulation test data

    International Nuclear Information System (INIS)

    Andersson, S.; Stepniewski, M.

    1991-01-01

    The 3-D BWR Dynamics Code RAMONA-3D is used for a study of power and flow fluctuations at conditions close to observed limit-cycle out-of-phase oscillations during the start-up stability test at the Oskarshamn 3 internal pump BWR. The purpose of the work, which is sponsored by the Swedish Nuclear Inspectorate, SKI, is to see if the observed first order azimuthal oscillations can be reproduced in a simulation using no a-priori information on the oscillation pattern when setting up the model. The experimental data contain dynamic information on the local neutron flux at 32 LPRM detector locations and the inlet flow to 8 fuel channels. The oscillation patterns, i.e. amplitudes and phases at the resonance frequency for local power and flow, are evaluated by direct Fourier transformation of small time slices of the data. A large RAMONA-3B model, using 350 and 268 channels in the neutronic and hydraulic models respectively, each divided into 25 axial nodes, was used for the analyses. The agreement between measured and calculated local flux and flow oscillation frequency and patterns at the limit-cycle threshold is excellent, taking into account the limitations of the half-core model used

  5. Chaotic oscillations in a low pressure two-phase natural circulation loop under low power and high inlet subcooling conditions

    International Nuclear Information System (INIS)

    Wu, C.Y.; Wang, S.B.; Pan, C.

    1996-01-01

    The oscillation characteristics of a low pressure two-phase natural circulation loop have been investigated experimentally in this study. Experimental results indicate that the characteristics of the thermal hydraulic oscillations can be periodic, with 2-5 fundamental frequencies, or chaotic, depending on the heating power and inlet subcooling. The number of fundamental frequencies of oscillation increases if the inlet subcooling is increased at a given heating power or the heating power is decreased at a given inlet subcooling; chaotic oscillations appear if the inlet subcooling is further increased and/or the heating power is further decreased. A map of the oscillation characteristics is thus established. The change in oscillation characteristics is evident from the time evolution and power spectrum of a thermal hydraulic parameter and the phase portraits of two thermal hydraulic parameters. These results reveal that a strange attractor exists in a low pressure two-phase natural circulation loop with low power and very high inlet subcooling. (orig.)

  6. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    International Nuclear Information System (INIS)

    Li, Ke; Cao, Miaomiao; Liu, Wenxin; Wang, Yong; Liao, Suying

    2015-01-01

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator

  7. Enhancement of the output power of terahertz folded waveguide oscillator by two parallel electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Liao, Suying, E-mail: suying-liao@163.com [Air Force Airborne Academy, Guilin, Guangxi 541003 (China)

    2015-11-15

    A novel two-beam folded waveguide (FW) oscillator is presented for the purpose of gaining higher power with a small-size circuit compared with the normal FW oscillator. The high-frequency characteristics of the two-beam FW, including dispersion and interaction impedance, were investigated by the numerical simulation and compared with the one-beam FW. The radio-frequency loss of the two-beam FW was also analyzed. A 3-D particle-in-cell code CHIPIC was applied to analyze and optimize the performance of a G-band two-beam FW oscillator. The influences of the distance between the two beam tunnels, beam voltage, the number of periods, magnetic field, radius of beam tunnel, and the packing ratio on the circuit performance are investigated in detail. Compared with a one-beam circuit, a larger output power of the two-beam circuit with the same beam power was observed by the simulation. Moreover, the start-oscillation current of two-beam circuit is much lower than the one-beam circuit with better performance. It will favor the miniaturized design of the high-power terahertz oscillator.

  8. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics.

    Science.gov (United States)

    Yun, Junggwon; Cho, Kyoungah; Kim, Sangsig

    2012-11-01

    In this study, we demonstrate for the first time the low-power and stable performance of a ring oscillator constructed on a flexible plastic with solution-processable inorganic nanoparticles (NPs). Our flexible ring oscillator is composed of three inverters based on n- and p-type inorganic NP thin-film transistors. Each of the component inverters exhibits a gain of ∼80 at a voltage of 5 V. For the ring oscillator, the sine waves are generated with a frequency of up to 12 kHz. The waveforms are undistorted under strained conditions and maintained even after 5000 bending cycles. The frequency and waveform of the output waves obtained from our flexible ring oscillator are analyzed and discussed in detail.

  9. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves

    Science.gov (United States)

    Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei

    2016-07-01

    Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.

  10. Self-oscillating modulators for direct energy conversion audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating modulators can be used with the direct switching-mode audio power amplifier to improve its performance by providing fast hysteretic control with high power supply rejection ratio, open-loop stability and high bandwidth. Its operation is thoroughly analyzed and simulated waveforms of a prototype amplifier are presented. (au)

  11. Power system stabilizers based on distributed energy resources for damping of inter-area oscillations

    Directory of Open Access Journals (Sweden)

    Stefanov Predrag Č.

    2014-01-01

    Full Text Available This paper deals with inter-area power oscillations damping enhancement by distributed energy resources contained in typical micro grid. Main idea behind this work is to use distributed generation and distributed storage, such as battery energy storage to mimic conventional power system stabilizer, but with regulating active power output, rather than reactive power, as in standard power system stabilizer realization. The analysis of the small signal stability is established for four-machine, two-area system, with inverter based micro grids in each area. Dynamic simulation results are included in this work and they show that proposed controller provides additional damping effect to this test system.

  12. Investigation of the resonant power oscillation in the Halden Boiling Water Reactor by autoregressive modeling

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1980-01-01

    In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)

  13. Relationships among peak power output, peak bar velocity, and mechanomyographic amplitude during the free-weight bench press exercise.

    Science.gov (United States)

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M; Dillon, Michael A

    2010-10-01

    The purpose of this study was to examine the relationships among mechanomyographic (MMG) amplitude, power output, and bar velocity during the free-weight bench press exercise. Twenty-one resistance-trained men [one-repetition maximum (1-RM) bench press = 125.4+18.4 kg] performed bench press muscle actions as explosively as possible from 10% to 90% of the 1-RM while peak power output and peak bar velocity were assessed with a TENDO Weightlifting Analyzer. During each muscle action, surface MMG signals were detected from the right and left pectoralis major and triceps brachii, and the concentric portion of the range of motion was selected for analysis. Results indicated that power output increased from 10% to 50% 1-RM, followed by decreases from 50% to 90% 1-RM, but MMG amplitude for each of the muscles increased from 10 to 80% 1-RM. The results of this study indicate that during the free-weight bench press exercise, MMG amplitude was not related to power output, but was inversely related to bar velocity and directly related to the external load being lifted. In future research, coaches and sport scientists may be able to estimate force/torque production from individual muscles during multi-joint, dynamic constant external resistance muscle actions.

  14. Curing critical links in oscillator networks as power flow models

    International Nuclear Information System (INIS)

    Rohden, Martin; Meyer-Ortmanns, Hildegard; Witthaut, Dirk; Timme, Marc

    2017-01-01

    Modern societies crucially depend on the robust supply with electric energy so that blackouts of power grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of failures: the failure of a single infrastructure component, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Improving the robustness of a network to prevent such secondary failures is thus key for assuring a reliable power supply. In this article we analyze the nonlocal rerouting of power flows after transmission line failures for a simplified AC power grid model and compare different strategies to improve network robustness. We identify critical links in the grid and compute alternative pathways to quantify the grid’s redundant capacity and to find bottlenecks along the pathways. Different strategies are developed and tested to increase transmission capacities to restore stability with respect to transmission line failures. We show that local and nonlocal strategies typically perform alike: one can equally well cure critical links by providing backup capacities locally or by extending the capacities of bottleneck links at remote locations. (paper)

  15. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  16. Power loss of an oscillating electric dipole in a quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderipoor, L. [Department of Physics, Faculty of Science, University of Qom, 3716146611 (Iran, Islamic Republic of); Mehramiz, A. [Department of Physics, Faculty of Science, Imam Khomeini Int' l University, Qazvin 34149-16818 (Iran, Islamic Republic of)

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  17. Direct heuristic dynamic programming for damping oscillations in a large power system.

    Science.gov (United States)

    Lu, Chao; Si, Jennie; Xie, Xiaorong

    2008-08-01

    This paper applies a neural-network-based approximate dynamic programming method, namely, the direct heuristic dynamic programming (direct HDP), to a large power system stability control problem. The direct HDP is a learning- and approximation-based approach to addressing nonlinear coordinated control under uncertainty. One of the major design parameters, the controller learning objective function, is formulated to directly account for network-wide low-frequency oscillation with the presence of nonlinearity, uncertainty, and coupling effect among system components. Results include a novel learning control structure based on the direct HDP with applications to two power system problems. The first case involves static var compensator supplementary damping control, which is used to provide a comprehensive evaluation of the learning control performance. The second case aims at addressing a difficult complex system challenge by providing a new solution to a large interconnected power network oscillation damping control problem that frequently occurs in the China Southern Power Grid.

  18. Correlator of the reactor oscillator; Korelator reaktorskog oscilatora

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Markovic, V; Velickovic, Lj [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-07-01

    Reactor oscillator is used for materials testing. Mechanical oscillations of the samples in the core cause perturbations of the power distribution. The perturbation amplitude, i.e. phase angle between the perturbation and the mechanical movement of the sample is proportional to the properties of the tested material. Since the perturbation of the power is not a simple periodic function it is necessary to distinguish the principal harmonic. The size of amplitude gives information about the properties of the sample.

  19. Frequency-dependent changes in local intrinsic oscillations in chronic primary insomnia: A study of the amplitude of low-frequency fluctuations in the resting state.

    Science.gov (United States)

    Zhou, Fuqing; Huang, Suhua; Zhuang, Ying; Gao, Lei; Gong, Honghan

    2017-01-01

    New neuroimaging techniques have led to significant advancements in our understanding of cerebral mechanisms of primary insomnia. However, the neuronal low-frequency oscillation remains largely uncharacterized in chronic primary insomnia (CPI). In this study, the amplitude of low-frequency fluctuation (ALFF), a data-driven method based on resting-state functional MRI, was used to examine local intrinsic activity in 27 patients with CPI and 27 age-, sex-, and education-matched healthy controls. We examined neural activity in two frequency bands, slow-4 (between 0.027 and 0.073 Hz) and slow-5 (0.010-0.027 Hz), because blood-oxygen level dependent (BOLD) fluctuations in different low-frequency bands may present different neurophysiological manifestations that pertain to a spatiotemporal organization. The ALFF associated with the primary disease effect was widely distributed in the cerebellum posterior lobe (CPL), dorsal and ventral prefrontal cortex, anterior cingulate cortex, precuneus, somatosensory cortex, and several default-mode sub-regions. Several brain regions (i.e., the right cerebellum, anterior lobe, and left putamen) exhibited an interaction between the frequency band and patient group. In the slow-5 band, increased ALFF of the right postcentral gyrus/inferior parietal lobule (PoCG/IPL) was enhanced in association with the sleep quality (ρ = 0.414, P  = 0.044) and anxiety index (ρ = 0.406, P  = 0.049) of the CPI patients. These findings suggest that during chronic insomnia, the intrinsic functional plasticity primarily responds to the hyperarousal state, which is the loss of inhibition in sensory-informational processing. Our findings regarding an abnormal sensory input and intrinsic processing mechanism might provide novel insight into the pathophysiology of CPI. Furthermore, the frequency factor should be taken into consideration when exploring ALFF-related clinical manifestations.

  20. Suppressing RF breakdown of powerful backward wave oscillator by field redistribution

    Directory of Open Access Journals (Sweden)

    W. Song

    2012-03-01

    Full Text Available An over mode method for suppressing the RF breakdown on metal surface of resonant reflector cavity in powerful backward wave oscillator is investigated. It is found that the electric field is redistributed and electron emission is restrained with an over longitudinal mode cavity. Compared with the general device, a frequency band of about 5 times wider and a power capacity of at least 1.7 times greater are obtained. The results were verified in an X-band high power microwave generation experiment with the output power near 4 gigawatt.

  1. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    Science.gov (United States)

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  2. Identification of Characterization Factor for Power System Oscillation Based on Multiple Synchronized Phasor Measurements

    Science.gov (United States)

    Hashiguchi, Takuhei; Watanabe, Masayuki; Matsushita, Akihiro; Mitani, Yasunori; Saeki, Osamu; Tsuji, Kiichiro; Hojo, Masahide; Ukai, Hiroyuki

    Electric power systems in Japan are composed of remote and distributed location of generators and loads mainly concentrated in large demand areas. The structures having long distance transmission tend to produce heavy power flow with increasing electric power demand. In addition, some independent power producers (IPP) and power producer and suppliers (PPS) are participating in the power generation business, which makes power system dynamics more complex. However, there was little observation as a whole power system. In this paper the authors present a global monitoring system of power system dynamics by using the synchronized phasor measurement of demand side outlets. Phasor Measurement Units (PMU) are synchronized based on the global positioning system (GPS). The purpose of this paper is to show oscillation characteristics and methods for processing original data obtained from PMU after certain power system disturbances triggered by some accidents. This analysis resulted in the observation of the lowest and the second lowest frequency mode. The derivation of eigenvalue with two degree of freedom model brings a monitoring of two oscillation modes. Signal processing based on Wavelet analysis and simulation studies to illustrate the obtained phenomena are demonstrated in detail.

  3. Design of power oscillator for 500 keV/20 mA Cockroft-Walton high voltage supply

    International Nuclear Information System (INIS)

    Djasiman; Sudjatmoko; Suprapto

    1999-01-01

    A design of power oscillator for Cockroft-Walton high voltage supply was carried out. This high voltage supply would be used as the acceleration voltage supply of an electron beam machine designed to have 500 keV/20 mA capacity. The power oscillator design consisted of output specification, circuit diagram, power supply and oscillator main components determinations. The power oscillator output wave power, voltage and frequency designed according to voltage multiplier input requirements. The design results showed that the circuit was class-c tickler oscillator having an output specification of 12.1 kW, 15 kV and 40 kHz sinus wave. The main component was a ITK 15-2 triode tube. (author)

  4. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  5. An Analysis of Decentralized Demand Response as Frequency Control Support under CriticalWind Power Oscillations

    Directory of Open Access Journals (Sweden)

    Jorge Villena

    2015-11-01

    Full Text Available In power systems with high wind energy penetration, the conjunction of wind power fluctuations and power system inertia reduction can lead to large frequency excursions, where the operating reserves of conventional power generation may be insufficient to restore the power balance. With the aim of evaluating the demand-side contribution to frequency control, a complete process to determine critical wind oscillations in power systems with high wind penetration is discussed and described in this paper. This process implies thousands of wind power series simulations, which have been carried out through a validated offshore wind farm model. A large number of different conditions have been taken into account, such as frequency dead bands, the percentages of controllable demand and seasonal factor influence on controllable loads. Relevant results and statistics are also included in the paper.

  6. Validation of the α-μ Model of the Power Spectral Density of GPS Ionospheric Amplitude Scintillation

    Directory of Open Access Journals (Sweden)

    Kelias Oliveira

    2014-01-01

    Full Text Available The α-μ model has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided by α-μ model in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on the α-μ model is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S, Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.

  7. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    Energy Technology Data Exchange (ETDEWEB)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized.

  8. Design and operation of 140 GHz gyrotron oscillators for power levels up to 1 MW CW

    International Nuclear Information System (INIS)

    Jory, H.; Bier, R.; Craig, L.J.; Felch, K.; Ives, L.; Lopez, N.; Spang, S.

    1986-12-01

    Varian has designed and tested 140 GHz gyrotron oscillators that have generated output powers of 100 kW CW and 200 kW for 1 ms pulses. Upcoming tubes will be designed to operate at power levels of 200 kW CW and ultimately up to 1 MW CW. The important design considerations which are addressed in the higher power tubes include the design of the electron gun, interaction circuit, and output window. These issues will be discussed and the results of the earlier 140 GHz gyrotron work at Varian will be summarized

  9. Analysis of the Degradation of MOSFETs in Switching Mode Power Supply by Characterizing Source Oscillator Signals

    Directory of Open Access Journals (Sweden)

    Xueyan Zheng

    2013-01-01

    Full Text Available Switching Mode Power Supply (SMPS has been widely applied in aeronautics, nuclear power, high-speed railways, and other areas related to national strategy and security. The degradation of MOSFET occupies a dominant position in the key factors affecting the reliability of SMPS. MOSFETs are used as low-voltage switches to regulate the DC voltage in SMPS. The studies have shown that die-attach degradation leads to an increase in on-state resistance due to its dependence on junction temperature. On-state resistance is the key indicator of the health of MOSFETs. In this paper, an online real-time method is presented for predicting the degradation of MOSFETs. First, the relationship between an oscillator signal of source and on-state resistance is introduced. Because oscillator signals change when they age, a feature is proposed to capture these changes and use them as indicators of the state of health of MOSFETs. A platform for testing characterizations is then established to monitor oscillator signals of source. Changes in oscillator signal measurement were observed with aged on-state resistance as a result of die-attach degradation. The experimental results demonstrate that the method is efficient. This study will enable a method to predict the failure of MOSFETs to be developed.

  10. Towards a Reactive Power Oscillation Damping Controller for Wind Power Plant Based on Full Converter Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik

    2012-01-01

    In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...... contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT....... controlled to achieve a positive damping contribution. It is investigated how a park level voltage, reactive power, and power factor control at different grid strengths interact with the Q POD in terms of a resulting phase shift. A WPP is modular and distributed and a WPP Q POD necessitate that each WT...

  11. Advance in ERG Analysis: From Peak Time and Amplitude to Frequency, Power, and Energy

    Directory of Open Access Journals (Sweden)

    Mathieu Gauvin

    2014-01-01

    Full Text Available Purpose. To compare time domain (TD: peak time and amplitude analysis of the human photopic electroretinogram (ERG with measures obtained in the frequency domain (Fourier analysis: FA and in the time-frequency domain (continuous (CWT and discrete (DWT wavelet transforms. Methods. Normal ERGs n=40 were analyzed using traditional peak time and amplitude measurements of the a- and b-waves in the TD and descriptors extracted from FA, CWT, and DWT. Selected descriptors were also compared in their ability to monitor the long-term consequences of disease process. Results. Each method extracted relevant information but had distinct limitations (i.e., temporal and frequency resolutions. The DWT offered the best compromise by allowing us to extract more relevant descriptors of the ERG signal at the cost of lesser temporal and frequency resolutions. Follow-ups of disease progression were more prolonged with the DWT (max 29 years compared to 13 with TD. Conclusions. Standardized time domain analysis of retinal function should be complemented with advanced DWT descriptors of the ERG. This method should allow more sensitive/specific quantifications of ERG responses, facilitate follow-up of disease progression, and identify diagnostically significant changes of ERG waveforms that are not resolved when the analysis is only limited to time domain measurements.

  12. Self-Oscillating Soft Switching Envelope Tracking Power Supply for Tetra2 Base Station

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a high-efficiency, high-bandwidth solution to implementing an envelope tracking power supply for the RF power amplifier (RFPA) in a Tetra2 base station. The solution is based on synchronous rectified buck topology, augmented with high-side switch zero-current switching (ZCS......) implemented with a series inductor and an external clamping power supply. Combined with advanced power stage components (die-size MOSFETs), a high-performance fixed-frequency self-oscillating (sliding mode) control strategy and a 4th-order output filter, this leads to a compact, effective and efficient...... overall solution switching at 1MHz with 88-95% efficiency. In a class-AB RFPA amplifying a 50kHz bandwidth QAM Tetra2 signal at 4.6W average output power, the use of tracking supply voltage reduced power dissipation by 25W....

  13. Chirality oscillation of primordial gravitational waves during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yong; Wang, Yu-Tong [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Piao, Yun-Song [School of Physics, University of Chinese Academy of Sciences,Beijing 100049 (China); Institute of Theoretical Physics, Chinese Academy of Sciences,P.O. Box 2735, Beijing 100190 (China)

    2017-03-06

    We show that if the gravitational Chern-Simons term couples to a massive scalar field (m>H), the primordial gravitational waves (GWs) will show itself the chirality oscillation, i.e., the amplitudes of the left- and right-handed GWs modes will convert into each other and oscillate in their propagations. This oscillation will eventually develop a permanent difference of the amplitudes of both modes, which leads to nearly opposite oscillating shapes in the power spectra of the left- and right-handed primordial GWs. We discuss its implication to the CMB B-mode polarization.

  14. Analysis of the oscillation causes in automatic controller of reactor power

    International Nuclear Information System (INIS)

    Aleksakov, A.N.; Nikolaev, E.V.; Podlazov, L.N.

    1991-01-01

    Conditions for occurence of oscillations in automatic controller of reactor power are determined. Graphic-analytical method for calculating the stability of non-linear system, which enables one to reveal the most important factors determining the stability, is used. The practical results of the analysis are obtained for the system of local automatic comtrollers, used in the RBMK reactors. A simple method providing for the required stability margin, is suggested

  15. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  16. Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations

    International Nuclear Information System (INIS)

    Eliasi, H.; Menhaj, M.B.; Davilu, H.

    2011-01-01

    Research highlights: → In this work, a robust nonlinear model predictive control algorithm is developed. → This algorithm is applied to control the power level for load following. → The state constraints are imposed on the predicted trajectory during optimization. → The xenon oscillations are the main constraint for the load following problem. → In this algorithm, xenon oscillations are bounded within acceptable limits. - Abstract: One of the important operations in nuclear power plants is load-following in which imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation considered to be a constraint for the load-following operation. In this paper, a robust nonlinear model predictive control for the load-following operation problem is proposed that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to maintain xenon oscillations to be bounded. The constant AO is a robust state constraint for load-following problem. The controller imposes restricted state constraints on the predicted trajectory during optimization which guarantees robust satisfaction of state constraints without restoring to a min-max optimization problem. Simulation results show that the proposed controller for the load-following operation is so effective so that the xenon oscillations kept bounded in the given region.

  17. Discovery of burst oscillations in the intermittent accretion-powered millisecond pulsar HETE J1900.1-2455

    NARCIS (Netherlands)

    Watts, A.L.; Altamirano, D.; Linares, M.; Patruno, A.; Casella, P.; Cavecchi, Y.; Degenaar, N.; Rea, N.; Soleri, P.; van der Klis, M.; Wijnands, R.

    2009-01-01

    We report the discovery of burst oscillations from the intermittent accretion-powered millisecond pulsar (AMP) HETE J1900.1-2455, with a frequency ~1 Hz below the known spin frequency. The burst oscillation properties are far more similar to those of the non-AMPs and Aql X-1 (an intermittent AMP

  18. Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Po Hu

    2016-06-01

    Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.

  19. Power oscillation damping capabilities of wind power plant with full converter wind turbines considering its distributed and modular characteristics

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen N.; Jensen, Kim H.

    2013-01-01

    Wind power plants (WPP) are for power system stability studies often represented with aggregated models where several wind turbines (WT) are aggregated into a single up-scaled model. The advantage is a reduction in the model complexity and the computational time, and for a number of study types...... aggregation is investigated and it is shown that the level of WPP aggregation only has limited impact on the resulting modal damping. The study is based on a non-linear, dynamic model of the 3.6 MW Siemens Wind Power WT....... the accuracy of the results has been found acceptable. A large WPP is, however, both modular and distributed over a large geographical area, and feasibility of aggregating the WTs, thus, have to be reassessed when new applications are introduced for WPPs. Here, the power oscillation damping capabilities...

  20. Valuation of power oscillations in a BWR after control rod banks withdrawal events

    International Nuclear Information System (INIS)

    Costa, A. L.; Pereira, C.; Da Silva, C. A. M.; Veloso, M. A. F.

    2009-01-01

    The out-of-phase mode of oscillation is a very challenging type of instability occurring in BWR (Boiling Water Reactor) and its study is relevant because of the safety implications related to the capability to promptly detect any such inadvertent occurrence by in-core neutron detectors, thus triggering the necessary countermeasures in terms of selected rod insertion or even reactor shutdown. In this work, control rod banks (CRB) withdrawal transient was considered to study the power instability occurring in a BWR. To simulate this transient, the control rod banks were continuously removed from the BWR core in different cases. The simulation resulted in a very large increase of power. To perform the instability simulations, the RELAP5/MOD3.3 thermal hydraulic system code was coupled with the PARCS/2.4 3D neutron kinetic code. Data from a real BWR, the Peach Bottom, have been used as reference conditions and reactor parameters. The trend of the mass flow rate, pressure, coolant temperature and the void fraction to four thermal hydraulic channels symmetrically located in the core with respect to the core centre, were taken. It appears that the velocity of the rod bank withdrawal is a very important aspect for reactor stability. The slowest CRB withdrawal (180 s) did not cause power perturbation while the fast removal (20 s) triggered a slow power oscillation that little by little amplified to reach levels of more 100% of the initial power after about 210 s. The investigation of the related thermo hydraulic parameters showed that the mass flow rate, the void fraction and also the coolant temperature began to oscillate at approximately the same time interval

  1. Use of an untuned cavity for absolute power measurements of the harmonics above 100 GHz from an IMPATT oscillator

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Knight, R. J.; Gebbie, H. A.

    1980-07-01

    A new technique of measuring absolute power exploiting an untuned cavity and Fourier spectroscopy has been used to examine the power spectrum of the harmonics and other overtones produced by a 95 GHz IMPATT oscillator. The conditions which favor the production of a rich harmonic spectrum are not those which maximize the fundamental power. Under some conditions of mismatch at the fundamental frequency it is possible to produce over 200 microW of harmonic power in the 100-200 GHz region comparable with the fundamental power from the oscillator.

  2. Note on the power divergence in lattice calculations of ΔI=1/2 K→ππ amplitudes at MK=Mπ

    International Nuclear Information System (INIS)

    Golterman, Maarten; Lin, C.-J. David; Pallante, Elisabetta

    2004-01-01

    In this Brief Report, we clarify a point concerning the power divergence in lattice calculations of ΔI=1/2 K→ππ decay amplitudes. There have been worries that this divergence might show up in the Minkowski amplitudes at M K =M π with all the mesons at rest. Here we demonstrate, via an explicit calculation in leading-order chiral perturbation theory, that the power divergence is absent at the above kinematic point, as predicted by CPS symmetry

  3. Effect of power oscillations on suppression pool heating during ATWS [Anticipated Transients Without Scram] conditions

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1990-01-01

    Nine selected Anticipated Transients Without Scram (ATWS) have been simulated on the BNL Engineering Plant Analyzer (EPA), to determine how power and flow oscillations, similar to those that did or could have occurred at the LaSalle-2 boiling Water Reactor (BWR), could affect the rate of Pressure Suppression Pool heating. It has been determined that the pool can reach its temperature limit of 80 degree C in 4.3 min. after Turbine Trip without Bypass, if the feedwater pumps are not tripped. The pool will not reach its limit, if Boron is injected, even when oscillations are encountered. Simultaneous turbine and recirculation pump trips, introduced under stable conditions, can lead to instability. 2 refs., 17 figs., 9 tabs

  4. Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

    Science.gov (United States)

    Lu, Hui; Rihko-Struckmann, Liisa; Sundmacher, Kai

    2011-10-28

    The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the cell voltage and power density oscillations, the discrete CO concentration oscillations at the anode outlet of the PEMFC were also detected, which directly confirms the electrochemical CO oxidation taking place in the anode chamber during galvanostatic operating. This journal is © the Owner Societies 2011

  5. Sub-100 fs high average power directly blue-diode-laser-pumped Ti:sapphire oscillator

    Science.gov (United States)

    Rohrbacher, Andreas; Markovic, Vesna; Pallmann, Wolfgang; Resan, Bojan

    2016-03-01

    Ti:sapphire oscillators are a proven technology to generate sub-100 fs (even sub-10 fs) pulses in the near infrared and are widely used in many high impact scientific fields. However, the need for a bulky, expensive and complex pump source, typically a frequency-doubled multi-watt neodymium or optically pumped semiconductor laser, represents the main obstacle to more widespread use. The recent development of blue diodes emitting over 1 W has opened up the possibility of directly diode-laser-pumped Ti:sapphire oscillators. Beside the lower cost and footprint, a direct diode pumping provides better reliability, higher efficiency and better pointing stability to name a few. The challenges that it poses are lower absorption of Ti:sapphire at available diode wavelengths and lower brightness compared to typical green pump lasers. For practical applications such as bio-medicine and nano-structuring, output powers in excess of 100 mW and sub-100 fs pulses are required. In this paper, we demonstrate a high average power directly blue-diode-laser-pumped Ti:sapphire oscillator without active cooling. The SESAM modelocking ensures reliable self-starting and robust operation. We will present two configurations emitting 460 mW in 82 fs pulses and 350 mW in 65 fs pulses, both operating at 92 MHz. The maximum obtained pulse energy reaches 5 nJ. A double-sided pumping scheme with two high power blue diode lasers was used for the output power scaling. The cavity design and the experimental results will be discussed in more details.

  6. Control of Full-Scale Converter based Wind Power Plants for damping of low frequency system oscillations

    DEFF Research Database (Denmark)

    Adamczyk, Andrzej Grzegorz; Teodorescu, Remus; Rodriguez, Pedro

    2011-01-01

    Damping of low frequency power oscillations is one of essential aspects of maintaining power system stability. In literature can be found publications on damping capability of Doubly Fed Induction Generator based wind turbines. This paper extends discussion on Wind Power Plant damping capability...

  7. Oscillation Performance and Wide‐area Coordination Control of Power System with Large‐scale Wind Farms

    DEFF Research Database (Denmark)

    Su, Chi

    and residue identification. Simulation results show the effectiveness of this damping controller under different operating conditions of the SSSC. Influence of a direct‐drive‐full‐convertor based wind farm ancillary frequency control and voltage control on power system oscillation performance is investigated...... oscillation mode damping ratio, respectively. The former controller is implemented in individual wind turbines; the latter controller is implemented in the wind farm level as a supplementary damping controller. Finally, the coordinating selection and parameter design strategy for PSS is extended for all types...... to this problem need to be implemented in the power systems. On the other hand, wind power especially largescale wind farms are increasingly integrated into modern power systems and bring new challenges to power system operation and control. The influence of wind power integration on system oscillation...

  8. High frequency, high amplitude and low energy earthquake study of nuclear power plants

    International Nuclear Information System (INIS)

    Bernero, R.M.; Lee, A.J.H.; Sobel, P.A.

    1988-01-01

    Nuclear power plants are designed for a seismic input spectrum based on U.S. acceleration time histories. However, data recorded near several earthquakes, mostly in the Eastern U.S., are richer in high frequency energy. This paper focuses on the evaluation of one of these events, i.e., the 1986 Ohio earthquake approximately 10 miles from the Perry nuclear power plant. The Perry Seismic Category I structures were reanalyzed using the in-structure recorded earthquake motions. The calculated in-structure response spectra and recorded response spectra have the same general trends, which shows the buildings are capable of responding to high frequency earthquake motion. Dynamic stresses calculated using the Ohio earthquake recorded motions are substantially lower than the design stresses. The seismic qualification of a wide sample of equipment was reassessed using the Ohio earthquake recorded motions and the margins were found to be larger than one. The 1986 Ohio earthquake was also shown to possess much lower energy content and ductility demand than the design spectra. For the Perry case, the seismic design was shown to have adequate safety margins to accommodate the 1986 Ohio earthquake, even though the design spectra were exceeded at about 20 Hz. The NRC is evaluating the need to generically modify design spectra in light of the recent high frequency recordings. (orig.)

  9. Effect of Tower Shadow and Wind Shear in a Wind Farm on AC Tie-Line Power Oscillations of Interconnected Power Systems

    DEFF Research Database (Denmark)

    Tan, Jin; Hu, Weihao; Wang, Xiaoru

    2013-01-01

    This paper describes a frequency domain approach for evaluating the impact of tower shadow and wind shear effects (TSWS) on tie-line power oscillations. A simplified frequency domain model of an interconnected power system with a wind farm is developed. The transfer function, which relates the tie......-line power variation to the mechanical power variation of a wind turbine, and the expression of the maximum magnitude of tie-line power oscillations are derived to identify the resonant condition and evaluate the potential risk. The effects of the parameters on the resonant magnitude of the tie-line power...... are also discussed. The frequency domain analysis reveals that TSWS can excite large tie-line power oscillations if the frequency of TSWS approaches the tie-line resonant frequency, especially in the case that the wind farm is integrated into a relatively small grid and the tie-line of the interconnected...

  10. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Chemical oscillators; phase flip; oscillation death. PACS No. 05.45 .... array oscillate (with varying amplitudes and frequencies), while the others experience oscillation death .... Barring the boundary cells, one observes near phase flip and near ...

  11. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input...... and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion...... figures in excess of 0.1–0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally...

  12. Comparison among nonlinear excitation control strategies used for damping power system oscillations

    International Nuclear Information System (INIS)

    Leon, A.E.; Solsona, J.A.; Valla, M.I.

    2012-01-01

    Highlights: ► A description and comparison of nonlinear control strategies for synchronous generators are presented. ► Advantages of using nonlinear controllers are emphasized against the use of classical PSSs. ► We find that a particular selection of IDA gains achieve the same performance that FL controllers. - Abstract: This work is focused on the problem of power system stability. A thorough description of nonlinear control strategies for synchronous generator excitation, which are designed for damping oscillations and improving transient stability on power systems, is presented along with a detailed comparison among these modern strategies and current solutions based on power system stabilizers. The performance related to damping injection in each controller, critical time enhancement, robustness against parametric uncertainties, and control signal energy consumption is analyzed. Several tests are presented to validate discussions on various advantages and disadvantages of each control strategy.

  13. Analysis and damping control of power system low-frequency oscillations

    CERN Document Server

    Wang, Haifeng

    2016-01-01

    This book presents the research and development results on power systems oscillations in three categories of analytical methods. First is damping torque analysis which was proposed in 1960’s, further developed between 1980-1990, and widely used in industry. Second is modal analysis which developed between the 1980’s and 1990’s as the most powerful method. Finally the linearized equal-area criterion analysis that is proposed and developed recently. The book covers three main types of controllers: Power System Stabilizer (PSS), FACTS (Flexible AC Transmission Systems) stabilizer, and ESS (Energy Storage Systems) stabilizer. The book provides a systematic and detailed introduction on the subject as the reference for industry applications and academic research.

  14. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power

    International Nuclear Information System (INIS)

    Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-01-01

    The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm"2 required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due to time delay in the development of the breakdown phenomena.

  15. General oscillation damping analysis of the L-C filter circuit in the high-power rectifying power supply

    International Nuclear Information System (INIS)

    Xu Weihua; Chen Yonghao; Wu Junshuan; Kuang Guangli

    1998-06-01

    Rectifier circuit is the most popular converter. For the ripple demand of high-power load, the L-C filter with invert 'L' type has been used universally. Due to the influence of the second-order link, damped oscillation will occur with proper condition while the circuit state is changed. The ideal cascade damping condition and the parallel one can be obtained easily. Generally, the damping condition of the step response of the L-C filter circuit is induced, and the discussion is given

  16. A revisit to self-excited push pull vacuum tube radio frequency oscillator for ion sources and power measurements

    International Nuclear Information System (INIS)

    Hlondo, L. R.; Lalremruata, B.; Punte, L. R. M.; Rebecca, L.; Lalnunthari, J.; Thanga, H. H.

    2016-01-01

    Self-excited push-pull vacuum tube oscillator is one of the most commonly used oscillators in radio frequency (RF)-ion plasma sources for generation of ions using radio frequency. However, in spite of its fundamental role in the process of plasma formation, the working and operational characteristics are the most frequently skip part in the descriptions of RF ion sources in literatures. A more detailed treatment is given in the present work on the RF oscillator alone using twin beam power tetrodes 829B and GI30. The circuit operates at 102 MHz, and the oscillation conditions, stability in frequency, and RF output power are studied and analyzed. A modified form of photometric method and RF peak voltage detection method are employed to study the variation of the oscillator output power with plate voltage. The power curves obtained from these measurements are quadratic in nature and increase with increase in plate voltage. However, the RF output power as measured by photometric methods is always less than the value calculated from peak voltage measurements. This difference is due to the fact that the filament coil of the ordinary light bulb used as load/detector in photometric method is not a perfect inductor. The effect of inductive reactance on power transfer to load was further investigated and a technique is developed to estimate the amount of power correction needed in the photometric measurement result.

  17. The problem of a digital simulation of Xe oscillations in power reactors

    International Nuclear Information System (INIS)

    Elzmann, H.J.

    1974-04-01

    Xe-induced power oscillations are simulated in a pressurized water reactor. The coupled balance equation for the neutrons and the decay products iodine/xenon are decoupled via a quasi-stationary approach. The stationary multigroup diffusion equation is solved with a difference method. The whole model is realized with the aid of already existing modules of the reactor program system RSYST. Its basic usefulness is established. A further expansion of the method is discussed with the aim to develop rod drive programs for real reactors. (orig./LN) [de

  18. A Vertical Flux-Switching Permanent Magnet Based Oscillating Wave Power Generator with Energy Storage

    Directory of Open Access Journals (Sweden)

    Yu Zou

    2017-06-01

    Full Text Available In this paper, an effective low-speed oscillating wave power generator and its energy storage system have been proposed. A vertical flux-switching permanent magnet (PM machine is designed as the generator while supercapacitors and batteries are used to store the energy. First, the overall power generation system is established and principles of the machine are introduced. Second, three modes are proposed for the energy storage system and sliding mode control (SMC is employed to regulate the voltage of the direct current (DC bus, observe the mechanical input, and feedback the status of the storage system. Finally, experiments with load and sinusoidal mechanical inputs are carried out to validate the effectiveness and stability of power generation for wave energy. The results show that the proposed power generation system can be employed in low-speed environment around 1 m/s to absorb random wave power, achieving over 60% power efficiency. The power generation approach can be used to capture wave energy in the future.

  19. Enhancing output power of a piezoelectric cantilever energy harvester using an oscillator

    International Nuclear Information System (INIS)

    Liu, Haili; Huang, Zhenyu; Xu, Tianzhu; Chen, Dayue

    2012-01-01

    The piezoelectric cantilever with a tip mass (Mass-PC), as a conventional vibration energy harvester, usually works at its fundamental frequency matching ambient excitation. By attaching an oscillator to a piezoelectric cantilever (Osc-PC), a double-mode energy harvester is developed to harvest more power from two matched ambient driving frequencies. Meanwhile, it allows the first operating frequency of the Osc-PC to be adjusted to be very low with only a limited mass attached. A distributed-parameter model of this harvester and the explicit expressions of its operating frequencies are derived to analyze and design the Osc-PC. Numerical investigations reveal that a heaver oscillator placed near the clamped end of the piezoelectric cantilever has better performance at the given exciting frequencies. Following the specified design criteria, an Osc-PC whose operating frequencies match two given exciting frequencies was constructed for the purpose of experimental testing. The results show that, compared to that of a corresponding Mass-PC whose operating frequency matches the lower exciting frequency, the energy harvesting efficiency of the Osc-PC increases by almost four times at the first operating frequency, while the output power at the second operating frequency of the Osc-PC accounts for 68% of that of the Mass-PC. (paper)

  20. A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design

    Directory of Open Access Journals (Sweden)

    Srikanta Mahapatra

    2014-12-01

    Full Text Available In this paper, a novel hybrid Firefly Algorithm and Pattern Search (h-FAPS technique is proposed for a Static Synchronous Series Compensator (SSSC-based power oscillation damping controller design. The proposed h-FAPS technique takes the advantage of global search capability of FA and local search facility of PS. In order to tackle the drawback of using the remote signal that may impact reliability of the controller, a modified signal equivalent to the remote speed deviation signal is constructed from the local measurements. The performances of the proposed controllers are evaluated in SMIB and multi-machine power system subjected to various transient disturbances. To show the effectiveness and robustness of the proposed design approach, simulation results are presented and compared with some recently published approaches such as Differential Evolution (DE and Particle Swarm Optimization (PSO. It is observed that the proposed approach yield superior damping performance compared to some recently reported approaches.

  1. A High-Power Continuous-Wave Mid-Infrared Optical Parametric Oscillator Module

    Directory of Open Access Journals (Sweden)

    Yichen Liu

    2017-12-01

    Full Text Available We demonstrate here a compact optical parametric oscillator module for mid-infrared generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within a small volume of 220 × 60 × 55 mm3. The module can be easily aligned to various pump laser sources, and here we use a 50 W ytterbium (Yb-doped fiber laser as an example. With a two-channel MgO-doped periodically poled lithium niobate crystal (MgO:PPLN, our module covers a tuning range of 2416.17–2932.25 nm and 3142.18–3452.15 nm. The highest output power exceeds 10.4 W at 2.7 μm, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root Meat Square (RMS for a 10 h duration under outdoor conditions.

  2. A knowledge-based system for control of xenon-induced spatial power oscillations during load-follow operations

    International Nuclear Information System (INIS)

    Chung, Sun-Kyo; Danofsky, R.A.; Spinrad, B.I.

    1988-01-01

    As is well known, large pressurized water reactors (PWRs) are subject to xenon-induced axial power oscillations at some time during a given cycle. Attention to this behavior is required during load-follow operations. A knowledge-based system for controlling xenon-induced spatial power oscillations is described. Experience with a limited set of load-follow patterns has demonstrated that the system is capable of providing advice on appropriate control actions. A simulation model, coupled with a rule-learning process, has been found to be a useful way for determining appropriate weights for the rules that relate power patterns and control actions

  3. TCSC control structures for line power scheduling and methods to determine their location and tuning to damp system oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Martins, N; Pinto, H J.C.P.; Bianco, A [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Macedo, N J.P. [FURNAS, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    This paper describes control structures and computer methods to enhance the practical use of thyristor controlled series compensation (TCSC) in power systems. The location and controller design of the TCS devices, to damp system oscillations, are based on modal analysis and frequency response techniques, respectively. Results are given for a large practical power system. (author) 15 refs., 18 figs., 5 tabs.

  4. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  5. A Model Predictive Control-Based Power Converter System for Oscillating Water Column Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Gimara Rajapakse

    2017-10-01

    Full Text Available Despite the predictability and availability at large scale, wave energy conversion (WEC has still not become a mainstream renewable energy technology. One of the main reasons is the large variations in the extracted power which could lead to instabilities in the power grid. In addition, maintaining the speed of the turbine within optimal range under changing wave conditions is another control challenge, especially in oscillating water column (OWC type WEC systems. As a solution to the first issue, this paper proposes the direct connection of a battery bank into the dc-link of the back-to-back power converter system, thereby smoothening the power delivered to the grid. For the second issue, model predictive controllers (MPCs are developed for the rectifier and the inverter of the back-to-back converter system aiming to maintain the turbine speed within its optimum range. In addition, MPC controllers are designed to control the battery current as well, in both charging and discharging conditions. Operations of the proposed battery direct integration scheme and control solutions are verified through computer simulations. Simulation results show that the proposed integrated energy storage and control solutions are capable of delivering smooth power to the grid while maintaining the turbine speed within its optimum range under varying wave conditions.

  6. Power system low frequency oscillation mode estimation using wide area measurement systems

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2017-04-01

    Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project

  7. Fuel rod response to BWR power oscillations during anticipated transient without scram

    International Nuclear Information System (INIS)

    Cunningham, M.; Scott, H.

    1998-01-01

    The US NRC is examining fuel behaviour during a postulated BWR anticipated transient without scram (ATWS) with power oscillations to determine if current regulatory criteria are adequate. Currently, the 280 cal/g limit for RIAs is used to show that coolable geometry is maintained and pressure pulses are avoided during ATWSs. Two specific questions have now been raised about the continued use of the 280 cal/g value. First, this value was derived from energy deposition values whereas the regulatory requirements are written in terms of fuel enthalpy. The second is that fuel rod rupture with fuel dispersal has been observed in RIA tests with high bum-up fuel rods having energy deposition values well below the current limit. However, the BWR ATWS power oscillation transient is slower than a RIA power pulse, thus reducing the likelihood of failure. Therefore questions about the adequacy of the 280 cal/g limit do not necessarily imply unacceptable fuel damage occurring during such power oscillations and there is no immediate safety concern. The reported analysis, using the FRAPTRAN transient fuel rod analysis code, was thus undertaken to determine if further investigation might be appropriate and with the intention of starting some discussions about the issue. There was a comment that a limit of 100 cal/g fuel enthalpy had been mentioned following the scoping calculations but that perhaps enthalpy was not the main concern in an ATWS. It was also observed that cladding stresses are lower than in all RIA. The question was what really is the main concern. It was replied that the main concern was a question of maintaining a coolable geometry i.e. not loosing fuel particles out of the rod. And it was agreed that enthalpy may not be the important issue, rather that it previously had been used as the parameter and so had been considered. Confirmation of this presently being an evaluation and not a regulatory concern was sought and provided, it being pointed out that the NRC

  8. Five-minute oscillation power within magnetic elements in the solar atmosphere

    International Nuclear Information System (INIS)

    Jain, Rekha; Gascoyne, Andrew; Hindman, Bradley W.; Greer, Benjamin

    2014-01-01

    It has long been known that magnetic plage and sunspots are regions in which the power of acoustic waves is reduced within the photospheric layers. Recent observations now suggest that this suppression of power extends into the low chromosphere and is also present in small magnetic elements far from active regions. In this paper we investigate the observed power suppression in plage and magnetic elements, by modeling each as a collection of vertically aligned magnetic fibrils and presuming that the velocity within each fibril is the response to buffeting by incident p modes in the surrounding field-free atmosphere. We restrict our attention to modeling observations made near the solar disk center, where the line-of-sight velocity is nearly vertical and hence, only the longitudinal component of the motion within the fibril contributes. Therefore, we only consider the excitation of axisymmetric sausage waves and ignore kink oscillations as their motions are primarily horizontal. We compare the vertical motion within the fibril with the vertical motion of the incident p mode by constructing the ratio of their powers. In agreement with observational measurements we find that the total power is suppressed within strong magnetic elements for frequencies below the acoustic cut-off frequency. However, further physical effects need to be examined for understanding the observed power ratios for stronger magnetic field strengths and higher frequencies. We also find that the magnitude of the power deficit increases with the height above the photosphere at which the measurement is made. Furthermore, we argue that the area of the solar disk over which the power suppression extends increases as a function of height.

  9. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    Science.gov (United States)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  10. Damping of power oscillations of exchange lines using a DC link; Amortecimento de oscilacoes de potencia de linhas de intercambio utilizando um elo de CC

    Energy Technology Data Exchange (ETDEWEB)

    Paccini, Rodrigo de O.; Custodio, Diogo T.; Kopcak, Igor; Costa, Vivaldo F. da [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Dept. de Sistemas de Energia Eletrica], Emails: rodrigo@dsee.fee.unicamp.br, totti@dsee.fee.unicamp.br, kopcak@dsee.fee.unicamp.br, vivaldo@dsee.fee.unicamp.br.

    2009-07-01

    This article presents a study that evaluates the effectiveness of a DC link in order to damp power oscillations, of inter area exchange, under small disturbance conditions, operating with Automatic Control Generation. The DC link was represented by a power injection model included the Sensitivity Power Model. Through this representation, the DC link was inserted in the block diagram, modeled as an injection power in the bars terminals in the net active and reactive, closing a new power balance at every instant. It was also designed a controller for damping power oscillations (POD-Power Oscillation Damping Controller) for modulation the power of the DC link and, therefore, insertion of additional damping in a frequency oscillations of exchange lines. The results confirm that the DC link has a great potential for maintaining the damping of oscillations frequency so inter area when equipped with POD controllers.

  11. Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Lee, Jung Pil; Kim, Han Gun

    2012-01-01

    In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using H control theory was designed to damp low frequency oscillation of power system. The main advantage of the controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed SFESS controller was more robust than conventional power system stabilizer (PSS).

  12. Novel STATCOM Controller for Mitigating SSR and Damping Power System Oscillations in a Series Compensated Wind Parks

    DEFF Research Database (Denmark)

    Bak-Jensen, Birgitte; El-Moursi, M. S.; Abdel-Rahman, Mansour Hassan

    2010-01-01

    This paper addresses implementation issues associated with a novel damping control algorithm for a STATCOM in a series compensated wind park for mitigating SSR (subsynchronous resonance) and damping power system oscillations. The IEEE first benchmark model on subsynchronous resonance is adopted...... the SSR, damping the power system oscillation and enhancing the transient stability margin in response to different SCRs....... in the STATCOM control structure. The performances of the controllers are tested in steady state operation and in response to system contingencies, taking into account the impact of short circuit ratios (SCRs). Simulation results are presented to demonstrate the capability of the controllers for mitigating...

  13. Exact, E = 0, classical and quantum solutions for general power-law oscillators

    International Nuclear Information System (INIS)

    Nieto, M.M.; Daboul, J.

    1994-01-01

    For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -γ/r ν , γ > 0 and -∞ 0 (t))] 1/μ , with μ = ν/2 - 1 ≠ 0. For ν > 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when ν > 2 the solutions are normalizable (bound), as in the classical case. Also, there are normalizable discrete, yet unbound, state which correspond to unbound classical particles which reach infinity in a finite time. These and other interesting comparisons to the classical system will be discussed

  14. Power spectrum oscillations from Planck-suppressed operators in effective field theory motivated monodromy inflation

    Science.gov (United States)

    Price, Layne C.

    2015-11-01

    We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.

  15. Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations

    Directory of Open Access Journals (Sweden)

    Shiyun Xu

    2017-12-01

    Full Text Available Aiming at damping the inter-area oscillations of power systems, the present study proposes a wide-area decentralized coordinated control framework, where the upper-level controller is designed to coordinate the lower-level multiple FACTS devices. Based on the polytopic differential inclusion method, the derived controller adopts a decentralized structure and it is guaranteed to be robust to meet the demand of operation under multiple operating conditions. Since time delay of wide area signal transmission is inevitable, in what follows, the quantum evolution algorithm (QEA method is introduced to find an optimal solution of the time-delay coordinated controller. In this regard, the stability of the system with a prescribed time delay is guaranteed and the system damping ratio is increased. Effectiveness and applicability of the proposed controller design methods have been demonstrated through numerical simulations.

  16. Xenon-induced power oscillations in a generic small modular reactor

    Science.gov (United States)

    Kitcher, Evans Damenortey

    As world demand for energy continues to grow at unprecedented rates, the world energy portfolio of the future will inevitably include a nuclear energy contribution. It has been suggested that the Small Modular Reactor (SMR) could play a significant role in the spread of civilian nuclear technology to nations previously without nuclear energy. As part of the design process, the SMR design must be assessed for the threat to operations posed by xenon-induced power oscillations. In this research, a generic SMR design was analyzed with respect to just such a threat. In order to do so, a multi-physics coupling routine was developed with MCNP/MCNPX as the neutronics solver. Thermal hydraulic assessments were performed using a single channel analysis tool developed in Python. Fuel and coolant temperature profiles were implemented in the form of temperature dependent fuel cross sections generated using the SIGACE code and reactor core coolant densities. The Power Axial Offset (PAO) and Xenon Axial Offset (XAO) parameters were chosen to quantify any oscillatory behavior observed. The methodology was benchmarked against results from literature of startup tests performed at a four-loop PWR in Korea. The developed benchmark model replicated the pertinent features of the reactor within ten percent of the literature values. The results of the benchmark demonstrated that the developed methodology captured the desired phenomena accurately. Subsequently, a high fidelity SMR core model was developed and assessed. Results of the analysis revealed an inherently stable SMR design at beginning of core life and end of core life under full-power and half-power conditions. The effect of axial discretization, stochastic noise and convergence of the Monte Carlo tallies in the calculations of the PAO and XAO parameters was investigated. All were found to be quite small and the inherently stable nature of the core design with respect to xenon-induced power oscillations was confirmed. Finally, a

  17. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  18. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    Science.gov (United States)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  19. Alleviation SSR and Low Frequency Power Oscillations in Series Compensated Transmission Line using SVC Supplementary Controllers

    Science.gov (United States)

    Kumar, Sanjiv; Kumar, Narendra

    2017-06-01

    In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.

  20. Gingival abrasion and recession in manual and oscillating-rotating power brush users.

    Science.gov (United States)

    Rosema, N A M; Adam, R; Grender, J M; Van der Sluijs, E; Supranoto, S C; Van der Weijden, G A

    2014-11-01

    To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating-rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. © 2014 The Authors International Journal of Dental Hygiene Published by John Wiley & Sons Ltd.

  1. Combined wide pump tuning and high power of a continuous-wave, singly resonant optical parametric oscillator

    NARCIS (Netherlands)

    Herpen, M.M.J.W. van; Bisson, S.E.; Ngai, A.K.Y.; Harren, F.J.M.

    2004-01-01

    A new singly resonant, single-frequency optical parametric oscillator (OPO) has been developed for the 2.6-4.7 mum infrared wavelength region, using a high power (>20 W), widely tunable (1024-1034 nm) Yb:YAG pump source. With the OPO frequency stabilized with an intracavity etalon, the OPO achieved

  2. A high-power narrow-linewidth optical parametric oscillator based on PPMgLN

    International Nuclear Information System (INIS)

    Peng, Y F; Wei, X B; Xie, G; Gao, J R; Li, D M; Wang, W M

    2013-01-01

    A high-power and narrow-linewidth tunable optical parametric oscillator based on PPMgLN is presented. The phase matching type e → e + e is used to avoid the walk-off effect and utilize the maximum nonlinear coefficient d 33 (27.4 pm V −1 ) of the PPMgLN crystal (5 mol% MgO doped). When the pump power of the 1064 nm laser is 50 W and the temperature of the PPMgLN crystal is 100 °C, average output power of 15.8 W is obtained with a slope efficiency of 40.6%. The 1.655 μm signal and 2.98 μm idler output powers are 9.5 W and 6.3 W, respectively. The linewidth of the 1.655 μm signal laser is 1.00 nm before compression and 0.05 nm after compression. The compression ratio is 20. The linewidth of the 2.98 μm idler laser is within 0.30–0.63 nm based on theoretical analysis of the linewidth of the 1064 nm pump laser and 1.655 μm signal laser. The output wavelength can be tuned from 1.6 to 1.8 μm and from 3.1 to 2.7 μm by changing the temperature of the 31.2 μm PPMgLN crystal from 30 to 200 °C. (paper)

  3. High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier

    Science.gov (United States)

    Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.

    2016-03-01

    We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.

  4. Study of a cylindrical cavity gyrotron, influence of power reflection and of the oscillation of a travelling mode

    International Nuclear Information System (INIS)

    Muggli, P.

    1991-11-01

    The quality factor and oscillating mode of a gyrotron cavity are essential parameters to consider when trying to obtain a high power (>500 kW), high efficiency (∼50%) microwave source, which oscillates in a stable manner in the principal mode of the cavity. The study and development of an 8 GHz gyrotron whose resonant cavity is formed by a cylindrical waveguide of slowly varying radius, is undertaken. The study is principally concerned with the phenomena associated with the low quality factor of the TE o 011 mode of the cavity. (author) figs., tabs., 102 refs

  5. Selection of mother wavelets for the detection of the oscillation frequencies in power signals of nuclear reactors

    International Nuclear Information System (INIS)

    Amador G, R.; Castillo D, R.; Ortiz V, J.

    2007-01-01

    Diverse types of transitory events can lead to oscillations of power in nuclear reactors. In such events, the power monitors provide a signal that contains important characteristics of the transitory one, as the oscillation frequency, tendencies, changes and the instants or periods in those that important events are presented. This characteristics are detected by means of diverse analysis techniques, as Autoregressive methods, Fourier Transform, Fourier Transform in Short Time, Wavelets Transform, among others. Presently work is used the one Wavelets Continuous Transform because it allows to carry out studies of the stationary, quasi-stationary and transitory signals in the Time-scale and Time-scale-spectrum planes. Contrary to other similar works, this work describes a methodology for the selection of the scales and the Wavelet mother to be applied the one Wavelets Continuous Transform, with the objective of detecting to the dominant frequencies of the system. To prove the proposal a broadly well-known real signal of an event of power oscillations it has been used. The obtained results correspond to three families of Wavelets mothers that fulfilled the conditions of scales and central frequency of the proposal. The results show that the value of the certain frequency oscillation in this work is practically the same one reported in other studies with other techniques. (Author)

  6. An optimal reactive power control strategy for a DFIG-based wind farm to damp the sub-synchronous oscillation of a power system

    DEFF Research Database (Denmark)

    Zhao, Bin; Li, Hui; Wang, Mingyu

    2014-01-01

    This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...

  7. Plasma Electronics. Theoretical and Experimental Investigations of Plasma Nonlinearity in the Powerful Microwave Oscillators

    International Nuclear Information System (INIS)

    Bliokh, Yu.P.

    2001-01-01

    During more than 50 years of Plasma Electronics development a great number of experimental and theoretical results have been achieved. These results allow understanding of physical processes which originate under charged particles beams interaction with a plasma. However, one essential aspect of such interaction remains insufficiently studied. The question is about a correlation between conditions of microwave excitation by a beam in plasma and plasma parameters. Each of these effects, namely the influence of plasma parameters on conditions of microwave excitation by a beam and plasma parameters variations under the influence of propagating microwave radiation are well known and investigated enough. However their common action under beam-plasma instability (BPI) development were not studied systematically, although the role of such reciprocal influence on character of these processes may be very large. The aim of this report is a review of recent theoretical and experimental investigations of such plasma nonlinearity in plasma-filled trawling-wave tubes. N.M.Zemlyansky and E.A.Kornilov have done experiments in Kharkov Institute of Physics and Technology (KhPhTI). Development of the theoretical model was started in KhPhTI (Yu.P.Bliokh, Ya.B.Fainberg, M.G.Lyubarsky, and V.O.Podobinsky) and continues by author in Technion. The developed theory takes into account two main reasons of the plasma density redistribution: high frequency pressure (HFP) force which ''push out'' plasma from the regions with increased microwave amplitude, or microwave discharge, which appears in the region where amplitude is large enough. Displaced (under HFP action) or additionally originating (under (BPD) development) plasma propagates from the disturbance source in the form of slow plasma waves (for example, ion-sound or magneto-sound waves), and the BPI develops in the nonhomogeneous plasma. It changes both magnitude and longitudinal distribution of excited microwave amplitude. As a result

  8. High-power broad-band tunable microwave oscillator, driven by REB in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kuzelev, M V; Loza, O T; Ponomarev, A V; Rukhadze, A A; Strel` kov, P S; Shkvarunets, A G; Ulyanov, D K [General Physics Inst. of Russian Academy of Sciences, Moscow (Russian Federation)

    1997-12-31

    The radiation spectra of a plasma relativistic broad-band microwave oscillator were measured. A hollow relativistic electron beam (REB) was injected into the plasma waveguide, consisting of annular plasma in a circular metal waveguide. The radiation spectra were measured by means of a calorimeter-spectrometer with a large cross section in the band of 3-39 GHz. The mean frequency was tunable in the band of 20-27 GHz, the spectrum width was 5-25 GHz with a power level of 40-85 MW. Calculations were carried out based on non-linear theory, taking into account electromagnetic noise amplification due to REB injection into the plasma waveguide. According to the theory the radiation regime should change from the single-particle regime to the collective regime when the plasma density and the gap between the annular plasma and REB are increased. Comparison of the experimental results with the non-linear theory explains some peculiarities of the measured spectrum. (author). 4 figs., 2 refs.

  9. Residue-based evaluation of the use of wind power plants with full converter wind turbines for power oscillation damping control

    DEFF Research Database (Denmark)

    Morato, Josep; Knüppel, Thyge; Østergaard, Jacob

    2013-01-01

    As wind power plants (WPPs) gradually replace the power production of the conventional generators, many aspects of the power system may be affected, in which the small signal stability is included. Additional control may be needed for wind turbine generators (WTGs) to participate in the power...... oscillation damping. The feasibility of implementing this control needs to be assessed. This paper studies how the damping contribution of a WPP is affected by different operating conditions and its dependence to selected feedback signals. The WPP model used includes individual WTGs to study how internal...

  10. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power:Amplifiers: Analysis and Optimization

    OpenAIRE

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic compara...

  11. Limit cycle analysis of nuclear coupled density wave oscillations

    International Nuclear Information System (INIS)

    Ward, M.E.

    1985-01-01

    An investigation of limit cycle behavior for the nuclear-coupled density wave oscillation (NCDWO) in a boiling water reactor (BWR) was performed. A simplified nonlinear model of BWR core behavior was developed using a two-region flow channel representation, coupled with a form of the point-kinetics equation. This model has been used to investigate the behavior of large amplitude NCDWO's through conventional time-integration solutions and through application of a direct relaxation-oscillation limit cycle solution in phase space. The numerical solutions demonstrate the potential for severe global power and flow oscillations in a BWR core at off-normal conditions, such as might occur during Anticipated Transients without Scram. Because of the many simplifying assumptions used, it is felt that the results should not be interpreted as an absolute prediction of core behavior, but as an indication of the potential for large oscillations and a demonstration of the corresponding limit cycle mechanisms. The oscillations in channel density drive the core power variations, and are reinforced by heat flux variations due to the changing fuel temperature. A global temperature increase occurs as energy is accumulated in the fuel, and limits the magnitude of the oscillations because as the average channel density decreases, the amplitude and duration of positive void reactivity at a given oscillation amplitude is lessened

  12. Investigation of boiling water reactor stability and limit-cycle amplitude

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.A.; Euler, J.A.

    1991-01-01

    Galerkin's method has been applied to a boiling water reactor (BWR) dynamics model consisting of the point kinetics equations, which describe the neutronics, and a feedback transfer function, which describes the thermal hydraulics. The result is a low-order approximate solution describing BWR behavior during small-amplitude limit-cycle oscillations. The approximate solution has been used to obtain a stability condition, show that the average reactor power must increase during limit-cycle oscillations, and qualitatively determine how changes in transfer function values affect the limit-cycle amplitude. 6 refs., 2 figs., 2 tabs

  13. Evaluation of thermal margin during BWR neutron flux oscillation

    International Nuclear Information System (INIS)

    Takeuchi, Yutaka; Takigawa, Yukio; Chuman, Kazuto; Ebata, Shigeo

    1992-01-01

    Fuel integrity is very important, from the view point of nuclear power plant safety. Recently, neutron flux oscillations were observed at several BWR plants. The present paper describes the evaluations of the thermal margin during BWR neutron flux oscillations, using a three-dimensional transient code. The thermal margin is evaluated as MCPR (minimum critical power ratio). The LaSalle-2 event was simulated and the MCPR during the event was evaluated. It was a core-wide oscillation, at which a large neutron flux oscillation amplitude was observed. The results indicate that the MCPR had a sufficient margin with regard to the design limit. A regional oscillation mode, which is different from a core-wide oscillation, was simulated and the MCPR response was compared with that for the LaSalle-2 event. The MCPR decrement is greater in the regional oscillation, than in the core wide -oscillation, because of the sensitivity difference in a flow-to-power gain. A study was carried out about regional oscillation detectability, from the MCPR response view point. Even in a hypothetically severe case, the regional oscillation is detectable by LPRM signals. (author)

  14. Subsynchronous Oscillation Problem Research in the UHVDC System of a Regional Power Grid in China

    Directory of Open Access Journals (Sweden)

    Qu Ying

    2016-01-01

    Full Text Available Along with the grid structure being more and more complex and the rapid development of the HVDC system, studying the subsynchronous oscillation (SSO problem on HVDC system has more engineering practice significance. The paper studies subsynchronous oscillations problem of generators near the ±800kV UHVDC converter station, and analyzes the subsynchronous oscillation possibilities through PSCAD/EMTDC simulation. At last, though the researched UHVDC thermal plants have none SSO risk but it needs other measures to make the relevant generators return on normal operation.

  15. Lack of Responsiveness during the Onset and Offset of Sevoflurane Anesthesia Is Associated with Decreased Awake-Alpha Oscillation Power

    Directory of Open Access Journals (Sweden)

    Kara J. Pavone

    2017-05-01

    Full Text Available Anesthetic drugs are typically administered to induce altered states of arousal that range from sedation to general anesthesia (GA. Systems neuroscience studies are currently being used to investigate the neural circuit mechanisms of anesthesia-induced altered arousal states. These studies suggest that by disrupting the oscillatory dynamics that are associated with arousal states, anesthesia-induced oscillations are a putative mechanism through which anesthetic drugs produce altered states of arousal. However, an empirical clinical observation is that even at relatively stable anesthetic doses, patients are sometimes intermittently responsive to verbal commands during states of light sedation. During these periods, prominent anesthesia-induced neural oscillations such as slow-delta (0.1–4 Hz oscillations are notably absent. Neural correlates of intermittent responsiveness during light sedation have been insufficiently investigated. A principled understanding of the neural correlates of intermittent responsiveness may fundamentally advance our understanding of neural dynamics that are essential for maintaining arousal states, and how they are disrupted by anesthetics. Therefore, we performed a high-density (128 channels electroencephalogram (EEG study (n = 8 of sevoflurane-induced altered arousal in healthy volunteers. We administered temporally precise behavioral stimuli every 5 s to assess responsiveness. Here, we show that decreased eyes-closed, awake-alpha (8–12 Hz oscillation power is associated with lack of responsiveness during sevoflurane effect-onset and -offset. We also show that anteriorization—the transition from occipitally dominant awake-alpha oscillations to frontally dominant anesthesia induced-alpha oscillations—is not a binary phenomenon. Rather, we suggest that periods, which were defined by lack of responsiveness, represent an intermediate brain state. We conclude that awake-alpha oscillation, previously thought to be

  16. Real topological string amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Narain, K.S. [The Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, Trieste, 34151 (Italy); Piazzalunga, N. [Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY, 11794-3636 (United States); International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy); Tanzini, A. [International School for Advanced Studies (SISSA) and INFN, Sez. di Trieste,via Bonomea 265, Trieste, 34136 (Italy)

    2017-03-15

    We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G{sub χ}, at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g{sup ′}=−χ+1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F{sub g}.

  17. Digitized self-oscillating loop for piezoelectric transformer-based power converters

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Andersen, Thomas; Zhang, Zhe

    2016-01-01

    A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitized delay, or digitized phase shift through the self-oscillating loop results in a very precise...... frequency control and ensures an optimum operation of the piezoelectric transformer in terms of voltage gain and efficiency. In this work, additional time delay is implemented digitally for the first time through 16 bit digital-to-analog converter to the self-oscillating loop. Delay control setpoints...... updates at a rate of 417 kHz. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. The operation principle behind self-oscillating is discussed in this paper. Moreover, experimental results are reported....

  18. Optimum phase shift in the self-oscillating loop for piezoelectric transformer-based power converters

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zsurzsan, Tiberiu-Gabriel; Andersen, Michael A. E.

    2017-01-01

    A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitally controlled time delay through the self-oscillating loop results in very precise frequency control...... and ensures optimum operation of the piezoelectric transformer in terms of gain and efficiency. Time delay is implemented digitally for the first time through a 16 bit digital-to-analog converter in the self-oscillating loop. The new design of the delay circuit provides 45 ps time resolution, enabling fine......-grained control of phase in the self-oscillating loop. This allows the control loop to dynamically follow frequency changes of the transformer in each resonant cycle. Ultimately, by selecting the optimum phase shift, maximum efficiency under the load and temperature condition is achievable....

  19. Sunspot Oscillations From The Chromosphere To The Corona

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Fredvik, T.; Kjeldseth-Moe, O.

    The behavior of the 3 minute sunspot oscillations is studied as a function of temper- ature through the transition region using observations with CDS/SOHO and TRACE. The oscillations occur above the umbra, with amplitudes increasing to a maximum near 200 000 K, then decreasing towards higher temperatures. Deviations from pure linear oscillations are present in several cases. Power spectra of the oscillations are remarkably similar in the chromosphere and through the transition region in contra- diction to the predictions of the sunspot filter theory. The 3 minute oscillations pene- trate to the low temperature end of the corona, where they are channeled into smaller areas coinciding with the endpoints of sunspot coronal loops. This differs from the transition zone where the oscillating region covers the umbra.

  20. An Optimal Reactive Power Control Strategy for a DFIG-Based Wind Farm to Damp the Sub-Synchronous Oscillation of a Power System

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    2014-05-01

    Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.

  1. Digital power and performance analysis of inkjet printed ring oscillators based on electrolyte-gated oxide electronics

    Science.gov (United States)

    Cadilha Marques, Gabriel; Garlapati, Suresh Kumar; Dehm, Simone; Dasgupta, Subho; Hahn, Horst; Tahoori, Mehdi; Aghassi-Hagmann, Jasmin

    2017-09-01

    Printed electronic components offer certain technological advantages over their silicon based counterparts, like mechanical flexibility, low process temperatures, maskless and additive manufacturing possibilities. However, to be compatible to the fields of smart sensors, Internet of Things, and wearables, it is essential that devices operate at small supply voltages. In printed electronics, mostly silicon dioxide or organic dielectrics with low dielectric constants have been used as gate isolators, which in turn have resulted in high power transistors operable only at tens of volts. Here, we present inkjet printed circuits which are able to operate at supply voltages as low as ≤2 V. Our transistor technology is based on lithographically patterned drive electrodes, the dimensions of which are carefully kept well within the printing resolutions; the oxide semiconductor, the electrolytic insulator and the top-gate electrodes have been inkjet printed. Our inverters show a gain of ˜4 and 2.3 ms propagation delay time at 1 V supply voltage. Subsequently built 3-stage ring oscillators start to oscillate at a supply voltage of only 0.6 V with a frequency of ˜255 Hz and can reach frequencies up to ˜350 Hz at 2 V supply voltage. Furthermore, we have introduced a systematic methodology for characterizing ring oscillators in the printed electronics domain, which has been largely missing. Benefiting from this procedure, we are now able to predict the switching capacitance and driver capability at each stage, as well as the power consumption of our inkjet printed ring oscillators. These achievements will be essential for analyzing the performance and power characteristics of future inkjet printed digital circuits.

  2. Association of single nucleotide polymorphisms in a glutamate receptor gene (GRM8) with theta power of event-related oscillations and alcohol dependence.

    Science.gov (United States)

    Chen, Andrew C H; Tang, Yongqiang; Rangaswamy, Madhavi; Wang, Jen C; Almasy, Laura; Foroud, Tatiana; Edenberg, Howard J; Hesselbrock, Victor; Nurnberger, John; Kuperman, Samuel; O'Connor, Sean J; Schuckit, Marc A; Bauer, Lance O; Tischfield, Jay; Rice, John P; Bierut, Laura; Goate, Alison; Porjesz, Bernice

    2009-04-05

    Evidence suggests the P3 amplitude of the event-related potential and its underlying superimposed event-related oscillations (EROs), primarily in the theta (4-5 Hz) and delta (1-3 Hz) frequencies, as endophenotypes for the risk of alcoholism and other disinhibitory disorders. Major neurochemical substrates contributing to theta and delta rhythms and P3 involve strong GABAergic, cholinergic and glutamatergic system interactions. The aim of this study was to test the potential associations between single nucleotide polymorphisms (SNPs) in glutamate receptor genes and ERO quantitative traits. GRM8 was selected because it maps at chromosome 7q31.3-q32.1 under the peak region where we previously identified significant linkage (peak LOD = 3.5) using a genome-wide linkage scan of the same phenotype (event-related theta band for the target visual stimuli). Neural activities recorded from scalp electrodes during a visual oddball task in which rare target elicited P3s were analyzed in a subset of the Collaborative Study on the Genetics of Alcoholism (COGA) sample comprising 1,049 Caucasian subjects from 209 families (with 472 DSM-IV alcohol dependent individuals). The family-based association test (FBAT) detected significant association (P power to target visual stimuli, and also with alcohol dependence, even after correction for multiple comparisons by false discovery rate (FDR). Our results suggest that variation in GRM8 may be involved in modulating event-related theta oscillations during information processing and also in vulnerability to alcoholism. These findings underscore the utility of electrophysiology and the endophenotype approach in the genetic study of psychiatric disorders. (c) 2008 Wiley-Liss, Inc.

  3. Role of vortex structures in excitation of self-oscillating combustion of condensed systems

    International Nuclear Information System (INIS)

    Samsonov, V.P.; Murunov, E.Yu.; Alekseev, M.V.

    2008-01-01

    One studied experimentally the effect of the free convection and the eddy structures occurring near the gasoline burner singing flame on the excitation conditions of thermal self-oscillations in a tube-resonator. One introduces a procedure to measure the gas column oscillation amplitude. The singing flame height and the flame mass speed at the excitation of the acoustic oscillations are revealed to reduce, while the gasoline burning efficiency is found to increase. By means of the digital photometry one studied the mechanisms of the singing flame temperature field changes within one oscillation period. One derived the hysteresis dependences of the amplitude of the acoustic oscillations on the gasoline diffusion flame thermal power. One brings to the notice a mechanism of the effect of the eddy structures of the excitation of the burning self-oscillation mode of the condensed systems [ru

  4. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    Energy Technology Data Exchange (ETDEWEB)

    Krastelev, E. G., E-mail: ekrastelev@yandex.ru; Sedin, A. A.; Tugushev, V. I. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz.

  5. Nanosecond pulsed power generator for a voltage amplitude up to 300 kV and a repetition rate up to 16 Hz for fine disintegration of quartz

    International Nuclear Information System (INIS)

    Krastelev, E. G.; Sedin, A. A.; Tugushev, V. I.

    2015-01-01

    A generator of high-power high-voltage nanosecond pulses is intended for electrical discharge disintegration of mineral quartz and other nonconducting minerals. It includes a 320 kV Marx pulsed voltage generator, a high-voltage glycerin-insulated coaxial peaking capacitor, and an output gas spark switch followed by a load, an electric discharge disintegration chamber. The main parameters of the generator are as follows: a voltage pulse amplitude of up to 300 kV, an output impedance of ≈10 Ω, a discharge current amplitude of up to 25 kA for a half-period of 80–90 ns, and a pulse repetition rate of up to 16 Hz

  6. Optimization and Annual Average Power Predictions of a Backward Bent Duct Buoy Oscillating Water Column Device Using the Wells Turbine.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Christopher S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Willits, Steven M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fontaine, Arnold A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    This Technical Report presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequency-domain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, the sizing of the power electronics, and number of turbines. Also included in this Technical Report are further details on how rotor thrust and torque are estimated, along with further details on the type of variable frequency drive selected.

  7. Modal analysis of electromechanical oscillations in electrical power systems; Analisis modal de oscilaciones electromecanicas en sistemas electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Guizar, J.G [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: jgcg@iie.org.mx

    2008-10-15

    The presence of electromechanical oscillations in any electrical power system is a typical characteristic of this kind of systems. Provided the damping associated with these oscillations lies above of a minimum specified value, the occurrence of these oscillations is not considered as a threat to the system operation. This paper focuses the attention on the application of modal analysis for assessing the dynamical behavior of a power system subjected to small disturbances for different operating conditions and transmission system topologies, as well. The reported results indicate, that modal analysis enables a straight identification of the causes that contribute negatively to the damping of the electromechanical modes. [Spanish] La presencia de oscilaciones electromecanicas en cualquier Sistema Electrico de Potencia (SEP) es una caracteristica propia de estos sistemas. Mientras el amortiguamiento asociado con este tipo de oscilaciones se encuentre dentro de los limites considerados como aceptables para la operacion continua de este tipo de sistemas, el surgimiento de estas no se considera una amenaza para la operacion segura del SEP. El presente articulo, centra su atencion en la aplicacion del analisis modal para evaluar el comportamiento dinamico de un SEP ante la ocurrencia de disturbios de magnitud pequena para diferentes topologias y condiciones de operacion. Los resultados reportados indican, que la aplicacion del analisis modal permite la identificacion directa de las causas que contribuyen en forma negativa al amortiguamiento asociado con los modos electromecanicos, asi como la ubicacion mas adecuada de controles que contribuyan a mejorar el amortiguamiento de los mismos.

  8. Diameter dependence of emission power in MgO-based nano-pillar spin-torque oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bochong; Kubota, Hitoshi, E-mail: hit-kubota@aist.go.jp; Yakushiji, Kay; Tamaru, Shingo; Arai, Hiroko; Imamura, Hiroshi; Fukushima, Akio; Yuasa, Shinji [Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan)

    2016-06-20

    The dependence on diameter of the emission power in MgO-based nano-pillar spin torque oscillators (STOs) was systematically investigated. A maximum emission power of over 2.5 μW was obtained around 300 nm in diameter, which is the largest reported to date among the out-of-plane precession STOs. By analyzing physical quantities, precession cone angle of the free-layer magnetization was evaluated. In the diameter range below 300 nm, the increase in power was mainly due to the increase of the injected current. The power decrease above 300 nm is possibly attributed to the decrease in the averaged precession cone angle, suggesting spatial phase difference of magnetization precession. This study provides the method for estimating the optimum STO diameter, which is of great importance in practical use.

  9. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  10. Time dependent analysis of Xenon spatial oscillations in small power reactors; Analise temporal das oscilacoes espaciais de Xenonio em reatores de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Decco, Claudia Cristina Ghirardello

    1997-07-01

    This work presents time dependent analysis of xenon spatial oscillations studying the influence of the power density distribution, type of reactivity perturbation, power level and core size, using the one-dimensional and three-dimensional analysis with the MID2 and citation codes, respectively. It is concluded that small pressurized water reactors with height smaller than 1.5 m are stable and do not have xenon spatial oscillations. (author)

  11. High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT.

    Science.gov (United States)

    Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2011-07-01

    We report a stable, high-power, cw, mid-IR optical parametric oscillator using MgO-doped stoichiometric periodically poled LiTaO₃ (MgO:sPPLT) pumped by a Yb fiber laser at 1064 nm. The singly resonant oscillator (SRO), based on a 30 mm long crystal, is tunable over 430 nm from 3032 to 3462 nm and can generate as much as 5.5 W of mid-IR output power, with >4 W of over 60% of the tuning range and under reduced thermal effects, enabling room temperature operation. Idler power scaling measurements at ~3.3 μm are compared with an MgO-doped periodically poled LiNbO₃ cw SRO, confirming that MgO:sPPLT is an attractive material for multiwatt mid-IR generation. The idler output at 3299 nm exhibits a peak-to-peak power stability better than 12.8% over 5 h and frequency stability of ~1 GHz, while operating close to room temperature, and has a linewidth of ~0.2 nm, limited by the resolution of the wavemeter. The corresponding signal linewidth at 1570 nm is ~21 MHz.

  12. A Low-Power All-Digital on-Chip CMOS Oscillator for a Wireless Sensor Node.

    Science.gov (United States)

    Sheng, Duo; Hong, Min-Rong

    2016-10-14

    This paper presents an all-digital low-power oscillator for reference clocks in wireless body area network (WBAN) applications. The proposed on-chip complementary metal-oxide-semiconductor (CMOS) oscillator provides low-frequency clock signals with low power consumption, high delay resolution, and low circuit complexity. The cascade-stage structure of the proposed design simultaneously achieves high resolution and a wide frequency range. The proposed hysteresis delay cell further reduces the power consumption and hardware costs by 92.4% and 70.4%, respectively, relative to conventional designs. The proposed design is implemented in a standard performance 0.18 μm CMOS process. The measured operational frequency ranged from 7 to 155 MHz, and the power consumption was improved to 79.6 μW (@7 MHz) with a 4.6 ps resolution. The proposed design can be implemented in an all-digital manner, which is highly desirable for system-level integration.

  13. Circuit oscillations in odor perception and memory.

    Science.gov (United States)

    Kay, Leslie M

    2014-01-01

    Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40-100Hz in rats and mice, and 20Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15-30Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2-12Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events. © 2014 Elsevier B.V. All rights reserved.

  14. Magnetoquantum oscillations of the phonon-drag thermoelectric power in heterojunctions

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1989-01-01

    A theory is presented for the low-temperature phonon-drag thermopower S xx in a semiconductor heterojunction in a strong magnetic field. Gigantic quantum oscillations (much larger than electron-diffusion contributions) are obtained. The temperature and field dependences of S xx agree well with recent data. Localized states yield flat valleys for the |S xx | minima in agreement with the data

  15. Damping control strategies of inter-area low-frequency oscillation for DFIG-based wind farms integrated into a power system

    DEFF Research Database (Denmark)

    Li, Hui; Liu, Shengquan; Ji, Haiting

    2014-01-01

    on the power system stabilizer (PSS) control method. Transient simulation on different damping gain coefficients are conducted for justification. Following the OTEF mechanism analysis, an additional fuzzy damping control strategy with the active/reactive power loop is proposed by identifying the oscillation......This study investigates the inter-area low-frequency damping control strategies of a doubly fed induction generator (DFIG)-based wind farm through oscillation transient energy function (OTEF) analysis. Based on the OTEF descent expressions, the feasibility of damping the inter-area low...... oscillation of the wind turbine shaft. The proposed additional fuzzy control strategy with the active/reactive power loop has better damping performance than the presented PSS control, especially for damping the inter-area low-frequency oscillation....

  16. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  17. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  18. Simultaneous Robust Coordinated Damping Control of Power System Stabilizers (PSSs, Static Var Compensator (SVC and Doubly-Fed Induction Generator Power Oscillation Dampers (DFIG PODs in Multimachine Power Systems

    Directory of Open Access Journals (Sweden)

    Jian Zuo

    2017-04-01

    Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.

  19. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence.

    Science.gov (United States)

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B; Pandey, Ashwini K; Roopesh, Bangalore N; Porjesz, Bernice

    2012-05-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. Copyright © 2011 Wiley-Liss, Inc.

  20. Advanced Direct-Drive Generator for Improved Availability of Oscillating Wave Surge Converter Power Generation Systems Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Englebretson, Steven [ABB Inc., Cary, NC (United States); Ouyang, Wen [ABB Inc., Cary, NC (United States); Tschida, Colin [ABB Inc., Cary, NC (United States); Carr, Joseph [ABB Inc., Cary, NC (United States); Ramanan, V.R. [ABB Inc., Cary, NC (United States); Johnson, Matthew [Texas A& M Univ., College Station, TX (United States); Gardner, Matthew [Texas A& M Univ., College Station, TX (United States); Toliyat, Hamid [Texas A& M Univ., College Station, TX (United States); Staby, Bill [Resolute Marine Energy, Inc., Boston, MA (United States); Chertok, Allan [Resolute Marine Energy, Inc., Boston, MA (United States); Hazra, Samir [ABB Inc., Cary, NC (United States); Bhattacharya, Subhashish [ABB Inc., Cary, NC (United States)

    2017-05-13

    This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability of the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.

  1. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  2. Avoidance of Pressure Oscillations in Discrete Fluid Power Systems with Transmission Lines - An Analytical Approach

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.

    2014-01-01

    Discrete fluid power technology attracts great attention because it enables energy efficiency and robust system architectures. However, the discrete nature of this technology naturally brings shifting phenomenons into the picture. For fluid power system the relative high inductance of fluid...

  3. An efficient linear power generator - Linear motor for oscillating piston machines; Effizienter Lineargenerator / Linearmotor fuer Kolbenmaschine - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2008-07-01

    When an oscillating piston interacts with an electrical generator or motor, it is obvious that the electrical machine should also have linear motion, eliminating the disadvantage of a crankshaft. This work has two parts: construction of an efficient linear generator for a Stirling engine with a free piston and a theoretical study of the efficiency of linear motors for driving compressors. The Stirling engine and the linear generator have a continuous power of 1.3 kW{sub el}. With thermal peak power the planned 1.5 kW{sub el} are attained. The Project 'Stirling Free Piston Generator' for cogeneration will continue. Smaller linear motors with permanent magnets function without electronic control from single-phase AC net. The theoretical study shows how linear motors can be led out by linking the electric vector diagram with the pressure-volume diagram of the compressor. At a power level exceeding a few kW, a three-phase system with power electronics is more suitable. The frequency of oscillation is variable and lower than 50 Hz. The efficiency of the simulated linear motors lies in the range of efficiency class EFF1 of standard motors. The very high efficiencies of rotating motors with permanent magnets are not attained. The combination of the linear motor with an optimised thermal process leads to advantages regarding the efficiency. If a heat pump with linear drive system can operate with hot lubricating oil the losses in the heat exchangers are reduced. The Competence Center for Thermal Machines at Lucerne University of Applied Sciences and Arts shows great interest to pursue the project of a linear heat pump for small temperature differences. (author)

  4. Thermal-hydraulic oscillations in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings

    International Nuclear Information System (INIS)

    Wang, S.B.; Wu, J.Y.; Chin Pan; Lin, W.K.

    2004-01-01

    The stability of a natural circulation boiling loop is of great importance and interests for both academic researches and many industrial applications, such as next generation boiling water reactors. The present study investigated the thermal-hydraulic oscillation behavior in a low pressure two-phase natural circulation loop at low powers and high inlet subcoolings. The experiments were conducted at atmospheric pressure with heating power ranging from 4 to 8 kW and inlet subcooling ranging from 27 to 75 deg. C. Significant oscillations in loop mass flow rate, pressure drop in each section, and heated wall and fluid temperatures are present for all the cases studied here. The oscillation is typically quasi-periodic and with flow reversal with magnitudes smaller than forward flows. The magnitude of wall temperature oscillation could be as high as 60 deg. C, which will be of serious concern for practical applications. It is found that the first fundamental oscillation (large magnitude oscillation) frequency increases with increase in heated power and with decrease in inlet subcooling. (author)

  5. Analysis of the power flow in nonlinear oscillators driven by random excitation using the first Wiener kernel

    Science.gov (United States)

    Hawes, D. H.; Langley, R. S.

    2018-01-01

    Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.

  6. Power spectrum, growth velocities and cross-correlations of longitudinal and transverse oscillations of individual Nicotiana tabacum pollen tube.

    Science.gov (United States)

    Haduch-Sendecka, Aleksandra; Pietruszka, Mariusz; Zajdel, Paweł

    2014-08-01

    We report on our results concerning growth rate and oscillation modes of the individual pollen tube apex. The observed volumetric growth and growth rate periodicity in the longitudinal (axial) direction are accompanied by transverse oscillations with similar frequencies but higher energies than the axial modes. Examination of the time-domain coherence between oscillations in mutually perpendicular directions revealed minimal energy dissipation in the unperturbed (isotonic) case, opposite to the two remaining cases (hypertonic, hypotonic) with notable correlations. We conjecture that the minimal energy loss is therefore optimal in the natural growth conditions. The longitudinal growth velocity is also found to be the fastest in the unperturbed case. As a result, the isolated system (pollen tube tip) is conserving energy by transforming it from elastic potential energy of extending apical wall to the kinetic energy of periodical motion. The energy dissipation is found to be about 20 % smaller in axial direction than in lateral one, indicating that the main energy consumption is dedicated to the elongation. We further observe that the hypertonic spectrum is shifted towards lower and the hypotonic towards higher frequencies with respect to the isotonic spectrum. In consequence, the turgor pressure inside the growing cell influences monotonically the frequency of both modes of oscillations. The calculated power spectrum seen as a measure of the overall energy efficiency of tip growth under hypertonic, hypotonic and isotonic conditions implies that the biochemistry has been fine tuned to be optimal under normal growth conditions, which is the developmental implication of this work. A simple theoretical extension of the Ortega equation is derived and analysed with respect to its contribution to power spectrum. We show that the plastic term, related to the effective turgor pressure, with maximum contribution at frequency f = 0 is responsible for the steady growth. In turn

  7. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  8. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase axially-magnetized permanent-magnet (PM oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA, and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  9. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  10. A Novel Fault Line Selection Method Based on Improved Oscillator System of Power Distribution Network

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2014-01-01

    Full Text Available A novel method of fault line selection based on IOS is presented. Firstly, the IOS is established by using math model, which adopted TZSC signal to replace built-in signal of duffing chaotic oscillator by selecting appropriate parameters. Then, each line’s TZSC decomposed by db10 wavelet packet to get CFB with the maximum energy principle, and CFB was solved by IOS. Finally, maximum chaotic distance and average chaotic distance on the phase trajectory are used to judge fault line. Simulation results show that the proposed method can accurately judge fault line and healthy line in strong noisy background. Besides, the nondetection zones of proposed method are elaborated.

  11. Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control

    International Nuclear Information System (INIS)

    McGovern, Scott; Alici, Gursel; Spinks, Geoffrey; Truong, Van-Tan

    2009-01-01

    This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s −1 (or 0.25 body lengths s −1 ) and was achieved with a flapping frequency of 0.6–0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors

  12. Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control

    Science.gov (United States)

    McGovern, Scott; Alici, Gursel; Truong, Van-Tan; Spinks, Geoffrey

    2009-09-01

    This paper presents the development of an autonomously powered and controlled robotic fish that incorporates an active flexural joint tail fin, activated through conducting polymer actuators based on polypyrrole (PPy). The novel electromaterial muscle oscillator (NEMO) tail fin assembly on the fish could be controlled wirelessly in real time by varying the frequency and duty cycle of the voltage signal supplied to the PPy bending-type actuators. Directional control was achieved by altering the duty cycle of the voltage input to the NEMO tail fin, which shifted the axis of oscillation and enabled turning of the robotic fish. At low speeds, the robotic fish had a turning circle as small as 15 cm (or 1.1 body lengths) in radius. The highest speed of the fish robot was estimated to be approximately 33 mm s-1 (or 0.25 body lengths s-1) and was achieved with a flapping frequency of 0.6-0.8 Hz which also corresponded with the most hydrodynamically efficient mode for tail fin operation. This speed is approximately ten times faster than those for any previously reported artificial muscle based device that also offers real-time speed and directional control. This study contributes to previously published studies on bio-inspired functional devices, demonstrating that electroactive polymer actuators can be real alternatives to conventional means of actuation such as electric motors.

  13. Application of polynomial control to design a robust oscillation-damping controller in a multimachine power system.

    Science.gov (United States)

    Hasanvand, Hamed; Mozafari, Babak; Arvan, Mohammad R; Amraee, Turaj

    2015-11-01

    This paper addresses the application of a static Var compensator (SVC) to improve the damping of interarea oscillations. Optimal location and size of SVC are defined using bifurcation and modal analysis to satisfy its primary application. Furthermore, the best-input signal for damping controller is selected using Hankel singular values and right half plane-zeros. The proposed approach is aimed to design a robust PI controller based on interval plants and Kharitonov's theorem. The objective here is to determine the stability region to attain robust stability, the desired phase margin, gain margin, and bandwidth. The intersection of the resulting stability regions yields the set of kp-ki parameters. In addition, optimal multiobjective design of PI controller using particle swarm optimization (PSO) algorithm is presented. The effectiveness of the suggested controllers in damping of local and interarea oscillation modes of a multimachine power system, over a wide range of loading conditions and system configurations, is confirmed through eigenvalue analysis and nonlinear time domain simulation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Use of power system stabilizers for damping inter-area oscillations in the south systems of the Mexican electrical grid

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos B., R.; Calderon G., J.G.; Sarmiento U., H. [Instituto de Investigaciones Electricas, IIE,Cuernavaca, Mor. 62580 (Mexico); Olguin S., D. [Instituto Politecnico Nacional, Mexico D.F. 07300 (Mexico); Messina, A.R. [Graduate Program in Electrical Engineering, Cinvestav, P.O. Box 31-438, Plaza La Luna, Guadalajara, Jal. 44550 (Mexico)

    2006-01-15

    This paper documents research conducted to investigate the use and tuning of power system stabilizers (PSSs) to improve small-signal dynamic performance of the Mexican interconnected system (MIS). The analysis focuses on the control of a critical inter-area mode associated with the interaction between the southeastern and western regions of the system and a critical local mode. Study results include the determination of critical system modes more controllable by existing PSSs and the use of supplementary control actions to damp low-frequency inter-area modes of oscillation. Results for both, small and large perturbations are presented to illustrate the placement and tuning of PSSs at several appropriate locations throughout the system. (author)

  15. About the selection of transverse modes in the X-band oversized oscillator with 2.5 GW output power

    International Nuclear Information System (INIS)

    Tsygankov, R V; Rostov, V V; Gunin, A V; Elchaninov, A A; Markov, A B; Ozur, G E

    2017-01-01

    The paper describes the numerical and experimental results of the microwave O-type oscillator based on an oversized slow wave structure (SWS). The feedback is applied to the design scheme, which provides intense modulation of the electron beam in the cathode-anode region and two special cavities before SWS. The selectivity of TM 02 operating mode occurs due to increased diffraction loss of parasitic modes in the cathode part. The slow wave structure consists of two identical sections with the phase-shifting region in between. The use of this configuration leads to the formation of a locked TM 01 wave, having good conditions for the transformation into the working mode TM 02 . In the experiments, a stable generation regime with pure TM 02 mode at a frequency of 10 GHz with an efficiency of about 30% and the output power of 2.5 GW in the magnetic field below the cyclotron resonance was obtained. (paper)

  16. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    Science.gov (United States)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  17. Design trade-off between spatial resolution and power consumption in CMOS biosensor circuit based on millimeter-wave LC oscillator array

    Science.gov (United States)

    Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi

    2018-03-01

    In this paper, we describe a trade-off between spatial resolution and power consumption in an LC oscillator-based CMOS biosensor, which can detect biomolecules by observing the resonance frequency shift due to changes in the complex permittivity of the biomolecules. The optimal operating frequency and improvement in the image resolution of the sensor output require a reduction in the size of the inductor. However, it is necessary to increase the transconductance of the cross-coupling transistor to achieve the oscillation condition, although the power consumption increases. We confirmed the trade-off between the spatial resolution and the power consumption of this sensor using SPICE simulation. A test chip was fabricated using a 65 nm CMOS process, and the transition in the peak frequency and the power consumption were measured. When the outer diameter of the inductor was 46 µm, the power consumption was 31.2 mW, which matched well with the simulation results.

  18. Instabilities in RF-power amplifiers caused by a self-oscillation in the transistor bias network

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    1976-01-01

    This paper describes a self-oscillation in the bias network of an amplifier which is commonly used for the output stage in mobile transmitters. It is demonstrated how some often observed spurious oscillations may be related to the self-oscillation and a method for stabilizing the amplifier...

  19. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration

    Science.gov (United States)

    Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.

    2018-02-01

    Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.

  20. Optimization of power take-off equipment for an oscillating water column wave energy plant

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C.; Falcao, Antonio de F.O. [Dept. de Engenharia Mecanica do IST, Lisboa (Portugal); Paulo Alexandre Justino [INETI/DER, Lisboa (Portugal)

    2005-07-01

    The paper reports the optimization study of the electro-mechanical power take-off equipment for the OWC plant whose structure is a caisson forming the head of the new Douro breakwater. The stochastic approach is employed to model the wave-to-wire energy conversion. The optimization includes rotational speed (for each sea state), turbine geometry and size, and generator rated power. The procedure is implemented into a fully integrated computer code, that yields numerical results for the multi-variable optimization process and for the electrical power output (annual average and for different sea states) with modest computing time (much less than if a time-domain model were used instead). Although focused into a particular real case, the paper is intended to outline a design method that can be applied to a wider class of wave energy converters.

  1. ANFIS based UPFC supplementary controller for damping low frequency oscillations in power systems

    Directory of Open Access Journals (Sweden)

    M. Sobha

    2007-12-01

    Full Text Available An adaptive neuro- fuzzy inference system (ANFIS based supplementary Unified Power Flow Controller (UPFC to superimpose the damping function on the control signal of UPFC is proposed. By using a hybrid learning procedure, the proposed ANFIS construct an input –output mapping based on stipulated input-output data pairs. The linguistic rules, considering the dependence of the plant output on the controlling signal are used to build the initial fuzzy inference structure. On the basis of linearized Philips-Hefron model of power system installed with UPFC, the damping function of the UPFC with various alternative UPFC control signals are investigated. In the simulations under widely varying operating conditions and system parameters, ANFIS based controller yields improved performance when compared with constant gain controller, based on phase compensation technique. To validate the robustness of the proposed technique, the approach is integrated to a multi-machine power system and the nonlinear simulation results are presented

  2. A high power gain switched diode laser oscillator and amplifier for the CEBAF polarized electron injector

    International Nuclear Information System (INIS)

    Poelker, M.; Hansknecht, J.

    1996-01-01

    The photocathode in the polarized electron source at Jefferson Lab is illuminated with pulsed laser light from a gain switched diode laser and diode optical amplifier. Laser pulse repetition rates up to 2,000 MHz, optical pulsewidths between 31 and 123 ps, and average power > 100 mW are demonstrated. The laser system is highly reliable and completely remotely controlled

  3. One-dimensional modelling of limit-cycle oscillation and H-mode power scaling

    DEFF Research Database (Denmark)

    Wu, Xingquan; Xu, Guosheng; Wan, Baonian

    2015-01-01

    To understand the connection between the dynamics of microscopic turbulence and the macroscale power scaling in the L-I-H transition in magnetically confined plasmas, a new time-dependent, one-dimensional (in radius) model has been developed. The model investigates the radial force balance equati...

  4. Present state of the study of 160-minutes solar oscillation

    International Nuclear Information System (INIS)

    Severny, A.B.; Kotov, V.A.; Tsap, T.T.

    1981-01-01

    Global oscillation of the Sun with a period of 160 min were first discovered in 1974 and since observed in Crimea during the last 6 years; they were confirmed, in 1976-1979, by Doppler measurements at Stanford (Scherrer et al., 1980) and quite recently by observations of Fossat and Grec at the south geographic pole. The average amplitude of the oscillation is about 0.5 m s -1 . The phase shows remarkable stability at the period 160.010 min and good agreement between different sites on the Earth; therefore, this oscillation should now be recognized as definitely of solar origin. It is probably accompanied by synchronous fluctuations in the IR brightness and radio-emission of the Sun, and exhibits a dependence of the amplitude on the phase of solar rotation (with a peak of power at 27.2 days). In agreement with results of the Birmingham group and the South Pole observation we also find evidence in favour of a discrete spectrum within the 5 min global oscillations of the Sun, with the average splitting of about 69,5 μHz in frequency. Strict gas-dynamical equations being solved in the adiabatic approximation for a polytropic sphere n = 3 display the pattern of radial oscillations with wave separated by 120 m time-intervals filled with high frequency (and split by 117 μHz) oscillations implying a similarity with the observed pattern. (orig.)

  5. Three-dimensional analysis of nonlinear plasma oscillation

    International Nuclear Information System (INIS)

    Miano, G.

    1990-01-01

    In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

  6. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  7. Parameters of oscillation generation regions in open star cluster models

    Science.gov (United States)

    Danilov, V. M.; Putkov, S. I.

    2017-07-01

    We determine the masses and radii of central regions of open star cluster (OCL) models with small or zero entropy production and estimate the masses of oscillation generation regions in clustermodels based on the data of the phase-space coordinates of stars. The radii of such regions are close to the core radii of the OCL models. We develop a new method for estimating the total OCL masses based on the cluster core mass, the cluster and cluster core radii, and radial distribution of stars. This method yields estimates of dynamical masses of Pleiades, Praesepe, and M67, which agree well with the estimates of the total masses of the corresponding clusters based on proper motions and spectroscopic data for cluster stars.We construct the spectra and dispersion curves of the oscillations of the field of azimuthal velocities v φ in OCL models. Weak, low-amplitude unstable oscillations of v φ develop in cluster models near the cluster core boundary, and weak damped oscillations of v φ often develop at frequencies close to the frequencies of more powerful oscillations, which may reduce the non-stationarity degree in OCL models. We determine the number and parameters of such oscillations near the cores boundaries of cluster models. Such oscillations points to the possible role that gradient instability near the core of cluster models plays in the decrease of the mass of the oscillation generation regions and production of entropy in the cores of OCL models with massive extended cores.

  8. Optimization of power output and study of electron beam energy spread in a Free Electron Laser oscillator

    International Nuclear Information System (INIS)

    Abramovich, A.; Pinhasi, Y.; Yahalom, A.; Bar-Lev, D.; Efimov, S.; Gover, A.

    2001-01-01

    Design of a multi-stage depressed collector for efficient operation of a Free Electron Laser (FEL) oscillator requires knowledge of the electron beam energy distribution. This knowledge is necessary to determine the voltages of the depressed collector electrodes that optimize the collection efficiency and overall energy conversion efficiency of the FEL. The energy spread in the electron beam is due to interaction in the wiggler region, as electrons enter the interaction region at different phases relative to the EM wave. This interaction can be simulated well by a three-dimensional simulation code such as FEL3D. The main adjustable parameters that determine the electron beam energy spread after interaction are the e-beam current, the initial beam energy, and the quality factor of the resonator out-coupling coefficient. Using FEL3D, we study the influence of these parameters on the available radiation power and on the electron beam energy distribution at the undulator exit. Simulations performed for I=1.5 A, E=1.4 MeV, L=20% (Internal loss factor) showed that the highest radiated output power and smallest energy spread are attained for an output coupler transmission coefficient T m congruent with 30%

  9. A low-power and low-phase-noise LC digitally controlled oscillator featuring a novel capacitor bank

    Energy Technology Data Exchange (ETDEWEB)

    Tian Huanhuan; Li Zhiqiang; Chen Pufeng; Wu Rufei; Zhang Haiying, E-mail: thuan8@126.com [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2010-12-15

    A monolithic low-power and low-phase-noise digitally controlled oscillator (DCO) based on a symmetric spiral inductor with center-tap and novel capacitor bank was implemented in a 0.18 {mu}m CMOS process with six metal layers. A third new way to change capacitance is proposed and implemented in this work. Results show that the phase noise at 1 MHz offset frequency is below -122.5 dBc/Hz while drawing a current of only 4.8 mA from a 1.8 V supply. Also, the DCO can work at low supply voltage conditions with a 1.6 V power supply and 4.1 mA supply current for the DCO's core circuit, achieving a phase-noise of -21.5 dBc/Hz at offset of 1 MHz. It demonstrates that the supply pushing of DCO is less than 10 MHz/V. (semiconductor integrated circuits)

  10. Drifting oscillations in axion monodromy

    Energy Technology Data Exchange (ETDEWEB)

    Flauger, Raphael [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); McAllister, Liam [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Silverstein, Eva [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States); Westphal, Alexander, E-mail: flauger@physics.ucsd.edu, E-mail: mcallister@cornell.edu, E-mail: evas@stanford.edu, E-mail: alexander.westphal@desy.de [Theory Group, Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)

    2017-10-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  11. Drifting oscillations in axion monodromy

    International Nuclear Information System (INIS)

    Flauger, Raphael; Westphal, Alexander

    2014-12-01

    We study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effects of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. We use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.

  12. The dependence of the period on the angular amplitude of a simple ...

    African Journals Online (AJOL)

    The timing of the oscillation was done as the bob passed through its rest position. The time for 50 oscillations was recorded for different lengths and angular amplitudes. It was observed that the period depends on length and angular amplitude of the pendulum. The variation of the period with the angular amplitude is not a ...

  13. Chromaticity measurement via the fourier spectrum of transverse oscillations

    International Nuclear Information System (INIS)

    Xi Yang

    2004-01-01

    Turn-by-turn data from a single BPM includes information on the chromaticity in sidebands displaced above and below the betatron frequency by an amount of the synchrotron frequency. It may be necessary to induce small amplitude synchrotron oscillation by giving the beam a small kick. Power spectrum of the BPM data gives clear chromatic sidebands, and they can be applied to the chromaticity measurement in the Fermilab Booster

  14. Study of power reactor dynamics by stochastic reactor oscillator method; Proucavanje dinamike reaktora snage metodom stohastickog reaktorskog oscilatora

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj; Petrovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1968-12-15

    Stochastic reactor oscillator and cross correlation method were used for determining reactor dynamics characteristics. Experimental equipment, fast reactor oscillator (BOR-1) was activated by random pulses from the GBS-16 generator. Tape recorder AMPEX-SF-300 and data acquisition tool registered reactor response to perturbations having different frequencies. Reactor response and activation signals were cross correlated by digital computer for different positions of stochastic oscillator and ionization chamber.

  15. Collective oscillations of electrons when simulating first principles and nature of anomalous drift along the power axis

    International Nuclear Information System (INIS)

    Majorov, S.A.; Tkachev, A.N.; Yakovlenko, S.I.

    1996-01-01

    A hypothesis is proposed that a metastable supercooled state of a classic Coulomb particle system can be conditioned by a quasiresonance interaction of bound electrons with the collective oscillations of plasma electrons. This interaction is especially important when the Kepler frequency is of the order of Langmuir oscillation frequency (which takes place when the electron orbit radius is of the order of average distance between the charges). Based on the simulation it is shown that the typical time of the Coulomb particle system dipole moment oscillations appears to be of the order of the Langmuir oscillation frequency. 10 refs.; 3 figs

  16. Amplitude-Mode Dynamics of Polariton Condensates

    International Nuclear Information System (INIS)

    Brierley, R. T.; Littlewood, P. B.; Eastham, P. R.

    2011-01-01

    We study the stability of collective amplitude excitations in nonequilibrium polariton condensates. These excitations correspond to renormalized upper polaritons and to the collective amplitude modes of atomic gases and superconductors. They would be present following a quantum quench or could be created directly by resonant excitation. We show that uniform amplitude excitations are unstable to the production of excitations at finite wave vectors, leading to the formation of density-modulated phases. The physical processes causing the instabilities can be understood by analogy to optical parametric oscillators and the atomic Bose supernova.

  17. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xianchen; Zhang Jiande; Yang Jianhua; Jin Zhenxing [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.

  18. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Science.gov (United States)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  19. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  20. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  1. B-periodic oscillations in the Hall-resistance induced by a dc-current-bias under combined microwave-excitation and dc-current bias in the GaAs/AlGaAs 2D system.

    Science.gov (United States)

    Liu, Han-Chun; Reichl, C; Wegscheider, W; Mani, R G

    2018-05-18

    We report the observation of dc-current-bias-induced B-periodic Hall resistance oscillations and Hall plateaus in the GaAs/AlGaAs 2D system under combined microwave radiation- and dc bias excitation at liquid helium temperatures. The Hall resistance oscillations and plateaus appear together with concomitant oscillations also in the diagonal magnetoresistance. The periods of Hall and diagonal resistance oscillations are nearly identical, and source power (P) dependent measurements demonstrate sub-linear relationship of the oscillation amplitude with P over the span 0 < P ≤ 20 mW.

  2. Optimization of power output and study of electron beam energy spread in a Free Electron Laser oscillator

    CERN Document Server

    Abramovich, A; Efimov, S; Gover, A; Pinhasi, Y; Yahalom, A

    2001-01-01

    Design of a multi-stage depressed collector for efficient operation of a Free Electron Laser (FEL) oscillator requires knowledge of the electron beam energy distribution. This knowledge is necessary to determine the voltages of the depressed collector electrodes that optimize the collection efficiency and overall energy conversion efficiency of the FEL. The energy spread in the electron beam is due to interaction in the wiggler region, as electrons enter the interaction region at different phases relative to the EM wave. This interaction can be simulated well by a three-dimensional simulation code such as FEL3D. The main adjustable parameters that determine the electron beam energy spread after interaction are the e-beam current, the initial beam energy, and the quality factor of the resonator out-coupling coefficient. Using FEL3D, we study the influence of these parameters on the available radiation power and on the electron beam energy distribution at the undulator exit. Simulations performed for I=1.5 A, E...

  3. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    Science.gov (United States)

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  4. Direct amplitude detuning measurement with ac dipole

    Directory of Open Access Journals (Sweden)

    S. White

    2013-07-01

    Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.

  5. Oscilaciones de Potencia, Tensión y Corriente en Unidades de Generación Distribuida; Power, Voltage and Current Oscillations in Distributed Generation Units

    Directory of Open Access Journals (Sweden)

    Marcos Alberto de Armas Teyra

    2013-06-01

    Full Text Available En las plantas de generación distribuidas accionadas por motores reciprocantes es necesario conocer las fluctuaciones de tensión, corriente y potencia para evaluar la calidad de la energía que entregan estos grupos electrógenos y como criterio de diagnóstico técnico. Las causas de estas fluctuaciones son diversas. La fundamental se debe a la presencia de oscilaciones forzadas producidas por el momento irregular de los motores primarios. Otras razones se encuentran en las excentricidades constructivas, el desbalance de corriente, los armónicos espaciales y de tiempo, la variación de la configuración del sistema, etc. En este trabajo fueron evaluadas satisfactoriamente las oscilaciones de una máquina conectada a la red mediante la instalación de un analizador de redes de 32 cortes por ciclo a la salida del generador de una de estas unidades. Se expone como caso de estudio las oscilaciones observadas en un generador de 425 kVA480 V accionado por un motor Diesel de seis cilindros y cuatro tiempos en la Provincia de Cienfuegos, Cuba.  In distributed and standby power plants driven by reciprocating motors, is important to know the voltage, current and power oscillation as a delivery power quality and diagnostic criteria. There are several oscillation causes. The fundamental is due to the irregular torque of primary motors. Other causes are due to constructive eccentricities, current unbalance, time and spatial harmonics, changes in systems configuration, etc. In this paper the fundamental oscillations of a grid connected machine were evaluated with a power analyzer installed in one generating power plant. As a case there are shown the observed oscillations in 425 kVA generator driven by a four times, six cylinders Diesel motor in Cienfuegos Province of Cuba.

  6. Oscilaciones de Potencia, Tensión y Corriente en Unidades de Generación Distribuida: Power, Voltage and Current Oscillations in Distributed Generation Units

    Directory of Open Access Journals (Sweden)

    Marcos Alberto de Armas Teyra

    2013-06-01

    Full Text Available En las plantas de generación distribuidas accionadas por motores reciprocantes es necesario conocer las fluctuaciones de tensión, corriente y potencia para evaluar la calidad de la energía que entregan estos grupos electrógenos y como criterio de diagnóstico técnico. Las causas de estas fluctuaciones son diversas. La fundamental se debe a la presencia de oscilaciones forzadas producidas por el momento irregular de los motores primarios. Otras razones se encuentran en las excentricidades constructivas, el desbalance de corriente, los armónicos espaciales y de tiempo, la variación de la configuración del sistema, etc. En este trabajo fueron evaluadas satisfactoriamente las oscilaciones de una máquina conectada a la red mediante la instalación de un analizador de redes de 32 cortes por ciclo a la salida del generador de una de estas unidades. Se expone como caso de estudio las oscilaciones observadas en un generador de 425 kVA480 V accionado por un motor Diesel de seis cilindros y cuatro tiempos en la Provincia de Cienfuegos, Cuba.In distributed and standby power plants driven by reciprocating motors, is important to know the voltage, current and power oscillation as a delivery power quality and diagnostic criteria. There are several oscillation causes. The fundamental is due to the irregular torque of primary motors. Other causes are due to constructive eccentricities, current unbalance, time and spatial harmonics, changes in systems configuration, etc. In this paper the fundamental oscillations of a grid connected machine were evaluated with a power analyzer installed in one generating power plant. As a case there are shown the observed oscillations in 425 kVA generator driven by a four times, six cylinders Diesel motor in Cienfuegos Province of Cuba.

  7. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  8. Finite amplitude effects on drop levitation for material properties measurement

    Science.gov (United States)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  9. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    Science.gov (United States)

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  10. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  11. Evidence of Gate Voltage Oscillations during Short Circuit of Commercial 1.7 kV/ 1 kA IGBT Power Modules

    DEFF Research Database (Denmark)

    Reigosa, Paula Diaz; Wu, Rui; Iannuzzo, Francesco

    2015-01-01

    This paper analyzes the evidence of critical gate voltage oscillations in 1.7 kV/1 kA Insulated-Gate Bipolar Transistor (IGBT) power modules under short circuit conditions. A 6 kA/1.1 kV Non-Destructive Test (NDT) set up for repeatable short circuit tests has been built with a 40 nH stray inducta...

  12. Precision of Classification of Odorant Value by the Power of Olfactory Bulb Oscillations Is Altered by Optogenetic Silencing of Local Adrenergic Innervation

    Directory of Open Access Journals (Sweden)

    Daniel Ramirez-Gordillo

    2018-03-01

    Full Text Available Neuromodulators such as noradrenaline appear to play a crucial role in learning and memory. The goal of this study was to determine the role of norepinephrine in representation of odorant identity and value by olfactory bulb oscillations in an olfactory learning task. We wanted to determine whether the different bandwidths of olfactory bulb oscillations encode information involved in associating the odor with the value, and whether norepinephrine is involved in modulating this association. To this end mice expressing halorhodopsin under the dopamine-beta-hydrolase (DBH promoter received an optetrode implant targeted to the olfactory bulb. Mice learned to differentiate odorants in a go-no-go task. A receiver operating characteristic (ROC analysis showed that there was development of a broadband differential rewarded vs. unrewarded odorant-induced change in the power of local field potential oscillations as the mice became proficient in discriminating between two odorants. In addition, the change in power reflected the value of the odorant rather than the identity. Furthermore, optogenetic silencing of local noradrenergic axons in the olfactory bulb altered the differential oscillatory power response to the odorants for the theta, beta, and gamma bandwidths.

  13. Precision of Classification of Odorant Value by the Power of Olfactory Bulb Oscillations Is Altered by Optogenetic Silencing of Local Adrenergic Innervation.

    Science.gov (United States)

    Ramirez-Gordillo, Daniel; Ma, Ming; Restrepo, Diego

    2018-01-01

    Neuromodulators such as noradrenaline appear to play a crucial role in learning and memory. The goal of this study was to determine the role of norepinephrine in representation of odorant identity and value by olfactory bulb oscillations in an olfactory learning task. We wanted to determine whether the different bandwidths of olfactory bulb oscillations encode information involved in associating the odor with the value, and whether norepinephrine is involved in modulating this association. To this end mice expressing halorhodopsin under the dopamine-beta-hydrolase (DBH) promoter received an optetrode implant targeted to the olfactory bulb. Mice learned to differentiate odorants in a go-no-go task. A receiver operating characteristic (ROC) analysis showed that there was development of a broadband differential rewarded vs. unrewarded odorant-induced change in the power of local field potential oscillations as the mice became proficient in discriminating between two odorants. In addition, the change in power reflected the value of the odorant rather than the identity. Furthermore, optogenetic silencing of local noradrenergic axons in the olfactory bulb altered the differential oscillatory power response to the odorants for the theta, beta, and gamma bandwidths.

  14. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.

    2003-01-01

    , the amplitudes, and the base frequencies of friction-induced stick¿slip and pure-slip oscillations. For stick¿slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity...

  15. Network models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations

    Directory of Open Access Journals (Sweden)

    Katie A Ferguson

    2015-08-01

    Full Text Available Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens--lacunosum-moleculare (OLM interneurons and bistratified cells (BiCs, make their contribution to network rhythms difficult to determine experimentally. We created network models that are tied to experimental work at both cellular and network levels to explore how these interneuron interactions affect the power of local oscillations. Our cellular models were constrained with properties from patch clamp recordings in the CA1 region of an intact hippocampus preparation in vitro. Our network models are composed of three different types of interneurons: parvalbumin-positive (PV+ basket and axo-axonic cells (BC/AACs, PV+ BiCs, and somatostatin-positive OLM cells. Also included is a spatially extended pyramidal cell model to allow for a simplified local field potential representation, as well as experimentally-constrained, theta frequency synaptic inputs to the interneurons. The network size, connectivity, and synaptic properties were constrained with experimental data. To determine how the interactions between OLM cells and BiCs could affect local theta power, we explored a number of OLM-BiC connections and connection strengths.We found that our models operate in regimes in which OLM cells minimally or strongly affected the power of network theta oscillations due to balances that, respectively, allow compensatory effects or not. Inactivation of OLM cells could result in no change or even an increase in theta power. We predict that the dis-inhibitory effect of OLM cells to BiCs to pyramidal cell interactions plays a critical role in the power of network theta oscillations. Our network models reveal a dynamic interplay between different classes of interneurons in influencing local theta

  16. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  17. Determination of optimal whole body vibration amplitude and frequency parameters with plyometric exercise and its influence on closed-chain lower extremity acute power output and EMG activity in resistance trained males

    Science.gov (United States)

    Hughes, Nikki J.

    The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p plyometric exercise does not induce alterations in subsequent MP and PP output and EMGrms activity of the lower extremity. Future studies need to address the time of WBV exposure and magnitude of external loads that will maximize strength and/or power output.

  18. A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, A. [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8471 (Japan); Morton, R. J. [Mathematics and Information Science, Northumbria University, Pandon Building, Camden Street, Newcastle upon Tyne NE1 8ST (United Kingdom); Erdélyi, R., E-mail: andrew@kwasan.kyoto-u.ac.jp [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2013-12-20

    The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s{sup –1}. The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency.

  19. A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE

    International Nuclear Information System (INIS)

    Hillier, A.; Morton, R. J.; Erdélyi, R.

    2013-01-01

    The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s –1 . The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency

  20. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  1. Effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel: An in vitro study.

    Science.gov (United States)

    Hernandé-Gatón, Patrícia; Palma-Dibb, Regina Guenka; Silva, Léa Assed Bezerra da; Faraoni, Juliana Jendiroba; de Queiroz, Alexandra Mussolino; Lucisano, Marília Pacífico; Silva, Raquel Assed Bezerra da; Nelson Filho, Paulo

    2018-04-01

    To evaluate the effect of ultrasonic, sonic and rotating-oscillating powered toothbrushing systems on surface roughness and wear of white spot lesions and sound enamel. 40 tooth segments obtained from third molar crowns had the enamel surface divided into thirds, one of which was not subjected to toothbrushing. In the other two thirds, sound enamel and enamel with artificially induced white spot lesions were randomly assigned to four groups (n=10) : UT: ultrasonic toothbrush (Emmi-dental); ST1: sonic toothbrush (Colgate ProClinical Omron); ST2: sonic toothbrush (Sonicare Philips); and ROT: rotating-oscillating toothbrush (control) (Oral-B Professional Care Triumph 5000 with SmartGuide). The specimens were analyzed by confocal laser microscopy for surface roughness and wear. Data were analyzed statistically by paired t-tests, Kruskal-Wallis, two-way ANOVA and Tukey's post-test (α= 0.05). The different powered toothbrushing systems did not cause a significant increase in the surface roughness of sound enamel (P> 0.05). In the ROT group, the roughness of white spot lesion surface increased significantly after toothbrushing and differed from the UT group (Pspot lesion compared with sound enamel, and this group differed significantly from the ST1 group (Pspot lesion increased surface roughness and wear. None of the powered toothbrushing systems (ultrasonic, sonic and rotating-oscillating) tested caused significant alterations on sound dental enamel. However, conventional rotating-oscillating toothbrushing on enamel with white spot lesion increased surface roughness and wear. Copyright©American Journal of Dentistry.

  2. Analyzing endosonic root canal file oscillations: an in vitro evaluation.

    Science.gov (United States)

    Lea, Simon C; Walmsley, A Damien; Lumley, Philip J

    2010-05-01

    Passive ultrasonic irrigation may be used to improve bacterial reduction within the root canal. The technique relies on a small file being driven to oscillate freely within the canal and activating an irrigant solution through biophysical forces such as microstreaming. There is limited information regarding a file's oscillation patterns when operated while surrounded by fluid as is the case within a canal root. Files of different sizes (#10 and #30, 27 mm and 31 mm) were connected to an ultrasound generator via a 120 degrees file holder. Files were immersed in a water bath, and a laser vibrometer set up with measurement lines superimposed over the files. The laser vibrometer was scanned over the oscillating files. Measurements were repeated 10 times for each file/power setting used. File mode shapes are comprised of a series of nodes/antinodes, with thinner, longer files producing more antinodes. The maximum vibration occurred at the free end of the file. Increasing generator power had no significant effect on this maximum amplitude (p > 0.20). Maximum displacement amplitudes were 17 to 22 microm (#10 file, 27 mm), 15 to 21 microm (#10 file, 31 mm), 6 to 9 microm (#30 file, 27 mm), and 5 to 7 microm (#30, 31 mm) for all power settings. Antinodes occurring along the remaining file length were significantly larger at generator power 1 than at powers 2 through 5 (p generator powers, energy delivered to the file is dissipated in unwanted vibration resulting in reduced vibration displacement amplitudes. This may reduce the occurrence of the biophysical forces necessary to maximize the technique's effectiveness. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Diphoton generalized distribution amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We calculate the leading order diphoton generalized distribution amplitudes by calculating the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region at the Born order and in the leading logarithmic approximation. As in the case of the anomalous photon structure functions, the γγ generalized distribution amplitudes exhibit a characteristic lnQ 2 behavior and obey inhomogeneous QCD evolution equations.

  4. Amplitude chimeras and chimera death in dynamical networks

    International Nuclear Information System (INIS)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-01-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions. (paper)

  5. A new insight into the oscillation characteristics of endosonic files used in dentistry

    International Nuclear Information System (INIS)

    Lea, S C; Walmsley, A D; Lumley, P J; Landini, G

    2004-01-01

    The aim of this study was to assess the oscillation characteristics of unconstrained endosonic files using a scanning laser vibrometer (SLV). Factors investigated included file vibration frequency and node/antinode location as well as the variation in file displacement amplitude due to increasing generator power setting. A 30 kHz Mini Piezon generator (Electro-Medical Systems, Switzerland) was used in conjunction with a no. 15 and no. 35 K-file. Each file was fixed in position with the long axis of the file perpendicular to the SLV camera head. The laser from the SLV was scanned over the length of the oscillating file for generator power settings 1 to 5 (minimum to half power). Measurements were repeated ten times. The fundamental vibration frequency for both files was 27.50 kHz. Scans of each file showed the positions of nodes/anti-nodes along the file length. The no. 15 file demonstrated no significant variation in its mean maximum displacement amplitude with increasing generator power, except at power setting 5, where a decrease in displacement amplitude was observed. The no. 35 file showed a general increase in mean maximum displacement amplitude with increasing power setting, except at power setting 4 where a 65% decrease in displacement amplitude occurred. In conclusion, scanning laser vibrometry is an effective method for assessing endosonic file vibration characteristics. The SLV was able to demonstrate that (unloaded) file vibration displacement amplitude does not increase linearly with increasing generator power. Further work is being performed on a greater variety of files and generators. Vibration characteristics of files under various loads and varying degrees of constraint should also be investigated

  6. Two Photon Distribution Amplitudes

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Szymanowski, L.; Wallon, S.

    2008-01-01

    The factorization of the amplitude of the process γ*γ→γγ in the low energy and high photon virtuality region is demonstrated at the Born order and in the leading logarithmic approximation. The leading order two photon (generalized) distribution amplitudes exhibit a characteristic ln Q 2 behaviour and obey new inhomogeneous evolution equations

  7. Power-level regulation and simulation of nonlinear pressurized water reactor core with xenon oscillation using H-infinity loop shaping control

    Directory of Open Access Journals (Sweden)

    Li Gang

    2016-01-01

    Full Text Available This investigation is to solve the power-level control issue of a nonlinear pressurized water reactor core with xenon oscillations. A nonlinear pressurized water reactor core is modeled using the lumped parameter method, and a linear model of the core is then obtained through the small perturbation linearization way. The H∞loop shapingcontrolis utilized to design a robust controller of the linearized core model.The calculated H∞loop shaping controller is applied to the nonlinear core model. The nonlinear core model and the H∞ loop shaping controller build the nonlinear core power-level H∞loop shaping control system.Finally, the nonlinear core power-level H∞loop shaping control system is simulatedconsidering two typical load processes that are a step load maneuver and a ramp load maneuver, and simulation results show that the nonlinear control system is effective.

  8. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  9. Color guided amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Broedel, Johannes [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA (United States); Dixon, Lance J. [SLAC National Accelerator Laboratory, Stanford University, Stanford, CA (United States)

    2012-07-01

    Amplitudes in gauge thoeries obtain contributions from color and kinematics. While these two parts of the amplitude seem to exhibit different symmetry structures, it turns out that they can be reorganized in a way to behave equally, which leads to the so-called color-kinematic dual representations of amplitudes. Astonishingly, the existence of those representations allows squaring to related gravitational theories right away. Contrary to the Kawaii-Levellen-Tye relations, which have been used to relate gauge theories and gravity previously, this method is applicable not only to tree amplitudes but also at loop level. In this talk, the basic technique is introduced followed by a discussion of the existence of color-kinematic dual representations for amplitudes derived from gauge theory actions which are deformed by higher-operator insertions. In addition, it is commented on the implications for deformed gravitational theories.

  10. Chemical sensor with oscillating cantilevered probe

    Science.gov (United States)

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  11. Synchronous Oscillations in Microtubule Polymerization

    Science.gov (United States)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  12. Quantum oscillations of conductivity in bismuth wires

    International Nuclear Information System (INIS)

    Condrea, Elena

    2011-01-01

    Measurements of the resistance of bismuth nanowires with several diameters and different quality reveal oscillations on the dependence of resistance under uniaxial strain at T = 4.2 K. Amplitude of oscillations is significant (38 %) at helium temperature and becomes smearing at T = 77 K. Observed oscillations originate from quantum size effect. A simple evaluation of period of oscillations allows us to identify the groups of carriers involved in transport. Calculated periods of 42.2 and 25.9 nm satisfy approximately the ratio 2:1 for two experimentally observed sets of oscillations from light and heavy electrons.

  13. A phase-shift self-oscillating stereo class-D amplifier for battery-powered applications

    OpenAIRE

    Huffenus , Alexandre; Pillonnet , Gaël; Abouchi , Nacer; Goutti , Frédéric; Rabary , Vincent; Specq , Cécile

    2010-01-01

    International audience; This paper presents a highly efficient stereo audio amplifier, based on a self-oscillating modulator. This modulation scheme has been analyzed and shows to have a higher bandwidth and error correction than standard Pulse Width Modulation (PWM). A practical implementation in CMOS 0.25um technology has been done to validate our theoretical and simulation results. Our amplifier demonstrated a Total Harmonic Distortion plus Noise (THD+N) as low as 0.07%, current consumptio...

  14. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    Science.gov (United States)

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  15. Observation of auto-oscillations and chaos in subsidiary absorption in yttrium iron garnet

    International Nuclear Information System (INIS)

    Srinivasan, G.; Chen, M.; Patton, C.E.

    1988-01-01

    Auto-oscillations of the dynamic magnetization and routes to chaos for the first-order transverse pump spin-wave instability have been studied in single-crystal yttrium-iron-garnet (YIG) films. The measurements reported here were made on a 20.8-μm-thick YIG film at 9.4 GHz with the static and microwave fields in the plane of the film. Auto-oscillations at 100--400 kHz were observed in the power absorbed by the film over a relatively narrow static field range of 1100--1460 Oe, compared to the first-order instability (FOI) range of 0--1630 Oe. The auto-oscillation frequency and threshold microwave field amplitude were both strongly field dependent. The threshold amplitudes were about a factor of 2 larger than the FOI threshold amplitudes. At even higher power levels and for an even narrower field range of 1300--1380 Oe, the auto-oscillations showed frequency changes indicative of chaotic behavior. Several different subharmonic bifurcation routes to chaos were observed for different fields within the chaotic region

  16. Driven, autoresonant three-oscillator interactions

    International Nuclear Information System (INIS)

    Yaakobi, O.; Friedland, L.; Henis, Z.

    2007-01-01

    An efficient control scheme of resonant three-oscillator interactions using an external chirped frequency drive is suggested. The approach is based on formation of a double phase-locked (autoresonant) state in the system, as the driving oscillation passes linear resonance with one of the interacting oscillators. When doubly phase locked, the amplitudes of the oscillators increase with time in proportion to the driving frequency deviation from the linear resonance. The stability of this phase-locked state and the effects of dissipation and of the initial three-oscillator frequency mismatch on the autoresonance are analyzed. The associated autoresonance threshold phenomenon in the driving amplitude is also discussed. In contrast to other nonlinear systems, driven, autoresonant three-oscillator excitations are independent of the sign of the driving frequency chirp rate

  17. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  18. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    wavelength, they are called shallow water waves. In the ... Deep and intermediate water waves are dispersive as the velocity of these depends on wavelength. This is not the ..... generation processes, the finite amplitude wave theories are very ...

  19. Amplitudes of solar p modes: Modelling of the eddy time-correlation function

    Energy Technology Data Exchange (ETDEWEB)

    Belkacem, K [Institut d' Astrophysique et de Geophysique, Universite de Liege, Allee du 6 Aout 17-B 4000 Liege (Belgium); Samadi, R; Goupil, M J, E-mail: Kevin.Belkacem@ulg.ac.BE [LESIA, UMR8109, Universite Pierre et Marie Curie, Universite Denis Diderot, Obs. de Paris, 92195 Meudon Cedex (France)

    2011-01-01

    Modelling amplitudes of stochastically excited oscillations in stars is a powerful tool for understanding the properties of the convective zones. For instance, it gives us information on the way turbulent eddies are temporally correlated in a very large Reynolds number regime. We discuss the way the time correlation between eddies is modelled and we present recent theoretical developments as well as observational results. Eventually, we discuss the physical underlying meaning of the results by introducing the Ornstein-Uhlenbeck process, which is a sub-class of a Gaussian Markov process.

  20. A simple approach to nonlinear oscillators

    International Nuclear Information System (INIS)

    Ren Zhongfu; He Jihuan

    2009-01-01

    A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.

  1. A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology

    Science.gov (United States)

    Qiu, Qi-Lin; Yu, Xiao-Peng; Sui, Wen-Quan

    2017-11-01

    In this paper, the design challenges of the injection-locked oscillator (ILO)-based phase shifter are reviewed and analyzed. The key design considerations such as the operating frequency, locking range, and linearity of the phase shifters are analysed in detail. It is possible to optimize the phase shifter in certain parameters such as ultra-low power while meeting the requirements of a certain system. As a design example, a K-band phase shifter is implemented using a commercial 0.13 μm CMOS technology, where a conventional LC tank based topology is implemented but optimised with a good balance among power consumption, working range, sensitivity, and silicon area, etc. Measurement results show that the proposed phase shift is able to work at 22-23.4 GHz with a range of 180∘ while consuming 3.14 mW from a 1.2 V supply voltage.

  2. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  3. Experimental researches on the single-bubble rising behavior in the water excited by oscillation

    International Nuclear Information System (INIS)

    Cai Jiejin; Zhong Minghuang; Wang Ke; Zeng Xixiang; Lin Yongcheng; WATANABE Tadashi

    2014-01-01

    This study try to carry out experiments to research the bubble rising behavior in the water excited by oscillation and focus on its dynamics characteristics under the oscillation condition with different oscillation frequencies and amplitudes, and get the relationship between bubble's characteristic parameter, such as the bubble shape, rising velocity, etc, and the influence parameters of time, oscillation frequencies, amplitudes, etc. The rising rule of the single bubble in the water excited by oscillation has been concluded. (authors)

  4. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  5. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    Science.gov (United States)

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    Science.gov (United States)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  7. Event-related oscillations (EROs) and event-related potentials (ERPs) comparison in facial expression recognition.

    Science.gov (United States)

    Balconi, Michela; Pozzoli, Uberto

    2007-09-01

    The study aims to explore the significance of event-related potentials (ERPs) and event-related brain oscillations (EROs) (delta, theta, alpha, beta, gamma power) in response to emotional (fear, happiness, sadness) when compared with neutral faces during 180-250 post-stimulus time interval. The ERP results demonstrated that the emotional face elicited a negative peak at approximately 230 ms (N2). Moreover, EEG measures showed that motivational significance of face (emotional vs. neutral) could modulate the amplitude of EROs, but only for some frequency bands (i.e. theta and gamma bands). In a second phase, we considered the resemblance of the two EEG measures by a regression analysis. It revealed that theta and gamma oscillations mainly effect as oscillation activity at the N2 latency. Finally, a posterior increased power of theta was found for emotional faces.

  8. Analytic continuation of dual Feynman amplitudes

    International Nuclear Information System (INIS)

    Bleher, P.M.

    1981-01-01

    A notion of dual Feynman amplitude is introduced and a theorem on the existence of analytic continuation of this amplitude from the convergence domain to the whole complex is proved. The case under consideration corresponds to massless power propagators and the analytic continuation is constructed on the propagators powers. Analytic continuation poles and singular set of external impulses are found explicitly. The proof of the theorem on the existence of analytic continuation is based on the introduction of α-representation for dual Feynman amplitudes. In proving, the so-called ''trees formula'' and ''trees-with-cycles formula'' are established that are dual by formulation to the trees and 2-trees formulae for usual Feynman amplitudes. (Auth.)

  9. Non-linear oscillations of fluid in a container

    NARCIS (Netherlands)

    Verhagen, J.H.G.; van Wijngaarden, L.

    1965-01-01

    This paper is concerned with forced oscillations of fluid in a rectangular container. From the linearized approximation of the equations governing these oscillations, resonance frequencies are obtained for which the amplitude of the oscillations becomes infinite. Observation shows that under these

  10. The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system.

    Science.gov (United States)

    Sun, Miaoping; Nian, Xiaohong; Dai, Liqiong; Guo, Hua

    2017-05-01

    In this paper, the delay-dependent wide-area dynamic output feedback controller (DOFC) with prescribed degree of stability is proposed for interconnected power system to damp inter-area low-frequency oscillations. Here, the prescribed degree of stability α is used to maintain all the poles on the left of s=-α in the s-plane. Firstly, residue approach is adopted to select input-output control signals and the schur balanced truncation model reduction method is utilized to obtain the reduced power system model. Secondly, based on Lyapunov stability theory and transformation operation in complex plane, the sufficient condition of asymptotic stability for closed-loop power system with prescribed degree of stability α is derived. Then, a novel method based on linear matrix inequalities (LMIs) is presented to obtain the parameters of DOFC and calculate delay margin of the closed-loop system considering the prescribed degree of stability α. Finally, case studies are carried out on the two-area four-machine system, which is controlled by classical wide-area power system stabilizer (WAPSS) in reported reference and our proposed DOFC respectively. The effectiveness and advantages of the proposed method are verified by the simulation results under different operating conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. SOLAR-LIKE OSCILLATIONS IN A METAL-POOR GLOBULAR CLUSTER WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Stello, Dennis; Gilliland, Ronald L.

    2009-01-01

    We present analyses of variability in the red giant stars in the metal-poor globular cluster NGC 6397, based on data obtained with the Hubble Space Telescope. We use a nonstandard data reduction approach to turn a 23 day observing run originally aimed at imaging the white dwarf population, into time-series photometry of the cluster's highly saturated red giant stars. With this technique we obtain noise levels in the final power spectra down to 50 parts per million, which allows us to search for low-amplitude solar-like oscillations. We compare the observed excess power seen in the power spectra with estimates of the typical frequency range, frequency spacing, and amplitude from scaling the solar oscillations. We see evidence that the detected variability is consistent with solar-like oscillations in at least one and perhaps up to four stars. With metallicities 2 orders of magnitude lower than those of the Sun, these stars present so far the best evidence of solar-like oscillations in such a low-metallicity environment.

  12. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 < z < 2.2

    Science.gov (United States)

    Gil-Marín, Héctor; Guy, Julien; Zarrouk, Pauline; Burtin, Etienne; Chuang, Chia-Hsun; Percival, Will J.; Ross, Ashley J.; Ruggeri, Rossana; Tojerio, Rita; Zhao, Gong-Bo; Wang, Yuting; Bautista, Julian; Hou, Jiamin; Sánchez, Ariel G.; Pâris, Isabelle; Baumgarten, Falk; Brownstein, Joel R.; Dawson, Kyle S.; Eftekharzadeh, Sarah; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Myers, Adam D.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tinker, Jeremy L.; Zhao, Cheng

    2018-06-01

    We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample (DR14Q). We measure the redshift space distortions using the power-spectrum monopole, quadrupole, and hexadecapole inferred from 148 659 quasars between redshifts 0.8 and 2.2, covering a total sky footprint of 2112.9 deg2. We constrain the logarithmic growth of structure times the amplitude of dark matter density fluctuations, fσ8, and the Alcock-Paczynski dilation scales that allow constraints to be placed on the angular diameter distance DA(z) and the Hubble H(z) parameter. At the effective redshift of zeff = 1.52, fσ8(zeff) = 0.420 ± 0.076, H(z_eff)=[162± 12] (r_s^fid/r_s) {km s}^{-1} Mpc^{-1}, and D_A(z_eff)=[1.85± 0.11]× 10^3 (r_s/r_s^fid) Mpc, where rs is the comoving sound horizon at the baryon drag epoch and the superscript `fid' stands for its fiducial value. The errors take into account the full error budget, including systematics and statistical contributions. These results are in full agreement with the current Λ-Cold Dark Matter cosmological model inferred from Planck measurements. Finally, we compare our measurements with other eBOSS companion papers and find excellent agreement, demonstrating the consistency and complementarity of the different methods used for analysing the data.

  13. Scaling and Parametric Studies of Condensation Oscillation in an In-Containment Refueling Water Storage Tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    2003-01-01

    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a multihole sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. To corroborate the scaling methodology, various experimental tests were conducted. The thickness of the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Three key scaling parameters were identified and correlated with the maximum amplitude of pressure oscillation: flow restriction coefficient, area ratio of discharge hole to steam cavity, and density ratio of water to steam. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multihole sparger with test data from a single-hole sparger. The results of this study can provide suitable guidelines for sparger design utilized in the in-containment refueling water storage tank for the Advanced Power Reactor 1400

  14. Amplitude and Ascoli analysis

    International Nuclear Information System (INIS)

    Hansen, J.D.

    1976-01-01

    This article discusses the partial wave analysis of two, three and four meson systems. The difference between the two approaches, referred to as amplitude and Ascoli analysis is discussed. Some of the results obtained with these methods are shown. (B.R.H.)

  15. Reinforcing Saccadic Amplitude Variability

    Science.gov (United States)

    Paeye, Celine; Madelain, Laurent

    2011-01-01

    Saccadic endpoint variability is often viewed as the outcome of neural noise occurring during sensorimotor processing. However, part of this variability might result from operant learning. We tested this hypothesis by reinforcing dispersions of saccadic amplitude distributions, while maintaining constant their medians. In a first experiment we…

  16. Experimental investigation on the thermal performance of a closed oscillating heat pipe in thermal management

    Science.gov (United States)

    Rao, Zhonghao; Wang, Qingchao; Zhao, Jiateng; Huang, Congliang

    2017-10-01

    To investigate the thermal performance of the closed oscillating heat pipe (OHP) as a passive heat transfer device in thermal management system, the gravitation force, surface tension, cooling section position and inclination angle were discussed with applied heating power ranging from 5 to 65 W. The deionized water was chosen as the working fluid and liquid-filling ratio was 50 ± 5%. The operation of the OHP mainly depends on the phase change of the working fluid. The working fluid within the OHP was constantly evaporated and cooled. The results show that the movement of the working fluid was similar to the forced damped mechanical vibration, it has to overcome the capillary resistance force and the stable oscillation should be that the OHP could successful startup. The oscillation frequency slowed and oscillation amplitude decreased when the inclination angle of the OHP increased. However, the thermal resistance increased. With the increment of the heating power, the average temperature of the evaporation and condensation section would be close. If the heating power was further increased, dry-out phenomenon within the OHP would appeared. With the decrement of the L, the start-up heating power also decreased and stable oscillation would be formed.

  17. Controlling quantum interference in phase space with amplitude

    OpenAIRE

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-01-01

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...

  18. Study on Oscillations during Short Circuit of MW-Scale IGBT Power Modules by Means of a 6-kA/1.1-kV Nondestructive Testing System

    DEFF Research Database (Denmark)

    Wu, Rui; Diaz Reigosa, Paula; Iannuzzo, Francesco

    2015-01-01

    This paper uses a 6-kA/1.1-kV nondestructive testing system for the analysis of the short-circuit behavior of insulated-gate bipolar transistor (IGBT) power modules. A field-programmable gate array enables the definition of control signals to an accuracy of 10 ns. Multiple 1.7-kV/1-kA IGBT power...... modules displayed severe divergent oscillations, which were subsequently characterized. Experimental tests indicate that nonnegligible circuit stray inductance plays an important role in the divergent oscillations. In addition, the temperature dependence of the transconductance is proposed as an important...

  19. Chemical Oscillations

    Indian Academy of Sciences (India)

    IMTECH),. Chandigarh. Praveen Kumar is pursuing his PhD in chemical dynamics at. Panjab University,. Chandigarh. Keywords. Chemical oscillations, autoca-. talYSis, Lotka-Volterra model, bistability, hysteresis, Briggs-. Rauscher reaction.

  20. Chemical Oscillations

    Indian Academy of Sciences (India)

    the law of mass-action that every simple reaction approaches ... from thermodynamic equilibrium. Such oscillating systems cor- respond to thermodynamically open systems. .... experimentally observable, and the third is always unstable.

  1. [The significance of sympathovagal balance in the forming of respiration-dependent oscillations in cardiovascular system in human].

    Science.gov (United States)

    Krasnikov, G V; Tiurina, M Ĭ; Tankanag, A V; Piskunova, G M; Cheremis, N K

    2014-01-01

    The effect of deep breathing controlled in both rate and amplitude on the heart rate variability (HRV) and respiration-dependent blood flow oscillations of forearm and finger-pad skin has been studied in 29 young healthy volunteers from 18 to 25 years old. To reveal the effect of the segments of the vegetative autonomic nervous system on the amplitudes of HRV and respiration-dependent oscillations of skin blood flow we estimated the parameters of the cardiovascular system into two groups of participants: with formally high and low sympathovagal balance values. The sympathovagal balance value was judged by the magnitude of LF/HF power ratio calculated for each participant using the spontaneous breathing rhythmogram. It was found what the participants with predominant parasympathetic tonus had statistically significant higher amplitudes of H R V and skin blood flow oscillations in the breathing rate less than 4 cycles per min than the subjects with predominant sympathetic tonus. In the forearm skin, where the density of sympathetic innervations is low comparatively to that in the finger skin, no statistically significant differences in the amplitude of respiratory skin blood flow oscillations was found between the two groups of participants.

  2. The effect of loss of immunity on noise-induced sustained oscillations in epidemics.

    Science.gov (United States)

    Chaffee, J; Kuske, R

    2011-11-01

    The effect of loss of immunity on sustained population oscillations about an endemic equilibrium is studied via a multiple scales analysis of a SIRS model. The analysis captures the key elements supporting the nearly regular oscillations of the infected and susceptible populations, namely, the interaction of the deterministic and stochastic dynamics together with the separation of time scales of the damping and the period of these oscillations. The derivation of a nonlinear stochastic amplitude equation describing the envelope of the oscillations yields two criteria providing explicit parameter ranges where they can be observed. These conditions are similar to those found for other applications in the context of coherence resonance, in which noise drives nearly regular oscillations in a system that is quiescent without noise. In this context the criteria indicate how loss of immunity and other factors can lead to a significant increase in the parameter range for prevalence of the sustained oscillations, without any external driving forces. Comparison of the power spectral densities of the full model and the approximation confirms that the multiple scales analysis captures nonlinear features of the oscillations.

  3. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  4. Differing Patterns of Altered Slow-5 Oscillations in Healthy Aging and Ischemic Stroke.

    Science.gov (United States)

    La, Christian; Mossahebi, Pouria; Nair, Veena A; Young, Brittany M; Stamm, Julie; Birn, Rasmus; Meyerand, Mary E; Prabhakaran, Vivek

    2016-01-01

    The 'default-mode' network (DMN) has been investigated in the presence of various disorders, such as Alzheimer's disease and Autism spectrum disorders. More recently, this investigation has expanded to include patients with ischemic injury. Here, we characterized the effects of ischemic injury in terms of its spectral distribution of resting-state low-frequency oscillations and further investigated whether those specific disruptions were unique to the DMN, or rather more general, affecting the global cortical system. With 43 young healthy adults, 42 older healthy adults, 14 stroke patients in their early stage (system disruption may differ between healthy aging and following the event of an ischemic stroke. The stroke group in the later stage demonstrated a global reduction in the amplitude of the slow-5 oscillations (0.01-0.027 Hz) in the DMN as well as in the primary visual and sensorimotor networks, two 'task-positive' networks. In comparison to the young healthy group, the older healthy subjects presented a decrease in the amplitude of the slow-5 oscillations specific to the components of the DMN, while exhibiting an increase in oscillation power in the task-positive networks. These two processes of a decrease DMN and an increase in 'task-positive' slow-5 oscillations may potentially be related, with a deficit in DMN inhibition, leading to an elevation of oscillations in non-DMN systems. These findings also suggest that disruptions of the slow-5 oscillations in healthy aging may be more specific to the DMN while the disruptions of those oscillations following a stroke through remote (diaschisis) effects may be more widespread, highlighting a non-specificity of disruption on the DMN in stroke population. The mechanisms underlying those differing modes of network disruption need to be further explored to better inform our understanding of brain function in healthy individuals and following injury.

  5. Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply

    Science.gov (United States)

    Miao, Chuanrun; Liu, Feng; Wang, Qian; Cai, Meiling; Fang, Zhi

    2018-03-01

    In this paper, an oscillating microsecond pulsed power supply with rise time of several tens of nanosecond (ns) is used to excite a coaxial DBD with double layer dielectric barriers. The effects of various electrode geometries by changing the size of inner quartz tube (different electrode gaps) on the discharge uniformity, power deposition, energy efficiency, and operation temperature are investigated by electrical, optical, and temperature diagnostics. The electrical parameters of the coaxial DBD are obtained from the measured applied voltage and current using an equivalent electrical model. The energy efficiency and the power deposition in air gap of coaxial DBD with various electrode geometries are also obtained with the obtained electrical parameters, and the heat loss and operation temperature are analyzed by a heat conduction model. It is found that at the same applied voltage, with the increasing of the air gap, the discharge uniformity becomes worse and the discharge power deposition and the energy efficiency decrease. At 2.5 mm air gap and 24 kV applied voltage, the energy efficiency of the coaxial DBD reaches the maximum value of 68.4%, and the power deposition in air gap is 23.6 W and the discharge uniformity is the best at this case. The corresponding operation temperature of the coaxial DBD reaches 64.3 °C after 900 s operation and the temperature of the inner dielectric barrier is 114.4 °C under thermal balance. The experimental results provide important experimental references and are important to optimize the design and the performance of coaxial DBD reactor.

  6. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R.; Brommel, D.; Donnellan, M.A.; Flynn, J.M.; Juttner, A.; de Lima, H.Pedroso; Rae, T.D.; Sachrajda, C.T.; Samways, B.

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  7. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  8. Chemotaxis and Actin Oscillations

    Science.gov (United States)

    Bodenschatz, Eberhard; Hsu, Hsin-Fang; Negrete, Jose; Beta, Carsten; Pumir, Alain; Gholami, Azam; Tarantola, Marco; Westendorf, Christian; Zykov, Vladimir

    Recently, self-oscillations of the cytoskeletal actin have been observed in Dictyostelium, a model system for studying chemotaxis. Here we report experimental results on the self-oscillation mechanism and the role of regulatory proteins and myosin II. We stimulate cells rapidly and periodically by using photo un-caging of the chemoattractant in a micro-fluidic device and measured the cellular responses. We found that the response amplitude grows with stimulation strength only in a very narrow region of stimulation, after which the response amplitude reaches a plateau. Moreover, the frequency-response is not constant but rather varies with the strength of external stimuli. To understand the underlying mechanism, we analyzed the polymerization and de-polymerization time in the single cell level. Despite of the large cell-to-cell variability, we found that the polymerization time is independent of external stimuli and the de-polymerization time is prolonged as the stimulation strength increases. Our conclusions will be summarized and the role of noise in the signaling network will be discussed. German Science Foundation CRC 937.

  9. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  10. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  11. DETECTION OF SOLAR-LIKE OSCILLATIONS FROM KEPLER PHOTOMETRY OF THE OPEN CLUSTER NGC 6819

    International Nuclear Information System (INIS)

    Stello, Dennis; Bedding, Timothy R.; Huber, Daniel; Basu, Sarbani; Bruntt, Hans; Mosser, BenoIt; Barban, Caroline; Goupil, Marie-Jo; Stevens, Ian R.; Chaplin, William J.; Elsworth, Yvonne P.; Hekker, Saskia; Brown, Timothy M.; Christensen-Dalsgaard, Joergen; Kjeldsen, Hans; Arentoft, Torben; Gilliland, Ronald L.; Ballot, Jerome; GarcIa, Rafael A.; Mathur, Savita

    2010-01-01

    Asteroseismology of stars in clusters has been a long-sought goal because the assumption of a common age, distance, and initial chemical composition allows strong tests of the theory of stellar evolution. We report results from the first 34 days of science data from the Kepler Mission for the open cluster NGC 6819-one of the four clusters in the field of view. We obtain the first clear detections of solar-like oscillations in the cluster red giants and are able to measure the large frequency separation, Δν, and the frequency of maximum oscillation power, ν max . We find that the asteroseismic parameters allow us to test cluster membership of the stars, and even with the limited seismic data in hand, we can already identify four possible non-members despite their having a better than 80% membership probability from radial velocity measurements. We are also able to determine the oscillation amplitudes for stars that span about 2 orders of magnitude in luminosity and find good agreement with the prediction that oscillation amplitudes scale as the luminosity to the power of 0.7. These early results demonstrate the unique potential of asteroseismology of the stellar clusters observed by Kepler.

  12. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...... using process knowledge. The tested methods show potential for detecting the oscillations, however, transient components in the signals cause false detections as well, motivating usage of models in order to remove the expected signals behavior....

  13. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  14. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2011-01-01

    State space modeling of Memristor based Wien 'A' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  15. Generalized model for Memristor-based Wien family oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-23

    In this paper, we report the unconventional characteristics of Memristor in Wien oscillators. Generalized mathematical models are developed to analyze four members of the Wien family using Memristors. Sustained oscillation is reported for all types though oscillating resistance and time dependent poles are present. We have also proposed an analytical model to estimate the desired amplitude of oscillation before the oscillation starts. These Memristor-based oscillation results, presented for the first time, are in good agreement with simulation results. © 2011 Elsevier Ltd.

  16. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  17. Application of Ambient Analysis Techniques for the Estimation of Electromechanical Oscillations from Measured PMU Data in Four Different Power Systems

    DEFF Research Database (Denmark)

    Vanfretti, Luigi; Dosiek, Luke; Pierre, John W.

    2011-01-01

    The application of advanced signal processing techniques to power system measurement data for the estimation of dynamic properties has been a research subject for over two decades. Several techniques have been applied to transient (or ringdown) data, ambient data, and to probing data. Some...... of these methodologies have been included in off-line analysis software, and are now being incorporated into software tools used in control rooms for monitoring the near real-time behavior of power system dynamics. In this paper we illustrate the practical application of some ambient analysis methods...... and planners as they provide information of the applicability of these techniques via readily available signal processing tools, and in addition, it is shown how to critically analyze the results obtained with these methods....

  18. Efficacy of an electrically active sonic toothbrush and an oscillating/rotating powered toothbrush in the reduction of plaque and gingivitis: A comparative clinical trial

    Directory of Open Access Journals (Sweden)

    Himanshu Dadlani

    2010-01-01

    Full Text Available Objectives: The purpose of the present study was to clinically evaluate and compare the efficacy of an electrically active sonic toothbrush and an oscillating/rotating powered toothbrush in the reduction of plaque and gingivitis. Material and Methods: For this study, 40 healthy student volunteers (20 males, 20 females were selected. The subjects were randomly assigned into two groups by a second examiner; one group used a current producing sonic toothbrush and the other group used a battery powered toothbrush. Plaque Index, Modified Gingival Index and Gingival Bleeding Index were assessed at baseline, 15 th day, 30 th day, 45 th day and 60 th day. Results: All the baseline indices appeared to be well balanced. At the end of the study, reduction in plaque index, modified gingival index and gingival bleeding index were statistically highly significant during each interval for both the toothbrushes. The difference in reduction of clinical parameters between the two toothbrushes was statistically non significant. Conclusion: Both the toothbrushes used in this study were clinically effective in removing plaque and improving gingival health.

  19. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  20. Very low frequency oscillations in the power spectra of heart rate variability during dry supine immersion and exposure to non-hypoxic hypobaria.

    Science.gov (United States)

    Tripathi, K K

    2011-06-01

    The origin of very low frequency (VLF) oscillations in the power spectra of heart rate variability (HRV) is controversial with possible mechanisms involving thermoregulation and/or renin-angiotensin-aldosterone system. Recently, a major contribution from vagal influences has been suggested. The present study investigated the behaviour of VLF (0.004-0.040 Hz) components of HRV power spectra in a group of healthy male volunteers during their exposure to (1) dry, supine, immersion in thermo-neutral water for 6 h (n = 7) and (2) non-hypoxic hypobaria (breathing 40-60% oxygen at 15,000' simulated in a decompression chamber) for 5 h (n = 15). The two manoeuvres are established to increase vagal outflow. During both the manoeuvres, all the frequency domain indices of HRV exhibited a significant increase. Increase in HRV was much more than that in the R-R interval. At 6 h of immersion, the R-R interval increased by ∼ 15% but the total power increased ∼ fourfold. Similarly, at 5 h of exposure to hypobaria, total power increased ∼ twofold with a very modest increase in an R-R of ∼ 9%. Increase in spectral power was appreciable even after normalization with mean R-R(2). Increase in VLF during immersion was more than reported during enalaprilat blockade of angiotensin convertase enzyme. Plasma renin activity did not vary during hypobaria. There was a significant increase in pNN50, an established marker of cardiac vagal activity. Centre frequencies of the spectra and slope (β) of the relation between log(PSD) and log(frequency) did not change. Results were supportive of the notion that the parasympathetic system is pre-potent to influence slower (than respiratory) frequency components in HRV spectrum. Additionally, such an effect was without a change in the time constant of effector responses or pacemaker frequencies of VLF and LF periodicities and HRV was not a simple linear surrogate for cardiac vagal effects. An invariance of spectral exponent (β) ruled out

  1. Stora's fine notion of divergent amplitudes

    Directory of Open Access Journals (Sweden)

    Joseph C. Várilly

    2016-11-01

    Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  2. Calculation of a steam generating tube stressed state under temperature oscillations in burnout zone

    International Nuclear Information System (INIS)

    Vorob'ev, V.A.; Loshchinin, V.M.; Remizov, O.V.

    1982-01-01

    The technique for evaluating the steam generating tube stressed state under the wall temperature oscillations in the burnout zone is described. The technique is based on analytical solutions for transfer functions connecting the amplitude of surface temperature oscillation with the amplitude and frequency of heat transfer coefficient oscillation and amplitude of thermoelastic stress oscillation with that of temperature oscillation. The results of calculations according to considered technique are compared with that of the problem numerical solution. The conclusion is made that the technique under consideration may be applied for evaluation of steam generator evaporating tube lifetime [ru

  3. Decoding a combined amplitude modulated and frequency modulated signal

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a method for decoding a combined AM/FM encoded signal, comprising the steps of: combining said encoded optical signal with light from a local oscillator configured with a local oscillator frequency; converting the combined local oscillator and encoded optical...... signal into one or more electrical signals by means of at least one opto-electrical converter having a predefined frequency bandwidth, thereby providing an amplified and encoded electrical signal having one or more encoded signal current(s), where one type of states have a higher oscillation frequency...... than other type of states; rectifying the encoded signal current(s), thereby obtaining an encoded power spectrum, wherein said power spectrum has different states, such as "0"-states and "1"-states, with different power levels such that they can be discriminated, said local oscillator frequency...

  4. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    Fox, J.D.; Schwarz, H.D.

    1983-01-01

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  5. From kaons to neutrinos: quantum mechanics of particle oscillations

    International Nuclear Information System (INIS)

    Zralek, M.

    1998-01-01

    The problem of particle oscillation is considered in a pedagogical and comprehensive way. Examples from K, B and neutrino physics are given. Conceptual difficulties of the traditional approach to particle oscillation are discussed. It is shown how the probability current density and the wave packet treatments of particle oscillations resolve some problems. It is also shown that only full field theoretical approach is free from conceptual difficulties. The possibility of oscillation of particles produced together with kaons or neutrinos is considered in full wave packet quantum mechanics language. Precise definition of the oscillation of particles which recoil against mixed states is given. The general amplitude which describes the oscillation of two particles in the final states is found. Using this EPR-type amplitude the problem of oscillation of particles recoiling against kaons or neutrinos is resolved. The relativistic EPR correlations on distances of the order of coherence lengths are considered. (author)

  6. Ventilatory oscillations at exercise: effects of hyperoxia, hypercapnia, and acetazolamide.

    Science.gov (United States)

    Hermand, Eric; Lhuissier, François J; Larribaut, Julie; Pichon, Aurélien; Richalet, Jean-Paul

    2015-06-01

    Periodic breathing has been found in patients with heart failure and sleep apneas, and in healthy subjects in hypoxia, during sleep and wakefulness, at rest and, recently, at exercise. To unravel the cardiorespiratory parameters liable to modulate the amplitude and period of ventilatory oscillations, 26 healthy subjects were tested under physiological (exercise) and environmental (hypoxia, hyperoxia, hyperoxic hypercapnia) stresses, and under acetazolamide (ACZ) treatment. A fast Fourier transform spectral analysis of breath-by-breath ventilation (V˙E) evidenced an increase in V˙E peak power under hypercapnia (vs. normoxia and hyperoxia, P power was positively related to cardiac output (Q˙c) and V˙E in hyperoxia (P oscillations by increasing Q˙c and V˙E, whereas ACZ decreases ventilatory instability in part by a contrasting action on O2 and CO2 sensing. An intrinsic oscillator might modulate ventilation through a complex system where peripheral chemoreflex would play a key role. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. New rigorous asymptotic theorems for inverse scattering amplitudes

    International Nuclear Information System (INIS)

    Lomsadze, Sh.Yu.; Lomsadze, Yu.M.

    1984-01-01

    The rigorous asymptotic theorems both of integral and local types obtained earlier and establishing logarithmic and in some cases even power correlations aetdeen the real and imaginary parts of scattering amplitudes Fsub(+-) are extended to the inverse amplitudes 1/Fsub(+-). One also succeeds in establishing power correlations of a new type between the real and imaginary parts, both for the amplitudes themselves and for the inverse ones. All the obtained assertions are convenient to be tested in high energy experiments when the amplitudes show asymptotic behaviour

  8. Characterization of fluid forces exerted on a cylinder array oscillating laterally in axial flow

    International Nuclear Information System (INIS)

    Divaret, Lise

    2014-01-01

    This thesis presents an experimental and a numerical study of the fluid forces exerted on a cylinder or a cylinder array oscillating laterally in an axial flow. The parameters of the system are the amplitude, the oscillation frequency, the confinement and the length to diameter ratio of the cylinder. The objective is to determine the fluid damping created by the axial flow, i.e. the dissipative force. The industrial application of this thesis is the determination of the fluid damping of the fuel assemblies in the core of a nuclear power plant during an earthquake. The study focuses on the configurations where the oscillation velocity is small compared to the axial flow velocity. In a first part, we study the case of a cylinder with no confinement oscillating in axial flow. Two methods are used: a dynamical and a quasi-static approach. In dynamics, the damping rate is measured during free oscillations of the cylinder. In the quasi-static approach, the damping coefficient is calculated from the normal force measured on a yawed cylinder. The range of the small ratios between the oscillation and the axial flow velocities corresponds to a range of low yaw angle where the cylinder is in near-axial flow in statics. The case of a yawed cylinder has been studied both experimentally with experiments in a wind tunnel and numerically with CFD calculations. The analyses of the fluid forces shows that for yaw angles smaller than 5 degrees, a linear lift with the yaw angle creates the damping. The origin of the lift force is discussed from pressure and velocity measurements. The results of the quasi-static approach are compared to the results of the dynamical experiments. In a second part, an experimental study is performed on a rigid cylinder array made up of 40 cylinders oscillating in an axial flow. The normal force and the displacement of the cylinder array are measured simultaneously. The added mass and damping coefficient are calculated and their variation with the

  9. The European ASAMPSA_E project : towards guidance to model the impact of high amplitude natural hazards in the probabilistic safety assessment of nuclear power plants. Information on the project progress and needs from the geosciences.

    Science.gov (United States)

    Raimond, Emmanuel; Decker, Kurt; Guigueno, Yves; Klug, Joakim; Loeffler, Horst

    2015-04-01

    The Fukushima nuclear accident in Japan resulted from the combination of two correlated extreme external events (earthquake and tsunami). The consequences, in particular flooding, went beyond what was considered in the initial engineering design design of nuclear power plants (NPPs). Such situations can in theory be identified using probabilistic safety assessment (PSA) methodology. PSA results may then lead industry (system suppliers and utilities) or Safety Authorities to take appropriate decisions to reinforce the defence-in-depth of the NPP for low probability event but high amplitude consequences. In reality, the development of such PSA remains a challenging task. Definitions of the design basis of NPPs, for example, require data on events with occurrence probabilities not higher than 10-4 per year. Today, even lower probabilities, down to 10-8, are expected and typically used for probabilistic safety analyses (PSA) of NPPs and the examination of so-called design extension conditions. Modelling the combinations of natural or man-made hazards that can affect a NPP and affecting some meaningful probability of occurrence seems to be difficult. The European project ASAMPSAE (www.asampsa.eu) gathers more than 30 organizations (industry, research, safety control) from Europe, US and Japan and aims at identifying some meaningful practices to extend the scope and the quality of the existing probabilistic safety analysis developed for nuclear power plants. It offers a framework to discuss, at a technical level, how "extended PSA" can be developed efficiently and be used to verify if the robustness of Nuclear Power Plants (NPPs) in their environment is sufficient. The paper will present the objectives of this project, some first lessons and introduce which type of guidance is being developed. It will explain the need of expertise from geosciences to support the nuclear safety assessment in the different area (seismotectonic, hydrological, meteorological and biological

  10. High energy multi-gluon exchange amplitudes

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1980-11-01

    We examine perturbative high energy n-gluon exchange amplitudes calculated in the Coulomb gauge. If n exceeds the minimum required by the t-channel quantum numbers, such amplitudes are non-leading in lns. We derive a closed system of coupled integral equations for the corresponding two-particle n-gluon vertices, obtained by summing the leading powers of ln(N μ psup(μ)), where psup(μ) is the incident momentum and Nsup(μ) the gauge-defining vector. Our equations are infra-red finite, provided the external particles are colour singlets. (author)

  11. Effect of the ponderomotive force in interaction of an amplitude modulated rf-field with a nonuniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoegger, B A; Schneider, H; Vaucher, B G [Fribourg Univ. (Switzerland). Inst. de Physique

    1982-06-30

    Magnetoacoustic oscillations are excited in an inhomogeneous magnetized plasma cylinder by amplitude modulation of a high frequency field (2.45 GHz, 3 kW PEP). The antenna is a long helical slow-wave structure. The axial field-oscillating with the modulation frequency (2/15 MHz) is monitored by means of electrostatically shielded magnetic probes. Resonance behaviour is observed around the eigenfrequency of the plasma cylinder. Power absorption is measured with diamagnetic loop technique. The plasma parameters are: mean electron density 3x10/sup 12/ cm/sup -3/, electron temperature 3.5 eV, magnetic field 1.6 kG, filling gas 7x10/sup -4/ Torr argon.

  12. Effects of core models and neutron energy group structures on xenon oscillation in large graphite-moderated reactors

    International Nuclear Information System (INIS)

    Yamasita, Kiyonobu; Harada, Hiroo; Murata, Isao; Shindo, Ryuichi; Tsuruoka, Takuya.

    1993-01-01

    Xenon oscillations of large graphite-moderated reactors have been analyzed by a multi-group diffusion code with two- and three-dimensional core models to study the effects of the geometric core models and the neutron energy group structures on the evaluation of the Xe oscillation behavior. The study clarified the following. It is important for accurate Xe oscillation simulations to use the neutron energy group structure that describes well the large change in the absorption cross section of Xe in the thermal energy range of 0.1∼0.65 eV, because the energy structure in this energy range has significant influences on the amplitude and the period of oscillations in power distributions. Two-dimensional R-Z models can be used instead of three-dimensional R-θ-Z models for evaluation of the threshold power of Xe oscillation, but two-dimensional R-θ models cannot be used for evaluation of the threshold power. Although the threshold power evaluated with the R-θ-Z models coincides with that of the R-Z models, it does not coincide with that of the R-θ models. (author)

  13. Attention Modulates TMS-Locked Alpha Oscillations in the Visual Cortex.

    Science.gov (United States)

    Herring, Jim D; Thut, Gregor; Jensen, Ole; Bergmann, Til O

    2015-10-28

    Cortical oscillations, such as 8-12 Hz alpha-band activity, are thought to subserve gating of information processing in the human brain. While most of the supporting evidence is correlational, causal evidence comes from attempts to externally drive ("entrain") these oscillations by transcranial magnetic stimulation (TMS). Indeed, the frequency profile of TMS-evoked potentials (TEPs) closely resembles that of oscillations spontaneously emerging in the same brain region. However, it is unclear whether TMS-locked and spontaneous oscillations are produced by the same neuronal mechanisms. If so, they should react in a similar manner to top-down modulation by endogenous attention. To test this prediction, we assessed the alpha-like EEG response to TMS of the visual cortex during periods of high and low visual attention while participants attended to either the visual or auditory modality in a cross-modal attention task. We observed a TMS-locked local oscillatory alpha response lasting several cycles after TMS (but not after sham stimulation). Importantly, TMS-locked alpha power was suppressed during deployment of visual relative to auditory attention, mirroring spontaneous alpha amplitudes. In addition, the early N40 TEP component, located at the stimulation site, was amplified by visual attention. The extent of attentional modulation for both TMS-locked alpha power and N40 amplitude did depend, with opposite sign, on the individual ability to modulate spontaneous alpha power at the stimulation site. We therefore argue that TMS-locked and spontaneous oscillations are of common neurophysiological origin, whereas the N40 TEP component may serve as an index of current cortical excitability at the time of stimulation. Copyright © 2015 Herring et al.

  14. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  15. Optimal operating parameters of the reactor oscillator in the channel of 6.5/10 MW reactor; Odredjivanje optimalnih radnih tacaka za reaktorski oscilator u kanalu na reaktoru 6,5/10 MW

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Zecevic, V [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    Operating conditions for the reactor oscillator in the central vertical experimental channel (VK5) in the RA reactor were studied during 1960. Channel VK5 was chosen because the sensitivity of the reactor is highest in this case. The central vertical experimental channel is placed in the center of the core and its bottom is placed 200 mm from the bottom of the reactor core. Diameter of the channel is is 110 mm and its length 5706 mm. During operation of the reactor oscillator with total modulation of the reactor power, it is very important to determine the oscillator operating point and the oscillation amplitude in such a way to avoid any change in reactor power level. Positive reactivity changes originating from oscillations of the samples should be compensated by the negative reactivity changes so that the effect should be nil. Operating points of the reactor oscillator are in the middle of the straight part of the figure showing the reactivity change dependent on the position of the absorber.

  16. Oscillations of rigid bar in the special relativity

    International Nuclear Information System (INIS)

    Paiva, F.M.; Teixeira, A.F.F.

    2011-12-01

    In the special relativity, a rigid bar slides on herself, with a extreme oscillating harmonically. We have discovered at the movement amplitude and in the bar length, indispensable for the elimination of non physical solutions

  17. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy

    Directory of Open Access Journals (Sweden)

    Gratianne Rabiller

    2015-10-01

    Full Text Available Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1–4 Hz, 20–200 μV, θ (4–8 Hz, 10 μV, α (8–12 Hz, 20–200 μV, β (12–30 Hz, 5–10 μV, and γ (30–80 Hz, low amplitude. Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy.

  18. Color oscillations and measuring the quark charge

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1979-01-01

    Color oscillations analogous to neutrino oscillations but with very high frequency are shown to be present in hadron states below color threshold. Experiments to distinguish between fractionally charged and integrally charged quark models both below and above color threshold are discussed. The instantaneous quark charge is shown to be measurable only in very fast processes determined by the high energy behavior of transition amplitudes well above color threshold. Results from the naive parton model for deep inelastic processes which indicate that real charges of quarks and gluons can be measured are shown to be in error because of neglect of color oscillations and interference terms. (author)

  19. Analysis of Bs flavor oscillations at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro Leonardo, Nuno Teotonio Viegas [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-09-01

    The search for and study of flavor oscillations in the neutral BsBs meson system is an experimentally challenging task. It constitutes a flagship analysis of the Tevatron physics program. In this dissertation, they develop an analysis of the time-dependent Bs flavor oscillations using data collected with the CDF detector. The data samples are formed of both fully and partially reconstructed B meson decays: Bs → Dsπ(ππ) and Bs → Dslv. A likelihood fitting framework is implemented and appropriate models and techniques developed for describing the mass, proper decay time, and flavor tagging characteristics of the data samples. The analysis is extended to samples of B+ and B0 mesons, which are further used for algorithm calibration and method validation. The B mesons lifetimes are extracted. The measurement of the B0 oscillation frequency yields Δmd = 0.522 ± 0.017 ps-1. The search for Bs oscillations is performed using an amplitude method based on a frequency scanning procedure. Applying a combination of lepton and jet charge flavor tagging algorithms, with a total tagging power ϵ'D2 of 1.6%, to a data sample of 355 pb-1, a sensitivity of 13.0 ps-1 is achieved. They develop a preliminary same side kaon tagging algorithm, which is found to provide a superior tagging power of about 4.0% for the Bs meson species. A study of the dilution systematic uncertainties is not reported. From its application as is to the Bs samples the sensitivity is significantly increased to about 18 ps-1 and a hint of a signal is seen at about 175. ps-1. They demonstrate that the extension of the analysis to the increasing data samples with the inclusion of the same side tagging algorithm is capable of providing an observation of Bs mixing beyond the

  20. Short periodic oscillations of the dwarf nova VW Hydri

    International Nuclear Information System (INIS)

    Haefner, R.; Schoembs, R.

    1977-01-01

    A coherent oscillation of approximately 88 s period and 0.m005 amplitude was detected during the decline stage at the end of the long eruption of VW Hyi in December 1975. The period changed erratically between 86 and 90 s during eight nights. There are indications that the amplitude depends on the phase of the orbital revolution. The new period favours models in which such oscillations are caused by the orbital motion of inhomogeneities in the disc. (orig.) [de

  1. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  2. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    Science.gov (United States)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  3. Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing

    International Nuclear Information System (INIS)

    Yan, X P; Liu, Q; Gong, M; Wang, D S; Fu, X

    2009-01-01

    A 8.2 W UV laser was reported with the compact extra-cavity sum-frequency mixing. The IR fundamental frequency source was a high power and high beam quality Q-switched Nd:YVO 4 oscillator. 38 W fundamental frequency laser at 1064 nm was obtained at the pulse repetition rate of 450 kHz with the beam quality factors of M 2 x = 1.27, M 2 y = 1.21. The type I and type II phase-matched LBO crystals were used as the extra-cavity frequency doubling and mixing crystals respectively. At 38 kHz, 8.2 W UV laser at 355 nm was achieved with the pulse duration of 8 ns corresponding to the pulse peak power as high as 27 kW, and the optical-optical conversion efficiency from IR to UV was 25.6%. The output characteristics of the IR and the harmonic generations varying with the pulse repetition rate were also investigated detailedly

  4. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  5. A study of return to saturation oscillations in the OSU APEX thermal hydraulic testing facility

    Science.gov (United States)

    Franz, Scott Cameron

    The purpose of this paper is to describe the flow oscillations which occur in the AP600 long term cooling test facility at Oregon State University. The AP600 system is an advanced pressurized water reactor design utilizing passive emergency cooling systems. A few hours after the initiation of a cold leg break, the passive cooling systems inject gravity fed cold water at a rate allowing steam production in the reactor vessel. Steam production in the core causes the pressure in the upper head to increase leading to flow oscillations in all the connecting reactor systems. This paper will show that the oscillations have a definite region of onset and termination for specific conditions in the APEX testing facility. Tests performed at high powers, high elevation breaks, and small break sizes do not exhibit oscillations. The APOS (Advanced Plant Oscillation Simulator) computer code has been developed using a quasi-steady state analysis for flows and a transient analysis for the core node energy balance. The pressure in the reactor head is calculated using a modified perfect gas analysis. For tank liquid inventories, a simple conservation of mass analysis is used to estimate the tank elevations. Simulation logic gleaned from APEX data and photographic evidence have been incorporated into the code to predict termination of the oscillations. Areas which would make the work more complete include a better understanding of two-phase fluid behavior for a top offtake on a pipe, more instrumentation in the core region of the APEX testing facility, and a clearer understanding of fluid conditions in the reactor barrel. Scaling of the oscillations onset and pressure amplitude are relatively straightforward, but termination and period are difficult to scale to the full AP600 plant. Differences in the core power profile and other geometrical differences between the testing facility and the actual plant make the scaling of this phenomenon to the actual plant conditions very difficult.

  6. Unifying relations for scattering amplitudes

    Science.gov (United States)

    Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao

    2018-02-01

    We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.

  7. Oscillation characteristics of the reactor 'A'; Oscilatorne karakteristike reaktora 'A'

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Lolic, B [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    In addition to good knowledge of reactor physical properties, design of the reactor oscillator demands determining of the oscillator operating points as well as oscillation reactor properties. This paper contains study of the RA reactor power changes due to oscillations in in one of the vertical experimental channels. It has been concluded that the reactor optimum operating conditions are attained when the oscillator operates at optimum points, and other parameters are determined dependent on the sensitivity of the method and reactor stability.

  8. A new analytical approximation to the Duffing-harmonic oscillator

    International Nuclear Information System (INIS)

    Fesanghary, M.; Pirbodaghi, T.; Asghari, M.; Sojoudi, H.

    2009-01-01

    In this paper, a novel analytical approximation to the nonlinear Duffing-harmonic oscillator is presented. The variational iteration method (VIM) is used to obtain some accurate analytical results for frequency. The accuracy of the results is excellent in the whole range of oscillation amplitude variations.

  9. Tests of numerical simulation algorithms for the Kubo oscillator

    International Nuclear Information System (INIS)

    Fox, R.F.; Roy, R.; Yu, A.W.

    1987-01-01

    Numerical simulation algorithms for multiplicative noise (white or colored) are tested for accuracy against closed-form expressions for the Kubo oscillator. Direct white noise simulations lead to spurious decay of the modulus of the oscillator amplitude. A straightforward colored noise algorithm greatly reduces this decay and also provides highly accurate results in the white noise limit

  10. Large amplitude oscillatory motion along a solar filament

    Science.gov (United States)

    Vršnak, B.; Veronig, A. M.; Thalmann, J. K.; Žic, T.

    2007-08-01

    Context: Large amplitude oscillations of solar filaments is a phenomenon that has been known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. Aims: We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory Hα filtergrams, to infer the triggering mechanism and the nature of the restoring force. Methods: Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function to estimate the basic parameters of the oscillations. To identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. Results: The observed oscillations of the plasma along the filament were characterized by an initial displacement of 24 Mm, an initial velocity amplitude of 51 km s-1, a period of 50 min, and a damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux injection by magnetic reconnection at one of the filament legs. The restoring force is caused by the magnetic pressure gradient along the filament axis. The period of oscillations, derived from the linearized equation of motion (harmonic oscillator) can be expressed as P=π√{2}L/v_Aϕ≈4.4L/v_Aϕ, where v_Aϕ =Bϕ0/√μ_0ρ represents the Alfvén speed based on the equilibrium poloidal field Bϕ0. Conclusions: Combination of our measurements with some previous observations of the same kind of oscillations shows good agreement with the proposed interpretation. Movie to Fig. 1 is only available in electronic form at http://www.aanda.org

  11. Hidden beauty in multiloop amplitudes

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Spradlin, Marcus; Volovich, Anastasia

    2006-01-01

    Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and prove that this method can be applied to any multiloop integral, allowing a conjectured iteration relation for any given amplitude to be tested up to polynomials in logarithms

  12. Two-Loop Splitting Amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  13. Two-loop splitting amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Dixon, L.J.; Kosower, D.A.

    2004-01-01

    Splitting amplitudes govern the behavior of scattering amplitudes at the momenta of external legs become collinear. In this talk we outline the calculation of two-loop splitting amplitudes via the unitarity sewing method. This method retains the simple factorization properties of light-cone gauge, but avoids the need for prescriptions such as the principal value or Mandelstam-Leibbrandt ones. The encountered loop momentum integrals are then evaluated using integration-by-parts and Lorentz invariance identities. We outline a variety of applications for these splitting amplitudes

  14. The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Bui, Ngoc Hung; Jung, Hyun Seok; Lee, Wook Hyun

    2003-01-01

    In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40 vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90 .deg., the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest

  15. Nonlocal synchronization in nearest neighbour coupled oscillators

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Elgazzar, A.S.; Cerdeira, H.A.

    2002-02-01

    We investigate a system of nearest neighbour coupled oscillators. We show that the nonlocal frequency synchronization, that might appear in such a system, occurs as a consequence of the nearest neighbour coupling. The power spectra of nonadjacent oscillators shows that there is no complete coincidence between all frequency peaks of the oscillators in the nonlocal cluster, while the peaks for neighbouring oscillators approximately coincide even if they are not yet in a cluster. It is shown that nonadjacent oscillators closer in frequencies, share slow modes with their adjacent oscillators which are neighbours in space. It is also shown that when a direct coupling between non-neighbours oscillators is introduced explicitly, the peaks of the spectra of the frequencies of those non-neighbours coincide. (author)

  16. Amplitude and phase modulation with waveguide optics

    International Nuclear Information System (INIS)

    Burkhart, S.C.; Wilcox, R.B.; Browning, D.; Penko, F.A.

    1996-01-01

    We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high-speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz

  17. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  18. Evidence of Zonal-Flow-Driven Limit-Cycle Oscillations during L-H Transition and at H-mode Pedestal of a New Small-ELM Regime in EAST

    DEFF Research Database (Denmark)

    Xu, G.; Wang, H.; Guo, H.

    Small-amplitude edge localized oscillations have been observed, for the first time, in EAST preceding the L-H transition at marginal input power, which manifest themselves as dithering in the divertor D signals at a frequency under 4 kHz, much lower than the GAM frequency. Detailed measurements...... edge turbulence in the range of 30 100 kHz and low-frequency Er oscillations. Just prior to the L-H transition, the Er oscillations often evolve into intermittent negative Er spikes. The Er oscillations, as well as the Er spikes, are strongly correlated with the turbulence driven Reynolds stress, thus...... providing a direct evidence of the zonal flows for the L-H transition at marginal input power. Furthermore, near the transition threshold sawtooth heat pulses appear to periodically enhance the dithering, finally triggering the L-H transition after a big sawtooth crash. The zonal flow induced limit...

  19. Vibrational resonance in the Morse oscillator

    Indian Academy of Sciences (India)

    In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency . Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover ...

  20. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  1. Generalized unitarity for N=4 super-amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.M.; Henn, J. [LAPTH, Université de Savoie, CNRS B.P. 110, F-74941 Annecy-le-Vieux Cedex (France); Korchemsky, G.P., E-mail: Gregory.Korchemsky@cea.fr [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Sokatchev, E. [LAPTH, Université de Savoie, CNRS B.P. 110, F-74941 Annecy-le-Vieux Cedex (France)

    2013-04-21

    We develop a manifestly supersymmetric version of the generalized unitarity cut method for calculating scattering amplitudes in N=4 SYM theory. We illustrate the power of this method by computing the one-loop n-point NMHV super-amplitudes. The result confirms two conjectures which we made in Drummond, et al., [1]. Firstly, we derive the compact, manifestly dual superconformally covariant form of the NMHV tree amplitudes for arbitrary number and types of external particles. Secondly, we show that the ratio of the one-loop NMHV to the MHV amplitude is dual conformal invariant.

  2. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    Directory of Open Access Journals (Sweden)

    Oliver Zobay

    2015-01-01

    Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.

  3. Sticky orbits of a kicked harmonic oscillator

    International Nuclear Information System (INIS)

    Lowenstein, J H

    2005-01-01

    We study a Hamiltonian dynamical system consisting of a one-dimensional harmonic oscillator kicked impulsively in 4:1 resonance with its natural frequency, with the amplitude of the kick proportional to a sawtooth function of position. For special values of the coupling parameter, the dynamical map W relating the phase-space coordinates just prior to each kick acts locally as a piecewise affine map K on a square with rational rotation number p/q. For λ = 2cos2πp/q a quadratic irrational, a recursive return-map structure allows us to completely characterize the orbits of the map K. The aperiodic orbits of this system are sticky in the sense that they spend all of their time wandering pseudo-chaotically (with strictly zero Lyapunov exponent) in the vicinity of self-similar archipelagos of periodic islands. The same recursive structure used locally for K gives us the asymptotic scaling features of long orbits of W on the infinite plane. For some coupling parameters the orbits remain bounded, but for others the distance from the origin increases as a logarithm or power of the time. In the latter case, we find examples of sub-diffusive, diffusive, super-diffusive, and ballistic power-law behavior

  4. Stora's fine notion of divergent amplitudes

    International Nuclear Information System (INIS)

    Várilly, Joseph C.; Gracia-Bondía, José M.

    2016-01-01

    Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  5. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  6. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  7. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  8. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  9. Modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Porter, Mason A.; Cvitanovic, Predrag

    2004-01-01

    We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations

  10. Investigation into the Effects of the Variable Displacement Mechanism on Swash Plate Oscillation in High-Speed Piston Pumps

    Directory of Open Access Journals (Sweden)

    Xu Fang

    2018-04-01

    Full Text Available High-speed, pressure-compensated variable displacement piston pumps are widely used in aircraft hydraulic systems for their high power density. The swash plate is controlled by the pressure-compensated valve, which uses pressure feedback so that the instantaneous output flow of the pump is exactly enough to maintain a presetting pressure. The oscillation of the swash plate is one of the major excitation sources in the high-speed piston pump, which may cause lower efficiency, shorter service life, and even serious damage. This paper presents an improved model to investigate the influence of the variable displacement mechanism on the swash plate oscillation and introduces some feasible ways to reduce oscillation of the swash plate. Most of the variable structural parameters of the variable displacement mechanism are taken into consideration, and their influences on swash plate oscillation are discussed in detail. The influence of the load pipe on the oscillation of the swash plate is considered in the improved model. A test rig is built and similarities between the experiments and simulated results prove that the simulation model can effectively predict the variable displacement mechanism state. The simulation results show that increasing the volume of the outlet chamber, the spring stiffness of the control valve, the action area of the actuator piston, and offset distance of the actuator piston can significantly reduce the oscillation amplitude of the swash plate. Furthermore, reducing the diameter of the control valve spool and the dead volume of the actuator piston chamber can also have a positive effect on oscillation amplitude reduction.

  11. Discreteness-induced resonances and ac voltage amplitudes in long one-dimensional Josephson junction arrays

    International Nuclear Information System (INIS)

    Duwel, A.E.; Watanabe, S.; Trias, E.; Orlando, T.P.; van der Zant, H.S.; Strogatz, S.H.

    1997-01-01

    New resonance steps are found in the experimental current-voltage characteristics of long, discrete, one-dimensional Josephson junction arrays with open boundaries and in an external magnetic field. The junctions are underdamped, connected in parallel, and dc biased. Numerical simulations based on the discrete sine-Gordon model are carried out, and show that the solutions on the steps are periodic trains of fluxons, phase locked by a finite amplitude radiation. Power spectra of the voltages consist of a small number of harmonic peaks, which may be exploited for possible oscillator applications. The steps form a family that can be numbered by the harmonic content of the radiation, the first member corresponding to the Eck step. Discreteness of the arrays is shown to be essential for appearance of the higher order steps. We use a multimode extension of the harmonic balance analysis, and estimate the resonance frequencies, the ac voltage amplitudes, and the theoretical limit on the output power on the first two steps. copyright 1997 American Institute of Physics

  12. Quasioptical Josephson oscillator

    International Nuclear Information System (INIS)

    Wengler, M.J.; Pance, A.; Liu, B.

    1991-01-01

    This paper discusses the authors' work with large 2-dimensional arrays of Josephson junctions for submillimeter power generation. The basic design of the Quasioptical Josephson Oscillator (QJO) is presented. The reasons for each design decision are discussed. Superconducting devices have not yet been fabricated, but scale models and computer simulations have been done. A method for characterizing array rf coupling structures is described, and initial results with this method are presented. Microwave scale models of the radiation structure are built and a series of measurements are made with a network analyzer

  13. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  14. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  15. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2010-01-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  16. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.

    2010-06-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  17. Sound produced by an oscillating arc in a high-pressure gas

    Science.gov (United States)

    Popov, Fedor K.; Shneider, Mikhail N.

    2017-08-01

    We suggest a simple theory to describe the sound generated by small periodic perturbations of a cylindrical arc in a dense gas. Theoretical analysis was done within the framework of the non-self-consistent channel arc model and supplemented with time-dependent gas dynamic equations. It is shown that an arc with power amplitude oscillations on the order of several percent is a source of sound whose intensity is comparable with external ultrasound sources used in experiments to increase the yield of nanoparticles in the high pressure arc systems for nanoparticle synthesis.

  18. Off-shell CHY amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Lam, C.S., E-mail: Lam@physics.mcgill.ca [Department of Physics, McGill University, Montreal, Q.C., H3A 2T8 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yao, York-Peng, E-mail: yyao@umich.edu [Department of Physics, The University of Michigan Ann Arbor, MI 48109 (United States)

    2016-06-15

    The Cachazo–He–Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  19. Magnus approximation in neutrino oscillations

    International Nuclear Information System (INIS)

    Acero, Mario A; Aguilar-Arevalo, Alexis A; D'Olivo, J C

    2011-01-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  20. Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure

    International Nuclear Information System (INIS)

    Chen, Shih-Hung; Chen, Liu

    2013-01-01

    The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning

  1. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  2. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.

  3. Spiral arm amplitude variations and pattern speeds in the grand design galaxies M51, M81, and M100

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Seiden, P.E.; Elmegreen, D.M.

    1989-01-01

    In the modal theory of galactic spiral structure, the amplitude of a prominent two-arm spiral pattern should oscillate slightly with galactocentric distance because of an interference between the outward and inward propagating waves. In the stellar dynamical theory, the spiral arm amplitudes should oscillate because of differential crowding near and between wave-orbit resonances. Two and three cycles of such oscillations have been found in computer-enhanced images at B and I passbands of the grand design galaxies M81 and M100, respectively, and what is probably one cycle of such an amplitude variation in M51. These three galaxies are the most symmetric and global of the two-arm spirals in the near-IR survey of Elmegreen (1981), so the occurrence of such spiral amplitude oscillations could be common among galaxies of this type. The positions of the features discussed are used to suggest possible arm pattern speeds. 23 refs

  4. Detecting Friedel oscillations in ultracold Fermi gases

    Science.gov (United States)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  5. Multiscalar production amplitudes beyond threshold

    CERN Document Server

    Argyres, E N; Kleiss, R H

    1993-01-01

    We present exact tree-order amplitudes for $H^* \\to n~H$, for final states containing one or two particles with non-zero three-momentum, for various interaction potentials. We show that there are potentials leading to tree amplitudes that satisfy unitarity, not only at threshold but also in the above kinematical configurations and probably beyond. As a by-product, we also calculate $2\\to n$ tree amplitudes at threshold and show that for the unbroken $\\phi^4$ theory they vanish for $n>4~$, for the Standard Model Higgs they vanish for $n\\ge 3~$ and for a model potential, respecting tree-order unitarity, for $n$ even and $n>4~$. Finally, we calculate the imaginary part of the one-loop $1\\to n$ amplitude in both symmetric and spontaneously broken $\\phi^4$ theory.

  6. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  7. Amplitude damping of vortex modes

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2010-09-01

    Full Text Available An interferometer, mimicking an amplitude damping channel for vortex modes, is presented. Experimentally the action of the channel is in good agreement with that predicted theoretically. Since we can characterize the action of the channel on orbital...

  8. Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.

    Science.gov (United States)

    Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel

    2017-05-26

    Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.

  9. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  10. Motivic amplitudes and cluster coordinates

    International Nuclear Information System (INIS)

    Golden, J.K.; Goncharov, A.B.; Spradlin, M.; Vergu, C.; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes — objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf n (ℙ 3 ) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MHV motivic amplitude A 7,2 M and find that like the previously known six-particle amplitude, it depends only on certain preferred coordinates known in the mathematics literature as cluster X-coordinates on Conf n (ℙ 3 ). We also find intriguing relations between motivic amplitudes and the geometry of generalized associahedrons, to which cluster coordinates have a natural combinatoric connection. For example, the obstruction to A 7,2 M being expressible in terms of classical polylogarithms is most naturally represented by certain quadrilateral faces of the appropriate associahedron. We also find and prove the first known functional equation for the trilogarithm in which all 40 arguments are cluster X-coordinates of a single algebra. In this respect it is similar to Abel’s 5-term dilogarithm identity

  11. Model based design of efficient power take-off systems for wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2011-01-01

    The Power Take-Off (PTO) is the core of a Wave Energy Converter (WECs), being the technology converting wave induced oscillations from mechanical energy to electricity. The induced oscillations are characterized by being slow with varying frequency and amplitude. Resultantly, fluid power is often...... an essential part of the PTO, being the only technology having the required force densities. The focus of this paper is to show the achievable efficiency of a PTO system based on a conventional hydro-static transmission topology. The design is performed using a model based approach. Generic component models...

  12. Analysis of resonance oscillation of the neutron flow in a BWR-core

    International Nuclear Information System (INIS)

    Storm, J.

    1987-09-01

    This is a thesis which has been made within the institution of automatic control in Lund. Two programs, 'Blackie' and 'Test' have been written in Fortran. These two programs are to be used for the evaluation of ASEA-ATOMs resonance test in different nuclear reactors. In these tests the condition of the reactor becomes more and more unstable because the coolant flow decreases at the same time as the power gradually increases. This leads to resonance in the neutron flow. This flow is measured by detectors placed in different parts of the reactor core. 'Blackie' receives and stores the values sampled by the detectors. The same program also carries out a Fourier analysis. Amplitudes and phase angles from the different oscillations are calculated. These results are then used as inputs for 'Test'. 'Test' is a plotting program. It draws the reactor and plots arrows where the detectors are situated. The size and direction of the arrows are measurements of the amplitudes and phase angles of the neutron flow oscillations. From these arrow diagrams you can come to conclusions about the oscillations in the neutron flow and how the affect the reactor. (author)

  13. Characterization of the quasi-coherent oscillations by HIBP diagnostic in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Krupnik, L.; Chmyga, A.A.; Dreval, N.; Khrebtov, S.M.; Komarov, A.D.; Kozachok, A.S.; Eliseev, L.; Melnikov, A.; Perfilov, S.V.; Alonso, A.; Pablos, J.L. de; Hidalgo, C.; Pedrosa, M.A.

    2005-01-01

    Quasicoherent oscillations have been observed in TJ-II plasma with different diagnostic. A recent improvement in the signal to noise ratio of the Heavy Ion Beam Probe (HIBP) diagnostic has allowed to observe the radial structure of these oscillations from the edge to the plasma core region. Edge quasi-coherent fluctuations (with frequencies near 20 kHz) have been observed in some configuration windows when plasma density / heating power are above a threshold. The amplitude of those modes tends to be larger in the low field side region. This result suggests the role of configuration (related to the presence of low order rationals in the plasma edge) and threshold gradients to trigger quasi-coherence modes. HIBP signals are strongly correlated with probe signals. When rationals move towards the plasma core (ρ ∼ 0.3), the modes are clearly seen in ECE emission and in HIBP secondary current and potential signals. These quasi-coherent oscillations (in range 20 kHz) have been connected with the development of electron internal transport barriers (e-ITB). Recent results show a decreasing in the mode amplitude as e-ITBs are fully developed. (author)

  14. OSCILLATING LIGHT WALL ABOVE A SUNSPOT LIGHT BRIDGE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun; Jiang, Fayu [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2015-05-10

    With the high tempo-spatial Interface Region Imaging Spectrograph 1330 Å images, we find that many bright structures are rooted in the light bridge of NOAA 12192, forming a light wall. The light wall is brighter than the surrounding areas, and the wall top is much brighter than the wall body. The New Vacuum Solar Telescope Hα and the Solar Dynamics Observatory 171 and 131 Å images are also used to study the light-wall properties. In 1330, 171, and 131 Å, the top of the wall has a higher emission, while in the Hα line, the wall-top emission is very low. The wall body corresponds to bright areas in 1330 Å and dark areas in the other lines. The top of the light wall moves upward and downward successively, performing oscillations in height. The deprojected mean height, amplitude, oscillation velocity, and the dominant period are determined to be 3.6 Mm, 0.9 Mm, 15.4 km s{sup −1}, and 3.9 minutes, respectively. We interpret the oscillations of the light wall as the leakage of p-modes from below the photosphere. The constant brightness enhancement of the wall top implies the existence of some kind of atmospheric heating, e.g., via the persistent small-scale reconnection or the magneto-acoustic waves. In another series of 1330 Å images, we find that the wall top in the upward motion phase is significantly brighter than in the downward phase. This kind of oscillation may be powered by the energy released due to intermittent impulsive magnetic reconnection.

  15. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    Science.gov (United States)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  16. silicon bipolar distributed oscillator design and analysis

    African Journals Online (AJOL)

    digital and analogue market, wired or wireless is making it necessary to operate ... is generally high; this additional power is supplied by the eternal dc source. ... distributed oscillator consists of a pair of transmission lines with characteristic ...

  17. The charged bubble oscillator: Dynamics and thresholds

    Indian Academy of Sciences (India)

    The nonlinear, forced oscillations of a bubble in a fluid due to an external pressure field are studied theoretically. ... for the system, delineating different dynamics. Keywords. ..... (c) Power spectral density of the charged and uncharged bub-.

  18. Umbral oscillations as a probe of sunspot

    International Nuclear Information System (INIS)

    Abdelatif, T.E.H.

    1985-01-01

    The interaction of the solar five-minute oscillations with a sunspot is thoroughly explored, both on observational and theoretical grounds. Simple theoretical models are developed in order to understand the observations of umbral oscillations. Observations made at the National Solar Observatory detected both the three-minute and five-minute umbral oscillations at photospheric heights. The three-minute oscillations were found to have a kinetic energy density six times higher in the photosphere than in the chromosphere and to be concentrated in the central part of the umbra, supporting the photospheric resonance theory for the three-minute umbral oscillations. The five-minute oscillations are attenuated in the umbra, which appears to act as a filter in selecting some of the peaks in the power spectrum of five-minute oscillations in the surrounding photosphere. The k-omega power spectrum of the umbral oscillations shows a shift of power to longer wavelengths. Theoretical models of the transmission of acoustic waves into a magnetic region explain both observed effects

  19. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.

    Directory of Open Access Journals (Sweden)

    Richard Andersson

    Full Text Available BACKGROUND: Gamma oscillations are electric activity patterns of the mammalian brain hypothesized to serve attention, sensory perception, working memory and memory encoding. They are disrupted or altered in schizophrenic patients with associated cognitive deficits, which persist in spite of treatment with antipsychotics. Because cognitive symptoms are a core feature of schizophrenia it is relevant to explore signaling pathways that potentially regulate gamma oscillations. Dopamine has been reported to decrease gamma oscillation power via D1-like receptors. Based on the expression pattern of D4 receptors (D4R in hippocampus, and pharmacological effects of D4R ligands in animals, we hypothesize that they are in a position to regulate gamma oscillations as well. METHODOLOGY/PRINCIPAL FINDINGS: To address this hypothesis we use rat hippocampal slices and kainate-induced gamma oscillations. Local field potential recordings as well as intracellular recordings of pyramidal cells, fast-spiking and non-fast-spiking interneurons were carried out. We show that D4R activation with the selective ligand PD168077 increases gamma oscillation power, which can be blocked by the D4R-specific antagonist L745,870 as well as by the antipsychotic drug Clozapine. Pyramidal cells did not exhibit changes in excitatory or inhibitory synaptic current amplitudes, but inhibitory currents became more coherent with the oscillations after application of PD168077. Fast-spiking, but not non-fast spiking, interneurons, increase their action potential phase-coupling and coherence with regard to ongoing gamma oscillations in response to D4R activation. Among several possible mechanisms we found that the NMDA receptor antagonist AP5 also blocks the D4R mediated increase in gamma oscillation power. CONCLUSIONS/SIGNIFICANCE: We conclude that D4R activation affects fast-spiking interneuron synchronization and thereby increases gamma power by an NMDA receptor-dependent mechanism. This

  20. A novel optogenetically tunable frequency modulating oscillator.

    Directory of Open Access Journals (Sweden)

    Tarun Mahajan

    Full Text Available Synthetic biology has enabled the creation of biological reconfigurable circuits, which perform multiple functions monopolizing a single biological machine; Such a system can switch between different behaviours in response to environmental cues. Previous work has demonstrated switchable dynamical behaviour employing reconfigurable logic gate genetic networks. Here we describe a computational framework for reconfigurable circuits in E.coli using combinations of logic gates, and also propose the biological implementation. The proposed system is an oscillator that can exhibit tunability of frequency and amplitude of oscillations. Further, the frequency of operation can be changed optogenetically. Insilico analysis revealed that two-component light systems, in response to light within a frequency range, can be used for modulating the frequency of the oscillator or stopping the oscillations altogether. Computational modelling reveals that mixing two colonies of E.coli oscillating at different frequencies generates spatial beat patterns. Further, we show that these oscillations more robustly respond to input perturbations compared to the base oscillator, to which the proposed oscillator is a modification. Compared to the base oscillator, the proposed system shows faster synchronization in a colony of cells for a larger region of the parameter space. Additionally, the proposed oscillator also exhibits lesser synchronization error in the transient period after input perturbations. This provides a strong basis for the construction of synthetic reconfigurable circuits in bacteria and other organisms, which can be scaled up to perform functions in the field of time dependent drug delivery with tunable dosages, and sets the stage for further development of circuits with synchronized population level behaviour.

  1. Multivariate Time Series Decomposition into Oscillation Components.

    Science.gov (United States)

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  2. Differing Patterns of Altered Slow-5 Oscillations in Healthy Aging and Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Christian eLa

    2016-04-01

    Full Text Available The ‘default-mode’ network (DMN has been investigated in the presence of various disorders, such as Alzheimer’s disease and Autism spectrum disorders. More recently, this investigation has expanded to include patients with ischemic injury. Here, we characterized the effects of ischemic injury in terms of its spectral distribution of resting-state low-frequency oscillations and further investigated whether those specific disruptions were unique to the DMN, or rather more general, affecting the global cortical system. With 43 young healthy adults, 42 older healthy adults, 14 stroke patients in their early stage (< 7 days after stroke onset, and 16 stroke patients in their later stage (between 1-6 months after stroke onset, this study showed that patterns of cortical system disruption may differ between healthy aging and following the event of an ischemic stroke. The stroke group in the later stage demonstrated a global reduction in the amplitude of the slow-5 oscillations (0.01-0.027 Hz in the DMN as well as in the primary visual and sensorimotor networks, two ‘task-positive’ networks. In comparison to the young healthy group, the older healthy subjects presented a decrease in the amplitude of the slow-5 oscillations specific to the components of the DMN, while exhibiting an increase in oscillation power in the task-positive networks. These two processes of a decrease DMN and an increase in ‘task-positive’ slow-5 oscillations may potentially be related, with a deficit in DMN inhibition, leading to an elevation of oscillations in non-DMN systems. These findings also suggest that disruptions of the slow-5 oscillations in healthy aging may be more specific to the DMN while the disruptions of those oscillations following a stroke through remote (diaschisis effects may be more widespread, highlighting a non-specificity of disruption on the DMN in stroke population. The mechanisms underlying those differing modes of network disruption need

  3. The vertical oscillations of coupled magnets

    International Nuclear Information System (INIS)

    Li Kewei; Lin Jiahuang; Kang Zi Yang; Liang, Samuel Yee Wei; Juan, Jeremias Wong Say

    2011-01-01

    The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.

  4. Solar neutrinos and nonradial solar oscillations

    International Nuclear Information System (INIS)

    Zatsepin, G.T.; Gavryuseva, E.A.; Kopysov, Yu.S.

    1980-01-01

    The problem of origin of surface solar oscillations is considered. It is assumed that generation of oscillations is performed by the solar nucleus. The necessary excitation condition for gravitational oscillations of the solar nucleus is a sharp decrease of the oscillation amplitude outside the nucleus, where the nuclear reaction rates are small and only radiation losses are considerable. It is shown that the specific singularities of gravitational wave propagation in solar entrails permit to attain a significant reduction of the oscillation amplitude. The solar entrails can serve as an effective trap for gravitational waves, if the substance of the solar nucleus is close to the state of convectional equilibrium. In order that the g 1 quadrupole mode of the solar nucleus has a period of 2h 40 min and sharply decreases in the solar mantle, it is enough that only the external part of the solar nucleus is close to the state of convectional equilibrium. Closeness of the solar nucleus to the state of convectional equilibrium is an argument in favour of its periodic mixing. Periodic mixing of the solar nucleus can serve as a cause of a low counting rate of solar neutrinos in R.Davis chlorous detector

  5. Conformist-contrarian interactions and amplitude dependence in the Kuramoto model

    Science.gov (United States)

    Lohe, M. A.

    2014-11-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.

  6. Conformist–contrarian interactions and amplitude dependence in the Kuramoto model

    International Nuclear Information System (INIS)

    Lohe, M A

    2014-01-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist–contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties. (paper)

  7. A six-week clinical evaluation of the plaque and gingivitis efficacy of an oscillating-rotating power toothbrush with a novel brush head utilizing angled CrissCross bristles versus a sonic toothbrush.

    Science.gov (United States)

    Klukowska, Malgorzata; Grender, Julie M; Conde, Erinn; Goyal, C Ram; Qaqish, J

    2014-01-01

    To compare the efficacy of an oscillating-rotating power toothbrush with a novel brush head incorporating angled CrissCross bristles (Oral-B Triumph with SmartGuide with Oral-B CrossAction brush head) versus a sonic toothbrush (Sonicare DiamondClean) for plaque and gingivitis reduction over a six-week period. This was a single-center, randomized, examiner-blind, two-treatment, parallel group study involving 65 subjects per group. Subjects presenting with mild-to-moderate gingivitis at Baseline were randomly assigned to either the oscillating-rotating brush or the sonic brush. They were instructed to use their assigned toothbrush and a standard fluoride dentifrice for two minutes twice daily at home for six weeks. Gingivitis and plaque were assessed at Baseline and Week 6 using the Modified Gingival Index (MGI), Gingival Bleeding Index (GBI), and Rustogi Modified Navy Plaque Index (RMNPI). Data were analyzed using an Analysis of Covariance (ANCOVA), with baseline as the covariate. Subjects also completed a consumer perception questionnaire to evaluate their brushing experience. One-hundred and thirty subjects were enrolled in the study and randomized to treatment. Sixty-four subjects per group completed the trial. Both brushes produced statistically significant reductions in gingivitis and plaque measures at Week 6 relative to Baseline (p gingivitis and plaque measures compared to the sonic toothbrush. The benefits for the oscillating-rotating brush over the sonic brush were 32.6% for gingivitis, 35.4% for gingival bleeding, 32% for number of bleeding sites, 22% for whole mouth plaque, 24.2% for gingival margin plaque, and 33.3% for approximal plaque (p gingival margin plaque, where p = 0.018). Analysis of the consumer perception questionnaire results showed subjects using the oscillating-rotating brush rated it higher for overall use experience and key attributes related to cleaning, gentleness, and brush head shape/size versus subjects in the sonic brush group

  8. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  9. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  10. Closed-loop wavelength stabilization of an optical parametric oscillator as a front end of a high-power iodine laser chain

    Czech Academy of Sciences Publication Activity Database

    Král, Lukáš

    2007-01-01

    Roč. 78, č. 5 (2007), 053104/1-053104/5 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) LC528; GA ČR GA202/06/0814 Grant - others:LASERLAB-EUROPE(XE) RII3-CT-2003-506350 Program:FP6 Institutional research plan: CEZ:AV0Z10100523 Keywords : gas lasers * optical parametric oscillators * nonlinear optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.384, year: 2007

  11. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  12. Amplitude growth due to random, correlated kicks

    International Nuclear Information System (INIS)

    Michelotti, L.; Mills, F.

    1989-03-01

    Historically, stochastic processes, such as gas scattering or stochastic cooling, have been treated by the Fokker-Planck equation. In this approach, usually considered for one dimension only, the equation can be considered as a continuity equation for a variable which would be a constant of the motion in the absence of the stochastic process, for example, the action variable, I = ε/2π for betatron oscillations, where ε is the area of the Courant-Snyder ellipse, or energy in the case of unbunched beams, or the action variable for phase oscillations in case the beam is bunched. A flux, /Phi/, including diffusive terms can be defined, usually to second order. /Phi/ = M 1 F(I) + M 2 ∂F/∂I + /hor ellipsis/. M 1 and M 2 are the expectation values of δI and (δI) 2 due to the individual stochastic kicks over some period of time, long enough that the variance of these quantities is sufficiently small. Then the Fokker-Planck equation is just ∂F/∂I + ∂/Phi//∂I = 0. In many cases those where the beam distribution has already achieved its final shape, it is sufficient to find the rate of increase of by taking simple averages over the Fokker-Planck equation. At the time this work was begun, there was good knowledge of the second moment for general stochastic processes due to stochastic cooling theory, but the form of the first moment was known only for extremely wideband processes. The purposes of this note are to derive an expression relating the expected single particle amplitude growth to the noise autocorrelation function and to obtain, thereby, the form of M 1 for narrow band processes. 4 refs

  13. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  14. Nonsinglet pentagons and NMHV amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu

    2015-07-15

    Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  15. Cluster polylogarithms for scattering amplitudes

    International Nuclear Information System (INIS)

    Golden, John; Paulos, Miguel F; Spradlin, Marcus; Volovich, Anastasia

    2014-01-01

    Motivated by the cluster structure of two-loop scattering amplitudes in N=4 Yang-Mills theory we define cluster polylogarithm functions. We find that all such functions of weight four are made up of a single simple building block associated with the A 2 cluster algebra. Adding the requirement of locality on generalized Stasheff polytopes, we find that these A 2 building blocks arrange themselves to form a unique function associated with the A 3 cluster algebra. This A 3 function manifests all of the cluster algebraic structure of the two-loop n-particle MHV amplitudes for all n, and we use it to provide an explicit representation for the most complicated part of the n = 7 amplitude as an example. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Cluster algebras in mathematical physics’. (paper)

  16. Temperature Oscillations in Loop Heat Pipes - A Revisit

    Science.gov (United States)

    Ku, Jentung

    2018-01-01

    Three types of temperature oscillation have been observed in the loop heat pipes. The first type is an ultra-high frequency temperature oscillation with a period on the order of seconds or less. This type of temperature oscillation is of little significance in spacecraft thermal control because the amplitude is in the noise level. The second type is a high frequency, low amplitude temperature oscillation with a period on the order of seconds to minutes and an amplitude on the order of one Kelvin. It is caused by the back-and-forth movement of the vapor front near the inlet or outlet of the condenser. The third type is a low frequency, high amplitude oscillation with a period on the order of hours and an amplitude on the order of tens of Kelvin. It is caused by the modulation of the net heat load into the evaporator by the attached large thermal mass which absorbs and releases energy alternately. Several papers on LHP temperature oscillation have been published. This paper presents a further study on the underlying physical processes during the LHP temperature oscillation, with an emphasis on the third type of temperature oscillation. Specifically, equations governing the thermal and hydraulic behaviors of LHP operation will be used to describe interactions among LHP components, heat source, and heat sink. The following sequence of events and their interrelationship will also be explored: 1) maxima and minima of reservoir and thermal mass temperatures; 2) the range of the vapor front movement inside the condenser; 3) rates of change of the reservoir and thermal mass temperatures; 4) the rate of heat absorption and heat release by the thermal mass and the rate of vapor front movement; and 5) inflection points of the reservoir and thermal mass temperatures.

  17. Inverse amplitude method and Adler zeros

    International Nuclear Information System (INIS)

    Gomez Nicola, A.; Pelaez, J. R.; Rios, G.

    2008-01-01

    The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.

  18. An experimental and theoretical investigation of a fuel system tuner for the suppression of combustion driven oscillations

    Science.gov (United States)

    Scarborough, David E.

    Manufacturers of commercial, power-generating, gas turbine engines continue to develop combustors that produce lower emissions of nitrogen oxides (NO x) in order to meet the environmental standards of governments around the world. Lean, premixed combustion technology is one technique used to reduce NOx emissions in many current power and energy generating systems. However, lean, premixed combustors are susceptible to thermo-acoustic oscillations, which are pressure and heat-release fluctuations that occur because of a coupling between the combustion process and the natural acoustic modes of the system. These pressure oscillations lead to premature failure of system components, resulting in very costly maintenance and downtime. Therefore, a great deal of work has gone into developing methods to prevent or eliminate these combustion instabilities. This dissertation presents the results of a theoretical and experimental investigation of a novel Fuel System Tuner (FST) used to damp detrimental combustion oscillations in a gas turbine combustor by changing the fuel supply system impedance, which controls the amplitude and phase of the fuel flowrate. When the FST is properly tuned, the heat release oscillations resulting from the fuel-air ratio oscillations damp, rather than drive, the combustor acoustic pressure oscillations. A feasibility study was conducted to prove the validity of the basic idea and to develop some basic guidelines for designing the FST. Acoustic models for the subcomponents of the FST were developed, and these models were experimentally verified using a two-microphone impedance tube. Models useful for designing, analyzing, and predicting the performance of the FST were developed and used to demonstrate the effectiveness of the FST. Experimental tests showed that the FST reduced the acoustic pressure amplitude of an unstable, model, gas-turbine combustor over a wide range of operating conditions and combustor configurations. Finally, combustor

  19. Topological amplitudes in string theory

    International Nuclear Information System (INIS)

    Antoniadis, I.; Taylor, T.R.

    1993-07-01

    We show that certain type II string amplitudes at genus g are given by the topological partition F g discussed recently by Bershadsky, Cecotti, Ooguri and Vafa. These amplitudes give rise to a term in the four-dimensional effective action of the form Σ g F g W 2g , where W is the chiral superfield of N = 2 supergravitational multiplet. The holomorphic anomaly of F g is related to non-localities of the effective action due to the propagation of massless states. This result generalizes the holomorphic anomaly of the one loop case which is known to lead to non-harmonic gravitational couplings. (author). 22 refs, 2 figs

  20. High energy behaviour of the scattering amplitude in the presence of confined channels

    International Nuclear Information System (INIS)

    Gehlen, G.; Rittenberg, V.

    1977-09-01

    The two-channel potential scattering problem in three space-dimensions is considered in the case when one channel is permanently confined. Two examples of confining potentials are considered: the harmonic oscillator and the infinite well. The two cases give radically different results: for the infinite well there is no high energy limit; in the case of the harmonic oscillator the amplitude has properties similar to that of dual absorptive models. (orig.) [de