WorldWideScience

Sample records for amplitude modulation

  1. Pulse amplitude modulated chlorophyll fluorometer

    Science.gov (United States)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  2. Mechanical models of amplitude and frequency modulation

    Energy Technology Data Exchange (ETDEWEB)

    Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)

    2005-05-01

    This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.

  3. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...

  4. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter;

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  5. Laryngeal-level amplitude modulation in vibrato.

    Science.gov (United States)

    Dromey, Christopher; Reese, Lorie; Hopkin, J Arden

    2009-03-01

    The goal of this investigation was to test a new methodology for measuring amplitude modulation (AM) at the level of the vocal folds during vibrato in trained singers, because previous research has suggested that AM arises in large part as an acoustic epiphenomenon through an interaction of the harmonics in the laryngeal source with the resonances of the vocal tract as the fundamental frequency oscillates. A within-subjects model was used to compare vocal activity across three pitch and three loudness conditions. Seventeen female singers with a range of training and experience were recorded with a microphone and an electroglottograph (EGG). Fluctuations in the ratio of closing to opening peaks in the first derivative of the EGG signal were used as an index of laryngeal-level AM. Evidence of laryngeal AM was found to a greater or lesser extent in all the singers, and its extent was not related to the degree of training. Across singers and pitch conditions, it was more prominent at lower intensities. The differentiated EGG signal lends itself to the measurement of AM at the level of the larynx, and the extent of the modulation appears more related to the level of vocal effort than to individual singer characteristics. PMID:17658720

  6. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  7. Multilevel phase and amplitude modulation method for holographic memories with programmable phase modulator

    Science.gov (United States)

    Honma, Satoshi; Sekiguchi, Toru

    2014-09-01

    The utilization of spatial quadrature amplitude modulation (SQAM) signals with amplitude and phase modulation is a simple method used to improve storage capacity in a holographic data storage system. We propose a multilevel phase and amplitude modulation method for holographic memories with a programmable phase modulator (PPM). In this method, holographic page data is recorded by a two-step exposure process for different phase-modulated data. There is no need to adjust the positions of spatial light modulators (SLM) with high accuracy because we use only one spatial modulator. We estimate the quality of 16 SQAM signals produced by our technique.

  8. Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding

    DEFF Research Database (Denmark)

    Christensen, M. G.; Jacobson, A.; Andersen, S. V.;

    2006-01-01

    In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least-squar......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....

  9. Amplitude Modulation in the δ Sct star KIC 7106205

    Directory of Open Access Journals (Sweden)

    Bowman Dominic. M.

    2015-01-01

    Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.

  10. Discriminating Simulated Vocal Tremor Source Using Amplitude Modulation Spectra

    Science.gov (United States)

    Carbonell, Kathy M.; Lester, Rosemary A.; Story, Brad H.; Lotto, Andrew J.

    2014-01-01

    Objectives/Hypothesis Sources of vocal tremor are difficult to categorize perceptually and acoustically. This paper describes a preliminary attempt to discriminate vocal tremor sources through the use of spectral measures of the amplitude envelope. The hypothesis is that different vocal tremor sources are associated with distinct patterns of acoustic amplitude modulations. Study Design Statistical categorization methods (discriminant function analysis) were used to discriminate signals from simulated vocal tremor with different sources using only acoustic measures derived from the amplitude envelopes. Methods Simulations of vocal tremor were created by modulating parameters of a vocal fold model corresponding to oscillations of respiratory driving pressure (respiratory tremor), degree of vocal fold adduction (adductory tremor) and fundamental frequency of vocal fold vibration (F0 tremor). The acoustic measures were based on spectral analyses of the amplitude envelope computed across the entire signal and within select frequency bands. Results The signals could be categorized (with accuracy well above chance) in terms of the simulated tremor source using only measures of the amplitude envelope spectrum even when multiple sources of tremor were included. Conclusions These results supply initial support for an amplitude-envelope based approach to identify the source of vocal tremor and provide further evidence for the rich information about talker characteristics present in the temporal structure of the amplitude envelope. PMID:25532813

  11. Contextual Modulation of N400 Amplitude to Lexically Ambiguous Words

    Science.gov (United States)

    Titone, Debra A.; Salisbury, Dean F.

    2004-01-01

    Through much is known about the N400 component, an event-related EEG potential that is sensitive to semantic manipulations, it is unclear whether modulations of N400 amplitude reflect automatic processing, controlled processing, or both. We examined this issue using a semantic judgment task that manipulated local and global contextual cues. Word…

  12. AMPLITUDE AND PHASE MODULATION FOR ULTRASONIC WIRELESS COMMUNICATION

    Directory of Open Access Journals (Sweden)

    Nan Gao

    2014-04-01

    Full Text Available Short range wireless communications have been used more and more frequently in our life. But the electromagnetic fields waves also have some disadvantages. One of these disadvantages is health problems. Many studies shows the electromagnetic field waves using for communication may damage our health. And in most hospitals, they also have bans on the use of mobile phones and wide area networks because of Electromagnetic Interference. So this paper studied the use of ultrasound for wireless communication in air, instead of using electromagnetic field wave. In order to find an advisable modulation method for ultrasound wireless communication, Amplitude modulation method and Phased modulation method has been test.

  13. About the Phasor Pathways in Analogical Amplitude Modulation

    CERN Document Server

    de Oliveira, H M

    2015-01-01

    The Phasor diagrams have long been used in Physics and Engineering. In telecommunications, this is particularly useful to clarify how the modulations work. This paper addresses rotating phasor pathways derived from different standard Amplitude Modulation Systems (e.g. A3E, H3E, J3E, C3F). A cornucopia of algebraic curves is then derived assuming a single tone or a double tone modulation signal. The ratio of the frequency of the tone modulator (fm) and carrier frequency (fc) is considered in two distinct cases, namely: fm/fc=1. The geometric figures are some sort of Lissajours figures. Different shapes appear looking like epicycloids (including cardioids), rhodonea curves, Lemniscates, folium of Descartes or Lam\\'e curves. The role played by the modulation index is elucidated in each case.

  14. Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz

    Science.gov (United States)

    Jessop, D. S.; Kindness, S. J.; Xiao, L.; Braeuninger-Weimer, P.; Lin, H.; Ren, Y.; Ren, C. X.; Hofmann, S.; Zeitler, J. A.; Beere, H. E.; Ritchie, D. A.; Degl'Innocenti, R.

    2016-04-01

    The terahertz (THz) region of the electromagnetic spectrum holds great potential in many fields of study, from spectroscopy to biomedical imaging, remote gas sensing, and high speed communication. To fully exploit this potential, fast optoelectronic devices such as amplitude and phase modulators must be developed. In this work, we present a room temperature external THz amplitude modulator based on plasmonic bow-tie antenna arrays with graphene. By applying a modulating bias to a back gate electrode, the conductivity of graphene is changed, which modifies the reflection characteristics of the incoming THz radiation. The broadband response of the device was characterized by using THz time-domain spectroscopy, and the modulation characteristics such as the modulation depth and cut-off frequency were investigated with a 2.0 THz single frequency emission quantum cascade laser. An optical modulation cut-off frequency of 105 ± 15 MHz is reported. The results agree well with a lumped element circuit model developed to describe the device.

  15. Air-segmented amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji

    2011-01-01

    Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.

  16. Analytical parameters for amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Kurokawa, Yohei; Takeuchi, Masaki; Tanaka, Hideji

    2010-01-01

    Analytical conditions of amplitude-modulated multiplexed flow analysis, the basic concept of which was recently proposed by our group, are investigated for higher sample throughput rate. The performance of the improved system is evaluated by applying it to the determination of chloride ions. The flow rates of two sample solutions are independently varied in accordance with sinusoidal voltage signals, each having different frequency. The solutions are merged with a reagent solution and/or a diluent, while the total flow rate is held constant. Downstream, the analytical signal V(d) is monitored with a spectrophotometer. The V(d) shows a complicated profile resulting from amplitude modulated and multiplexed information on the two samples. The V(d) can, however, be deconvoluted to the contribution of each sample through fast Fourier transform (FFT). The amplitudes of the separated wave components are closely related to the concentrations of the analytes in the samples. By moving the window for FFT analysis with time, a temporal profile of the amplitudes can be obtained in real-time. Analytical conditions such as modulation period and system configuration have been optimized using aqueous solutions of Malachite Green (MG). Adequate amplitudes are obtained at the period of as low as 5 s. At this period, the calibration curve for the MG concentration of 0-30 micromol dm(-3) has enough linearity (r(2) = 0.999) and the limit of detection (3.3sigma) is 1.3 micromol dm(-3); the relative standard deviation of repeated measurements (C(MG) = 15 micromol dm(-3), n = 10) is 2.4%. The developed system has been applied to the determination of chloride ions by a mercury(II) thiocyanate method. The system can adequately follow the changes in analyte concentration. The recoveries of chloride ion spiked in real water samples (river and tap water) are satisfactory, around 100%. PMID:20631441

  17. Symbol rate identification for auxiliary amplitude modulation optical signal

    Science.gov (United States)

    Wei, Junyu; Dong, Zhi; Huang, Zhiping; Zhang, Yimeng

    2016-09-01

    In this paper, we creatively propose and demonstrate a method for symbol rate identification (SRI) of auxiliary amplitude modulation (AAM) optical signal based on asynchronous delay-tap sampling (ADTS) and average magnitude difference function (AMDF). The method can accurately estimate symbol rate and has large transmission impairments tolerance. Furthermore, it can be realized in the digital signal processor (DSP) with low logical resources because of multiplication-free. In order to improve the accuracy of SRI, the peak to valley ratio (PTVR) of AMDF is introduced into our method for blind chromatic dispersion (CD) compensation. The results of the numerical simulations show that the overall maximum SRI error is smaller 0.079% for return-to-zero (RZ) on-off keying (OOK), RZ differential phase-shift keying (DPSK), RZ differential quadrature phase-shift keying (DQPSK) and RZ 16-ary quadrature amplitude modulation (QAM) with 50% duty cycles.

  18. Amplitude modulation control of escape from a potential well

    Energy Technology Data Exchange (ETDEWEB)

    Chacón, R. [Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain); Martínez García-Hoz, A. [Departamento de Física Aplicada, Escuela Universitaria Politécnica, Universidad de Castilla-La Mancha, E-13400 Almadén (Ciudad Real) (Spain); Miralles, J.J. [Departamento de Física Aplicada, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, E-02071 Albacete (Spain); Martínez, P.J. [Departamento de Física Aplicada, E.I.N.A., Universidad de Zaragoza, E-50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-03-01

    We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.

  19. Oblique amplitude modulation of dust-acoustic plasma waves

    OpenAIRE

    Kourakis, I.; Shukla, P. K.

    2004-01-01

    Theoretical and numerical studies are presented of the nonlinear amplitude modulation of dust-acoustic (DA) waves propagating in an unmagnetized three component, weakly-coupled, fully ionized plasma consisting of electrons, positive ions and charged dust particles, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schroedinger-type equation (NLSE), shows that the wave may become unstable; the stability criteria depend on ...

  20. Modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    We analyze spatiotemporal structures in the Gross-Pitaevskii equation to study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs) with mean-field interactions. A coherent structure ansatz yields a parametrically forced nonlinear oscillator, to which we apply Lindstedt's method and multiple-scale perturbation theory to determine the dependence of the intensity of periodic orbits ('modulated amplitude waves') on their wave number. We explore BEC band structure in detail using Hamiltonian perturbation theory and supporting numerical simulations

  1. Multisensory interaction in vibrotactile detection and discrimination of amplitude modulation

    DEFF Research Database (Denmark)

    Teodorescu, Kinneret; Bouchigny, Sylvain; Hoffmann, Pablo F.;

    2011-01-01

    synthesized auditory cues in groups of naive subjects and expert surgeons. Our results point toward the complex influence of multimodal experience during vibration perception. First, in naive subjects, we showed that detection and discrimination of amplitude change in complex vibro-tactile stimulus...... skill of maxilla-facial surgery strongly relies on enhanced touch perception, as measured in reaction times and discrimination ability in bi-modal vibro-auditory conditions. These observations suggest that acquisition of mandibular surgery skill has brought to an enhanced representation of vibro......-tactile modulations in relevant stimuli ranges. Altogether, our results provide basis to assume that during acquisition of mandibular drilling skill, trainees may benefit from training of relevant basic aspects of touch perception - sensitivity to vibration and accompanying modulations of sound....

  2. Research proposal on : amplitude modulated reflectometry system for JET divertor

    International Nuclear Information System (INIS)

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been presented in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps' in the phase signal, which are a big problem when the phase values are much larger than 2 pi. The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad-band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for ionospheric studies and recently also proposed for fusion plasma. the main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts (approx 2 pi). (author)

  3. Study of an electro-optic modulator capable of generating simultaneous amplitude and phase modulations

    CERN Document Server

    Cusack, B J; Shaddock, D A; Gray, M B; Lam, P K; Whitcomb, S E; Cusack, Benedict J; Gray, Malcolm B; Lam, Ping Koy; Shaddock, Daniel A; Sheard, Benjamin S; Whitcomb, Stan E

    2003-01-01

    We report on the analysis and prototype-characterization of a dual-electrode electro-optic modulator that can generate both amplitude and phase modulations with a selectable relative phase, termed a universally tunable modulator (UTM). All modulation states can be reached by tuning only the electrical inputs, facilitating real-time tuning, and the device is shown to have good suppression and stability properties. A mathematical analysis is presented, including the development of a geometric phase representation for modulation. The experimental characterization of the device shows that relative suppressions of 38 dB, 39 dB and 30 dB for phase, single-sideband and carrier-suppressed modulations, respectively, can be obtained, as well as showing the device is well-behaved when scanning continuously through the parameter space of modulations. Uses for the device are discussed, including the tuning of lock points in optical locking schemes, single sideband applications, modulation fast-switching applications, and ...

  4. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia.

    Science.gov (United States)

    Peñaloza-López, Yolanda; Herrera-Rangel, Aline; Pérez-Ruiz, Santiago J; Poblano, Adrián

    2016-04-01

    Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA) and Sinusoidal amplitude modulation (SAM) threshold in children with Phonological dyslexia (PD). Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD. PMID:27097001

  5. Phonological awareness and sinusoidal amplitude modulation in phonological dislexia

    Directory of Open Access Journals (Sweden)

    Yolanda Peñaloza-López

    2016-04-01

    Full Text Available ABSTRACT Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA and Sinusoidal amplitude modulation (SAM threshold in children with Phonological dyslexia (PD. Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.

  6. Amplitude Modulation Mode of Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Li, Peng; Liu, Lianqing; Yang, Yang; Zhou, Lei; Wang, Dong; Wang, Yuechao; Li, Guangyong

    2015-08-01

    Live-cell imaging at the nanoscale resolution is a hot research topic in the field of life sciences for the direct observation of cellular biological activity. Scanning ion conductance microscopy (SICM) is one of the few effective imaging tools for live-cell imaging at the nanoscale resolution. However, there are various problems in existing scanning modes. The hopping and AC modes suffer from low speed, whereas the DC mode is prone to instability because of the DC drift and external electrical interference. In this article, we propose an amplitude modulation (AM) mode of SICM, which employs an AC voltage to enhance the stability and improve the scanning speed. In this AM mode, we introduce a capacitance compensation method to eliminate capacitance effect and use the amplitude of the AC current component to control the tip movement. Experimental results on polydimethylsiloxane samples verify the validity of the AM mode and demonstrate an improved performance of both speed and stability of this new mode. PMID:25759185

  7. Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation.

    Science.gov (United States)

    Rout, Saroj; Sonkusale, Sameer

    2016-06-27

    The ever increasing demand for bandwidth in wireless communication systems will inevitably lead to the extension of operating frequencies toward the terahertz (THz) band known as the 'THz gap'. Towards closing this gap, we present a multi-level amplitude shift keying (ASK) terahertz wireless communication system using terahertz spatial light modulators (SLM) instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. The fundamental principle behind this higher efficiency is the conversion of a noisy voltage domain signal to a noise-free binary spatial pattern for effective amplitude modulation of a free-space THz carrier wave. Spatial modulation is achieved using an an active metamaterial array embedded with pseudomorphic high-electron mobility (pHEMT) designed in a consumer-grade galium-arsenide (GaAs) integrated circuit process which enables electronic control of its THz transmissivity. Each array is assembled as individually controllable tiles for transmissive terahertz spatial modulation. Using the experimental data from our metamaterial based modulator, we show that a four-level ASK digital communication system has two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in transmit signal-to-noise ratio (SNR) using spatial light modulation compared to voltage controlled modulation. PMID:27410614

  8. Amplitude modulation in $\\delta$ Sct stars: statistics from an ensemble study of Kepler targets

    CERN Document Server

    Bowman, Dominic M; Breger, Michel; Murphy, Simon J; Holdsworth, Daniel L

    2016-01-01

    We present the results of a search for amplitude modulation of pulsation mode frequencies in 983 $\\delta$ Sct stars, which have effective temperatures between 6400 $\\leq T_{\\rm eff} \\leq$ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr. We demonstrate the diversity in pulsational behaviour observed, in particular nonlinearity, which is predicted for $\\delta$ Sct stars. We analyse and discuss examples of $\\delta$ Sct stars with constant amplitudes and phases; those that exhibit amplitude modulation caused by beating of close-frequency pulsation modes; those that exhibit pure amplitude modulation (with no associated phase variation); those that exhibit phase modulation caused by binarity; and those that exhibit amplitude modulation caused by nonlinearity. Using models and examples of individual stars, we demonstrate that observations of the changes in amplitude and phase of pulsation modes can be used to distinguish among the different scenarios. We f...

  9. Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds

    Science.gov (United States)

    Ashida, Go; Kretzberg, Jutta; Tollin, Daniel J.

    2016-01-01

    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory

  10. Conversion of phase-modulated signals to amplitude-modulated signals in SOAs due to mirror reflections

    DEFF Research Database (Denmark)

    Blaaberg, Søren; Mørk, Jesper

    2009-01-01

    We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors.......We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors....

  11. ERP responses to processing prosodic phrasing of sentences in amplitude modulated noise.

    Science.gov (United States)

    Carroll, Rebecca; Ruigendijk, Esther

    2016-02-01

    Intonation phrase boundaries (IPBs) were hypothesized to be especially difficult to process in the presence of an amplitude modulated noise masker because of a potential rhythmic competition. In an event-related potential study, IPBs were presented in silence, stationary, and amplitude modulated noise. We elicited centro-parietal Closure Positive Shifts (CPS) in 23 young adults with normal hearing at IPBs in all acoustic conditions, albeit with some differences. CPS peak amplitudes were highest in stationary noise, followed by modulated noise, and lowest in silence. Both noise types elicited CPS delays, slightly more so in stationary compared to amplitude modulated noise. These data suggest that amplitude modulation is not tantamount to a rhythmic competitor for prosodic phrasing but rather supports an assumed speech perception benefit due to local release from masking. The duration of CPS time windows was, however, not only longer in noise compared to silence, but also longer for amplitude modulated compared to stationary noise. This is interpreted as support for additional processing load associated with amplitude modulation for the CPS component. Taken together, processing prosodic phrasing of sentences in amplitude modulated noise seems to involve the same issues that have been observed for the perception and processing of segmental information that are related to lexical items presented in noise: a benefit from local release from masking, even for prosodic cues, and a detrimental additional processing load that is associated with either stream segregation or signal reconstruction. PMID:26776233

  12. Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation

    Science.gov (United States)

    Jaatinen, Esa; Hopper, David J.

    2008-01-01

    Residual amplitude modulation (RAM) distorts saturated absorption signals, limiting the accuracy of optical frequency references based on modulation transfer spectroscopy (MTS). Described here are two independent means by which RAM is produced in these references: (1) by the modulator and (2) when the overlap of the optical fields in the saturable absorber is asymmetric. Methods to vary RAM generated by either mechanism will be outlined and these will be used to show how RAM arising from one effect can be cancelled by the other. A theoretical treatment of MTS signals in references containing RAM is given and used to evaluate the level of signal distortion allowing the conditions for RAM cancellation to be determined. This technique is applied to improve the frequency accuracy of a reference by an order of magnitude.

  13. Optimization of phase contrast in bimodal amplitude modulation AFM

    OpenAIRE

    Mehrnoosh Damircheli; Amir F. Payam; Ricardo Garcia

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the ...

  14. A class of amplitude modulating and invisible inhomogeneous media

    CERN Document Server

    Vial, Benjamin; Horsley, Simon A R; Philbin, Thomas G; Hao, Yang

    2016-01-01

    We propose a general method to arbitrarily manipulate the amplitude of an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep sub-wavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.

  15. Trellis-coded pulse amplitude modulation for indoor visible light communication

    Science.gov (United States)

    Wang, Yu; Yang, Aiying; Wu, Yongsheng; Feng, Lihui; Sun, Yu-nan; Li, Yankun

    2013-12-01

    Trellis-coded pulse-amplitude modulation (TC-PAM) is applied in visible light communication (VLC) system using RGB-LED. Based on natural modulation, we propose a modified modulation to yield performance enhancement. Further, a decoding method of combing soft-decision Viterbi algorithm with most significant bit (MSB) decoding is developed. Finally, the results of Monte-Carlo simulation are presented to verify the best modulation and decoding method among the mentioned modulation and decoding techniques.

  16. Beating frequency and amplitude modulation of the piano tone due to coupling of tones

    Science.gov (United States)

    Cartling, Bo

    2005-04-01

    The influence on a piano tone from weak coexcitation of damped adjacent tones due to coupling via the bridge is studied. The frequency and amplitude modulation of the sound resulting from coexcitation of one strong and one or two weak tones is analyzed. One weak tone causes frequency and amplitude modulation of the sound, and two weak tones produce beating frequency and amplitude modulation, where the beatings of the two modulations are of opposite phase. By digital recording of the sound of piano tones, the appearance of these phenomena is verified. The audibility of the observed frequency and amplitude modulation is discussed in terms of previously determined detection thresholds. The beating character of both frequency and amplitude modulations, however, distinguishes the phenomena from those previously studied and prompts further psychoacoustic investigations. It is shown that detuning of unison strings may significantly increase the frequency deviation of the frequency modulation in conjunction with affected amplitude modulation. The modulatory effects of coupling to adjacent tones therefore may possibly be utilized in the tuning process. A coupling of tones analogous to the situation in a piano may arise in other stringed musical instruments transferring string vibrations to a soundboard via a bridge. .

  17. Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings

    Science.gov (United States)

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-05-01

    We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.

  18. Amplitude modulation in δ Sct stars: statistics from an ensemble study of Kepler targets

    Science.gov (United States)

    Bowman, Dominic M.; Kurtz, Donald W.; Breger, Michel; Murphy, Simon J.; Holdsworth, Daniel L.

    2016-08-01

    We present the results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ≤ Teff ≤ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr. We demonstrate the diversity in pulsational behaviour observed, in particular non-linearity, which is predicted for δ Sct stars. We analyse and discuss examples of δ Sct stars with constant amplitudes and phases; those that exhibit amplitude modulation caused by beating of close-frequency pulsation modes; those that exhibit pure amplitude modulation (with no associated phase variation); those that exhibit phase modulation caused by binarity; and those that exhibit amplitude modulation caused by non-linearity. Using models and examples of individual stars, we demonstrate that observations of the changes in amplitude and phase of pulsation modes can be used to distinguish among the different scenarios. We find that 603 δ Sct stars (61.3 per cent) exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Conversely, many δ Sct stars have constant pulsation amplitudes so short-length observations can be used to determine precise frequencies, amplitudes and phases for the most coherent and periodic δ Sct stars. It is shown that amplitude modulation is not restricted to a small region on the HR diagram, therefore not necessarily dependent on stellar parameters such as Teff or log g. Our catalogue of 983 δ Sct stars will be useful for comparisons to similar stars observed by K2 and TESS, because the length of the 4-yr Kepler data set will not be surpassed for some time.

  19. Dynamic Nonlinear Focal Shift in Amplitude Modulated Moderately Focused Acoustic Beams

    CERN Document Server

    Jiménez, Noé; González-Salido, Nuria

    2016-01-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25 kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behaviour, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both, for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by ...

  20. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    Science.gov (United States)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  1. Phase-amplitude crosstalk in intensity modulated near infrared spectroscopy

    Science.gov (United States)

    Alford, K.; Wickramasinghe, Y.

    2000-05-01

    Near infrared spectroscopy (NIRS) instruments that rely on phase sensitive detection suffer from what is called "phase-amplitude crosstalk," i.e., the phase measured is dependent on the average light intensity entering the detector. Changes in detector rise time with input light intensity is the accepted explanation of this phenomenon. It is concluded here that an additional simple mechanism can cause phase-amplitude errors, particularly if the ratio of the ac component of the detected signal to the dc component is low. It is shown that the form of the phase distortion encountered during the development of a new phase sensitive NIR instrument can be modeled by assuming the presence of a synchronous interfering signal, due to rf coupling, at the detector output. This modeling allows a required margin between the detected signal of interest, i.e., the signal from the tissue and the interfering signal to be set in order to achieve a measured phase accuracy necessary to derive sufficiently accurate clinical parameters.

  2. Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J A; Anaya, R M; Caporaso, G C; Chen, Y J; Cook, E G; Lee, B S; Hawkins, A

    2002-11-15

    A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beam centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.

  3. A linear model for amplitude modulation of Langmuir waves in weak electron-beam plasma interaction

    Directory of Open Access Journals (Sweden)

    K. Baumgärtel

    2013-01-01

    Full Text Available A simple linear approach to the phenomenon of amplitude modulation of Langmuir waves in weak beam plasma interaction is presented. During the short growth phase of the instability and within the longer period after saturation, the waves are described by their linear kinetic dispersion properties.The amplitude modulation appears as result of the beating of waves with different wavelengths and amplitudes that have grown from noise in the initial phase. The Langmuir wave fields are calculated via FFT (fast Fourier transform technique. The resulting waveforms in temporal representation are quite similar to those observed by spacecraft.

  4. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei

    2016-01-01

    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  5. Frequency-coded quantum key distribution using amplitude-phase modulation

    Science.gov (United States)

    Morozov, Oleg G.; Gabdulkhakov, Il'daris M.; Morozov, Gennady A.; Zagrieva, Aida R.; Sarvarova, Lutsia M.

    2016-03-01

    Design principals of universal microwave photonics system for quantum key distribution with frequency coding are concerned. Its concept is based on the possibility of creating the multi-functional units to implement the most commonly used technologies of frequency coding: amplitude, phase and combined amplitude-phase modulation and re-modulation of optical carrier. The characteristics of advanced systems based on classical approaches and prospects of their development using a combination of amplitude modulation and phase commutation are discussed. These are the valuations how to build advanced systems with frequency coding quantum key distribution, including at their symmetric and asymmetric constructions, using of the mechanisms of the photon polarization states passive detection, based on the filters for wavelength division multiplexing of modulated optical carrier side components.

  6. Dynamics of fermions in an amplitude-modulated lattice

    Science.gov (United States)

    Yamakoshi, Tomotake; Watanabe, Shinichi; Ohgoda, Shun; Itin, Alexander P.

    2016-06-01

    We study the dynamics of fermions loaded in an optical lattice with a superimposed parabolic trap potential. In the recent Hamburg experiments [J. Heinze et al., Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302] on quantum simulation of photoconductivity, a modulation pulse on the optical lattice transferred part of the population of the lowest band to an excited band, leaving a hole in the particle distribution of the lowest band. The subsequent intricate dynamics of both excited particles and holes can be explained by a semiclassical approach based on the evolution of the Wigner function. Here we provide a more detailed analysis of the dynamics, taking into account the dimensionality of the system and finite-temperature effects, aiming at reproducing experimental results on longer time scales. A semiclassical wave packet is constructed more accurately than in the previous theory. As a result, semiclassical dynamics indeed reproduces experimental data and full quantum numerical calculations with a much better accuracy. In particular, the fascinating phenomenon of collapse and revival of holes is investigated in more detail. We presume that the experimental setup can be used for deeper exploration of nonlinear waves in fermionic gases.

  7. Basic causes of amplitude modulation in climatic/weather parameters

    International Nuclear Information System (INIS)

    The continuous interaction between the Earth's spinning motion and energy from the Sun gives rise to some (heat) energy oscillations in the Earth-atmosphere system (Njau, 1985a; 1985b; 1986a; 1986b). Recent results of large scale analysis of East African climatic records have proved that these oscillations significantly link the Sun to climatic/weather variations by systematically modulating key climatic/weather parameters like rainfall and air temperature (Njau, 1987a; 1987b; 1987c; 1987e; 1987f). In this paper, we re-develop the latter proof using a very different approach based upon theoretical analysis. The analysis has confirmed a general law suggested earlier (Njau, 1987d), that, with an exception of the diurnal cycle, any permanent cycle in the net solar energy incident upon a given part of the Earth-Atmosphere system gives rise to a quasi-permanent cycle whose period is approximately twice that of the former. Quasi-biennial as well as double sunspot cycles are shown to be a possible result of this general law. (author). 35 refs, 1 fig., 2 tabs

  8. Timbral Sharpness and Modulations in Frequency and Amplitude: Implications for the Fusion of Musical Sounds.

    Science.gov (United States)

    Goad, Pamela Joy

    The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed

  9. Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy

    Science.gov (United States)

    Hölscher, H.

    2006-09-01

    The author introduces an algorithm for the reconstruction of the tip-sample interactions in amplitude modulation atomic force microscopy ("tapping mode"). The method is based on the recording of amplitude and phase versus distance curves and allows the reconstruction of tip-sample force and energy dissipation as a function of the actual tip-sample distance. The proposed algorithm is verified by a numerical simulation and applied to a silicon sample in ambient conditions.

  10. Amplitude modulation of sound from wind turbines under various meteorological conditions.

    Science.gov (United States)

    Larsson, Conny; Öhlund, Olof

    2014-01-01

    Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.

  11. Evidence of amplitude modulation due to Resonant Mode Coupling in the delta Scuti star KIC5892969

    CERN Document Server

    Forteza, S Barceló; Cortés, T Roca; García, R A

    2015-01-01

    A study of the star KIC5892969 observed by the Kepler satellite is presented. Its three highest amplitude modes present a strong amplitude modulation. The aim of this work is to investigate amplitude variations in this star and their possible cause. Using the 4 years-long observations available, we obtained the frequency content of the full light curve. Then, we studied the amplitude and phase variations with time using shorter time stamps. The results obtained are compared with the predicted ones for resonant mode coupling of an unstable mode with lower frequency stable modes. Our conclusion is that resonant mode coupling is consistent as an amplitude limitation mechanism in several modes of KIC5892969 and we discuss to which extent it might play an important role for other delta Scuti stars.

  12. Effects of continuous-wave, pulsed, and sinusoidal-amplitude-modulated microwaves on brain energy metabolism.

    Science.gov (United States)

    Sanders, A P; Joines, W T; Allis, J W

    1985-01-01

    A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.

  13. Micro-antennas for the phase and amplitude modulation of terahertz wave

    Science.gov (United States)

    He, Jingwen; Wang, Sen; Zhang, Yan

    2015-11-01

    Based on the localized surface plasmons (LSPs), a series of C-shaped slits antennas are designed to modulate the phase and amplitude of the cross-polarized transmitted wave in THz waveband. By adjusting the structure parameters of the antenna unit, arbitrary phase and amplitude modulation of the cross-polarized THz wave can be obtained. The C-shaped slit antenna units are designed at two operating frequencies f=0.8 THz and f=1.0 THz using a commercial software package (Lumerical Solutions), which is based on the finite-difference time-domain method. According to the simulated results, principles for modulating the phase and amplitude of THz wave are summarized as follows. Firstly, the operating wavelength depends on the effective length of the antenna and the operating wavelength increases as the effective length increases; Secondly, the phase of the cross-polarized wave can be modulated from 0 to 2π by changing the opening angle of the split; Thirdly, the amplitude transmittance of the cross-polarized wave can be changed from the extinction state to the maximum value by rotating the symmetry axis of the C-shaped slit. These principles can be used to direct the design of the field modulator in any other working frequency.

  14. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    International Nuclear Information System (INIS)

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes

  15. Amplitude and frequency modulation of the small scales in a turbulent jet

    NARCIS (Netherlands)

    Fiscaletti, D.; Elsinga, G.E.; Ganapathisubramani, B.; Westerweel, J.

    2013-01-01

    This work involves the large-scale amplitude and frequency modulation of the small-scale motions in fullydeveloped turbulence of a high Reynolds number jet. The scales responsible for the production of turbulent kinetic energy (large scales), and those responsible for its viscous dissipation (small

  16. Low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift oscillator

    OpenAIRE

    Ri, Bak Son; Solodkov, O. V.; Chizhikova, E. V.

    2009-01-01

    A low-frequency model of the microwave frequency (phase) detector with amplitude modulator and shift generator has been studied theoretically and experimentally. The results of experiment indicate that such FM (PM) detector can be also used in the HF band of radio frequencies.

  17. Annoyance of wind-turbine noise as a function of amplitude-modulation parameters

    DEFF Research Database (Denmark)

    Ioannidou, Christina; Santurette, Sébastien; Jeong, Cheol-Ho

    Amplitude modulation (AM) has been suggested as an important factor for the perceived annoyance of wind-turbine noise (WTN). Two AM types, typically referred to as “normal AM” and “other AM,” depending on the AM extent and frequency region, have been proposed to characterize WTN AM. The extent...

  18. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation.

    Science.gov (United States)

    Wen, Zhongquan; He, Yinghu; Li, Yuyan; Chen, Li; Chen, Gang

    2014-09-01

    In this paper, we numerically demonstrate the advantage of utilizing continuous amplitude and phase modulation in super-oscillation focusing lens design. Numerical results show that compared with simple binary amplitude modulation, continuous amplitude and phase modulation can greatly improve the super-oscillation focusing performance by increasing the central lobe intensity and the ratio of its energy to the total energy, reducing the sidelobe intensity, and substantially extending the field of view. Our study also reveals the role of phase distribution in reducing the spatial frequency bandwidth of the super-oscillation optical field on the focal plane. Based on continuous amplitude and binary phase modulation, a lens was designed with double layer metal slit array for wavelength of 4.6 µm. COMSOL is used to carry out the 2D simulation. The lens focal length is 40.18λ and the focal spot FWHM is 0.308λ. Two largest sidelobes are located right next to the central lobe with intensity about 40% of the central lobe intensity. Except for the two sidelobes, other sidelobes have intensity less than 25% of the central lobe intensity, which leads to a clear field of view on the whole focal plane. PMID:25321591

  19. Cyclic pitch for the control of wind turbine noise amplitude modulation

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas;

    2014-01-01

    Using experimental data acquired during a wind turbine measurement campaign, it is shown that amplitude modulation of aerodynamic noise can be generated by the rotating blades in conjunction with the atmospheric wind shear. As an attempt to alleviate this phenomenon, a control strategy is designed...

  20. Transmission of Waveforms Determined by 7 Eigenvalues with PSK-Modulated Spectral Amplitudes

    CERN Document Server

    Buelow, Henning; Idler, Wilfried

    2016-01-01

    2-ns waveforms with 7 eigenvalues and their QPSK-modulated spectral amplitudes were optimized by taking constraints of link, transmitter, and receiver into account. In experiment these signals were transmitted with a BER of 3.2E-3 over 1440-km of NZ-DSF fiber spans.

  1. Observations on auditory learning in amplitude- and frequency-modulation rate discrimination

    DEFF Research Database (Denmark)

    Hoffmann, Pablo F.

    2010-01-01

    Because amplitude- and frequency-modulated sounds can be the basis for the synthesis of many complex sounds, they can be good candidates in the design of training systems aiming at improving the acquisition of perceptual skills that can benefit from information provided via the auditory channel...

  2. Multiband carrierless amplitude/phase modulation for ultra-wideband high data rate wireless communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.;

    2016-01-01

    We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power...

  3. Radar transponder operation with compensation for distortion due to amplitude modulation

    Science.gov (United States)

    Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  4. Instrument reflections and scene amplitude modulation in a polychromatic microwave quadrature interferometer

    International Nuclear Information System (INIS)

    A polychromatic microwave quadrature interferometer has been characterized using several laboratory plasmas. Reflections between the transmitter and the receiver have been observed, and the effects of including reflection terms in the data reduction equation have been examined. An error analysis which includes the reflections, modulation of the scene beam amplitude by the plasma, and simultaneous measurements at two frequencies has been applied to the empirical database, and the results are summarized. For reflection amplitudes around 10%, the reflection terms were found to reduce the calculated error bars for electron density measurements by about a factor of 2. The impact of amplitude modulation is also quantified. In the complete analysis, the mean error bar for high-density measurements is 7.5%, and the mean phase shift error for low-density measurements is 1.2 deg

  5. Monocular 3D see-through head-mounted display via complex amplitude modulation.

    Science.gov (United States)

    Gao, Qiankun; Liu, Juan; Han, Jian; Li, Xin

    2016-07-25

    The complex amplitude modulation (CAM) technique is applied to the design of the monocular three-dimensional see-through head-mounted display (3D-STHMD) for the first time. Two amplitude holograms are obtained by analytically dividing the wavefront of the 3D object to the real and the imaginary distributions, and then double amplitude-only spatial light modulators (A-SLMs) are employed to reconstruct the 3D images in real-time. Since the CAM technique can inherently present true 3D images to the human eye, the designed CAM-STHMD system avoids the accommodation-convergence conflict of the conventional stereoscopic see-through displays. The optical experiments further demonstrated that the proposed system has continuous and wide depth cues, which enables the observer free of eye fatigue problem. The dynamic display ability is also tested in the experiments and the results showed the possibility of true 3D interactive display. PMID:27464184

  6. Fast identification of digital amplitude modulation level at low signal-to-noise ratio

    Institute of Scientific and Technical Information of China (English)

    WEI Xiao-wei; CAO Zhi-gang

    2006-01-01

    In order to rapidly and automatically identify the modulation level of digital amplitude modulated signals at low signal-to-noise ratio (SNR),a method of identifying the modulation levels of M-ary quadrature amplitude modulation (M-QAM)and M-ary amplitude shift keying (M-ASK) is proposed.In this method,wavelet transform with the optimal scale is used to identify the modulation levels of M-QAM and M-ASK signals.The performance of this method was investigated through simulations.Simulation results show that when the SNR is not lower than - 4 dB,the percentage of correct identification of M-QAM is higher than 93%,and when the SNR is not lower than -10 dB,the percentage of correct identification of M-ASK is higher than 90%,using only 100 observed symbols.It shows that this method can rapidly acquire good performance at a low SNR.

  7. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul

    2012-09-30

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  8. The Effect of Amplitude Modulation on the Axial Resolution of Doppler-Based Ultrasonic Topography Measurement

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid

    2016-01-01

    of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement......Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance...

  9. Quantitative security evaluation of optical encryption using hybrid phase- and amplitude-modulated keys.

    Science.gov (United States)

    Sarkadi, Tamás; Koppa, Pál

    2012-02-20

    In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.

  10. Amplitude Modulation and Synchronization of Fractional-Order Memristor-Based Chua's Circuit

    Directory of Open Access Journals (Sweden)

    A. G. Radwan

    2013-01-01

    Full Text Available This paper presents a general synchronization technique and an amplitude modulation of chaotic generators. Conventional synchronization and antisynchronization are considered a very narrow subset from the proposed technique where the scale between the output response and the input response can be controlled via control functions and this scale may be either constant (positive, negative or time dependent. The concept of the proposed technique is based on the nonlinear control theory and Lyapunov stability theory. The nonlinear controller is designed to ensure the stability and convergence of the proposed synchronization scheme. This technique is applied on the synchronization of two identical fractional-order Chua's circuit systems with memristor. Different examples are studied numerically with different system parameters, different orders, and with five alternative cases where the scaling functions are chosen to be positive/negative and constant/dynamic which covers all possible cases from conventional synchronization to the amplitude modulation cases to validate the proposed concept.

  11. Phase and Amplitude Modulation Methods for Nonlinear Ultrasound Imaging With CMUTs.

    Science.gov (United States)

    Satir, Sarp; Degertekin, F Levent

    2016-08-01

    Conventional amplitude and phase modulated pulse sequences for selective imaging of nonlinear tissue and ultrasound contrast agents are designed for piezoelectric transducers that behave linearly. Inherent nonlinearity of capacitive micromachined ultrasonic transducers (CMUTs), especially during large-signal operation, renders these methods inapplicable. In this paper, we present different pulse sequences for nonlinear imaging that are valid for small- and large-signal CMUT operations. For small-signal operation, two-pulse amplitude and phase modulation methods for microbubble and tissue harmonic imaging are presented, where CMUT nonlinearity is compensated via subharmonic excitation. In the large-signal regime, using a nonlinear model, we first show that there is a simple linear relationship between the phases of each harmonic distortion component generated and the input drive signal. Based on this observation, we demonstrate a pulse sequence using N+1 consecutive phase modulated transmit events to extract N harmonics of the nonlinear contrast agent echo content uncorrupted by CMUT nonlinearity. The proposed methods assume no apriori information about the transducer and, therefore, are applicable to any CMUT. The phase modulation method is also valid for piezoelectric transducers and systems with nonlinearities described by Taylor series where the same phase relationship between the input signal and the harmonic content is valid. The proof of principle experiments using a commercial contrast agent validates the phase modulated pulse sequences for CMUTs, operating in a highly nonlinear collapse-snapback mode and for piezoelectric transducers. PMID:27116737

  12. Stream segregation in the perception of sinusoidally amplitude-modulated tones.

    Science.gov (United States)

    Dolležal, Lena-Vanessa; Beutelmann, Rainer; Klump, Georg M

    2012-01-01

    Amplitude modulation can serve as a cue for segregating streams of sounds from different sources. Here we evaluate stream segregation in humans using ABA- sequences of sinusoidally amplitude modulated (SAM) tones. A and B represent SAM tones with the same carrier frequency (1000, 4000 Hz) and modulation depth (30, 100%). The modulation frequency of the A signals (f(modA)) was 30, 100 or 300 Hz, respectively. The modulation frequency of the B signals was up to four octaves higher (Δf(mod)). Three different ABA- tone patterns varying in tone duration and stimulus onset asynchrony were presented to evaluate the effect of forward suppression. Subjects indicated their 1- or 2-stream percept on a touch screen at the end of each ABA- sequence (presentation time 5 or 15 s). Tone pattern, f(modA), Δf(mod), carrier frequency, modulation depth and presentation time significantly affected the percentage of a 2-stream percept. The human psychophysical results are compared to responses of avian forebrain neurons evoked by different ABA- SAM tone conditions [1] that were broadly overlapping those of the present study. The neurons also showed significant effects of tone pattern and Δf(mod) that were comparable to effects observed in the present psychophysical study. Depending on the carrier frequency, modulation frequency, modulation depth and the width of the auditory filters, SAM tones may provide mainly temporal cues (sidebands fall within the range of the filter), spectral cues (sidebands fall outside the range of the filter) or possibly both. A computational model based on excitation pattern differences was used to predict the 50% threshold of 2-stream responses. In conditions for which the model predicts a considerably larger 50% threshold of 2-stream responses (i.e., larger Δf(mod) at threshold) than was observed, it is unlikely that spectral cues can provide an explanation of stream segregation by SAM. PMID:22984436

  13. Amplitude Modulation and Synchronization of Fractional-Order Memristor-Based Chua's Circuit

    OpenAIRE

    Radwan, A G; Moaddy, K.; Hashim, I.

    2013-01-01

    This paper presents a general synchronization technique and an amplitude modulation of chaotic generators. Conventional synchronization and antisynchronization are considered a very narrow subset from the proposed technique where the scale between the output response and the input response can be controlled via control functions and this scale may be either constant (positive, negative) or time dependent. The concept of the proposed technique is based on the nonlinear control theory and Lyapu...

  14. Effect of modulation maskers on the detection of second-order amplitude modulation with and without notched noise.

    Science.gov (United States)

    Uchanski, Rosalie M; Moore, Brian C J; Glasberg, Brian R

    2006-05-01

    The mechanisms underlying the detection of second-order amplitude modulation (AM) were explored. The detectability of second-order AM (fixed depth for each subject) was measured for first- and second-order modulation rates of 16 and 2 Hz, respectively (slow-rate pair), and 50 and 10 Hz, respectively (fast-rate pair), with no masker, a low-band modulation masker (centered at 2 or 10 Hz), and a high-band modulation masker (centered at 16 or 50 Hz). This was done in the absence and presence of an audio-frequency notched noise centered at the carrier frequency of 4000 Hz. Both modulation maskers were "low-noise" noises, to prevent overmodulation. In the absence of notched noise, both modulation maskers impaired performance for the slow-rate pair, but only the low-band masker impaired performance for the fast-rate pair. When notched noise was present, the low-band masker had no significant effect for either rate pair and the high-band masker had an effect only for the slow-rate pair. These results suggest that second-order AM detection is mediated both by an envelope distortion component at the second-order rate and by slow fluctuations in the output of a modulation filter tuned to the first-order rate. When notched noise is present, the distortion component plays little role. PMID:16708951

  15. Differential pulse amplitude modulation for multiple-input single-output OWVLC

    Science.gov (United States)

    Yang, S. H.; Kwon, D. H.; Kim, S. J.; Son, Y. H.; Han, S. K.

    2015-01-01

    White light-emitting diodes (LEDs) are widely used for lighting due to their energy efficiency, eco-friendly, and small size than previously light sources such as incandescent, fluorescent bulbs and so on. Optical wireless visible light communication (OWVLC) based on LED merges lighting and communications in applications such as indoor lighting, traffic signals, vehicles, and underwater communications because LED can be easily modulated. However, physical bandwidth of LED is limited about several MHz by slow time constant of the phosphor and characteristics of device. Therefore, using the simplest modulation format which is non-return-zero on-off-keying (NRZ-OOK), the data rate reaches only to dozens Mbit/s. Thus, to improve the transmission capacity, optical filtering and pre-, post-equalizer are adapted. Also, high-speed wireless connectivity is implemented using spectrally efficient modulation methods: orthogonal frequency division multiplexing (OFDM) or discrete multi-tone (DMT). However, these modulation methods need additional digital signal processing such as FFT and IFFT, thus complexity of transmitter and receiver is increasing. To reduce the complexity of transmitter and receiver, we proposed a novel modulation scheme which is named differential pulse amplitude modulation. The proposed modulation scheme transmits different NRZ-OOK signals with same amplitude and unit time delay using each LED chip, respectively. The `N' parallel signals from LEDs are overlapped and directly detected at optical receiver. Received signal is demodulated by power difference between unit time slots. The proposed scheme can overcome the bandwidth limitation of LEDs and data rate can be improved according to number of LEDs without complex digital signal processing.

  16. Perceptual learning and generalization resulting from training on an auditory amplitude-modulation detection task.

    Science.gov (United States)

    Fitzgerald, Matthew B; Wright, Beverly A

    2011-02-01

    Fluctuations in sound amplitude provide important cues to the identity of many sounds including speech. Of interest here was whether the ability to detect these fluctuations can be improved with practice, and if so whether this learning generalizes to untrained cases. To address these issues, normal-hearing adults (n = 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz rate, 3-4 kHz bandpass carrier) 720 trials/day for 6-7 days and were tested before and after training on related SAM-detection and SAM-rate-discrimination conditions. Controls (n = 9) only participated in the pre- and post-tests. The trained listeners improved more than the controls on the trained condition between the pre- and post-tests, but different subgroups of trained listeners required different amounts of practice to reach asymptotic performance, ranging from 1 (n = 6) to 4-6 (n = 3) sessions. This training-induced learning did not generalize to detection with two untrained carrier spectra (5 kHz low-pass and 0.5-1.5 kHz bandpass) or to rate discrimination with the trained rate and carrier spectrum, but there was some indication that it generalized to detection with two untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modulation, but the generalization of this learning to untrained cases was somewhat limited.

  17. Subharmonic excitation in amplitude modulation atomic force microscopy in the presence of adsorbed water layers

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sergio [Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, P.O. BOX 54224, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programacio de Sistemes Electronics, UPC - Universitat Politecnica de Catalunya Av. Bases, 61, 08242 Manresa (Spain); Verdaguer, Albert [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2) (CSIC-ICN), Esfera UAB, Campus de la UAB, Edifici CM-7, 08193-Bellaterra, Catalunya (Spain); Chiesa, Matteo [Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, P.O. BOX 54224, Abu Dhabi (United Arab Emirates); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307 (United States)

    2011-12-01

    In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.

  18. Amplitude modulation reflectometer for FTU; Riflettometro a modulazione di ampiezza per FTU

    Energy Technology Data Exchange (ETDEWEB)

    Zerbini, M.; Buratti, P.; Centioli, C. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Energia; Amadeo, P.

    1995-06-01

    Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed.

  19. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces

    Science.gov (United States)

    Wan, Xiang; Jia, Sheng Li; Cui, Tie Jun; Zhao, Yong Jiu

    2016-01-01

    We propose ultrathin Huygens metasurfaces to control transmission amplitudes and phases of electromagnetic waves independently, in which each unit cell is comprised of an electric dipole and a magnetic dipole. By altering the electric and magnetic responses of unit cells, arbitrary complex transmission coefficients with modulus values smaller than 0.85 are obtained. Two Huygens metasurfaces capable of controlling the diffraction orders are designed and fabricated by modulating the distributions of the complex transmission coefficients. More complicated functions such as holographic imaging can also be accomplished by using the proposed Huygens metasurfaces. PMID:27197759

  20. Independent modulations of the transmission amplitudes and phases by using Huygens metasurfaces.

    Science.gov (United States)

    Wan, Xiang; Jia, Sheng Li; Cui, Tie Jun; Zhao, Yong Jiu

    2016-01-01

    We propose ultrathin Huygens metasurfaces to control transmission amplitudes and phases of electromagnetic waves independently, in which each unit cell is comprised of an electric dipole and a magnetic dipole. By altering the electric and magnetic responses of unit cells, arbitrary complex transmission coefficients with modulus values smaller than 0.85 are obtained. Two Huygens metasurfaces capable of controlling the diffraction orders are designed and fabricated by modulating the distributions of the complex transmission coefficients. More complicated functions such as holographic imaging can also be accomplished by using the proposed Huygens metasurfaces. PMID:27197759

  1. Sensitive detection of vortex-core resonance using amplitude-modulated magnetic field

    Science.gov (United States)

    Cui, Xiaomin; Hu, Shaojie; Hidegara, Makoto; Yakata, Satoshi; Kimura, Takashi

    2015-12-01

    Understanding and manipulating the dynamic properties of the magnetic vortices stabilized in patterned ferromagnetic structures are of great interest owing to the superior resonant features with the high thermal stability and their flexible tunability. So far, numerous methods for investigating the dynamic properties of the magnetic vortex have been proposed and demonstrated. However, those techniques have some regulations such as spatial resolution, experimental facility and sensitivity. Here, we develop a simple and sensitive method for investigating the vortex-core dynamics by using the electrically separated excitation and detection circuits. We demonstrate that the resonant oscillation of the magnetic vortex induced by the amplitude- modulated alternating-sign magnetic field is efficiently picked up by the lock-in detection with the modulated frequency. By extending this method, we also investigate the size dependence and the influence of the magneto-static interaction in the resonant property of the magnetic vortex.

  2. Controlling Chaos in a Semiconductor Laser via Weak Optical Positive Feedback and Modulating Amplitude

    Institute of Scientific and Technical Information of China (English)

    YAN Sen-Lin

    2007-01-01

    Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser.The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF.We find the physical mechanism that the nonlinear gain coefficient and linewidth enhancement factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled.Chaos is controlled into a single-periodic state,a dual-periodic state,a fri-periodic state,a quadr-periodic state,a pentaperiodic state,and the laser emitting powers are increased by OPF in simulations.Lastly,another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.

  3. Influence of stimulus intensity on the soleus H-reflex amplitude and modulation during locomotion

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine; Raffalt, Peter C

    2013-01-01

    Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and running......-reflex methodology itself. Accordingly, the purpose of the present study was to study the effect on the soleus H-reflex during walking and running using stimulus intensities normally considered too high (up to 45% Mmax). Using M-waves of 25-45% Mmax as opposed to 5-25% Mmax showed a significant suppression...... of the peak H-reflex during the stance phase of walking, while no changes were observed during running. No differences were observed regarding modulation pattern. So a possible use of too high stimulus intensity cannot explain the differences mentioned. The surprising result in running may be explained...

  4. Improvement of the Spatial Amplitude Isotropy of a ^4He Magnetometer Using a Modulated Pumping Beam

    Science.gov (United States)

    Chéron, B.; Gilles, H.; Hamel, J.; Moreau, O.; Noël, E.

    1997-08-01

    Optically pumped magnetometers are scalar magnetometers. Contrary to vectoriel magnetometers, they measure the total magnetic field whatever the direction of the sensor. However, for some orientations of the magnetometer with respect to the magnetic field direction, the resonant signal vanishes and the measurement is impossible. In this paper we present a simple solution to reduce the amplitude spatial anisotropy and apply it to a ^4He magnetometer developed in our Laboratory. Les magnétomètres à pompage optique sont des magnétomètres scalaires. Contrairement aux magnétomètres vectoriels, ils mesurent le module du champ magnétique quelle que soit l'orientation du capteur dans l'espace. Cependant, pour certaines orientations du magnétomètre par rapport à la direction du champ à mesurer, l'amplitude du signal de résonance s'annule et la mesure devient impossible. Dans cet article, nous présentons une solution simple pour réduire l'anisotropie spatiale d'amplitude et nous l'appliquons à un magnétomètre à hélium-4 développé dans notre Laboratoire.

  5. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    Science.gov (United States)

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  6. Amplitude-sensitive modulation thermography to measure moisture in building materials

    Science.gov (United States)

    Wild, Walter; Buescher, Konstantin A.; Wiggenhauser, Herbert

    1998-03-01

    There have been reports about moisture detection in building walls by reflective IR-thermography. Typically, only limited results could be obtained because of the emission coefficient variations, leaking radiation or inhomogeneous illumination of the object. In addition, the quantitative relation between remission spectra and the moisture has often been unclear. Reflectometry uses constant excitation illumination which is recorded by the IR camera. With the use of the 'lock-in-technology' a low frequency modulated signal of an IR radiation source is coupled with the thermo camera and a frequency and phase sensitive signal from the thermal images can be derived. The advantage is, that emission coefficient dependencies are eliminated and that leaking radiation does not have any influence on the measured signal. The selective water measurement is possible, because there is an interference filter mounted in front of the radiator which has its transmission maximum at the wavelength of an absorption band of water. The area investigated is therefore illuminated under well defined circumstances and quantitative moisture measurement on the surface of building materials becomes a possibility. The illumination modulation is done with a sine wave to facilitate the calculation of the temporal intensity behavior of the amplitude signal. Subsequently, the amplitude image is used to determine the distribution and the level of moisture quantitatively. Point measurements in the laboratory were carried out on several building materials with changing moisture levels. It could be shown that this method successfully eliminates disturbing contributions to the measured signal like surface effects or leaking radiation.

  7. Research proposal on: amplitude modulated reflectometry system for the JET divertor

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.; Branas, B.; Estrada, T.; Luna, E. de la

    1992-07-01

    Amplitude Modulated reflectometry is presented here as a tool for density profile measurements in the JET divertor plasmas. One of the main problems which has been present in most reflectometers during the last years is the need for a coherent tracking of the phase delay: fast density fluctuations and strong modulation on the amplitude of the reflected signal usually bring to fringe jumps in the phase signal, which are a big problem when the phase values are much larger than 2{pi} The conditions in the JET divertor plasmas: plasma geometry, access and long oversized broad- band waveguide paths makes very difficult the phase measurements at the millimeter wave range. AM reflectometry is to some extension an intermediate solution between the classical phase delay reflectometry, so far applied to small distances, and the time domain reflectometry, used for onospheric studies and recently also proposed for fusion plasmas. The main advantage is to allow the use of millimeter wave reflectometry with moderate phase shifts ( {approx} 2{pi} ). (Author) 2 refs.

  8. Effects of weak amplitude-modulated microwave fields on calcium efflux from awake cat cerebral cortex

    International Nuclear Information System (INIS)

    Calcium (45Ca2+) efflux was studied from preloaded cortex in cats immobilized under local anesthesia, and exposed to a 3.0-mW/cm2 450-MHz field, sinusoidally amplitude modulated at 16 Hz modulation depth 85%). Tissue dosimetry showed a field of 33 V/m in the interhemispheric fissure (rate of energy deposition 0.29 W/kg). Field exposure lasted 60 min. By comparison with controls, efflux curves from field exposed brains were disrupted by waves of increased 45Ca2+ efflux. These waves were irregular in amplitude and duration, but many exhibited periods of 20-30 min. They continued into the postexposure period. Binomial probability analysis indicates that the field-exposed efflux curves constitute a different population from controls at a confidence level of 0.96. In about 70% of cases, initiation of field exposure was followed by increased end-tidal CO2 excretion for about 5 min. However, hypercapnea induced by hypoventilation did not elicit increased 45Ca2+ efflux. Thus this increase with exposure does not appear to arise as a secondary effect of raised cerebral CO2 levels. Radioactivity measurements in cortical samples after superfusion showed 45Ca2+ penetration at about 1.7 mm/hr, consistent with diffusion of the ion in free solution

  9. Noise-immunity processing of digital multilevel pulse-amplitude modulation signals

    Directory of Open Access Journals (Sweden)

    A. S. Makarenko

    2015-12-01

    Full Text Available Introduction. The main properties and features of spectral-effective multi-level pulse amplitude modulation digital signals at coherent reception are presented. It is shown that the phase locked loop circuit (PLL circuit used in the receiver is able to work at SNR > 5 dB.Object of the paper. We propose a new scheme of noise compensator at an intermediate frequency, allowing us to obtain increasing of SNR on 15–25 dB when error of PLL is equal zero. The noise compensator has the gain 8–18 dB at error of PLL = 33° that is able to work at SNR = 5 dB. As result, we can obtain a required SNR for determined BER in systems with multi-level PAM.Conclusions. This technical solution makes a spectrally-efficient system using multi-level amplitude modulation is also energy efficient, forward-looking and competitive. The power transmitters of cell phones and radio relay lines of mobile communication systems can be reduced by 10 times or at the same transmitter power improvement the quality of communication or range is presented.

  10. Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System

    Science.gov (United States)

    Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo

    2016-09-01

    A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan–Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084

  11. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung; An, Soon-Il [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-06-15

    In this study, we classified two types of El Nino-Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states - strong and weak ENSO amplitude periods - and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Nino and La Nina events; the second is that the El Nino-La Nina asymmetry is reversed during strong and weak ENSO amplitude periods. El Nino events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Nino in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Nino is identical to that for weak (strong) La Nina, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east-west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Nino-La Nina asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Nino and weak La Nina over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode

  12. Bilateral Collicular Interaction: Modulation of Auditory Signal Processing in Amplitude Domain

    Science.gov (United States)

    Fu, Zi-Ying; Wang, Xin; Jen, Philip H.-S.; Chen, Qi-Cai

    2012-01-01

    In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic

  13. Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex.

    Science.gov (United States)

    Niwa, Mamiko; O'Connor, Kevin N; Engall, Elizabeth; Johnson, Jeffrey S; Sutter, M L

    2015-01-01

    We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a "single mode" in A1 that relies on increased activity for AM relative to unmodulated sounds and a "dual-polar mode" in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML.

  14. Perceptual interaction between carrier periodicity and amplitude modulation in broadband stimuli: A comparison of the autocorrelation and modulation-filterbank model

    DEFF Research Database (Denmark)

    Stein, A.; Ewert, Stephan; Wiegrebe, L.

    2005-01-01

    , autocorrelation is applied. Considering the large overlap in pitch and modulation perception, this is not parsimonious. Two experiments are presented to investigate the interaction between carrier periodicity, which produces strong pitch sensations, and envelope periodicity using broadband stimuli. Results show......Recent temporal models of pitch and amplitude modulation perception converge on a relatively realistic implementation of cochlear processing followed by a temporal analysis of periodicity. However, for modulation perception, a modulation filterbank is applied whereas for pitch perception...

  15. Accurate encoding and decoding by single cells: amplitude versus frequency modulation.

    Directory of Open Access Journals (Sweden)

    Gabriele Micali

    2015-06-01

    Full Text Available Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM, where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM, where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel, which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms.

  16. Targeted treatment of cancer with radiofrequency electromagnetic fields amplitude-modulated at tumor-specific frequencies

    Institute of Scientific and Technical Information of China (English)

    Jacquelyn W. Zimmerman; Hugo Jimenez; Michael J. Pennison; Ivan Brezovich; Desiree Morgan; Albert Mudry; Frederico P. Costa; Alexandre Barbault; Boris Pasche

    2013-01-01

    In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration al ows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue-and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.

  17. Response of a coupled two-spin system to on-resonance amplitude modulated RF pulses

    Science.gov (United States)

    Zhou, Jinyuan; Ye, Chaohui; Sanctuary, B. C.

    A weakly scalar-coupled two-spin system subjected to two amplitude modulated RF pulses on exact resonance is treated by means of the rotation operator approach. The theory presented here enables coherence evolution to be evaluated by the routine procedure and to be expressed in analytical form. The evolution behaviour from the equilibrium state is discussed in some detail. It is shown that the application of rotation matrix and quaternion elements clarifies evolution expressions. The numerical calculation is performed by way of quaternions. Examples of BURP (band-selective, uniform response, purephase) and sinc-shaped RF pulses are given and the case of time-symmetrical RF pulses is analysed further.

  18. Amplitude modulation depth discrimination in hearing-impaired and normal-hearing listeners

    DEFF Research Database (Denmark)

    Ewert, Stephan D.; Volmer, Jutta; Dau, Torsten;

    2008-01-01

    investigates the differential processing of amplitude modulation depth in HI and NH listeners. AM-depth discrimination of a 4-, 8-, and 30-Hz sinusoidal AM, imposed on a 1- or 4-kHz pure-tone carrier, was measured. The AM of the standard ranged from being well detectable to near threshold. AM......-depth discrimination thresholds strongly varied among HI listeners and were elevated in comparison to NH for high standard depths. A model of AM processing is suggested incorporating an individually adjusted simulation of the auditory periphery. To account for the data of HI listeners, however, the key element...... appeared to be an increased internal noise in the AM-depth domain. Consequences for speech perception are discussed....

  19. Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam

    International Nuclear Information System (INIS)

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  20. First Results with a Fast Phase and Amplitude Modulator for High Power RF Application

    CERN Document Server

    Frischholz, Hans; Valuch, D; Weil, C

    2004-01-01

    In a high energy and high power superconducting proton linac, it is more economical to drive several cavities with a single high power transmitter rather than to use one transmitter per cavity. However, this option has the disadvantage of not permitting individual control for each cavity, which potentially leads to instabilities. Provided that it can be built at a reasonable cost, a fast phase and amplitude modulator inserted into each cavity feeder line can provide the necessary control capability. A prototype of such a device has been built, based on two fast and compact high power RF phase-shifters, magnetically biased by external coils. The design is described, together with the results obtained at high and low power levels.

  1. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  2. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Science.gov (United States)

    Babic, Bakir; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan

    2016-06-01

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  3. Piezo-drive circuits for amplitude-modulated locomoton for miniature wireless robots

    Science.gov (United States)

    Martel, Sylvain M.; Hunter, Ian W.

    2001-10-01

    Piezo-actuators due to their relatively high resonant frequencies and small deflections are ideally suited as accurate displacement transducers. As such, they have been used to implement the legs of the miniature wireless NanoWalker robot where step sizes in the order of a few tenths of nanometers are required for final positioning within the range of an embedded instrument designed to operate at the atomic scale. The relatively high capacitance combined with the high-drive voltage requirement of the actuators, impose constraints on the miniaturization of the electronics. The amplitude modulation scheme requires one amplifier per quadrant electrode on the piezo-legs. Although power amplifiers are suited to drive large capacitive loads with large signal amplitudes without stability problems, the quiescent current of the amplifiers requires several DC/DC converters of significant size. During locomotion, the sudden current increase occurring when high slew rate signals are used during the charging/discharging cycle of the capacitive loads at each walking step, causes the power rail voltage to drop, yielding a reduction in the amplitude of the deflections of the piezo-legs. To minimize the number of DC/DC converters, the slew rate requirement of the drive signal is reduced by an increase of the angular acceleration of the leg created by an initial static friction force with the walking surface. It is then suggested that further miniaturization of the embedded electronics can be achieved by adjusting the kinematic behavior of the piezo-legs with an appropriate mechanical design and the right friction coefficient through careful materials selection.

  4. An investigation of the influence of residual amplitude modulation in phase electro-optic modulator on the signal of fiber-optic gyroscope

    Science.gov (United States)

    Pogorelaya, D. A.; Smolovik, M. A.; Strigalev, V. E.; Aleynik, A. S.; Deyneka, I. G.

    2016-08-01

    The investigation is devoted to residual amplitude modulation (RAM) of phase electro-optic modulator, which guides are made in LiNbO3 crystal by Ti diffusion technology. An analysis is presented that shows influence of RAM on the signal of fiber-optic gyroscope. The RAM compensation method is offered.

  5. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    CERN Document Server

    Fang, Zhao-Xiang; Gong, Lei; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De

    2015-01-01

    Needle-like electromagnetic fields has various advantages for the applications in high-resolution imaging, Raman Spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device(DMD). Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional(1D) and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We...

  6. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhao-Xiang; Gong, Lei [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031 (China); Vaveliuk, Pablo [Centro de Investigaciones Opticas (CONICET La Plata-CIC), Cno. Centenario y 506, P.O. Box 3, 1897 Gonnet, La Plata, Pcia. de Buenos Aires (Argentina); Chen, Yue; Lu, Rong-De, E-mail: lrd@ustc.edu.cn [Physics Experiment Teaching Center, School of Physical Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  7. Auditory Discrimination Using Frequency-Modulated Amplification with Long-Term Amplitude Compression.

    Science.gov (United States)

    Shea, Bernard David

    This dissertation considers the effects of long -term amplitude compression used in narrow-band frequency modulated (FM) assistive listening devices on the auditory discrimination of severely and profoundly hearing-impaired individuals. Compression has been used in narrow-band FM transmitters for hearing-impaired children in educational programs for over twenty years. It restricts the peak deviation of the FM signal to within allowable limits. Narrow -band FM equipment can vary in peak limitation approaches via compression, i.e., using a form of compression limiting or using long-term compression (automatic volume control). Numerous investigations have studied the benefits of FM system use, but none have tested the benefits or deleterious effects of these compression forms on the auditory discrimination of hearing-impaired individuals. Despite the marked limitations associated with severe or profound sensorineural hearing impairment in children, spoken language development is possible. Research and experience have suggested that the auditory system represents the best sensory input channel for these children. With appropriate amplification and educational intervention they can achieve dramatic improvements in speech perception, speech production, language development, and educational achievement (Boothroyd, 1985; Hudgins, 1953, 1954; Ling & Milne, 1981; Wedenberg, 1954). Most hearing-impaired children in educational programs across the United States receive the amplified teacher's speech signal via narrow-band frequency modulated (FM) transmission, yet a controlled investigation of the input compression used in these systems has never been conducted. This dissertation reviews and discusses narrow -band frequency modulated (FM) radio wave systems and the use of audio compression. The experiment tested 32 students with severe to profound sensorineural hearing loss under two narrow -band FM transmitter conditions. The FM transmitter conditions were varied on the basis

  8. Amplitude modulation of charge-density-wave domains in 1T-TaS2 at 300 K

    International Nuclear Information System (INIS)

    Measurements of the charge-density-wave (CDW) amplitude modulation in 1T-TaS2 at room temperature have been made using a scanning tunneling microscope (STM) operating in the constant current mode. The amplitude profiles are in good agreement with the profile predicated by the CDW domain model of Nakanishi and Shiba. Interference effects between the atomic and CDW lattices have been analyzed and do not modify these profiles significantly. They represent the true CDW amplitude variation connected with the CDW domain structure

  9. Comparison of discrete multi-tone and pulse amplitude modulation for beyond 100 Gbps short-reach application

    Science.gov (United States)

    Nishihara, Masato; Kai, Yutaka; Tanaka, Toshiki; Takahara, Tomoo; Li, Lei; Yan, Weizhen; Liu, Bo; Tao, Zhenning; Rasmussen, Jens C.

    2013-12-01

    Advanced multi-level modulation is an attractive modulation technique for beyond 100 Gbps short reach optical transmission system. Above all, discrete multi-tone (DMT) technique and pulse amplitude modulation (PAM) technique are the strong candidates. We compared the 100 Gbps transmission characteristics of DMT and PAM by simulation and experiment. The comparison was done by using same devices and only the digital signal processing was changed. We studied the transmission distance dependence for 0.5 to 40 km and the impact of the frequency responses of the optical devices. Finally we discuss the features of the both modulation techniques.

  10. Stark shift in multiple quantum well structures containing a delta-doping superlattice for amplitude modulation

    International Nuclear Information System (INIS)

    Full text: Batty and Allsopp [1]ha ve theoretically predicted that the introduction of an nipi delta-doping superlattice in a MQW structure may double the Stark shift, which could be advantageous for optical communication. GaAs/AlGaAs MQW structures have been grown with Si delta layers centered in the QWs and with C delta layers centered in the barriers, to try to observe such effect. For applications in amplitude modulators, where the MQWs form the intrinsic active region of the device, it is crucial that the net doping corresponds to an undoped structure, otherwise, no Stark shift can be observed. However, it has already been shown that to achieve a balance between the n and the p doping levels is quite complicated [2], making it almost impossible to observe any Stark shift. In this communication, we report for the first time the experimental observation of a Stark shift for a GaAs/AlGaAs MQW structure containing an nipi delta-doping superlattice. From photocurrent measurements as a function of the applied voltage, the Stark shift was determined to be around 6 meV for an electric field of 58 KV/cm, equivalent to that of a reference undoped MQW sample. Even though this value is still a factor of two below that previously predicted [1], it shows that it is possible to fabricate amplitude modulators using an nipi delta-doping superlattice in a MQW structure. Moreover, from the experimental data, the chirp parameter was calculated. In optical communication systems it is important that the chirp parameter, which measures the change in refractive index per change in absorption coefficient, be between 0 and -1 to compensate for the positive fiber dispersion. A chirp parameter within this range was obtained, contrary to the value of + 1.8 for the reference sample, showing that such device, as a whole, may perform better. [1]W . Batty and D. W. E. Allsopp, Electronics Letters 29, 2066 (1993). [2]C. V.-B. Tribuzy, M. P. Pires, R. Butendeich, S. M. Landi, P. L. Souza, G. E

  11. DIFFERENTIAL AMPLITUDE PHASE SHIFT KEYING:A NEW MODULATION METHOD FOR TURBO CODE IN DIGITAL RADIO BROADCASTING

    Institute of Scientific and Technical Information of China (English)

    Khalid H. Sayhood; Wu Lenan

    2003-01-01

    The multilevel modulation techniques of M-Differential Amplitude Phase Shift Keying (DAPSK) have been proposed in combination with Turbo code scheme for digital radio broadcasting bands below 30 MHz radio channel. Comparison of this modulation method with channel coding in an Additive White Gaussian Noise (AWGN) and multi-path fading channels has been presented. The analysis provides an iterative decoding of the Turbo code.

  12. Practical loss tangent imaging with amplitude-modulated atomic force microscopy

    Science.gov (United States)

    Proksch, Roger; Kocun, Marta; Hurley, Donna; Viani, Mario; Labuda, Aleks; Meinhold, Waiman; Bemis, Jason

    2016-04-01

    Amplitude-modulated (AM) atomic force microscopy (AFM), also known as tapping or AC mode, is a proven, reliable, and gentle imaging method with widespread applications. Previously, the contrast in AM-AFM has been difficult to quantify. AFM loss tangent imaging is a recently introduced technique that recasts AM mode phase imaging into a single term tan δ that includes both the dissipated and stored energy of the tip-sample interaction. It promises fast, versatile mapping of variations in near-surface viscoelastic properties. However, experiments to date have generally obtained values larger than expected for the viscoelastic loss tangent of materials. Here, we explore and discuss several practical considerations for AFM loss tangent imaging experiments. A frequent limitation to tapping in air is Brownian (thermal) motion of the cantilever. This fundamental noise source limits the accuracy of loss tangent estimation to approximately 0.01 phase transitions, even in the presence of such non-ideal interactions. These results help understand the limits and opportunities not only of this particular technique but also of AM mode with phase imaging in general.

  13. Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system

    Science.gov (United States)

    Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel

    2000-04-01

    Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.

  14. Amplitude modulation of sexy phrases is salient for song attractiveness in female canaries (Serinus canaria).

    Science.gov (United States)

    Pasteau, Magali; Ung, Davy; Kreutzer, Michel; Aubin, Thierry

    2012-07-01

    Song discrimination and recognition in songbird species have usually been studied by measuring responses to song playbacks. In female canaries, Serinus canaria, copulation solicitation displays (CSDs) are used as an index of female preferences, which are related to song recognition. Despite the fact that many studies underline the role of song syntax in this species, we observed that short segments of songs (a few seconds long) are enough for females to discriminate between conspecific and heterospecific songs, whereas such a short duration is not sufficient to identify the syntax rules. This suggests that other cues are salient for song recognition. In this experiment, we investigated the influence of amplitude modulation (AM) on the responses (CSDs) of female canaries to song playbacks. We used two groups of females: (1) raised in acoustic isolation and (2) raised in normal conditions. When adult, we tested their preferences for sexy phrases with different AMs. We broadcast three types of stimuli: (1) songs with natural canary AM, (2) songs with AM removed, or (3) song with wren Troglodytes troglodytes AM. Results indicate that female canaries prefer and have predispositions for a song type with the natural canary AM. Thus, this acoustic parameter is a salient cue for song attractiveness. PMID:22476242

  15. A monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter

    CERN Document Server

    Xiong, Chi; Proesel, Jonathan E; Orcutt, Jason S; Haensch, Wilfried; Green, William M J

    2016-01-01

    Silicon photonics promises to address the challenges for next-generation short-reach optical interconnects. Growing bandwidth demand in hyper-scale data centers and high-performance computing motivates the development of faster and more-efficient silicon photonics links. While it is challenging to raise the serial line rate, further scaling of the data rate can be realized by, for example, increasing the number of parallel fibers, increasing the number of wavelengths per fiber, and using multi-level pulse-amplitude modulation (PAM). Among these approaches, PAM has a unique advantage because it does not require extra lasers or a costly overhaul of optical fiber cablings within the existing infrastructure. Here, we demonstrate the first fully monolithically integrated silicon photonic four-level PAM (PAM-4) transmitter operating at 56 Gb/s and demonstrate error-free transmission (bit-error-rate < 10$^{-12}$) up to 50 Gb/s without forward error correction. The superior PAM-4 waveform is enabled by optimizatio...

  16. Reconfigurable optical quadrature amplitude modulation converter/encoder using a tunable complex coefficient optical tapped delay line.

    Science.gov (United States)

    Khaleghi, Salman; Chitgarha, Mohammad Reza; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2013-05-15

    We experimentally demonstrate a reconfigurable optical converter/encoder for quadrature amplitude modulated (QAM) signals. The system utilizes nonlinear wavelength multicasting, conversion-dispersion delays, and simultaneous nonlinear multiplexing and sampling. We show baud rate tunability (31 and 20 Gbaud) and reconfigurable conversions from lower-order QAM signals to higher-order QAM signals (e.g., 64-QAM). PMID:23938882

  17. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Herlory, Olivier, E-mail: olivier.herlory@gmail.com [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Bonzom, Jean-Marc, E-mail: jean-marc.bonzom@irsn.fr [IRSN-Laboratoire d’Ecotoxicologie des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France); Gilbin, Rodolphe, E-mail: rodolphe.gilbin@irsn.fr [IRSN-Laboratoire de Biogéochimie, Biodisponibilité et Transferts des Radionucléides, Centre de Cadarache, BP3, 13115 Saint Paul lez Durance (France)

    2013-09-15

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F{sub 0}/F{sub v}. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F{sup ′}{sub q}/F{sup ′}{sub m}, EC{sub 50} = 303 ± 64 μg U L{sup −1} after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC{sub 50} = 142 ± 98 μg U L{sup −1} after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown

  18. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry

    International Nuclear Information System (INIS)

    Highlights: •Our study addressed the toxicity thresholds of uranium on microalgae using PAM fluorometry. •The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium. •Uranium impaired the electron flux between the photosystems until almost complete inhibition. •Non-photochemical quenching was identified as the most sensitive fluorescence parameter. •PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response. -- Abstract: Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5 h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency (F′q/F′m, EC50 = 303 ± 64 μg U L−1 after 5 h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50 = 142 ± 98 μg U L−1 after 5 h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction

  19. Stochastic Resonance in Linear Region of a Single-Mode Laser: Effects of Amplitude Modulation of Signal

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Qin; ZHANG Liang-Ying; LUO Zhi-Quan; CAO Li; WU Da-Jin

    2008-01-01

    A single-mode laser noise model driven by quadratic colored pump noise and amplitude modulation signal is proposed. The real and imaginary parts of the pump noise axe assumed to be cross-correlation. The effect of cross-correlation of noise and amplitude modulation of signal on laser statistical properties is studied by using the lineaxized approximation. The analytic expression of signal-to-noise ratio (SNR) is calculated. It is found that the phenomena of stochastic resonance (SR) respectively exist in the curves of the SNR versus the noise cross-correlation coefficient λ and the SNR versus the pump parameter a, as well as the SNR versus the signal frequency ω in our model. It is shown that there are three different typies of SR in the model: the conventional form of SR, the SR in the broad sense, and the bona fide SR.

  20. Dynamic range enhancement and amplitude regeneration in single pump fibre optic parametric amplifiers using DPSK modulation

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge;

    2008-01-01

    Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....

  1. M-ARRAY QUADRATURE AMPLITUDE MODULATION WIRELESS SENSOR NETWORK MODULATOR RELIABILITY AND ACCURACY ANALYZE IN CIVIL SHM

    Directory of Open Access Journals (Sweden)

    Mohammud Ershadul Haque

    2013-01-01

    Full Text Available Wireless Sensor Network (WSN is the new invention applying for assessment the damage of the historical or high rise civil building structural health. Technical challenges affecting deployment of wireless sensor network including the range of the transmission problem, low data transmission rate of the existing SHM strategies. The most vital factor of SHM wireless sensor systems is the modulator accuracy and reliability that qualify the wireless communication system to assess large building structure health Information. The objective of this article is to provide solution to measure both reliability and accuracy of the wireless sensor network modulator. we computed M-array QAM modulator BER and compare the simulation result with theoretical to find out optimum modulation technique for transmission System with considering maximum data rate, AWGN channel and also measured modulator accuracy based on ZigBee by computing M-array modulator Error Vector Magnitude (EVM to quantify the transmitter quality.

  2. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation

    DEFF Research Database (Denmark)

    Isaeva, Olga B.; Kuznetsov, Sergey P.; Mosekilde, Erik

    2011-01-01

    The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current...... amplitudes for the two oscillators of each pair undergoes a transformation in accordance with the expanding circle map during each cycle of the process. We start with equations describing the dynamics in terms of complex or real amplitudes and then examine two models based on van der Pol oscillators. One...... variables, portraits of attractors, Lyapunov exponents, etc. The uniformly hyperbolic nature of the attractor in the stroboscopic Poincare map is confirmed for a real-amplitude version of the equations by computations of statistical distribution of angles between stable and unstable manifolds...

  3. Amplitude Modulation Approach for Real-Time Algorithms of ECG-Derived Respiration

    OpenAIRE

    J.L. Vargas-Luna; W. Mayr; J.A. Cortés-Ramírez

    2014-01-01

    Este trabajo presenta una metodología para la extracción de la actividad respiratoria derivada de un ECG (EDR, por sus siglas en ingles), basado en el enfoque de amplitud modulada (AM). Esto permite redefinir las metodologías actuales para obtener una señal EDR más continua, con altos factores de correlación y un retraso menor entre la EDR y la actividad respiratoria. Se implementaron dos algoritmos: uno utilizando la modulación de la amplitud del pico R (EDRAM) y el otro aplicando un filtro ...

  4. Tuning in on Cepheids: Radial velocity amplitude modulations. A source of systematic uncertainty for Baade-Wesselink distances

    CERN Document Server

    Anderson, Richard I

    2014-01-01

    [Abridged] I report the discovery of modulations in radial velocity (RV) curves of four Galactic classical Cepheids and investigate their impact as a systematic uncertainty for Baade-Wesselink distances. Highly precise Doppler measurements were obtained using the Coralie high-resolution spectrograph since 2011. Particular care was taken to sample all phase points in order to very accurately trace the RV curve during multiple epochs and to search for differences in linear radius variations derived from observations obtained at different epochs. Different timescales are sampled, ranging from cycle-to-cycle to months and years. The unprecedented combination of excellent phase coverage obtained during multiple epochs and high precision enabled the discovery of significant modulation in the RV curves of the short-period s-Cepheids QZ Normae and V335 Puppis, as well as the long-period fundamental mode Cepheids l Carinae and RS Puppis. The modulations manifest as shape and amplitude variations that vary smoothly on ...

  5. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device

    NARCIS (Netherlands)

    Goorden, Sebastianus A.; Bertolotti, Jacopo; Mosk, Allard P.

    2014-01-01

    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpix

  6. High Performance of Space Vector Modulation Direct Torque Control SVM-DTC Based on Amplitude Voltage and Stator Flux Angle

    Directory of Open Access Journals (Sweden)

    Hassan Farhan Rashag

    2013-04-01

    Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.

  7. Psychometric functions for sentence recognition in sinusoidally amplitude-modulated noises.

    Science.gov (United States)

    Shen, Yi; Manzano, Nicole K; Richards, Virginia M

    2015-12-01

    Listeners' speech reception is better when speech is masked by a modulated masker compared to an unmodulated masker with the same long-term root-mean-square level. It has been suggested that listeners take advantage of brief periods of quiescence in a modulated masker to extract speech information. Two experiments examined the contribution of such "dip-listening" models. The first experiment estimated psychometric functions for speech intelligibility using sentences masked by sinusoidally modulated and unmodulated speech-shaped noises and the second experiment estimated detection thresholds for a tone pip added at the central dip in the masker. Modulation rates ranging from 1 to 64 Hz were tested. In experiment 1 the slopes of the psychometric functions were shallower for lower modulation rates and the pattern of speech reception thresholds as a function of modulation rate was nonmonotonic with a minimum near 16 Hz. In contrast, the detection thresholds from experiment 2 increased monotonically with modulation rate. The results suggest that the benefits of listening to speech in temporally fluctuating maskers cannot be solely ascribed to the temporal acuity of the auditory system. PMID:26723318

  8. Modulated amplitude waves with non-trivial phase in quasi-1D inhomogeneous Bose–Einstein condensates

    International Nuclear Information System (INIS)

    We consider a 1D nonlinear Schrödinger equation (NLSE) which describes the mean field dynamics of an elongated Bose–Einstein condensate and prove the existence of modulated amplitude waves with non-trivial phase and minimal spatial period tending to infinite. The proof combines the theory of local continuation of non-degenerate periodic solutions with a property of the Ermakov–Pinney equation. - Highlights: • A rigorous proof of the existence of rotating MAWs in an inhomogeneous BEC. • No condition on the sign or the magnitude of the trap or the scattering length. • Non-trivial phase leads to a singular ODE for the amplitude. • The proof combines a local continuation theorem and properties of rotation numbers

  9. Simultaneous determination of nitrite and nitrate ions by air-segmented amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Yoshida, Haruka; Inui, Koji; Takeuchi, Masaki; Tanaka, Hideji

    2012-01-01

    The concept of amplitude-modulated multiplexed flow analysis has been extended to the simultaneous determination of multiple analytes in a sample. A sample solution containing nitrite and nitrate ions is delivered from two channels, but the flow rates are varied at different frequencies. One of the channels has a reduction column for converting nitrate ions to nitrite ions. Downstream, the absorbance of the diazo-coupling product is monitored after the merging of both solutions with a Griess reagent. The signal is analyzed by a fast Fourier transform (FFT) in real time. From the thus-obtained amplitude, a µmol dm(-3) level of the ions can be determined. The introduction of air bubbles is effective to reduce any axial dispersion, and hence to improve the sensitivity.

  10. Modulated amplitude waves with non-trivial phase in quasi-1D inhomogeneous Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Pedro J., E-mail: ptorres@ugr.es

    2014-10-03

    We consider a 1D nonlinear Schrödinger equation (NLSE) which describes the mean field dynamics of an elongated Bose–Einstein condensate and prove the existence of modulated amplitude waves with non-trivial phase and minimal spatial period tending to infinite. The proof combines the theory of local continuation of non-degenerate periodic solutions with a property of the Ermakov–Pinney equation. - Highlights: • A rigorous proof of the existence of rotating MAWs in an inhomogeneous BEC. • No condition on the sign or the magnitude of the trap or the scattering length. • Non-trivial phase leads to a singular ODE for the amplitude. • The proof combines a local continuation theorem and properties of rotation numbers.

  11. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator.

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Vitiello, Miriam S

    2016-01-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology. PMID:26976199

  12. Frequency and amplitude modulation of ultra-compact terahertz quantum cascade lasers using an integrated avalanche diode oscillator

    Science.gov (United States)

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Vitiello, Miriam S.

    2016-03-01

    Mode-locked comb sources operating at optical frequencies underpin applications ranging from spectroscopy and ultrafast physics, through to absolute frequency measurements and atomic clocks. Extending their operation into the terahertz frequency range would greatly benefit from the availability of compact semiconductor-based sources. However, the development of any compact mode-locked THz laser, which itself is inherently a frequency comb, has yet to be achieved without the use of an external stimulus. High-power, electrically pumped quantum cascade lasers (QCLs) have recently emerged as a promising solution, owing to their octave spanning bandwidths, the ability to achieve group-velocity dispersion compensation and the possibility of obtaining active mode-locking. Here, we propose an unprecedented compact architecture to induce both frequency and amplitude self-modulation in a THz QCL. By engineering a microwave avalanche oscillator into the laser cavity, which provides a 10 GHz self-modulation of the bias current and output power, we demonstrate multimode laser emission centered around 3 THz, with distinct multiple sidebands. The resulting microwave amplitude and frequency self-modulation of THz QCLs opens up intriguing perspectives, for engineering integrated self-mode-locked THz lasers, with impact in fields such as nano- and ultrafast photonics and optical metrology.

  13. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    Science.gov (United States)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  14. Prestimulus amplitudes modulate P1 latencies and evoked traveling alpha waves

    Directory of Open Access Journals (Sweden)

    Nicole Alexandra Himmelstoss

    2015-05-01

    Full Text Available Traveling waves have been well documented in the ongoing, and more recently also in the evoked EEG. In the present study we investigate what kind of physiological process might be responsible for inducing an evoked traveling wave. We used a semantic judgment task which already proved useful to study evoked traveling alpha waves that coincide with the appearance of the P1 component. We found that the P1 latency of the leading electrode is significantly correlated with prestimulus amplitude size and that this event is associated with a transient change in alpha frequency. We assume that cortical background excitability, as reflected by an increase in prestimulus amplitude, is responsible for the observed change in alpha frequency and the initiation of an evoked traveling trajectory.

  15. Concurrent Encoding of Frequency and Amplitude Modulation in Human Auditory Cortex: Encoding Transition

    OpenAIRE

    Luo, H.; Wang, Y.; Poeppel, D.; Simon, J.Z.

    2007-01-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate fAM = 37 Hz) and FM ...

  16. Stochastic resonance in a single-mode laser driven by quadratic Pump noise and amplitude-modulated signal

    Institute of Scientific and Technical Information of China (English)

    Zhang Li

    2009-01-01

    This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal.A new linear approximation approach is advanced to calculate the signal-to-noise ratio.In the linear approximation only the drift term is linearized,the multiplicative noise term is unchangeable.It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance,especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength λ between the real and imaginary parts of the pump noise.

  17. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    R. Ricci

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager (λ = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  18. Techniques for Effective Optical Noise Rejection in Amplitude-Modulated Laser Optical Radars for Underwater Three-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Francucci M

    2010-01-01

    Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.

  19. Comparison of carrierless amplitude-phase (CAP) and discrete multitone (DMT) modulation

    DEFF Research Database (Denmark)

    Othman, M. B.; Pham, Tien-Thang; Deng, Lei;

    2014-01-01

    We compare the transmission of 1.25 Gb/s CAP-16 and 909.2 Mb/s 16-QAM-DMT modulation formats over 2.4 km of MMF with 850 nm DM-CSELs. CAP displays 0.7-1.1 dB better sensitivity than DMT in this experiment.......We compare the transmission of 1.25 Gb/s CAP-16 and 909.2 Mb/s 16-QAM-DMT modulation formats over 2.4 km of MMF with 850 nm DM-CSELs. CAP displays 0.7-1.1 dB better sensitivity than DMT in this experiment....

  20. Improvement of Amplitude-Shift-Keying Signal Quality by Employing an Effective Spectrum Equalization Method in a Combined FSK/ASK Modulation Scheme

    Institute of Scientific and Technical Information of China (English)

    XIN Xiang-Jun; P. S. André; A. L. J. Teixeira; YU Chong-Xiu; Ana Ferreira; Tiago Silveira; P. M. Monteiro; F. da Rocha; J. L. Pinto

    2005-01-01

    @@ A simple, economical and applicable spectrum equalization method is implemented by employing a reshaping filter in the combined frequency-shift-keying/amplitude-shift-keying modulation scheme to improve the quality of amplitude-shift-keying optical signal. The 3-dB improvement for eye diagram height is experimentally demonstrated.

  1. Amplitude modulation for the Swift-Hohenberg and Kuramoto-Sivashinski equations

    Science.gov (United States)

    Kirkinis, Eleftherios; O'Malley, Robert E.

    2014-12-01

    Employing a harmonic balance technique inspired from the methods of Renormalization Group and Multiple Scales [R. E. O'Malley, Jr. and E. Kirkinis. "A combined renormalization group-multiple scale method for singularly perturbed problems," Stud. Appl. Math. 124(4), 383-410, (2010)], we derive the amplitude equations for the Swift-Hohenberg and Kuramoto-Sivashinski equations to arbitrary order in the context of roll patterns. This new and straightforward derivation improves previous attempts and can be carried-out with symbolic computation that minimizes effort and avoids error.

  2. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Karen Johanne Pallesen

    Full Text Available Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL and amplitude modulations (AM of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz alpha (8-14 Hz, beta- (14-30 Hz and gamma- (30-80 Hz bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  3. Air segmented amplitude modulated multiplexed flow analysis with software-based phase recognition: determination of phosphate ion.

    Science.gov (United States)

    Ogusu, Takeshi; Uchimoto, Katsuya; Takeuchi, Masaki; Tanaka, Hideji

    2014-01-01

    Amplitude modulated multiplexed flow analysis (AMMFA) has been improved by introducing air segmentation and software-based phase recognition. Sample solutions, the flow rates of which are respectively varied at different frequencies, are merged. Air is introduced to the merged liquid stream in order to limit the dispersion of analytes within each liquid segment separated by air bubbles. The stream is led to a detector with no physical deaeration. Air signals are distinguished from liquid signals through the analysis of detector output signals, and are suppressed down to the level of liquid signals. Resulting signals are smoothed based on moving average computation. Thus processed signals are analyzed by fast Fourier transform. The analytes in the samples are respectively determined from the amplitudes of the corresponding wave components obtained. The developed system has been applied to the simultaneous determinations of phosphate ions in water samples by a Malachite Green method. The linearity of the analytical curve (0.0-31.0 μmol dm(-3)) is good (r(2)>0.999) and the detection limit (3.3 σ) at the modulation period of 30s is 0.52 μmol dm(-3). Good recoveries around 100% have been obtained for phosphate ions spiked into real water samples.

  4. M-ARRAY QUADRATURE AMPLITUDE MODULATION WIRELESS SENSOR NETWORK MODULATOR RELIABILITY AND ACCURACY ANALYZE IN CIVIL SHM

    OpenAIRE

    Mohammud Ershadul Haque; Mohammud Fauzi Mohammud Zain; Maslina Jamil; Mohammud Abdul Hannan; Abdulla Al Suman

    2013-01-01

    Wireless Sensor Network (WSN) is the new invention applying for assessment the damage of the historical or high rise civil building structural health. Technical challenges affecting deployment of wireless sensor network including the range of the transmission problem, low data transmission rate of the existing SHM strategies. The most vital factor of SHM wireless sensor systems is the modulator accuracy and reliability that qualify the wireless communication system to assess large building st...

  5. Chroma key without color restrictions based on asynchronous amplitude modulation of background illumination on retroreflective screens

    Science.gov (United States)

    Vidal, Borja; Lafuente, Juan A.

    2016-03-01

    A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.

  6. Numerical simulation of jet breakup due to amplitude-modulated (A-M) disturbance

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; QI Le-hua; LI Li; YANG Fang; JIANG Xiao-shan

    2008-01-01

    In order to characterize the mechanics of jet breakup,the finite volume formulations were employed to solve the Navier-Stokes equations and continuity equation of jet.The volume of fluid (VOF) method was used to track the free surface of jet.The spray process of the molten Pb63Sn37 alloy was simulated based on the mathematical model by means of FLUENT code.The configuration of jets generated in different disturbance ratios and modulation ratios was obtained.The theoretical results show that the droplets merge together by the number of disturbance ratio N,which agrees with the corresponding picture captured in the experiment.In addition,the droplet streams broken at non-optimal frequency are also uniform according to simulation results,which proves that the A-M disturbance can increase the width of the uniform droplet generating frequency.

  7. Complex linear minimum mean-squared-error equalization of spatially quadrature-amplitude-modulated signals in holographic data storage

    Science.gov (United States)

    Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi

    2016-09-01

    We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.

  8. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    Science.gov (United States)

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA. PMID:27475217

  9. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns.

    Science.gov (United States)

    Kim, Diana J; Yogendrakumar, Vignan; Chiang, Joyce; Ty, Edna; Wang, Z Jane; McKeown, Martin J

    2013-01-01

    Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson's disease; yet, the mechanism of action is unclear. Since Parkinson's and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4-7.5 Hz), low alpha (8-10 Hz), high alpha (10.5-12 Hz), beta (13-30 Hz) and gamma (31-50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents - at 10, 26, 42, 58, 74 and 90% of sensory threshold - to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20-25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive

  10. Noisy galvanic vestibular stimulation modulates the amplitude of EEG synchrony patterns.

    Directory of Open Access Journals (Sweden)

    Diana J Kim

    Full Text Available Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson's disease; yet, the mechanism of action is unclear. Since Parkinson's and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4-7.5 Hz, low alpha (8-10 Hz, high alpha (10.5-12 Hz, beta (13-30 Hz and gamma (31-50 Hz bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents - at 10, 26, 42, 58, 74 and 90% of sensory threshold - to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20-25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously

  11. Noninvasive focused ultrasound stimulation can modulate phase-amplitude coupling between neuronal oscillations in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Yi Yuan

    2016-07-01

    Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.

  12. Noninvasive Focused Ultrasound Stimulation Can Modulate Phase-Amplitude Coupling between Neuronal Oscillations in the Rat Hippocampus

    Science.gov (United States)

    Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli

    2016-01-01

    Noninvasive focused ultrasound stimulation (FUS) can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC) between neuronal oscillations is tightly associated with cognitive processes, including learning, attention, and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9, 9.6, and 19.2 W/cm2). The local field potentials (LFPs) in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4–8 Hz) and gamma (30–80 Hz) bands and between the alpha (9–13 Hz) and ripple (81–200 Hz) bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity. PMID:27499733

  13. Gas Phase Photoacoustic Spectroscopy in the long-wave IR using Quartz Tuning Forks and Amplitude Modulated Quantum Cascade Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, Michael D.; Phillips, Mark C.; Cannon, Bret D.

    2006-12-31

    A paper to accompany a 20 minute talk about the progress of a DARPA funded project called LPAS. ABSTRACT: We demonstrate the performance of a novel long-wave infrared photoacoustic laser absorbance spectrometer for gas-phase species using an amplitude modulated (AM) quantum cascade (QC) laser and a quartz tuning fork microphone. Photoacoustic signal was generated by focusing the output of a Fabry-Perot QC laser operating at 8.41 micron between the legs of a quartz tuning fork which served as a transducer for the transient acoustic pressure wave. The QC laser was modulated at the resonant frequency of the tuning fork (32.8 kHz). This sensor was calibrated using the infrared absorber Freon-134a by performing a simultanious absorption measurement using a 35 cm absorption cell. The NEAS of this instrument was determined to be 2 x 10^-8 W cm^-1 /Hz^1/2 and the fundamental sensitivity of this technique is limited by the noise floor of the tuning fork itself.

  14. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration

    Science.gov (United States)

    Watson, Meghan; Sawan, Mohamad

    2016-01-01

    Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP) recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100–200 Hz or pulse duration from 0.18–0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters. PMID:27442588

  15. The Duration of Motor Responses Evoked with Intracortical Microstimulation in Rats Is Primarily Modulated by Stimulus Amplitude and Train Duration.

    Directory of Open Access Journals (Sweden)

    Meghan Watson

    Full Text Available Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.

  16. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations in a Young, Extremely Red L-type Brown Dwarf

    Science.gov (United States)

    Lew, Ben W. P.; Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J.; Karalidi, Theodora; Yang, Hao; Marley, Mark S.; Cowan, Nicolas B.; Bedin, Luigi R.; Metchev, Stanimir A.; Radigan, Jacqueline; Lowrance, Patrick J.

    2016-10-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 ± 0.14 hr) with a larger amplitude at 1.1 μm than at 1.7 μm. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 μm. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.

  17. Despeckle Filtering for Multiscale Amplitude-Modulation Frequency-Modulation (AM-FM) Texture Analysis of Ultrasound Images of the Intima-Media Complex

    Science.gov (United States)

    Loizou, C. P.; Murray, V.; Pattichis, M. S.; Pantziaris, M.; Nicolaides, A. N.; Pattichis, C. S.

    2014-01-01

    The intima-media thickness (IMT) of the common carotid artery (CCA) is widely used as an early indicator of cardiovascular disease (CVD). Typically, the IMT grows with age and this is used as a sign of increased risk of CVD. Beyond thickness, there is also clinical interest in identifying how the composition and texture of the intima-media complex (IMC) changed and how these textural changes grow into atherosclerotic plaques that can cause stroke. Clearly though texture analysis of ultrasound images can be greatly affected by speckle noise, our goal here is to develop effective despeckle noise methods that can recover image texture associated with increased rates of atherosclerosis disease. In this study, we perform a comparative evaluation of several despeckle filtering methods, on 100 ultrasound images of the CCA, based on the extracted multiscale Amplitude-Modulation Frequency-Modulation (AM-FM) texture features and visual image quality assessment by two clinical experts. Texture features were extracted from the automatically segmented IMC for three different age groups. The despeckle filters hybrid median and the homogeneous mask area filter showed the best performance by improving the class separation between the three age groups and also yielded significantly improved image quality. PMID:24734038

  18. Characterization of deep nanoscale surface trenches with AFM using thin carbon nanotube probes in amplitude-modulation and frequency-force-modulation modes

    Science.gov (United States)

    Solares, Santiago D.

    2008-01-01

    The characterization of deep surface trenches with atomic force microscopy (AFM) presents significant challenges due to the sharp step edges that disturb the instrument and prevent it from faithfully reproducing the sample topography. Previous authors have developed AFM methodologies to successfully characterize semiconductor surface trenches with dimensions on the order of tens of nanometers. However, the study of imaging fidelity for features with dimensions smaller than 10 nm has not yet received sufficient attention. Such a study is necessary because small features in some cases lead to apparently high-quality images that are distorted due to tip and sample mechanical deformation. This paper presents multi-scale simulations, illustrating common artifacts affecting images of nanoscale trenches taken with fine carbon nanotube probes within amplitude-modulation and frequency-force-modulation AFM (AM-AFM and FFM-AFM, respectively). It also describes a methodology combining FFM-AFM with a step-in/step-out algorithm analogous to that developed by other groups for larger trenches, which can eliminate the observed artifacts. Finally, an overview of the AFM simulation methods is provided. These methods, based on atomistic and continuum simulation, have been previously used to study a variety of samples including silicon surfaces, carbon nanotubes and biomolecules.

  19. FPGA Implementation of an Amplitude-Modulated Continuous-Wave Ultrasonic Ranger Using Restructured Phase-Locking Scheme

    Directory of Open Access Journals (Sweden)

    P. Sumathi

    2010-01-01

    Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.

  20. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    Science.gov (United States)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  1. A Lower Bound on the Capacity of the Noncentral Chi Channel with Applications to Soliton Amplitude Modulation

    CERN Document Server

    Shevchenko, Nikita A; Prilepsky, Jaroslaw E; Alvarado, Alex; Bayvel, Polina; Turitsyn, Sergei K

    2016-01-01

    The channel law for amplitude-modulated solitons transmitted through a nonlinear optical fibre with ideal distributed amplification and a receiver based on the nonlinear Fourier transform is a noncentral chi distribution with $2n$ degrees of freedom, where $n=2$ and $n=3$ correspond to the single- and dual-polarisation cases, respectively. In this paper, we study the capacity of this channel in bits per channel use, and develop a semi-analytic capacity lower bound for arbitrary $n$ and a Rayleigh input distribution. An asymptotic analysis of the bound is also presented, which shows that this lower bound grows logarithmically with signal-to-noise ratio (SNR), independently of the value of $n$. Numerical results for other input distributions are also provided. A half-Gaussian input distribution is shown to give larger rates than a Rayleigh input distribution for $n=1,2,3$. At an effective SNR of 30~dB, the obtained lower bounds are approximately 4 bit per channel use.

  2. Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral

    OpenAIRE

    Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren

    2015-01-01

    Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosyntheti...

  3. [Dose-dependent tazepam modulation of amplitude-temporal characteristics of thalamocortical responses and the constant potential of the sensorimotor cortex in rabbits at eye opening].

    Science.gov (United States)

    Shimko, I A; Fokin, V F

    2000-01-01

    The pronounced benzodiazepine (antiphobic) modulation of the amplitude-temporal parameters of different components of the thalamocortical responses (TCR) of the sensorimotor cortex is observed in rabbits in their early postnatal ontogeny. This modulation is of a dose-dependent character and is registered not after the injection of tazepam in a concentration of the "therapeutic tranquilizing window" but also in the psychotoxic plasma range. A gradual increase in blood tazepam concentration in a young rabbit pup is accompanied by the wave-like and differential decrease in the amplitude of the second and third positive (P2 and P3) and third negative (N3) TCR components, while the second negative (N2) and fourth positive (P4) components tend to a wave-like increase. The dose-dependent dynamics of tazepam modulation of the P2, P3, and N3 latencies is characterized by a wave-like and differential increase. The latency of P4 decreases slightly and that of the N2 increases with a low degree of significance. The selective dynamics of benzodiazepine modulation appears to be related with peculiarities of the electrogenesis of each of the components. The dose-dependent modulation of the level of cortical DC potential is of the same character as the respective amplitude changes in P2, P3, and N3, but its fluctiatuons are more pronounced.

  4. Eliminating the effect of phase shift between injection current and amplitude modulation in DFB-LD WMS for high-precision measurement.

    Science.gov (United States)

    Wei, Wei; Chang, Jun; Liu, Yuanyuan; Chen, Xi; Liu, Zhaojun; Qin, Zengguang; Wang, Qiang

    2016-05-01

    Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.

  5. Investigation of the effects of continuous-wave, pulse- and amplitude-modulated microwaves on single excitable cells of Chara corallina.

    Science.gov (United States)

    Liu, L M; Garber, F; Cleary, S F

    1982-01-01

    Single internodal excitable cells of Chara corallina were exposed to CW, pulse-modulated and sinusoidally modulated S-band microwave fields in a temperature-controlled waveguide exposure chamber. All electrical measurements were made external to the waveguide (ie, under no impressed microwave field). The dependent variables measured before, during, and after exposure to the S-band microwave fields included: resting potential, amplitude of the action potential, rise and decay time of the action potential, conduction velocity, and excitability. Cells maintained at 22 +/- 0.1 degrees C during exposure showed no consistent or statistically significant microwave-dependent alterations in any of the dependent variables.

  6. Cloud Atlas: Discovery of Patchy Clouds and High-amplitude Rotational Modulations In a Young, Extremely Red L-type Brown Dwarf

    CERN Document Server

    Lew, Ben W P; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J; Karalidi, Theodora; Yang, Hao; Marley, Mark S; Cowan, N B; Bedin,; R., L; Metchev, Stanimir A; Radigan, Jacqueline; Lowrance, Patrick J

    2016-01-01

    Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-Ks=2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy we find a best-fit rotational period (13.20$\\pm$0.14 hours) with a larger amplitude at 1.1 micron than at 1.7 micron. This is the third largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentativ...

  7. Low-amplitude rotational modulation rather than pulsations in the CoRoT B-type supergiant HD 46769

    Science.gov (United States)

    Aerts, C.; Simón-Díaz, S.; Catala, C.; Neiner, C.; Briquet, M.; Castro, N.; Schmid, V. S.; Scardia, M.; Rainer, M.; Poretti, E.; Pápics, P. I.; Degroote, P.; Bloemen, S.; Østensen, R. H.; Auvergne, M.; Baglin, A.; Baudin, F.; Michel, E.; Samadi, R.

    2013-09-01

    Aims: We aim to detect and interpret photometric and spectroscopic variability of the bright CoRoT B-type supergiant target HD 46769 (V = 5.79). We also attempt to detect a magnetic field in the target. Methods: We analyse a 23-day oversampled CoRoT light curve after detrending and spectroscopic follow-up data using standard Fourier analysis and phase dispersion minimization methods. We determine the fundamental parameters of the star, as well as its abundances from the most prominent spectral lines. We perform a Monte Carlo analysis of spectropolarimetric data to obtain an upper limit of the polar magnetic field, assuming a dipole field. Results: In the CoRoT data, we detect a dominant period of 4.84 d with an amplitude of 87 ppm and some of its (sub-)multiples. Given the shape of the phase-folded light curve and the absence of binary motion, we interpret the dominant variability in terms of rotational modulation, with a rotation period of 9.69 d. Subtraction of the rotational modulation signal does not reveal any sign of pulsations. Our results are consistent with the absence of variability in the Hipparcos light curve. The spectroscopy leads to a projected rotational velocity of 72 ± 2 km s-1 and does not reveal periodic variability or the need to invoke macroturbulent line broadening. No signature of a magnetic field is detected in our data. A field stronger than ~500 G at the poles can be excluded, unless the possible non-detected field were more complex than dipolar. Conclusions: The absence of pulsations and macroturbulence of this evolved B-type supergiant is placed into the context of instability computations and of observed variability of evolved B-type stars. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO

  8. Optical amplitude and phase modulation dynamics at the single-photon level in a quantum dot ridge waveguide

    CERN Document Server

    Moody, Galan; Feldman, Ari; Harvey, Todd; Mirin, Richard P; Silverman, Kevin L

    2016-01-01

    The amplitude and phase of a material's nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-f...

  9. Song Amplitude of Rival Males Modulates the Territorial Behaviour of Great Tits During the Fertile Period of Their Mates

    NARCIS (Netherlands)

    Ritschard, M.; Oers, van K.; Naguib, M.; Brumm, H.

    2012-01-01

    Bird song is a widely used model in the study of sexual selection. Variation in the expression of sexually selected traits is thought to reflect variation in male genetic and/or phenotypic quality. Vocal amplitude is a song parameter that has received little attention in the context of sexual select

  10. Amplitude modulated, by M1, Earth's oscillating (T = 1 day) electric field triggered by K1 tidal waves. Its relation to the occurrence time of large EQs

    CERN Document Server

    Thanassoulas, C; Verveniotis, G

    2010-01-01

    Starting from the observation that quite often the Earth's oscillating electric field varies in amplitude, a mechanism is postulated that accounts for these observations. That mechanism is the piezoelectric one driven by the M1 and K1 tidal components. It is demonstrated how the system: piezoelectricity triggered in the lithosphere - M1 and K1 tidal components is activated and produces the amplitude modulated Earth's oscillating electric field. This procedure is linked to the strain load conditions met in the seismogenic area before the occurrence of a large EQ. Peaks of the oscillating Earth's electric field are tightly connected to the M1 peak tidal component and to the timing of the occurrence of large EQs. Typical examples from real recordings of the Earth's oscillating electric field, recorded by the ATH (Greece) monitoring site, are given in order to verify the postulated detailed piezoelectric mechanism.

  11. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    Science.gov (United States)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  12. The content of lexical stimuli and self-reported physiological state modulate error-related negativity amplitude.

    Science.gov (United States)

    Benau, Erik M; Moelter, Stephen T

    2016-09-01

    The Error-Related Negativity (ERN) and Correct-Response Negativity (CRN) are brief event-related potential (ERP) components-elicited after the commission of a response-associated with motivation, emotion, and affect. The Error Positivity (Pe) typically appears after the ERN, and corresponds to awareness of having committed an error. Although motivation has long been established as an important factor in the expression and morphology of the ERN, physiological state has rarely been explored as a variable in these investigations. In the present study, we investigated whether self-reported physiological state (SRPS; wakefulness, hunger, or thirst) corresponds with ERN amplitude and type of lexical stimuli. Participants completed a SRPS questionnaire and then completed a speeded Lexical Decision Task with words and pseudowords that were either food-related or neutral. Though similar in frequency and length, food-related stimuli elicited increased accuracy, faster errors, and generated a larger ERN and smaller CRN than neutral words. Self-reported thirst correlated with improved accuracy and smaller ERN and CRN amplitudes. The Pe and Pc (correct positivity) were not impacted by physiological state or by stimulus content. The results indicate that physiological state and manipulations of lexical content may serve as important avenues for future research. Future studies that apply more sensitive measures of physiological and motivational state (e.g., biomarkers for satiety) or direct manipulations of satiety may be a useful technique for future research into response monitoring. PMID:27129675

  13. Self-similarities in the frequency-amplitude space of a loss-modulated CO$_2$ laser

    OpenAIRE

    Bonatto, Cristian; Garreau, Jean Claude; Gallas, Jason A. C.

    2005-01-01

    We show the standard two-level continuous-time model of loss-modulated CO$_2$ lasers to display the same regular network of self-similar stability islands known so far to be typically present only in discrete-time models based on mappings. For class B laser models our results suggest that, more than just convenient surrogates, discrete mappings in fact could be isomorphic to continuous flows.

  14. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization

    Science.gov (United States)

    Meyers, Stephen R.

    2015-12-01

    Cyclostratigraphic analysis has produced fundamental advancements in our understanding of climate change, paleoceanography, celestial mechanics, geochronology, and chronostratigraphy. Of central importance to this success has been the development of astrochronologic testing methods for the evaluation of astronomical-climate influence on sedimentation. Most pre-Pleistocene astrochronologic testing methods fall into one of two categories: (1) those that test for expected amplitude or frequency modulation imposed by an astronomical signal or (2) those that test for bedding hierarchies (frequency ratios or bundling) that are predicted by the dominant astronomical periods. In this study, a statistical methodology for combining these complementary approaches is developed, which identifies the time scale that simultaneously optimizes eccentricity amplitude modulation of the precession band, and the concentration of power at precession (carrier) and eccentricity (modulator) frequencies. The technique is demonstrated to have high statistical power—it is capable of identifying astronomical cycles when present—under a wide range of conditions, and its application to synthetic models illuminates a range of potential pitfalls that are encountered when more conventional nonoptimization approaches are used. The method is also independent from the interpretation of power spectrum peak significance, resolving previous concerns regarding appropriate confidence level assessment and "multiple testing." As two case studies, the algorithm is applied to Miocene strata of Ocean Drilling Program (ODP) Site 926B, and the Paleocene-Eocene Thermal Maximum-Eocene Thermal Maximum 2 interval at ODP Site 1262. The results verify published cyclostratigraphic interpretations and support the theoretical astronomical solutions. This new astrochronologic testing approach can be used to evaluate cyclostratigraphic records spanning the Phanerozoic and potentially beyond.

  15. Arsenic toxicity in the water weed Wolffia arrhiza measured using Pulse Amplitude Modulation Fluorometry (PAM) measurements of photosynthesis.

    Science.gov (United States)

    Ritchie, Raymond J; Mekjinda, Nutsara

    2016-10-01

    Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0). PMID:27318559

  16. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  17. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    Science.gov (United States)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  18. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing.

    Science.gov (United States)

    Suzuki, Shinya; Nakajima, Tsuyoshi; Futatsubashi, Genki; Mezzarane, Rinaldo A; Ohtsuka, Hiroyuki; Ohki, Yukari; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-08-01

    Electrical stimulation of cutaneous nerves innervating heteronymous limbs (the arms or contralateral leg) modifies the excitability of soleus Hoffmann (H-) reflexes. The differences in the sensitivities of the H-reflex pathway to cutaneous afferents from different limbs and their modulation during the performance of motor tasks (i.e., standing and walking) are not fully understood. In the present study, we investigated changes in soleus H-reflex amplitudes induced by electrical stimulation of peripheral nerves. Selected targets for conditioning stimulation included the superficial peroneal nerve, which innervates the foot dorsum in the contralateral ankle (cSP), and the superficial radial nerve, which innervates the dorsum of the hand in the ipsilateral (iSR) or contralateral wrist (cSR). Stimulation and subsequent reflex assessment took place during the standing and early-stance phase of treadmill walking in ten healthy subjects. Cutaneous stimulation produced long-latency inhibition (conditioning-test interval of ~100 ms) of the H-reflex during the early-stance phase of walking, and the inhibition was stronger following cSP stimulation compared with iSR or cSR stimulation. In contrast, although similar conditioning stimulation significantly facilitated the H-reflex during standing, this effect remained constant irrespective of the different conditioning sites. These findings suggest that cutaneous inputs from the arms and contralateral leg had reversible effects on the H-reflex amplitudes, including inhibitions with different sensitivities during the early-stance phase of walking and facilitation during standing. Furthermore, the differential sensitivities of the H-reflex modulations were expressed only during walking when the locations of the afferent inputs were functionally relevant. PMID:27030502

  19. Distortion cancellation of frequency converted pulses with simple linear signal processing and application to frequency modulation to amplitude modulation conversion in high power lasers.

    Science.gov (United States)

    Vidal, Sébastien; Luce, Jacques; Hocquet, Steve; Gouédard, Claude; Calvet, Pierre; Penninckx, Denis

    2012-08-20

    It is known that a linear filter may be easily compensated with its inverse transfer function. However, it was shown that this approach could also be valid even for such a complex nonlinear system as frequency conversion. As a matter of fact, it is possible to at least partly precompensate for distortions occurring within, or even downstream from, frequency conversion crystals with a simple linear optical filter set upstream. In this paper, we give the theoretical background and derive the optimum precompensation filter from simple analytical formulas even in the case of saturation. We first show the relevance of our approach for Gaussian pulses: the pulse may be short or not and chirped or not, and the same linear precompensation filter may be used as long as saturation is not reached. We then study the case of phase-modulated pulses, as can be found on high power lasers such as lasers for fusion. We show that previous experimental results are in perfect agreement with these calculations. Finally, justified by our simple analytical formulas, we present a rigorous parametrical study giving the distortion reduction for any second and third harmonic generation system in the case of phase-modulated pulses. PMID:22907009

  20. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry.

    Science.gov (United States)

    Stibal, Marek; Elster, Josef; Sabacká, Marie; Kastovská, Klára

    2007-02-01

    The seasonal and diel dynamics of the physiological state and photosynthetic activity of the snow alga Chlamydomonas nivalis were investigated in a snowfield in Svalbard. The snow surface represents an environment with very high irradiation intensities along with stable low temperatures close to freezing point. Photosynthetic activity was measured using pulse amplitude modulation fluorometry. Three types of cell (green biflagellate vegetative cells, orange spores clustered by means of mucilaginous sheaths, and purple spores with thick cell walls) were found, all of them photosynthetically active. The pH of snow ranged between 5.0 and 7.5, and the conductivity ranged between 5 and 75 microS cm(-1). The temperature of snow was stable (-0.1 to +0.1 degrees C), and the incident radiation values ranged from 11 to 1500 micromol photons m(-2) s(-1). The photosynthetic activity had seasonal and diel dynamics. The Fv/Fm values ranged between 0.4 and 0.7, and generally declined over the course of the season. A dynamic response of Fv/Fm to the irradiance was recorded. According to the saturating photon fluence values Ek, the algae may have obtained saturating light as deep as 3 cm in the snow when there were higher-light conditions, whereas they were undersaturated at prevalent low light even if on the surface. PMID:17313577

  1. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO2) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO2. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO2 substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM

  2. Examination of humidity effects on measured thickness and interfacial phenomena of exfoliated graphene on silicon dioxide via amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jinkins, K.; Farina, L.; Wu, Y., E-mail: wuy@uwplatt.edu [Engineering Physics Department, University of Wisconsin-Platteville, 1 University Plaza, Platteville, Wisconsin 53818 (United States); Camacho, J. [Mechanical Engineering Department, University of Wisconsin-Platteville, 1 University Plaza, Platteville, Wisconsin 53818 (United States)

    2015-12-14

    The properties of Few-Layer Graphene (FLG) change with the number of layers and Amplitude Modulation (AM) Atomic Force Microscopy (AFM) is commonly used to determine the thickness of FLG. However, AFM measurements have been shown to be sensitive to environmental conditions such as relative humidity (RH). In the present study, AM-AFM is used to measure the thickness and loss tangent of exfoliated graphene on silicon dioxide (SiO{sub 2}) as RH is increased from 10% to 80%. We show that the measured thickness of graphene is dependent on RH. The loss tangent values of the graphene and oxide regions are both affected by humidity, with generally higher loss tangent for graphene than SiO{sub 2}. As RH increases, we observe the loss tangent of both materials approaches the same value. We hypothesize that there is a layer of water trapped between the graphene and SiO{sub 2} substrate to explain this observation. Using this interpretation, the loss tangent images also indicate movement and change in this trapped water layer as RH increases, which impacts the measured thickness of graphene using AM-AFM.

  3. 声纳前放模块幅度增益检测电路设计%Detection Circuit Design for Amplitude Gain of Sonar Pre-amplifier Module

    Institute of Scientific and Technical Information of China (English)

    温连峰; 李耀波; 曹黎明

    2016-01-01

    Amplitude gain is one of the most important performance indexes of pre-amplifier module .Amplitude gain is important for a sonar performance whether it is normal or not .In order to improve the detection efficiency of the amplitude gain of the pre-amplifier module ,a measurement circuit is designed based on modern electronic measurement technology and micro controller .The detection circuit can automatically realize the measurement of the amplitude gain of the pre-amplifier module and the measurement accuracy can meet the requirements ,so as to shorten the testing time and improve the efficiency of equipment maintenance and support .%幅度增益是声纳前置放大模块最重要的性能指标之一,其正常与否对声纳装备整体性能至关重要。为了提高前放模块幅度增益的检测效率,基于现代电子测量技术和微控制器设计了一种幅度增益测量电路。该检测电路能够自动实现前放模块的幅度增益技术指标的检测且测量精度满足要求,从而缩短测试诊断时间,提高了装备维修保障效率。

  4. Ca(2+)-activation kinetics modulate successive puff/spark amplitude, duration and inter-event-interval correlations in a Langevin model of stochastic Ca(2+) release.

    Science.gov (United States)

    Wang, Xiao; Hao, Yan; Weinberg, Seth H; Smith, Gregory D

    2015-06-01

    Through theoretical analysis of the statistics of stochastic calcium (Ca(2+)) release (i.e., the amplitude, duration and inter-event interval of simulated Ca(2+) puffs and sparks), we show that a Langevin description of the collective gating of Ca(2+) channels may be a good approximation to the corresponding Markov chain model when the number of Ca(2+) channels per Ca(2+) release unit (CaRU) is in the physiological range. The Langevin description of stochastic Ca(2+) release facilitates our investigation of correlations between successive puff/spark amplitudes, durations and inter-spark intervals, and how such puff/spark statistics depend on the number of channels per release site and the kinetics of Ca(2+)-mediated inactivation of open channels. When Ca(2+) inactivation/de-inactivation rates are intermediate-i.e., the termination of Ca(2+) puff/sparks is caused by an increase in the number of inactivated channels-the correlation between successive puff/spark amplitudes is negative, while the correlations between puff/spark amplitudes and the duration of the preceding or subsequent inter-spark interval are positive. These correlations are significantly reduced or change signs when inactivation/de-inactivation rates are extreme (slow or fast) and puff/sparks terminate via stochastic attrition. PMID:25843352

  5. Design and development of amplitude and phase measurement of RF parameter with digital I-Q De-modulator (DIQDM) technique using PXI system

    International Nuclear Information System (INIS)

    ITER-India, the Indian domestic agency for ITER project, is responsible to deliver one of the packages, called ICH and CD Radio Frequency Power Sources (RFPS). Total 20 MW of RF power is required for ITER plasma from RFPS system using 8 nos. of identical sources. Each power source is capable to deliver 2.5 MW @ 35 to 65 MHz frequency range with a load condition up to VSWR 2:1 and any reflection coefficient of phase angle. Each source should be operated independently as well as in slave mode with synchronization of central plant control system of ITER. To fulfill the desired specifications of constant power and fixed relative phase, the real time control loop is required. The real time control loops would be used for maintaining the Amplitude and Phase as requested from central plant control system. Since, there are methods available for the measurement of amplitude and phase but the accuracy and linearity of the measurement is one of the important parameters, thus after survey and analysis ITER-India has chosen a digital I-Q demodulator based technique for amplitude and phase detection. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique using PXI system is described in detail, with various test results with dummy signals and low power RF systems

  6. Quadrature amplitude modulation from basics to adaptive trellis-coded turbo-equalised and space-time coded OFDM CDMA and MC-CDMA systems

    CERN Document Server

    Hanzo, Lajos

    2004-01-01

    "Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding." "In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers."--Jacket.

  7. Speech Coding Strategy Based on Amplitude and Frequency Modulation for Cochlear Implants%基于幅频调制的电子耳蜗语音编码策略

    Institute of Scientific and Technical Information of China (English)

    刘洪运; 王卫东

    2011-01-01

    To enhance speech recognition in noise, as well as tone recognition, we presented a new kind of speech coding strategy, called one-octave wavelet transform zero-crossing stimulation (WTZS) , for cochlear implants based on amplitude and frequency modulation. We selected 15 volunteers with normal hearing ability to carry out hearing simulation experiments by picking up the amplitude ( amplitude modulation, AM) , zero-crossings ( frequency modulation,FM) and gradiertt parameters from processed speech signal in the domain of one-octave wavelet transform to synthesize the stimulating pulstile series. The experimental results demonstrated that the phonetic recognition in quiet surroundings with amplitude modulation only strategy (CIS) is similar to that of amplitude and frequency modulations strategies (FAME and WTZS) , while the tone perception of CIS is inferior to that of FAME and WTZS strategies. However, in noisy environment, the phonetic recogrnition, tone perception, as well as sentence recognition of WTZS strategy are better than those of CIS and FAME strategies. WTZS strategy, utilizing amplitude(AM). zerocrassings (FM) and gradient parameters to synthesize stimulus, can enhance the phonetic and tonal language recognition in noise environment effectively, and could be used in cochlear implant system for speech processor design after arithmetic optimization.%本文提出了一种基于幅度频率调制的电子耳蜗语音编码新策略即倍频程小波过零刺激(WTZS)方案,以提高噪声环境下的语音和语调语音的识别能力.通过提取语音倍频程小波变换域信号的幅度(AM)和过零点(FM)经梯度参数调整后合成刺激脉冲,选取15名听觉正常的志愿者进行听觉仿真试验.结果表明安静环境下连续间隔采样(CIS)、幅频调制(FAME)和WTZS方案的语音识别率差别不大,CIS方案的语调识别能力稍差.WTZS方案在加噪环境下的语音、语调及句子的识别能力要优于CIS和FAME语音

  8. Interpreting the large amplitude X-ray variation of GRS 1915+105 and IGR J17091-3624 as modulations of an accretion disc

    CERN Document Server

    Pahari, Mayukh; Mukherjee, Arunava; Yadav, J S; Pandey, S K

    2013-01-01

    Using the flux resolved spectroscopy for the first time, we analyse the RXTE/PCA data of the black hole X-ray binaries GRS 1915+105 and IGR J17091-3624, when both sources show large amplitude, quasi-regular oscillations in 2.0-60.0 keV X-ray light curves. For different observations, we extract spectra during the peak (spectrally soft) and dip (spectrally hard) intervals of the oscillation, and find that their spectra are phenomenologically complex, requiring at least two distinct spectral components. Besides a thermal Comptonization component, we find that the disc emission is better modelled by an index-free multicolour disc blackbody component (p-free disc model) rather than that from a standard accretion disc. While the peak and dip spectra are complex, remarkably, their difference spectra constructed by treating dip spectra as the background spectra of the peak spectra, can be modelled as a single p-free disc component. Moreover, the variability at different time-scales and energy bands of the peak flux l...

  9. 11 × 5 × 9.3Gb/s WDM-CAP-PON based on optical single-side band multi-level multi-band carrier-less amplitude and phase modulation with direct detection.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Li, Fan; Chi, Nan; Dong, Ze; Li, Xinying

    2013-08-12

    We propose and demonstrate a novel WDM-CAP-PON based on optical single-side band (OSSB) multi-level multi-band carrier-less amplitude and phase modulation (MM-CAP). To enable high-speed transmission with simplified optical network unit (ONU)-side digital signal processing, 4-level 5 sub-bands CAP-16 is used here, which is generated by the digital to analogue converter (DAC). Optical single-side band (OSSB) technology is applied to extend the transmission distance against the spectrum fading effect. As a proof of concept, the experiment successfully demonstrates 11 WDM channels, 55 sub-bands, for 55 users with 9.3-Gb/s per user (after removing 7% overhead for forward error correction (FEC)) in the downstream over 40-km SMF. PMID:23938798

  10. Amplitude mediated chimera states

    OpenAIRE

    Sethia, Gautam C.; Sen, Abhijit; Johnston, George L.

    2013-01-01

    We investigate the possibility of obtaining chimera state solutions of the non-local Complex Ginzburg-Landau Equation (NLCGLE) in the strong coupling limit when it is important to retain amplitude variations. Our numerical studies reveal the existence of a variety of amplitude mediated chimera states (including stationary and non-stationary two cluster chimera states), that display intermittent emergence and decay of amplitude dips in their phase incoherent regions. The existence regions of t...

  11. Periods and Feynman amplitudes

    CERN Document Server

    Brown, Francis

    2016-01-01

    Feynman amplitudes in perturbation theory form the basis for most predictions in particle collider experiments. The mathematical quantities which occur as amplitudes include values of the Riemann zeta function and relate to fundamental objects in number theory and algebraic geometry. This talk reviews some of the recent developments in this field, and explains how new ideas from algebraic geometry have led to much progress in our understanding of amplitudes. In particular, the idea that certain transcendental numbers, such as $\\pi$, can be viewed as a representation of a group, provides a powerful framework to study amplitudes which reveals many hidden structures.

  12. Accurate Period Approximation for Any Simple Pendulum Amplitude

    Institute of Scientific and Technical Information of China (English)

    XUE De-Sheng; ZHOU Zhao; GAO Mei-Zhen

    2012-01-01

    Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02% is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.%Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.

  13. Logarithmic torus amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Michael [Physikalisches Institut, University of Bonn, Nussallee 12, D-53115 Bonn (Germany); Gaberdiel, Matthias R [Institut fuer Theoretische Physik, ETH Zuerich, ETH-Hoenggerberg, 8093 Zurich (Switzerland)

    2006-02-24

    For the example of the logarithmic triplet theory at c = -2, the chiral vacuum torus amplitudes are analysed. It is found that the space of these torus amplitudes is spanned by the characters of the irreducible representations, as well as a function that can be associated with the logarithmic extension of the vacuum representation. A few implications and generalizations of this result are discussed.

  14. Amplitudes, acquisition and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bloor, Robert

    1998-12-31

    Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.

  15. Homodyne Detection of Distance and Velocity by Chirped-Amplitude Modulated Lidar%啁啾调幅激光雷达对距离和速度的零差探测

    Institute of Scientific and Technical Information of China (English)

    于啸; 洪光烈; 凌元; 舒嵘

    2011-01-01

    构建了一种用线性调频信号去调制激光振幅的激光相干雷达实验系统.系统使用窄线宽激光器、马赫-曾德尔(M-Z)幅度调制器以及光纤零差光路,利用直接数字合成(DDS)技术所生成的啁啾信号对激光振幅进行调制,完成了对目标靶运动速度与距离的同时测量,对速度距离分辨率和误差进行了测试和分析,对信噪比(SNR)与系统探测能力的关系进行了研究.实验结果表明该系统可以达到毫米每秒的测速精度和厘米级的测距精度,探测灵敏度优于0.1 nW.%A system of coherent ladar which is based on chirp amplitude modulation is built . The system is made up of narrow-line-width laser, Mach-Zehnder intensity modulator, and fiber homodyne detection optics. The measurement of velocity and distance of the target is completed based on chirp signal generated by direct digital synthesis(DDS), both the resolution and error of velocity and range are measured and analyzed, and research on relation between signal-to-noise ratio (SNR) and system detection power is also completed. Experimental data indicates that velocity accuracy reaches mm/s, range accuracy reaches cm and sensitivity is better than 0.1 nW.

  16. Correlation of amplitude modulation to inflow characteristics

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Bertagnolio, Franck; Fischer, Andreas;

    2014-01-01

    new 38.8m test blade for a 2MW NM80 turbine was manufactured and equipped with a massive instrumentation comprising flush mounted surface microphones, pressure taps and five hole pitot tubes. The correlation of the spectra from the surface microphones and the measured inflow angle (IA) confirmed the...

  17. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    International Nuclear Information System (INIS)

    The problem of the production of extended (∼1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2–0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (∼100 ns), maintains the electron density at a level ne = (3–5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (∼0.5 eV) and a long lifetime (∼1 ms), which are produced upon cessation of the laser pulse. (extreme light fields and their applications)

  18. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    Science.gov (United States)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  19. An airborne amplitude-modulated 1.57 μm differential laser absorption spectrometry: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range

    Directory of Open Access Journals (Sweden)

    O. Uchino

    2012-07-01

    Full Text Available Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (q and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometry (LAS. The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on differential absorption optical depth (Δτ measurements. A high correlation coefficient (R of 0.99 between Δτ observed by LAS and Δτ calculated from in-situ measurements of CO2 was obtained. The averaged difference in q obtained from LAS (qLAS and validation data (qval was within 1.5 ppm for all spiral measurements. A significant profile was observed for both qLAS and qval, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where CO2 and aerosol are highly distributed in the lower atmosphere in the winter, the difference of qLAS to qval is −1.5 ppm, and evaluated qLAS is in agreement with qval within the measurement precision of 2.4 ppm (1σ.

  20. Radiation environment effects of amplitude modulation wave on a certain radio fuze%无线电引信调幅波电磁辐射环境效应研究

    Institute of Scientific and Technical Information of China (English)

    陈亚洲; 程二威; 费支强; 高磊

    2011-01-01

    To investigate the elecromagnetic environment effects of the amplitude modulation wave on radio fuze,the mixing theory and the output signal character of high frequency circuit are analyzed,and the problems of waveform modulate are resolved.The modulate waveform expression and the radio fuze radiation electromagnetic environment is established.The experiment is done to find out the threshold field intensity for accidental explosion and the variable rules of the radio fuze.The conclusions show that when radiation frequency is appressed with the vibration frequency,the threshold field intensity is less than 10V/m.With the frequency deviation increasing,the threshold field intensity becomes larger.The electronic components of the radio fuze is not destroyed.%为了研究调幅波对无线电引信的电磁环境效应,分析了无线电引信混频原理及高频电路输出信号特征,解决了调幅波的波形调制问题,建立了辐照调幅波的波形表达式,形成了无线电引信辐照电磁环境,探索了不同频率调幅波对引信的意外发火场强干扰阈值及其变化规律。结果表明:辐照频率在引信本振频率外一定范围内引信误炸干扰阈值低于10V/m,随着辐照频率与引信本振频率偏移量增加误炸干扰阈值呈增大趋势;调幅波辐照不会对引信电子部件产生硬损伤,也不会导致引信瞎火。

  1. Protostring Scattering Amplitudes

    CERN Document Server

    Thorn, Charles B

    2016-01-01

    We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...

  2. Multilevel Modulation formats for Optical Communication

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee

    2008-01-01

    This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...

  3. Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; de Lima, H Pedroso; Rae, T D; Sachrajda, C T; Samways, B

    2010-01-01

    We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.

  4. Periods and Superstring Amplitudes

    CERN Document Server

    Stieberger, S

    2016-01-01

    Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...

  5. Broadband metasurface holograms: toward complete phase and amplitude engineering

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-09-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.

  6. Broadband metasurface holograms: toward complete phase and amplitude engineering.

    Science.gov (United States)

    Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2016-01-01

    As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography. PMID:27615519

  7. 振幅相位调制驻波光场中冷却原子的动力学局域%Dynamical investigation on momentum spread of two-level atom by an amplitude-modulated and phase-modulated standing light wave

    Institute of Scientific and Technical Information of China (English)

    王中结; 陆同兴; 路轶群

    2001-01-01

    In this paper the model of two-level atomic momentum spread in amplitude- and phase-modulated standing light wave was investigated. this is a nonlinear quantum pendulum driven by a time-dependent perterbation with two frequencies. This system shows chaotic behaviour in the classical limit. The system exists the characteristic of dynamical localization for the same parameters as that in the classical model correspoinding to it. Localization length of the system with two incommensurate perturbing frequency is much larger than that of the system with one perturbing frequency.%分析了二能级原子在振幅相位调制驻波场作用下动量扩散模型,这是一个双频参数激励的非线性量子单摆模型。这个系统在经典极限下表现混沌行为,在相同参数条件下,这个系统具有动力学局域特征,具有两个不可约频率扰动的系统的局域长度要比单个频率扰动时大得多。

  8. CHY formula and MHV amplitudes

    CERN Document Server

    Du, Yi-jian; Wu, Yong-shi

    2016-01-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.

  9. Hidden Beauty in Multiloop Amplitudes

    OpenAIRE

    Cachazo, Freddy(Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada); Spradlin, Marcus; Volovich, Anastasia

    2006-01-01

    Planar L-loop maximally helicity violating amplitudes in N = 4 supersymmetric Yang-Mills theory are believed to possess the remarkable property of satisfying iteration relations in L. We propose a simple new method for studying the iteration relations for four-particle amplitudes which involves the use of certain linear differential operators and eliminates the need to fully evaluate any loop integrals. We carry out this procedure in explicit detail for the two-loop amplitude and argue that t...

  10. Motivic amplitudes and cluster coordinates

    OpenAIRE

    J.K. Golden; Goncharov, A. B.; M. Spradlin; C. Vergu; Volovich, A.

    2014-01-01

    In this paper we study motivic amplitudes--objects which contain all of the essential mathematical content of scattering amplitudes in planar SYM theory in a completely canonical way, free from the ambiguities inherent in any attempt to choose particular functional representatives. We find that the cluster structure on the kinematic configuration space Conf_n(P^3) underlies the structure of motivic amplitudes. Specifically, we compute explicitly the coproduct of the two-loop seven-particle MH...

  11. Amplitude dependent closest tune approach

    CERN Document Server

    Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department

    2016-01-01

    Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

  12. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  13. Experimental generation of amplitude squeezed vector beams

    CERN Document Server

    Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-01-01

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.

  14. Finite Amplitude Electron Plasma Waves in a Cylindrical Waveguide

    DEFF Research Database (Denmark)

    Juul Rasmussen, Jens

    1978-01-01

    the long-time slow modulation of the wave amplitude. From this equation the amplitude-dependent frequency and wavenumber shifts are calculated, and it is found that the electron waves with short wavelengths are modulationally unstable with respect to long-wavelength, low-frequency perturbations......The nonlinear behaviour of the electron plasma wave propagating in a cylindrical plasma waveguide immersed in an infinite axial magnetic field is investigated using the Krylov-Bogoliubov-Mitropolsky perturbation method, by means of which is deduced the nonlinear Schrodinger equation governing...

  15. CHY formula and MHV amplitudes

    Science.gov (United States)

    Du, Yi-Jian; Teng, Fei; Wu, Yong-Shi

    2016-05-01

    In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl supports the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula produces the Parke-Taylor formula for MHV Yang-Mills amplitudes as well as the Hodges formula for MHV gravitational amplitudes, with an arbitrary number of external gluons/gravitons. This is achieved by developing techniques, in a manifestly Möbius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other ( n - 3)! - 1 solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes. Our results reveal a mysterious feature of the CHY formalism that in Yang-Mills and gravity theory, solutions of scattering equations, involving only external momenta, somehow know about the configuration of external polarizations of the scattering amplitudes.

  16. Teleporting Superpositions of Chiral Amplitudes

    CERN Document Server

    Maierle, C S; Harris, R A; Maierle, Christopher S.; Lidar, Daniel A.; Harris, Robert A.

    1998-01-01

    Chiral molecules may exist in superpositions of left- and right-handed states. We show how the amplitudes of such superpositions may be teleported to the polarization degrees of freedom of a photon. Two experimental schemes are proposed, one leading to perfect, the other to state-dependent teleportation. Both methods yield complete information about the amplitudes. This is the first explicit example of "inter-species" teleportation, where the amplitudes of the quantum superposition of one species are transferred at the end of the process to a different species. The latter is then easily accessible for measurement.

  17. The pulsed amplitude unit for the SLC

    International Nuclear Information System (INIS)

    There is a recurring requirement in the SLC for the control of devices such as magnets, phase shifters, and attenuators on a beam-by-beam basis. The Pulsed Amplitude Unit (PAU) is a single width CAMAC module developed for this purpose. It provides digitally programmed analog output voltages on a beam-by-beam basis. Up to 32 preprogrammed values of output voltage are available from the single analog output of the module, and any of these values can be associated with any of the 256 possible SLC beam definitions. A 12-bit Analog-to-Digital Converter (ADC) digitizes an analog input signal at the appropriate beam time and stores it in a buffer memory. This feature is normally used to monitor the response of the device being controlled by the PAU at each beam time. Initial application of the PAU is a part of the system that controls the output of Klystrons in the SLC. The PAU combines several different functions in a single module. In order to accommodate these functions in a single width CAMAC module, field programmed logic is used extensively. Field Programmable Logic Arrays, Programmed Array Logic, and a Field Programmable Logic Sequencer are employed

  18. Detection of Modulated Tones in Modulated Noise by Non-human Primates

    OpenAIRE

    Bohlen, Peter; Dylla, Margit; Timms, Courtney; Ramachandran, Ramnarayan

    2014-01-01

    In natural environments, many sounds are amplitude-modulated. Amplitude modulation is thought to be a signal that aids auditory object formation. A previous study of the detection of signals in noise found that when tones or noise were amplitude-modulated, the noise was a less effective masker, and detection thresholds for tones in noise were lowered. These results suggest that the detection of modulated signals in modulated noise would be enhanced. This paper describes the results of experim...

  19. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  20. Scattering Amplitudes in Gauge Theories

    CERN Document Server

    Schubert, Ulrich

    2014-01-01

    This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...

  1. Factorization of chiral string amplitudes

    Science.gov (United States)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  2. Factorization of Chiral String Amplitudes

    CERN Document Server

    Huang, Yu-tin; Yuan, Ellis Ye

    2016-01-01

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.

  3. Nonsinglet pentagons and NMHV amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Belitsky, A.V., E-mail: andrei.belitsky@asu.edu

    2015-07-15

    Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  4. Nonsinglet pentagons and NMHV amplitudes

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-07-01

    Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.

  5. Equal-Amplitude Optical Pulse Generation from a Rational Harmonic Mode-Locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    FENG Xin-Huan; YUAN Shu-Zhong; LI Yao; LIU Yan-Ge; KAI Gui-Yun; DONG Xiao-Yi

    2004-01-01

    A simple technique for the generation of equal-amplitude high repetition rate pulses from a rational harmonic mode-locked fibre ring laser is demonstrated. The principle is based on the combination of the nonlinear characteristics of the modulator and the effect of rational harmonic mode-locking. The two sources act on each other and the integrated effect eventually leads to the pulse amplitude-equalization. We obtain amplitude-equalized short pulses up to the fifth-order rational harmonic mode-locking with an optimum bias level and modulation depth of the modulator, which demonstrates the efficiency of this method.

  6. Employing helicity amplitudes for resummation

    Science.gov (United States)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.

    2016-05-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d -dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for p p →H +0 , 1, 2 jets, p p →W /Z /γ +0 , 1, 2 jets, and p p →2 , 3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  7. Discontinuity formulas for multiparticle amplitudes

    International Nuclear Information System (INIS)

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations

  8. Employing helicity amplitudes for resummation

    International Nuclear Information System (INIS)

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for pp → H+0,1,2 jets, pp → W/Z/γ+0,1,2 jets, and pp → 2,3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  9. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  10. Large amplitude oscillatory elongation flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia

    2008-01-01

    + Lambda[1 - cos( 2 pi Omega(epsilon) over dot(0)t)] where epsilon is the Hencky strain, (epsilon) over dot(0) is a constant elongational rate for the base elongational flow, Lambda the strain amplitude ( Lambda >= 0), and Omega the strain frequency. A narrow molecular mass distribution linear polystyrene...

  11. Discontinuity formulas for multiparticle amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Stapp, H.P.

    1976-03-01

    It is shown how discontinuity formulas for multiparticle scattering amplitudes are derived from unitarity and analyticity. The assumed analyticity property is the normal analytic structure, which was shown to be equivalent to the space-time macrocausality condition. The discontinuity formulas to be derived are the basis of multi-particle fixed-t dispersion relations.

  12. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (eiS) rather than imaginary-time e-S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  13. Extracting amplitudes from photoproduction data

    Science.gov (United States)

    Workman, R. L.

    2011-09-01

    We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).

  14. Gauge and Gravity Amplitude Relations

    CERN Document Server

    Carrasco, John Joseph M

    2015-01-01

    In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.

  15. Amplitude of Perturbations from Inflation

    OpenAIRE

    Parker, Leonard

    2007-01-01

    The observed power spectrum of the cosmic microwave background (CMB) is consistent with inflationary cosmology, which predicts a nearly scale-invariant power spectrum of quantum fluctuations of the inflaton field as they exit the Hubble horizon during inflation. Here we report a very significant correction (of several orders of magnitude) to the predicted amplitude of the power spectrum. This correction does not alter the near scale-invariance of the spectrum, but is crucial for testing predi...

  16. Photonic up-convertion of Carrierless Amplitude Phase signals for wireless communications on the Ka-band

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Kim, Hoon; Rodríguez Páez, Juan Sebastián;

    2016-01-01

    In this letter, the viability of wireless transmission of carrierless amplitude/phase (CAP) CAP modulation signals using photonic up-conversion with two free-running lasers is experimentally demonstrated......In this letter, the viability of wireless transmission of carrierless amplitude/phase (CAP) CAP modulation signals using photonic up-conversion with two free-running lasers is experimentally demonstrated...

  17. Statistical amplitude scale estimation for quantization-based watermarking

    Science.gov (United States)

    Shterev, Ivo D.; Lagendijk, Reginald L.; Heusdens, Richard

    2004-06-01

    Quantization-based watermarking schemes are vulnerable to amplitude scaling. Therefore the scaling factor has to be accounted for either at the encoder, or at the decoder, prior to watermark decoding. In this paper we derive the marginal probability density model for the watermarked and attacked data, when the attack channel consists of amplitude scaling followed by additive noise. The encoder is Quantization Index Modulation with Distortion Compensation. Based on this model we obtain two estimation procedures for the scale parameter. The first approach is based on Fourier Analysis of the probability density function. The estimation of the scaling parameter relies on the structure of the received data. The second approach that we obtain is the Maximum Likelihood estimator of the scaling factor. We study the performance of the estimation procedures theoretically and experimentally with real audio signals, and compare them to other well known approaches for amplitude scale estimation in the literature.

  18. Modulated electron bunch with amplitude front tilt in an undulator

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    In a previous paper we discussed the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. We demonstrated that the effect of aberration of light supplies the basis for understanding phenomena like the deflection of coherent undulator radiation by a dipole magnet. We illustrated this fact by examining the operation of an XFEL under the steady state assumption, that is a harmonic time dependence. We argued that in this particular case the microbunch front tilt has no objective meaning; in other words, there is no experiment that can discriminate whether an electron beam is endowed with a microbunch front tilt of not. In this paper we extend our considerations to time-dependent phenomena related with a finite electron bunch duration, or SASE mode of operation. We focus our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal coupling arises naturally in coherent undulator radiation behind the kick, because the deflection process involves the introduction of a tilt of the bunch profile. This tilt of the bunch profile leads to radiation pulse front tilt, which is equivalent to angular dispersion of the output radiation. We remark that our exact results can potentially be useful to developers of new generation XFEL codes for cross-checking their results.

  19. Amplitude modulated Lorentz force MEMS magnetometer with picotesla sensitivity

    Science.gov (United States)

    Kumar, Varun; Ramezany, Alireza; Mahdavi, Mohammad; Pourkamali, Siavash

    2016-10-01

    This paper demonstrates ultra-high sensitivities for a Lorentz force resonant MEMS magnetometer enabled by internal-thermal piezoresistive vibration amplification. A detailed model of the magneto-thermo-electro-mechanical internal amplification is described and is in good agreement with the experimental results. Internal amplification factors up to ~1620 times have been demonstrated by artificially boosting the effective quality factor of the resonator from 680 to 1.14  ×  106 by tuning the bias current. The increase in the resonator bias current in addition to the improvement in the quality factor of the device led to a sensitivity enhancement by ~2400 times. For a bias current of 7.245 mA, where the effective quality factor of the device and consequently the sensitivity is maximum (2.107 mV nT-1), the noise floor is measured to be as low as 2.8 pT (√Hz)-1. This is by far the most sensitive Lorentz force MEMS magnetometer demonstrated to date.

  20. Observing rapid quasi-wave ionospheric disturbance using amplitude charts

    Science.gov (United States)

    Kurkin, Vladimir; Laryunin, Oleg; Podlesnyi, Alexey

    Data from vertical (quasi-vertical) sounding are traditionally used for determining a number of ionospheric parameters such as critical frequencies of E and F layers, peaks of these layers, and for reconstructing electron density profiles. In this respect, radio sounding is not used to its full capacity. Modern ionosondes provide additional information encoded in ionospheric echoes, including information on reflected-signal amplitude. The time dependence of the amplitude-frequency characteristic of reflected signal has been named "amplitude chart" (A-chart). Ionosondes used by the ISTP SB RAS Geophysical Observatory for constructing A-charts employ the frequency-modulated continuous-wave (FMCW) signal in a range 1.3-15 MHz. One-minute sounding interval allows a more detailed study of dynamic processes in the ionosphere. The ionosonde has a direct digital synthesizer and direct sampling receiver without automatic gain control (AGC). The absence of AGC and the high dynamic range enable determination of the relative field strength at a receiving point and registration of relative long-term variations in reflected-signal amplitude over the entire range of operating frequencies of the ionosonde. We have revealed that the passage of travelling ionospheric disturbances (TID) along with height-frequency distortion modulates amplitude characteristics of signal. The characteristic depth of the modulation reaches 40 dB. The pronounced alternate vertical stripes typical for A-charts are likely to be associated with focusing properties of TID. In order to examine the space-time structure of TID able to induce such a focusing of the radio waves, we performed ray tracing simulations. We used geometrical-optics approximation, took magneto-ionic effects into account and prescribed electron density to be a stratified electron density profile on which an undulating disturbance was superimposed. This work was supported by the RFBR grant №14-05-00259-а.

  1. Full phase and amplitude control in computer-generated holography.

    Science.gov (United States)

    Fratz, Markus; Fischer, Peer; Giel, Dominik M

    2009-12-01

    We report what we believe to be the first realization of a computer-generated complex-valued hologram recorded in a single film of photoactive polymer. Complex-valued holograms give rise to a diffracted optical field with control over its amplitude and phase. The holograms are generated by a one-step direct laser writing process in which a spatial light modulator (SLM) is imaged onto a polymer film. Temporal modulation of the SLM during exposure controls both the strength of the induced birefringence and the orientation of the fast axis. We demonstrate that complex holograms can be used to impart arbitrary amplitude and phase profiles onto a beam and thereby open new possibilities in the control of optical beams. PMID:19953153

  2. Excitation and evolution of finite-amplitude plasma wave

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y. W.; Wu, Y. C., E-mail: yican.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, M. X. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany); Wu, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-12-15

    The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.

  3. Amplitude recruitment of cochlear potential

    Institute of Scientific and Technical Information of China (English)

    LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang

    2001-01-01

    Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.

  4. Direct modulation of 56 Gbps duobinary-4-PAM

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Vegas Olmos, Juan José; Mao, Bangning;

    2015-01-01

    This paper reports on the direct modulation of externally modulated laser and transmission through single mode fiber of a 56 Gbps duobinary-4-pulse amplitude modulation signal through 10 GHz class optics....

  5. Grassmannian geometry of scattering amplitudes

    CERN Document Server

    Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav

    2016-01-01

    Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...

  6. Study of the dead-time based on a unipolar modulating sinusoidal pulse amplitude modulation photovoltaic inverter%基于单极调制的正弦脉宽幅度调制光伏逆变器死区时间的研究

    Institute of Scientific and Technical Information of China (English)

    董志意; 崔玉龙; 卢冲; 李连玉

    2011-01-01

    According to the switching characteristics of a power switch, we propose a method of setting the deadtime during the phase conversion of a sinusoidal fundamental wave and study the effect of this dead-time on the output voltage wave of a sinusoidal pulseamplitude modulation (SPWM) photovoltaic inverter with unipolar modulation. It was found that the output voltage waveform was improved, and the output voltage waveform distortion was lower. The results were validated by Matlab/simulink.%针对死区时间对单极调制的正弦脉宽幅度调制(SPWM)光伏逆变器输出电压波形的影响,根据开关管的开关特性,提出了在正弦基波换相处设置死区时间的方法,并对死区时间的计算给出理论推导.最后通过Matlab/simulink仿真验证,该方法可以获得良好的输出电压波形,有效地降低输出电压波形失真度.

  7. Quantum Amplitude Amplification and Estimation

    CERN Document Server

    Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain

    2000-01-01

    Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...

  8. Optimisation of amplitude limiters for phase preservation based on the exact solution to degenerate four-wave mixing.

    Science.gov (United States)

    Bottrill, K R H; Hesketh, G; Parmigiani, F; Richardson, D J; Petropoulos, P

    2016-02-01

    Adopting an exact solution to four-wave mixing (FWM), wherein harmonic evolution is described by the sum of two Bessel functions, we identify two causes of amplitude to phase noise conversion which impair FWM saturation based amplitude regenerators: self-phase modulation (SPM) and Bessel-order mixing (BOM). By increasing the pump to signal power ratio, we may arbitrarily reduce their impact, realising a phase preserving amplitude regenerator. We demonstrate the technique by applying it to the regeneration of a 10 GBaud QPSK signal, achieving a high level of amplitude squeezing with minimal amplitude to phase noise conversion. PMID:26906847

  9. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  10. Covariant method for calculating helicity amplitudes

    International Nuclear Information System (INIS)

    We present an alternative approach for calculating helicity amplitudes for processes involving both massless and massive fermions. With this method one can easily obtain covariant expressions for the helicity amplitudes. The final expressions involve only four-vector products and are independent of the basis for γ matrices or specific form of the spinors. We use the method to obtain the helicity amplitudes for several processes involving top quark production. copyright 1996 The American Physical Society

  11. The Trace Formula of the Spinoriel Amplitude

    OpenAIRE

    Mekhfi, M.

    2009-01-01

    We re express the fermion's probability amplitude as a trace over spinor indices, which formulation surprisingly does not exist in literature. This formulation puts the probabilty amplitude and the the probabilty(squared amplitude) of a given process on equal footing at the compuational level and this is our principal motivation to write the present paper. We test the power of the trace formula in three applications: Calculation of the charge-current of fermions by using symbolic programs, wh...

  12. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  13. On the singularities of massive superstring amplitudes

    OpenAIRE

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: these can be defined only with massless external states. Consistent massive amplitudes require an off-shell formalism.

  14. Amplitude stabilization of the Green Bank Telescope fiber optics

    Science.gov (United States)

    White, Steven D.

    1998-07-01

    Commercially available analog fiber optic links provide the wide bandwidth, interference protection, and isolation for transmission of receiver IF bands to the digital processing equipment for the Green Bank Telescopes. An amplitude stability of 10(superscript -4) over periods of several minutes is required for continuum observations and baseline stability for broad spectral line observations. Gain variations of 1 percent were observed in a commercially available direct-modulated Fabry-Perot laser fiber optic link, when stress induced birefringence changes occurred in the fiber. Further investigation revealed gain variations were produced by the polarization dependence of responsivity in the photodetectors. Scale models of the cable wraps revealed that rotation of the laser with respect to the photodiode, due to certain cable wrap designs, is the dominant source of gain instabilities, and a clock spring-type cable wrap reduces this effect. However, the potential for gain variations due to vibration of the structure is not solved by careful cable wrap design. Therefore, an optical level control system is developed to ensure amplitude stability requirements are satisfied. In this system, consisting of a distributed feedback laser diode, a Mach Zehnder intensity modulator, and a high-powered photodetector, the microwave power gain is a function of laser power. The gain is stabilized by detecting the change in average photodetector current and modulating the laser diode bias with a correction voltage. With a second-order control loop, the gain changes resulting from the polarization sensitivity of the photodiode are corrected to better than 10(superscript -4).

  15. Phase and Amplitude Responses of Narrow-Band Optical Filter Measured by Microwave Network Analyzer

    OpenAIRE

    Wang, Hsi-Cheng; Ho, Keang-Po

    2006-01-01

    The phase and amplitude responses of a narrow-band optical filter are measured simultaneously using a microwave network analyzer. The measurement is based on an interferometric arrangement to split light into two paths and then combine them. In one of the two paths, a Mach-Zehnder modulator generates two tones without carrier and the narrow-band optical filter just passes through one of the tones. The temperature and environmental variations are removed by separated phase and amplitude averag...

  16. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy;

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic...

  17. Amplitude death in steadily forced chaotic systems

    Institute of Scientific and Technical Information of China (English)

    Feng Guo-Lin; He Wen-Ping

    2007-01-01

    Steady forcing can induce the amplitude death in chaotic systems, which generally exists in coupled dynamic systems. Using the Lorenz system as a typical example, this paper investigates the dynamic behaviours of the chaotic system with steady forcing numerically, and finds that amplitude death can occur as the strength of the steady forcing goes beyond a critical constant.

  18. Interlimb coupling strength scales with movement amplitude.

    Science.gov (United States)

    Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J

    2008-05-23

    The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.

  19. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n

  20. Consistent Off-Shell Tree String Amplitudes

    CERN Document Server

    Liccardo, A; Marotta, R

    1999-01-01

    We give a construction of off-shell tree bosonic string amplitudes, based on the operatorial formalism of the N-string Vertex, with three external massless states both for open and closed strings by requiring their being projective invariant. In particular our prescription leads, in the low-energy limit, to the three-gluon amplitude in the usual covariant gauge.

  1. Scattering Amplitudes via Algebraic Geometry Methods

    DEFF Research Database (Denmark)

    Søgaard, Mads

    Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...

  2. Investigation of the maximum amplitude increase from the Benjamin-Feir instability

    CERN Document Server

    Karjanto, N; Peterson, P

    2011-01-01

    The Nonlinear Schr\\"odinger (NLS) equation is used to model surface waves in wave tanks of hydrodynamic laboratories. Analysis of the linearized NLS equation shows that its harmonic solutions with a small amplitude modulation have a tendency to grow exponentially due to the so-called Benjamin-Feir instability. To investigate this growth in detail, we relate the linearized solution of the NLS equation to a fully nonlinear, exact solution, called soliton on finite background. As a result, we find that in the range of instability the maximum amplitude increase is finite and can be at most three times the initial amplitude.

  3. Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?

    Directory of Open Access Journals (Sweden)

    Eugen eDiesch

    2012-05-01

    Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.

  4. Full Complex Amplitude Digital Holograms:Design,Fabrication and Optical Characterization

    Institute of Scientific and Technical Information of China (English)

    Neto L G; Cardona P S P; Cirino G A; Mansanoc R D; Verdonck P

    2004-01-01

    Diffractive optical elements have a large number of industrial applications, such as beam shaping and optical filtering. Traditionally, these elements modulate the phase of the incoming light or its amplitude, but not both. To overcome this limitation, full complex-amplitude modulation diffractive optical elements were developed. Well-established integrated circuit fabrication steps were employed to fabricate the devices with high precision. Using this approach, the new element's optical performances are improved also for near field operations. With this device it is possible to obtain 100% efficient spatial filtering and low noise reconstructed images.

  5. Statistical performance of IF estimation of LFM signals with time-varying amplitude using the peak of WVD

    Institute of Scientific and Technical Information of China (English)

    Chen Guanghua; Ma Shiwei; Qin Tinghao; Wang Jian; Li Ming; Cao Jialin

    2005-01-01

    The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.

  6. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  7. Effects of strength training on mechanomyographic amplitude

    International Nuclear Information System (INIS)

    The aim of the present study was to determine if the patterns of mechanomyographic (MMG) amplitude across force would change with strength training. Twenty-two healthy men completed an 8-week strength training program. During three separate testing visits (pre-test, week 4, and week 8), the MMG signal was detected from the vastus lateralis as the subjects performed isometric step muscle actions of the leg extensors from 10–100% of maximal voluntary contraction (MVC). During pre-testing, the MMG amplitude increased linearly with force to 66% MVC and then plateaued. Conversely, weeks 4 and 8 demonstrated an increase in MMG amplitude up to ∼85% of the subject's original MVC before plateauing. Furthermore, seven of the ten force levels (30–60% and 80–100%) showed a significant decrease in mean MMG amplitude values after training, which consequently led to a decrease in the slope of the MMG amplitude/force relationship. The decreases in MMG amplitude at lower force levels are indicative of hypertrophy, since fewer motor units would be required to produce the same absolute force if the motor units increased in size. However, despite the clear changes in the mean values, analyses of individual subjects revealed that only 55% of the subjects demonstrated a significant decrease in the slope of the MMG amplitude/force relationship. (paper)

  8. Softness and Amplitudes' Positivity for Spinning Particles

    CERN Document Server

    Bellazzini, Brando

    2016-01-01

    We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than $O(p^4)$ do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.

  9. Quantifying phase-amplitude coupling in neuronal network oscillations.

    Science.gov (United States)

    Onslow, Angela C E; Bogacz, Rafal; Jones, Matthew W

    2011-03-01

    Neuroscience time series data from a range of techniques and species reveal complex, non-linear interactions between different frequencies of neuronal network oscillations within and across brain regions. Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with linearly covariant (within-frequency) activity to dynamically coordinate functionally related neuronal ensembles during behaviour. Such studies depend upon reliable quantification of cross-frequency coordination, and we compare the properties of three techniques used to measure phase-amplitude coupling (PAC)--Envelope-to-Signal Correlation (ESC), the Modulation Index (MI) and Cross-Frequency Coherence (CFC)--by standardizing their filtering algorithms and systematically assessing their robustness to noise and signal amplitude using artificial signals. Importantly, we also introduce a freely-downloadable method for estimating statistical significance of PAC, a step overlooked in the majority of published studies. We find that varying data length and noise levels leads to the three measures differentially detecting false positives or correctly identifying frequency bands of interaction; these conditions should therefore be taken into careful consideration when selecting PAC analyses. Finally, we demonstrate the utility of the three measures in quantifying PAC in local field potential data simultaneously recorded from rat hippocampus and prefrontal cortex, revealing a novel finding of prefrontal cortical theta phase modulating hippocampal gamma power. Future adaptations that allow detection of time-variant PAC should prove essential in deciphering the roles of cross-frequency coupling in mediating or reflecting nervous system function.

  10. Stora's fine notion of divergent amplitudes

    CERN Document Server

    Várilly, Joseph C

    2016-01-01

    Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.

  11. Amplitudes for left-handed strings

    CERN Document Server

    Siegel, W

    2015-01-01

    We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.

  12. Holomorphic Factorization of Superstring Scattering Amplitudes

    Institute of Scientific and Technical Information of China (English)

    Simon Davis

    2011-01-01

    The holomorphic factorization of the superstring partition function is verified at arbitrary genus.The evaluation of scattering amplitudes and the implications of genus-dependent estimates on the string coupling are given.

  13. Off-shell amplitudes in superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019 (India)

    2015-04-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for type II and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter in superstring perturbation theory. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Open string amplitudes of closed topological vertex

    International Nuclear Information System (INIS)

    The closed topological vertex is the simplest ‘off-strip’ case of non-compact toric Calabi–Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an ‘on-strip’ subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive q-difference equations for generating functions of special subsets of the amplitudes. These q-difference equations may be interpreted as the defining equation of a quantum mirror curve. (paper)

  15. Off-shell Amplitudes in Superstring Theory

    CERN Document Server

    Sen, Ashoke

    2014-01-01

    Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.

  16. Scattering Amplitudes via Algebraic Geometry Methods

    CERN Document Server

    Søgaard, Mads; Damgaard, Poul Henrik

    This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...

  17. Effective gluon interactions from superstring disk amplitudes

    International Nuclear Information System (INIS)

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full α' dependence. In this connection material for obtaining the α' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  18. Effective gluon interactions from superstring disk amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Oprisa, D.

    2006-05-15

    In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)

  19. Path integral evaluation of Dbrane amplitudes

    OpenAIRE

    Chaudhuri, Shyamoli

    1999-01-01

    We extend Polchinski's evaluation of the measure for the one-loop closed string path integral to open string tree amplitudes with boundaries and crosscaps embedded in Dbranes. We explain how the nonabelian limit of near-coincident Dbranes emerges in the path integral formalism. We give a careful path integral derivation of the cylinder amplitude including the modulus dependence of the volume of the conformal Killing group.

  20. Nucleon distribution amplitudes from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)

    2008-04-15

    We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)

  1. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  2. Employing Helicity Amplitudes for Resummation in SCET

    CERN Document Server

    Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J

    2016-01-01

    Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.

  3. Quartic amplitudes for Minkowski higher spin

    CERN Document Server

    Bengtsson, Anders K H

    2016-01-01

    The problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.

  4. Amplitudes for Multiple M5 Branes

    CERN Document Server

    Czech, Bartlomiej; Rozali, Moshe

    2011-01-01

    We study N=(n,0) super-Poincare invariant six-dimensional massless and five-dimensional massive on-shell amplitudes. We demonstrate that in six dimensions all possible three-point amplitudes involving tensor multiplets are uniquely determined by super-Poincare invariance and are necessarily embedded in gravitational theories. For non-gravitational amplitudes we consider instead five-dimensional massive amplitudes with N=(2,0) supersymmetry, corresponding to compactifying the theory on a circle. Super-Poincare invariance and constraints motivated by four-dimensional S-duality uniquely fix the amplitude as well as the participating multiplets. The on-shell degrees of freedom are shown to match those of the massive particle states that arise from self-dual strings wrapping a circle. Along the way we find interesting hints of a fermionic symmetry in the (2,0) theory, which accompanies the self-dual tensor gauge symmetry. We also discuss novel theories with (3,0) and (4,0) supersymmetry. The three-point amplitudes...

  5. Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar

    Directory of Open Access Journals (Sweden)

    John P. Godbaz

    2011-12-01

    Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.

  6. Scattering amplitudes in open superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver

    2011-07-15

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  7. Scattering amplitudes in open superstring theory

    International Nuclear Information System (INIS)

    The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all

  8. Amplitude scaling of asymmetry-induced transport

    International Nuclear Information System (INIS)

    Our initial experiments on asymmetry-induced transport in non-neutral plasmas found the radial particle flux at small radii to be proportional to φa2, where φa is the applied asymmetry amplitude. Other researchers, however, using the global expansion rate as a measure of the transport, have observed a φa1 scaling when the rigidity (the ratio of the axial bounce frequency to the azimuthal rotation frequency) is in the range one to ten. In an effort to resolve this discrepancy, we have extended our measurements to different radii and asymmetry frequencies. Although the results to date are generally in agreement with those previously reported (φa2 scaling at low asymmetry amplitudes falling off to a weaker scaling at higher amplitudes), we have observed some cases where the low amplitude scaling is closer to φa1. Both the φa2 and φa1 cases, however, have rigidities less than ten. Instead, we find that the φa1 cases are characterized by an induced flux that is comparable in magnitude but opposite in sign to the background flux. This suggests that the mixing of applied and background asymmetries plays an important role in determining the amplitude scaling of this transport

  9. Evaluation of Cavitation Characteristics of 5083-O Al Alloy with Amplitude

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Kim, Seong Jong [Mokpo Maritime Univ., Mokpo (Korea, Republic of)

    2012-05-15

    With recent advances in engineering and technology, a damage on industrial machinery performing high-speed and high-power requirements has become a problem. There is an increasing possibility of cavitation damage, especially in pumps, propellers and high-speed vessels in a flowing liquid accordingly. There are several factors affecting cavitation damage on materials, including viscosity, pressure, temperature, amplitude applied. In this study, effects of cavity pressure in seawater on the damage for 5083-O aluminium alloy were evaluated by modulating amplitude. Trend of the damage with respect to time and amplitude was analyzed comparatively, and surface degradation of specimens was investigated by using Scanning Electron Microscope(SEM) and 3D microscope. The result reveals that the amount of the damage increased consistently with the increase in time and amplitude while the plastic deformation zone where no appreciable damage occurred was in less than 30 minutes.

  10. Direct current modulation of a photomixing signal

    Science.gov (United States)

    Constantin, Florin L.

    2016-04-01

    Direct modulation of the bias voltage of a LTG-GaAs photomixer is exploited to modulate the signal generated at the frequency of the optical beat between two diode lasers at 820 nm. The photomixing signal is calculated from an expansion in power series of the amplitude of the modulation voltage and displays amplitude modulation sidebands equidistantly spaced to the frequency of the optical beat by integer multiples of the modulation frequency. Modulation at harmonics of the modulation frequency is allowed by the electrical nonlinear response of the photomixer, driven at low voltage by the saturation of the electron drift velocity. Coupling of an alternative voltage to the photomixer operated at zero-bias leads to bifrequency operation. Modulation of the photomixing signal and bifrequency operation of the photomixer are observed experimentally with an optical beat in the microwave regime.

  11. Complex light modulation for lensless image projection

    Institute of Scientific and Technical Information of China (English)

    M. Makowski; A. Kolodziejczyk; A. Siemion; I. Ducin; K. Kakarenko; M. Sypek; A. M. Siemion; J. Suszek; D. Wojnowski; Z. Jaroszewicz

    2011-01-01

    We present a lensless projection of color images based on computer-generated Fourier holograms. Amplitude and phase modulation of three primary-colored laser beams is performed by a matched pair of spatial light modulators. The main advantage of the complex light modulation is the lack of iterative phase retrieval techniques. The advantage is the lack of speckles in the projected images. Experimental results are given and compared with the outcome of classical phase-only modulation.%We present a lensless projection of color images based on computer-generated Fourier holograms.Amplitude and phase modulation of three primary-colored laser beams is performed by a matched pair of spatial light modulators.The main advantage of the complex light modulation is the lack of iterative phase retrieval techniques.The advantage is the lack of speckles in the projected images.Experimental results are given and compared with the outcome of classical phase-only modulation.

  12. Connecting physical resonant amplitudes and lattice QCD

    Science.gov (United States)

    Bolton, Daniel R.; Briceño, Raúl A.; Wilson, David J.

    2016-06-01

    We present a determination of the isovector, P-wave ππ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using mπ = 236 MeV. The finite volume spectra are described using extensions of Lüscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at mπ = 140 MeV. The scattering phase shift is found to agree with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a ρ-resonance pole at Eρ = [ 755 (2) (1) (20 02) -i/2 129 (3) (1) (7 1) ] MeV. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  13. Analytic Representations of Yang-Mills Amplitudes

    CERN Document Server

    Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo

    2016-01-01

    Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  14. Nonlinear (Super)Symmetries and Amplitudes

    CERN Document Server

    Kallosh, Renata

    2016-01-01

    There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E_{7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N\\geq 5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.

  15. Scaling of saturation amplitudes in baroclinic instability

    International Nuclear Information System (INIS)

    By using finite-amplitude conservation laws for pseudomomentum and pseudoenergy, rigorous upper bounds have been derived on the saturation amplitudes in baroclinic instability for layered and continuously-stratified quasi-geostrophic models. Bounds have been obtained for both the eddy energy and the eddy potential enstrophy. The bounds apply to conservative (inviscid, unforced) flow, as well as to forced-dissipative flow when the dissipation is proportional to the potential vorticity. This approach provides an efficient way of extracting an analytical estimate of the dynamical scalings of the saturation amplitudes in terms of crucial non-dimensional parameters. A possible use is in constructing eddy parameterization schemes for zonally-averaged climate models. The scaling dependences are summarized, and compared with those derived from weakly-nonlinear theory and from baroclinic-adjustment estimates

  16. Spinfoam cosmology with the proper vertex amplitude

    CERN Document Server

    Vilensky, Ilya

    2016-01-01

    The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.

  17. A description of seismic amplitude techniques

    Science.gov (United States)

    Shadlow, James

    2014-02-01

    The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.

  18. On Arbitrary Phases in Quantum Amplitude Amplification

    CERN Document Server

    Hoyer, P

    2000-01-01

    We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.

  19. Online tracking of instantaneous frequency and amplitude of dynamical system response

    Science.gov (United States)

    Frank Pai, P.

    2010-05-01

    This paper presents a sliding-window tracking (SWT) method for accurate tracking of the instantaneous frequency and amplitude of arbitrary dynamic response by processing only three (or more) most recent data points. Teager-Kaiser algorithm (TKA) is a well-known four-point method for online tracking of frequency and amplitude. Because finite difference is used in TKA, its accuracy is easily destroyed by measurement and/or signal-processing noise. Moreover, because TKA assumes the processed signal to be a pure harmonic, any moving average in the signal can destroy the accuracy of TKA. On the other hand, because SWT uses a constant and a pair of windowed regular harmonics to fit the data and estimate the instantaneous frequency and amplitude, the influence of any moving average is eliminated. Moreover, noise filtering is an implicit capability of SWT when more than three data points are used, and this capability increases with the number of processed data points. To compare the accuracy of SWT and TKA, Hilbert-Huang transform is used to extract accurate time-varying frequencies and amplitudes by processing the whole data set without assuming the signal to be harmonic. Frequency and amplitude trackings of different amplitude- and frequency-modulated signals, vibrato in music, and nonlinear stationary and non-stationary dynamic signals are studied. Results show that SWT is more accurate, robust, and versatile than TKA for online tracking of frequency and amplitude.

  20. Gluon scattering amplitudes at strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2007-06-15

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  1. Gluon scattering amplitudes at strong coupling

    CERN Document Server

    Alday, Luis F

    2007-01-01

    We describe how to compute planar gluon scattering amplitudes at strong coupling in N=4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.

  2. Topographic quantitative EEG amplitude in recovered alcoholics.

    Science.gov (United States)

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  3. Softness, Polynomial Boundedness and Amplitudes' Positivity

    CERN Document Server

    Bai, Dong

    2016-01-01

    In this note, we study the connection between infrared (IR) and ultraviolet (UV) behaviors of scattering amplitudes of massless channels by exploiting dispersion relations and positivity bounds. Given forward scattering amplitudes which scale as $\\mathcal{A}(s)\\sim s^M$ in the IR ($s\\to0$) and could be embedded into UV completions satisfying unitarity, analyticity, crossing symmetry and polynomial boundedness $|\\mathcal{A}(s)|< c\\, |s|^N$ ($|s|\\to\\infty$), with $M$ and $N$ integers, we show that the inequality $2\\ceil*{\\frac{N}{2}}\\ge M \\ge 0$ must hold, where $\\ceil*{x}$ is the smallest integer greater than or equal to $x$.

  4. Amplitude Models for Discrimination and Yield Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.

  5. Fatigue Reliability under Multiple-Amplitude Loads

    DEFF Research Database (Denmark)

    Talreja, R.

    1979-01-01

    A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution...... for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...

  6. Amplitude Correction Factors of KVN Observations

    CERN Document Server

    Lee, Sang-Sung; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan

    2015-01-01

    We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3 and NRAO~512, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combinat...

  7. Connected formulas for amplitudes in standard model

    CERN Document Server

    He, Song

    2016-01-01

    Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  8. Holographic Corrections to the Veneziano Amplitude

    CERN Document Server

    Armoni, Adi

    2016-01-01

    We propose a holographic computation of the $2\\rightarrow 2$ meson scattering in a curved string background, dual to a QCD-like theory. We recover the Veneziano amplitude and compute a perturbative correction due to the background curvature. The result implies a small deviation from a linear trajectory, which is a requirement of the UV regime of QCD.

  9. On Calculation of Amplitudes in Quantum Electrodynamics

    OpenAIRE

    Karplyuk, Kostyantyn; Zhmudsky, Oleksandr

    2012-01-01

    A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.

  10. Generalised Unitarity for Dimensionally Regulated Amplitudes

    CERN Document Server

    Bobadilla, W J Torres; Mastrolia, P; Mirabella, E

    2015-01-01

    We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.

  11. Optical twists in phase and amplitude

    DEFF Research Database (Denmark)

    Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper

    2011-01-01

    Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...

  12. Hyperlogarithms and periods in Feynman amplitudes

    CERN Document Server

    Todorov, Ivan

    2016-01-01

    The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990's. The present lecture provides a concise introduction to a fast developing subjects that attracts the attention to a wide range of specialists - from number theorists to particle physicists.

  13. Microwave Imaging using Amplitude-only Data

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...

  14. A canonical circuit for generating phase-amplitude coupling.

    Science.gov (United States)

    Onslow, Angela C E; Jones, Matthew W; Bogacz, Rafal

    2014-01-01

    'Phase amplitude coupling' (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity--also referred to as 'cross-frequency coupling' or 'nested rhythms'--has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data. PMID:25136855

  15. ABJM amplitudes and the positive orthogonal Grassmannian

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu-tin [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, CongKao [Centre for Research in String Theory, Department of Physics,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-02-25

    A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG{sub 2} orthogonal Grassmannian to form a larger OG{sub k}, where 2k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG{sub k} that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of dlog forms, over the positive orthogonal Grassmannian.

  16. Correction of amplitude distortions for truncated Bessel beam and SER estimation for 4ASK

    Science.gov (United States)

    Eyyuboğlu, Halil T.

    2016-08-01

    We apply amplitude corrections to a truncated Bessel beam that has propagated through turbulent atmosphere modelled by random phase screens. These corrections are realized via transmitting an unmodulated beam in parallel to the one carrying the 4 amplitude shift keying (ASK) modulated message signal. On the receiver side, the amplitude corrections are obtained by dividing the intensity of the unmodulated beam by its free space equivalence. The corrections are then used to restore the amplitude distortions of the beam carrying the 4ASK modulated message signal and in the determination of decision boundaries for the received 4ASK symbols. The success of the system is visually inspected by comparing the received intensity profiles before and after the application of corrections. Furthermore, simulation analysis of symbol error rate (SER) is made, where the proposed set-up is found to be quite insensitive to wavelength difference between the unmodulated and modulated beams. On the other hand, the difference in the structure constant values of these two beams seems to have profound effect on system performance.

  17. Modulations in the light of the firefly

    Indian Academy of Sciences (India)

    Anurup Gohain Barua

    2013-03-01

    Continuous light could be produced from the firefly by making it inhale vapours of ethyl acetate. Here we perform such a control experiment on the Indian species of the firefly Luciola praeusta Kiesenwetter 1874 (Coleoptera : Lampyridae : Luciolinae), and analyse the light in the microsecond time scale. The amplitude of the continuous train of triangular pulses is apparently altered in accordance with the instantaneous values of a hypothetical signal, which exhibits pulse amplitude modulation (PAM). In addition to sampling in amplitude, this scheme apparently provides sampling in time, representing pulse width modulation (PWM). A Fourier transform spectrum of this waveform shows the `carrier’ frequency and the accompanying `side bands’.

  18. Phase-only spatial light modulation by the reverse phase contrast method

    DEFF Research Database (Denmark)

    Glückstad, J.; Mogensen, P.C.; Eriksen, R.L.

    2002-01-01

    A new approach to phase-only spatial light modulation is proposed in which a given amplitude pattern can be converted into a spatially identical binary phase pattern. A spatial filtering approach is applied to transform spatial amplitude modulation into spatial phase modulation using the Reverse...

  19. Differential Equations, Associators, and Recurrences for Amplitudes

    CERN Document Server

    Puhlfuerst, Georg

    2015-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for epsilon-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different epsilon-orders of a power series solution in epsilon of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the epsilon-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also setup up our tools for computing epsilon-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we apply our methods to systematically get compact and explicit alpha'-expansions of tree-level superstring amplitudes to any order in alpha'.

  20. Differential equations, associators, and recurrences for amplitudes

    Science.gov (United States)

    Puhlfürst, Georg; Stieberger, Stephan

    2016-01-01

    We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.

  1. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  2. Planar scattering amplitudes from Wilson loops

    International Nuclear Information System (INIS)

    We derive an expression for parton scattering amplitudes of planar gauge theory in terms of sums of Wilson loops. We study in detail the example of Yang-Mills theory with an adjoint Higgs field. The expression exhibits the T-duality performed by Alday and Maldacena in the AdS dual as a Fourier transform in loop space. When combined with the AdS/CFT correspondence for Wilson loops and a strong coupling argument for the dominance of 1PI diagrams, this leads to a derivation of the Alday-Maldacena holographic prescription for scattering amplitudes in terms of momentum Wilson loops. The formula leads to a conjecture for a relationship between position-space and momentum-space Wilson loops in N = 4 SYM at finite coupling.

  3. New structures in scattering amplitudes: a review

    CERN Document Server

    Benincasa, Paolo

    2013-01-01

    We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE

  4. Critical Initial Amplitude of Langmuir Wave Damping

    Institute of Scientific and Technical Information of China (English)

    徐慧; 盛政明

    2012-01-01

    By one-dimensional Vlasov-Poisson simulation, the critical initial state marking the transition between the Landau scenario, in which the electric fields definitively damped to zero and the O'NEIL scenario, in which the Landau damping is stopped after a certain damping stage, is studied. It is found that the critical initial amplitude e* can only exist when the product of the wave number (k~) and the electron thermal velocity (vth) is moderate, that is, 0.2 〈 k~vth 〈 0.7. Otherwise, no critical initial amplitude is found. The value c* increases with the increase in km for a fixed Vth, and also increases with the increase in Vth for a fixed kin. When kmVth is fixed, the value s* also changes with the wave number and the electron thermal velocity, even though the damping rate and the oscillation frequency are the same in this case.

  5. Evaluation of the CHY Gauge Amplitude

    CERN Document Server

    Lam, C S

    2016-01-01

    The Cachazo-He-Yuan (CHY) formula for $n$-gluon scattering is known to give the same amplitude as the one obtained from Feynman diagrams, though the former contains neither vertices nor propagators explicitly. The equivalence was shown by indirect means, not by a direct evaluation of the $(n\\! - \\!3)$-dimensional integral in the CHY formula. The purpose of this paper is to discuss how such a direct evaluation can be carried out. There are two basic difficulties in the calculation: how to handle the large number of terms in the reduced Pfaffian, and how to carry out the integrations in the presence of a $\\sigma$-dependence much more complicated than the Parke-Taylor form found in a CHY double-color scalar amplitude. We have solved both of these problems, and have formulated a method that can be applied to any $n$. Many examples are provided to illustrate these calculations.

  6. Integrable spin chains and scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, J.; Prygarin, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Petersburg Nuclear Physics Institute (Russian Federation); Sankt-Peterburgskij Univ., St. Petersburg (Russian Federation)

    2011-04-15

    In this review we show that the multi-particle scattering amplitudes in N=4 SYM at large N{sub c} and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts are resulting from gluon composite states in the adjoint representation of the gauge group SU(N{sub c}). In the leading logarithmic approximation (LLA) their contribution to the six point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wave functions using the integrals of motion and the Baxter-Sklyanin approach. (orig.)

  7. Ward identities for amplitudes with reggeized gluons

    Energy Technology Data Exchange (ETDEWEB)

    Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)

    2012-05-15

    Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.

  8. Inverse amplitude method and Adler zeros

    OpenAIRE

    Gómez Nicola, Ángel; Peláez Sagredo, José Ramón; Rios, G.

    2008-01-01

    The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spur...

  9. Automation of 2-loop Amplitude Calculations

    CERN Document Server

    Jones, S P

    2016-01-01

    Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.

  10. Connecting physical resonant amplitudes and lattice QCD

    CERN Document Server

    Bolton, Daniel R; Wilson, David J

    2015-01-01

    We present a determination of the isovector, $P$-wave $\\pi\\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\\pi =236$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\\rho$-resonance pole at $E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.

  11. Transversity Amplitudes in Hypercharge Exchange Processes

    International Nuclear Information System (INIS)

    ' In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used in processes having a pure spin configuration, as well as the more relevant results obtained with data from Kp and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs

  12. Cosmic ray modulation

    Science.gov (United States)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  13. Amplitude-phase cross-talk cancellation in frequency domain instrumentation

    Science.gov (United States)

    Morgan, Stephen P.; Yong, Kai Y.

    2001-06-01

    Changes in phase that occurs with changes in amplitude impose severe limitations on the accuracy of frequency domain near infrared spectrometers. Phase is related to the photon pathlength in tissue and phase errors introduced by the instrument can be interpreted as changes in tissue oxygenation. The instrument described employs a reference RF modulated laser diode to eliminate the effects of amplitude- phase crosstalk and requires no feedback. Light from the reference and medium channels follow a common path through the detector and so the same phase error is imposed on both. Summing the reference and medium phase eliminates the crosstalk and enables the resultant to be attributed only to photon pathlength within the medium. It is also demonstrated that elimination of amplitude-phase crosstalk is a natural consequence of a phased array configuration.

  14. Elimination of amplitude-phase crosstalk in frequency domain near-infrared spectroscopy

    Science.gov (United States)

    Morgan, S. P.; Yong, K. Y.

    2001-04-01

    Changes in phase that occur with changes in amplitude impose severe limitations on the accuracy of frequency domain near-infrared spectrometers. Phase is related to the photon pathlength in tissue and phase errors introduced by the instrument can be interpreted as changes in tissue oxygenation. The instrument described in this article employs a reference radio frequency modulated laser diode to eliminate the effects of amplitude-phase crosstalk and requires no feedback. Light from the reference laser diode does not pass through the medium under investigation but passes directly onto the detector. The reference and medium signals follow a common path through the detector and so the same phase error is imposed on both. Summing the reference and medium phase eliminates the crosstalk and enables the resultant to be attributed only to the photon pathlength within the medium. It is also demonstrated that elimination of amplitude-phase crosstalk is a natural consequence of a phased array configuration.

  15. Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2016-03-21

    We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm. PMID:27136830

  16. Planar scattering amplitudes from Wilson loops

    OpenAIRE

    McGreevy, John; Sever, Amit

    2008-01-01

    We derive an expression for parton scattering amplitudes of planar gauge theory in terms of sums of Wilson loops. We study in detail the example of Yang-Mills theory with an adjoint Higgs field. The expression exhibits the T-duality performed by Alday and Maldacena in the AdS dual as a Fourier transform in loop space. When combined with the AdS/CFT correspondence for Wilson loops and a strong coupling argument for the dominance of 1PI diagrams, this leads to a derivation of the Alday-Maldacen...

  17. Second moment of the pion's distribution amplitude

    International Nuclear Information System (INIS)

    We present preliminary results from the QCDSF/UKQCD collaborations for the second moment of the pion's distribution amplitude with two flavours of dynamical fermions. We use nonperturbatively determined renormalisation coefficients to convert our results to the MS scheme at 5 GeV2. Employing a linear chiral extrapolation from our large pion masses > 550 MeV, we find left angle ξ2 right angle = 0.281(28), leading to a value of α2 = 0.236(82) for the second Gegenbauer moment. (orig.)

  18. Second moment of the pion's distribution amplitude

    International Nuclear Information System (INIS)

    We present preliminary results from the QCDSF/UKQCD collaborations for the second moment of the pion's distribution amplitude with two flavours of dynamical fermions. We use nonperturbatively determined renormalisation coefficients to convert our results to the MS-bar scheme at 5GeV2. Employing a linear chiral extrapolation from our large pion masses >550MeV, we find 2>=0.281(28), leading to a value of a2=0.236(82) for the second Gegenbauer moment

  19. Approximate formulas for moderately small eikonal amplitudes

    CERN Document Server

    Kisselev, A V

    2015-01-01

    The eikonal approximation for moderately small scattering amplitudes is considered. With the purpose of using for their numerical estimations, the formulas are derived which contain no Bessel functions, and, hence, no rapidly oscillating integrands. To obtain these formulas, the improper integrals of the first kind which contain products of the Bessel functions J_0(z) are studied. The expression with four functions J_0(z) is generalized. The expressions for the integrals with the product of five and six Bessel functions J_0(z) are also found. The known formula for the improper integral with two functions J_nu(z) is generalized for non-integer nu.

  20. Relations and representations of QCD amplitudes

    CERN Document Server

    de la Cruz, Leonardo; Weinzierl, Stefan

    2016-01-01

    In this talk we review relations and representations of primitive QCD tree amplitudes. Topics covered include the BCJ relations, the CHY representation, and the KLT relations. We will put a special emphasis on how these relations and representations generalise from pure Yang-Mills theory to QCD. The generalisation of the KLT relations from pure Yang-Mills to QCD includes the case of massive quarks. On the gravity side we then obtain hypothetical particles interacting with gravitational strength, which can be massive and non-relativistic.

  1. Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes

    CERN Document Server

    Mastrolia, P; Ossola, G; Peraro, T

    2013-01-01

    We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.

  2. Inverse amplitude method and Adler zeros

    International Nuclear Information System (INIS)

    The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics, combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector. In this work we show how it can be slightly modified to also account for the subthreshold region, incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These improvements produce negligible effects on the physical region.

  3. Impact Representation of Generalized Distribution Amplitudes

    CERN Document Server

    Pire, B

    2003-01-01

    We develop an impact representation for the generalized distribution amplitude which describes the exclusive hadronization of a quark-antiquark pair to a pair of mesons. Experiments such as gamma^* gamma -> pi pi and gamma^* N -> pi pi N' are shown to probe the transverse size of the hadronization region of the quark antiquark pair that one can interpret as the transverse overlap of the two emerging mesons. An astonishing feature of this description is that low energy pi pi phase shift analysis can be used for understanding some properties of quark hadronization process.

  4. An Angle QIM Watermarking in STDM Framework Robust against Amplitude Scaling Distortions

    Science.gov (United States)

    Mankar, Vijay Harishchandra; Das, Tirtha Sankar; Sarkar, Subir Kumar

    Quantization index modulation (QIM) watermarking proposed by Chen and Wornell provides computational efficient blind watermarking based on Costa’s dirty paper codes. The limitation of this is its vulnerability against amplitude scaling distortion. The present work is proposed to solve this problem based on angle QIM within spread transform dither modulation (STDM) framework. AQIM embeds the information by quantizing the angle formed by the host-signal vector with respect to the origin of a hyperspherical coordinate system as opposed to quantizing the amplitude of pixel values. It has been shown experimentally that the proposed work not only provides the resistance against this valumetric scaling distortion but also against non-linear, gamma correction and constant luminance change.

  5. High CW power, phase and amplitude modulatorrealized with fast ferrite phase-shifters

    CERN Document Server

    Valuch, D

    2004-01-01

    Superconducting cavity resonators are suffering from detuning effects caused by high internal electromagnetic fields (Lorentz force detuning). For classical resonators working with continuous wave signals, this detuning is static and compensated by the slow mechanical tuning system. However, pulsing of superconducting cavities, an operational mode only recently considered, results in dynamic detuning effects. New ways to handle this effect have to be found and worked out. A way to supply several superconducting cavities in the particle accelerator by one large transmitter while keeping the possibility of controlling the field in each individual cavity is shown. By introducing a fast phase and amplitude modulator into each cavity feeder line, the individual deviations of each cavity with respect to the average can be compensated in order to equalize their behaviour for the main control loop, which will compensate the global detuning of all cavities. Several types of phase and amplitude modulators suitable for ...

  6. Characterization and reduction of the amplitude-to-phase conversion effects in telemetry

    Science.gov (United States)

    Guillory, J.; García-Márquez, J.; Alexandre, C.; Truong, D.; Wallerand, J.-P.

    2015-08-01

    We are developing a telemeter based on the measurement of the phase accumulated by an RF sine wave during its propagation in air. This wave is carried by a laser beam by an intensity modulation. The main limitation of this technique lies in amplitude-to-phase conversion occurring in the detection of this modulation. Therefore, we characterize this phenomenon for a given telemetric system and discuss how to reduce its effects on the resolution and the accuracy of the distance measurement. Finally, a solution is implemented and tested outdoors in real conditions of use.

  7. Variational approach to the modulational instability.

    Science.gov (United States)

    Rapti, Z; Kevrekidis, P G; Smerzi, A; Bishop, A R

    2004-01-01

    We study the modulational stability of the nonlinear Schrödinger equation using a time-dependent variational approach. Within this framework, we derive ordinary differential equations (ODE's) for the time evolution of the amplitude and phase of modulational perturbations. Analyzing the ensuing ODE's, we rederive the classical modulational instability criterion. The case (relevant to applications in optics and Bose-Einstein condensation) where the coefficients of the equation are time dependent, is also examined. PMID:14995759

  8. Time-varying interaction leads to amplitude death in coupled nonlinear oscillators

    Indian Academy of Sciences (India)

    Awadhesh Prasad

    2013-09-01

    A new form of time-varying interaction in coupled oscillators is introduced. In this interaction, each individual oscillator has always time-independent self-feedback while its interaction with other oscillators are modulated with time-varying function. This interaction gives rise to a phenomenon called amplitude death even in diffusively coupled identical oscillators. The nonlinear variation of the locus of bifurcation point is shown. Results are illustrated with Landau–Stuart (LS) and Rössler oscillators.

  9. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  10. Double unresolved approximations to multiparton scattering amplitudes

    International Nuclear Information System (INIS)

    We present approximations to tree-level multiparton scattering amplitudes which are appropriate when two partons are unresolved. These approximations are required for the analytic isolation of infrared singularities of n+2 parton scattering processes contributing to the next-to-next-to-leading order corrections to n jet cross sections. In each case the colour ordered matrix elements factorise and yield a function containing the singular factors multiplying the n-parton amplitudes. When the unresolved particles are colour unconnected, the approximations are simple products of the familiar eikonal and Altarelli-Parisi splitting functions used to describe single unresolved emission. However, when the unresolved particles are colour connected the factorisation is more complicated and we introduce new and general functions to describe the triple collinear and soft/collinear limits in addition to the known double soft gluon limits of Berends and Giele. As expected the triple collinear splitting functions obey an N=1 SUSY identity. To illustrate the use of these double unresolved approximations, we have examined the singular limits of the tree-level matrix elements for e+e- →5 partons when only three partons are resolved. When integrated over the unresolved regions of phase space, these expressions will be of use in evaluating the O(αs3) corrections to the three-jet rate in electron-positron annihilation. (orig.)

  11. Color-Kinematic Duality in ABJM Theory Without Amplitude Relations

    CERN Document Server

    Sivaramakrishnan, Allic

    2014-01-01

    We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge group SU(N) x SU(N). At six points we give the explicit form of numerators in terms of amplitudes, displaying the generalized gauge freedom that leads to amplitude relations. However, at eight points no amplitude relations follow from the duality, so the diagram numerators are fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator decomposition and the numerator relations for eight-point amplitudes.

  12. Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals

    Science.gov (United States)

    Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun

    2016-07-01

    Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

  13. The Prediction of Maximum Amplitudes of Solar Cycles and the Maximum Amplitude of Solar Cycle 24

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We present a brief review of predictions of solar cycle maximum ampli-tude with a lead time of 2 years or more. It is pointed out that a precise predictionof the maximum amplitude with such a lead-time is still an open question despiteprogress made since the 1960s. A method of prediction using statistical character-istics of solar cycles is developed: the solar cycles are divided into two groups, ahigh rising velocity (HRV) group and a low rising velocity (LRV) group, dependingon the rising velocity in the ascending phase for a given duration of the ascendingphase. The amplitude of Solar Cycle 24 can be predicted after the start of thecycle using the formula derived in this paper. Now, about 5 years before the startof the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximumamplitude.

  14. Correction of the distortion in frequency modulation spectroscopy

    Science.gov (United States)

    du Burck, F.; Lopez, O.

    2004-07-01

    A theoretical expression for the detected signal in frequency modulation spectroscopy with a residual amplitude modulation (RAM) is computed. The line shape distortion induced by the RAM is shown to be essentially suppressed for a proper choice of the modulation and detection parameters. The experimental tests are carried out in saturation spectroscopy of I2 at 514.5 nm. Experimental limitations are analysed.

  15. Correction of the distortion in frequency-modulation spectroscopy

    OpenAIRE

    Du Burck, Frédéric; Lopez, Olivier

    2004-01-01

    A theoretical expression of the detected signal in frequency modulation spectroscopy with a residual amplitude modulation (RAM) is computed. The line shape distortion induced by the RAM is shown to be essentially suppressed for a proper choice of the modulation and detection parameters. The experimental tests are carried out in saturation spectroscopy of I2 at 514.5 nm. Experimental limitations are analysed.

  16. Abelian modules

    OpenAIRE

    S. Halıcıoğlu; Harmanci, A.; GÜNGÖROĞLU, G.; N. Agayev

    2009-01-01

    In this note, we introduce abelian modules as a generalization of abelian rings. Let R be an arbitrary ring with identity. A module M is called abelian if, for any m Î M and any a Î R, any idempotent e Î R, mae=mea. We prove that every reduced module, every symmetric module, every semicommutative module and every Armendariz module is abelian. For an abelian ring R, we show that the module MR is abelian iff M[x]R[x] is abelian. We produce an example to show that M[x, α] need not be abe...

  17. Automating QCD amplitudes with on-shell methods

    CERN Document Server

    Badger, Simon

    2016-01-01

    We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.

  18. Evaluation of new spin foam vertex amplitudes

    International Nuclear Information System (INIS)

    The Christensen-Egan algorithm is extended and generalized to efficiently evaluate new spin foam vertex amplitudes proposed by Engle, Pereira and Rovelli and Freidel and Krasnov, with or without (factored) boundary states. A concrete pragmatic proposal is made for comparing the different models using uniform methodologies, applicable to the behavior of large spin asymptotics and of expectation values of specific semiclassical observables. The asymptotics of the new models exhibit non-oscillatory, power-law decay similar to that of the Barrett-Crane model, though with different exponents. Also, an analysis of the semiclassical wave packet propagation problem indicates that the Magliaro, Rovelli and Perini's conjecture of good semiclassical behavior of the new models does not hold for generic factored states, which neglect spin-spin correlations.

  19. Amplitude determinant coupled cluster with pairwise doubles

    CERN Document Server

    Zhao, Luning

    2016-01-01

    Recently developed pair coupled cluster doubles (pCCD) theory successfully reproduces doubly occupied configuration interaction (DOCI) with mean field cost. However, the projective nature of pCCD makes the method non-variational and thus hard to improve systematically. As a variational alternative, we explore the idea of coupled-cluster-like expansions based on amplitude determinants and develop a specific theory similar to pCCD based on determinants of pairwise doubles. The new ansatz admits a variational treatment through Monte Carlo methods while remaining size-consistent and, crucially, polynomial cost. In the dissociations of LiH, HF, H2O and N2, the method performs very similarly to pCCD and DOCI, suggesting that coupled-cluster-like ansatzes and variational evaluation may not be mutually exclusive.

  20. Topological amplitudes in heterotic superstring theory

    CERN Document Server

    Antoniadis, Ignatios; Narain, Kumar S; Taylor, T R

    1996-01-01

    We show that certain heterotic string amplitudes are given in terms of correlators of the twisted topological (2,0) SCFT, corresponding to the internal sector of the N=1 spacetime supersymmetric background. The genus g topological partition function F^g corresponds to a term in the effective action of the form W^{2g}, where W is the gauge or gravitational superfield. We study also recursion relations related to holomorphic anomalies, showing that, contrary to the type II case, they involve correlators of anti-chiral superfields. The corresponding terms in the effective action are of the form W^{2g}\\Pi^n, where \\Pi is a chiral superfield obtained by chiral projection of a general superfield. We observe that the structure of the recursion relations is that of N=1 spacetime supersymmetry Ward identity. We give also a solution of the tree level recursion relations and discuss orbifold examples.

  1. Nonlinear amplitude dynamics in flagellar beating

    CERN Document Server

    Oriola, David; Casademunt, Jaume

    2016-01-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive crosslinkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatiotemporal dynamics of dynein populations and flagell...

  2. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  3. Amplitude-Squared Squeezing in a Kerr-Nonlinear Blackbody

    Institute of Scientific and Technical Information of China (English)

    WU Zi-Xia; CHENG Ze; ZHANG Yan-Min; CHENG Zheng-Ze

    2007-01-01

    We find that amplitude-squared squeezing of the photon field is present in a new blackbody, namely, a Kerrnonlinear blackbody. The squeezing effect decreases as temperature T increases. The amount of the amplitude-squared squeezing in a Kerr-nonlinear blackbody is much larger than the corresponding squeezing in normal blackbody, and the degree of amplitude-squared squeezing is much larger than the amplitude squeezing for the same range of parameters in a Kerr-nonlinear blackbody.

  4. Correlations for reduced-width amplitudes in 49V

    International Nuclear Information System (INIS)

    Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2+ resonances in 49V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution

  5. Chiral Closed strings: Four massless states scattering amplitude

    CERN Document Server

    Leite, Marcelo M

    2016-01-01

    We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ($KLT$) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-$2$ tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.

  6. Rho-0 Meson Helicity Amplitude Ratios at HERMES

    CERN Document Server

    Murray, Morgan

    2012-01-01

    The study of {\\rho}0 meson helicity amplitude ratios at HERMES shows that the amplitude hierarchy expected from pQCD is confirmed. The contribution of Unnatural Parity Exchange in the production of {\\rho}0 mesons is significant at HERMES kinematics and there is a large phase-difference in the leading F11 and F01 amplitudes. The kinematic dependences of the amplitude ratios only sometimes follow theory-based expectations.

  7. Modulation of whistlers

    Science.gov (United States)

    Sivokon', V. P.; Bogdanov, V. V.; Druzhin, G. I.; Cherneva, N. V.; Kubyshkin, A. V.; Sannikov, D. V.; Agranat, I. V.

    2014-11-01

    Analysis of the experimental data obtained at Paratunka observatory (53.02° N, 158.65° E; L = 2.3) has revealed a nonstandard form of whistlers involving spectral lines that are symmetric with respect to the whistler. We have shown that this form is most likely due to the amplitude modulation of whistlers by electromagnetic pulses with a length of around 1 s and carrier frequency of around 1.1 kHz. We have suggested that these pulses could be emitted by the auroral electrojet modified by heating radiation from the HAARP facility (62.30° N, 145.30° W; L > 4.2).

  8. Closed String Amplitudes in Open String Field Theory

    OpenAIRE

    Takahashi, Tomohiko; Zeze, Syoji

    2003-01-01

    We investigate gauge invariant operators corresponding to on-shell closed string states in open string field theory. Using both oscillator representation and conformal mapping techniques, we calculate a two closed string tachyon amplitude that connects two gauge invariant operators by an open string propagator.We find that this amplitude is in a complete agreement with the usual disc amplitude.

  9. MHV Vertices And Tree Amplitudes In Gauge Theory

    OpenAIRE

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    As an alternative to the usual Feynman graphs, tree amplitudes in Yang-Mills theory can be constructed from tree graphs in which the vertices are tree level MHV scattering amplitudes, continued off shell in a particular fashion. The formalism leads to new and relatively simple formulas for many amplitudes, and can be heuristically derived from twistor space.

  10. Computations of superstring amplitudes in pure spinor formalism via Cadabra

    CERN Document Server

    Suna, Ke-Sheng; Sun, Fei; Zhang, Hai-Bin

    2016-01-01

    The discovery of pure spinor formalism makes the computation of superstring s- cattering amplitudes possible. In this paper, we will illustrate how computer algebra system Cadabra is used in computing the supersymmetric amplitude in pure spinor formalism and provide the source code that computes the tree-level massless 5-gluon amplitude.

  11. Subscriber terminals using Amplitude Companded Single Sideband (ACSSB)

    Science.gov (United States)

    Lyons, Bob; Forrest, Andrew

    With the introduction of amplitude companded single sideband (ACSSB) modulation, and other innovations, small subscriber satellite terminals providing voice and up to 2400 bit per second (bps) data capability have been produced. These terminals address a class of applications that requires: access to the public switched telephone network (PSTN); reliable voice and data communication; modest capital and operating costs; ease of installation and operation; and in some cases, portability. This paper discusses applications, design goals and characteristics of subscriber terminals, concluding with two representative network scenarios. Applications of these terminals differ from those best served by very small aperture terminals (VSATs) by offering low startup costs and by servicing primarily voice traffic. Fold-up antennas and compact reliable radio frequency (RF) electronics have made highly portable terminals a reality also. Private networks are possible using simple circuit sharing techniques while larger networks can utilize circuit switching to achieve significant economies in operating costs. Recent regulatory changes have paved the way for increased activity and development in these markets.

  12. Simultaneous shaping of amplitude and phase of light in the entire output plane with a phase-only hologram.

    Science.gov (United States)

    Wu, Liang; Cheng, Shubo; Tao, Shaohua

    2015-01-01

    An iterative beam shaping algorithm is proposed to simultaneously shape the amplitude and phase of an optical beam. The proposed algorithm consists of one input plane and two completely overlapped output planes which refer to the output plane in real space. The two output planes are imposed with both amplitude and phase constraints, and the constrained areas in the two output planes are complementary. As a result, both the amplitude and phase in the entire output plane are controllable and arbitrary target complex amplitudes can be achieved with the proposed algorithm. The computing result of the proposed algorithm is a phase-only distribution which can be conveniently realized with a spatial light modulator or a fabricated diffractive optical element. Both simulations and experiments have verified the high performance of the proposed algorithm.

  13. Phase and amplitude detection system for the Stanford Linear Accelerator

    International Nuclear Information System (INIS)

    A computer controlled phase and amplitude detection system to measure and stabilize the rf power sources in the Stanford Linear Accelerator is described. This system measures the instantaneous phase and amplitude of a 1 microsecond 2856 MHz rf pulse and will be used for phase feedback control and for amplitude and phase jitter detection. This paper discusses the measurement system performance requirements for the operation of the Stanford Linear Collider, and the design and implementation of the phase and amplitude detection system. The fundamental software algorithms used in the measurement are described, as is the performance of the prototype phase and amplitude detector system

  14. Leading Wave Amplitude of a Tsunami

    Science.gov (United States)

    Kanoglu, U.

    2015-12-01

    Okal and Synolakis (EGU General Assembly 2015, Geophysical Research Abstracts-Vol. 17-7622) recently discussed that why the maximum amplitude of a tsunami might not occur for the first wave. Okal and Synolakis list observations from 2011 Japan tsunami, which reached to Papeete, Tahiti with a fourth wave being largest and 72 min later after the first wave; 1960 Chilean tsunami reached Hilo, Hawaii with a maximum wave arriving 1 hour later with a height of 5m, first wave being only 1.2m. Largest later waves is a problem not only for local authorities both in terms of warning to the public and rescue efforts but also mislead the public thinking that it is safe to return shoreline or evacuated site after arrival of the first wave. Okal and Synolakis considered Hammack's (1972, Ph.D. Dissertation, Calif. Inst. Tech., 261 pp., Pasadena) linear dispersive analytical solution with a tsunami generation through an uplifting of a circular plug on the ocean floor. They performed parametric study for the radius of the plug and the depth of the ocean since these are the independent scaling lengths in the problem. They identified transition distance, as the second wave being larger, regarding the parameters of the problem. Here, we extend their analysis to an initial wave field with a finite crest length and, in addition, to a most common tsunami initial wave form of N-wave as presented by Tadepalli and Synolakis (1994, Proc. R. Soc. A: Math. Phys. Eng. Sci., 445, 99-112). We compare our results with non-dispersive linear shallow water wave results as presented by Kanoglu et al. (2013, Proc. R. Soc. A: Math. Phys. Eng. Sci., 469, 20130015), investigating focusing feature. We discuss the results both in terms of leading wave amplitude and tsunami focusing. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 603839 (Project ASTARTE - Assessment, Strategy and Risk

  15. Writing CFT correlation functions as AdS scattering amplitudes

    CERN Document Server

    Penedones, Joao

    2010-01-01

    We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk scattering amplitudes to the asymptotic behavior of Mellin amplitudes and show that previous results on the flat space limit of AdS follow from our new formula. We find that the Mellin amplitudes are particularly useful in the case of conformal gauge theories in the planar limit. In this case, the four point Mellin amplitudes are meromorphic functions whose poles and their residues are entirely determined by two and three point functions of single-trace operators. This makes the Mellin amplitudes the ideal objects to attempt the conformal bootstrap program in higher dimensions.

  16. Gauge and Gravity Amplitudes from Trees to Loops

    DEFF Research Database (Denmark)

    Huang, Rijun

    relates Yang-Mills amplitudes to gravity amplitudes. Based on many known works about KLT and super-KLT relations, we provide a complete map between super-gravity amplitudes and super-Yang-Mills amplitudes for any number of supersymmetry that allowed in 4-dimensional theory. We also provide an explanation...... for vanishing identities of Yang-Mills amplitudes as violation of linear symmetry groups based on KLT relation argument. The second subject is integrand reduction of multi-loop amplitude. The recent methods based on computational algebraic geometry make it possible to systematically study multi-loop amplitude...... with generalized unitarity cut. Using Grobner basis and primary decomposition, we thoroughly study integrand basis and solution space of equations from maximal unitarity cut for all 4-dimensional two-loop topologies. Algorithm and examples of this computation are illustrated in this thesis. We also study...

  17. A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes

    CERN Document Server

    Ellis, Richard Keith; Kunszt, Z

    2008-01-01

    Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement the method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.

  18. Parton distribution amplitudes of light vector mesons

    CERN Document Server

    Gao, Fei; Liu, Yu-Xin; Roberts, Craig D; Schmidt, Sebastian M

    2014-01-01

    A rainbow-ladder truncation of QCD's Dyson-Schwinger equations is used to calculate rho- and phi-meson valence-quark (twist-two parton) distribution amplitudes (PDAs) via a light-front projection of their Bethe-Salpeter wave functions, which possess S- and D-wave components of comparable size in the meson rest frame. All computed PDAs are broad concave functions, whose dilation with respect to the asymptotic distribution is an expression of dynamical chiral symmetry breaking. The PDAs can be used to define an ordering of valence-quark light-front spatial-extent within mesons: this size is smallest within the pion and increases through the perp-polarisation to the parallel-polarisation of the vector mesons; effects associated with the breaking of SU(3)-flavour symmetry are significantly smaller than those associated with altering the polarisation of vector mesons. Notably, the predicted pointwise behaviour of the rho-meson PDAs is in quantitative agreement with that inferred recently via an analysis of diffrac...

  19. A generalized fidelity amplitude for open systems.

    Science.gov (United States)

    Gorin, T; Moreno, H J; Seligman, T H

    2016-06-13

    We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. PMID:27140969

  20. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  1. Open string topological amplitudes and gaugino masses

    CERN Document Server

    Antoniadis, Ignatios; Taylor, T R

    2005-01-01

    We show that the genus zero topological partition function $F^{(0,h)}$, on a world-sheet with $h$ boundaries, computes the moduli-dependent couplings of the higher derivative F-terms $(\\Tr W^2)^{h-1}$, where $W$ is the gauge N=1 chiral superfield. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal $N=(2,0)$ superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form $\\Pi^n({\\rm Tr}W^2)^{h-2}$, where $\\Pi$'s represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for $h\\ge 3$. As a result, once supersymmetry is broken by D-term expectation values, $(\\Tr W^2)^2$ generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as $m_{1/2}\\sim m_0^4$ in string units. Similarly, $\\Pi{\\rm Tr}W^2$ g...

  2. A generalized fidelity amplitude for open systems.

    Science.gov (United States)

    Gorin, T; Moreno, H J; Seligman, T H

    2016-06-13

    We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result.

  3. A new polarization amplitude bias reduction method

    Science.gov (United States)

    Vidal, Matias; Leahy, J. P.; Dickinson, C.

    2016-09-01

    Polarization amplitude estimation is affected by a positive noise bias, particularly important in regions with low signal-to-noise ratio (SNR). We present a new approach to correct for this bias in the case there is additional information about the polarization angle. We develop the `known-angle estimator' that works in the special case when there is an independent and high SNR (≳ 2σ) measurement of the polarization angle. It is derived for the general case where the uncertainties in the Q, U Stokes parameters are not symmetric. This estimator completely corrects for the polarization bias if the polarization angle is perfectly known. In the realistic case, where the angle template has uncertainties, a small residual bias remains, but that is shown to be much smaller that the one left by other classical estimators. We also test our method with more realistic data, using the noise properties of the three lower frequency maps of Wilkinson Microwave Anisotropy Probe. In this case, the known-angle estimator also produces better results than methods that do not include the angle information. This estimator is therefore useful in the case where the polarization angle is expected to be constant over different data sets with different SNR.

  4. Transversity Amplitudes in Hypercharge Exchange Processes; Amplitudes de transversidad en procesos de intercambio de hipercarga

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Benitez de Lugo, M.

    1979-07-01

    In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.

  5. Obliquity Modulation of the Incoming Solar Radiation

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.

  6. Topologically Modulated Signals and Predicate Gates For Their Processing

    CERN Document Server

    Kouzaev, G A

    2001-01-01

    In the paper electromagnetic signals distinguished by their discrete modulation of spatial distributions of fields and amplitudes are considered. Amplitudes of the impulses play a role of predicates and discrete spatial distributions of fields serve as predicate variables. Designed electronic gates are different by parallelism of the signal processing and allow to create a predicate processor for artificial intellect applications.

  7. Cascaded uncoupled dual-ring modulator

    CERN Document Server

    Gu, Tingyi; Wong, Chee Wei; Dong, Po

    2014-01-01

    We demonstrate that by coherent driving two uncoupled rings in same direction, the effective photon circulating time in the dual ring modulator is reduced, with increased modulation quality. The inter-ring detuning dependent photon dynamics, Q-factor, extinction ratio and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of dual ring configuration at 20 Gbps with a Q ~ 20,000.

  8. PERFORMANCE ANALYSIS OF MIMO-SPACE TIME BLOCK CODING WITH DIFFERENT MODULATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Shubhangi Chaudhary

    2012-03-01

    Full Text Available MIMO Diversity is the technique which takes the advantage of multipath and mitigates the effect of fading and increases signal strength. Space Time Block code (STBC is used in Multiple Input Multiple Output (MIMO system to improve the performance by maximizing diversity gain. In this paper Math Works-SIMULINK platform is used for simulation. The performance of MIMO, Space Time Block Code (STBC with different modulations, such as M-ary Phase Shift Keying (M-PSK, Binary phase shift modulation (BPSK, Quadrature phase shift modulation (QPSK, 8-PSK, and M-ary Quadrature Amplitude Modulation (M-QAM, 16-Quadrature Amplitude modulation (16-QAM and 64-Quadrature Amplitude modulation (64QAM, 256-Quadrature Amplitude modulation (256-QAM are studied on the basis of bit error rate (BER, signal-to-noise ratio (SNR and error probability.

  9. New modulator for the optical signal in a fiber

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tian-hao; JIA Feng; WANG Shun-li; MAN Jiang wei; NIU Kai; WANG Xu-cheng; YANG Jia

    2006-01-01

    A new modulator for the optical signal in a fiber based on multi-beam interference is designed. In the experiment,the distance of a couple of abutted fibers was modulated through a piezoelectric ceramic pipe driven by 50 Hz AC voltage, so that the amplitude of the transmitted optical signal was modulated. The modulation ratio is about 10% ,S/N ratio is about 60 dB and the bandwidth is about 200 KHz.

  10. Neuromagnetic responses to frequency modulation of a continuous tone.

    Science.gov (United States)

    Hari, R; Mäkelä, J P

    1986-01-01

    Neuromagnetic responses to frequency modulation of a continuous tone were studied in nine subjects. The latencies of the transient responses increased and the amplitudes decreased with decreasing speed of modulation. The equivalent dipoles for modulation of a 1,000 Hz tone were slightly but statistically significantly anterior to the dipoles activated by modulation of a 500 Hz tone. The generation mechanisms of N100m are discussed.

  11. Amplitude-Nth-power squeezing of PB phase coherent states

    Institute of Scientific and Technical Information of China (English)

    马志民; 马爱群; 陈国恒; 刘树田; 冯立峰

    2004-01-01

    PB Phase Coherent States are very important quantum states in quantum optics. In order to investigate the amplitude- Nth -power squeezing of PB Phase Coherent States, we introduce the algebraic properties of the PB phase operator and the PB Phase Coherent States which are constructed by PB phase theory. We applied amplitude- Nth -power squeezing theory to define the Amplitude- Nth -Power Squeezing of PB Phase Coherent States and investigate the characteristic of the amplitude- Nth -power squeezing of PB Phase Coherent States.Phase Coherent State), the results show that when Z is a real number there only exists amplitude- Nth -power squeezing of X component; when Z is a complex number, there exists amplitude- Nth -power squeezing ofX component and Y component; when Z is a pure imaginary number, if N is odd, then there does not exist amplitudeNth -power squeezing of X component, but there exists amplitude- Nth -power squeezing of Ycomponent and ifN is even, then there exists amplitude-Nth -power squeezing of X component, but there does not exist amplitudeNth -power squeezing of Y component.

  12. Dispersion Tolerance of 40 Gbaud Multilevel Modulation Formats with up to 3 bits per Symbol

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Tokle, Torger; Geng, Yan;

    2006-01-01

    We present numerical and experimental investigations of dispersion tolerance for multilevel phase- and amplitude modulation with up to 3 bits per symbol at a symbol rate of 40 Gbaud......We present numerical and experimental investigations of dispersion tolerance for multilevel phase- and amplitude modulation with up to 3 bits per symbol at a symbol rate of 40 Gbaud...

  13. Scattering amplitudes in four- and six-dimensional gauge theories

    International Nuclear Information System (INIS)

    We study scattering amplitudes in quantum chromodynamics (QCD), N=4 super Yang-Mills (SYM) theory and the six-dimensional N=(1,1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N=4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N=4 SYM theory, which in turn can be obtained from N=(1,1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N=(1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N=4 SYM theory. Finally we study an alternative to dimensional regularization of N=4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.

  14. Pressure Modulated Sonic Jet in Supersonic Crossflow

    Science.gov (United States)

    Rossmann, Tobias

    2014-11-01

    Sonic transverse jets in supersonic crossflow are modulated using high-amplitude variations in jet stagnation pressure to enhance jet penetration and mixing. An injection/modulation apparatus combining a powered resonance tube and acoustic resonator is used to create low momentum ratio jets (J = 1 , 2) in a supersonic cross-stream (M = 3 . 5). The injector has the capability to modulate the jet supply pressure at sufficiently high frequency (> 15 kHz) and amplitude (up to 190 dB) to access relevant Strouhal numbers (St = 0 - 0 . 3) and amplitudes (up to 10% of the jet stagnation pressure) related to mixing enhancement. Planar laser Mie scattering in both side and end views allows for instantaneous imaging of the jet fluid to quantify jet trajectory, spread, and mixing behavior. For modulated J = 2 transverse jets, the recirculation zone directly downstream of the injection location is eliminated and significantly faster centerline signal decay rates are seen. For the J = 1 modulated jets, substantial increases in centerline penetration, jet spread, and centerline signal decay rate are shown. Additionally, PDF analysis of the instantaneous jet fluid signal values is performed to compare local mixing efficiencies between the modulated and un-modulated cases.

  15. Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation

    CERN Document Server

    Nariyuki, Yasuhiro; Hada, Tohru

    2008-01-01

    We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.

  16. Asymmetric optical image encryption based on an improved amplitude-phase retrieval algorithm

    Science.gov (United States)

    Wang, Y.; Quan, C.; Tay, C. J.

    2016-03-01

    We propose a new asymmetric optical image encryption scheme based on an improved amplitude-phase retrieval algorithm. Using two random phase masks that serve as public encryption keys, an iterative amplitude and phase retrieval process is employed to encode a primary image into a real-valued ciphertext. The private keys generated in the encryption process are used to perform one-way phase modulations. The decryption process is implemented optically using conventional double random phase encoding architecture. Numerical simulations are presented to demonstrate the feasibility and robustness of the proposed system. The results illustrate that the computing efficiency of the proposed method is improved and the number of iterations required is much less than that of the cryptosystem based on the Yang-Gu algorithm.

  17. Multi-channel amplitude analyzer on the basis of the MERA-60 microcomputer

    International Nuclear Information System (INIS)

    4096-channel amplitude analyzer on the base of the MERA-60 micro-computer, using standard CAMAC modules is developed and produced for acquisition and processing spectrometric data on activation analysis. Given are description and flow-sheet of multichannel analyzer, the main elements of which are amplitude coder, television monitor with driver the MERA-60 microcomputer adapter and interface. The MERA 6 microcomputer comprises processor of 4K words of memory, additional memory of 4K words, terminal board, photoreader and puncher board. The analyzer performs the following types of data processing: energy spectra calibration by two peaks, spectra smoothing their integrating and data input-output on punched tape. A set of programs-AKTAN-60 with 4K words of memory is developed for storage control and processing of the data

  18. Control and Detection of Discrete Spectral Amplitudes in Nonlinear Fourier Spectrum

    CERN Document Server

    Aref, Vahid

    2016-01-01

    Nonlinear Fourier division Multiplexing (NFDM) can be realized from modulating the discrete nonlinear spectrum of an $N$-solitary waveform. To generate an $N$-solitary waveform from desired discrete spectrum (eigenvalue and discrete spectral amplitudes), we use the Darboux Transform. We explain how to the norming factors must be set in order to have the desired discrete spectrum. To derive these norming factors, we study the evolution of nonlinear spectrum by adding a new eigenvalue and its spectral amplitude. We further simplify the Darboux transform algorithm. We propose a novel algorithm (to the best of our knowledge) to numerically compute the nonlinear Fourier Transform (NFT) of a given pulse. The NFT algorithm, called forward-backward method, is based on splitting the signal into two parts and computing the nonlinear spectrum of each part from boundary ($\\pm\\infty$) inward. The nonlinear spectrum (discrete and continuous) derived from efficiently combining both parts has a promising numerical precision....

  19. Effect of mechanical tactile noise on amplitude of visual evoked potentials: multisensory stochastic resonance.

    Science.gov (United States)

    Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias

    2015-10-01

    The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP.

  20. Topological Field Theory Amplitudes for $A_{N-1}$ Fibration

    CERN Document Server

    Iqbal, Amer; Qureshi, Babar A; Shabbir, Khurram; Shehper, Muhammad A

    2015-01-01

    We study the partition function ${\\cal N}=1$ 5D $U(N)$ gauge theory with $g$ adjoint hypermultiplets and show that for massless adjoint hypermultiplets it is equal to the partition function of a two dimensional topological field on a genus $g$ Riemann surface. We describe the topological field theory by its amplitudes associated with cap, propagator and pair of pants. These basic amplitudes are open topological string amplitudes associated with certain Calabi-Yau threefolds in the presence of Lagrangian branes.

  1. Laser beam complex amplitude measurement by phase diversity

    OpenAIRE

    Védrenne, Nicolas; Mugnier, Laurent M.; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-01-01

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken ...

  2. Amplitudes and Ultraviolet Behavior of N = 8 Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; /UCLA; Carrasco, John Joseph; /Stanford U., Phys. Dept.; Dixon, Lance J.; /SLAC /CERN; Johansson, Henrik; /Saclay, SPhT; Roiban, Radu; /Penn State U.

    2011-05-20

    In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.

  3. Measuring the phase of the scattering amplitude with vortex beams

    OpenAIRE

    Ivanov, I. P.

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the plane wave scattering amplitude changes with the scattering angle. Since vortex beams are coherent superpositions of plane waves with different momenta, their scattering amplitude receives contributions from plane wave amplitudes with distinct kinematics. These contributions interfere, leading to the measurement of their phase difference. Although interfere...

  4. Suppressing effect of C a2 + blips on puff amplitudes by inhibiting channels to prevent recovery

    Science.gov (United States)

    Chen, Yuan; Qi, Hong; Li, Xiang; Cai, Meichun; Chen, Xingqiang; Liu, Wen; Shuai, Jianwei

    2016-08-01

    As local signals, calcium puffs arise from the concerted opening of a few nearby inositol 1,4,5-trisphospate receptor channels to release C a2 + ions from the endoplasmic reticulum. Although C a2 + puffs have been well studied, little is known about the modulation of cytosolic basal C a2 + concentration ([Ca2 +] Basal) on puff dynamics. In this paper we consider a puff model to study how the statistical properties of puffs are modulated by [Ca2 +] Basal. The puff frequency and lifetime trivially increase with the increasing [Ca2 +] Basal, but an unexpected result is that the puff amplitude and the maximum open-channel number of the puff show decreasing relationship with the increasing [Ca2 +] Basal. The underlying dynamics is related not only to the increasing puff frequency which gives a shorter recovery time, but also to the increasing frequency of blips with only one channel open. We indicate that C a2 + blips cause the channels to be inhibited and prevent their recovery during interpuff intervals, resulting in the suppressing effect on puff amplitudes. With increasing [Ca2 +] Basal, more blips occur to cause more channels to be inhibited, leaving fewer channels available for puff events. This study shows that the blips may play relevant functions in global C a2 + waves through modulating puff dynamics.

  5. Phase-Amplitude Coupling in Spontaneous Mouse Behavior.

    Science.gov (United States)

    Thengone, Daniel; Gagnidze, Khatuna; Pfaff, Donald; Proekt, Alex

    2016-01-01

    The level of activity of many animals including humans rises and falls with a period of ~ 24 hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven by a molecular feedback loop with an approximately 24 hour cycle period and is influenced by the environment, most notably the light:dark cycle. In addition to the circadian oscillations, behavior of many animals is influenced by multiple oscillations occurring at faster-ultradian-time scales. These ultradian oscillations are also thought to be driven by feedback loops. While many studies have focused on identifying such ultradian oscillations, less is known about how the ultradian behavioral oscillations interact with each other and with the circadian oscillation. Decoding the coupling among the various physiological oscillators may be important for understanding how they conspire together to regulate the normal activity levels, as well in disease states in which such rhythmic fluctuations in behavior may be disrupted. Here, we use a wavelet-based cross-frequency analysis to show that different oscillations identified in spontaneous mouse behavior are coupled such that the amplitude of oscillations occurring at higher frequencies are modulated by the phase of the slower oscillations. The patterns of these interactions are different among different individuals. Yet this variability is not random. Differences in the pattern of interactions are confined to a low dimensional subspace where different patterns of interactions form clusters. These clusters expose the differences among individuals-males and females are preferentially segregated into different clusters. These sex-specific features of spontaneous behavior were not apparent in the spectra. Thus, our methodology reveals novel aspects of the structure of spontaneous animal behavior that are not observable using conventional methodology. PMID:27631971

  6. Transition to amplitude death in scale-free networks

    Energy Technology Data Exchange (ETDEWEB)

    Liu Weiqing; Lai, C.-H. [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wang Xingang [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Guan Shuguang [Temasek Laboratories, National University of Singapore, Singapore 117508 (Singapore)], E-mail: wangxg@zju.edu.cn

    2009-09-15

    Transition to amplitude death in scale-free networks of nonlinear oscillators is investigated both numerically and analytically. It is found that, as the coupling strength increases, the network will undergo three different stages in approaching the state of complete amplitude death (CAD). In the first stage of the transition, the amplitudes of the oscillators present a 'stair-like' arrangement, i.e. the squared amplitude of an oscillator linearly decreases with the number of links that the oscillator receives (node degree). In this stage, as the coupling strength increases, the amplitude stairs are eliminated hierarchically by descending order of the node degree. At the end of the first stage, except for a few synchronized oscillators, all other oscillators in the network have small amplitudes. Then, in the second stage of the transition, the synchronous clusters formed in the first stage gradually disappear and, as a consequence, the number of small-amplitude oscillators is increased. At the end of the second stage, almost all oscillators in the network have small but finite amplitudes. Finally, in the third stage of the transition, without the support of the synchronous clusters, the amplitudes of the oscillators are quickly decreased, eventually leading to the state of CAD.

  7. Tree-level amplitudes in the nonlinear sigma model

    Science.gov (United States)

    Kampf, Karol; Novotný, Jirí; Trnka, Jaroslav

    2013-05-01

    We study in detail the general structure and further properties of the tree-level amplitudes in the SU( N) nonlinear sigma model. We construct the flavor-ordered Feynman rules for various parameterizations of the SU( N) fields U ( x), write down the Berends-Giele relations for the semi-on-shell currents and discuss their efficiency for the amplitude calculation in comparison with those of renormalizable theories. We also present an explicit form of the partial amplitudes up to ten external particles. It is well known that the standard BCFW recursive relations cannot be used for reconstruction of the the on-shell amplitudes of effective theories like the SU( N) nonlinear sigma model because of the inappropriate behavior of the deformed on-shell amplitudes at infinity. We discuss possible generalization of the BCFW approach introducing "BCFW formula with subtractions" and with help of Berends-Giele relations we prove particular scaling properties of the semi-on-shell amplitudes of the SU( N) nonlinear sigma model under specific shifts of the external momenta. These results allow us to define alternative deformation of the semi-on-shell amplitudes and derive BCFW-like recursion relations. These provide a systematic and effective tool for calculation of Goldstone bosons scattering amplitudes and it also shows the possible applicability of on-shell methods to effective field theories. We also use these BCFW-like relations for the investigation of the Adler zeroes and double soft limit of the semi-on-shell amplitudes.

  8. New Relations for Einstein-Yang-Mills Amplitudes

    CERN Document Server

    Stieberger, Stephan

    2016-01-01

    We obtain new relations between Einstein-Yang-Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang-Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a "spectator" group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss-Kuijf relations for Yang-Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open-closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.

  9. Power-Stepped HF Cross Modulation Experiments at HAARP

    Science.gov (United States)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  10. Auto-correlation Properties of Scattering Light in Ultrasound-modulated Random Media

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiqin; XING Da; LIU Ying; MA Shining

    2001-01-01

    In this paper, the auto-correlation properties of scattering light in random media modulated by ultrasound were studied. The expression of temporal auto-correlation function of scattering light amplitude in the ultrasound-modulated media was presented. The results show that the auto-correlation function is modulated as the ultrasound is introduced into the media and the modulation amplitude decays with correlation time. The influences of ultrasound amplitude, Brownian diffusion coefficient, scattering and absorption coefficients on auto-correlation function were discussed. The auto-correlation imaging of an object hidden in random media was also studied by the use of Monte Carlo simulations.

  11. Switching circuit to improve the frequency modulation difference-intensity THz quantum cascade laser imaging

    International Nuclear Information System (INIS)

    We demonstrate new switching circuit for difference-intensity THz quantum cascade laser (QCL) imaging by amplitude modulation and lock in detection. The switching circuit is designed to improve the frequency modulation so that it can stably lock the amplitude modulation of the QCL and the detector output. The combination of a voltage divider and a buffer in switching circuit to quickly switch the amplitude of the QCL biases of 15.8 V and 17.2 V is successfully to increase the frequency modulation up to ∼100 Hz

  12. Temporary Suppression of Tinnitus by Modulated Sounds

    OpenAIRE

    Reavis, Kelly M.; Rothholtz, Vanessa S.; Tang, Qing; Carroll, Jeff A.; Djalilian, Hamid; Zeng, Fan-Gang

    2012-01-01

    Despite high prevalence of tinnitus and its impact on quality life, there is no cure for tinnitus at present. Here, we report an effective means to temporarily suppress tinnitus by amplitude- and frequency-modulated tones. We systematically explored the interaction between subjective tinnitus and 17 external sounds in 20 chronic tinnitus sufferers. The external sounds included traditionally used unmodulated stimuli such as pure tones and white noise and dynamically modulated stimuli known to ...

  13. Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus

    Directory of Open Access Journals (Sweden)

    Oliver Zobay

    2015-01-01

    Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.

  14. Scattering amplitudes in gauge theories: progress and outlook Scattering amplitudes in gauge theories: progress and outlook

    Science.gov (United States)

    Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia

    2011-11-01

    This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic

  15. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    OpenAIRE

    Caldwell, Michael S.; Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of t...

  16. Infrared Limit of Gluon Amplitudes at Strong Coupling

    OpenAIRE

    Buchbinder, Evgeny I.

    2007-01-01

    In this note, we propose that the infrared structure of gluon amplitudes at strong coupling can be fully extracted from a local consideration near cusps. This is consistent with field theory and correctly reproduces the infrared divergences of the four-gluon amplitude at strong coupling calculated recently by Alday and Maldacena.

  17. n-point Single-Minus Gravity Amplitudes

    CERN Document Server

    Alston, Sam D; Perkins, Warren B

    2015-01-01

    We construct an expression for the n-point one-loop graviton scattering amplitude with a single negative helicity external leg using an augmented recursion technique. We analyse the soft-limits of these amplitudes and demonstrate that they have soft behaviour beyond the conjectured universal behaviour.

  18. Gauge Theory Amplitudes In Twistor Space And Holomorphic Anomaly

    OpenAIRE

    Cachazo, Freddy; Svrcek, Peter; Witten, Edward

    2004-01-01

    We show that, in analyzing differential equations obeyed by one-loop gauge theory amplitudes, one must take into account a certain holomorphic anomaly. When this is done, the results are consistent with the simplest twistor-space picture of the available one-loop amplitudes.

  19. Four-Point Amplitude from Open Superstring Field Theory

    CERN Document Server

    Berkovits, N; Berkovits, Nathan; Echevarria, Carlos Tello

    2000-01-01

    An open superstring field theory action has been proposed which does not suffer from contact term divergences. In this paper, we compute the on-shell four-point tree amplitude from this action using the Giddings map. After including contributions from the quartic term in the action, the resulting amplitude agrees with the first-quantized prescription.

  20. Baryon octet distribution amplitudes in Wandzura-Wilczek approximation

    Energy Technology Data Exchange (ETDEWEB)

    Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2015-12-15

    We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.

  1. Cross-Symmetric Expansion of $\\pi \\pi$ Amplitude Near Threshold

    CERN Document Server

    Bolokhov, A A; Manida, I S; Polyakov, M V; Sherman, S G

    1996-01-01

    The near-threshold expansion of the $\\pi \\pi$ amplitude is developed using the crossing-covariant independent variables. The independent threshold parameters entering the real part of the amplitude in an explicitly Lorentz-invariant way are free from restrictions of isotopic and crossing symmetries. Parameters of the expansion of the imaginary part are recovered by the perturbative unitarity relations.

  2. Finite temperature amplitudes and reaction rates in Thermofield dynamics

    CERN Document Server

    Rakhimov, A M

    2001-01-01

    We propose a method for calculating the reaction rates and transition amplitudes of generic process taking place in a many body system in equilibrium. The relationship of the scattering and decay amplitudes as calculated in Thermo Field Dynamics the conventional techniques is established. It is shown that in many cases the calculations are relatively easy in TFD.

  3. Discontinuities of BFKL amplitudes and the BDS ansatz

    Science.gov (United States)

    Fadin, V. S.; Fiore, R.

    2015-12-01

    We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colors starting with n = 2. Explicit expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.

  4. Amplitudes of stochastically excited oscillations in main-sequence stars

    CERN Document Server

    Houdek, G; Christensen-Dalsgaard, J; Gough, D O

    1999-01-01

    We present estimates of the amplitudes of intrinsically stable stochastically excited radial oscillations in stars near the main sequence. The amplitudes are determined by the balance between acoustical energy generation by turbulent convection (the Lighthill mechanism) and linear damping. Convection is treated with a time-dependent, nonlocal, mixing-length model, which includes both convective heat flux and turbulent pressure in both the equilibrium model and the pulsations. Velocity and luminosity amplitudes are computed for stars with masses between 0.9 M_\\sun and 2.0 M_\\sun in the vicinity of the main sequence, for various metallicities and convection parameters. As in previous studies, the amplitudes are found to increase with stellar mass, and therefore with luminosity. Amongst those stars that are pulsationally stable, the largest amplitudes are predicted for a 1.6 M_\\sun model of spectral type F2; the values are approximately 15 times larger than those measured in the Sun.

  5. Renormalization of massless Feynman amplitudes in configuration space

    Science.gov (United States)

    Nikolov, Nikolay M.; Stora, Raymond; Todorov, Ivan

    2014-05-01

    A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration spaces. For a massless quantum field theory (QFT), we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincaré covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences — i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal — we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary — not necessarily primitively divergent — Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.

  6. Renormalization of Massless Feynman Amplitudes in Configuration Space

    CERN Document Server

    Nikolov, Nikolay M; Todorov, Ivan

    2014-01-01

    A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.

  7. Effective Field Theories from Soft Limits of Scattering Amplitudes.

    Science.gov (United States)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav

    2015-06-01

    We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist. PMID:26196613

  8. New amplitude equation of single-mode laser

    Institute of Scientific and Technical Information of China (English)

    张莉; 曹力; 吴大进

    2003-01-01

    The white-gain model and the white-loss model of a single-mode laser are investigated in the presence of crosscorrelations between the real and imaginary parts of quantum noise as well as pump noise. It was found that, like the white cubic model (2001 Chin. Phys. Lett. 18 370), the amplitude equations are all decoupled from the phase equations for the two models, and the same novel term appears in the amplitude equations of the two models. So we can put the amplitude equations of all the models into a general form, that is, the new amplitude equation. We further use this new amplitude equation to study specifically the stationary properties of the laser intensity for the white-gain model.

  9. Phase space spinor amplitudes for spin 1/2 systems

    CERN Document Server

    Watson, P

    2010-01-01

    The concept of phase space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions on either the sphere or lattice. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The case of spin-$\\half$ is treated in detail, and it is shown that the phase space amplitudes transform correctly as spinors under under rotations, on both the sphere and the lattice.

  10. New Formulas for Amplitudes from Higher-Dimensional Operators

    CERN Document Server

    He, Song

    2016-01-01

    In this paper we study tree-level amplitudes from higher-dimensional operators, including $F^3$ operator of gauge theory, and $R^2$, $R^3$ operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of $F^3$, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet $R^2$ term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for $F^3$ and $R^3$ amplitudes.

  11. On discrete-amplitude signal analysis and its applications

    Institute of Scientific and Technical Information of China (English)

    孙洪; 姚天任

    1997-01-01

    Discrete-amplitude signal analysis is studied. A reconstruction theorem of an arbitrary signal quantized in amplitude hut continuous in time, from 2 bits of its binary representation, is devised. A new concept of discrete-amplitude multiresolution (DAM), with the signal representation precision taken as its scale, is proposed. The singularities and the residue reducing effect of 2-bit reconstruction of some discrete-time signals are investigated. Two practical examples of applying the discrete-amplitude signal analysis to data compression and signal detection are presented It is shown both analytically and practically that the discrete-amplitude signal analysis is of simple formulation, parallel processing and efficient computation, and is well suited to hardware implementation and real-time signal processing

  12. DFB laser with attached external intensity modulator

    Energy Technology Data Exchange (ETDEWEB)

    Marcuse, D. (AT and T Bell Labs. Holmdel, NJ (US))

    1990-02-01

    This paper presents a theoretical study of the frequency pulling effect exerted on a DFB laser by an external amplitude modulator that is directly attached to it. The modulator consists of a piece of waveguide whose loss is modulated by means of an externally applied voltage. The modulator affects the laser due to residual reflections from its far end which appear as a variable effective reflectivity to the output end of the DFB laser. Modulation affects the magnitude as well as the phase of the effective reflection coefficient presented to the laser due to the coupling of the real and imaginary parts of the effective refractive index of the modulator waveguide. The tuning problem is formulated as an eigenvalue equation for the DFB laser in the presence of an externally attached lossy cavity.

  13. Vibration of low amplitude imaged in amplitude and phase by sideband versus carrier correlation digital holography

    CERN Document Server

    Verrier, N; Gross, M

    2015-01-01

    Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to record E0 and E1 sequentially, and to image the correlation E1E * 0 . We show that this correlation is insensitive the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging the correlation over neighbor pixel. Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected.

  14. Photonic Crystal Fano Laser: Terahertz Modulation and Ultrashort Pulse Generation

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yaohui; Heuck, Mikkel

    2014-01-01

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers...

  15. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.

    Science.gov (United States)

    Leong, Victoria; Goswami, Usha

    2015-01-01

    When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS) and 90-98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across

  16. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.

    Directory of Open Access Journals (Sweden)

    Victoria Leong

    Full Text Available When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes. Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS. Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz, syllables (Syllable AM, ~5 Hz and onset-rime units (Phoneme AM, ~20 Hz. We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words, syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS and 90-98% (rhythmically-regular CDS stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across

  17. Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.

    Science.gov (United States)

    Leong, Victoria; Goswami, Usha

    2015-01-01

    When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS) and 90-98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across

  18. Bootstrapping Multi-Parton Loop Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; /UCLA; Dixon, Lance J.; /SLAC; Kosower, David A.; /Saclay, SPhT

    2005-07-06

    The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.

  19. Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.

    Science.gov (United States)

    Ouared, Abderrahmane; Montagnon, Emmanuel; Kazemirad, Siavash; Gaboury, Louis; Robidoux, André; Cloutier, Guy

    2015-08-01

    In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.

  20. Variable-amplitude oscillatory shear response of amorphous materials

    Science.gov (United States)

    Perchikov, Nathan; Bouchbinder, Eran

    2014-06-01

    Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.

  1. Scattering Amplitudes and BCFW Recursion in Twistor Space

    CERN Document Server

    Mason, L

    2009-01-01

    A number of recent advances in our understanding of scattering amplitudes have been inspired by ideas from twistor theory. While there has been much work studying the twistor space support of scattering amplitudes, this has largely been done by examining the amplitudes in momentum space. In this paper, we construct the actual twistor scattering amplitudes themselves. The main reasons for doing so are to seek a formulation of scattering amplitudes in N=4 super Yang-Mills in which superconformal symmetry is manifest, and to use the progress in on-shell methods in momentum space to build our understanding of how to construct quantum field theory in twistor space. We show that the recursion relations of Britto, Cachazo, Feng and Witten have a natural twistor formulation that, together with the three-point seed amplitudes, allow us in principle to recursively construct general tree amplitudes in twistor space. The twistor space BCFW recursion is tractable, and we obtain explicit formulae for n-particle MHV and NMH...

  2. A Cascaded Approach for Correcting Ionospheric Contamination with Large Amplitude in HF Skywave Radars

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2014-01-01

    Full Text Available Ionospheric phase perturbation with large amplitude causes broadening sea clutter’s Bragg peaks to overlap each other; the performance of traditional decontamination methods about filtering Bragg peak is poor, which greatly limits the detection performance of HF skywave radars. In view of the ionospheric phase perturbation with large amplitude, this paper proposes a cascaded approach based on improved S-method to correct the ionospheric phase contamination. This approach consists of two correction steps. At the first step, a time-frequency distribution method based on improved S-method is adopted and an optimal detection method is designed to obtain a coarse ionospheric modulation estimation from the time-frequency distribution. At the second correction step, based on the phase gradient algorithm (PGA is exploited to eliminate the residual contamination. Finally, use the measured data to verify the effectiveness of the method. Simulation results show the time-frequency resolution of this method is high and is not affected by the interference of the cross term; ionospheric phase perturbation with large amplitude can be corrected in low signal-to-noise (SNR; such a cascade correction method has a good effect.

  3. Feedback delay gradually affects amplitude and valence specificity of the feedback-related negativity (FRN).

    Science.gov (United States)

    Peterburs, Jutta; Kobza, Stefan; Bellebaum, Christian

    2016-02-01

    Processing of performance-related feedback is an essential prerequisite for adaptive behavior. Even though in everyday life feedback is rarely immediate, to date very few studies have investigated whether the feedback-related negativity (FRN), a relative negativity in the ERP approximately 200 to 300 ms after feedback that is sensitive to feedback valence and predictability, is modulated by feedback timing, and findings are inconsistent. The present study investigated effects of gradually increasing feedback delays on feedback processing in the FRN time window. Subjects completed a probabilistic learning task in which feedback was provided after short, intermediate, or long delays. Difference wave-based analyses showed that amplitudes decreased linearly with increasing feedback delay. A distinct pattern was observed for the FRN as defined in the original waveforms, with FRN amplitudes being largest for long and smallest for short delays. This pattern of results is consistent with the notion that the neural systems underlying feedback processing vary depending on feedback timing. The gradually reduced difference wave signal might reflect a gradual shift away from processing in frontostriatal circuits toward medial temporal involvement. To what extent increased signal amplitudes for longer delays in the original waveforms are related to processing in certain brain structures will need to be determined in future studies. PMID:26459164

  4. An unusual very low-mass high-amplitude pre-main sequence periodic variable

    CERN Document Server

    Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William

    2012-01-01

    We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...

  5. Experimental Electrically Reconfigurable Time-Domain Spectral Amplitude Encoding/Decoding in an Optical Code Division Multiple Access System

    Science.gov (United States)

    Tainta, Santiago; Erro, María J.; Garde, María J.; Muriel, Miguel A.

    2013-11-01

    An electrically reconfigurable time-domain spectral amplitude encoding/decoding scheme is proposed herein. The setup is based on the concept of temporally pulse shaping dual to spatial arrangements. The transmitter is based on a short pulse source and uses two conjugate dispersive fiber gratings and an electro-optic intensity modulator placed in between. Proof of concept results are shown for an optical pulse train operating at 1.25 Gbps using codes from the Hadamard family with a length of eight chips. The system is electrically reconfigurable, compatible with fiber systems, and permits scalability in the size of the codes by modifying only the modulator velocity.

  6. ANOMALOUS INTERNAL FRICTION PEAKS AS FUNCTION OF STRAIN AMPLITUDE

    OpenAIRE

    Kê, T.

    1985-01-01

    Anelasticity, as suggested by Zener /1/ in 1948, gives rise to internal friction which is independent of the strain amplitude. The internal friction which increases with an increase of strain amplitude was explained by Koehler /2/ and Granato and Lücke /3/ in terms of vibration string and unpinning of dislocations. Early in 1949, Kê /4, 5/ observed in slightly cold-worked dilute aluminium-copper solid solutions a pronounced internal friction peak as a function of strain amplitude in which the...

  7. Symmetry limit properties of decay amplitudes with mirror matter admixtures

    CERN Document Server

    Sánchez-Colón, G; Sanchez-Colon, Gabriel; Garcia, Augusto

    2006-01-01

    We extend our previous analysis on the symmetry limit properties of non-leptonic and weak radiative decay amplitudes of hyperons in a scheme of mirror matter admixtures in physical hadrons to include the two-body non-leptonic decays of $\\Omega^-$ and the two photon and two pion decays of kaons. We show that the so-called parity-conserving amplitudes predicted for all the decays vanish in the strong flavor SU(3) symmetry limit. We also establish the specific conditions under which the corresponding so-called parity-violating amplitudes vanish in the same limit.

  8. Color-factor symmetry and BCJ relations for QCD amplitudes

    CERN Document Server

    Brown, Robert W

    2016-01-01

    Tree-level $n$-point gauge-theory amplitudes with $n-2k$ gluons and $k$ pairs of (massless or massive) particles in the fundamental (or other) representation of the gauge group are invariant under a set of symmetries that act as momentum-dependent shifts on the color factors in the cubic decomposition of the amplitude. These symmetries lead to gauge-invariant constraints on the kinematic numerators. They also directly imply the BCJ relations among the Melia-basis primitive amplitudes previously obtained by Johansson and Ochirov.

  9. Higher Twist Distribution Amplitudes of the Nucleon in QCD

    CERN Document Server

    Braun, V M; Mahnke, N; Stein, E

    2000-01-01

    We present the first systematic study of higher-twist light-cone distribution amplitudes of the nucleon in QCD. We find that the valence three-quark state is described at small transverse separations by eight independent distribution amplitudes. One of them is leading twist-3, three distributions are twist-4 and twist-5, respectively, and one is twist-6. A complete set of distribution amplitudes is constructed, which satisfies equations of motion and constraints that follow from conformal expansion. Nonperturbative input parameters are estimated from QCD sum rules.

  10. On the collinear limit of scattering amplitudes at strong coupling

    CERN Document Server

    Basso, Benjamin; Vieira, Pedro

    2015-01-01

    In this letter we consider the collinear limit of gluon scattering amplitudes in planar N=4 SYM theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of twist fields in the two dimensional non-linear O(6) sigma model, similar to those appearing in recent studies of entanglement entropy. We provide evidence for this assertion by combining the intuition springing from the string worldsheet picture and the predictions coming from the OPE series. One of the main implications of these considerations is that scattering amplitudes receive equally important contributions at strong coupling from both the minimal string area and its fluctuations in the sphere.

  11. Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wen; ZHENG Zhi-Gang

    2007-01-01

    Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored.It is found that depending on parameter mismatches,the synchronization of phases exhibits different manners.The synchronization regime can be divided into three regimes.For small mismatches,the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases,the amplitudes and phases of oscillators are correlated,and the amplitudes will dominate the synchronous dynamics for very large mismatches.The lag time among phases exhibits a power law when phase synchronization is achieved.

  12. Jump phenomena. [large amplitude responses of nonlinear systems

    Science.gov (United States)

    Reiss, E. L.

    1980-01-01

    The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.

  13. Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis

    Science.gov (United States)

    Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.

  14. Fatigue independent amplitude-frequency correlations in EMG signals

    CERN Document Server

    Siemienski, A; Klajner, P; Siemienski, Adam; Kebel, Alicja; Klajner, Piotr

    2006-01-01

    In order to assess fatigue independent amplitude-frequency correlations in EMG signals we asked nineteen male subjects to perform a series of isometric muscular contractions by extensors of the knee joint. Different amplitudes of the signal were due to randomly varying both the joint moment and the overall amplification factor of the EMG apparatus. Mean and median frequency, RMS and mean absolute value were calculated for every combination of joint moment and amplification at the original sampling rate of 5 kHz and at several simulated lower sampling rates. Negative Spearman and Kendall amplitude-frequency correlation coefficients were found, and they were more pronounced at high sampling rates.

  15. Statistical multiresolution analysis in amplitude-frequency domain

    Institute of Scientific and Technical Information of China (English)

    SUN Hong; GUAN Bao; Henri Maitre

    2004-01-01

    A concept of statistical multiresolution analysis in amplitude-frequency domain is proposed, which is to employ the wavelet transform on the statistical character of a signal in amplitude domain. In terms of the theorem of generalized ergodicity, an algorithm to estimate the transform coefficients based on the amplitude statistical multiresolution analysis (AMA) is presented. The principle of applying the AMA to Synthetic Aperture Radar (SAR) image processing is described, and the good experimental results imply that the AMA is an efficient tool for processing of speckled signals modeled by the multiplicative noise.

  16. MEASUREMENT OF ANGULAR VIBRATION AMPLITUDE BY ACTIVELY BLURRED IMAGES

    Institute of Scientific and Technical Information of China (English)

    GUAN Baiqing; WANG Shigang; LIU Chong; LI Qian

    2007-01-01

    A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.

  17. Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters

    Directory of Open Access Journals (Sweden)

    Gabriele Grandi

    2013-08-01

    Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.

  18. Amplitude and frequency modulation control of sound production in a mechanical model of the avian syrinx

    DEFF Research Database (Denmark)

    Elemans, Coen; Muller, Mees; Larsen, Ole Næsbye;

    2009-01-01

    resembles the ‘starling resistor', a collapsible tube model, and consists of a tube with a single membrane in its casing, suspended in an external pressure chamber and driven by various pressure patterns. With this design, we can separately control ‘bronchial' pressure and tension in the oscillating...

  19. Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim Tiam, Sandra, E-mail: sandra.kimtiam@gmail.com [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France); Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Laviale, Martin [Departamento de Biologia and CESAM – Centro de Estudos do Ambiente e do Mar Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-Sur-Mer (France); CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-Sur-Mer France (France); Feurtet-Mazel, Agnès [Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Jan, Gwilherm [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France); Gonzalez, Patrice [Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Mazzella, Nicolas; Morin, Soizic [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France)

    2015-08-15

    Highlights: • Rapid Light Curves were shown to be early markers of toxicant exposure. • Diuron and norflurazon effects were significant at environmentally realistic concentrations. • Toxic effects in intact biofilms seem to be delayed compared to disrupted biofilms. - Abstract: The use of Rapid light curves (RLCs) as a toxicity endpoint for river biofilms was examined in this study and compared to “classical fluorescence parameters” i.e. minimal fluorescence (F{sub 0}), optimal and effective quantum yields of photosystem II (F{sub v}/F{sub m} and Φ{sub PSII}). Measurements were performed after exposure to five concentrations of diuron (from 0.3 to 33.4 μg L{sup −1}), its main degradation product (DCPMU) (from 1.0 to 1014 μg L{sup −1}) and norflurazon (from 0.6 to 585 μg L{sup −1}) with the lowest exposure concentrations corresponding to levels regularly encountered in chronically contaminated sites. Biofilm responses were evaluated after 1, 5, 7 and 14 days of exposure to the different toxicants. Overall, the responses of both “classical fluorescence parameters” and RLC endpoints were highly time dependent and related to the mode of action of the different compounds. Interestingly, parameters calculated from RLCs (α, ETR{sub max} and I{sub k}) were useful early markers of pesticide exposure since they revealed significant effects of all the tested toxicants from the first day of exposure. In comparison, classical fluorescence endpoints (F{sub 0} and F{sub v}/F{sub m}) measured at day 1 were only affected in the DCPMU treatment. Our results demonstrated the interest of RLCs as early markers of toxicant exposure particularly when working with toxicants with less specific mode of action than PSII inhibitors.

  20. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E;

    2004-01-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double...

  1. Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    DEFF Research Database (Denmark)

    Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee;

    2014-01-01

    Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optic...

  2. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    Science.gov (United States)

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-25

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 μm for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable. PMID:26335613

  3. Amplitude modulation Atomic Force Microscopy, is acoustic driving in liquid quantitatively reliable?

    NARCIS (Netherlands)

    Liu, F.; Zhao, C.; Mugele, F.; Ende, van den H.T.M.

    2015-01-01

    Measuring quantitative tip–sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever osc

  4. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik;

    2004-01-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using doubl...

  5. Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves

    DEFF Research Database (Denmark)

    Wang, Z.Z.; Gorard, J.C.; Pasquier, C.;

    2003-01-01

    Charge density waves (CDWs) have been studied at the surface of a cleaved tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) single crystal using a low temperature scanning tunneling microscope (STM) under ultrahigh-vacuum conditions, between 300 and 33 K with molecular resolution. All CDW...

  6. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli.

    Science.gov (United States)

    Tu, Yiheng; Zhang, Zhiguo; Tan, Ao; Peng, Weiwei; Hung, Yeung Sam; Moayedi, Massieh; Iannetti, Gian Domenico; Hu, Li

    2016-02-01

    Ongoing fluctuations of intrinsic cortical networks determine the dynamic state of the brain, and influence the perception of forthcoming sensory inputs. The functional state of these networks is defined by the amplitude and phase of ongoing oscillations of neuronal populations at different frequencies. The contribution of functionally different cortical networks has yet to be elucidated, and only a clear dependence of sensory perception on prestimulus alpha oscillations has been clearly identified. Here, we combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) in a large sample of healthy participants to investigate how ongoing fluctuations in the activity of different cortical networks affect the perception of subsequent nociceptive stimuli. We observed that prestimulus EEG oscillations in the alpha (at bilateral central regions) and gamma (at parietal regions) bands negatively modulated the perception of subsequent stimuli. Combining information about alpha and gamma oscillations predicted subsequent perception significantly more accurately than either measure alone. In a parallel experiment, we found that prestimulus fMRI activity also modulated the perception of subsequent stimuli: perceptual ratings were higher when the BOLD signal was higher in nodes of the sensorimotor network and lower in nodes of the default mode network. Similar to what observed in the EEG data, prediction accuracy was improved when the amplitude of prestimulus BOLD signals in both networks was combined. These findings provide a comprehensive physiological basis to the idea that dynamic changes in brain state determine forthcoming behavioral outcomes. Hum Brain Mapp 37:501-514, 2016. © 2015 Wiley Periodicals, Inc.

  7. Electro-mechanically induced GHz rate optical frequency modulation in silicon

    CERN Document Server

    Tallur, Siddharth

    2012-01-01

    We present a monolithic silicon acousto-optic frequency modulator (AOFM) operating at 1.09GHz. Direct spectroscopy of the modulated laser power shows asymmetric sidebands which indicate coincident amplitude modulation and frequency modulation. Employing mechanical levers to enhance displacement of the optical resonator resulted in greater than 67X improvement in the opto-mechanical frequency modulation factor over earlier reported numbers for silicon nanobeams.

  8. Neural Representations of Complex Temporal Modulations in the Human Auditory Cortex

    OpenAIRE

    Ding, Nai; Simon, Jonathan Z.

    2009-01-01

    Natural sounds such as speech contain multiple levels and multiple types of temporal modulations. Because of nonlinearities of the auditory system, however, the neural response to multiple, simultaneous temporal modulations cannot be predicted from the neural responses to single modulations. Here we show the cortical neural representation of an auditory stimulus simultaneously frequency modulated (FM) at a high rate, fFM ≈ 40 Hz, and amplitude modulation (AM) at a slow rate, fAM

  9. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    Science.gov (United States)

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  10. Harmonic minimization waveforms for modulated heating experiments at HAARP

    OpenAIRE

    İnan, Umran Savaş; Jin, G. ; Spasojevic, M.; Cohen,M.B

    2012-01-01

    Modulated High Frequency (few MHz) heating of the D-region ionosphere under the auroral electrojet is capable of generating extremely low frequency (ELF) radio waves in the few kilohertz range by affecting the conductivity of the D-region. The HF heating is nonlinear and results in the generation of harmonics at integer multiples of the ELF modulation frequency with 1% of the total power outside the fundamental when sinusoidal amplitude modulation is applied to the HF carrier....

  11. A simple alternative for modulating and recording the PQRST complex

    OpenAIRE

    Cano, M. E.; R A Jaso; M E Tavares; Estrada, J C; E A Mena; O Reynoso; A González-Vega; T Córdova-Fraga

    2011-01-01

    This work presents the instrumentation steps towards the development of a low cost personal device for conditioning, modulating in amplitude and recording the electrical activity generated by bipolar leads of the heart. Also, a method of remote monitoring using an audio transmitter- receiver in modulated frequency adapted to a PC sound card is con- sidered. To determine the modulation effects on the PQRST complex, simultaneous measurements on several volunteers are carried out. The signa...

  12. Nonlinear Langmuir Wave Modulation in Weakly Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans

    1978-01-01

    It is assumed that the magnetic field is only important for the ion motion. Both a fluid and a kinetic description of the ions are considered. It is found that the presence of electrostatic ion cyclotron waves, in addition to the ion acoustic waves also found in unmagnetized plasmas, has a strong...... varying electron heating in the amplitude modulated Langmuir wave. For modulations travelling almost perpendicular to the magnetic field, this effect has a profound influence on a modulational instability...

  13. Moments of pseudoscalar meson distribution amplitudes from the lattice

    International Nuclear Information System (INIS)

    Based on lattice simulations with two flavors of dynamical, O(a)-improved Wilson fermions we present results for the first two moments of the distribution amplitudes of pseudoscalar mesons at several values of the valence quark masses. By extrapolating our results to the physical masses of up/down and strange quarks, we find the first two moments of the K+ distribution amplitude and the second moment of the π+ distribution amplitude. We use nonperturbatively determined renormalization coefficients to obtain results in the MS scheme. At a scale of 4 GeV2 we find a2π=0.201(114) for the second Gegenbauer moment of the pion's distribution amplitude, while for the kaon, a1K=0.0453(9)(29) and a2K=0.175(18)(47)

  14. N >= 4 Supergravity Amplitudes from Gauge Theory at Two Loops

    CERN Document Server

    Boucher-Veronneau, C

    2011-01-01

    We present the full two-loop four-graviton amplitudes in N=4,5,6 supergravity. These results were obtained using the double-copy structure of gravity, which follows from the recently conjectured color-kinematics duality in gauge theory. The two-loop four-gluon scattering amplitudes in N=0,1,2 supersymmetric gauge theory are a second essential ingredient. The gravity amplitudes have the expected infrared behavior: the two-loop divergences are given in terms of the squares of the corresponding one-loop amplitudes. The finite remainders are presented in a compact form. The finite remainder for N=8 supergravity is also presented, in a form that utilizes a pure function with a very simple symbol.

  15. Pulse amplitude extraction in digital nuclear spectrometer system

    International Nuclear Information System (INIS)

    Background: The accuracy and real-time performance of pulse amplitude extraction in digital nuclear spectrometer system directly influence the system energy resolution and the maximum count rates. Purpose: This paper attempts to study the amplitude extraction method of digital nuclear signal, which comes from the high speed ADC. Methods: In this paper, according to the principle of operation, the extraction method is categorized into three types: direct comparison method, curve fitting method and filter shaper method, also the operating principle of the three methods are analysed and discussed. Results: The above three methods are employed to process actual sampled digital nuclear signal at the sampling frequency of 40 MHz, the curve fitting method and filter shaper method are respectively used to extract the pulse amplitude and get their energy spectrum. Conclusions: Taking into account the resolution and pulse counting rate, after theoretical analysis, experimental comparison and test, the optimal pulse amplitude extraction method is filter shaper method. (authors)

  16. Movement amplitude and tempo change in piano performance

    Science.gov (United States)

    Palmer, Caroline

    2001-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  17. Amplitude Equation for Instabilities Driven at Deformable Surfaces - Rosensweig Instability

    Science.gov (United States)

    Pleiner, Harald; Bohlius, Stefan; Brand, Helmut R.

    2008-11-01

    The derivation of amplitude equations from basic hydro-, magneto-, or electrodynamic equations requires the knowledge of the set of adjoint linear eigenvectors. This poses a particular problem for the case of a free and deformable surface, where the adjoint boundary conditions are generally non-trivial. In addition, when the driving force acts on the system via the deformable surface, not only Fredholm's alternative in the bulk, but also the proper boundary conditions are required to get amplitude equations. This is explained and demonstrated for the normal field (or Rosensweig) instability in ferrofluids as well as in ferrogels. An important aspect of the problem is its intrinsic dynamic nature, although at the end the instability is stationary. The resulting amplitude equation contains cubic and quadratic nonlinearities as well as first and (in the gel case) second order time derivatives. Spatial variations of the amplitudes cannot be obtained by using simply Newell's method in the bulk.

  18. Utility of Amplitude-Integrated EEG in the NICU

    OpenAIRE

    J Gordon Millichap

    2009-01-01

    The problem of artifacts in using the amplitude-integrated electroencephalogram (AIE) to assess cortical function in premature infants in the NICU were studied at Weill Cornell Medical College, New York, NY.

  19. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  20. Mean amplitudes of vibration of OTeF5-

    International Nuclear Information System (INIS)

    Mean amplitudes of vibration for OTeF5- have been calculated from known spectroscopic and structural data in a wide temperature range. The results are briefly discussed in comparison with those of related species. (author)

  1. CP violation due to new ΔB = 1 amplitudes

    International Nuclear Information System (INIS)

    The authors make a systematic analysis of the effects of new physics in the B decay amplitudes on the CP asymmetries in neutral B decays. Although these are expected to be smaller than new physics effects on the mixing amplitude, they are easier to probe in some cases. The effects of new contributions to the mixing amplitude are felt universally across all decay modes, whereas the effects of new decay amplitudes could vary from mode to mode. In particular the prediction that the CP asymmetries in the B decay modes with b → c anti cs, b → c anti cd, b → c anti ud and b → s anti ss should all measure the same quantity (sin 2β in the Standard Model) could be violated

  2. Cluster Functions and Scattering Amplitudes for Six and Seven Points

    CERN Document Server

    Harrington, Thomas

    2015-01-01

    Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. We explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4,6) and Gr(4,7) cluster polylogarithm functions of arXiv:1401.6446 at weight 4.

  3. Amplitude chimeras and chimera death in dynamical networks

    Science.gov (United States)

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2016-06-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart- Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It is characterized by the coexistence of spatially coherent and incoherent inhomogeneous steady states and therefore combines the features of chimera state and oscillation death. Additionally, we show two different transition scenarios from amplitude chimera to chimera death. Moreover, for amplitude chimeras we uncover the mechanism of transition towards in-phase synchronized regime and discuss the role of initial conditions.

  4. Some tree-level string amplitudes in the NSR formalism

    CERN Document Server

    Becker, Katrin; Melnikov, Ilarion V; Robbins, Daniel; Royston, Andrew B

    2015-01-01

    We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric $F^4$ effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.

  5. Beyond Reggeization for two- and three-loop QCD amplitudes

    CERN Document Server

    Del Duca, Vittorio; Magnea, Lorenzo; Vernazza, Leonardo

    2013-01-01

    The high-energy factorization of gauge theory scattering amplitudes in terms of universal impact factors and a Reggeized exchange in the $t$-channel, corresponding to a Regge pole in the angular momentum plane, is know to conflict with the structure of soft anomalous dimensions starting at the two-loop level. We explore the implications of this violation of factorization for two- and three-loop QCD amplitudes: first we propose criteria to organize the amplitudes into factorizing and non-factorizing terms, then we test them by recovering a known result for non-logarithmic terms at two loops. Finally we predict the precise value of the leading non-factorizing energy logarithms at three loops, and we uncover a set of all-order identities constraining infrared finite terms in quark and gluon amplitudes.

  6. The Last of the Finite Loop Amplitudes in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2005-05-31

    We use on-shell recursion relations to determine the one-loop QCD scattering amplitudes with a massless external quark pair and an arbitrary number (n - 2) of positive-helicity gluons. These amplitudes are the last of the unknown infrared- and ultraviolet-finite loop amplitudes of QCD. The recursion relations are similar to ones applied at tree level, but contain new non-trivial features corresponding to poles present for complex momentum arguments but absent for real momenta. We present the relations and the compact solutions to them, valid for all n. We also present compact forms for the previously-computed one-loop n-gluon amplitudes with a single negative helicity and the rest positive helicity.

  7. Fermion-fermion and boson-boson amplitudes: surprising similarities

    CERN Document Server

    Dvoeglazov, Valeri V

    2007-01-01

    Amplitudes for fermion-fermion, boson-boson and fermion-boson interactions are calculated in the second order of perturbation theory in the Lobachevsky space. An essential ingredient of the model is the Weinberg's 2(2j+1)-component formalism for describing a particle of spin j. The boson-boson amplitude is then compared with the two-fermion amplitude obtained long ago by Skachkov on the basis of the Hamiltonian formulation of quantum field theory on the mass hyperboloid, p_0^2 - p^2=M^2, proposed by Kadyshevsky. The parametrization of the amplitudes by means of the momentum transfer in the Lobachevsky space leads to same spin structures in the expressions of T-matrices for the fermion case and the boson case. However, certain differences are found. Possible physical applications are discussed.

  8. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  9. Amplitude fluctuations in the Berezinskii-Kosterlitz-Thouless phase

    CERN Document Server

    Jakubczyk, Pawel

    2016-01-01

    We analyze the interplay of thermal amplitude and phase fluctuations in a $U(1)$ symmetric two-dimensional $\\phi^4$-theory. To this end, we derive coupled renormalization group equations for both types of fluctuations. Discarding the amplitude fluctuations, the expected Berezinskii-Kosterlitz-Thouless (BKT) phase characterized by a finite phase stiffness and an algebraic decay of order parameter correlations is recovered at low temperatures. However, in contrast to the widespread expectation, amplitude fluctuations are not innocuous, since their mass vanishes due to a strong renormalization by phase fluctuations. Even at low temperatures the amplitude fluctuations lead to a logarithmic renormalization group flow of the phase stiffness, which ultimately vanishes. Hence, the BKT phase is strictly speaking replaced by a symmetric phase with a finite correlation length, which is however exponentially large at low temperatures. The vortex-driven BKT transition is then rounded to a crossover, which may be practical...

  10. Off-shell amplitudes for nonoriented closed strings

    CERN Document Server

    Cappiello, L; Pettorino, R; Pezzella, F

    1998-01-01

    In the context of the bosonic closed string theory, by using the operatorial formalism, we give a simple expression of the off-shell amplitude with an arbitrary number of external massless states inserted on the Klein bottle.

  11. Broadband metasurface for independent control of reflected amplitude and phase

    OpenAIRE

    Sheng Li Jia; Xiang Wan; Pei Su; Yong Jiu Zhao; Tie Jun Cui

    2016-01-01

    We propose an ultra-thin metasurface to control the amplitudes and phases independently of the reflected waves by changing geometries and orientations of I-shaped metallic particles. We demonstrate that the particles can realize independent controls of reflection amplitudes and phases with a magnitude range of [0, 0.82] and a full phase range of 360° in broad frequency band. Based on such particles, two ultrathin metasurface gratings are further proposed to form anomalous reflection with pola...

  12. Threshold amplitudes for transition to turbulence in a pipe

    OpenAIRE

    Trefethen, Lloyd N.; Chapman, S. J.; Henningson, Dan S.; Meseguer, A.; Mullin, Tom; Nieuwstadt, F.T.M.

    2000-01-01

    Although flow in a circular pipe is stable to infinitesimal perturbations, it can be excited to turbulence by finite perturbations whose minimal amplitude shrinks as $R \\rightarrow \\infty ~(R =$ Reynolds number). Laboratory experiments have appeared to disagree with one another and with theoretical predictions about the dependence of this minimal amplitude on $R$, with published results ranging approximately from $R^{-1/4}$ to $R^{-3/2}$. Here it is shown that these discrepancies can be expla...

  13. On Superstring Disk Amplitudes in a Rolling Tachyon Background

    OpenAIRE

    Jokela, Niko; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2005-01-01

    We study the tree level scattering or emission of n closed superstrings from a decaying non-BPS brane in Type II superstring theory. We attempt to calculate generic n-point superstring disk amplitudes in the rolling tachyon background. We show that these can be written as infinite power series of Toeplitz determinants, related to expectation values of a periodic function in Circular Unitary Ensembles. Further analytical progress is possible in the special case of bulk-boundary disk amplitudes...

  14. Lectures on scattering amplitudes via AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Alday, L.F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands)

    2008-08-05

    We review recent progress on computing scattering amplitudes of planar N=4 super Yang-Mills at strong coupling by using the AdS/CFT duality. We consider in detail the scattering of four gluons and do explicit computations by using both, dimensional regularization and a cut-off in the radial direction. The later scheme is particularly appropriate for understanding the conformal properties of the amplitudes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. Large-N QCD and the Veneziano amplitude

    Science.gov (United States)

    Armoni, Adi

    2016-05-01

    We consider four scalar mesons scattering in large-Nc QCD. Using the worldline formalism we show that the scattering amplitude can be written as a formal sum over Wilson loops. The AdS/CFT correspondence maps this sum into a sum over string worldsheets in a confining background. We then argue that for well separated mesons the sum is dominated by flat space configurations. Under additional assumptions about the dual string path integral we obtain the Veneziano amplitude.

  16. Large-N QCD and the Veneziano amplitude

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2016-05-01

    Full Text Available We consider four scalar mesons scattering in large-Nc QCD. Using the worldline formalism we show that the scattering amplitude can be written as a formal sum over Wilson loops. The AdS/CFT correspondence maps this sum into a sum over string worldsheets in a confining background. We then argue that for well separated mesons the sum is dominated by flat space configurations. Under additional assumptions about the dual string path integral we obtain the Veneziano amplitude.

  17. Effect Of Vibration Amplitude Level On Seated Occupant Reaction Time

    Directory of Open Access Journals (Sweden)

    Amzar Azizan

    2015-08-01

    Full Text Available The past decade has seen the rapid development of vibration comfort in the automotive industry. However little attention has been paid to vibration drowsiness. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment total transmitted acceleration measured at interfaces between the seat cushion and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude low vibration amplitude and medium vibration amplitude for 20-minutes in separate days. For the purpose of drowsiness measurement volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS before vibration every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. The results of this investigation suggest that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together these findings suggest a role of vibration in promoting drowsiness especially at higher vibration amplitude.

  18. Novel clutter map CFAR algorithm with amplitude limiter

    Institute of Scientific and Technical Information of China (English)

    单涛; 陶然; 王越; 周思永

    2004-01-01

    The traditional clutter map constant false alarm rate (CM-CFAR) detector is affected by interference and selfmasking[1] which will cause the low probability of detection. To solve these problems, a novel algorithm named clutter map CFAR with amplitude limiter (ALCM-CFAR) is proposed, in which the amplitude of the input signal is limited by a filter. The simulation results prove the effectiveness of ALCM-CFAR algorithm.

  19. Bootstrapping a Five-Loop Amplitude from Steinmann Relations

    CERN Document Server

    Caron-Huot, Simon; McLeod, Andrew; von Hippel, Matt

    2016-01-01

    The analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.

  20. Amplitude chimeras and chimera death in dynamical networks

    OpenAIRE

    Zakharova, Anna; Kapeller, Marie; Schöll, Eckehard

    2015-01-01

    We find chimera states with respect to amplitude dynamics in a network of Stuart-Landau oscillators. These partially coherent and partially incoherent spatio-temporal patterns appear due to the interplay of nonlocal network topology and symmetry-breaking coupling. As the coupling range is increased, the oscillations are quenched, amplitude chimeras disappear and the network enters a symmetry-breaking stationary state. This particular regime is a novel pattern which we call chimera death. It i...