On the Conversion of Triple- to Single-Quantum Coherences in MQMAS NMR
Pruski, M.; Wiench, J. W.; Amoureux, J.-P.
2000-12-01
A systematic experimental and numerical evaluation of several basic approaches to multiple-quantum magic angle spinning (MQMAS) NMR is presented for spin-{3}/{2} nuclei. The approaches use identical MQ excitation, via a single RF pulse of high power, and three types of methods for conversion to observable coherence: (a) nutation by strong continuous wave pulse; (b) rotation-induced adiabatic coherence transfer (RIACT), and (c) fast amplitude modulation (FAM-1). The optimization strategies and maximum achievable MQMAS efficiencies of 87Rb in RbNO3 and LiRbSO4 are investigated using several coherence transfer schemes under a wide range of experimental parameters. These parameters include the strength of the RF magnetic field νRF, the sample rotation speed νR, the length of the conversion period, and the modulation frequency in FAM-1. The data provide new insights into the spin dynamics involved in these techniques and the experimental guidelines for achieving the best sensitivity. The RF requirements for maximum efficiency of conversion depend on the method to be used. In general, FAM-1 performs better than the nutation and RIACT methods in terms of efficiency and off-resonance behavior, especially when νRF is small compared to the quadrupole frequency νQ. The experiments performed using nutation, RIACT, and FAM-1 methods yield similar resolution in the isotropic dimension, regardless of νRF.
Pulse amplitude modulated chlorophyll fluorometer
Energy Technology Data Exchange (ETDEWEB)
Greenbaum, Elias; Wu, Jie
2015-12-29
Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.
Mechanical models of amplitude and frequency modulation
Energy Technology Data Exchange (ETDEWEB)
Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)
2005-05-01
This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.
Speech production in amplitude-modulated noise
DEFF Research Database (Denmark)
Macdonald, Ewen N; Raufer, Stefan
2013-01-01
The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... to previous studies, talkers raised the level of their voice in steady-state noise. While talkers also increased the level of their voice in amplitude-modulated noise, the increase was not as large as that observed in steady-state noise. Importantly, for the 2 and 4 Hz amplitude-modulated noise conditions...
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Detection of combined frequency and amplitude modulation.
Moore, B C; Sek, A
1992-12-01
This article is concerned with the detection of mixed modulation (MM), i.e., simultaneously occurring amplitude modulation (AM) and frequency modulation (FM). In experiment 1, an adaptive two-alternative forced-choice task was used to determine thresholds for detecting AM alone. Then, thresholds for detecting FM were determined for stimuli which had a fixed amount of AM in the signal interval only. The amount of AM was always less than the threshold for detecting AM alone. The FM thresholds depended significantly on the magnitude of the coexisting AM. For low modulation rates (4, 16, and 64 Hz), the FM thresholds did not depend significantly on the relative phase of modulation for the FM and AM. For a high modulation rate (256 Hz) strong effects of modulator phase were observed. These phase effects are as predicted by the model proposed by Hartmann and Hnath [Acustica 50, 297-312 (1982)], which assumes that detection of modulation at modulation frequencies higher than the critical modulation frequency is based on detection of the lower sideband in the modulated signal's spectrum. In the second experiment, psychometric functions were measured for the detection of AM alone and FM alone, using modulation rates of 4 and 16 Hz. Results showed that, for each type of modulation, d' is approximately a linear function of the square of the modulation index. Application of this finding to the results of experiment 1 suggested that, at low modulation rates, FM and AM are not detected by completely independent mechanisms. In the third experiment, psychometric functions were again measured for the detection of AM alone and FM alone, using a 10-Hz modulation rate. Detectability was then measured for combined AM and FM, with modulation depths selected so that each type of modulation would be equally detectable if presented alone. Significant effects of relative modulator phase were found when detectability was relatively high. These effects were not correctly predicted by either a
Speech recognition with amplitude and frequency modulations
Zeng, Fan-Gang; Nie, Kaibao; Stickney, Ginger S.; Kong, Ying-Yee; Vongphoe, Michael; Bhargave, Ashish; Wei, Chaogang; Cao, Keli
2005-02-01
Amplitude modulation (AM) and frequency modulation (FM) are commonly used in communication, but their relative contributions to speech recognition have not been fully explored. To bridge this gap, we derived slowly varying AM and FM from speech sounds and conducted listening tests using stimuli with different modulations in normal-hearing and cochlear-implant subjects. We found that although AM from a limited number of spectral bands may be sufficient for speech recognition in quiet, FM significantly enhances speech recognition in noise, as well as speaker and tone recognition. Additional speech reception threshold measures revealed that FM is particularly critical for speech recognition with a competing voice and is independent of spectral resolution and similarity. These results suggest that AM and FM provide independent yet complementary contributions to support robust speech recognition under realistic listening situations. Encoding FM may improve auditory scene analysis, cochlear-implant, and audiocoding performance. auditory analysis | cochlear implant | neural code | phase | scene analysis
Gearbox Vibration Signal Amplitude and Frequency Modulation
Directory of Open Access Journals (Sweden)
Fakher Chaari
2012-01-01
Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.
Amplitude Modulated Sinusoidal Signal Decomposition for Audio Coding
DEFF Research Database (Denmark)
Christensen, M. G.; Jacobson, A.; Andersen, S. V.;
2006-01-01
In this paper, we present a decomposition for sinusoidal coding of audio, based on an amplitude modulation of sinusoids via a linear combination of arbitrary basis vectors. The proposed method, which incorporates a perceptual distortion measure, is based on a relaxation of a nonlinear least-squar......-squares minimization. Rate-distortion curves and listening tests show that, compared to a constant-amplitude sinusoidal coder, the proposed decomposition offers perceptually significant improvements in critical transient signals....
Amplitude Modulation in the δ Sct star KIC 7106205
Directory of Open Access Journals (Sweden)
Bowman Dominic. M.
2015-01-01
Full Text Available The δ Sct star KIC 7106205 showed amplitude modulation in a single p mode, whilst all other p and g modes remained stable in amplitude and phase over 1470 d of the Kepler dataset. The data were divided into 30 time bins of equal length and a series of consecutive Fourier transforms was calculated. A fixed frequency, calculated from a least-squares fit of all data, allowed amplitude and phase for every mode in each time bin to be tracked. The missing p mode energy was not transferred to any other visible modes.
Amplitude-Modulated Bursting: A Novel Class of Bursting Rhythms
Vo, Theodore; Kramer, Mark A.; Kaper, Tasso J.
2016-12-01
We report on the discovery of a novel class of bursting rhythms, called amplitude-modulated bursting (AMB), in a model for intracellular calcium dynamics. We find that these rhythms are robust and exist on open parameter sets. We develop a new mathematical framework with broad applicability to detect, classify, and rigorously analyze AMB. Here we illustrate this framework in the context of AMB in a model of intracellular calcium dynamics. In the process, we discover a novel family of singularities, called toral folded singularities, which are the organizing centers for the amplitude modulation and exist generically in slow-fast systems with two or more slow variables.
About the Phasor Pathways in Analogical Amplitude Modulation
de Oliveira, H M
2015-01-01
The Phasor diagrams have long been used in Physics and Engineering. In telecommunications, this is particularly useful to clarify how the modulations work. This paper addresses rotating phasor pathways derived from different standard Amplitude Modulation Systems (e.g. A3E, H3E, J3E, C3F). A cornucopia of algebraic curves is then derived assuming a single tone or a double tone modulation signal. The ratio of the frequency of the tone modulator (fm) and carrier frequency (fc) is considered in two distinct cases, namely: fm/fc=1. The geometric figures are some sort of Lissajours figures. Different shapes appear looking like epicycloids (including cardioids), rhodonea curves, Lemniscates, folium of Descartes or Lam\\'e curves. The role played by the modulation index is elucidated in each case.
Response of plasmonic terahertz detectors to amplitude modulated signals
Rupper, Greg; Rudin, Sergey; Shur, Michael
2015-09-01
We present theoretical study of the response of two-dimensional gated electron gas to an amplitude modulated signals with carrier frequency in the terahertz range. The model is based on complete hydrodynamic equations, and includes effects of viscosity, pressure gradients and thermal transport in the conduction channel of a high electron mobility semiconductor transistor (HEMT). The modulation response was evaluated as a function of modulation frequency fM for a wide range of mobility values. Maximum modulation frequency fMAX was evaluated as a function of channel mobility, with typical values of fMAX in the subterahertz range of frequencies. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet all the requirements for applications as terahertz detectors and modulators in ultra high-speed wireless communication circuits.
Focusing Light through Random Photonic Media by Binary Amplitude Modulation
Akbulut, Duygu; van Putten, Elbert G; Vos, Willem L; Mosk, Allard P
2011-01-01
We study the focusing of light through random photonic materials using wavefront shaping. We explore a novel approach namely binary amplitude modulation. To this end, the light incident to a random photonic medium is spatially divided into a number of segments. We identify the segments that give rise to fields that are out of phase with the total field at the intended focus and assign these a zero amplitude, whereas the remaining segments maintain their original amplitude. Using 812 independently controlled segments of light, we find the intensity at the target to be 75 +/- 6 times enhanced over the average intensity behind the sample. We experimentally demonstrate focusing of light through random photonic media using both an amplitude only mode liquid crystal spatial light modulator and a MEMS-based spatial light modulator. Our use of Micro Electro-Mechanical System (MEMS)-based digital micromirror devices for the control of the incident light field opens an avenue to high speed implementations of wavefront ...
Air-segmented amplitude-modulated multiplexed flow analysis.
Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji
2011-01-01
Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.
Multiplexing technique using amplitude-modulated chirped fiber Bragg gratings
Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding
2007-07-01
We propose a new multiplexing technique using amplitude-modulated chirped fiber Bragg gratings that have an identical center Bragg wavelength. Each grating is inscribed with a unique amplitude modulation that allows them to be multiplexed with complete overlapping within a certain bandwidth. To demodulate the multiplexed signal, the discrete wavelet transform is employed. Concurrently, a wavelet denoising technique is used to reduce the noise. This proposed multiplexing technique has been verified through strain measurements. Experimental results showed that for strains applied up to 1250 μɛ the absolute error and cross-talk are within ±20 μɛ and 16 μɛ, respectively. A strain resolution of 4 μɛ is obtained.
Amplitude modulation control of escape from a potential well
Energy Technology Data Exchange (ETDEWEB)
Chacón, R. [Departamento de Física Aplicada, Escuela de Ingenierías Industriales, Universidad de Extremadura, Apartado Postal 382, E-06006 Badajoz (Spain); Martínez García-Hoz, A. [Departamento de Física Aplicada, Escuela Universitaria Politécnica, Universidad de Castilla-La Mancha, E-13400 Almadén (Ciudad Real) (Spain); Miralles, J.J. [Departamento de Física Aplicada, Escuela de Ingenieros Industriales, Universidad de Castilla-La Mancha, E-02071 Albacete (Spain); Martínez, P.J. [Departamento de Física Aplicada, E.I.N.A., Universidad de Zaragoza, E-50018 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-03-01
We demonstrate the effectiveness of periodic amplitude modulations in controlling (suppressing and enhancing) escape from a potential well through the universal model of a damped Helmholtz oscillator subjected to an external periodic excitation (the escape-inducing excitation) whose amplitude is periodically modulated (the escape-controlling excitation). Analytical and numerical results show that this multiplicative control works reliably for different subharmonic resonances between the two periodic excitations involved, and that its effectiveness is comparable to those of different methods of additive control. Additionally, we demonstrate the robustness of the multiplicative control against the presence of low-intensity Gaussian noise. -- Highlights: •Multiplicative control of escape from a potential well has been demonstrated. •Theoretical predictions are obtained from a Melnikov analysis. •It has been shown the robustness of the multiplicative control against noise.
Symbol rate identification for auxiliary amplitude modulation optical signal
Wei, Junyu; Dong, Zhi; Huang, Zhiping; Zhang, Yimeng
2016-09-01
In this paper, we creatively propose and demonstrate a method for symbol rate identification (SRI) of auxiliary amplitude modulation (AAM) optical signal based on asynchronous delay-tap sampling (ADTS) and average magnitude difference function (AMDF). The method can accurately estimate symbol rate and has large transmission impairments tolerance. Furthermore, it can be realized in the digital signal processor (DSP) with low logical resources because of multiplication-free. In order to improve the accuracy of SRI, the peak to valley ratio (PTVR) of AMDF is introduced into our method for blind chromatic dispersion (CD) compensation. The results of the numerical simulations show that the overall maximum SRI error is smaller 0.079% for return-to-zero (RZ) on-off keying (OOK), RZ differential phase-shift keying (DPSK), RZ differential quadrature phase-shift keying (DQPSK) and RZ 16-ary quadrature amplitude modulation (QAM) with 50% duty cycles.
Multisensory interaction in vibrotactile detection and discrimination of amplitude modulation
DEFF Research Database (Denmark)
Teodorescu, Kinneret; Bouchigny, Sylvain; Hoffmann, Pablo F.
2011-01-01
Perception of vibration during drilling demands integration of haptic and auditory information with force information. In this study we explored the ability to detect and discriminate changes in vibrotactile stimuli amplitude based either on purely haptic feedback or together with congruent...... synthesized auditory cues in groups of naive subjects and expert surgeons. Our results point toward the complex influence of multimodal experience during vibration perception. First, in naive subjects, we showed that detection and discrimination of amplitude change in complex vibro-tactile stimulus......-tactile modulations in relevant stimuli ranges. Altogether, our results provide basis to assume that during acquisition of mandibular drilling skill, trainees may benefit from training of relevant basic aspects of touch perception - sensitivity to vibration and accompanying modulations of sound....
An automatically controlled predistorter for multilevel quadrature amplitude modulation
Namiki, J.
1983-05-01
In digital microwave transmission, the nonlinear characteristics in a high power amplifier, such as a TWT (traveling-wave tube), inhibit efficient output use. This note introduces a new predistorter control technique, and assesses the nonlinear compensation capability of a third-order predistorter incorporating this technique. Concerning 16-QAM (quadrature amplitude modulation), a 10 dB reduction in out-of-band emission and larger than 8 dB C/N improvement with respect to symbol error rate can be achieved at 3 dB TWT average output power backoff.
Simultaneous amplitude and phase modulation by a discrete phase-only filter.
Goto, Hiroomi; Konishi, Tsuyoshi; Itoh, Kazuyoshi
2009-03-01
We propose a simultaneous amplitude and phase modulation method by a discrete phase-only filter. The proposed amplitude-phase filter can be realized by a discrete phase modulation of the diffractive optical element as well as a continuous phase modulation of the liquid crystal spatial light modulator. The fabricated amplitude-phase filter that has the six phase modulation levels shows a transfer efficiency of 75% regardless of the polarization state of the incident light. By using the proposed amplitude-phase filter, we demonstrate a temporal waveform conversion from sech(2) to super-Gaussian, which requires both amplitude and phase modulations.
Phonological awareness and sinusoidal amplitude modulation in phonological dislexia
Directory of Open Access Journals (Sweden)
Yolanda Peñaloza-López
2016-04-01
Full Text Available ABSTRACT Objective Dyslexia is the difficulty of children in learning to read and write as results of neurological deficiencies. The objective was to test the Phonological awareness (PA and Sinusoidal amplitude modulation (SAM threshold in children with Phonological dyslexia (PD. Methods We performed a case-control, analytic, cross sectional study. We studied 14 children with PD and 14 control children from 7 to 11 years of age, by means of PA measurement and by SAM test. The mean age of dyslexic children was 8.39 years and in the control group was 8.15. Results Children with PD exhibited inadequate skills in PA, and SAM. We found significant correlations between PA and SAM at 4 Hertz frequency, and calculated regression equations that predicts between one-fourth and one-third of variance of measurements. Conclusion Alterations in PA and SAM found can help to explain basis of deficient language processing exhibited by children with PD.
Residual Amplitude Modulation in Interferometric Gravitational Wave Detectors
Kokeyama, Keiko; Korth, William Z; Smith-Lefebvre, Nicolas; Arai, Koji; Adhikari, Rana X
2013-01-01
The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an opto-mechanical spring, which also varies the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO detectors, and show that the RAM expected in Advanced LIGO will not limit its sensitivity.
Residual amplitude modulation in interferometric gravitational wave detectors.
Kokeyama, Keiko; Izumi, Kiwamu; Korth, William Z; Smith-Lefebvre, Nicolas; Arai, Koji; Adhikari, Rana X
2014-01-01
The effects of residual amplitude modulation (RAM) in laser interferometers using heterodyne sensing can be substantial and difficult to mitigate. In this work, we analyze the effects of RAM on a complex laser interferometer used for gravitational wave detection. The RAM introduces unwanted offsets in the cavity length signals and thereby shifts the operating point of the optical cavities from the nominal point via feedback control. This shift causes variations in the sensing matrix, and leads to degradation in the performance of the precision noise subtraction scheme of the multiple-degree-of-freedom control system. In addition, such detuned optical cavities produce an optomechanical spring, which also perturbs the sensing matrix. We use our simulations to derive requirements on RAM for the Advanced LIGO (aLIGO) detectors, and show that the RAM expected in aLIGO will not limit its sensitivity.
Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation
Directory of Open Access Journals (Sweden)
V. A. Karpuhin
2015-01-01
Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.
Photon counting chirped amplitude modulation lidar using an asymmetric triangular wave modulation
Zhang, Zijing; Cen, Longzhu; Zhang, Jiandong; Ma, Kun; Wang, Feng; Zhao, Yuan
2016-11-01
We propose a novel strategy of asymmetric triangular-wave modulation for photon-counting chirped amplitude modulation (PCCAM) lidar. Earlier studies use the symmetric triangle wave modulation, by which the velocity can be detected only when the Doppler shift caused by a moving target is greater than Full Width Half Maximum (FWHM) of Intermediate Frequency (IF). We use an alternative method known as the asymmetric triangular wave modulation method, in which the modulation rates of the up-ramp and the down-ramp are different. This new method avoids the overlapping of the up-ramp and the down-ramp IF peaks, and breaks the limit of the FWHM of IF peak to improve the velocity measuring sensitivity (also called the minimum detectable velocity). Finally, a proof-of-principle experiment is carried out in the laboratory. The experimental results agree well with the theoretical results and show the improvement of the minimum detectable velocity.
Amplitude modulation in $\\delta$ Sct stars: statistics from an ensemble study of Kepler targets
Bowman, Dominic M; Breger, Michel; Murphy, Simon J; Holdsworth, Daniel L
2016-01-01
We present the results of a search for amplitude modulation of pulsation mode frequencies in 983 $\\delta$ Sct stars, which have effective temperatures between 6400 $\\leq T_{\\rm eff} \\leq$ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr. We demonstrate the diversity in pulsational behaviour observed, in particular nonlinearity, which is predicted for $\\delta$ Sct stars. We analyse and discuss examples of $\\delta$ Sct stars with constant amplitudes and phases; those that exhibit amplitude modulation caused by beating of close-frequency pulsation modes; those that exhibit pure amplitude modulation (with no associated phase variation); those that exhibit phase modulation caused by binarity; and those that exhibit amplitude modulation caused by nonlinearity. Using models and examples of individual stars, we demonstrate that observations of the changes in amplitude and phase of pulsation modes can be used to distinguish among the different scenarios. We f...
DEFF Research Database (Denmark)
Blaaberg, Søren; Mørk, Jesper
2009-01-01
We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors.......We present theoretical results that show conversion of phase modulated signals to amplitude modulated signals in an SOA. Large-signal and small-signal calculations show significant conversion responses caused by even minute reflections at the end mirrors....
ERP responses to processing prosodic phrasing of sentences in amplitude modulated noise.
Carroll, Rebecca; Ruigendijk, Esther
2016-02-01
Intonation phrase boundaries (IPBs) were hypothesized to be especially difficult to process in the presence of an amplitude modulated noise masker because of a potential rhythmic competition. In an event-related potential study, IPBs were presented in silence, stationary, and amplitude modulated noise. We elicited centro-parietal Closure Positive Shifts (CPS) in 23 young adults with normal hearing at IPBs in all acoustic conditions, albeit with some differences. CPS peak amplitudes were highest in stationary noise, followed by modulated noise, and lowest in silence. Both noise types elicited CPS delays, slightly more so in stationary compared to amplitude modulated noise. These data suggest that amplitude modulation is not tantamount to a rhythmic competitor for prosodic phrasing but rather supports an assumed speech perception benefit due to local release from masking. The duration of CPS time windows was, however, not only longer in noise compared to silence, but also longer for amplitude modulated compared to stationary noise. This is interpreted as support for additional processing load associated with amplitude modulation for the CPS component. Taken together, processing prosodic phrasing of sentences in amplitude modulated noise seems to involve the same issues that have been observed for the perception and processing of segmental information that are related to lexical items presented in noise: a benefit from local release from masking, even for prosodic cues, and a detrimental additional processing load that is associated with either stream segregation or signal reconstruction.
All-optical $\\mathcal{PT}$-symmetric amplitude to phase modulator
Gutiérrez, Oscar Ignacio Zaragoza; Rodríguez-Lara, B M
2015-01-01
We study electromagnetic field propagation through a planar three-waveguide coupler with linear gain and loss, in a configuration that is the optical analog of a quantum $\\mathcal{PT}$-symmetric system, and provide its closed-form analytic propagator. At an specific propagation length, we show that the device provides all-optical amplitude to phase modulation with a $\\pi$ modulation range, if an extra binary phase is allowed in the reference signal, as well as phase to amplitude modulation, with an amplitude modulation range that depends linearly on the gain-to-coupling ratio of the system.
Optimization of phase contrast in bimodal amplitude modulation AFM
Directory of Open Access Journals (Sweden)
Mehrnoosh Damircheli
2015-04-01
Full Text Available Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM. Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
Optimization of phase contrast in bimodal amplitude modulation AFM.
Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo
2015-01-01
Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.
A class of amplitude modulating and invisible inhomogeneous media
Vial, Benjamin; Horsley, Simon A R; Philbin, Thomas G; Hao, Yang
2016-01-01
We propose a general method to arbitrarily manipulate the amplitude of an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep sub-wavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.
Quadrature amplitude modulation (QAM) using binary-driven coupling-modulated rings
Karimelahi, Samira; Sheikholeslami, Ali
2016-05-01
We propose and fully analyze a compact structure for DAC-free pure optical QAM modulation. The proposed structure is the first ring resonator-based DAC-free QAM modulator reported in the literature, to the best of our knowledge. The device consists of two segmented add-drop Mach Zehnder interferometer-assisted ring modulators (MZIARM) in an IQ configuration. The proposed architecture is investigated based on the parameters from SOI technology where various key design considerations are discussed. We have included the loss in the MZI arms in our analysis of phase and amplitude modulation using MZIARM for the first time and show that the imbalanced loss results in a phase error. The output level linearity is also studied for both QAM-16 and QAM-64 not only based on optimizing RF segment lengths but also by optimizing the number of segments. In QAM-16, linearity among levels is achievable with two segments while in QAM-64 an additional segment may be required.
Amplitude modulation in δ Sct stars: statistics from an ensemble study of Kepler targets
Bowman, Dominic M.; Kurtz, Donald W.; Breger, Michel; Murphy, Simon J.; Holdsworth, Daniel L.
2016-08-01
We present the results of a search for amplitude modulation of pulsation modes in 983 δ Sct stars, which have effective temperatures between 6400 ≤ Teff ≤ 10 000 K in the Kepler Input Catalogue and were continuously observed by the Kepler Space Telescope for 4 yr. We demonstrate the diversity in pulsational behaviour observed, in particular non-linearity, which is predicted for δ Sct stars. We analyse and discuss examples of δ Sct stars with constant amplitudes and phases; those that exhibit amplitude modulation caused by beating of close-frequency pulsation modes; those that exhibit pure amplitude modulation (with no associated phase variation); those that exhibit phase modulation caused by binarity; and those that exhibit amplitude modulation caused by non-linearity. Using models and examples of individual stars, we demonstrate that observations of the changes in amplitude and phase of pulsation modes can be used to distinguish among the different scenarios. We find that 603 δ Sct stars (61.3 per cent) exhibit at least one pulsation mode that varies significantly in amplitude over 4 yr. Conversely, many δ Sct stars have constant pulsation amplitudes so short-length observations can be used to determine precise frequencies, amplitudes and phases for the most coherent and periodic δ Sct stars. It is shown that amplitude modulation is not restricted to a small region on the HR diagram, therefore not necessarily dependent on stellar parameters such as Teff or log g. Our catalogue of 983 δ Sct stars will be useful for comparisons to similar stars observed by K2 and TESS, because the length of the 4-yr Kepler data set will not be surpassed for some time.
Dynamic Nonlinear Focal Shift in Amplitude Modulated Moderately Focused Acoustic Beams
Jiménez, Noé; González-Salido, Nuria
2016-01-01
The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25 kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behaviour, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both, for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by ...
Radio frequency path characterization for wide band quadrature amplitude modulation
Energy Technology Data Exchange (ETDEWEB)
Bracht, R.
1998-12-31
Remote, high speed, high explosive wave front monitoring requires very high bandwidth telemetry to allow transmission of diagnostic data before the explosion destroys the sensor system itself. The main motivation for this study is that no known existing implementation of this sort has been applied to realistic weapons environments. These facts have prompted the research and gathering of data that can be used to extrapolate towards finding the best modulation method for this application. In addition to research of similar existing analysis and testing operations, data was recently captured from a Joint Test Assembly (JTA) Air Launched Cruise Missile (ALCM) flight.
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2002-01-01
In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...
Observations on auditory learning in amplitude- and frequency-modulation rate discrimination
DEFF Research Database (Denmark)
Hoffmann, Pablo F.
2010-01-01
Because amplitude- and frequency-modulated sounds can be the basis for the synthesis of many complex sounds, they can be good candidates in the design of training systems aiming at improving the acquisition of perceptual skills that can benefit from information provided via the auditory channel......-training, training, a post-training stages. During training, listeners were divided into two groups; one group trained on amplitude-modulation rate discrimination and the other group trained on frequency-modulation rate discrimination. Results will be discussed in terms of their implications for training...
Diffusion-induced periodic transition between oscillatory modes in amplitude-modulated patterns
Energy Technology Data Exchange (ETDEWEB)
Tang, Xiaodong; He, Yuxiu; Wang, Shaorong; Gao, Qingyu, E-mail: gaoqy@cumt.edu.cn [College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008 (China); Epstein, Irving R., E-mail: epstein@brandeis.edu [Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110 (United States); Wang, Qun [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China)
2014-06-15
We study amplitude-modulated waves, e.g., wave packets in one dimension, overtarget spirals and superspirals in two dimensions, under mixed-mode oscillatory conditions in a three-variable reaction-diffusion model. New transition zones, not seen in the homogeneous system, are found, in which periodic transitions occur between local 1{sup N−1} and 1{sup N} oscillations. Amplitude-modulated complex patterns result from periodic transition between (N − 1)-armed and N-armed waves. Spatial recurrence rates provide a useful guide to the stability of these modulated patterns.
High extinction amplitude modulation in ultrashort pulse shaping
Lin, Yen-Wei
2016-01-01
We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.
Dynamics of fermions in an amplitude-modulated lattice
Yamakoshi, Tomotake; Watanabe, Shinichi; Ohgoda, Shun; Itin, Alexander P.
2016-06-01
We study the dynamics of fermions loaded in an optical lattice with a superimposed parabolic trap potential. In the recent Hamburg experiments [J. Heinze et al., Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302] on quantum simulation of photoconductivity, a modulation pulse on the optical lattice transferred part of the population of the lowest band to an excited band, leaving a hole in the particle distribution of the lowest band. The subsequent intricate dynamics of both excited particles and holes can be explained by a semiclassical approach based on the evolution of the Wigner function. Here we provide a more detailed analysis of the dynamics, taking into account the dimensionality of the system and finite-temperature effects, aiming at reproducing experimental results on longer time scales. A semiclassical wave packet is constructed more accurately than in the previous theory. As a result, semiclassical dynamics indeed reproduces experimental data and full quantum numerical calculations with a much better accuracy. In particular, the fascinating phenomenon of collapse and revival of holes is investigated in more detail. We presume that the experimental setup can be used for deeper exploration of nonlinear waves in fermionic gases.
Dynamic nonlinear focal shift in amplitude modulated moderately focused acoustic beams.
Jiménez, Noé; Camarena, Francisco; González-Salido, Nuria
2017-03-01
The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behavior, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by using a focused mono-element transducer excited by an amplitude modulated signal.
Goad, Pamela Joy
The fusion of musical voices is an important aspect of musical blend, or the mixing of individual sounds. Yet, little research has been done to explicitly determine the factors involved in fusion. In this study, the similarity of timbre and modulation were examined for their contribution to the fusion of sounds. It is hypothesized that similar timbres will fuse better than dissimilar timbres, and, voices with the same kind of modulation will fuse better than voices of different modulations. A perceptually-based measure, known as sharpness was investigated as a measure of timbre. The advantages of using sharpness are that it is based on hearing sensitivities and masking phenomena of inner ear processing. Five musical instrument families were digitally recorded in performances across a typical playing range at two extreme dynamic levels. Analyses reveal that sharpness is capable of uncovering subtle changes in timbre including those found in musical dynamics, instrument design, and performer-specific variations. While these analyses alone are insufficient to address fusion, preliminary calculations of timbral combinations indicate that sharpness has the potential to predict the fusion of sounds used in musical composition. Three experiments investigated the effects of modulation on the fusion of a harmonic major sixth interval. In the first experiment using frequency modulation, stimuli varied in deviation about a mean fundamental frequency and relative modulation phase between the two tones. Results showed smaller frequency deviations promoted fusion and relative phase differences had a minimal effect. In a second experiment using amplitude modulation, stimuli varied in deviation about a mean amplitude level and relative phase of modulation. Results showed smaller amplitude deviations promoted better fusion, but unlike frequency modulation, relative phase differences were also important. In a third experiment, frequency modulation, amplitude modulation and mixed
Encoding and decoding amplitude-modulated cochlear implant stimuli--a point process analysis.
Goldwyn, Joshua H; Shea-Brown, Eric; Rubinstein, Jay T
2010-06-01
Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer's ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article's data in an active, re-usable format.
Amplitude modulation of sound from wind turbines under various meteorological conditions.
Larsson, Conny; Öhlund, Olof
2014-01-01
Wind turbine (WT) sound annoys some people even though the sound levels are relatively low. This could be because of the amplitude modulated "swishing" characteristic of the turbine sound, which is not taken into account by standard procedures for measuring average sound levels. Studies of sound immission from WTs were conducted continually between 19 August 2011 and 19 August 2012 at two sites in Sweden. A method for quantifying the degree and strength of amplitude modulation (AM) is introduced here. The method reveals that AM at the immission points occur under specific meteorological conditions. For WT sound immission, the wind direction and sound speed gradient are crucial for the occurrence of AM. Interference between two or more WTs could probably enhance AM. The mechanisms by which WT sound is amplitude modulated are not fully understood.
VizieR Online Data Catalog: Kepler δ Sct stars amplitude modulation (Bowman+, 2016)
Bowman, D. M.; Kurtz, D. W.; Breger, M.; Murphy, S. J.; Holdsworth, D. L.
2016-06-01
We searched for amplitude modulation of pulsation modes in δ Sct stars observed by the Kepler Space Telescope. The number of pulsation modes out of a maximum of twelve that have constant amplitudes and variable amplitudes are given in the columns NoMod and AMod, respectively, along with stellar parameters from Huber et al. (2014, Cat. J/ApJS/211/2). Table 1 is the full version for all 983 δ Sct stars the abridged version of the paper. (1 data file).
Sanders, A P; Joines, W T; Allis, J W
1985-01-01
A comparison of the effects of continuous-wave, sinusoidal-amplitude-modulated, and pulsed square-wave-modulated 591-MHz microwave exposures on brain energy metabolism was made in male Sprague-Dawley rats (175-225 g). Brain NADH fluorescence, adenosine triphosphate (ATP) concentration, and creatine phosphate (CP) concentration were determined as a function of modulation frequency. Brain temperatures of animals were maintained between -0.1 and -0.4 degrees C from the preexposure temperature when subjected to as much as 20 mW/cm2 (average power) CW, pulsed, or sinusoidal-amplitude modulated 591-MHz radiation for 5 min. Sinusoidal-amplitude-modulated exposures at 16-24 Hz showed a trend toward preferential modulation frequency response in inducing an increase in brain NADH fluorescence. The pulse-modulated and sinusoidal-amplitude-modulated (16 Hz) microwaves were not significantly different from CW exposures in inducing increased brain NADH fluorescence and decreased ATP and CP concentrations. When the pulse-modulation frequency was decreased from 500 to 250 pulses per second the average incident power density threshold for inducing an increase in brain NADH fluorescence increased by a factor of 4--ie, from about 0.45 to about 1.85 mW/cm2. Since brain temperature did not increase, the microwave-induced increase in brain NADH and decrease in ATP and CP concentrations was not due to hyperthermia. This suggests a direct interaction mechanism and is consistent with the hypothesis of microwave inhibition of mitochondrial electron transport chain function of ATP production.
Characterizing Alzheimer's disease severity via resting-awake EEG amplitude modulation analysis.
Directory of Open Access Journals (Sweden)
Francisco J Fraga
Full Text Available Changes in electroencephalography (EEG amplitude modulations have recently been linked with early-stage Alzheimer's disease (AD. Existing tools available to perform such analysis (e.g., detrended fluctuation analysis, however, provide limited gains in discriminability power over traditional spectral based EEG analysis. In this paper, we explore the use of an innovative EEG amplitude modulation analysis technique based on spectro-temporal signal processing. More specifically, full-band EEG signals are first decomposed into the five well-known frequency bands and the envelopes are then extracted via a Hilbert transform. Each of the five envelopes are further decomposed into four so-called modulation bands, which were chosen to coincide with the delta, theta, alpha and beta frequency bands. Experiments on a resting-awake EEG dataset collected from 76 participants (27 healthy controls, 27 diagnosed with mild-AD, and 22 with moderate-AD showed significant differences in amplitude modulations between the three groups. Most notably, i delta modulation of the beta frequency band disappeared with an increase in disease severity (from mild to moderate AD, ii delta modulation of the theta band appeared with an increase in severity, and iii delta modulation of the beta frequency band showed to be a reliable discriminant feature between healthy controls and mild-AD patients. Taken together, it is hoped that the developed tool can be used to assist clinicians not only with early detection of Alzheimer's disease, but also to monitor its progression.
Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids
Directory of Open Access Journals (Sweden)
Miriam Jaafar
2012-04-01
Full Text Available We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode.
A high-stability non-contact dilatometer for low-amplitude temperature-modulated measurements
Luckabauer, Martin; Sprengel, Wolfgang; Würschum, Roland
2016-07-01
Temperature modulated thermophysical measurements can deliver valuable insights into the phase transformation behavior of many different materials. While especially for non-metallic systems at low temperatures numerous powerful methods exist, no high-temperature device suitable for modulated measurements of bulk metallic alloy samples is available for routine use. In this work a dilatometer for temperature modulated isothermal and non-isothermal measurements in the temperature range from room temperature to 1300 K is presented. The length measuring system is based on a two-beam Michelson laser interferometer with an incremental resolution of 20 pm. The non-contact measurement principle allows for resolving sinusoidal length change signals with amplitudes in the sub-500 nm range and physically decouples the length measuring system from the temperature modulation and heating control. To demonstrate the low-amplitude capabilities, results for the thermal expansion of nickel for two different modulation frequencies are presented. These results prove that the novel method can be used to routinely resolve length-change signals of metallic samples with temperature amplitudes well below 1 K. This high resolution in combination with the non-contact measurement principle significantly extends the application range of modulated dilatometry towards high-stability phase transformation measurements on complex alloys.
Foreign Broadcast Information Service, Washington, DC.
This second part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations with the exception of those in the United States which broadcast on domestic channels, covers amplitude modulation broadcasting stations according to frequency in ascending order. Information included covers call letters,…
Foreign Broadcast Information Service, Washington, DC.
This first part of "Broadcasting Stations of the World", which lists all reported radio broadcasting and television stations, with the exception of those in the United States which broadcast on domestic channels, covers amplitude modulation broadcasting stations. Information is indexed alphabetically by country and city. Within a city, stations…
Radar transponder operation with compensation for distortion due to amplitude modulation
Ormesher, Richard C.; Tise, Bertice L.; Axline, Jr., Robert M.
2011-01-04
In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.
Amplitude and frequency modulation of the small scales in a turbulent jet
Fiscaletti, D.; Elsinga, G.E.; Ganapathisubramani, B.; Westerweel, J.
2013-01-01
This work involves the large-scale amplitude and frequency modulation of the small-scale motions in fullydeveloped turbulence of a high Reynolds number jet. The scales responsible for the production of turbulent kinetic energy (large scales), and those responsible for its viscous dissipation (small
DEFF Research Database (Denmark)
Puerta Ramírez, Rafael; Rommel, Simon; Altabas, Jose A.;
2016-01-01
We report on the first experimental demonstration of carrierless amplitude/phase modulation in a flexible multiband approach for ultrawideband high-data-rate wireless communications. An effective bitrate of 2 GB/s is achieved while complying with the restrictions on the effective radiated power e...
Transmission of Waveforms Determined by 7 Eigenvalues with PSK-Modulated Spectral Amplitudes
Buelow, Henning; Idler, Wilfried
2016-01-01
2-ns waveforms with 7 eigenvalues and their QPSK-modulated spectral amplitudes were optimized by taking constraints of link, transmitter, and receiver into account. In experiment these signals were transmitted with a BER of 3.2E-3 over 1440-km of NZ-DSF fiber spans.
Institute of Scientific and Technical Information of China (English)
Zheng-de Dai
2002-01-01
In the present paper, the existence of global attractor for dissipative Hamiltonian amplitude equation governing the modulated wave instabilities in E0 is considered. By a decomposition of solution operator, it is shown that the global attractor in E0 is actually equal to a global attractor in E1.
Influence of stimulus intensity on the soleus H-reflex amplitude and modulation during locomotion
DEFF Research Database (Denmark)
Simonsen, Erik B; Alkjær, Tine; Raffalt, Peter C
2013-01-01
Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and runni...
Fast identification of digital amplitude modulation level at low signal-to-noise ratio
Institute of Scientific and Technical Information of China (English)
WEI Xiao-wei; CAO Zhi-gang
2006-01-01
In order to rapidly and automatically identify the modulation level of digital amplitude modulated signals at low signal-to-noise ratio (SNR),a method of identifying the modulation levels of M-ary quadrature amplitude modulation (M-QAM)and M-ary amplitude shift keying (M-ASK) is proposed.In this method,wavelet transform with the optimal scale is used to identify the modulation levels of M-QAM and M-ASK signals.The performance of this method was investigated through simulations.Simulation results show that when the SNR is not lower than - 4 dB,the percentage of correct identification of M-QAM is higher than 93%,and when the SNR is not lower than -10 dB,the percentage of correct identification of M-ASK is higher than 90%,using only 100 observed symbols.It shows that this method can rapidly acquire good performance at a low SNR.
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2001-01-01
We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....
A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications
Ghaffar, Farhan Abdul
2012-09-30
A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.
DEFF Research Database (Denmark)
RezaNejad Gatabi, Javad; Das, Sayantan; Forouzbakhsh, Farshid
2016-01-01
of the Doppler measurement techniques. A modified Doppler measurement system that significantly improves the measurement accuracy is also presented. The fabricated sensor has 72-μm measurement accuracy using 40-kHz transducers. This technique can also be employed in cost-effective displacement measurement...... variation of the received signal. Amplitude variation significantly affects the measurement accuracy when the surface axial displacement range is comparable with the ultrasonic wavelength. This paper presents a theoretical and experimental study of the effect of amplitude modulation on the performance......Ultrasonic Doppler-based systems for surface topography measurements are attractive alternatives to the transit-time-based methods. Sensors used in Doppler systems are less dependent on the speed of the sound in air, although contemporary Doppler measurement systems are sensitive to the amplitude...
Sarkadi, Tamás; Koppa, Pál
2012-02-20
In the increasing number of system approaches published in the field of optical encryption, the security level of the system is evaluated by qualitative and empirical methods. To quantify the security of the optical system, we propose to use the equivalent of the key length routinely used in algorithmic encryption. We provide a calculation method of the number of independent keys and deduce the binary key length for optical data encryption. We then investigate and optimize the key length of the combined phase- and amplitude-modulated key encryption in the holographic storage environment, which is one of the promising solutions for the security enhancement of single- and double-random phase-encoding encryption and storage systems. We show that a substantial growth of the key length can be achieved by optimized phase and amplitude modulation compared to phase-only encryption. We also provide experimental confirmation of the model results.
Amplitude Modulation and Synchronization of Fractional-Order Memristor-Based Chua's Circuit
Directory of Open Access Journals (Sweden)
A. G. Radwan
2013-01-01
Full Text Available This paper presents a general synchronization technique and an amplitude modulation of chaotic generators. Conventional synchronization and antisynchronization are considered a very narrow subset from the proposed technique where the scale between the output response and the input response can be controlled via control functions and this scale may be either constant (positive, negative or time dependent. The concept of the proposed technique is based on the nonlinear control theory and Lyapunov stability theory. The nonlinear controller is designed to ensure the stability and convergence of the proposed synchronization scheme. This technique is applied on the synchronization of two identical fractional-order Chua's circuit systems with memristor. Different examples are studied numerically with different system parameters, different orders, and with five alternative cases where the scaling functions are chosen to be positive/negative and constant/dynamic which covers all possible cases from conventional synchronization to the amplitude modulation cases to validate the proposed concept.
Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation.
Integlia, Ryan A; Yin, Lianghong; Ding, Duo; Pan, David Z; Gill, Douglas M; Jiang, Wei
2011-08-01
A parallel-coupled dual racetrack silicon micro-resonator structure is proposed and analyzed for M-ary quadrature amplitude modulation. The over-coupled, critically coupled, and under-coupled scenarios are systematically studied. Simulations indicate that only the over-coupled structures can generate arbitrary M-ary quadrature signals. Analytic study shows that the large dynamic range of amplitude and phase of a modulated over-coupled structure stems from the strong cross-coupling between two resonators, which can be understood through a delicate balance between the direct sum and the "interaction" terms. Potential asymmetries in the coupling constants and quality factors of the resonators are systematically studied. Compensations for these asymmetries by phase adjustment are shown feasible.
Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation
DEFF Research Database (Denmark)
Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E;
2004-01-01
Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double......-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results...... obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations....
Annoyance of wind-turbine noise as a function of amplitude-modulation parameters
DEFF Research Database (Denmark)
Ioannidou, Christina; Santurette, Sébastien; Jeong, Cheol-Ho
Amplitude modulation (AM) has been suggested as an important factor for the perceived annoyance of wind-turbine noise (WTN). Two AM types, typically referred to as “normal AM” and “other AM,” depending on the AM extent and frequency region, have been proposed to characterize WTN AM. The extent...... in which the AM depth, frequency, and type, while determined from real on-site recordings, could be varied systematically. Subjective listening tests with such stimuli showed that a reduction in AM depth, quantified by the modulation depth spectrum, led to a significant decrease in annoyance. When...
Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links
DEFF Research Database (Denmark)
Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee
2014-01-01
packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying...... on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion......Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical...
Tavassoli, Vahid
This thesis studies and mathematically models nonlinear interactions among channels of modern high bit rate (amplitude/) phase modulated optical systems. First, phase modulated analogue systems are studied and a differential receiving method is suggested with experimental validation. The main focus of the rest of the thesis is on digital advanced modulation format systems. Cross-talk due to fiber Kerr nonlinearity in two-format hybrid systems as well as 16-QAM systems is mathematically modelled and verified by simulation for different system parameters. A comparative study of differential receivers and coherent receivers is also given for hybrid systems. The model is based on mathematically proven assumptions and provides an intuitive analytical understanding of nonlinear cross-talk in such systems.
Fitzgerald, Matthew B; Wright, Beverly A
2011-02-01
Fluctuations in sound amplitude provide important cues to the identity of many sounds including speech. Of interest here was whether the ability to detect these fluctuations can be improved with practice, and if so whether this learning generalizes to untrained cases. To address these issues, normal-hearing adults (n = 9) were trained to detect sinusoidal amplitude modulation (SAM; 80-Hz rate, 3-4 kHz bandpass carrier) 720 trials/day for 6-7 days and were tested before and after training on related SAM-detection and SAM-rate-discrimination conditions. Controls (n = 9) only participated in the pre- and post-tests. The trained listeners improved more than the controls on the trained condition between the pre- and post-tests, but different subgroups of trained listeners required different amounts of practice to reach asymptotic performance, ranging from 1 (n = 6) to 4-6 (n = 3) sessions. This training-induced learning did not generalize to detection with two untrained carrier spectra (5 kHz low-pass and 0.5-1.5 kHz bandpass) or to rate discrimination with the trained rate and carrier spectrum, but there was some indication that it generalized to detection with two untrained rates (30 and 150 Hz). Thus, practice improved the ability to detect amplitude modulation, but the generalization of this learning to untrained cases was somewhat limited.
Energy Technology Data Exchange (ETDEWEB)
Santos, Sergio [Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, P.O. BOX 54224, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programacio de Sistemes Electronics, UPC - Universitat Politecnica de Catalunya Av. Bases, 61, 08242 Manresa (Spain); Verdaguer, Albert [Centre d' Investigacio en Nanociencia i Nanotecnologia (CIN2) (CSIC-ICN), Esfera UAB, Campus de la UAB, Edifici CM-7, 08193-Bellaterra, Catalunya (Spain); Chiesa, Matteo [Laboratory of Energy and Nanosciences, Masdar Institute of Science and Technology, P.O. BOX 54224, Abu Dhabi (United Arab Emirates); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307 (United States)
2011-12-01
In ambient conditions, nanometric water layers form on hydrophilic surfaces covering them and significantly changing their properties and characteristics. Here we report the excitation of subharmonics in amplitude modulation atomic force microscopy induced by intermittent water contacts. Our simulations show that there are several regimes of operation depending on whether there is perturbation of water layers. Single period orbitals, where subharmonics are never induced, follow only when the tip is either in permanent contact with the water layers or in pure noncontact where the water layers are never perturbed. When the water layers are perturbed subharmonic excitation increases with decreasing oscillation amplitude. We derive an analytical expression which establishes whether water perturbations compromise harmonic motion and show that the predictions are in agreement with numerical simulations. Empirical validation of our interpretation is provided by the observation of a range of values for apparent height of water layers when subharmonic excitation is predicted.
Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy
Energy Technology Data Exchange (ETDEWEB)
Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)
2014-07-28
The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.
Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe
2017-02-01
This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times
Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation Systems
Institute of Scientific and Technical Information of China (English)
Sheng Chen; Wang Yao; Lajos Hanzo
2010-01-01
A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna array's elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.
Electromagnetically induced transparency induced by a 100% amplitude-modulated coupling field
Institute of Scientific and Technical Information of China (English)
李晓莉; 张连水; 杨丽君; 冯晓敏; 赵敏
2009-01-01
We present a study of electromagnetically induced transparency(EIT) under the excitation of a 100% amplitude-modulated(AM) coupling field.The EIT feature is associated with a Λ type three-level configuration where a coupling and probe field couples two separate optical transitions and it is well-known that the spectrum of the swept probe field gives a simple single transparency feature induced by the single mode coupling field.It is shown that when a 100% AM coupling field is applied,there is an EIT doublet...
Institute of Scientific and Technical Information of China (English)
YAN Sen-Lin
2007-01-01
Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser.The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF.We find the physical mechanism that the nonlinear gain coefficient and linewidth enhancement factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled.Chaos is controlled into a single-periodic state,a dual-periodic state,a fri-periodic state,a quadr-periodic state,a pentaperiodic state,and the laser emitting powers are increased by OPF in simulations.Lastly,another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.
Improvement of the Spatial Amplitude Isotropy of a ^4He Magnetometer Using a Modulated Pumping Beam
Chéron, B.; Gilles, H.; Hamel, J.; Moreau, O.; Noël, E.
1997-08-01
Optically pumped magnetometers are scalar magnetometers. Contrary to vectoriel magnetometers, they measure the total magnetic field whatever the direction of the sensor. However, for some orientations of the magnetometer with respect to the magnetic field direction, the resonant signal vanishes and the measurement is impossible. In this paper we present a simple solution to reduce the amplitude spatial anisotropy and apply it to a ^4He magnetometer developed in our Laboratory. Les magnétomètres à pompage optique sont des magnétomètres scalaires. Contrairement aux magnétomètres vectoriels, ils mesurent le module du champ magnétique quelle que soit l'orientation du capteur dans l'espace. Cependant, pour certaines orientations du magnétomètre par rapport à la direction du champ à mesurer, l'amplitude du signal de résonance s'annule et la mesure devient impossible. Dans cet article, nous présentons une solution simple pour réduire l'anisotropie spatiale d'amplitude et nous l'appliquons à un magnétomètre à hélium-4 développé dans notre Laboratoire.
Sarampalis, Anastasios; Chatterjee, Monita
2001-05-01
Amplitude modulation (AM) detection performance has been studied in the past with normal-hearing and hearing-impaired populations. The temporal modulation transfer function (TMTF) is a plot of AM detection performance as a function of modulation rate and provides a way of characterizing temporal sensitivity. Typically the TMTF takes the form of a low-pass filter, with performance declining above 50-70-Hz modulation rate. TMTFs have also been measured with cochlear implant patients, showing a similar low-pass characteristic, with a cutoff around 140-Hz rate, while sensitivity to AM was found to increase with increasing current level. The present study investigated the effects of stimulation level and electrode separation on TMTFs with cochlear implant patients. TMTFs were measured for narrow through wide electrode separations and three different (loudness-balanced) percentages of the dynamic range. Preliminary results indicate that sensitivity increases (lower thresholds) with increasing stimulation level, for a given electrode separation. However, comparing TMTFs across different electrode separations, sensitivity is independent of current level, but increases as a function of percentage of dynamic range. In summary, it appears that AM detection performance with cochlear implants depends primarily on sensation level, rather than current level or electrode separation. [Work supported by NIDCD Grant No. R01DC04786.
Context-dependent modulation of cutaneous reflex amplitudes during forward and backward leg cycling.
Zehr, E Paul; Hundza, Sandra R; Balter, Jaclyn E; Loadman, Pamela M
2009-10-01
We used amplitude modulation of cutaneous reflexes during leg cycling as a paradigm to investigate neural control mechanisms regulating forward (FWD) and backward (BWD) rhythmic limb movement. Our prediction was a simple reversal of reflex modulation during BWD leg cycling and context-dependent reflex modulation. Cutaneous reflexes were evoked by electrical stimulation delivered to the superficial peroneal (SP) and distal tibial (TIB) nerves at the ankle. EMG recordings were collected from muscles acting at the hip, knee, and ankle. Kinematic data were also collected at these joints. Cutaneous reflexes were analyzed according to the phase of movement in which they were evoked. When functional phases (i.e., flexion or extension) of cycling were matched between FWD and BWD, background EMG and reflex modulation patterns were generally similar. The reflex patterns when compared at similar functional phases presented as a simple reversal suggesting FWD and BWD cycling are regulated by similar neural mechanisms. The general reflex regulation of limb trajectory was maintained between cycling directions in accordance with the task requirements of the movement direction.
Amplitude-sensitive modulation thermography to measure moisture in building materials
Wild, Walter; Buescher, Konstantin A.; Wiggenhauser, Herbert
1998-03-01
There have been reports about moisture detection in building walls by reflective IR-thermography. Typically, only limited results could be obtained because of the emission coefficient variations, leaking radiation or inhomogeneous illumination of the object. In addition, the quantitative relation between remission spectra and the moisture has often been unclear. Reflectometry uses constant excitation illumination which is recorded by the IR camera. With the use of the 'lock-in-technology' a low frequency modulated signal of an IR radiation source is coupled with the thermo camera and a frequency and phase sensitive signal from the thermal images can be derived. The advantage is, that emission coefficient dependencies are eliminated and that leaking radiation does not have any influence on the measured signal. The selective water measurement is possible, because there is an interference filter mounted in front of the radiator which has its transmission maximum at the wavelength of an absorption band of water. The area investigated is therefore illuminated under well defined circumstances and quantitative moisture measurement on the surface of building materials becomes a possibility. The illumination modulation is done with a sine wave to facilitate the calculation of the temporal intensity behavior of the amplitude signal. Subsequently, the amplitude image is used to determine the distribution and the level of moisture quantitatively. Point measurements in the laboratory were carried out on several building materials with changing moisture levels. It could be shown that this method successfully eliminates disturbing contributions to the measured signal like surface effects or leaking radiation.
Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System
Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo
2016-09-01
A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan-Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084
Noise-immunity processing of digital multilevel pulse-amplitude modulation signals
Directory of Open Access Journals (Sweden)
A. S. Makarenko
2015-12-01
Full Text Available Introduction. The main properties and features of spectral-effective multi-level pulse amplitude modulation digital signals at coherent reception are presented. It is shown that the phase locked loop circuit (PLL circuit used in the receiver is able to work at SNR > 5 dB.Object of the paper. We propose a new scheme of noise compensator at an intermediate frequency, allowing us to obtain increasing of SNR on 15–25 dB when error of PLL is equal zero. The noise compensator has the gain 8–18 dB at error of PLL = 33° that is able to work at SNR = 5 dB. As result, we can obtain a required SNR for determined BER in systems with multi-level PAM.Conclusions. This technical solution makes a spectrally-efficient system using multi-level amplitude modulation is also energy efficient, forward-looking and competitive. The power transmitters of cell phones and radio relay lines of mobile communication systems can be reduced by 10 times or at the same transmitter power improvement the quality of communication or range is presented.
Decadal amplitude modulation of two types of ENSO and its relationship with the mean state
Energy Technology Data Exchange (ETDEWEB)
Choi, Jung; An, Soon-Il [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)
2012-06-15
In this study, we classified two types of El Nino-Southern Oscillation (ENSO) events within the decadal ENSO amplitude modulation cycle using a long-term coupled general circulation model simulation. We defined two climate states - strong and weak ENSO amplitude periods - and separated the characteristics of ENSO that occurred in both periods. There are two major features in the characteristics of ENSO: the first is the asymmetric spatial structure between El Nino and La Nina events; the second is that the El Nino-La Nina asymmetry is reversed during strong and weak ENSO amplitude periods. El Nino events during strong (weak) ENSO amplitude periods resemble the Eastern Pacific (Central Pacific) El Nino in terms of the spatial distribution of sea surface temperature anomalies (SSTA) and physical characteristics based on heat budget analysis. The spatial pattern of the thermocline depth anomaly for strong (weak) El Nino is identical to that for weak (strong) La Nina, but for an opposite sign and slightly different amplitude. The accumulated residuals of these asymmetric anomalies dominated by an east-west contrast structure could feed into the tropical Pacific mean state. Moreover, the residual pattern associated with El Nino-La Nina asymmetry resembles the first principal component analysis (PCA) mode of tropical Pacific decadal variability, indicating that the accumulated residuals could generate the change in climate state. Thus, the intensified ENSO amplitude yields the warm residuals due to strong El Nino and weak La Nina over the eastern tropical Pacific. This linear relationship between ENSO and the mean state is strong during the mature phases of decadal oscillation, but it is weak during the transition phases. Furthermore, the second PCA mode of tropical Pacific decadal variability plays an important role in changing the phase of the first mode. Consequently, the feedback between ENSO and the mean state is positive feedback to amplify the first PCA mode
Bilateral Collicular Interaction: Modulation of Auditory Signal Processing in Amplitude Domain
Fu, Zi-Ying; Wang, Xin; Jen, Philip H.-S.; Chen, Qi-Cai
2012-01-01
In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation. Focal electrical stimulation of one (ipsilateral) IC produces widespread inhibition (61.6%) and focused facilitation (9.1%) of responses of neurons in the other (contralateral) IC, while 29.3% of the neurons were not affected. Bilateral collicular interaction produces a decrease in the response magnitude and an increase in the response latency of inhibited IC neurons but produces opposite effects on the response of facilitated IC neurons. These two groups of neurons are not separately located and are tonotopically organized within the IC. The modulation effect is most effective at low sound level and is dependent upon the interval between the acoustic and electric stimuli. The focal electrical stimulation of the ipsilateral IC compresses or expands the rate-level functions of contralateral IC neurons. The focal electrical stimulation also produces a shift in the minimum threshold and dynamic range of contralateral IC neurons for as long as 150 minutes. The degree of bilateral collicular interaction is dependent upon the difference in the best frequency between the electrically stimulated IC neurons and modulated IC neurons. These data suggest that bilateral collicular interaction mainly changes the ratio between excitation and inhibition during signal processing so as to sharpen the amplitude sensitivity of IC neurons. Bilateral interaction may be also involved in acoustic
Hierarchical effects of task engagement on amplitude modulation encoding in auditory cortex.
Niwa, Mamiko; O'Connor, Kevin N; Engall, Elizabeth; Johnson, Jeffrey S; Sutter, M L
2015-01-01
We recorded from middle lateral belt (ML) and primary (A1) auditory cortical neurons while animals discriminated amplitude-modulated (AM) sounds and also while they sat passively. Engagement in AM discrimination improved ML and A1 neurons' ability to discriminate AM with both firing rate and phase-locking; however, task engagement affected neural AM discrimination differently in the two fields. The results suggest that these two areas utilize different AM coding schemes: a "single mode" in A1 that relies on increased activity for AM relative to unmodulated sounds and a "dual-polar mode" in ML that uses both increases and decreases in neural activity to encode modulation. In the dual-polar ML code, nonsynchronized responses might play a special role. The results are consistent with findings in the primary and secondary somatosensory cortices during discrimination of vibrotactile modulation frequency, implicating a common scheme in the hierarchical processing of temporal information among different modalities. The time course of activity differences between behaving and passive conditions was also distinct in A1 and ML and may have implications for auditory attention. At modulation depths ≥ 16% (approximately behavioral threshold), A1 neurons' improvement in distinguishing AM from unmodulated noise is relatively constant or improves slightly with increasing modulation depth. In ML, improvement during engagement is most pronounced near threshold and disappears at highly suprathreshold depths. This ML effect is evident later in the stimulus, and mainly in nonsynchronized responses. This suggests that attention-related increases in activity are stronger or longer-lasting for more difficult stimuli in ML.
Institute of Scientific and Technical Information of China (English)
Jacquelyn W. Zimmerman; Hugo Jimenez; Michael J. Pennison; Ivan Brezovich; Desiree Morgan; Albert Mudry; Frederico P. Costa; Alexandre Barbault; Boris Pasche
2013-01-01
In the past century, there have been many attempts to treat cancer with low levels of electric and magnetic fields. We have developed noninvasive biofeedback examination devices and techniques and discovered that patients with the same tumor type exhibit biofeedback responses to the same, precise frequencies. Intrabuccal administration of 27.12 MHz radiofrequency (RF) electromagnetic fields (EMF), which are amplitude-modulated at tumor-specific frequencies, results in long-term objective responses in patients with cancer and is not associated with any significant adverse effects. Intrabuccal administration al ows for therapeutic delivery of very low and safe levels of EMF throughout the body as exemplified by responses observed in the femur, liver, adrenal glands, and lungs. In vitro studies have demonstrated that tumor-specific frequencies identified in patients with various forms of cancer are capable of blocking the growth of tumor cells in a tissue-and tumor-specific fashion. Current experimental evidence suggests that tumor-specific modulation frequencies regulate the expression of genes involved in migration and invasion and disrupt the mitotic spindle. This novel targeted treatment approach is emerging as an appealing therapeutic option for patients with advanced cancer given its excellent tolerability. Dissection of the molecular mechanisms accounting for the anti-cancer effects of tumor-specific modulation frequencies is likely to lead to the discovery of novel pathways in cancer.
The effect of amplitude modulation on subharmonic imaging with chirp excitation.
Harput, Sevan; Arif, Muhammad; McLaughlan, James; Cowell, David M J; Freear, Steven
2013-12-01
Subharmonic generation from ultrasound contrast agents depends on the spectral and temporal properties of the excitation signal. The subharmonic response can be improved by using wideband and long-duration signals. However, for sinusoidal tone-burst excitation, the effective bandwidth of the signal is inversely proportional to the signal duration. Linear frequency-modulated (LFM) and nonlinear frequency-modulated (NLFM) chirp excitations allow independent control over the signal bandwidth and duration; therefore, in this study LFM and NLFM signals were used for the insonation of microbubble populations. The amplitude modulation of the excitation waveform was achieved by applying different window functions. A customized window was designed for the NLFM chirp excitation by focusing on reducing the spectral leakage at the subharmonic frequency and increasing the subharmonic generation from microbubbles. Subharmonic scattering from a microbubble population was measured for various excitation signals and window functions. At a peak negative pressure of 600 kPa, the generated subharmonic energy by ultrasound contrast agents was 15.4 dB more for NLFM chirp excitation with 40% fractional bandwidth when compared with tone-burst excitation. For this reason, the NLFM chirp with a customized window was used as an excitation signal to perform subharmonic imaging in an ultrasound flow phantom. Results showed that the NLFM waveform with a customized window improved the subharmonic contrast by 4.35 ± 0.42 dB on average over a Hann-windowed LFM excitation.
Accurate encoding and decoding by single cells: amplitude versus frequency modulation.
Directory of Open Access Journals (Sweden)
Gabriele Micali
2015-06-01
Full Text Available Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM, where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM, where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel, which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms.
First Results with a Fast Phase and Amplitude Modulator for High Power RF Application
Frischholz, Hans; Valuch, D; Weil, C
2004-01-01
In a high energy and high power superconducting proton linac, it is more economical to drive several cavities with a single high power transmitter rather than to use one transmitter per cavity. However, this option has the disadvantage of not permitting individual control for each cavity, which potentially leads to instabilities. Provided that it can be built at a reasonable cost, a fast phase and amplitude modulator inserted into each cavity feeder line can provide the necessary control capability. A prototype of such a device has been built, based on two fast and compact high power RF phase-shifters, magnetically biased by external coils. The design is described, together with the results obtained at high and low power levels.
Resonance of a Metal Drop under the Effect of Amplitude-Modulated High Frequency Magnetic Field
Guo, Jiahong; Lei, Zuosheng; Zhu, Hongda; Zhang, Lijie; Magnetic Hydrodynamics(Siamm) Team; Magnetic Mechanics; Engineering(Smse) Team
2016-11-01
The resonance of a sessile and a levitated drop under the effect of high frequency amplitude-modulated magnetic field (AMMF) is investigated experimentally and numerically. It is a new method to excite resonance of a metal drop, which is different from the case in the presence of a low-frequency magnetic field. The transient contour of the drop is obtained in the experiment and the simulation. The numerical results agree with the experimental results fairly well. At a given frequency and magnetic flux density of the high frequency AMMF, the edge deformations of the drop with an azimuthal wave numbers were excited. A stability diagram of the shape oscillation of the drop and its resonance frequency spectrum are obtained by analysis of the experimental and the numerical data. The results show that the resonance of the drop has a typical character of parametric resonance. The National Natural Science Foundation of China (No. 51274237 and 11372174).
Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions
Energy Technology Data Exchange (ETDEWEB)
Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.; Diény, B. [Univ. Grenoble Alpes, INAC-SPINTEC, F-38000 Grenoble (France); CNRS, INAC-SPINTEC, F-38000 Grenoble (France); CEA, INAC-SPINTEC, F-38000 Grenoble (France); Ducruet, C. [Crocus-Technology, 5, Place Robert Schuman, F-38054 Grenoble (France); Vila, L. [Univ. Grenoble Alpes, INAC-SP2M, F-38000 Grenoble, France and CEA, INAC-SP2M, F-38000 Grenoble (France)
2015-09-07
Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.
Decoding Finger Flexion using amplitude modulation from band-specific ECoG
Liang, Nanying
2009-01-01
EEG-BCIs have been well studied in the past decades and implemented into several famous applications, like P300 speller and wheelchair controller. However, these interfaces are indirect due to low spatial resolution of EEG. Recently, direct ECoG-BCIs attract intensive attention because ECoG provides a higher spatial resolution and signal quality. This makes possible localization of the source of neural signals with respect to certain brain functions. In this article, we present a realization of ECoG-BCIs for finger flexion prediction provided by BCI competition IV. Methods for finger flexion prediction including feature extraction and selection are provided in this article. Results show that the predicted finger movement is highly correlated with the true movement when we use band-specific amplitude modulation.
Amplitude modulation depth discrimination in hearing-impaired and normal-hearing listeners
DEFF Research Database (Denmark)
Ewert, Stephan D.; Volmer, Jutta; Dau, Torsten
2008-01-01
investigates the differential processing of amplitude modulation depth in HI and NH listeners. AM-depth discrimination of a 4-, 8-, and 30-Hz sinusoidal AM, imposed on a 1- or 4-kHz pure-tone carrier, was measured. The AM of the standard ranged from being well detectable to near threshold. AM......-depth discrimination thresholds strongly varied among HI listeners and were elevated in comparison to NH for high standard depths. A model of AM processing is suggested incorporating an individually adjusted simulation of the auditory periphery. To account for the data of HI listeners, however, the key element...... appeared to be an increased internal noise in the AM-depth domain. Consequences for speech perception are discussed....
Directory of Open Access Journals (Sweden)
Cal Francis Rabang
2012-11-01
Full Text Available The inferior colliculus (IC receives ascending excitatory and inhibitory inputs from multiple sources, but how these auditory inputs converge to generate IC spike patterns is poorly understood. Simulating patterns of in vivo spike train data from cellular and synaptic models creates a powerful framework to identify factors that contribute to changes in IC responses, such as those resulting in age-related loss of temporal processing. A conductance-based single neuron IC model was constructed, and its responses were compared to those observed during in vivo IC recordings in rats. IC spike patterns were evoked using amplitude-modulated (AM tone or noise carriers at 20-40 dB above threshold and were classified as low-pass, band-pass, band-reject, all-pass, or complex based on their rate modulation transfer function (rMTF tuning shape. Their temporal modulation transfer functions (tMTFs were also measured. These spike patterns provided experimental measures of rate, vector strength and firing pattern for comparison with model outputs. Patterns of excitatory and inhibitory synaptic convergence to IC neurons were based on anatomical studies and generalized input tuning for modulation frequency. Responses of modeled ascending inputs were derived from experimental data from previous studies. Adapting and sustained IC intrinsic models were created, with adaptation created via calcium-activated potassium currents. Short-term synaptic plasticity was incorporated into the model in the form of synaptic depression, which was shown to have a substantial effect on the magnitude and time course of the IC response. The most commonly observed IC response subtypes were recreated and enabled dissociation of inherited response properties from those that were generated in IC. Furthermore, the model was used to make predictions about the consequences of reduction in inhibition for age-related loss of temporal processing due to a reduction in GABA seen anatomically with
Pogorelaya, D. A.; Smolovik, M. A.; Strigalev, V. E.; Aleynik, A. S.; Deyneka, I. G.
2016-08-01
The investigation is devoted to residual amplitude modulation (RAM) of phase electro-optic modulator, which guides are made in LiNbO3 crystal by Ti diffusion technology. An analysis is presented that shows influence of RAM on the signal of fiber-optic gyroscope. The RAM compensation method is offered.
Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus
Energy Technology Data Exchange (ETDEWEB)
Fang, Zhao-Xiang; Gong, Lei [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031 (China); Vaveliuk, Pablo [Centro de Investigaciones Opticas (CONICET La Plata-CIC), Cno. Centenario y 506, P.O. Box 3, 1897 Gonnet, La Plata, Pcia. de Buenos Aires (Argentina); Chen, Yue; Lu, Rong-De, E-mail: lrd@ustc.edu.cn [Physics Experiment Teaching Center, School of Physical Sciences, University of Science and Technology of China, Hefei 230026 (China)
2015-11-28
Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.
Fundamental study on subharmonic imaging by irradiation of amplitude-modulated ultrasound waves.
Maikusa, Norihide; Fukami, Tadanori; Yuasa, Tetsuya; Tamura, Yasutaka; Akatsuka, Takao
2007-07-01
The second harmonic and subharmonic components, the frequencies of which are twice and one half the fundamental frequency, are included in echoes from contrast agents. An imaging method, which employs a second harmonic (second harmonic imaging), is widely used in medical diagnoses. On the other hand, subharmonic is expected to provide a higher contrast between biological tissues and blood flow because echo signals are generated only from blood containing the contrast agents. However, the subharmonic component echo signal power from contrast agents is relatively low. This has resulted in little progress in the field of subharmonic imaging. In this study, a new imaging method is proposed using amplitude-modulated waves as transmitted waves combined with the pulse inversion method to enhance subharmonic echo signals. Two optimal frequencies are set, including the modulated waves, F(1) and F(2), so that the subharmonic frequency of F(1) and the second harmonic frequency of F(2) may result in the same value. This allows a more powerful signal at the frequency band because the second harmonic and subharmonic components are integrated. Furthermore, a B-mode ultrasound image of an agar phantom that imitated biological tissue and showed the effectiveness of our method was reconstructed. As a result, the echo power of the subharmonic component was enhanced by approximately 11.8 dB more than the conventional method and the signal to noise ratio showed an improvement of 7.6 dB.
EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease
Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato
2012-12-01
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Sustained selective attention to competing amplitude-modulations in human auditory cortex.
Riecke, Lars; Scharke, Wolfgang; Valente, Giancarlo; Gutschalk, Alexander
2014-01-01
Auditory selective attention plays an essential role for identifying sounds of interest in a scene, but the neural underpinnings are still incompletely understood. Recent findings demonstrate that neural activity that is time-locked to a particular amplitude-modulation (AM) is enhanced in the auditory cortex when the modulated stream of sounds is selectively attended to under sensory competition with other streams. However, the target sounds used in the previous studies differed not only in their AM, but also in other sound features, such as carrier frequency or location. Thus, it remains uncertain whether the observed enhancements reflect AM-selective attention. The present study aims at dissociating the effect of AM frequency on response enhancement in auditory cortex by using an ongoing auditory stimulus that contains two competing targets differing exclusively in their AM frequency. Electroencephalography results showed a sustained response enhancement for auditory attention compared to visual attention, but not for AM-selective attention (attended AM frequency vs. ignored AM frequency). In contrast, the response to the ignored AM frequency was enhanced, although a brief trend toward response enhancement occurred during the initial 15 s. Together with the previous findings, these observations indicate that selective enhancement of attended AMs in auditory cortex is adaptive under sustained AM-selective attention. This finding has implications for our understanding of cortical mechanisms for feature-based attentional gain control.
Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus
Fang, Zhao-Xiang; Gong, Lei; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De
2015-01-01
Needle-like electromagnetic fields has various advantages for the applications in high-resolution imaging, Raman Spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device(DMD). Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional(1D) and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We...
DEFF Research Database (Denmark)
Rodes Lopez, Roberto; Wieckowski, Marcin; Pham, Tien Thang
2011-01-01
We experimental demonstrate successful performance of VCSEL-based WDM link supporting advanced 16-level carrierless amplitude/phase modulation up to 1.25 Gbps, over 26 km SSMF with spectral efficiency of 4 bit/s/Hz for application in high capacity PONs.......We experimental demonstrate successful performance of VCSEL-based WDM link supporting advanced 16-level carrierless amplitude/phase modulation up to 1.25 Gbps, over 26 km SSMF with spectral efficiency of 4 bit/s/Hz for application in high capacity PONs....
Institute of Scientific and Technical Information of China (English)
KhalidH.Sayhood; WuLenan
2003-01-01
The multilevel modulation techniques of M-Differential Amplitude Phase Shift Keying(DAPSK)have been proposed in combination with Turbo code scheme for digital radio broad-casting bands below 30 MHz radio channel.Comparison of this modulation method with channel coding in an Additive White Gaussian Noise(AWGN)and mulit-path fading channels has been presented.The analysis provides an iterative decoding of the Turbo code.
Institute of Scientific and Technical Information of China (English)
Khalid H. Sayhood; Wu Lenan
2003-01-01
The multilevel modulation techniques of M-Differential Amplitude Phase Shift Keying (DAPSK) have been proposed in combination with Turbo code scheme for digital radio broadcasting bands below 30 MHz radio channel. Comparison of this modulation method with channel coding in an Additive White Gaussian Noise (AWGN) and multi-path fading channels has been presented. The analysis provides an iterative decoding of the Turbo code.
Faltýnek, J.; Hnilica, J.; Kudrle, V.
2017-01-01
Time resolved electron density in an atmospheric pressure amplitude modulated microwave plasma jet is determined using the microwave interferometry method, refined by numerical modelling of the propagation of non-planar electromagnetic waves in the vicinity of a small diameter, dense collisional plasma filament. The results are compared to those from the Stark broadening of the {{\\text{H}}β} emission line. Both techniques show, both qualitatively and quantitatively, a similar temporal evolution of electron density during one modulation period.
Digital services using quadrature amplitude modulation (QAM) over CATV analog DWDM system
Yeh, JengRong; Selker, Mark D.; Trail, J.; Piehler, David; Levi, Israel
2000-04-01
Dense Wavelength Division Multiplexing (DWDM) has recently gained great popularity as it provides a cost effective way to increase the transmission capacity of the existing fiber cable plant. For a long time, Dense WDM was exclusively used for baseband digital applications, predominantly in terrestrial long haul networks and in some cases in metropolitan and enterprise networks. Recently, the performance of DWDM components and frequency-stabilized lasers has substantially improved while the costs have down significantly. This makes a variety of new optical network architectures economically viable. The first commercial 8- wavelength DWDM system designed for Hybrid Fiber Coax networks was reported in 1998. This type of DWDM system utilizes Sub-Carrier Multiplexing (SCM) of Quadrature Amplitude Modulated (QAM) signals to transport IP data digital video broadcast and Video on Demand on ITU grid lightwave carriers. The ability of DWDM to provide scalable transmission capacity in the optical layer with SCM granularity is now considered by many to be the most promising technology for future transport and distribution of broadband multimedia services.
A monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter
Xiong, Chi; Proesel, Jonathan E; Orcutt, Jason S; Haensch, Wilfried; Green, William M J
2016-01-01
Silicon photonics promises to address the challenges for next-generation short-reach optical interconnects. Growing bandwidth demand in hyper-scale data centers and high-performance computing motivates the development of faster and more-efficient silicon photonics links. While it is challenging to raise the serial line rate, further scaling of the data rate can be realized by, for example, increasing the number of parallel fibers, increasing the number of wavelengths per fiber, and using multi-level pulse-amplitude modulation (PAM). Among these approaches, PAM has a unique advantage because it does not require extra lasers or a costly overhaul of optical fiber cablings within the existing infrastructure. Here, we demonstrate the first fully monolithically integrated silicon photonic four-level PAM (PAM-4) transmitter operating at 56 Gb/s and demonstrate error-free transmission (bit-error-rate < 10$^{-12}$) up to 50 Gb/s without forward error correction. The superior PAM-4 waveform is enabled by optimizatio...
Practical loss tangent imaging with amplitude-modulated atomic force microscopy
Proksch, Roger; Kocun, Marta; Hurley, Donna; Viani, Mario; Labuda, Aleks; Meinhold, Waiman; Bemis, Jason
2016-04-01
Amplitude-modulated (AM) atomic force microscopy (AFM), also known as tapping or AC mode, is a proven, reliable, and gentle imaging method with widespread applications. Previously, the contrast in AM-AFM has been difficult to quantify. AFM loss tangent imaging is a recently introduced technique that recasts AM mode phase imaging into a single term tan δ that includes both the dissipated and stored energy of the tip-sample interaction. It promises fast, versatile mapping of variations in near-surface viscoelastic properties. However, experiments to date have generally obtained values larger than expected for the viscoelastic loss tangent of materials. Here, we explore and discuss several practical considerations for AFM loss tangent imaging experiments. A frequent limitation to tapping in air is Brownian (thermal) motion of the cantilever. This fundamental noise source limits the accuracy of loss tangent estimation to approximately 0.01 phase transitions, even in the presence of such non-ideal interactions. These results help understand the limits and opportunities not only of this particular technique but also of AM mode with phase imaging in general.
Khaleghi, Salman; Chitgarha, Mohammad Reza; Yilmaz, Omer F; Tur, Moshe; Haney, Michael W; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2013-05-15
We experimentally demonstrate a reconfigurable optical converter/encoder for quadrature amplitude modulated (QAM) signals. The system utilizes nonlinear wavelength multicasting, conversion-dispersion delays, and simultaneous nonlinear multiplexing and sampling. We show baud rate tunability (31 and 20 Gbaud) and reconfigurable conversions from lower-order QAM signals to higher-order QAM signals (e.g., 64-QAM).
DEFF Research Database (Denmark)
Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José
2016-01-01
In this paper, for the first time, a record UWB transmission of 10Gb/s is experimentally demonstrated employing a multi-band approach of carrierless amplitude phase modulation (MultiCAP). The proposed solution complies with the restrictions on the effective radiated power established by both...
DEFF Research Database (Denmark)
Rodes Lopez, Roberto; Wieckowski, Marcin; Pham, Tien Thang
2011-01-01
We experimentally demonstrate successful performance of VCSEL-based WDM link supporting advanced 16-level carrierless amplitude/phase modulation up to 1.25 Gbps, over 26 km SSMF with spectral efficiency of 4 bit/s/Hz for application in high capacity PONs. © 2011 Optical Society of America....
Institute of Scientific and Technical Information of China (English)
张彬; 楚晓亮; 李强
2002-01-01
Based on the treatment that a rectangular function can be expanded into an approximate sum of complex Gaussian functions with finite numbers, the analytical expression for the focusing intensity distribution of a laser beam with amplitude modulation (AM) and phase fluctuation (PF) through an aperture lens is derived. The typical numerical examples are given and compared with those obtained from numerically integral calculation. The results show that our method can significantly improve the numerical calculation efficiency.
DEFF Research Database (Denmark)
Peucheret, Christophe; Lorenzen, Michael Rodas; Seoane, Jorge
2008-01-01
Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain.......Input power dynamic range enhancement and amplitude regeneration of highly distorted signals are demonstrated experimentally for 40 Gbit/s RZ-DPSK in a single-pump fibre parametric amplifier with 22 dB smallsignal gain....
Directory of Open Access Journals (Sweden)
Mohammud Ershadul Haque
2013-01-01
Full Text Available Wireless Sensor Network (WSN is the new invention applying for assessment the damage of the historical or high rise civil building structural health. Technical challenges affecting deployment of wireless sensor network including the range of the transmission problem, low data transmission rate of the existing SHM strategies. The most vital factor of SHM wireless sensor systems is the modulator accuracy and reliability that qualify the wireless communication system to assess large building structure health Information. The objective of this article is to provide solution to measure both reliability and accuracy of the wireless sensor network modulator. we computed M-array QAM modulator BER and compare the simulation result with theoretical to find out optimum modulation technique for transmission System with considering maximum data rate, AWGN channel and also measured modulator accuracy based on ZigBee by computing M-array modulator Error Vector Magnitude (EVM to quantify the transmitter quality.
Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device
Zhang, Chonglei; Min, Changjun; Yuan, X.-C.
2016-12-01
We propose a technique to generate of perfect optical vortex (POV) via Fourier transformation of Bessel-Gauss (BG) beams through encoding of the amplitude of the optical field with binary amplitude digital micro-mirrors device (DMD). Furthermore, we confirm the correct phase patterns of the POV with the method of Mach-Zehnder interferometer. Our approach to generate the POV has the advantages that rapidly switch among the different modes, wide spectral regions and high energy tolerance. Since the POV possess propagation properties that not shape-invariant, we therefore suppose that our proposed approach will find potential applications in optical microscopy, optical fabrication, and optical communication.
Anderson, Richard I
2014-01-01
[Abridged] I report the discovery of modulations in radial velocity (RV) curves of four Galactic classical Cepheids and investigate their impact as a systematic uncertainty for Baade-Wesselink distances. Highly precise Doppler measurements were obtained using the Coralie high-resolution spectrograph since 2011. Particular care was taken to sample all phase points in order to very accurately trace the RV curve during multiple epochs and to search for differences in linear radius variations derived from observations obtained at different epochs. Different timescales are sampled, ranging from cycle-to-cycle to months and years. The unprecedented combination of excellent phase coverage obtained during multiple epochs and high precision enabled the discovery of significant modulation in the RV curves of the short-period s-Cepheids QZ Normae and V335 Puppis, as well as the long-period fundamental mode Cepheids l Carinae and RS Puppis. The modulations manifest as shape and amplitude variations that vary smoothly on ...
Scanning tunneling microscopy in TTF-TCNQ: Phase and amplitude modulated charge density waves
DEFF Research Database (Denmark)
Wang, Z.Z.; Gorard, J.C.; Pasquier, C.;
2003-01-01
phase transitions of TTF-TCNQ have been identified. The measurement of the modulation wave vector along the a direction provides evidence of the existence of domains comprising single plane wave modulated structures in the temperature regime where the transverse wave vector of the CDW is temperature...
Peak forces and lateral resolution in amplitude modulation force microscopy in liquid
Directory of Open Access Journals (Sweden)
Horacio V. Guzman
2013-12-01
Full Text Available The peak forces exerted on soft and rigid samples by a force microscope have been modeled by performing numerical simulations of the tip motion in liquid. The forces are obtained by using two contact mechanics models, Hertz and Tatara. We present a comparison between the numerical simulations and three analytical models for a wide variety of probe and operational parameters. In general, the forces derived from analytical expressions are not in good quantitative agreement with the simulations when the Young modulus and the set-point amplitude are varied. The only exception is the parametrized approximation that matches the results given by Hertz contact mechanics for soft materials and small free amplitudes. We also study the elastic deformation of the sample as a function of the imaging conditions for materials with a Young modulus between 25 MPa and 2 GPa. High lateral resolution images are predicted by using both small free amplitudes (less than 2 nm for soft materials and high set-point amplitudes.
Superpixel-based spatial amplitude and phase modulation using a digital micromirror device
Goorden, Sebastianus A.; Bertolotti, Jacopo; Mosk, Allard P.
2014-01-01
We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpix
Directory of Open Access Journals (Sweden)
Hassan Farhan Rashag
2013-04-01
Full Text Available Various aspects related to controlling induction motor are investigated. Direct torque control is an original high performance control strategy in the field of AC drive. In this proposed method, the control system is based on Space Vector Modulation (SVM, amplitude of voltage in direct- quadrature reference frame (d-q reference and angle of stator flux. Amplitude of stator voltage is controlled by PI torque and PI flux controller. The stator flux angle is adjusted by rotor angular frequency and slip angular frequency. Then, the reference torque and the estimated torque is applied to the input of PI torque controller and the control quadrature axis voltage is determined. The control d-axis voltage is determined from the flux calculator. These q and d axis voltage are converted into amplitude voltage. By applying polar to Cartesian on amplitude voltage and stator flux angle, direct voltage and quadratures voltage are generated. The reference stator voltages in d-q are calculated based on forcing the stator voltage error to zero at next sampling period. By applying inverse park transformation on d-q voltages, the stator voltages in &alpha and &beta frame are generated and apply to SVM. From the output of SVM, the motor control signal is generated and the speed of the induction motor regulated toward the rated speed. The simulation Results have demonstrated exceptional performance in steady and transient states and shows that decrease of torque and flux ripples is achieved in a complete speed range.
Yoshida, Haruka; Inui, Koji; Takeuchi, Masaki; Tanaka, Hideji
2012-01-01
The concept of amplitude-modulated multiplexed flow analysis has been extended to the simultaneous determination of multiple analytes in a sample. A sample solution containing nitrite and nitrate ions is delivered from two channels, but the flow rates are varied at different frequencies. One of the channels has a reduction column for converting nitrate ions to nitrite ions. Downstream, the absorbance of the diazo-coupling product is monitored after the merging of both solutions with a Griess reagent. The signal is analyzed by a fast Fourier transform (FFT) in real time. From the thus-obtained amplitude, a µmol dm(-3) level of the ions can be determined. The introduction of air bubbles is effective to reduce any axial dispersion, and hence to improve the sensitivity.
Modulated amplitude waves with non-trivial phase in quasi-1D inhomogeneous Bose–Einstein condensates
Energy Technology Data Exchange (ETDEWEB)
Torres, Pedro J., E-mail: ptorres@ugr.es
2014-10-03
We consider a 1D nonlinear Schrödinger equation (NLSE) which describes the mean field dynamics of an elongated Bose–Einstein condensate and prove the existence of modulated amplitude waves with non-trivial phase and minimal spatial period tending to infinite. The proof combines the theory of local continuation of non-degenerate periodic solutions with a property of the Ermakov–Pinney equation. - Highlights: • A rigorous proof of the existence of rotating MAWs in an inhomogeneous BEC. • No condition on the sign or the magnitude of the trap or the scattering length. • Non-trivial phase leads to a singular ODE for the amplitude. • The proof combines a local continuation theorem and properties of rotation numbers.
Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.
2016-08-01
Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.
Prestimulus amplitudes modulate P1 latencies and evoked traveling alpha waves
Directory of Open Access Journals (Sweden)
Nicole Alexandra Himmelstoss
2015-05-01
Full Text Available Traveling waves have been well documented in the ongoing, and more recently also in the evoked EEG. In the present study we investigate what kind of physiological process might be responsible for inducing an evoked traveling wave. We used a semantic judgment task which already proved useful to study evoked traveling alpha waves that coincide with the appearance of the P1 component. We found that the P1 latency of the leading electrode is significantly correlated with prestimulus amplitude size and that this event is associated with a transient change in alpha frequency. We assume that cortical background excitability, as reflected by an increase in prestimulus amplitude, is responsible for the observed change in alpha frequency and the initiation of an evoked traveling trajectory.
Optical Correlation Based Pose Estimation Using Bipolar Amplitude Spatial Light Modulators
2008-12-22
value • HMED Realizable value Re Figure 3-2 MED mapping for binary SLM For a ternary SLM device, its MED mapping is: 29 "Mkü +1, +0.5<Re(//) 0...below in Figure 3-4. Im \\ -l o H computed value • HM,,D realizable value Re Figure 3-3 MED mapping for AOSLM For coupled amplitude/phase
Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding
2007-11-01
A multiplexing technique using amplitude-modulated chirped fibre Bragg gratings (AMCFBGs) is presented. This technique realises the multiplexing of spectrally overlapped AMCFBGs with identical centre Bragg wavelength and bandwidth. Since it is fully compatible with the wavelength division multiplexing scheme, the number of gratings that can be multiplexed can be increased by several times. The discrete wavelet transform is used to demodulate such multiplexed signal. A wavelet denoising technique is applied to the multiplexed signal in conjunction with the demodulation. Strain measurements are performed to experimentally demonstrate the feasibility of this multiplexing technique. The absolute error and crosstalk are measured. An application to simultaneous two-parameter sensing is also demonstrated.
Chow, Jong H; Littler, Ian C M; Rabeling, David S; McClelland, David E; Gray, Malcolm B
2008-05-26
We introduce a closed-loop feedback technique to actively control the coupling condition of an optical cavity, by employing amplitude modulation of the interrogating laser. We show that active impedance matching of the cavity facilitates optimal shot-noise sensing performance in a cavity enhanced system, while its control error signal can be used for intra-cavity absorption or loss signal extraction. We present the first demonstration of this technique with a fiber ring cavity, and achieved shot-noise limited loss sensitivity. We also briefly discuss further use of impedance matching control as a tool for other applications.
Institute of Scientific and Technical Information of China (English)
Zhang Li
2009-01-01
This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal.A new linear approximation approach is advanced to calculate the signal-to-noise ratio.In the linear approximation only the drift term is linearized,the multiplicative noise term is unchangeable.It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance,especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength λ between the real and imaginary parts of the pump noise.
Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J
2016-07-01
Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.
Comparison of carrierless amplitude-phase (CAP) and discrete multitone (DMT) modulation
DEFF Research Database (Denmark)
Othman, M. B.; Pham, Tien-Thang; Deng, Lei
2014-01-01
We compare the transmission of 1.25 Gb/s CAP-16 and 909.2 Mb/s 16-QAM-DMT modulation formats over 2.4 km of MMF with 850 nm DM-CSELs. CAP displays 0.7-1.1 dB better sensitivity than DMT in this experiment.......We compare the transmission of 1.25 Gb/s CAP-16 and 909.2 Mb/s 16-QAM-DMT modulation formats over 2.4 km of MMF with 850 nm DM-CSELs. CAP displays 0.7-1.1 dB better sensitivity than DMT in this experiment....
Directory of Open Access Journals (Sweden)
Francucci M
2010-01-01
Full Text Available Amplitude-modulated (AM laser imaging is a promising technology for the production of accurate three-dimensional (3D images of submerged scenes. The main challenge is that radiation scattered off water gives rise to a disturbing signal (optical noise that degrades more and more the quality of 3D images for increasing turbidity. In this paper, we summarize a series of theoretical findings, that provide valuable hints for the development of experimental methods enabling a partial rejection of optical noise in underwater imaging systems. In order to assess the effectiveness of these methods, which range from modulation/demodulation to polarimetry, we carried out a series of experiments by using the laboratory prototype of an AM 3D imager ( = 405 nm for marine archaeology surveys, in course of realization at the ENEA Artificial Vision Laboratory (Frascati, Rome. The obtained results confirm the validity of the proposed methods for optical noise rejection.
Moller, A R
1976-06-18
The dynamic properties of excitation and two-tone inhibition in the cochlear nucleus were studied from extracellularly recorded unit responses to two simultaneously presented tones. One tone was presented at the unit's characteristic frequency, CF, the other at the unit's best inhibitory frequency, BIF. One or both of the tones were amplitude-modulated with pseudorandom noise. The system under study is in general nonlinear, but can be considered to function as a linear system for small changes in sound intensity around a certain operating point. The dynamic properties are likely to be different at different operating points. A suitable method for the study of dynamic properties of such a system employs tones that are amplitude-modulated with pseudorandom noise. In the present study, the dynamic properties were assessed by cross-correlating the unit discharge rate with the modulation. This was accomplished by computing the cross-covariance function between a period of noise and a period histogram of the discharges, the histogram being locked to the periodicity of the pseudorandom noise. In this way, it has been shown in previous works (Moller, 1973, 1974b), that the cross-covariance function is a valid approximation of the system's impulse response function at a certain sound intensity, provided the modulation is kept at a low value. In the present study the computed cross-covariance function is thus an approximation of the change in discharge rate of the cochlear nucleus units in response to a brief increase in stimulus intensity. As the response of the system under the given circumstances is approximately that of a linear system, the integrated cross-covariance is an approximation of the system's step response function, i.e the change in discharge rate that resulte from a hypothetical step increase in stimulus intensity. The results of the present study can be summarized as follows: 1. The impulse and step response functions computed from the responses to the
Institute of Scientific and Technical Information of China (English)
XIN Xiang-Jun; P. S. André; A. L. J. Teixeira; YU Chong-Xiu; Ana Ferreira; Tiago Silveira; P. M. Monteiro; F. da Rocha; J. L. Pinto
2005-01-01
@@ A simple, economical and applicable spectrum equalization method is implemented by employing a reshaping filter in the combined frequency-shift-keying/amplitude-shift-keying modulation scheme to improve the quality of amplitude-shift-keying optical signal. The 3-dB improvement for eye diagram height is experimentally demonstrated.
Directory of Open Access Journals (Sweden)
Karen Johanne Pallesen
Full Text Available Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL and amplitude modulations (AM of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz alpha (8-14 Hz, beta- (14-30 Hz and gamma- (30-80 Hz bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.
Ogusu, Takeshi; Uchimoto, Katsuya; Takeuchi, Masaki; Tanaka, Hideji
2014-01-01
Amplitude modulated multiplexed flow analysis (AMMFA) has been improved by introducing air segmentation and software-based phase recognition. Sample solutions, the flow rates of which are respectively varied at different frequencies, are merged. Air is introduced to the merged liquid stream in order to limit the dispersion of analytes within each liquid segment separated by air bubbles. The stream is led to a detector with no physical deaeration. Air signals are distinguished from liquid signals through the analysis of detector output signals, and are suppressed down to the level of liquid signals. Resulting signals are smoothed based on moving average computation. Thus processed signals are analyzed by fast Fourier transform. The analytes in the samples are respectively determined from the amplitudes of the corresponding wave components obtained. The developed system has been applied to the simultaneous determinations of phosphate ions in water samples by a Malachite Green method. The linearity of the analytical curve (0.0-31.0 μmol dm(-3)) is good (r(2)>0.999) and the detection limit (3.3 σ) at the modulation period of 30s is 0.52 μmol dm(-3). Good recoveries around 100% have been obtained for phosphate ions spiked into real water samples.
Directory of Open Access Journals (Sweden)
Korman Maria
2011-12-01
Full Text Available Perception of vibration during drilling demands integration of haptic and auditory information with force information. In this study we explored the ability to detect and discriminate changes in vibrotactile stimuli amplitude based either on purely haptic feedback or together with congruent synthesized auditory cues in groups of naive subjects and expert surgeons. Our results point toward the complex influence of multimodal experience during vibration perception. First, in naive subjects, we showed that detection and discrimination of amplitude change in complex vibro-tactile stimulus is selectively sensitive to combination of modality and previous experience. In the domain of discrimination, our results suggest that bi-modal performance is always better than uni-modal performance regardless of order of experience. Second, experiments with expert surgeons revealed that expertise in complex skill of maxilla-facial surgery strongly relies on enhanced touch perception, as measured in reaction times and discrimination ability in bi-modal vibro-auditory conditions. These observations suggest that acquisition of mandibular surgery skill has brought to an enhanced representation of vibro-tactile modulations in relevant stimuli ranges. Altogether, our results provide basis to assume that during acquisition of mandibular drilling skill, trainees may benefit from training of relevant basic aspects of touch perception - sensitivity to vibration and accompanying modulations of sound.
Phase-amplitude coupling characteristics in directly modulated quantum dot lasers
Energy Technology Data Exchange (ETDEWEB)
Wang, C. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 75634 Paris Cedex 13 (France); Institut National des Sciences Appliquées, Université Européenne de Bretagne, 35708 Rennes Cedex 7 (France); Osiński, M. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 75634 Paris Cedex 13 (France); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106-4343 (United States); Even, J. [Institut National des Sciences Appliquées, Université Européenne de Bretagne, 35708 Rennes Cedex 7 (France); Grillot, F. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 75634 Paris Cedex 13 (France)
2014-12-01
We present a semi-analytical model for studying the phase-amplitude coupling (α-factor) in quantum dot (QD) semiconductor lasers, which takes into account the influence of carrier populations in the excited state and in the two-dimensional carrier reservoir on the refractive index change. Calculations of the α-factor based on the amplified spontaneous emission method and on the “FM/AM” technique are both investigated. It is shown that the α-factor of a QD laser strongly depends on the energy separation between the ground state and the off-resonant states. Through band structure engineering, the α-factor can be reduced by enlarging this energy separation.
Vidal, Borja; Lafuente, Juan A.
2016-03-01
A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.
Numerical simulation of jet breakup due to amplitude-modulated (A-M) disturbance
Institute of Scientific and Technical Information of China (English)
LUO Jun; QI Le-hua; LI Li; YANG Fang; JIANG Xiao-shan
2008-01-01
In order to characterize the mechanics of jet breakup,the finite volume formulations were employed to solve the Navier-Stokes equations and continuity equation of jet.The volume of fluid (VOF) method was used to track the free surface of jet.The spray process of the molten Pb63Sn37 alloy was simulated based on the mathematical model by means of FLUENT code.The configuration of jets generated in different disturbance ratios and modulation ratios was obtained.The theoretical results show that the droplets merge together by the number of disturbance ratio N,which agrees with the corresponding picture captured in the experiment.In addition,the droplet streams broken at non-optimal frequency are also uniform according to simulation results,which proves that the A-M disturbance can increase the width of the uniform droplet generating frequency.
Sato, Takanori; Kanno, Kazutaka; Bunsen, Masatoshi
2016-09-01
We applied complex linear minimum mean-squared-error equalization to spatially quadrature-amplitude-modulated signals in holographic data storage (HDS). The equalization technique can improve dispersion in constellation outputs due to intersymbol interference. We confirm the effectiveness of the equalization technique in numerical simulations and basic optical experiments. Our numerical results have shown that intersymbol interference of a retrieved signal in a HDS system can be improved by using the equalization technique. In our experiments, a mean squared error (MSE), which indicates the deviation from an ideal signal, has been used for quantitatively evaluating the dispersion of equalized signals. Our equalization technique has been able to improve the MSE. However, symbols in the equalized signal have remained inseparable. To further improve the MSE and make the symbols separable, reducing errors in repeated measurements is our future task.
He, Jing; Dong, Huan; Deng, Rui; Chen, Lin
2016-08-01
We propose a bidirectional hybrid fiber-visible laser light communication (fiber-VLC) system. To reduce the cost of the system, the cheap and easy integration red vertical cavity surface emitting lasers, low-complexity carrier-less amplitude phase modulation format, and wavelength reuse technique are utilized. Meanwhile, the automatic gain control amplifier voltage and bias voltage for downlink and uplink are optimized. The simulation results show that, by using the proposed system, the bit error rate of 3.8×10-3 can be achieved for 16-Gbps CAP signal after 30-km standard single mode fiber and 8-m VLC bidirectional transmission. Therefore, it indicates the feasibility and potential of proposed system for indoor access network.
Directory of Open Access Journals (Sweden)
Yi Yuan
2016-07-01
Full Text Available Noninvasive focused ultrasound stimulation (FUS can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC between neuronal oscillations is tightly associated with cognitive processes, including learning, attention and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9 W/cm2, 9.6 W/cm2, and 19.2 W/cm2. The local field potentials (LFPs in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4-8 Hz and gamma (30-80 Hz bands and between the alpha (9-13 Hz and ripple (81-200 Hz bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity.
Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli
2016-01-01
Noninvasive focused ultrasound stimulation (FUS) can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC) between neuronal oscillations is tightly associated with cognitive processes, including learning, attention, and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9, 9.6, and 19.2 W/cm2). The local field potentials (LFPs) in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4–8 Hz) and gamma (30–80 Hz) bands and between the alpha (9–13 Hz) and ripple (81–200 Hz) bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity. PMID:27499733
Directory of Open Access Journals (Sweden)
Meghan Watson
Full Text Available Microstimulation of brain tissue plays a key role in a variety of sensory prosthetics, clinical therapies and research applications, however the effects of stimulation parameters on the responses they evoke remain widely unknown. In particular, the effects of parameters when delivered in the form of a stimulus train as opposed to a single pulse are not well understood despite the prevalence of stimulus train use. We aimed to investigate the contribution of each parameter of a stimulus train to the duration of the motor responses they evoke in forelimb muscles. We used constant-current, biphasic, square wave pulse trains in acute terminal experiments under ketamine anaesthesia. Stimulation parameters were systematically tested in a pair-wise fashion in the caudal forelimb region of the motor cortex in 7 Sprague-Dawley rats while motor evoked potential (MEP recordings from the forelimb were used to quantify the influence of each parameter in the train. Stimulus amplitude and train duration were shown to be the dominant parameters responsible for increasing the total duration of the MEP, while interphase interval had no effect. Increasing stimulus frequency from 100-200 Hz or pulse duration from 0.18-0.34 ms were also effective methods of extending response durations. Response duration was strongly correlated with peak time and amplitude. Our findings suggest that motor cortex intracortical microstimulations are often conducted at a higher frequency rate and longer train duration than necessary to evoke maximal response duration. We demonstrated that the temporal properties of the evoked response can be both predicted by certain response metrics and modulated via alterations to the stimulation signal parameters.
Lew, Ben W. P.; Apai, Daniel; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J.; Karalidi, Theodora; Yang, Hao; Marley, Mark S.; Cowan, Nicolas B.; Bedin, Luigi R.; Metchev, Stanimir A.; Radigan, Jacqueline; Lowrance, Patrick J.
2016-10-01
Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs, but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here, we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-K s = 2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy, we find a best-fit rotational period (13.20 ± 0.14 hr) with a larger amplitude at 1.1 μm than at 1.7 μm. This is the third-largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as a haze particle, we successfully explain the wavelength-dependent amplitude with submicron-sized haze particle sizes of around 0.4 μm. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed; the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.
Institute of Scientific and Technical Information of China (English)
Lun Zhao; Jianguo Yu
2015-01-01
We propose and experimentally demonstrate a novel scheme to realize electrical/optical (E/O) conversion on the receiver side of a wireless fiber integration system at the W band.At the receiver,a directly modulated laser (DML) is used to realize E/O conversion.The received 85 GHz wireless millimeter-wave (mm-wave) signal is first down-converted into a 10 GHz electrical intermediate-frequency (IF) signal to overcome the insufficient bandwidth of the subsequent DML.Then,two cascaded electrical amplifiers (EAs) are employed to boost the electrical IF signal before it is used to drive a DML.By using this scheme,we transmit a 10 Gb/s 16 quadrature amplitude modulation (16QAM) signal over a 10 m wireless link,and then deliver it over a 2 km single-mode fiber-28 (SMF-28) wire link with a bit error ratio (BER) that is less than the hard-decision forward error correction threshold of 3.8 × 10-3.Our experimental results show that the DML is good device to be used for the E/O conversion of a 16QAM signal.
Shevchenko, Nikita A; Prilepsky, Jaroslaw E; Alvarado, Alex; Bayvel, Polina; Turitsyn, Sergei K
2016-01-01
The channel law for amplitude-modulated solitons transmitted through a nonlinear optical fibre with ideal distributed amplification and a receiver based on the nonlinear Fourier transform is a noncentral chi distribution with $2n$ degrees of freedom, where $n=2$ and $n=3$ correspond to the single- and dual-polarisation cases, respectively. In this paper, we study the capacity of this channel in bits per channel use, and develop a semi-analytic capacity lower bound for arbitrary $n$ and a Rayleigh input distribution. An asymptotic analysis of the bound is also presented, which shows that this lower bound grows logarithmically with signal-to-noise ratio (SNR), independently of the value of $n$. Numerical results for other input distributions are also provided. A half-Gaussian input distribution is shown to give larger rates than a Rayleigh input distribution for $n=1,2,3$. At an effective SNR of 30~dB, the obtained lower bounds are approximately 4 bit per channel use.
Directory of Open Access Journals (Sweden)
P. Sumathi
2010-01-01
Full Text Available An accurate ultrasonic range finder employing Sliding Discrete Fourier Transform (SDFT based restructured phase-locked loop (RPLL, which is an improved version of the recently proposed integrated phase-locking scheme (IPLL, has been expounded. This range finder principally utilizes amplitude-modulated ultrasonic waves assisted by an infrared (IR pilot signal. The phase shift between the envelope of the reference IR pilot signal and that of the received ultrasonic signal is proportional to the range. The extracted envelopes are filtered by SDFT without introducing any additional phase shift. A new RPLL is described in which the phase error is driven to zero using the quadrature signal derived from the SDFT. Further, the quadrature signal is reinforced by another cosine signal derived from a lookup table (LUT. The pulse frequency of the numerically controlled oscillator (NCO is extremely accurate, enabling fine tuning of the SDFT and RPLL also improves the lock time for the 50 Hz input signal to 0.04 s. The percentage phase error for the range 0.6 m to 6 m is about 0.2%. The VHDL codes generated for the various signal processing steps were downloaded into a Cyclone FPGA chip around which the ultrasonic ranger had been built.
Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng
2016-12-01
Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.
Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.
2016-09-01
We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.
Shimko, I A; Fokin, V F
2000-01-01
The pronounced benzodiazepine (antiphobic) modulation of the amplitude-temporal parameters of different components of the thalamocortical responses (TCR) of the sensorimotor cortex is observed in rabbits in their early postnatal ontogeny. This modulation is of a dose-dependent character and is registered not after the injection of tazepam in a concentration of the "therapeutic tranquilizing window" but also in the psychotoxic plasma range. A gradual increase in blood tazepam concentration in a young rabbit pup is accompanied by the wave-like and differential decrease in the amplitude of the second and third positive (P2 and P3) and third negative (N3) TCR components, while the second negative (N2) and fourth positive (P4) components tend to a wave-like increase. The dose-dependent dynamics of tazepam modulation of the P2, P3, and N3 latencies is characterized by a wave-like and differential increase. The latency of P4 decreases slightly and that of the N2 increases with a low degree of significance. The selective dynamics of benzodiazepine modulation appears to be related with peculiarities of the electrogenesis of each of the components. The dose-dependent modulation of the level of cortical DC potential is of the same character as the respective amplitude changes in P2, P3, and N3, but its fluctiatuons are more pronounced.
Directory of Open Access Journals (Sweden)
Kh Mabhouti
2016-12-01
Full Text Available In this paper, by placing the electro optical modulator (EOM into the external cavity of the semiconductor laser (SL and amplitude modulation of the optical feedback, the dynamical variation of the output intensity of the laser has been studied. This is analyzed numerically via bifurcation and time series diagrams with respect to the applied amplitude modulation index, and modulation voltage frequency of the EOM. It has been shown that, by modulating the amplitude of the optical feedback beam, various changes in the types of the dynamics of can be observed, and various periodic states can be generated. This makes it possible to receive the desired dynamics without any variations in the main parameters of the SL. Also, in present study, a method of chaos control in the SL has been presented based on EOM in the external cavity. The obtained results confirm that based on this method the chaotic dynamics can be controlled single-periodic dynamics
Wei, Wei; Chang, Jun; Liu, Yuanyuan; Chen, Xi; Liu, Zhaojun; Qin, Zengguang; Wang, Qiang
2016-05-01
Phase shift between the injection current and amplitude modulation due to the characteristics of diode lasers is discussed in this paper. Phase shift has no apparent regularity, but it has an obvious effect on measurement results, especially for high-precision measurement. A new method is proposed to suppress the influence of this phase shift. Water vapor is chosen as the target gas for experiment in this paper. A new detection system with the new method applied is presented and shows much better performance than the traditional wavelength modulation spectroscopy detection system. Phase shift fluctuation between the injection current and amplitude modulation is suppressed from 0.72 deg to 0.07 deg; accuracy is improved from 0.88 ppm to 0.16 ppm.
Ming, Yang; Hanson, Ben; Levesley, Martin C; Walker, Peter G; Watterson, Kevin G
2006-12-01
In this paper, to exploit the contribution from not only the stators but also from other parts of miniature ultrasonic motors, an amplitude modulation drive is proposed to drive a miniature linear ultrasonic motor consisting of two rectangular piezoelectric ceramic plates. Using finite-element software, the first longitudinal and second lateral-bending frequencies of the vibrator are shown to be very close when its dimensions are 8 mm x 2.16 mm x 1 mm. So one single frequency power should be able to drive the motor. However, in practice the motor is found to be hard to move with a single frequency power because of its small vibration amplitudes and big frequency difference between its longitudinal and bending resonance, which is induced by the boundary condition variation. To drive the motor effectively, an amplitude modulation drive is used by superimposing two signals with nearly the same frequencies, around the resonant frequency of the vibrators of the linear motor. When the amplitude modulation frequency is close to the resonant frequency of the vibrator's surroundings, experimental results show that the linear motor can move back and forward with a maximum thrust force (over 0.016 N) and a maximum velocity (over 50 mm/s).
Liu, L M; Garber, F; Cleary, S F
1982-01-01
Single internodal excitable cells of Chara corallina were exposed to CW, pulse-modulated and sinusoidally modulated S-band microwave fields in a temperature-controlled waveguide exposure chamber. All electrical measurements were made external to the waveguide (ie, under no impressed microwave field). The dependent variables measured before, during, and after exposure to the S-band microwave fields included: resting potential, amplitude of the action potential, rise and decay time of the action potential, conduction velocity, and excitability. Cells maintained at 22 +/- 0.1 degrees C during exposure showed no consistent or statistically significant microwave-dependent alterations in any of the dependent variables.
Lew, Ben W P; Zhou, Yifan; Schneider, Glenn; Burgasser, Adam J; Karalidi, Theodora; Yang, Hao; Marley, Mark S; Cowan, N B; Bedin,; R., L; Metchev, Stanimir A; Radigan, Jacqueline; Lowrance, Patrick J
2016-01-01
Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poorly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-Ks=2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy we find a best-fit rotational period (13.20$\\pm$0.14 hours) with a larger amplitude at 1.1 micron than at 1.7 micron. This is the third largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentativ...
Moody, Galan; Feldman, Ari; Harvey, Todd; Mirin, Richard P; Silverman, Kevin L
2016-01-01
The amplitude and phase of a material's nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-f...
Thanassoulas, C; Verveniotis, G
2010-01-01
Starting from the observation that quite often the Earth's oscillating electric field varies in amplitude, a mechanism is postulated that accounts for these observations. That mechanism is the piezoelectric one driven by the M1 and K1 tidal components. It is demonstrated how the system: piezoelectricity triggered in the lithosphere - M1 and K1 tidal components is activated and produces the amplitude modulated Earth's oscillating electric field. This procedure is linked to the strain load conditions met in the seismogenic area before the occurrence of a large EQ. Peaks of the oscillating Earth's electric field are tightly connected to the M1 peak tidal component and to the timing of the occurrence of large EQs. Typical examples from real recordings of the Earth's oscillating electric field, recorded by the ATH (Greece) monitoring site, are given in order to verify the postulated detailed piezoelectric mechanism.
Institute of Scientific and Technical Information of China (English)
廖灿辉; 涂世龙; 万坚
2014-01-01
该文针对卫星中的常用调制QPSK,16QAM和新型调制16APSK,32APSK，提出一种自适应构造幅度分布模板，并通过计算实际信号幅度分布向量与幅度分布模板间的匹配误差来进行调制识别的算法。该方法不需要知晓载噪比，不需要人为确定阈值，且对频偏误差的容忍能力强，适合实际工程应用。仿真表明，在载噪比为9 dB，符号个数为4000时，该算法对4种调制信号的识别率能达到98%以上，证明了其有效性。%An anti-frequency-offset algorithm is proposed by utilizing amplitude distribution feature for modulation recognition of conventional satellite modulations, such as QPSK, 16QAM and new modulations like 16APSK and 32APSK. The algorithm is based on adaptive construction of amplitude distribution template. After calculating the matching error between the amplitude distribution template and the actual amplitude distribution vector, the algorithm can recognize the modulation type by choosing the modulation type with the minimum matching error. This method does not need any prior knowledge about Carrier-to-Noise ratio (C/N), as well as threshold, and it is not sensitive to frequency offset. Becasuse of these advantages, the algorith is suitable for engineering application. Computer simulations show that the correct recognition probability is more than 98% when C/N is greater than 9 dB and 4000 symbols are used. It verifies the effectiveness of the algorithm.
McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall
2013-10-01
Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of
Bukinich, A A
2010-01-01
By using the patch-clamp method in the whole cell configuration, modulating effect of dopamine on GABA-activated currents has been studied on isolated multipolar spinal cord neurons of the ammocaete (larva of the lamprey Lampetra planeri). At application of dopamine (5 microM), there was observed in some cases a decrease of the GABA-activated current, on average, by 33.3 +/- 8.7 (n = 8, p multipolar neurons of the ammocaete spinal cord.
Meyers, Stephen R.
2015-12-01
Cyclostratigraphic analysis has produced fundamental advancements in our understanding of climate change, paleoceanography, celestial mechanics, geochronology, and chronostratigraphy. Of central importance to this success has been the development of astrochronologic testing methods for the evaluation of astronomical-climate influence on sedimentation. Most pre-Pleistocene astrochronologic testing methods fall into one of two categories: (1) those that test for expected amplitude or frequency modulation imposed by an astronomical signal or (2) those that test for bedding hierarchies (frequency ratios or bundling) that are predicted by the dominant astronomical periods. In this study, a statistical methodology for combining these complementary approaches is developed, which identifies the time scale that simultaneously optimizes eccentricity amplitude modulation of the precession band, and the concentration of power at precession (carrier) and eccentricity (modulator) frequencies. The technique is demonstrated to have high statistical power—it is capable of identifying astronomical cycles when present—under a wide range of conditions, and its application to synthetic models illuminates a range of potential pitfalls that are encountered when more conventional nonoptimization approaches are used. The method is also independent from the interpretation of power spectrum peak significance, resolving previous concerns regarding appropriate confidence level assessment and "multiple testing." As two case studies, the algorithm is applied to Miocene strata of Ocean Drilling Program (ODP) Site 926B, and the Paleocene-Eocene Thermal Maximum-Eocene Thermal Maximum 2 interval at ODP Site 1262. The results verify published cyclostratigraphic interpretations and support the theoretical astronomical solutions. This new astrochronologic testing approach can be used to evaluate cyclostratigraphic records spanning the Phanerozoic and potentially beyond.
Ritchie, Raymond J; Mekjinda, Nutsara
2016-10-01
Accumulation of arsenic in plants is a serious South-east Asian environmental problem. Photosynthesis in the small aquatic angiosperm Wolffia arrhiza is very sensitive to arsenic toxicity, particularly in water below pH 7 where arsenite (As (OH)3) (AsIII) is the dominant form; at pH >7 AsO4(2-) (As(V) predominates). A blue-diode PAM (Pulse Amplitude Fluorometer) machine was used to monitor photosynthesis in Wolffia. Maximum gross photosynthesis (Pgmax) and not maximum yield (Ymax) is the most reliable indicator of arsenic toxicity. The toxicity of arsenite As(III) and arsenate (H2AsO4(2-)) As(V) vary with pH. As(V) was less toxic than As(III) at both pH 5 and pH 8 but both forms of arsenic were toxic (>90% inhibition) at below 0.1molm(-3) when incubated in arsenic for 24h. Arsenite toxicity was apparent after 1h based on Pgmax and gradually increased over 7h but there was no apparent effect on Ymax or photosynthetic efficiency (α0).
Directory of Open Access Journals (Sweden)
Xiuling Liang
2016-12-01
Full Text Available The processing of causal relations has been constantly found to be asymmetrical once the roles of cause and effect are assigned to objects in interactions. We used a relationship recognition paradigm and recorded electroencephalographic (EEG signals to explore the neural mechanism underlying the asymmetrical representations of causal relations in semantic memory. The results revealed that the verification of causal relations is faster if two words appear in cause–effect order (e.g., virus-epidemic than if they appear in effect–cause order (e.g., epidemic-virus, whereas no such asymmetrical representation was found for the verification of hierarchical relations with reverse orders (e.g., bird-sparrow v. sparrow-bird in Experiment 1. Furthermore, the P2 amplitude elicited by superordinate-subordinate order was larger than that when in reverse order, whereas the N400 effect elicited by cause-effect order was smaller (more positive than when in reverse order. However, no such asymmetry, as well as P2 and N400 components, were observed when verifying the existence of a general associative relation in Experiment 2. We suggested that the smaller N400 in cause-effect order indicates their increased salience in semantic memory relative to the effect-cause order. These results provide evidence for dissociable neural processes, which are related to role binding, contributing to the generation of causal asymmetry.
Liang, Xiuling; Xiao, Feng; Wu, Lijun; Chen, Qingfei; Lei, Yi; Li, Hong
2016-01-01
The processing of causal relations has been constantly found to be asymmetrical once the roles of cause and effect are assigned to objects in interactions. We used a relationship recognition paradigm and recorded electroencephalographic (EEG) signals to explore the neural mechanism underlying the asymmetrical representations of causal relations in semantic memory. The results revealed that the verification of causal relations is faster if two words appear in "cause-effect" order (e.g., virus-epidemic) than if they appear in "effect-cause" order (e.g., epidemic-virus), whereas no such asymmetrical representation was found for the verification of hierarchical relations with reverse orders (e.g., bird-sparrow vs. sparrow-bird) in Experiment 1. Furthermore, the P2 amplitude elicited by "superordinate-subordinate" order was larger than that when in reverse order, whereas the N400 effect elicited by "cause-effect" order was smaller (more positive) than when in reverse order. However, no such asymmetry, as well as P2 and N400 components, were observed when verifying the existence of a general associative relation in Experiment 2. We suggested that the smaller N400 in cause-effect order indicates their increased salience in semantic memory relative to the effect-cause order. These results provide evidence for dissociable neural processes, which are related to role binding, contributing to the generation of causal asymmetry.
DEFF Research Database (Denmark)
Hancke, Kasper; Hancke, Torunn; Olsen, Lasse M.
2008-01-01
photosynthetic rate (PCmax) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20oC–25oC), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (alfaC) was insensitive......Short-term temperature effects on photosynthesis were investigated by measuring O2 production, PSII-fluorescence kinetics, and 14C-incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum ( J...... or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse-amplitude-modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM-based O2 production and measured O2 production...
Directory of Open Access Journals (Sweden)
A. K. Sinha
Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not
Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli
2015-12-01
A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.
Kachhatiya, Vivek; Prince, Shanthi
2016-12-01
In this paper, we have proposed and simulated optical time division multiplexed passive optical network (TDM-PON) using delayed optical amplitude modulation (AM). Eight upstream wavelengths are demonstrated to show optical time wavelength division multiplexed (TWDM) by combining optical network units (ONU) users data at the remote node (RN). Each ONU generates 2.5 Gb/s user data, and it is modulated using novel return to zero (RZ) delayed AM. Optical TDM aggregates 10 Gb/s data per wavelength from four 2.5 Gb/s upstream user data, which facilitates four different ONU data on the same wavelength as 10 Gb/s per upstream wavelength and, simplify the laser requirements (2.5 Gb/s) at each optical network unit (ONU) transmitter. Upstream optical TWDM-PON is investigated for eight wavelengths with wavelength spacing of 100 GHz. Novel optical TDM for upstream increased the number of the simultaneous user to fourfold from conventional TWDM-PON using delayed AM with a high-quality-factor of received signal. Despite performance degradation due to different fiber reach and dispersion compensation technique, Optical TWDM link shows significant improvement regarding receiver sensitivity when compared with common TWDM link. Hence, it offers optimistic thinking to show optical TDM at this phase as one of the future direction, where complex digital signal processing (DSP) and coherent optical communication are frequently demonstrated to serve the access network. Downstream side conventional TWDM eight wavelengths are multiplexed at the OLT and sent downstream to serve distributed tunable ONU receivers through an optical distribution network (ODN). Each downstream wavelengths are modulated at the peak rate of 10 Gb/s using non-return to zero external modulation (NRZ-EM). The proposed architecture is cost efficient and supports high data rates as well as "pay as you grow" network for both service providers and the users perspectives. Users are classified into two categories viz home
The working principle of MATLAB wave amplitude modulation transmitter simulation%中波调幅发射机工作原理MATLAB仿真
Institute of Scientific and Technical Information of China (English)
林斌
2015-01-01
MATLAB is a very good teaching and scientific research and engineering application of simulation software,it will block diagram model and simulation model of the combined form of visual programming to use.In this paper,using MATLAB to achieve the simulation of wave amplitude modulation transmitter working principle.Starting from the numerical modeling theory and simulation calculation method,theoretical research,analysis of the transmitter performance verification for the operator to provide a deep understanding of the opportunity from quantity to quality.%MATLAB是一个很好的科研教学和工程应用仿真软件，它将可视化的方框图模型与编程形式的仿真模型综合起来加以利用。本文利用MATLAB实现对中波调幅发射机工作原理进行仿真。从系统建模原理和仿真的数值计算方法入手，对发射机理论研究、性能分析验证等方面为值机员提供深刻的从量到质的认识机会。
Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng
2016-06-01
In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What’s more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication.
Chen, Gang; Li, Yuyan; Yu, Anping; Wen, Zhongquan; Dai, Luru; Chen, Li; Zhang, Zhihai; Jiang, Senlin; Zhang, Kun; Wang, Xianyou; Lin, Feng
2016-06-29
In traditional optics, the focal spot size of a conventional lens is restricted to the diffraction limit 0.5λ/NA, where λ is the wavelength in vacuum and NA is the numerical aperture of the lens. Recently, various sub-diffraction focusing optical devices have been demonstrated, but they usually have short focal length and high numerical aperture. Moreover, they always suffer the problem of huge sidelobes near the focal spot and small field of view, especially when the focal spot size is less than the super-oscillation criteria 0.38λ/NA. To address the problem, here, we reported a far-field sub-diffraction point-focusing lens based on binary phase and amplitude modulation with ultra-long focal length 252.8 μm (399.5λ) and small numerical aperture 0.78, and experimentally demonstrated a super-oscillatory focusing of circularly polarized light with spot size 287 nm (0.454λ), smaller than the diffraction limit 0.64λ and the super-oscillation criterion 0.487λ. What's more, on the focal plane, in the measured area within the radius of 142λ, the largest sidelobe intensity is less than 26% of the central lobe intensity. Such ultra-long distance super-oscillatory focusing with small sidelobes and large field of view has great potential applications in far-field super-resolution microscopy, ultra-high-density optical storage and nano-fabrication.
Hancke, Kasper; Hancke, Torunn B; Olsen, Lasse M; Johnsen, Geir; Glud, Ronnie N
2008-04-01
Short-term temperature effects on photosynthesis were investigated by measuring O2 production, PSII-fluorescence kinetics, and (14) C-incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15°C and 80 μmol photons · m(-2) · s(-1) . Photosynthesis versus irradiance curves were measured at seven temperatures (0°C-30°C) by all three approaches. The maximum photosynthetic rate (P(C) max ) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20°C-25°C), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (α(C) ) was insensitive or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse-amplitude-modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM-based O2 production and measured O2 production and (14) C assimilation showed a species-specific correlation, with 1.2-3.3 times higher absolute values of P(C) max and α(C) when calculated from PAM data for Pry. parvum and Ph. tricornutum but equivalent for Pro. minimum. The offset seemed to be temperature insensitive and could be explained by a lower quantum yield for O2 production than the theoretical maximum (due to Mehler-type reactions). Conclusively, the PAM technique can be used to study temperature responses of photosynthesis in microalgae when paying attention to the absorption properties in PSII.
Hanzo, Lajos
2004-01-01
"Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding." "In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers."--Jacket.
1981-04-01
mouvement gyratoire. Le faisceau laser est modul6 en amplitude 1 15 kHz par un cristal 6lectro-optique et ce signal est mesur6, apras l’lment non...pour X =10 Prn (absorption du cristal et application de couches anti- reflets sur la fenetre d’entr6e). Pour une photodiode, le SNR P mesurg...s6para- trice (ZnSe avec R =0.05) a Ilentr6e du modulateur 6lectro-optique. p 3 Ce dernier est un cristal de CdTe mesurant 3 x 3 x 40 mm , de coupe AM
Accurate Period Approximation for Any Simple Pendulum Amplitude
Institute of Scientific and Technical Information of China (English)
XUE De-Sheng; ZHOU Zhao; GAO Mei-Zhen
2012-01-01
Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed.Based on an approximation of the elliptic integral,two new logarithmic formulae for large amplitude close to 180° are obtained.Considering the trigonometric function modulation results from the dependence of relative error on the amplitude,we realize accurate approximation period expressions for any amplitude between 0 and 180°.A relative error less than 0.02％ is achieved for any amplitude.This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.%Accurate approximate analytical formulae of the pendulum period composed of a few elementary functions for any amplitude are constructed. Based on an approximation of the elliptic integral, two new logarithmic formulae for large amplitude close to 180° are obtained. Considering the trigonometric function modulation results from the dependence of relative error on the amplitude, we realize accurate approximation period expressions for any amplitude between 0 and 180°. A relative error less than 0.02% is achieved for any amplitude. This kind of modulation is also effective for other large-amplitude logarithmic approximation expressions.
Institute of Scientific and Technical Information of China (English)
潘期辉
2015-01-01
Random code information encryption is the basis of the security of information security. Traditional random code information encryption algorithm using high order linear micro decomposition optimization of hybrid encryption algorithm, the key expansion process, link layer encrypting data nonlinear mutation, through all the affine transform any wheel key can crack the secret keys, encryption performance bad. A double thread complementary information encryption algorithm based on the amplitude modulation of random codes is proposed. Analysis of the random coding sequence encryption of informa-tion and communication system principle and key design, generate random number source of a source key and encryption sequence the bitwise XOR operation of double thread information complementary encoding and decoding, using random code amplitude modulation production information and decryption key, the encryption algorithm to achieve improved. Simu-lation results show that using this algorithm to encrypt information and the other information systems of password recogni-tion rate is effectively reduced, is difficult to attack detection and recognition system, improve the safety of information.%随机码信息加密是保障信息通信安全的基础,传统的随机码信息加密算法采用高阶线性微分解优化的混合加密算法,密钥扩展过程中,链路层加密数据出现非线性突变,采用任何一轮子密钥即可破解全部密钥,加密性能不好.提出一种基于随机码幅度调制的双线程互补信息加密算法.分析了加密信息通信系统的随机编码序列发生原理,进行密钥设计,生成的随机数对信源发出信源密钥,加密序列按位异或运算进行双线程信息互补编码和解码,采用随机码幅度调制生产信息加密密钥,实现加密算法改进,仿真结果表明,采用该算法进行信息加密,有效降低了对方信息系统对密码的识别率,难以被攻击系统检测识别,提高信息安全性.
Amplitudes, acquisition and imaging
Energy Technology Data Exchange (ETDEWEB)
Bloor, Robert
1998-12-31
Accurate seismic amplitude information is important for the successful evaluation of many prospects and the importance of such amplitude information is increasing with the advent of time lapse seismic techniques. It is now widely accepted that the proper treatment of amplitudes requires seismic imaging in the form of either time or depth migration. A key factor in seismic imaging is the spatial sampling of the data and its relationship to the imaging algorithms. This presentation demonstrates that acquisition caused spatial sampling irregularity can affect the seismic imaging and perturb amplitudes. Equalization helps to balance the amplitudes, and the dealing strategy improves the imaging further when there are azimuth variations. Equalization and dealiasing can also help with the acquisition irregularities caused by shot and receiver dislocation or missing traces. 2 refs., 2 figs.
Directory of Open Access Journals (Sweden)
O. Uchino
2012-07-01
Full Text Available Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (q and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometry (LAS. The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on differential absorption optical depth (Δτ measurements. A high correlation coefficient (R of 0.99 between Δτ observed by LAS and Δτ calculated from in-situ measurements of CO2 was obtained. The averaged difference in q obtained from LAS (qLAS and validation data (qval was within 1.5 ppm for all spiral measurements. A significant profile was observed for both qLAS and qval, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where CO2 and aerosol are highly distributed in the lower atmosphere in the winter, the difference of qLAS to qval is −1.5 ppm, and evaluated qLAS is in agreement with qval within the measurement precision of 2.4 ppm (1σ.
Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.
2013-04-01
The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.
Directory of Open Access Journals (Sweden)
O. Uchino
2013-02-01
Full Text Available Simultaneous measurements of the partial column-averaged dry air mixing ratio of CO2 (XCO2 and target range were demonstrated using airborne amplitude-modulated 1.57 μm differential laser absorption spectrometer (LAS. The LAS system is useful for discriminating between ground and cloud return signals and has a demonstrated ability to suppress the impact of integrated aerosol signals on atmospheric CO2 measurements. A high correlation coefficient (R of 0.987 between XCO2 observed by LAS and XCO2 calculated from in situ measurements was obtained. The averaged difference in XCO2 obtained from LAS and validation data was within 1.5 ppm for all spiral measurements. An interesting vertical profile was observed for both XCO2LAS and XCO2val, in which lower altitude CO2 decreases compared to higher altitude CO2 attributed to the photosynthesis over grassland in the summer. In the case of an urban area where there are boundary-layer enhanced CO2 and aerosol in the winter, the difference of XCO2LAS to XCO2val is a negative bias of 1.5 ppm, and XCO2LAS is in agreement with XCO2val within the measurement precision of 2.4 ppm (1 SD.
Institute of Scientific and Technical Information of China (English)
陈亚洲; 程二威; 费支强; 高磊
2011-01-01
To investigate the elecromagnetic environment effects of the amplitude modulation wave on radio fuze,the mixing theory and the output signal character of high frequency circuit are analyzed,and the problems of waveform modulate are resolved.The modulate waveform expression and the radio fuze radiation electromagnetic environment is established.The experiment is done to find out the threshold field intensity for accidental explosion and the variable rules of the radio fuze.The conclusions show that when radiation frequency is appressed with the vibration frequency,the threshold field intensity is less than 10V/m.With the frequency deviation increasing,the threshold field intensity becomes larger.The electronic components of the radio fuze is not destroyed.%为了研究调幅波对无线电引信的电磁环境效应,分析了无线电引信混频原理及高频电路输出信号特征,解决了调幅波的波形调制问题,建立了辐照调幅波的波形表达式,形成了无线电引信辐照电磁环境,探索了不同频率调幅波对引信的意外发火场强干扰阈值及其变化规律。结果表明：辐照频率在引信本振频率外一定范围内引信误炸干扰阈值低于10V/m,随着辐照频率与引信本振频率偏移量增加误炸干扰阈值呈增大趋势;调幅波辐照不会对引信电子部件产生硬损伤,也不会导致引信瞎火。
Real topological string amplitudes
Narain, K. S.; Piazzalunga, N.; Tanzini, A.
2017-03-01
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.
Protostring scattering amplitudes
Thorn, Charles B.
2016-11-01
We calculate some tree-level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a light-cone world sheet which supports s integer moded Grassmann fields. In the generalization we supplement this Grassmann world-sheet system with d =24 -s transverse coordinate world-sheet fields. The protostring corresponds to s =24 and the bosonic string to s =0 . The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that s is even we calculate the multistring scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of s /2 compactified and d uncompactified bosonic world-sheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then study in detail some simple special cases. Multistring processes with maximal helicity violation have much simpler amplitudes. We also specialize to general four-string amplitudes and discuss their high energy behavior. Most of these models are not covariant under the full Lorentz group O (d +1 ,1 ). The exceptions are the bosonic string whose Lorentz group is O (25 ,1 ) and the protostring whose Lorentz group is O (1 ,1 ). The models in between only enjoy an O (1 ,1 )×O (d ) spacetime symmetry.
Protostring Scattering Amplitudes
Thorn, Charles B
2016-01-01
We calculate some tree level scattering amplitudes for a generalization of the protostring, which is a novel string model implied by the simplest string bit models. These bit models produce a lightcone worldsheet which supports $s$ integer moded Grassmann fields. In the generalization we supplement this Grassmann worldsheet system with $d=24-s$ transverse coordinate worldsheet fields. The protostring corresponds to $s=24$ and the bosonic string to $s=0$. The interaction vertex is a simple overlap with no operator insertions at the break/join point. Assuming that $s$ is even we calculate the multi-string scattering amplitudes by bosonizing the Grassmann fields, each pair equivalent to one compactified bosonic field, and applying Mandelstam's interacting string formalism to a system of $s/2$ compactified and $d$ uncompactified bosonic worldsheet fields. We obtain all amplitudes for open strings with no oscillator excitations and for closed strings with no oscillator excitations and zero winding number. We then ...
Institute of Scientific and Technical Information of China (English)
傅娟; 韦岗; 黄庆华
2013-01-01
In order to improve the axial resolution and satisfy the contrast resolution of medical ultrasound imaging,a predistorted Linear Frequency Modulation (LFM) coded excitation new method based on amplitude weighting is proposed.Combining the amplitude weighting technology of LFM transmitted signal with the sidelobe reduction technology of echo signal,the method on the one hand can compensate the influence of transducer impulse response on transmission signal,so bandwidth of the echo signal is not limited by the transducer and axial resolution is improved.On the other hand,the method can remove the Fresnel ripples of transmitted signal's frequency response,increase its bandwidth and use mismatched filter for pulse compression,so range sidelobe is suppressed to ensure contrast resolution.The results of simulation reveal that in contrast with constant envelope LFM coded excitation,the predistorted one can improve axial resolution and reduce maximum sidelobe at-48 dB to satisfy contrast resolution of medical imaging.FieldII Simulation results of B-mode image show that the axial resolution of constant envelope LFM coded excitation and the predistorted one is 0.35 mm and 0.25 mm,respectively.%为了提高医学超声成像的轴向分辨力和确保对比度,该文提出一种基于幅度加权的预失真线性调频编码新方法.该方法将线性调频发射信号幅度加权技术和回波信号旁瓣抑制技术相结合,一方面补偿超声探头对发射信号的影响,使得回波信号的带宽不局限于探头,提高轴向分辨力；另一方面消除发射信号幅频特性的菲涅耳波纹,提高发射信号的带宽并采用失配滤波器进行脉冲压缩,实现旁瓣抑制,确保成像对比度.仿真结果表明:相对恒包络线性调频编码,预失真线性调频编码方法不仅提高了轴向分辨力,而且最大旁瓣幅度减小至-48 dB以下,满足医学成像对比度要求.FieldII仿真B超图像结果表明:恒包络线性调频和预
Phase and Pupil Amplitude Recovery for JWST Space-Optics Control
Dean, B. H.; Zielinski, T. P.; Smith, J. S.; Bolcar, M. R.; Aronstein, D. L.; Fienup, J. R.
2010-01-01
This slide presentation reviews the phase and pupil amplitude recovery for the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam). It includes views of the Integrated Science Instrument Module (ISIM), the NIRCam, examples of Phase Retrieval Data, Ghost Irradiance, Pupil Amplitude Estimation, Amplitude Retrieval, Initial Plate Scale Estimation using the Modulation Transfer Function (MTF), Pupil Amplitude Estimation vs lambda, Pupil Amplitude Estimation vs. number of Images, Pupil Amplitude Estimation vs Rotation (clocking), and Typical Phase Retrieval Results Also included is information about the phase retrieval approach, Non-Linear Optimization (NLO) Optimized Diversity Functions, and Least Square Error vs. Starting Pupil Amplitude.
Weak Boson Production Amplitude Zeros; Equalities of the Helicity Amplitudes
Mamedov, F
2002-01-01
We investigate the radiation amplitude zeros exhibited by many Standard Model amplitudes for triple weak gauge boson production processes. We show that $WZ\\gamma$ production amplitudes have especially rich structure in terms of zeros, these amplitudes have zeros originating from several different sources. It is also shown that TYPE I current null zone is the special case of the equality of the specific helicity amplitudes.
Periods and Superstring Amplitudes
Stieberger, S
2016-01-01
Scattering amplitudes which describe the interaction of physical states play an important role in determining physical observables. In string theory the physical states are given by vibrations of open and closed strings and their interactions are described (at the leading order in perturbation theory) by a world-sheet given by the topology of a disk or sphere, respectively. Formally, for scattering of N strings this leads to N-3-dimensional iterated real integrals along the compactified real axis or N-3-dimensional complex sphere integrals, respectively. As a consequence the physical observables are described by periods on M_{0,N} - the moduli space of Riemann spheres of N ordered marked points. The mathematical structure of these string amplitudes share many recent advances in arithmetic algebraic geometry and number theory like multiple zeta values, single-valued multiple zeta values, Drinfeld, Deligne associators, Hopf algebra and Lie algebra structures related to Grothendiecks Galois theory. We review the...
Quantitative Seismic Amplitude Analysis
Dey, A. K.
2011-01-01
The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes. Currently, the seismic value chain paradigm is in a feed-forward mode. Modern seismic data now have the potential to yield the best images in terms of spatial resolution, amplitude accuracy, and incre...
Decoding a combined amplitude modulated and frequency modulated signal
DEFF Research Database (Denmark)
2015-01-01
The present disclosure relates to a method for decoding a combined AM/FM encoded signal, comprising the steps of: combining said encoded optical signal with light from a local oscillator configured with a local oscillator frequency; converting the combined local oscillator and encoded optical sig...
Broadband metasurface holograms: toward complete phase and amplitude engineering
Wang, Qiu; Zhang, Xueqian; Xu, Yuehong; Gu, Jianqiang; Li, Yanfeng; Tian, Zhen; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2016-09-01
As a revolutionary three-dimensional imaging technique, holography has attracted wide attention for its ability to photographically record a light field. However, traditional phase-only or amplitude-only modulation holograms have limited image quality and resolution to reappear both amplitude and phase information required of the objects. Recent advances in metasurfaces have shown tremendous opportunities for using a planar design of artificial meta-atoms to shape the wave front of light by optimal control of both its phase and amplitude. Inspired by the concept of designer metasurfaces, we demonstrate a novel amplitude-phase modulation hologram with simultaneous five-level amplitude modulation and eight-level phase modulation. Such a design approach seeks to turn the perceived disadvantages of the traditional phase or amplitude holograms, and thus enable enhanced performance in resolution, homogeneity of amplitude distribution, precision, and signal-to-noise ratio. In particular, the unique holographic approach exhibits broadband characteristics. The method introduced here delivers more degrees of freedom, and allows for encoding highly complex information into designer metasurfaces, thus having the potential to drive next-generation technological breakthroughs in holography.
Method of differential-phase/absolute-amplitude QAM
Dimsdle, Jeffrey William
2007-07-17
A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.
Quantum interference of virtual and real amplitudes in a semiconductor exciton system.
Ahn, Y H; Choe, S B; Woo, J C; Kim, D S; Cundiff, S T; Shacklette, J M; Lim, Y S
2002-12-02
By two-color pulse shaping, we simultaneously create virtual and real amplitudes for excitons in GaAs quantum wells, and monitor population and amplitude by pump-probe and four-wave mixing spectroscopies. Excited-state probability amplitude can be induced by the off-resonant, virtual excitations as well as by the resonant, real excitations. Population modulation in time-domain results from the interference between the virtual and real amplitudes, and the modulation depth reveals the relative contributions of these two amplitudes. The fact that virtual and real amplitudes have a phase difference of 90 degrees is demonstrated directly in time-domain.
Institute of Scientific and Technical Information of China (English)
王中结; 陆同兴; 路轶群
2001-01-01
In this paper the model of two-level atomic momentum spread in amplitude- and phase-modulated standing light wave was investigated. this is a nonlinear quantum pendulum driven by a time-dependent perterbation with two frequencies. This system shows chaotic behaviour in the classical limit. The system exists the characteristic of dynamical localization for the same parameters as that in the classical model correspoinding to it. Localization length of the system with two incommensurate perturbing frequency is much larger than that of the system with one perturbing frequency.%分析了二能级原子在振幅相位调制驻波场作用下动量扩散模型，这是一个双频参数激励的非线性量子单摆模型。这个系统在经典极限下表现混沌行为，在相同参数条件下，这个系统具有动力学局域特征，具有两个不可约频率扰动的系统的局域长度要比单个频率扰动时大得多。
PULSE AMPLITUDE DISTRIBUTION RECORDER
Cowper, G.
1958-08-12
A device is described for automatica1ly recording pulse annplitude distribution received from a counter. The novelty of the device consists of the over-all arrangement of conventional circuit elements to provide an easy to read permanent record of the pulse amplitude distribution during a certain time period. In the device a pulse analyzer separates the pulses according to annplitude into several channels. A scaler in each channel counts the pulses and operates a pen marker positioned over a drivable recorder sheet. Since the scalers in each channel have the sanne capacity, the control circuitry permits counting of the incoming pulses until one scaler reaches capacity, whereupon the input is removed and an internal oscillator supplies the necessary pulses to fill up the other scalers. Movement of the chart sheet is initiated wben the first scaler reaches capacity to thereby give a series of marks at spacings proportional to the time required to fill the remaining scalers, and accessory equipment marks calibration points on the recorder sheet to facilitate direct reading of the number of external pulses supplied to each scaler.
CHY formula and MHV amplitudes
Du, Yi-jian; Wu, Yong-shi
2016-01-01
In this paper, we study the relation between the Cachazo-He-Yuan (CHY) formula and the maximal-helicity-violating (MHV) amplitudes of Yang-Mills and gravity in four dimensions. We prove that only one special rational solution of the scattering equations found by Weinzierl support the MHV amplitudes. Namely, localized at this solution, the integrated CHY formula reproduces the Parke-Taylor formula for Yang-Mills amplitudes as well as the Hodges formula for gravitational amplitudes. This is achieved by developing techniques, in a manifestly M\\"obius covariant formalism, to explicitly compute relevant reduced Pfaffians/determinants. We observe and prove two interesting properties (or identities), which facilitate the computations. We also check that all the other $(n-3)!-1$ solutions to the scattering equations do not support the MHV amplitudes, and prove analytically that this is indeed true for the other special rational solution proposed by Weinzierl, that actually supports the anti-MHV amplitudes.
Amplitude dependent closest tune approach
Tomas Garcia, Rogelio; Franchi, Andrea; Maclean, Ewen Hamish; CERN. Geneva. ATS Department
2016-01-01
Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude dependent closest tune approach.
Graviton amplitudes from collinear limits of gauge amplitudes
Energy Technology Data Exchange (ETDEWEB)
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2015-05-11
We express all tree-level graviton amplitudes in Einstein's gravity as the collinear limits of a linear combination of pure Yang–Mills amplitudes in which each graviton is represented by two gauge bosons, each of them carrying exactly one half of graviton's momentum and helicity.
Large amplitude oscillatory elongation flow
DEFF Research Database (Denmark)
Rasmussen, Henrik K.; Laillé, Philippe; Yu, Kaijia
2008-01-01
A filament stretching rheometer (FSR) was used for measuring the elongation flow with a large amplitude oscillative elongation imposed upon the flow. The large amplitude oscillation imposed upon the elongational flow as a function of the time t was defined as epsilon(t) =(epsilon) over dot(0)t + ...
Closed string amplitudes as single-valued open string amplitudes
Energy Technology Data Exchange (ETDEWEB)
Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Taylor, Tomasz R. [Department of Physics, Northeastern University, Boston, MA 02115 (United States)
2014-04-15
We show that the single trace heterotic N-point tree-level gauge amplitude A{sub N}{sup HET} can be obtained from the corresponding type I amplitude A{sub N}{sup I} by the single-valued (sv) projection: A{sub N}{sup HET}=sv(A{sub N}{sup I}). This projection maps multiple zeta values to single-valued multiple zeta values. The latter represent a subclass of multiple zeta values originating from single-valued multiple polylogarithms at unity. Similar relations between open and closed string amplitudes or amplitudes of different string vacua can be established. As a consequence the α{sup ′}-expansion of a closed string amplitude is dictated by that of the corresponding open string amplitude. The combination of single-valued projections, Kawai–Lewellen–Tye relations and Mellin correspondence reveal a unity of all tree-level open and closed superstring amplitudes together with the maximally supersymmetric Yang–Mills and supergravity theories.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Directory of Open Access Journals (Sweden)
Aktham Asfour
2014-12-01
Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.
Presynaptic spike broadening reduces junctional potential amplitude.
Spencer, A N; Przysiezniak, J; Acosta-Urquidi, J; Basarsky, T A
1989-08-24
Presynaptic modulation of action potential duration may regulate synaptic transmission in both vertebrates and invertebrates. Such synaptic plasticity is brought about by modifications to membrane currents at presynaptic release sites, which, in turn, lead to changes in the concentration of cytosolic calcium available for mediating transmitter release. The 'primitive' neuromuscular junction of the jellyfish Polyorchis penicillatus is a useful model of presynaptic modulation. In this study, we show that the durations of action potentials in the motor neurons of this jellyfish are negatively correlated with the amplitude of excitatory junctional potentials. We present data from in vitro voltage-clamp experiments showing that short duration voltage spikes, which elicit large excitatory junctional potentials in vivo, produce larger and briefer calcium currents than do long duration action potentials, which elicit small excitatory junctional potentials.
Experimental generation of amplitude squeezed vector beams
Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph
2016-01-01
We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.
Riesz, R P; Biazzo, M R
1969-07-01
Light pulses from a mode-locked He-Ne laser have been modulated by a LiTaO(3) electrooptic crystal mounted on a thin film substrate. The crystal was driven by pulses from a GaAs Gunn effect diode. Amplitude modulation of 20% has been achieved at 2 GHz for a single pass through the modulator.
Model selection for amplitude analysis
Guegan, Baptiste; Stevens, Justin; Williams, Mike
2015-01-01
Model complexity in amplitude analyses is often a priori under-constrained since the underlying theory permits a large number of amplitudes to contribute to most physical processes. The use of an overly complex model results in reduced predictive power and worse resolution on unknown parameters of interest. Therefore, it is common to reduce the complexity by removing from consideration some subset of the allowed amplitudes. This paper studies a data-driven method for limiting model complexity through regularization during regression in the context of a multivariate (Dalitz-plot) analysis. The regularization technique applied greatly improves the performance. A method is also proposed for obtaining the significance of a resonance in a multivariate amplitude analysis.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Computing Maximally Supersymmetric Scattering Amplitudes
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Scattering Amplitudes in Gauge Theories
Schubert, Ulrich
2014-01-01
This thesis is focused on the development of new mathematical methods for computing multi-loop scattering amplitudes in gauge theories. In this work we combine, for the first time, the unitarity-based construction for integrands, and the recently introduced integrand-reduction through multivariate polynomial division. After discussing the generic features of this novel reduction algorithm, we will apply it to the one- and two-loop five-point amplitudes in ${\\cal N}=4$ sYM. The integrands of the multiple-cuts are generated from products of tree-level amplitudes within the super-amplitudes formalism. The corresponding expressions will be used for the analytic reconstruction of the polynomial residues. Their parametric form is known a priori, as derived by means of successive polynomial divisions using the Gr\\"obner basis associated to the on-shell denominators. The integrand reduction method will be exploited to investigate the color-kinematic duality for multi-loop ${\\cal N}=4$ sYM scattering amplitudes. Our a...
Factorization of Chiral String Amplitudes
Huang, Yu-tin; Yuan, Ellis Ye
2016-01-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: As found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-01
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to be auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.
Nonsinglet pentagons and NMHV amplitudes
Directory of Open Access Journals (Sweden)
A.V. Belitsky
2015-07-01
Full Text Available Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV amplitudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide solutions to them to all orders in 't Hooft coupling. These are then successfully confronted against available perturbative calculations for NMHV amplitudes to four-loop order.
Shape of Pion Distribution Amplitude
Energy Technology Data Exchange (ETDEWEB)
Radyushkin, Anatoly
2009-11-01
A scenario is investigated in which the leading-twist pion distribution amplitude $\\varphi_\\pi (x)$ is approximated by the pion decay constant $f_\\pi$ for all essential values of the light-cone fraction $x$. A model for the light-front wave function $\\Psi (x, k_\\perp)$ is proposed that produces such a distribution amplitude and has a rapidly decreasing (exponential for definiteness) dependence on the light-front energy combination $ k_\\perp^2/x(1-x)$. It is shown that this model easily reproduces the fit of recent large-$Q^2$ BaBar data on the photon-pion transition form factor. Some aspects of scenario with flat pion distribution amplitude are discussed.
Chen, Hao; Ding, Jianping; Li, Guoqiang
2015-01-01
We present an approach that enables complete control over the amplitude, phase and arbitrary polarization state on the Poincar\\'e sphere of an optical beam in a 4-f system with a spatial light modulator (SLM). The beams can be constructed from a coaxial superposition of x- and y-linearly polarized light, each carrying structured amplitude profile and phase distributions by using an amplitude-modulated mask imposed on the SLM. The amplitude, phase and polarization distribution of vector beams with four free parameters can be tailored independently and simultaneously by the SLM.
Equal-Amplitude Optical Pulse Generation from a Rational Harmonic Mode-Locked Fibre Laser
Institute of Scientific and Technical Information of China (English)
FENG Xin-Huan; YUAN Shu-Zhong; LI Yao; LIU Yan-Ge; KAI Gui-Yun; DONG Xiao-Yi
2004-01-01
A simple technique for the generation of equal-amplitude high repetition rate pulses from a rational harmonic mode-locked fibre ring laser is demonstrated. The principle is based on the combination of the nonlinear characteristics of the modulator and the effect of rational harmonic mode-locking. The two sources act on each other and the integrated effect eventually leads to the pulse amplitude-equalization. We obtain amplitude-equalized short pulses up to the fifth-order rational harmonic mode-locking with an optimum bias level and modulation depth of the modulator, which demonstrates the efficiency of this method.
Extracting amplitudes from photoproduction data
Workman, R. L.
2011-09-01
We consider the problems associated with amplitude extraction, from meson photoproduction data, over the first resonance regions. The notion of a complete experiment has motivated the FROST program at Jefferson Lab. Exercises applied to pion photoproduction data illustrate the problems to be confronted in any attempt to extract underlying resonance signals from these data (without introducing a model for the resonant process).
Employing Helicity Amplitudes for Resummation
Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in $4$- and $d$-dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard m...
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Employing Helicity Amplitudes for Resummation
Moult, I.; Stewart, I.W.; Tackmann, F.J.; Waalewijn, W.J.
2015-01-01
Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are dire
Institute of Scientific and Technical Information of China (English)
常强; 杨艳芳†; 何英; 刘海港; 刘键
2013-01-01
基于Richards-Wolf矢量衍射积分公式,研究了径向偏振涡旋光束在振幅和相位调制下的4pi聚焦特性。振幅调制是通过振幅滤波实现,即改变入射光束起始积分值达到调节,相位调制是通过添加相位延迟角δ的液晶相位延迟器来改变入射光束的偏振态。模拟结果显示,随着振幅的减小,4pi聚焦系统焦点附近的光轴上呈现出多光球结构；而相位调制对焦点附近的光强分布产生拉伸作用,即调节入射光束的拓扑核m和相位延迟器的延迟角δ,可以得到特殊的光强分布。随着相位δ增大, m=0产生的多光球结构慢慢向光链结构转变,最终变成暗通道；而m=1产生的光链结构慢慢变成光球结构；m=2产生的暗通道变成光球和光链叠加的结构,这种特殊聚焦光束在光学微操纵领域具有潜在的应用价值。%The focusing properties of phase and amplitude modulated radially polarized vortex beams in a 4pi focusing system are theoreti-cally investigated near the focal plane by using Richards-Wolf vectorial diffraction method. The amplitude modulation of vortex beams can be adjusted by changing the start integration value. The phase modulation of vortex beams can be realized by adding liquid crystal variable retarder with the phase delay angleδ. The simulated results show that multiple spherical spots can be obtained near the focus of the 4pi focusing system with the decrease of amplitude. The phase delay angleδ of the input beams can generate extruding effect for the electrical field distribution near the focus of the 4pi focusing system. Some special intensity distributions can be obtained by changing topological charge m and phase delay angleδ. Optical chain can be generated in the case of m=1. Dark channel can be ob-tained in the case of m=2. These special focusing beams can also transform with phase modulation. With the increase of phaseδ, the multiple spherical spots at m=0 change slowly
High Amplitude Secondary Mass Drive
Energy Technology Data Exchange (ETDEWEB)
DYCK,CHRISTOPHER WILLIAM; ALLEN,JAMES J.; HUBER,ROBERT JOHN; SNIEGOWSKI,JEFFRY J.
2000-07-06
In this paper we describe a high amplitude electrostatic drive for surface micromachined mechanical oscillators that may be suitable for vibratory gyroscopes. It is an advanced design of a previously reported dual mass oscillator (Dyck, et. al., 1999). The structure is a 2 degree-of-freedom, parallel-plate driven motion amplifier, termed the secondary mass drive oscillator (SMD oscillator). During each cycle the device contacts the drive plates, generating large electrostatic forces. Peak-to-peak amplitudes of 54 {micro}m have been obtained by operating the structure in air with an applied voltage of 11 V. We describe the structure, present the analysis and design equations, and show recent results that have been obtained, including frequency response data, power dissipation, and out-of- plane motion.
Gauge and Gravity Amplitude Relations
Carrasco, John Joseph M
2015-01-01
In these lectures I talk about simplifications and universalities found in scattering amplitudes for gauge and gravity theories. In contrast to Ward identities, which are understood to arise from familiar symmetries of the classical action, these structures are currently only understood in terms of graphical organizational principles, such as the gauge-theoretic color-kinematics duality and the gravitational double-copy structure, for local representations of multi-loop S-matrix elements. These graphical principles make manifest new relationships in and between gauge and gravity scattering amplitudes. My lectures will focus on arriving at such graphical organizations for generic theories with examples presented from maximal supersymmetry, and their use in unitarity-based multi-loop integrand construction.
Infrared singularities in QCD amplitudes
Gardi, Einan
2009-01-01
We review recent progress in determining the infrared singularity structure of on-shell scattering amplitudes in massless gauge theories. We present a simple ansatz where soft singularities of any scattering amplitude of massless partons, to any loop order, are written as a sum over colour dipoles, governed by the cusp anomalous dimension. We explain how this formula was obtained, as the simplest solution to a newly-derived set of equations constraining the singularity structure to all orders. We emphasize the physical ideas underlying this derivation: the factorization of soft and collinear modes, the special properties of soft gluon interactions, and the notion of the cusp anomaly. Finally, we briefly discuss potential multi-loop contributions going beyond the sum-over-dipoles formula, which cannot be excluded at present.
Crisis in Amplitude Control Hides in Multistability
Li, Chunbiao; Sprott, Julien Clinton; Xing, Hongyan
2016-12-01
A crisis of amplitude control can occur when a system is multistable. This paper proposes a new chaotic system with a line of equilibria to demonstrate the threat to amplitude control from multistability. The new symmetric system has two coefficients for amplitude control, one of which is a partial amplitude controller, while the other is a total amplitude controller that simultaneously controls the frequency. The amplitude parameter rescales the basins of attraction and triggers a state switch among different states resulting in a failure of amplitude control to the desired state.
Calculation of multi-loop superstring amplitudes
Danilov, G. S.
2016-12-01
The multi-loop interaction amplitudes in the closed, oriented superstring theory are obtained by the integration of local amplitudes. The local amplitude is represented by a sum over the spinning string local amplitudes. The spinning string local amplitudes are given explicitly through super-Schottky group parameters and through interaction vertex coordinates on the (1| 1) complex, non-split supermanifold. The obtained amplitudes are free from divergences. They are consistent with the world-sheet spinning string symmetries. The vacuum amplitude vanishes along with 1-, 2- and 3-point amplitudes of massless states. The vanishing of the above-mentioned amplitude occurs after the integration of the corresponding local amplitude has been performed over the super-Schottky group limiting points and over interaction vertex coordinate, except for those (3| 2) variables which are fixed due to SL(2)-symmetry.
Modulated Electron Bunch with Amplitude Front Tilt in an Undulator
Geloni, Gianluca; Saldin, Evgeni
2015-01-01
In a previous paper we discussed the physics of a microbunched electron beam kicked by the dipole field of a corrector magnet by describing the kinematics of coherent undulator radiation after the kick. We demonstrated that the effect of aberration of light supplies the basis for understanding phenomena like the deflection of coherent undulator radiation by a dipole magnet. We illustrated this fact by examining the operation of an XFEL under the steady state assumption, that is a harmonic time dependence. We argued that in this particular case the microbunch front tilt has no objective meaning; in other words, there is no experiment that can discriminate whether an electron beam is endowed with a microbunch front tilt of not. In this paper we extend our considerations to time-dependent phenomena related with a finite electron bunch duration, or SASE mode of operation. We focus our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal coupling arises naturally in coherent undulator radi...
The level of arousal modulates P50 peak amplitude
DEFF Research Database (Denmark)
Griskova-Bulanova, Inga; Paskevic, Jevgenij; Dapsys, Kastytis;
2011-01-01
We aimed to evaluate the effect of arousal level in healthy subjects on P50 potential, as the variation in the level of arousal may be a source of variance in the recordings as well as it may provide additional information about the pathology under study. Eleven healthy volunteers participated in...
Amplitude modulated Lorentz force MEMS magnetometer with picotesla sensitivity
Kumar, Varun; Ramezany, Alireza; Mahdavi, Mohammad; Pourkamali, Siavash
2016-10-01
This paper demonstrates ultra-high sensitivities for a Lorentz force resonant MEMS magnetometer enabled by internal-thermal piezoresistive vibration amplification. A detailed model of the magneto-thermo-electro-mechanical internal amplification is described and is in good agreement with the experimental results. Internal amplification factors up to ~1620 times have been demonstrated by artificially boosting the effective quality factor of the resonator from 680 to 1.14 × 106 by tuning the bias current. The increase in the resonator bias current in addition to the improvement in the quality factor of the device led to a sensitivity enhancement by ~2400 times. For a bias current of 7.245 mA, where the effective quality factor of the device and consequently the sensitivity is maximum (2.107 mV nT-1), the noise floor is measured to be as low as 2.8 pT (√Hz)-1. This is by far the most sensitive Lorentz force MEMS magnetometer demonstrated to date.
WAVELET ANALYSIS OF MODULATED SIGNALS
Institute of Scientific and Technical Information of China (English)
Hu Jianwei; Yang Shaoquan
2006-01-01
The relationship between Haar wavelet decomposition coefficients and modulated signal parameters is discussed. A new modulation classification method is presented. The new method uses the amplitude,frequency and phase information derived from Haar wavelet decomposition as feature vectors to distinguish the modulation types of M-ary Frequency-Shift Keying (MFSK), M-ary Phase-Shift Keying (MPSK) and Quadrature Amplitude Modulation (QAM) modulation types. A parallel combined classifier is designed based on these feature vectors. The overall successful recognition rate of 92.4% can be achieved even at a low Signal-to-Noise Ratio (SNR) of 5dB.
Excitation and evolution of finite-amplitude plasma wave
Energy Technology Data Exchange (ETDEWEB)
Hou, Y. W.; Wu, Y. C., E-mail: yican.wu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, M. X. [School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei, Anhui 230009 (China); Yu, M. Y., E-mail: myyu@zju.edu.cn [Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, D-44780 Bochum (Germany); Wu, B. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2015-12-15
The evolution of a small spatially periodic perturbation in the electron velocity distribution function in collisionless plasma is reconsidered by numerically solving the Vlasov and Poisson equations. The short as well as long time behaviors of the excited oscillations and damping/modulation are followed. In the small but finite-amplitude excited plasma wave, resonant electrons become trapped in the wave potential wells and their motion affects the low-velocity electrons participating in the plasma oscillations, leading to modulation of the latter at an effective trapping frequency. It is found that the phase space of the resonant and low-velocity electrons becomes chaotic, but then self-organization takes place but remains fine-scale chaotic. It is also found that as long as particles are trapped, there is only modulation and no monotonic damping of the excited plasma wave. The modulation period/amplitude increases/decreases as the magnitude of the initial disturbance is reduced. For the initial and boundary conditions used here, linear Landau damping corresponds to the asymptotic limit of the modulation period becoming infinite, or no trapping of the resonant electrons.
Amplitude recruitment of cochlear potential
Institute of Scientific and Technical Information of China (English)
LI Xingqi; SUN Wei; SUN Jianhe; YU Ning; JIANG Sichang
2001-01-01
Intracellular recordings were made from outer hair cells (OHC) and the cochlear microphonics (CM) were recorded from scala media (SM) in three turn of guinea pig cochlea,the compound action potential (CAP) were recorded at the round window (RW) before and after the animal were exposed to white noise. The results suggest that the nonlinear properties with “saduration” of Input/output (I/O) function of OHC AC recepter potential and CM were founded; the nonlinear properties with “Low”, “Platean” and “high” of CAP also were investigated. After explosion, the threshold shift of CAP has about 10 dB. The I/O of OHC responses and CM were changed in a linearizing (i.e., nonlinearity loss), the “platean” of I/O CAP disappeared and the growth rate of CAP amplitude were larger than before explosion. The response amplitude recruitment of OHC appears to result from reduction in gain (i.e., hearing loss); It was due to the nonlinear growth function of OHC receptor potentials was changed in linearzing that the basilar membrance motion was changed in linearizing. Since intensity coding in the inner ear depends on an interactions of nonlinear basilar membrance and nerve fibers. So that it must lead to a linearizing of CAP as input responses.
Design of optimal binary phase and amplitude filters for maximization of correlation peak sharpness
Downie, John D.
1991-01-01
Current binary-phase filters used for optical correlation are usually assumed to have uniform amplitude transmission. Here, a new type of filter is studied, the binary-phase-and-amplitude filter. If binary phase values of 0 and pi are assumed, the amplitude transmittance values of this type of filter can be optimized to maximize the peak sharpness. For a polarization-encoded binary-phase filter this can be translated into optimization of the rotation angle of the output polarizer following the filter-spatial-light modulator. An analytic expression is presented for the optimum polarizer angle and thus for the optimum binary-phase-and-amplitude filter design.
Grassmannian geometry of scattering amplitudes
Arkani-Hamed, Nima; Cachazo, Freddy; Goncharov, Alexander; Postnikov, Alexander; Trnka, Jaroslav
2016-01-01
Outlining a revolutionary reformulation of the foundations of perturbative quantum field theory, this book is a self-contained and authoritative analysis of the application of this new formulation to the case of planar, maximally supersymmetric Yang–Mills theory. The book begins by deriving connections between scattering amplitudes and Grassmannian geometry from first principles before introducing novel physical and mathematical ideas in a systematic manner accessible to both physicists and mathematicians. The principle players in this process are on-shell functions which are closely related to certain sub-strata of Grassmannian manifolds called positroids - in terms of which the classification of on-shell functions and their relations becomes combinatorially manifest. This is an essential introduction to the geometry and combinatorics of the positroid stratification of the Grassmannian and an ideal text for advanced students and researchers working in the areas of field theory, high energy physics, and the...
Relations Between Helicity Coupling Amplitude and L-S Coupling Amplitude
Institute of Scientific and Technical Information of China (English)
WU Ning; RUAN Tu-Nan
2001-01-01
Relations between helicity coupling amplitude and L-S coupling amplitude are discussed. The equivalence condition for these two kinematic analysis methods and the limitations of the L-S coupling amplitude are also studied in this paper.``
Direct modulation of 56 Gbps duobinary-4-PAM
DEFF Research Database (Denmark)
Suhr, Lau Frejstrup; Vegas Olmos, Juan José; Mao, Bangning;
2015-01-01
This paper reports on the direct modulation of externally modulated laser and transmission through single mode fiber of a 56 Gbps duobinary-4-pulse amplitude modulation signal through 10 GHz class optics....
Institute of Scientific and Technical Information of China (English)
董志意; 崔玉龙; 卢冲; 李连玉
2011-01-01
According to the switching characteristics of a power switch, we propose a method of setting the deadtime during the phase conversion of a sinusoidal fundamental wave and study the effect of this dead-time on the output voltage wave of a sinusoidal pulseamplitude modulation (SPWM) photovoltaic inverter with unipolar modulation. It was found that the output voltage waveform was improved, and the output voltage waveform distortion was lower. The results were validated by Matlab/simulink.%针对死区时间对单极调制的正弦脉宽幅度调制(SPWM)光伏逆变器输出电压波形的影响,根据开关管的开关特性,提出了在正弦基波换相处设置死区时间的方法,并对死区时间的计算给出理论推导.最后通过Matlab/simulink仿真验证,该方法可以获得良好的输出电压波形,有效地降低输出电压波形失真度.
Quantum Amplitude Amplification and Estimation
Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain
2000-01-01
Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...
Flux Modulation in the Electrodynamic Loudspeaker
DEFF Research Database (Denmark)
Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.
2015-01-01
. Measurements of the generated AC flux modulation shows, that eddy currents are the main source to magnetic losses in form of phase lag and amplitude changes. Use of a copper cap shows a decrease in flux modulation amplitude at the expense of increased power losses. Finally, simulations show...
Remote identification of the vibration amplitude of ship hull
Directory of Open Access Journals (Sweden)
A. N. Pinchuk
2014-01-01
Full Text Available The aim is to develop the methodological support to determine vibration amplitude of the ship hull remotely using a coherent radar centimeter range based on the variation of the Doppler signal spectrum reflected from a vibrating surface.The paper presents a synthesized mathematical model of the radio signal reflected from the vibrating surface. It is the signal of coherent radar of continuous radiation with a known carrier frequency and the amplitude of the radiated signal. In the synthesis it was believed that the displacement in the radial direction with respect to the vibrating surface radar was sinusoidal.The dependences of the vibration amplitude on the value of the normalized Doppler radio signal spectrum at the second harmonic frequency are obtained. Cycle results of field experiments to study the variability of the sea surface, determining the level of its roughness, allows us to establish that the energy of surface waves of gravitational-capillary range has a high correlation with the wind speed. It is proved that the ratio of the spectral density levels at vibration frequency and its multiple frequencies is specified by the index of phase modulation linearly related to the amplitude of vibration of the ship hull.The results are significant for radar (radar detection of water targets using the coherent radar of centimeter range, ensuring the correct records of noise generated by the scattering of radio waves from the water surface.
Modulation masking produced by complex-tone modulators
DEFF Research Database (Denmark)
Ewert, Stephan; Verhey, J.L.; Dau, Torsten
2003-01-01
Thresholds were measured for detecting sinusoidal amplitude modulation in the presence of a complex-tone masker modulation. Both modulations were applied to the same sinusoidal carrier. Two different masker modulations were used: (i) a pair of components beating at the difference frequency and (ii......) a three-tone complex producing a sinusoidal amplitude modulation of the modulation depth at the difference frequency between adjacent components. Both maskers show a periodicity in the waveform that is not contained in the envelope spectrum itself but can be observed when the envelope of the envelope......, referred to as the "venelope" [Ewert et al., J. Acoust. Soc. Am. 112. 2921-2931 (2002)], is calculated. For a signal frequency equal to the masker-venelope periodicity, modulation depth at threshold was measured as a function of the signal phase relative to the phase of the masker-venelope component...
On the singularities of massive superstring amplitudes
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1987-06-04
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.
Discontinuities of multi-Regge amplitudes
Fadin, V S
2014-01-01
In the BFKL approach, discontinuities of multiple production amplitudes in invariant masses of produced particles are discussed. It turns out that they are in evident contradiction with the BDS ansatz for $n$-gluon amplitudes in the planar $N$=4 SYM at $n\\ge 6$. An explicit expression for the NLO discontinuity of the two-to-four amplitude in the invariant mass of two produced gluons is is presented.
DVCS amplitude with kinematical twist-3 terms
Radyushkin, A V
2000-01-01
We compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude we include the operators of twist-3 which appear as total derivatives of twist-2 operators. Our results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. We find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.
Effects of injustice sensitivity and sex on the P3 amplitude during deception.
Leue, Anja; Beauducel, André
2015-07-01
In deception tasks, personality traits like the sensitivity to injustice (SI) modulate the P3 amplitude, which is an indicator of stimulus salience. Based on findings that demonstrated women to be more injustice sensitive than men, we expected sex to modulate effects of SI in deception tasks. We analyzed the P3 amplitudes of 57 participants in a deception task that comprised probe, target, and irrelevant pictures. Larger P3 amplitudes occurred for probes (known pictures that required deceptive responses) than for irrelevant pictures (unknown pictures that required truthful responses). Women with higher SI scores demonstrated larger P3 differences between probes and irrelevant stimuli. The findings suggest that women and men have different ways to process ethically-salient information and that SI modulates stimulus salience during deception. The effects of sex and personality have implications for the linkage between forensic psychophysiology and psychological assessment, because assessment is often based on individual differences.
Interlimb coupling strength scales with movement amplitude.
Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J
2008-05-23
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.
On the singularities of massive superstring amplitudes
Foda, O.
1987-01-01
Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n
The Lorentzian proper vertex amplitude: Asymptotics
Engle, Jonathan; Zipfel, Antonia
2015-01-01
In previous work, the Lorentzian proper vertex amplitude for a spin-foam model of quantum gravity was derived. In the present work, the asymptotics of this amplitude are studied in the semi-classical limit. The starting point of the analysis is an expression for the amplitude as an action integral with action differing from that in the EPRL case by an extra `projector' term which scales linearly with spins only in the asymptotic limit. New tools are introduced to generalize stationary phase methods to this case. For the case of boundary data which can be glued to a non-degenerate Lorentzian 4-simplex, the asymptotic limit of the amplitude is shown to equal the single Feynman term, showing that the extra term in the asymptotics of the EPRL amplitude has been eliminated.
Amplitude image processing by diffractive optics.
Cagigal, Manuel P; Valle, Pedro J; Canales, V F
2016-02-22
In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.
Investigation of the maximum amplitude increase from the Benjamin-Feir instability
Karjanto, N; Peterson, P
2011-01-01
The Nonlinear Schr\\"odinger (NLS) equation is used to model surface waves in wave tanks of hydrodynamic laboratories. Analysis of the linearized NLS equation shows that its harmonic solutions with a small amplitude modulation have a tendency to grow exponentially due to the so-called Benjamin-Feir instability. To investigate this growth in detail, we relate the linearized solution of the NLS equation to a fully nonlinear, exact solution, called soliton on finite background. As a result, we find that in the range of instability the maximum amplitude increase is finite and can be at most three times the initial amplitude.
Directory of Open Access Journals (Sweden)
Gavin Perry
Full Text Available Individual differences in the visual gamma (30-100 Hz response and their potential as trait markers of underlying physiology (particularly related to GABAergic inhibition have become a matter of increasing interest in recent years. There is growing evidence, however, that properties of the gamma response (e.g., its amplitude and frequency are highly stimulus dependent, and that individual differences in the gamma response may reflect individual differences in the stimulus tuning functions of gamma oscillations. Here, we measured the tuning functions of gamma amplitude and frequency to luminance contrast in eighteen participants using MEG. We used a grating stimulus in which stimulus contrast was modulated continuously over time. We found that both gamma amplitude and frequency were linearly modulated by stimulus contrast, but that the gain of this modulation (as reflected in the linear gradient varied across individuals. We additionally observed a stimulus-induced response in the beta frequency range (10-25 Hz, but neither the amplitude nor the frequency of this response was consistently modulated by the stimulus over time. Importantly, we did not find a correlation between the gain of the gamma-band amplitude and frequency tuning functions across individuals, suggesting that these may be independent traits driven by distinct neurophysiological processes.
Is the effect of tinnitus on auditory steady-state response amplitude mediated by attention?
Directory of Open Access Journals (Sweden)
Eugen eDiesch
2012-05-01
Full Text Available Objectives: The amplitude of the auditory steady-state response (ASSR is enhanced in tinnitus. As ASSR ampli¬tude is also enhanced by attention, the effect of tinnitus on ASSR amplitude could be interpreted as an effect of attention mediated by tinnitus. As attention effects on the N1 are signi¬fi¬cantly larger than those on the ASSR, if the effect of tinnitus on ASSR amplitude were due to attention, there should be similar amplitude enhancement effects in tinnitus for the N1 component of the auditory evoked response. Methods: MEG recordings of auditory evoked responses which were previously examined for the ASSR (Diesch et al. 2010 were analysed with respect to the N1m component. Like the ASSR previously, the N1m was analysed in the source domain (source space projection. Stimuli were amplitude-modulated tones with one of three carrier fre¬quen¬cies matching the tinnitus frequency or a surrogate frequency 1½ octaves above the audio¬metric edge frequency in con¬trols, the audiometric edge frequency, and a frequency below the audio¬metric edgeResults: In the earlier ASSR study (Diesch et al., 2010, the ASSR amplitude in tinnitus patients, but not in controls, was significantly larger in the (surrogate tinnitus condition than in the edge condition. In the present study, both tinnitus patients and healthy controls show an N1m-amplitude profile identical to the one of ASSR amplitudes in healthy controls. N1m amplitudes elicited by tonal frequencies located at the audiometric edge and at the (surrogate tinnitus frequency are smaller than N1m amplitudes elicited by sub-edge tones and do not differ among each other.Conclusions: There is no N1-amplitude enhancement effect in tinnitus. The enhancement effect of tinnitus on ASSR amplitude cannot be accounted for in terms of attention induced by tinnitus.
Full Complex Amplitude Digital Holograms:Design,Fabrication and Optical Characterization
Institute of Scientific and Technical Information of China (English)
Neto L G; Cardona P S P; Cirino G A; Mansanoc R D; Verdonck P
2004-01-01
Diffractive optical elements have a large number of industrial applications, such as beam shaping and optical filtering. Traditionally, these elements modulate the phase of the incoming light or its amplitude, but not both. To overcome this limitation, full complex-amplitude modulation diffractive optical elements were developed. Well-established integrated circuit fabrication steps were employed to fabricate the devices with high precision. Using this approach, the new element's optical performances are improved also for near field operations. With this device it is possible to obtain 100% efficient spatial filtering and low noise reconstructed images.
Parameters estimation of a noisy sinusoidal signal with time-varying amplitude
Liu, Da-Yan; Perruquetti, Wilfrid
2011-01-01
In this paper, we give estimators of the frequency, amplitude and phase of a noisy sinusoidal signal with time-varying amplitude by using the algebraic parametric techniques introduced by Fliess and Sira-Ramirez. We apply a similar strategy to estimate these parameters by using modulating functions method. The convergence of the noise error part due to a large class of noises is studied to show the robustness and the stability of these methods. We also show that the estimators obtained by modulating functions method are robust to "large" sampling period and to non zero-mean noises.
Observation of Modulation Transfer Spectroscopy in the Deep Modulation Regime
Institute of Scientific and Technical Information of China (English)
ZHOU Zi-Chao; WEI Rong; SHI Chun-Yan; WANG Yu-Zhu
2010-01-01
@@ We observe the modulation transfer spectroscopy on the D2 line of87 Rb in a rubidium cell with acoustic-optic modulator in the deep modulation regime.In this regime,the sidebands of the pump beam are involved in the four-wave mixing processes,which increase the signM gradients and the peak-to-peak amplitudes of both the absorption and dispersion components.
Institute of Scientific and Technical Information of China (English)
Chen Guanghua; Ma Shiwei; Qin Tinghao; Wang Jian; Li Ming; Cao Jialin
2005-01-01
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.
Chand, Naresh; Bakker, Laurens; Veen, van Dora; Yadvish, Robert D.
2001-01-01
Data are presented that show that, for transporting quadrature amplitude modulated (QAM) radiofrequency (RF) subcarriers in suboctave frequency range, electroabsorption modulator integrated distributed feedback lasers (EMLs) can he modulated with significantly higher (2.5 times) modulation index wit
Quantitative velocity modulation spectroscopy
Hodges, James N.; McCall, Benjamin J.
2016-05-01
Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.
Softness and Amplitudes' Positivity for Spinning Particles
Bellazzini, Brando
2016-01-01
We derive positivity bounds for scattering amplitudes of particles with arbitrary spin using unitarity, analyticity and crossing symmetry. The bounds imply the positivity of certain low-energy coefficients of the effective action that controls the dynamics of the light degrees of freedom. We show that low-energy amplitudes strictly softer than $O(p^4)$ do not admit unitary ultraviolet completions unless the theory is free. This enforces a bound on the energy growth of scattering amplitudes in the region of validity of the effective theory. We discuss explicit examples including the Goldstino from spontaneous supersymmetry breaking, and the theory of a spin-1/2 fermion with a shift symmetry.
Holographic Corrections to Meson Scattering Amplitudes
Armoni, Adi
2016-01-01
We compute meson scattering amplitudes using the holographic duality between confining gauge theories and string theory, in order to consider holographic corrections to the Veneziano amplitude and associated higher-point functions. The generic nature of such computations is explained, thanks to the well-understood nature of confining string backgrounds, and two different examples of the calculation in given backgrounds are used to illustrate the details. The effect we discover, whilst only qualitative, is re-obtainable in many such examples, in four-point but also higher point amplitudes.
Target tracking based on frequency spectrum amplitude
Institute of Scientific and Technical Information of China (English)
Guo Huidong; Zhang Xinhua; Xia Zhijun
2006-01-01
The amplitude of frequency spectrum can be integrated with probabilistic data association (PDA) to distinguish the target with clutter echoes, especially in low SNR underwater environment. A new target-tracking algorithm is presented which adopts the amplitude of frequency spectrum to improve target tracking in clutter. The probabilistic density distribution of frequency spectrum amplitude is analyzed. By simulation, the results show that the algorithm is superior to PDA. This approach enhances stability for the association probability and increases the performance of target tracking.
Multilevel Modulation formats for Optical Communication
DEFF Research Database (Denmark)
Jensen, Jesper Bevensee
2008-01-01
This thesis studies the use of multilevel modulation formats for optical communication systems. Multilevel modulation is an attractive method of increasing the spectral efficiency of optical communication systems. Various modulation formats employing phase modulation, amplitude modulation...... or a combination of the two have been studied. The use of polarization multiplexing (PolMux) to double the bit rate has also been investigated. The impact of transmission impairments such as chromatic dispersion, self phase modulation and cross phase modulation has been investigated. The feasibility of multilevel...... modulation for network oriented scenarios has been demonstrated....
Quantifying phase-amplitude coupling in neuronal network oscillations.
Onslow, Angela C E; Bogacz, Rafal; Jones, Matthew W
2011-03-01
Neuroscience time series data from a range of techniques and species reveal complex, non-linear interactions between different frequencies of neuronal network oscillations within and across brain regions. Here, we briefly review the evidence that these nested, cross-frequency interactions act in concert with linearly covariant (within-frequency) activity to dynamically coordinate functionally related neuronal ensembles during behaviour. Such studies depend upon reliable quantification of cross-frequency coordination, and we compare the properties of three techniques used to measure phase-amplitude coupling (PAC)--Envelope-to-Signal Correlation (ESC), the Modulation Index (MI) and Cross-Frequency Coherence (CFC)--by standardizing their filtering algorithms and systematically assessing their robustness to noise and signal amplitude using artificial signals. Importantly, we also introduce a freely-downloadable method for estimating statistical significance of PAC, a step overlooked in the majority of published studies. We find that varying data length and noise levels leads to the three measures differentially detecting false positives or correctly identifying frequency bands of interaction; these conditions should therefore be taken into careful consideration when selecting PAC analyses. Finally, we demonstrate the utility of the three measures in quantifying PAC in local field potential data simultaneously recorded from rat hippocampus and prefrontal cortex, revealing a novel finding of prefrontal cortical theta phase modulating hippocampal gamma power. Future adaptations that allow detection of time-variant PAC should prove essential in deciphering the roles of cross-frequency coupling in mediating or reflecting nervous system function.
Stora's fine notion of divergent amplitudes
Várilly, Joseph C
2016-01-01
Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
Open string amplitudes of closed topological vertex
Takasaki, Kanehisa
2016-01-01
The closed topological vertex is the simplest "off-strip" case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an "on-strip" subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.
Off-shell Amplitudes in Superstring Theory
Sen, Ashoke
2014-01-01
Computing the renormalized masses and S-matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off-shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for superstring and heterotic string theory. In this paper we give a practical construction of off-shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter when the supermoduli space is not holomorphically projected. This procedure is also useful for computing on-shell amplitudes, as we demonstrate by computing the effect of Fayet-Iliopoulos D-terms in four dimensional heterotic string theory compactifications using this formalism.
Amplitudes for left-handed strings
Siegel, W
2015-01-01
We consider a class of string-like models introduced previously where all modes are left-handed, all states are massless, T-duality is manifest, and only a finite number of orders in the string tension can appear. These theories arise from standard string theories by a singular gauge limit and associated change in worldsheet boundary conditions. In this paper we show how to calculate amplitudes by using the gauge parameter as an infrared regulator. The amplitudes produce the Cachazo-He-Yuan delta-functions after some modular integration; the Mason-Skinner string-like action and amplitudes arise from the zero-tension (infinite-slope) limit. However, without the limit the amplitudes have the same problems as found in the Mason-Skinner formalism.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Feynman Amplitudes in Mathematics and Physics
Bloch, Spencer
2015-01-01
These are notes of lectures given at the CMI conference in August, 2014 at ICMAT in Madrid. The focus is on some mathematical questions associated to Feynman amplitudes, including Hodge structures, relations with string theory, and monodromy (Cutkosky rules).
Open String Amplitudes in Various Gauges
Fuji, H; Suzuki, H; Fuji, Hiroyuki; Nakayama, Shinsaku; Suzuki, Hisao
2007-01-01
Recently, Schnabl constructed the analytic solution of the open string tachyon. Subsequently, the absence of the physical states at the vacuum was proved. The development relies heavily on the use of the gauge condition different from the ordinary one. It was shown that the choice of gauge simplifies the analysis drastically. When we perform the calculation of the amplitudes in Schnabl gauge, we find that the off-shell amplitudes of the Schnabl gauge is still very complicated. In this paper, we propose the use of the propagator in the modified Schnabl gauge and show that this modified use of the Schnabl gauge simplifies the computation of the off-shell amplitudes drastically. We also compute the amplitudes of open superstring in this gauge.
Feynman amplitudes and limits of heights
Amini, O.; Bloch, S. J.; Burgos Gil, J. I.; Fresán, J.
2016-10-01
We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.
Nucleon distribution amplitudes from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Kaltenbrunner, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)
2008-04-15
We calculate low moments of the leading-twist and next-to-leading twist nucleon distribution amplitudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a scale of 2 GeV and can be immediately applied in phenomenological studies. We find that the deviation of the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)
Amplitude metrics for cellular circadian bioluminescence reporters.
St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J
2014-12-01
Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary
Employing Helicity Amplitudes for Resummation in SCET
Moult, Ian; Tackmann, Frank J; Waalewijn, Wouter J
2016-01-01
Helicity amplitudes are the fundamental ingredients of many QCD calculations for multi-leg processes. We describe how these can seamlessly be combined with resummation in Soft-Collinear Effective Theory (SCET), by constructing a helicity operator basis for which the Wilson coefficients are directly given in terms of color-ordered helicity amplitudes. This basis is crossing symmetric and has simple transformation properties under discrete symmetries.
Effective gluon interactions from superstring disk amplitudes
Energy Technology Data Exchange (ETDEWEB)
Oprisa, D.
2006-05-15
In this thesis an efficient method for the calculation of the N-point tree-level string amplitudes is presented. Furthermore it is shown that the six-gluon open-superstring disk amplitude can be expressed by a basis of six triple hypergeometric functions, which encode the full {alpha}' dependence. In this connection material for obtaining the {alpha}' expansion of these functions is derived. Hereby many Euler-Zagier sums are calculated including multiple harmonic series. (HSI)
Quartic amplitudes for Minkowski higher spin
Bengtsson, Anders K H
2016-01-01
The problem of finding general quartic interaction terms between fields of higher helicities on the light-front is discussed from the point of view of calculating the corresponding amplitudes directly from the cubic vertices using BCFW recursion. Amplitude based no-go results that has appeared in the literature are reviewed and discussed and it is pointed out how they may perhaps be circumvented.
Braun, David J.; Sutas, Andrius; Vijayakumar, Sethu
2017-01-01
Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication, and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed approach provides near-optimal amplitude maximization without requiring model-based control computation, previously perceived inevitable to implement optimal control principles in practical application. Experimental implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to parametric excitation when it comes to real-world application.
Integrated microwave photonic splitter with reconfigurable amplitude, phase, and delay offsets
Zhuang, Leimeng; Burla, Maurizio; Taddei, Caterina; Roeloffzen, Chris G.H.; Hoekman, Marcel; Leinse, Arne; Boller, Klaus-J.; Lowery, Arthur J.
2015-01-01
This work presents an integrated microwave photonics splitter with reconfigurable amplitude, phase, and delay offsets. The core components for this function are a dual-parallel Mach–Zehnder modulator, a deinterleaver, and tunable delay lines, all implemented using photonic integrated circuits. Using
The amplitude of the Achilles tendon reflex in infants is related to body position
Bruggink, Janneke L. M.; Bos, Arend F.; vd Hoeven, Johannes H.; Brouwer, Oebele F.; Sollie, Krystyna M.; Sival, Deborah A.
2006-01-01
In this study, we investigated whether the Achilles tendon reflex (ATR) in healthy infants is modulated by changes in body position (prone vs. supine). The amplitude of the ATR was compared at postnatal day 1, months 2, 3 and 6, while infants were placed in prone and supine position. The ATR was con
Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli.
Cunningham-Bussel, Amy C; Root, James C; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S; Pavony, Michelle; Silverman, Michael E; Goldstein, Martin S; Altemus, Margaret; Cloitre, Marylene; Ledoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David
2009-06-01
The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response.
Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar
Directory of Open Access Journals (Sweden)
John P. Godbaz
2011-12-01
Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.
Scattering amplitudes in open superstring theory
Energy Technology Data Exchange (ETDEWEB)
Schlotterer, Oliver
2011-07-15
The present thesis deals with the theme field of the scattering amplitudes in theories of open superstrings. Especially two different formalisms for the handling of superstrings are introduced and applied for the calaculation of tree-level amplitudes - the Ramond- Neveu-Schwarz (RNS) and the Pure-Spinor (PS) formalism. The RNS approach is proved as flexible in order to describe compactification of the initially ten flat space-time dimensions to four dimensions. We solve the technical problems, which result from the interacting basing world-sheet theory with conformal symmetry. This is used to calculate phenomenologically relevant scattering amplitudes of gluons and quarks as well as production rates of massive harmonic vibrations, which were already identified as virtual exchange particles on the massless level. In the case of a low string mass scale in the range of some Tev the string-specific signatures in parton collisions can be observed in the near future in the LHC experiment at CERN and indicated as first experimental proof of the string theory. THose string effects occur universally for a wide class of string ground states respectively internal geometries and represent an elegant way to avoid the so-called landscape problem of the string theory. A further theme complex in this thesis is based on the PS formalism, which allows a manifestly supersymmetric treatment of scattering amplitudes in ten space-time dimension with sixteen supercharges. We introduce a family of superfields, which occur in massless amplitudes of the open string and can be naturally identified with diagrams of three-valued knots. Thereby we reach not only a compact superspace representation of the n-point field-theory amplitude but can also write the complete superstring n-point amplitude as minimal linear combination of partial amplitudes of the field theory as well as hypergeometric functions. The latter carry the string effects and are analyzed from different perspectives, above all
Analytic representations of Yang-Mills amplitudes
Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.; Feng, Bo
2016-12-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space-fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
A description of seismic amplitude techniques
Shadlow, James
2014-02-01
The acquisition of seismic data is a non-invasive technique used for determining the sub surface geology. Changes in lithology and fluid fill affect the seismic wavelet. Analysing seismic data for direct hydrocarbon indicators (DHIs), such as full stack amplitude anomalies, or amplitude variation with offset (AVO), can help a seismic interpreter relate the geophysical response to real geology and, more importantly, to distinguish the presence of hydrocarbons. Inversion is another commonly used technique that attempts to tie the seismic data back to the geology. Much has been written about these techniques, and attempting to gain an understanding on the theory and application of them by reading through various journals can be quite daunting. The purpose of this paper is to briefly outline DHI analysis, including full stack amplitude anomalies, AVO and inversion and show the relationship between all three. The equations presented have been included for completeness, but the reader can pass over the mathematical detail.
Scattering Amplitudes and Worldsheet Models of QFTs
CERN. Geneva
2016-01-01
I will describe recent progress on the study of scattering amplitudes via ambitwistor strings and the scattering equations. Ambitwistor strings are worldsheet models of quantum field theories, inspired by string theory. They naturally lead to a representation of amplitudes based on the scattering equations. While worldsheet models and related ideas have had a wide-ranging impact on the modern study of amplitudes, their direct application at loop level is a very recent success. I will show how a major difficulty in the loop-level story, the technicalities of higher-genus Riemann surfaces, can be avoided by turning the higher-genus surface into a nodal Riemann sphere, with the nodes representing the loop momenta. I will present new formulas for the one-loop integrands of gauge theory and gravity, with or without supersymmetry, and also some two-loop results.
Spinfoam cosmology with the proper vertex amplitude
Vilensky, Ilya
2016-01-01
The proper vertex amplitude is derived from the EPRL vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics.
Analytic Representations of Yang-Mills Amplitudes
Bjerrum-Bohr, N E J; Damgaard, Poul H; Feng, Bo
2016-01-01
Scattering amplitudes in Yang-Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space---fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Mobius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is a systematic procedure to obtain analytic, covariant forms of Yang-Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.
On Arbitrary Phases in Quantum Amplitude Amplification
Hoyer, P
2000-01-01
We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.
Nonlinear (Super)Symmetries and Amplitudes
Kallosh, Renata
2016-01-01
There is an increasing interest in nonlinear supersymmetries in cosmological model building. Independently, elegant expressions for the all-tree amplitudes in models with nonlinear symmetries, like D3 brane Dirac-Born-Infeld-Volkov-Akulov theory, were recently discovered. Using the generalized background field method we show how, in general, nonlinear symmetries of the action, bosonic and fermionic, constrain amplitudes beyond soft limits. The same identities control, for example, bosonic E_{7(7)} scalar sector symmetries as well as the fermionic goldstino symmetries. We present a universal derivation of the vanishing amplitudes in the single (bosonic or fermionic) soft limit. We explain why, universally, the double-soft limit probes the coset space algebra. We also provide identities describing the multiple-soft limit. We discuss loop corrections to N\\geq 5 supergravity, to the D3 brane, and the UV completion of constrained multiplets in string theory.
Modified π π amplitude with σ pole
Bydžovský, P.; Kamiński, R.; Nazari, V.
2014-12-01
A set of well-known once subtracted dispersion relations with imposed crossing symmetry condition is used to modify unitary multichannel S (π π , K K ¯, and η η ) and P (π π , ρ 2 π , and ρ σ ) wave amplitudes mostly below 1 GeV. Before the modifications, these amplitudes significantly did not satisfy the crossing symmetry condition and did not describe the π π threshold region. Moreover, the pole of the S wave amplitude related with the f0(500 ) meson (former f0(600 ) or σ ) had much smaller imaginary part and bigger real one in comparison with those in the newest Particle Data Group Tables. Here, these amplitudes are supplemented by near threshold expansion polynomials and refitted to the experimental data in the effective two pion mass from the threshold to 1.8 GeV and to the dispersion relations up to 1.1 GeV. In result the self consistent, i.e., unitary and fulfilling the crossing symmetry condition, S and P wave amplitudes are formed and the σ pole becomes much narrower and lighter. To eliminate doubts about the uniqueness of the so obtained sigma pole position short and purely mathematical proof of the uniqueness of the results is also presented. This analysis is addressed to a wide group of physicists and aims at providing a very effective and easy method of modification of, many presently used, π π amplitudes with a heavy and broad σ meson without changing of their original mathematical structure.
Topographic quantitative EEG amplitude in recovered alcoholics.
Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S
1992-05-01
Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.
Fatigue Reliability under Multiple-Amplitude Loads
DEFF Research Database (Denmark)
Talreja, R.
1979-01-01
A method to determine the fatigue of structures subjected to multiple-amplitude loads is presented. Unlike the more common cumulative damage methods, which are usually based on fatigue life data, the proposed method is based on tensile strength data. Assuming the Weibull distribution...... for the initial tensile strength and the fatigue life, the probability distributions for the residual tensile strength in both the crack initiation and the crack propagation stages of fatigue are determined. The method is illustrated for two-amplitude loads by means of experimental results obtained by testing...
Amplitude Models for Discrimination and Yield Estimation
Energy Technology Data Exchange (ETDEWEB)
Phillips, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-01
This seminar presentation describes amplitude models and yield estimations that look at the data in order to inform legislation. The following points were brought forth in the summary: global models that will predict three-component amplitudes (R-T-Z) were produced; Q models match regional geology; corrected source spectra can be used for discrimination and yield estimation; three-component data increase coverage and reduce scatter in source spectral estimates; three-component efforts must include distance-dependent effects; a community effort on instrument calibration is needed.
Gluon scattering amplitudes at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands); Maldacena, Juan [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States)
2007-06-15
We describe how to compute planar gluon scattering amplitudes at strong coupling in N = 4 super Yang Mills by using the gauge/string duality. The computation boils down to finding a certain classical string configuration whose boundary conditions are determined by the gluon momenta. The results are infrared divergent. We introduce the gravity version of dimensional regularization to define finite quantities. The leading and subleading IR divergencies are characterized by two functions of the coupling that we compute at strong coupling. We compute also the full finite form for the four point amplitude and we find agreement with a recent ansatz by Bern, Dixon and Smirnov.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
New structures in scattering amplitudes: A review
Benincasa, Paolo
2014-02-01
We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories.
Direct current modulation of a photomixing signal
Constantin, Florin L.
2016-04-01
Direct modulation of the bias voltage of a LTG-GaAs photomixer is exploited to modulate the signal generated at the frequency of the optical beat between two diode lasers at 820 nm. The photomixing signal is calculated from an expansion in power series of the amplitude of the modulation voltage and displays amplitude modulation sidebands equidistantly spaced to the frequency of the optical beat by integer multiples of the modulation frequency. Modulation at harmonics of the modulation frequency is allowed by the electrical nonlinear response of the photomixer, driven at low voltage by the saturation of the electron drift velocity. Coupling of an alternative voltage to the photomixer operated at zero-bias leads to bifrequency operation. Modulation of the photomixing signal and bifrequency operation of the photomixer are observed experimentally with an optical beat in the microwave regime.
Complex light modulation for lensless image projection
Institute of Scientific and Technical Information of China (English)
M. Makowski; A. Kolodziejczyk; A. Siemion; I. Ducin; K. Kakarenko; M. Sypek; A. M. Siemion; J. Suszek; D. Wojnowski; Z. Jaroszewicz
2011-01-01
We present a lensless projection of color images based on computer-generated Fourier holograms. Amplitude and phase modulation of three primary-colored laser beams is performed by a matched pair of spatial light modulators. The main advantage of the complex light modulation is the lack of iterative phase retrieval techniques. The advantage is the lack of speckles in the projected images. Experimental results are given and compared with the outcome of classical phase-only modulation.%We present a lensless projection of color images based on computer-generated Fourier holograms.Amplitude and phase modulation of three primary-colored laser beams is performed by a matched pair of spatial light modulators.The main advantage of the complex light modulation is the lack of iterative phase retrieval techniques.The advantage is the lack of speckles in the projected images.Experimental results are given and compared with the outcome of classical phase-only modulation.
The CMU Baryon Amplitude Analysis Program
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Amplitude Correction Factors of KVN Observations
Lee, Sang-Sung; Oh, Chung Sik; Kim, Hyo Ryoung; Kim, Jongsoo; Jung, Taehyun; Oh, Se-Jin; Roh, Duk-Gyoo; Jung, Dong-Kyu; Yeom, Jae-Hwan
2015-01-01
We report results of investigation of amplitude calibration for very long baseline interferometry (VLBI) observations with Korean VLBI Network (KVN). Amplitude correction factors are estimated based on comparison of KVN observations at 22~GHz correlated by Daejeon hardware correlator and DiFX software correlator in Korea Astronomy and Space Science Institute (KASI) with Very Long Baseline Array (VLBA) observations at 22~GHz by DiFX software correlator in National Radio Astronomy Observatory (NRAO). We used the observations for compact radio sources, 3C~454.3 and NRAO~512, which are almost unresolved for baselines in a range of 350-477~km. Visibility data of the sources obtained with similar baselines at KVN and VLBA are selected, fringe-fitted, calibrated, and compared for their amplitudes. We found that visibility amplitudes of KVN observations should be corrected by factors of 1.10 and 1.35 when correlated by DiFX and Daejeon correlators, respectively. These correction factors are attributed to the combinat...
Generalised Unitarity for Dimensionally Regulated Amplitudes
Bobadilla, W J Torres; Mastrolia, P; Mirabella, E
2015-01-01
We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.
Audio steganography by amplitude or phase modification
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Particle Distribution Modification by Low Amplitude Modes
Energy Technology Data Exchange (ETDEWEB)
White, R. B.; Gorelenkov, N.; Heidbrink, W. W.; Van Zeeland, M. A.
2009-08-28
Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold.
Hyperlogarithms and periods in Feynman amplitudes
Todorov, Ivan
2016-01-01
The role of hyperlogarithms and multiple zeta values (and their generalizations) in Feynman amplitudes is being gradually recognized since the mid 1990's. The present lecture provides a concise introduction to a fast developing subjects that attracts the attention to a wide range of specialists - from number theorists to particle physicists.
Microwave Imaging using Amplitude-only Data
DEFF Research Database (Denmark)
Rubæk, Tonny; Zhurbenko, Vitaliy
2010-01-01
This paper discuss how the performance of an imaging system is affected when the phase information of the measurements are removed from the data, leaving only amplitude information as input for the imaging algorithm. Simulated data are used for this purpose, and the images resulting from using am...
Connected formulas for amplitudes in standard model
He, Song; Zhang, Yong
2017-03-01
Witten's twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.
Taming Tree Amplitudes In General Relativity
Benincasa, Paolo; Cachazo, Freddy; 10.1088/1126-6708/2007/11/057
2008-01-01
We give a proof of BCFW recursion relations for all tree-level amplitudes of gravitons in General Relativity. The proof follows the same basic steps as in the BCFW construction and it is an extension of the one given for next-to-MHV amplitudes by one of the authors and P. Svr\\v{c}ek in hep-th/0502160. The main obstacle to overcome is to prove that deformed graviton amplitudes vanish as the complex variable parameterizing the deformation is taken to infinity. This step is done by first proving an auxiliary recursion relation where the vanishing at infinity follows directly from a Feynman diagram analysis. The auxiliary recursion relation gives rise to a representation of gravity amplitudes where the vanishing under the BCFW deformation can be directly proven. Since all our steps are based only on Feynman diagrams, our proof completely establishes the validity of BCFW recursion relations. This means that many results in the literature that were derived assuming their validity become true statements.
Taming tree amplitudes in general relativity
Benincasa, Paolo; Boucher-Veronneau, Camille; Cachazo, Freddy
2007-11-01
We give a proof of BCFW recursion relations for all tree-level amplitudes of gravitons in General Relativity. The proof follows the same basic steps as in the BCFW construction and it is an extension of the one given for next-to-MHV amplitudes by one of the authors and P. Svrcek in hep-th/0502160. The main obstacle to overcome is to prove that deformed graviton amplitudes vanish as the complex variable parameterizing the deformation is taken to infinity. This step is done by first proving an auxiliary recursion relation where the vanishing at infinity follows directly from a Feynman diagram analysis. The auxiliary recursion relation gives rise to a representation of gravity amplitudes where the vanishing under the BCFW deformation can be directly proven. Since all our steps are based only on Feynman diagrams, our proof completely establishes the validity of BCFW recursion relations. This means that many results in the literature that were derived assuming their validity become true statements.
Stora's fine notion of divergent amplitudes
Directory of Open Access Journals (Sweden)
Joseph C. Várilly
2016-11-01
Full Text Available Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field theories of bosons of any mass and spin.
ABJM amplitudes and the positive orthogonal Grassmannian
Energy Technology Data Exchange (ETDEWEB)
Huang, Yu-tin [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, CongKao [Centre for Research in String Theory, Department of Physics,Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)
2014-02-25
A remarkable connection between perturbative scattering amplitudes of four dimensional planar SYM, and the stratification of the positive Grassmannian, was revealed in the seminal work of Arkani-Hamed et al. Similar extension for three-dimensional ABJM theory was proposed. Here we establish a direct connection between planar scattering amplitudes of ABJM theory, and singularities thereof, to the stratification of the positive orthogonal Grassmannian. In particular, scattering processes are constructed through on-shell diagrams, which are simply iterative gluing of the fundamental four-point amplitude. Each diagram is then equivalent to the merging of fundamental OG{sub 2} orthogonal Grassmannian to form a larger OG{sub k}, where 2k is the number of external particles. The invariant information that is encoded in each diagram is precisely this stratification. This information can be easily read off via permutation paths of the on-shell diagram, which also can be used to derive a canonical representation of OG{sub k} that manifests the vanishing of consecutive minors as the singularity of all on-shell diagrams. Quite remarkably, for the BCFW recursion representation of the tree-level amplitudes, the on-shell diagram manifests the presence of all physical factorization poles, as well as the cancellation of the spurious poles. After analytically continuing the orthogonal Grassmannian to split signature, we reveal that each on-shell diagram in fact resides in the positive cell of the orthogonal Grassmannian, where all minors are positive. In this language, the amplitudes of ABJM theory is simply an integral of a product of dlog forms, over the positive orthogonal Grassmannian.
Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands
Vinas, A. F.; Goldstein, M. L.
1992-01-01
This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.
Frequencies and amplitudes of high-degree solar oscillations
Kaufman, James Morris
Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a
Differential equations, associators, and recurrences for amplitudes
Directory of Open Access Journals (Sweden)
Georg Puhlfürst
2016-01-01
Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.
Differential equations, associators, and recurrences for amplitudes
Puhlfürst, Georg; Stieberger, Stephan
2016-01-01
We provide new methods to straightforwardly obtain compact and analytic expressions for ɛ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ɛ-orders of a power series solution in ɛ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ɛ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ɛ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we set up our methods to systematically get compact and explicit α‧-expansions of tree-level superstring amplitudes to any order in α‧.
New structures in scattering amplitudes: a review
Benincasa, Paolo
2013-01-01
We review some recent developments in the understanding of field theories in the perturbative regime. In particular, we discuss the notions of analyticity, unitarity and locality, and therefore the singularity structure of scattering amplitudes in general interacting theories. We describe their tree-level structure and their on-shell representations, as well as the links between the tree-level structure itself and the structure of the loop amplitudes. Finally, we describe the on-shell diagrammatics recently proposed both on general grounds and in the remarkable example of planar supersymmetric theories. This review is partially based on lectures given at: Dipartimento di Fisica and INFN, Universit\\`a di Bologna; Departamento de F{\\i}sica de Part{\\i}culas, Universidade de Santiago de Compostela; and as part of the program Strings@ar Lectures on Advanced Topics of High Energy Physics held at the IAFE
Optical twists in phase and amplitude
DEFF Research Database (Denmark)
Daria, Vincent R.; Palima, Darwin; Glückstad, Jesper
2011-01-01
beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps......Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam...... where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters’ path. Unlike LG...
Differential Equations, Associators, and Recurrences for Amplitudes
Puhlfuerst, Georg
2015-01-01
We provide new methods to straightforwardly obtain compact and analytic expressions for epsilon-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different epsilon-orders of a power series solution in epsilon of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the epsilon-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also setup up our tools for computing epsilon-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system). Finally, we apply our methods to systematically get compact and explicit alpha'-expansions of tree-level superstring amplitudes to any order in alpha'.
On Triple-Cut of Scattering Amplitudes
Mastrolia, Pierpaolo
2007-01-01
It is analysed the triple-cut of one-loop amplitudes in dimensional regularisation within spinor-helicity representation. The triple-cut is defined as a difference of two double-cuts with the same particle content, and a same propagator carrying, respectively, causal and anti-causal prescription in each of the two cuts. That turns out into an effective tool for extracting the coefficients of the three-point functions (and higher-point ones) from one-loop-amplitudes. The phase-space integration is oversimplified by using residues theorem to perform the integration over the spinor variables, via the holomorphic anomaly, and a trivial integration on the Feynman parameter. The results are valid for arbitrary values of dimensions.
Modulations in the light of the firefly
Indian Academy of Sciences (India)
Anurup Gohain Barua
2013-03-01
Continuous light could be produced from the firefly by making it inhale vapours of ethyl acetate. Here we perform such a control experiment on the Indian species of the firefly Luciola praeusta Kiesenwetter 1874 (Coleoptera : Lampyridae : Luciolinae), and analyse the light in the microsecond time scale. The amplitude of the continuous train of triangular pulses is apparently altered in accordance with the instantaneous values of a hypothetical signal, which exhibits pulse amplitude modulation (PAM). In addition to sampling in amplitude, this scheme apparently provides sampling in time, representing pulse width modulation (PWM). A Fourier transform spectrum of this waveform shows the `carrier’ frequency and the accompanying `side bands’.
Scattering Amplitudes via Algebraic Geometry Methods
DEFF Research Database (Denmark)
Søgaard, Mads
unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed...... in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of tree-level amplitudes. Several explicit examples are provided...
Nucleon and $N^* (1535)$ Distribution Amplitudes
Braun, V M; Göckeler, M; Hagen, C; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schiel, R W; Schierholz, G; Stüben, H; Zanotti, J M
2010-01-01
The QCDSF collaboration has investigated the distribution amplitudes and wavefunction normalization constants of the nucleon and its parity partner, the $N^* (1535)$. We report on recent progress in the calculation of these quantities on configurations with two dynamical flavors of $\\mathcal{O}(a)$-improved Wilson fermions. New data at pion masses of approximately 270 MeV helps in significantly reducing errors in the extrapolation to the physical point.
Automatic generation of tree level helicity amplitudes
Stelzer, T
1994-01-01
The program MadGraph is presented which automatically generates postscript Feynman diagrams and Fortran code to calculate arbitrary tree level helicity amplitudes by calling HELAS[1] subroutines. The program is written in Fortran and is available in Unix and VMS versions. MadGraph currently includes standard model interactions of QCD and QFD, but is easily modified to include additional models such as supersymmetry.
Subleading Soft Factor for String Disk Amplitudes
Schwab, Burkhard U W
2014-01-01
We investigate the behavior of superstring disk scattering amplitudes in the presence of a soft external momentum at finite string tension. We prove that there are no $\\alpha'$-corrections to the field theory form of the subleading soft factor $S^{(1)}$. At the end of this work, we also comment on the possibility to find the corresponding subleading soft factors in closed string theory using our result and the KLT relations.
Automation of 2-loop Amplitude Calculations
Jones, S P
2016-01-01
Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.
Ward identities for amplitudes with reggeized gluons
Energy Technology Data Exchange (ETDEWEB)
Bartles, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Lipatov, L.N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute (Russian Federation); Vacca, G.P. [INFN, Sezione di Bologna (Italy)
2012-05-15
Starting from the effective action of high energy QCD we derive Ward identities for Green's functions of reggeized gluons. They follow from the gauge invariance of the effective action, and allow to derive new representations of amplitudes containing physical particles as well as reggeized gluons. We explicitly demonstrate their validity for the BFKL kernel, and we present a new derivation of the kernel.
Organizing Filament of Small Amplitude Scroll Waves
Institute of Scientific and Technical Information of China (English)
ZHOU TianShou; ZHANG SuoChun
2001-01-01
We theoretically analyze the organizing filament of small amplitude scroll waves in general excitable media by perturbation method and explicitly give the expressions of coefficients in Keener theory. In particular for the excitable media with equal diffusion, we obtain a close system for the motion of the filament. With an example of the Oregonator model, our results are in good agreement with those simulated by Winfree.``
Connecting physical resonant amplitudes and lattice QCD
Bolton, Daniel R; Wilson, David J
2015-01-01
We present a determination of the isovector, $P$-wave $\\pi\\pi$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $m_\\pi =236$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $m_\\pi= 140$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $\\rho$-resonance pole at $E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.
Injection coupling with high amplitude transverse modes: Experimentation and simulation
Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien
2009-06-01
High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).
Modulation masking produced by second-order modulators
DEFF Research Database (Denmark)
Füllgrabe, Christian; Moore, Brian C.J.; Demany, Laurent;
2005-01-01
Recent studies suggest that an auditory nonlinearity converts second-order sinusoidal amplitude modulation (SAM) (i.e., modulation of SAM depth) into a first-order SAM component, which contributes to the perception of second-order SAM. However, conversion may also occur in other ways......-carrier modulation frequency, phase relationship between the probe and masker modulator, and probe modulation depth. In experiment 1, the carrier was a 5-kHz sinusoid presented either alone or within a notched-noise masker in order to restrict off-frequency listening. In experiment 2, the carrier was a white noise....... The data obtained in both carrier conditions are consistent with the existence of a modulation distortion component. However, the phase yielding poorest detection performance varied across experimental conditions between 0° and 180°, confirming that, in addition to nonlinear mechanisms, cochlear filtering...
Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure
Energy Technology Data Exchange (ETDEWEB)
Mafra, Carlos R., E-mail: crmafra@aei.mpg.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, 14476 Potsdam (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Schlotterer, Oliver, E-mail: olivers@mppmu.mpg.de [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Stieberger, Stephan, E-mail: stephan.stieberger@mpp.mpg.de [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany)
2013-08-21
Using the pure spinor formalism in part I (Mafra et al., preprint [1]) we compute the complete tree-level amplitude of N massless open strings and find a striking simple and compact form in terms of minimal building blocks: the full N-point amplitude is expressed by a sum over (N−3)! Yang–Mills partial subamplitudes each multiplying a multiple Gaussian hypergeometric function. While the former capture the space–time kinematics of the amplitude the latter encode the string effects. This result disguises a lot of structure linking aspects of gauge amplitudes as color and kinematics with properties of generalized Euler integrals. In this part II the structure of the multiple hypergeometric functions is analyzed in detail: their relations to monodromy equations, their minimal basis structure, and methods to determine their poles and transcendentality properties are proposed. Finally, a Gröbner basis analysis provides independent sets of rational functions in the Euler integrals.
One-loop triple collinear splitting amplitudes in QCD
Badger, Simon; Peraro, Tiziano
2015-01-01
We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.
47 CFR 78.115 - Modulation limits.
2010-10-01
... SERVICE Technical Regulations § 78.115 Modulation limits. (a) If amplitude modulation is employed..., frequencies 78.36 Cross reference to other rules 78.3 D Definitions 78.5 E Eligibility for license 78.13 Emission designator 78.104 Emissions; emission limitations 78.103 Equal employment opportunities...
Imbalance of group velocities for amplitude and phase pulses propagating in a resonant atomic medium
Basalaev, M. Yu.; Taichenachev, A. V.; Yudin, V. I.
2016-11-01
The dynamics of light pulses with amplitude and phase modulations is investigated for a medium of resonant two-level atoms. It is shown that the pulse-like variations of the phase can be also described in terms of group velocity. It is found that in the nonlinear regime of atom-field interaction, the group velocities of amplitude and phase pulses can have a large imbalance. Namely, amplitude pulses travel at a velocity less than c , whereas the group velocity of phase pulses is greater than the velocity of light in free space or it is even negative. The predicted imbalance of the group velocities can be important in the case of chirped pulses propagating in a resonant medium.
Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.
Pakala, Lalitha; Schmauss, Bernhard
2016-03-21
We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm.
Agarwal Mishra, Rekha; Mishra, Rajesh Kumar
2016-07-01
Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.
Impact Representation of Generalized Distribution Amplitudes
Pire, B
2003-01-01
We develop an impact representation for the generalized distribution amplitude which describes the exclusive hadronization of a quark-antiquark pair to a pair of mesons. Experiments such as gamma^* gamma -> pi pi and gamma^* N -> pi pi N' are shown to probe the transverse size of the hadronization region of the quark antiquark pair that one can interpret as the transverse overlap of the two emerging mesons. An astonishing feature of this description is that low energy pi pi phase shift analysis can be used for understanding some properties of quark hadronization process.
Approximate formulas for moderately small eikonal amplitudes
Kisselev, A V
2015-01-01
The eikonal approximation for moderately small scattering amplitudes is considered. With the purpose of using for their numerical estimations, the formulas are derived which contain no Bessel functions, and, hence, no rapidly oscillating integrands. To obtain these formulas, the improper integrals of the first kind which contain products of the Bessel functions J_0(z) are studied. The expression with four functions J_0(z) is generalized. The expressions for the integrals with the product of five and six Bessel functions J_0(z) are also found. The known formula for the improper integral with two functions J_nu(z) is generalized for non-integer nu.
Approximate formulas for moderately small eikonal amplitudes
Kisselev, A. V.
2016-08-01
We consider the eikonal approximation for moderately small scattering amplitudes. To find numerical estimates of these approximations, we derive formulas that contain no Bessel functions and consequently no rapidly oscillating integrands. To obtain these formulas, we study improper integrals of the first kind containing products of the Bessel functions J0(z). We generalize the expression with four functions J0(z) and also find expressions for the integrals with the product of five and six Bessel functions. We generalize a known formula for the improper integral with two functions Jυ (az) to the case with noninteger υ and complex a.
Analytic amplitude models for forward scattering
Kang, K; Ezhela, Vladimir V; Gauron, P; Kuyanov, Yu V; Lugovsky, S B; Nicolescu, Basarab; Tkachenko, N P; Kuyanov, Yu. V.
2002-01-01
We report on fits of a large class of analytic amplitude models for forward scattering against the comprehensive data for all available reactions. To differentiate the goodness of the fits of many possible parametrizations to a large sample of data, we developed and used a set of quantitative indicators measuring statistical quality of the fits over and beyond the typical criterion of the $\\Chi^2 /dof$. These indicators favor models with a universal $ log^2 s$ Pomeron term, which enables one to extend the fit down to $\\sqrt s = 4$ GeV.
Transition Distribution Amplitudes for gamma* gamma collisions
Lansberg, J P; Szymanowski, L
2008-01-01
We study the exclusive production of pi-pi and rho-pi in hard gamma* gamma scattering in the forward kinematical region where the virtuality of one photon provides us with a hard scale in the process. The newly introduced concept of Transition Distribution Amplitudes (TDA) is used to perform a QCD calculation of these reactions thanks to two simple models for TDAs. The sizable cross sections for rho-pi and pi-pi production may be tested at intense electron-positron colliders such as CLEO and B factories (Belle and BaBar).
Multiloop Integrand Reduction for Dimensionally Regulated Amplitudes
Mastrolia, P; Ossola, G; Peraro, T
2013-01-01
We present the integrand reduction via multivariate polynomial division as a natural technique to encode the unitarity conditions of Feynman amplitudes. We derive a recursive formula for the integrand reduction, valid for arbitrary dimensionally regulated loop integrals with any number of loops and external legs, which can be used to obtain the decomposition of any integrand analytically with a finite number of algebraic operations. The general results are illustrated by applications to two-loop Feynman diagrams in QED and QCD, showing that the proposed reduction algorithm can also be seamlessly applied to integrands with denominators appearing with arbitrary powers.
In-Medium Pion Valence Distribution Amplitude
Tsushima, K
2016-01-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
Information transfer for small-amplitude signals.
Kostal, Lubomir; Lansky, Petr
2010-05-01
We study the optimality conditions of information transfer in systems with memory in the low signal-to-noise ratio regime of vanishing input amplitude. We find that the optimal mutual information is represented by a maximum variance of the signal time course, with correlation structure determined by the Fisher information matrix. We provide illustration of the method on a simple biologically inspired model of electrosensory neuron. Our general results apply also to the study of information transfer in single neurons subject to weak stimulation, with implications to the problem of coding efficiency in biological systems.
In-Medium Pion Valence Distribution Amplitude
Tsushima, K.; de Melo, J. P. B. C.
2017-03-01
After a brief review of the quark-based model for nuclear matter, and some pion properties in medium presented in our previous works, we report new results for the pion valence wave function as well as the valence distribution amplitude in medium, which are presented in our recent article. We find that both the in-medium pion valence distribution and the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
Fatigue crack growth under variable amplitude loading
Sidawi, Jihad A.
1994-01-01
Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.
High CW power, phase and amplitude modulatorrealized with fast ferrite phase-shifters
Valuch, D
2004-01-01
Superconducting cavity resonators are suffering from detuning effects caused by high internal electromagnetic fields (Lorentz force detuning). For classical resonators working with continuous wave signals, this detuning is static and compensated by the slow mechanical tuning system. However, pulsing of superconducting cavities, an operational mode only recently considered, results in dynamic detuning effects. New ways to handle this effect have to be found and worked out. A way to supply several superconducting cavities in the particle accelerator by one large transmitter while keeping the possibility of controlling the field in each individual cavity is shown. By introducing a fast phase and amplitude modulator into each cavity feeder line, the individual deviations of each cavity with respect to the average can be compensated in order to equalize their behaviour for the main control loop, which will compensate the global detuning of all cavities. Several types of phase and amplitude modulators suitable for ...
Quasi Distribution Amplitude of Heavy Quarkonia
Jia, Yu
2015-01-01
The recently-proposed quasi distributions point out a promising direction for lattice QCD to investigate the light-cone correlators, such as parton distribution functions (PDF) and distribution amplitudes (DA), directly in the $x$-space. Owing to its excessive simplicity, the heavy quarkonium can serve as an ideal theoretical laboratory to ascertain certain features of quasi-DA. In the framework of non-relativistic QCD (NRQCD) factorization, we compute the order-$\\alpha_s$ correction to both light-cone distribution amplitudes (LCDA) and quasi-DA associated with the lowest-lying quarkonia, with the transverse momentum UV cutoff interpreted as the renormalization scale. We confirm analytically that the quasi-DA of a quarkonium does reduce to the respective LCDA in the infinite-momentum limit. We also observe that, provided that the momentum of a charmonium reaches about 2-3 times its mass, the quasi-DAs already converge to the LCDAs to a decent level. These results might provide some useful guidance for the fut...
Amplitude enhancement by a gold dimer
Hong, Xin; Wang, Jingxin; Jin, Zheng
2016-10-01
The unique optical properties such as brightness, non-bleaching, good bio-compatibility make gold particles ideal label candidates for molecular probes. Due to the strongly enhanced field, aggregation of gold nanoparticles finds themselves plenty of applications in bio-imaging. But limited by its small cross-section associated with nanometer sized particle, it is a big challenge to employ it in a single molecular detection. The field enhancement results from the effect of plasmonic coupling between two closely attached gold nanoparticle under the right excitation condition. With the aim to apply the gold dimer probe to find the molecules in our recently established optical detection method, we compared of the amplitude enhancement by the dimer relative to a single particle. The amplitude distribution under a highly focused illumination objective was calculated, whose results suggest that at the optimized excitation condition, the local field can be enhanced 190 fold. In consequence, experimental detection was carried out. Gold dimers were linked together by the hybridization of two single chain DNAs. Dimer and single particle probes were mixed together in one detection. Overwhelming contrast between these two kinds of probes were clearly exhibited in the experimental detection image. This method can provide a way to a high specific detection in early diagnosis.
The Construction of Spin Foam Vertex Amplitudes
Directory of Open Access Journals (Sweden)
Eugenio Bianchi
2013-01-01
Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
The Construction of Spin Foam Vertex Amplitudes
Bianchi, Eugenio
2012-01-01
Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. They fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4 dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barret and Crane and Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
Time-varying interaction leads to amplitude death in coupled nonlinear oscillators
Indian Academy of Sciences (India)
Awadhesh Prasad
2013-09-01
A new form of time-varying interaction in coupled oscillators is introduced. In this interaction, each individual oscillator has always time-independent self-feedback while its interaction with other oscillators are modulated with time-varying function. This interaction gives rise to a phenomenon called amplitude death even in diffusively coupled identical oscillators. The nonlinear variation of the locus of bifurcation point is shown. Results are illustrated with Landau–Stuart (LS) and Rössler oscillators.
ABJM Amplitudes in U-gauge and a Soft Theorem
Chin, Seungbeom; Yun, Youngbin
2015-01-01
We report progress in computing and analyzing all tree amplitudes in ABJM theory. Inspired by the isomorphism between the orthogonal Grassmannian and the pure spinor geometries, we adopt a new gauge, called u-gauge, for evaluating the orthogonal Grassmannian integral for ABJM amplitudes. We carry out the integral explicitly for the 8-point amplitude and obtain the complete supersymmetric amplitude. The physical and spurious poles arise from the integral as expected from on-shell diagrams. We also derive a double scalar soft theorem of ABJM amplitudes and verify it for known amplitudes.
Color-kinematic duality in ABJM theory without amplitude relations
Sivaramakrishnan, Allic
2017-01-01
We explicitly show that the Bern-Carrasco-Johansson color-kinematic duality holds at tree level through at least eight points in Aharony-Bergman-Jafferis-Maldacena theory with gauge group SU(N) × SU(N). At six points we give the explicit form of numerators in terms of amplitudes, displaying the generalized gauge freedom that leads to amplitude relations. However, at eight points no amplitude relations follow from the duality, so the diagram numerators are fixed unique functions of partial amplitudes. We provide the explicit amplitude-numerator decomposition and the numerator relations for eight-point amplitudes.
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun
2016-07-01
Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.
The Prediction of Maximum Amplitudes of Solar Cycles and the Maximum Amplitude of Solar Cycle 24
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We present a brief review of predictions of solar cycle maximum ampli-tude with a lead time of 2 years or more. It is pointed out that a precise predictionof the maximum amplitude with such a lead-time is still an open question despiteprogress made since the 1960s. A method of prediction using statistical character-istics of solar cycles is developed: the solar cycles are divided into two groups, ahigh rising velocity (HRV) group and a low rising velocity (LRV) group, dependingon the rising velocity in the ascending phase for a given duration of the ascendingphase. The amplitude of Solar Cycle 24 can be predicted after the start of thecycle using the formula derived in this paper. Now, about 5 years before the startof the cycle, we can make a preliminary prediction of 83.2-119.4 for its maximumamplitude.
Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech.
Scuri, Rossana; Mozzachiodi, Riccardo; Brunelli, Marcello
2002-11-01
We identified a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) sensory neurons of the leech Hirudo medicinalis. Repetitive intracellular stimulation with 30 trains of depolarizing impulses at 15-s inter-stimulus interval (ISI) led to an increase of the AHP amplitude (~60% of the control). The enhancement of AHP lasted for >/=15 min. The AHP increase was also elicited when a T neuron was activated by repetitive stimulation of its receptive field. The ISI was a critical parameter for the induction and maintenance of AHP enhancement. ISI duration had to fit within a time window with the upper limit of 20 s to make the training effective to induce an enhancement of the AHP amplitude. After recovery from potentiation, AHP amplitude could be enhanced once again by delivering another training session. The increase of AHP amplitude persisted in high Mg(2+) saline, suggesting an intrinsic cellular mechanism for its induction. Previous investigations reported that AHP of leech T neurons was mainly due to the activity of the Na(+)/K(+) ATPase and to a Ca(2+)-dependent K(+) current (I(K/Ca)). In addition, it has been demonstrated that serotonin (5HT) reduces AHP amplitude through the inhibition of the Na(+)/K(+) ATPase. By blocking the I(K/Ca) with pharmacological agents, such as cadmium and apamin, we still observed an increase of the AHP amplitude after repetitive stimulation, whereas 5HT application completely inhibited the AHP increment. These data indicate that the Na(+)/K(+) ATPase is involved in the induction and maintenance of the AHP increase after repetitive stimulation. Moreover, the AHP increase was affected by the level of serotonin in the CNS. Finally, the increase of the AHP amplitude produced a lasting depression of the synaptic connection between two T neurons, suggesting that this activity-dependent phenomenon might be involved in short-term plasticity associated with learning processes.
Amplitude equations for isothermal double diffusive convection
Energy Technology Data Exchange (ETDEWEB)
Becerril, R.; Swift, J.B. [Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712 (United States)
1997-05-01
Amplitude equations are derived for isothermal double diffusive convection near threshold for both the stationary and oscillatory instabilities as well as in the vicinity of the codimension-2 point. The convecting fluid is contained in a thin Hele-Shaw cell that renders the system two dimensional, and convection is sustained by vertical concentration gradients of two species with different diffusion rates. The locations of the tricritical point for the stationary instability and the codimension-2 point are found. It is shown that these points can be made well separated (in the Rayleigh number R{sub s} of the slow diffusing species) as the Lewis number varies. Hence the behavior near these points should be experimentally accessible. {copyright} {ital 1997} {ital The American Physical Society}
Amplitude determinant coupled cluster with pairwise doubles
Zhao, Luning
2016-01-01
Recently developed pair coupled cluster doubles (pCCD) theory successfully reproduces doubly occupied configuration interaction (DOCI) with mean field cost. However, the projective nature of pCCD makes the method non-variational and thus hard to improve systematically. As a variational alternative, we explore the idea of coupled-cluster-like expansions based on amplitude determinants and develop a specific theory similar to pCCD based on determinants of pairwise doubles. The new ansatz admits a variational treatment through Monte Carlo methods while remaining size-consistent and, crucially, polynomial cost. In the dissociations of LiH, HF, H2O and N2, the method performs very similarly to pCCD and DOCI, suggesting that coupled-cluster-like ansatzes and variational evaluation may not be mutually exclusive.
Nonlinear amplitude dynamics in flagellar beating
Oriola, David; Casademunt, Jaume
2016-01-01
The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive crosslinkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatiotemporal dynamics of dynein populations and flagell...
Pion Distribution Amplitude from Lattice QCD
Braun, V M; Göckeler, M; Pérez-Rubio, P; Schäfer, A; Schiel, R W; Sternbeck, A
2015-01-01
We have calculated the second moment of the pion light-cone distribution amplitude using two flavors of dynamical (clover) fermions on lattices of different volumes, lattice spacings between $0.06 \\, \\mathrm {fm}$ and $0.08 \\, \\mathrm {fm}$ and pion masses down to $m_\\pi\\sim 150 \\, \\mathrm {MeV}$. Our result for the second Gegenbauer coefficient is $a_2 = 0.1364(154)(145)$ and for the width parameter $\\langle \\xi^2 \\rangle = 0.2361(41)(39)$. Both numbers refer to the scale $\\mu=2 \\, \\mathrm {GeV}$in the $\\overline{\\text{MS}}$ scheme, the first error is statistical including the uncertainty of the chiral extrapolation, and the second error is the estimated uncertainty coming from the nonperturbatively determined renormalization factors.
Low-amplitude vector screening solitons
Institute of Scientific and Technical Information of China (English)
Keqing Lu(卢克清); Xiangping Zhu(朱香平); Wei Zhao(赵卫); Yanlong Yang(杨延龙); Jinping Li(李金萍); Yanpeng Zhang(张彦鹏); Junchang Zhang(张君昌)
2004-01-01
We show self-coupled and cross-coupled vector beam evolution equations in the low-amplitude regime for screening solitons,which can exhibit the analytical solutions of bright-bright and dark-dark vector solitons.Our analysis indicates that these self-coupled vector solitons are obtained irrespective of the intensities of the two optical beams,whereas these cross-coupled vector solitons can be established when the intensities of the two optical beams are equal.Relevant examples are provided where the photorefractive crystal is lithium niobate(LiNbO3).The stability properties of these vector solitons have been investigated numerically and it has been found that they are stable.
Determination of the pion distribution amplitude
Huang, Tao; Wu, Xing-Gang
2013-01-01
Right now, we have not enough knowledge to determine the hadron distribution amplitudes (DAs) which are universal physical quantities in the high energy processes involving hadron for applying pQCD to exclusive processes. Even for the simplest pion, one can't discriminate from different DA models. Inversely, one expects that processes involving pion can in principle provide strong constraints on the pion DA. For example, the pion-photon transition form factor (TFF) can get accurate information of the pion wave function or DA, due to the single pion in this process. However, the data from Belle and BABAR have a big difference on TFF in high $Q^2$ regions, at present, they are helpless for determining the pion DA. At the present paper, we think it is still possible to determine the pion DA as long as we perform a combined analysis of the most existing data of the processes involving pion such as $\\pi \\to \\mu \\bar{\
Lin, Gong-Ru; Kang, Jung-Jui; Lee, Chao-Kuei
2010-04-26
The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulsewidth of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from -84 to -90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.
On the soft limit of tree-level string amplitudes
Bianchi, Massimo
2016-01-01
We study the soft behavior of string scattering amplitudes at three level with massless and massive external insertions, relying on different techniques to compute 4-points amplitudes respectively with open or closed strings.
Automating QCD amplitudes with on-shell methods
Badger, Simon
2016-01-01
We review some of the modern approaches to scattering amplitude computations in QCD and their application to precision LHC phenomenology. We emphasise the usefulness of momentum twistor variables in parameterising general amplitudes.
Directory of Open Access Journals (Sweden)
Areej M. Abduldaim
2013-01-01
Full Text Available We introduced and studied -regular modules as a generalization of -regular rings to modules as well as regular modules (in the sense of Fieldhouse. An -module is called -regular if for each and , there exist and a positive integer such that . The notion of -pure submodules was introduced to generalize pure submodules and proved that an -module is -regular if and only if every submodule of is -pure iff is a -regular -module for each maximal ideal of . Many characterizations and properties of -regular modules were given. An -module is -regular iff is a -regular ring for each iff is a -regular ring for finitely generated module . If is a -regular module, then .
Chiral closed strings: four massless states scattering amplitude
Leite, Marcelo M.; Siegel, Warren
2017-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ( KLT ) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-2 tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Chiral Closed strings: Four massless states scattering amplitude
Leite, Marcelo M
2016-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ($KLT$) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-$2$ tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan
2013-11-01
Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.
Comparison of superresolution effects with annular phase and amplitude filters.
Luo, Hongxin; Zhou, Changhe
2004-12-01
The characteristics of annular amplitude and phase filters are compared. The behavior of two-zone phase and amplitude filters as the inner zone is increased is studied in detail. Numerical simulations show that a phase filter can achieve a superresolution effect, a circular Dammann effect, and flat-topped intensity for different applications, whereas a two-zone amplitude filter can generate only a superresolution effect. The experimental results show that both amplitude and phase filters can achieve superresolution. Generally, a phase superresolution filter is recommended for its higher efficiency and its special diffraction patterns that are impossible to achieve with an amplitude filter.
Wu, Liang; Cheng, Shubo; Tao, Shaohua
2015-01-01
An iterative beam shaping algorithm is proposed to simultaneously shape the amplitude and phase of an optical beam. The proposed algorithm consists of one input plane and two completely overlapped output planes which refer to the output plane in real space. The two output planes are imposed with both amplitude and phase constraints, and the constrained areas in the two output planes are complementary. As a result, both the amplitude and phase in the entire output plane are controllable and arbitrary target complex amplitudes can be achieved with the proposed algorithm. The computing result of the proposed algorithm is a phase-only distribution which can be conveniently realized with a spatial light modulator or a fabricated diffractive optical element. Both simulations and experiments have verified the high performance of the proposed algorithm.
A Numerical Unitarity Formalism for Evaluating One-Loop Amplitudes
Ellis, Richard Keith; Kunszt, Z
2008-01-01
Recent progress in unitarity techniques for one-loop scattering amplitudes makes a numerical implementation of this method possible. We present a 4-dimensional unitarity method for calculating the cut-constructible part of amplitudes and implement the method in a numerical procedure. Our technique can be applied to any one-loop scattering amplitude and offers the possibility that one-loop calculations can be performed in an automatic fashion, as tree-level amplitudes are currently done. Instead of individual Feynman diagrams, the ingredients for our one-loop evaluation are tree-level amplitudes, which are often already known. To study the practicality of this method we evaluate the cut-constructible part of the 4, 5 and 6 gluon one-loop amplitudes numerically, using the analytically known 4, 5 and 6 gluon tree-level amplitudes. Comparisons with analytic answers are performed to ascertain the numerical accuracy of the method.
Generating Functionals for Spin Foam Amplitudes
Hnybida, Jeff
2014-01-01
We construct a generating functional for the exact evalutation of a coherent representation of spin network amplitudes. This generating functional is defined for arbitrary graphs and depends only on a pair of spinors for each edge. The generating functional is a meromorphic polynomial in the spinor invariants which is determined by the cycle structure of the graph. The expansion of the spin network generating function is given in terms of a newly recognized basis of SU(2) intertwiners consisting of the monomials of the holomorphic spinor invariants. This basis is labelled by the degrees of the monomials and is thus discrete. It is also overcomplete, but contains the precise amount of data to specify points in the classical space of closed polyhedra, and is in this sense coherent. We call this new basis the discrete-coherent basis. We focus our study on the 4-valent basis, which is the first non-trivial dimension, and is also the case of interest for Quantum Gravity. We find simple relations between the new ba...
A generalized fidelity amplitude for open systems.
Gorin, T; Moreno, H J; Seligman, T H
2016-06-13
We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result.
Open string topological amplitudes and gaugino masses
Antoniadis, Ignatios; Taylor, T R
2005-01-01
We show that the genus zero topological partition function $F^{(0,h)}$, on a world-sheet with $h$ boundaries, computes the moduli-dependent couplings of the higher derivative F-terms $(\\Tr W^2)^{h-1}$, where $W$ is the gauge N=1 chiral superfield. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal $N=(2,0)$ superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form $\\Pi^n({\\rm Tr}W^2)^{h-2}$, where $\\Pi$'s represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for $h\\ge 3$. As a result, once supersymmetry is broken by D-term expectation values, $(\\Tr W^2)^2$ generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as $m_{1/2}\\sim m_0^4$ in string units. Similarly, $\\Pi{\\rm Tr}W^2$ g...
Effective anisotropy through traveltime and amplitude matching
Wang, Hui
2014-08-05
Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.
Excitation of spin echo by pulses with linear frequency modulation
Baruzdin, S. A.
2015-03-01
The excitation of a spin echo by two pulses with linear frequency modulation, upon which the pulse parameters ensure maximal compression of the response in time, is considered. The frequency of the excitation pulses was changed by a step law, approximating its linear rise. The transfer matrix of the state of the spin system for pulses with linear frequency modulation is found by solving the Bloch equations. The shape of the envelope of the spin echo in thin magnetic cobalt films, as well as the dependence of the echo amplitude on the parameters of the excitation pulses, is determined. The amplitudes of the excitation pulses, which ensure the excitation of the echo maximal amplitude for various values of the frequency deviation, are found. It is shown that the use of pulses with linear frequency modulation makes it possible to obtain the same echo amplitude as with the use of simple excitation pulses for a substantially smaller amplitude and power of excitation pulses.
Energy Technology Data Exchange (ETDEWEB)
Aguilar Benitez de Lugo, M.
1979-07-01
In this work we present several techniques developed for the extraction of the. Transversity amplitudes governing quasi two-body meson baryon reactions with hypercharge exchange. We review the methods used In processes having a pure spin configuration, as well as the more relevant results obtained with data from K{sup p} and Tp interactions at intermediate energies. The predictions of the additive quark model and the ones following from exchange degeneracy and etoxicity are discussed. We present a formalism for amplitude analysis developed for reactions with mixed spin configurations and discuss the methods of parametric estimation of the moduli and phases of.the amplitudes, as well as the various tests employed to check the goodness of the fits. The calculation of the generalized joint density matrices is given and we propose a method based on the generalization of the idea of multipole moments, which allows to investigate the structure of the decay angular correlations and establishes the quality of the fits and the validity of the simplifying assumptions currently used in this type of studies. (Author) 43 refs.
Obliquity Modulation of the Incoming Solar Radiation
Liu, Han-Shou; Smith, David E. (Technical Monitor)
2001-01-01
Based on a basic principle of orbital resonance, we have identified a huge deficit of solar radiation induced by the combined amplitude and frequency modulation of the Earth's obliquity as possibly the causal mechanism for ice age glaciation. Including this modulation effect on solar radiation, we have performed model simulations of climate change for the past 2 million years. Simulation results show that: (1) For the past 1 million years, temperature fluctuation cycles were dominated by a 100-Kyr period due to amplitude-frequency resonance effect of the obliquity; (2) From 2 to 1 million years ago, the amplitude-frequency interactions. of the obliquity were so weak that they were not able to stimulate a resonance effect on solar radiation; (3) Amplitude and frequency modulation analysis on solar radiation provides a series of resonance in the incoming solar radiation which may shift the glaciation cycles from 41-Kyr to 100-Kyr about 0.9 million years ago. These results are in good agreement with the marine and continental paleoclimate records. Thus, the proposed climate response to the combined amplitude and frequency modulation of the Earth's obliquity may be the key to understanding the glaciation puzzles in paleoclimatology.
CIM—Compact intensity modulation
Bleuel, M.; Lang, E.; Gähler, R.; Lal, J.
2008-07-01
Compact intensity modulation (CIM), a new method to modulate the intensity of a neutron beam is demonstrated. CIM allows the production of arbitrary signals where the focus point can be chosen and changed without any constraints. A novel feature in this technique compared to spin echo techniques is that the neutron polarization is kept parallel or anti-parallel to the static fields during the passage through the magnetic fields and the beating pattern at the detector is produced by an amplitude modulation (AM) of the adiabatic RF-spin flippers rather than Larmor precession like in neutron spin echo (NSE) instruments; thus, the achievable contrast is very high and the instrument resolution can be changed very quickly. This gives the fascinating possibility at pulsed neutron sources to sweep the modulation frequency of the flippers in order to increase dynamic resolution range during the same neutron pulse.
Stable Optical Phase Modulation with Micromirrors
Knoernschild, Caleb; Maunz, Peter; Crain, Stephen; Kim, Jungsang
2011-01-01
We measure the motional fluctuations of a micromechanical mirror using a Michelson interferometer, and demonstrate its interferometric stability. The position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the micromirror to realize an ideal optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the modulator can be tuned by applying a voltage between the mirror and an underlying electrode. Full modulation depth of +/-\\pi is achieved when the mirror resonantly excited with a sinusoidal voltage at an amplitude of 11V.
Cascaded uncoupled dual-ring modulator
Gu, Tingyi; Wong, Chee Wei; Dong, Po
2014-01-01
We demonstrate that by coherent driving two uncoupled rings in same direction, the effective photon circulating time in the dual ring modulator is reduced, with increased modulation quality. The inter-ring detuning dependent photon dynamics, Q-factor, extinction ratio and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of dual ring configuration at 20 Gbps with a Q ~ 20,000.
Nonlinear Langmuir Wave Modulation in Weakly Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1978-01-01
influence on the modulation stability of plane Langmuir waves. As in the unmagnetized case, kinetic results were found to deviate considerably from those obtained by using a fluid description for the ion dynamics. With particular attention to ionospheric phenomena, the effect is included of the spatially...... varying electron heating in the amplitude modulated Langmuir wave. For modulations travelling almost perpendicular to the magnetic field, this effect has a profound influence on a modulational instability...
New modulator for the optical signal in a fiber
Institute of Scientific and Technical Information of China (English)
ZHANG Tian-hao; JIA Feng; WANG Shun-li; MAN Jiang wei; NIU Kai; WANG Xu-cheng; YANG Jia
2006-01-01
A new modulator for the optical signal in a fiber based on multi-beam interference is designed. In the experiment,the distance of a couple of abutted fibers was modulated through a piezoelectric ceramic pipe driven by 50 Hz AC voltage, so that the amplitude of the transmitted optical signal was modulated. The modulation ratio is about 10% ,S/N ratio is about 60 dB and the bandwidth is about 200 KHz.
Neuromagnetic responses to frequency modulation of a continuous tone.
Hari, R; Mäkelä, J P
1986-01-01
Neuromagnetic responses to frequency modulation of a continuous tone were studied in nine subjects. The latencies of the transient responses increased and the amplitudes decreased with decreasing speed of modulation. The equivalent dipoles for modulation of a 1,000 Hz tone were slightly but statistically significantly anterior to the dipoles activated by modulation of a 500 Hz tone. The generation mechanisms of N100m are discussed.
Dispersion Tolerance of 40 Gbaud Multilevel Modulation Formats with up to 3 bits per Symbol
DEFF Research Database (Denmark)
Jensen, Jesper Bevensee; Tokle, Torger; Geng, Yan
2006-01-01
We present numerical and experimental investigations of dispersion tolerance for multilevel phase- and amplitude modulation with up to 3 bits per symbol at a symbol rate of 40 Gbaud......We present numerical and experimental investigations of dispersion tolerance for multilevel phase- and amplitude modulation with up to 3 bits per symbol at a symbol rate of 40 Gbaud...
Amplitudes ratios in $\\rho^0$ leptoproductions and GPDs
Goloskokov, S V
2016-01-01
We investigate exclusive leptoproduction of $\\rho^0$ meson. These reactions were analyzed within the factorizing handbag approach. In our model good agreement of observables for light meson production with experimental data in a wide energy range was found. Using the model results we calculate the ratio of different helicity amplitudes for a transversely polarized proton target to the leading twist longitudinal amplitude. Our results are close to the amplitude ratios measured by HERMES.
Mass of nonrelativistic meson from leading twist distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Braguta, V. V., E-mail: braguta@mail.ru [Institute for High Energy Physics (Russian Federation)
2011-01-15
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
EW and QCD One-Loop Amplitudes with RECOLA
Actis, Stefano; Hofer, Lars; Scharf, Andreas; Uccirati, Sandro
2013-01-01
We present the computer code RECOLA for the computation of EW and QCD amplitudes in the Standard Model at next-to-leading order. One-loop amplitudes are represented as linear combinations of tensor integrals whose coefficients are calculated by means of recursive relations similar to Dyson-Schwinger equations. A novel treatment of colour enables us to recursively construct the colour structure of the amplitude efficiently. RECOLA is linked with the library COLLIER for the computation of the tensor integrals.
Amplitudes and Ultraviolet Behavior of N = 8 Supergravity
Energy Technology Data Exchange (ETDEWEB)
Bern, Zvi; /UCLA; Carrasco, John Joseph; /Stanford U., Phys. Dept.; Dixon, Lance J.; /SLAC /CERN; Johansson, Henrik; /Saclay, SPhT; Roiban, Radu; /Penn State U.
2011-05-20
In this contribution we describe computational tools that permit the evaluation of multi-loop scattering amplitudes in N = 8 supergravity, in terms of amplitudes in N = 4 super-Yang-Mills theory. We also discuss the remarkable ultraviolet behavior of N = 8 supergravity, which follows from these amplitudes, and is as good as that of N = 4 super-Yang-Mills theory through at least four loops.
N >= 4 Supergravity Amplitudes from Gauge Theory at One Loop
Bern, Z; Johansson, H
2011-01-01
We expose simple and practical relations between the integrated four- and five-point one-loop amplitudes of N >= 4 supergravity and the corresponding (super-)Yang-Mills amplitudes. The link between the amplitudes is simply understood using the recently uncovered duality between color and kinematics that leads to a double-copy structure for gravity. These examples provide additional direct confirmations of the duality and double-copy properties at loop level for a sample of different theories.
Intelligibility improvement of analog communication systems using an amplitude control technique.
Wishna, S.
1973-01-01
An amplitude control technique has been employed for use with analog voice communication systems, which improves low-level phoneme reception and eliminates the received noise between words and syllables. Tests were conducted on a narrow-band frequency-modulation simplex voice communication channel employing the amplitude control technique. Presented for both the modified rhyme word tests and the phonetically balanced word tests are a series of graphical plots of the tests' score distribution, mean, and standard deviation as a function of received carrier-to-noise power density ratio. At low received carrier-to-noise power density ratios, a significant improvement in the intelligibility was obtained. A voice intelligibility improvement of more than 2 dB was obtained for the modified rhyme test words, and a voice intelligibility improvement in excess of 4 dB was obtained for the phonetically balanced word tests.
Méndez-Balbuena, Ignacio; Huidobro, Nayeli; Silva, Mayte; Flores, Amira; Trenado, Carlos; Quintanar, Luis; Arias-Carrión, Oscar; Kristeva, Rumyana; Manjarrez, Elias
2015-10-01
The present investigation documents the electrophysiological occurrence of multisensory stochastic resonance in the human visual pathway elicited by tactile noise. We define multisensory stochastic resonance of brain evoked potentials as the phenomenon in which an intermediate level of input noise of one sensory modality enhances the brain evoked response of another sensory modality. Here we examined this phenomenon in visual evoked potentials (VEPs) modulated by the addition of tactile noise. Specifically, we examined whether a particular level of mechanical Gaussian noise applied to the index finger can improve the amplitude of the VEP. We compared the amplitude of the positive P100 VEP component between zero noise (ZN), optimal noise (ON), and high mechanical noise (HN). The data disclosed an inverted U-like graph for all the subjects, thus demonstrating the occurrence of a multisensory stochastic resonance in the P100 VEP.
Control and Detection of Discrete Spectral Amplitudes in Nonlinear Fourier Spectrum
Aref, Vahid
2016-01-01
Nonlinear Fourier division Multiplexing (NFDM) can be realized from modulating the discrete nonlinear spectrum of an $N$-solitary waveform. To generate an $N$-solitary waveform from desired discrete spectrum (eigenvalue and discrete spectral amplitudes), we use the Darboux Transform. We explain how to the norming factors must be set in order to have the desired discrete spectrum. To derive these norming factors, we study the evolution of nonlinear spectrum by adding a new eigenvalue and its spectral amplitude. We further simplify the Darboux transform algorithm. We propose a novel algorithm (to the best of our knowledge) to numerically compute the nonlinear Fourier Transform (NFT) of a given pulse. The NFT algorithm, called forward-backward method, is based on splitting the signal into two parts and computing the nonlinear spectrum of each part from boundary ($\\pm\\infty$) inward. The nonlinear spectrum (discrete and continuous) derived from efficiently combining both parts has a promising numerical precision....
Parametric instabilities of large-amplitude parallel propagating Alfven waves: 2-D PIC simulation
Nariyuki, Yasuhiro; Hada, Tohru
2008-01-01
We discuss the parametric instabilities of large-amplitude parallel propagating Alfven waves using the 2-D PIC simulation code. First, we confirmed the results in the past study [Sakai et al, 2005] that the electrons are heated due to the modified two stream instability and that the ions are heated by the parallel propagating ion acoustic waves. However, although the past study argued that such parallel propagating longitudinal waves are excited by transverse modulation of parent Alfven wave, we consider these waves are more likely to be generated by the usual, parallel decay instability. Further, we performed other simulation runs with different polarization of the parent Alfven waves or the different ion thermal velocity. Numerical results suggest that the electron heating by the modified two stream instability due to the large amplitude Alfven waves is unimportant with most parameter sets.
Scattering AMplitudes from Unitarity-based Reduction Algorithm at the Integrand-level
Mastrolia, P; Reiter, T; Tramontano, F
2010-01-01
SAMURAI is a tool for the automated numerical evaluation of one-loop corrections to any scattering amplitudes within the dimensional-regularization scheme. It is based on the decomposition of the integrand according to the OPP-approach, extended to accommodate an implementation of the generalized d-dimensional unitarity-cuts technique, and uses a polynomial interpolation exploiting the Discrete Fourier Transform. SAMURAI can process integrands written either as numerator of Feynman diagrams or as product of tree-level amplitudes. We discuss some applications, among which the 6- and 8-photon scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been implemented as a Fortran90 library, publicly available, and it could be a useful module for the systematic evaluation of the virtual corrections oriented towards automating next-to-leading order calculations relevant for the LHC phenomenology.
Flavour symmetry breaking in the kaon parton distribution amplitude
Directory of Open Access Journals (Sweden)
Chao Shi
2014-11-01
Full Text Available We compute the kaon's valence-quark (twist-two parton distribution amplitude (PDA by projecting its Poincaré-covariant Bethe–Salpeter wave-function onto the light-front. At a scale ζ=2 GeV, the PDA is a broad, concave and asymmetric function, whose peak is shifted 12–16% away from its position in QCD's conformal limit. These features are a clear expression of SU(3-flavour-symmetry breaking. They show that the heavier quark in the kaon carries more of the bound-state's momentum than the lighter quark and also that emergent phenomena in QCD modulate the magnitude of flavour-symmetry breaking: it is markedly smaller than one might expect based on the difference between light-quark current masses. Our results add to a body of evidence which indicates that at any energy scale accessible with existing or foreseeable facilities, a reliable guide to the interpretation of experiment requires the use of such nonperturbatively broadened PDAs in leading-order, leading-twist formulae for hard exclusive processes instead of the asymptotic PDA associated with QCD's conformal limit. We illustrate this via the ratio of kaon and pion electromagnetic form factors: using our nonperturbative PDAs in the appropriate formulae, FK/Fπ=1.23 at spacelike-Q2=17 GeV2, which compares satisfactorily with the value of 0.92(5 inferred in e+e− annihilation at s=17 GeV2.
Twist decomposition of proton structure from BFKL and BK amplitudes
Motyka, Leszek
2014-01-01
An analysis of twist composition of Balitsky-Kovchegov (BK) amplitude is performed in the double logarithmic limit. In this limit the BK evolution of color dipole -- proton scattering is equivalent to BFKL evolution which follows from vanishing of the Bartels vertex in the collinear limit. We perform twist decomposition of the BFKL/BK amplitude for proton structure functions and find compact analytic expressions that provide accurate approximations for higher twist amplitudes. The BFKL/BK higher twist amplitudes are much smaller than those following from eikonal saturation models.
LARGE AMPLITUDE FREE VIBRATIONS OF LAMINATED COMPOSITE PLATES
Institute of Scientific and Technical Information of China (English)
Wang Haowen; Gao Zheng; Zheng Zhaochang
2000-01-01
This paper deals with large amplitude free flexural vibrations of laminated composite plates using a 9-node Heterosis degenerated isoparametric quadrilateral element, including the effects of transverse shear and rotary inertia. The nonlinear dynamic equations of the plates are formulated in von Karman's sense. Amplitude-frequemcy relationships are obtained through dynamic response history using the Newmark numerical integration scheme. Detailed numerical results based on various parameters are presented for orthotropic laminated plates with different boundary conditions. The rectangular anti-symmetric cross-ply plates show the softening type of nonlinearity for initial small amplitudes. The displacement amplitudes decrease and nonlinear frequencies increase with the increment of time.
New relations for Einstein-Yang-Mills amplitudes
Stieberger, Stephan; Taylor, Tomasz R.
2016-12-01
We obtain new relations between Einstein-Yang-Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang-Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a "spectator" group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss-Kuijf relations for Yang-Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open-closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.
Boscolo, Sonia; Fatome, Julien; Finot, Christophe
2017-04-01
We numerically study the effects of amplitude fluctuations and signal-to-noise ratio degradation of the seed pulses on the spectral compression process arising from nonlinear propagation in an optical fibre. The unveiled quite good stability of the process against these pulse degradation factors is assessed in the context of optical regeneration of intensity-modulated signals, by combining nonlinear spectral compression with centered bandpass optical filtering. The results show that the proposed nonlinear processing scheme indeed achieves mitigation of the signal's amplitude noise. However, in the presence of a jitter of the temporal duration of the pulses, the performance of the device deteriorates. © 2016 Elsevier
Modulated pressure waves in large elastic tubes.
Mefire Yone, G R; Tabi, C B; Mohamadou, A; Ekobena Fouda, H P; Kofané, T C
2013-09-01
Modulational instability is the direct way for the emergence of wave patterns and localized structures in nonlinear systems. We show in this work that it can be explored in the framework of blood flow models. The whole modified Navier-Stokes equations are reduced to a difference-differential amplitude equation. The modulational instability criterion is therefore derived from the latter, and unstable patterns occurrence is discussed on the basis of the nonlinear parameter model of the vessel. It is found that the critical amplitude is an increasing function of α, whereas the region of instability expands. The subsequent modulated pressure waves are obtained through numerical simulations, in agreement with our analytical expectations. Different classes of modulated pressure waves are obtained, and their close relationship with Mayer waves is discussed.
Modulational development of nonlinear gravity-wave groups
Chereskin, T. K.; Mollo-Christensen, E.
1985-01-01
Observations of the development of nonlinear surface gravity-wave groups are presented, and the amplitude and phase modulations are calculated using Hilbert-transform techniques. With increasing propagation distance and wave steepness, the phase modulation develops local phase reversals whose locations correspond to amplitude minima or nodes. The concomitant frequency modulation develops jumps or discontinuities. The observations are compared with recent similar results for wavetrains. The observations are modelled numerically using the cubic nonlinear Schroedinger equation. The motivation is twofold: to examine quantitatively the evolution of phase as well as amplitude modulation, and to test the inviscid predictions for the asymptotic behavior of groups versus long-time observations. Although dissipation rules out the recurrence, there is a long-time coherence of the groups. The phase modulation is found to distinguish between dispersive and soliton behavior.
Source-Space Cross-Frequency Amplitude-Amplitude Coupling in Tinnitus
Directory of Open Access Journals (Sweden)
Oliver Zobay
2015-01-01
Full Text Available The thalamocortical dysrhythmia (TCD model has been influential in the development of theoretical explanations for the neurological mechanisms of tinnitus. It asserts that thalamocortical oscillations lock a region in the auditory cortex into an ectopic slow-wave theta rhythm (4–8 Hz. The cortical area surrounding this region is hypothesized to generate abnormal gamma (>30 Hz oscillations (“edge effect” giving rise to the tinnitus percept. Consequently, the model predicts enhanced cross-frequency coherence in a broad range between theta and gamma. In this magnetoencephalography study involving tinnitus and control cohorts, we investigated this prediction. Using beamforming, cross-frequency amplitude-amplitude coupling (AAC was computed within the auditory cortices for frequencies (f1,f2 between 2 and 80 Hz. We find the AAC signal to decompose into two distinct components at low (f1,f230 Hz frequencies, respectively. Studying the correlation of AAC with several key covariates (age, hearing level (HL, tinnitus handicap and duration, and HL at tinnitus frequency, we observe a statistically significant association between age and low-frequency AAC. Contrary to the TCD predictions, however, we do not find any indication of statistical differences in AAC between tinnitus and controls and thus no evidence for the predicted enhancement of cross-frequency coupling in tinnitus.
Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia
2011-11-01
This issue aims to serve as an introduction to our current understanding of the structure of scattering amplitudes in gauge theory, an area which has seen particularly rapid advances in recent years following decades of steady progress. The articles contained herein provide a snapshot of the latest developments which we hope will serve as a valuable resource for graduate students and other scientists wishing to learn about the current state of the field, even if our continually evolving understanding of the subject might soon render this compilation incomplete. Why the fascination with scattering amplitudes, which have attracted the imagination and dedicated effort of so many physicists? Part of it stems from the belief, supported now by numerous examples, that unexpected simplifications of otherwise apparently complicated calculations do not happen by accident. Instead they provide a strong motivation to seek out an underlying explanation. The insight thereby gained can subsequently be used to make the next class of seemingly impossible calculations not only possible, but in some cases even trivial. This two-pronged strategy of exploring and exploiting the structure of gauge theory amplitudes appeals to a wide audience from formal theorists interested in mathematical structure for the sake of its own beauty to more phenomenologically-minded physicists eager to speed up the next generation of analysis software. Understandably it is the maximally supersymmetric 𝒩 = 4 Yang-Mills theory (SYM) which has the simplest structure and has correspondingly received the most attention. Rarely in theoretical physics are we fortunate enough to encounter a toy model which is simple enough to be solved completely yet rich enough to possess interesting non-trivial structure while simultaneously, and most importantly, being applicable (even if only as a good approximation) to a wide range of 'real' systems. The canonical example in quantum mechanics is of course the harmonic
Directory of Open Access Journals (Sweden)
Piotr Krol
2011-03-01
Full Text Available The aim of this study was to evaluate the efficiency of training protocols for whole body vibration (WBV training through the modulation of the frequency and amplitude of vibration. Despite the large number of studies regarding effects of such training, there is still lack of knowledge regarding optimum training protocols. The study analyzed the influence of whole-body vibration parameters (i.e., the frequency and amplitude on the myoelectric activity of vastus lateralis and vastus medialis in 29 females with the use of electromyography (EMG. The first and second of the eight consecutive trials were performed without vibrations; the remaining six trials were performed in a randomized order on a platform vibrating at different amplitude (2mm and 4mm and frequency (20 Hz, 40 Hz and 60 Hz combinations. The results revealed significantly higher EMG amplitude of both muscles during the vibration as compared with the non- vibrated trials (trial 1 and 2. Furthermore, the EMG activity significantly increased both with the amplitude and frequency, being the highest when the frequency and amplitude of reached 60 Hz and 4 mm, respectively. The study aims to determine the optimal vibration parameters in the aspect of purposeful stimulation of chosen leg muscles. Based on the results of the presented investigation, sports trainers and physiotherapists may be able to optimize training programs involving vibration platforms.
Phase-only spatial light modulation by the reverse phase contrast method
DEFF Research Database (Denmark)
Glückstad, J.; Mogensen, P.C.; Eriksen, R.L.
2002-01-01
A new approach to phase-only spatial light modulation is proposed in which a given amplitude pattern can be converted into a spatially identical binary phase pattern. A spatial filtering approach is applied to transform spatial amplitude modulation into spatial phase modulation using the Reverse...... Phase Contrast (RPC) method. The analytical method for achieving this is outlined and experimental results are shown for the generation of a binary phase-only distribution using an amplitude spatial light modulator and a phase-only spatial filter....
Auto-correlation Properties of Scattering Light in Ultrasound-modulated Random Media
Institute of Scientific and Technical Information of China (English)
ZHANG Xiqin; XING Da; LIU Ying; MA Shining
2001-01-01
In this paper, the auto-correlation properties of scattering light in random media modulated by ultrasound were studied. The expression of temporal auto-correlation function of scattering light amplitude in the ultrasound-modulated media was presented. The results show that the auto-correlation function is modulated as the ultrasound is introduced into the media and the modulation amplitude decays with correlation time. The influences of ultrasound amplitude, Brownian diffusion coefficient, scattering and absorption coefficients on auto-correlation function were discussed. The auto-correlation imaging of an object hidden in random media was also studied by the use of Monte Carlo simulations.
Josephson junction microwave modulators for qubit control
Naaman, O.; Strong, J. A.; Ferguson, D. G.; Egan, J.; Bailey, N.; Hinkey, R. T.
2017-02-01
We demonstrate Josephson junction based double-balanced mixer and phase shifter circuits operating at 6-10 GHz and integrate these components to implement both a monolithic amplitude/phase vector modulator and an I/Q quadrature mixer. The devices are actuated by flux signals, dissipate no power on chip, exhibit input saturation powers in excess of 1 nW, and provide cryogenic microwave modulation solutions for integrated control of superconducting qubits.
Vector Modulator for Phase Shifting in Passive Beamforming Wireless Systems
Directory of Open Access Journals (Sweden)
P.Sampath,
2010-05-01
Full Text Available This paper proposes vector modulator for changing the phase of a signal in passive beamforming system. Vector modulator is used to perform a phase shift function with added benefit of amplitude control. It is used to improve the directivity of RF waves in Wireless systems. Vector modulator is implemented for a center frequency of 902.5 MHz. The simulation is performed for individual blocks of the vector modulator and for vector modulator with JFET and MOSFET as controlling device in the variable attenuator of the vector modulator.
Mode conversion of large-amplitude electromagnetic waves in relativistic critical density plasmas
Energy Technology Data Exchange (ETDEWEB)
Pesch, T.C.; Kull, H.J. [Aachen Univ., Institute of Theoretical Physics A, RWTH (Germany)
2009-01-15
The propagation of linearly polarized large-amplitude electromagnetic waves in critical density plasmas is studied in the framework of the Akiezer-Polovin model. A new mechanism of mode conversion is presented. The well-known periodic solutions are generalized to quasiperiodic solutions taking into account additional electrostatic oscillations. Nearly periodic circle-like solutions are found to be stabilized by intrinsic mode coupling whereas for nearly periodic eight-like solutions an effective mode conversion mechanism is discovered. Finally, the modulation timescales are considered. (authors)
Miracles in Scattering Amplitudes: from QCD to Gravity
Energy Technology Data Exchange (ETDEWEB)
Volovich, Anastasia [Brown Univ., Providence, RI (United States)
2016-10-09
The goal of my research project "Miracles in Scattering Amplitudes: from QCD to Gravity" involves deepening our understanding of gauge and gravity theories by exploring hidden structures in scattering amplitudes and using these rich structures as much as possible to aid practical calculations.
Baryon octet distribution amplitudes in Wandzura-Wilczek approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2015-12-15
We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.
The Holevo capacity of a generalized amplitude-damping channel
Institute of Scientific and Technical Information of China (English)
Hou Li-Zhen; Fang Mao-Fa
2007-01-01
The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method.It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature and fidelity. In particular, under a special condition, the Holevo capacity of the generalized amplitude-damping channel can be written as an analytical expression.
Threshold amplitudes in field theories and integrable systems
Gorsky, A S
1995-01-01
We discuss the threshold tree amplitudes in diverse nonintegrable quantum field theories in the framework of integrability. The amplitudes are related to some Baker functions defined on the auxiliary spectral curves and the nullification phenomena are shown to allow a topological interpretation.
Cross-Symmetric Expansion of $\\pi \\pi$ Amplitude Near Threshold
Bolokhov, A A; Manida, I S; Polyakov, M V; Sherman, S G
1996-01-01
The near-threshold expansion of the $\\pi \\pi$ amplitude is developed using the crossing-covariant independent variables. The independent threshold parameters entering the real part of the amplitude in an explicitly Lorentz-invariant way are free from restrictions of isotopic and crossing symmetries. Parameters of the expansion of the imaginary part are recovered by the perturbative unitarity relations.
Abnormal Selective Attention Normalizes P3 Amplitudes in PDD
Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman
2006-01-01
This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…
pi-pi interaction amplitudes with chiral constraints
Kaminski, Robert
2000-01-01
The pi-pi interaction amplitudes have been calculated using a three coupled channel model both with and without constraints imposed by chiral models. Roy's equations have been used to compare the amplitudes and to study the role played by chiral constraints in the pi-pi interaction.
Investigating the amplitude of interactive footstep sounds and soundscape reproduction
DEFF Research Database (Denmark)
Turchet, Luca; Serafin, Stefania
2013-01-01
In this paper, we study the perception of amplitude of soundscapes and interactively generated footstep sounds provided both through headphones and a surround sound system. In particular, we investigate whether there exists a value for the amplitude of soundscapes and footstep sounds which is con...
One loop amplitude for Heterotic string on $T^2$
Sasmal, Soumya
2016-01-01
We revisit the results of one loop string amplitude calculations for the Heterotic string theory compactified on a torus with or without Wilson lines. We give the complete elliptic genus and the harmonic part of the CP-even amplitude for the gauge groups $SO(32)$, $E_8 \\times E_8$, $SO(16)^2$ and $SO(8)^4$.
The scattering amplitude for rationally extended shape invariant Eckart potentials
Energy Technology Data Exchange (ETDEWEB)
Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Khare, Avinash, E-mail: khare@iiserpune.ac.in [Raja Ramanna Fellow, Indian Institute of Science Education and Research (IISER), Pune-411021 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)
2015-01-23
Highlights: • Bound states of rationally extended Eckart potentials have been discussed. • These potentials exhibit extended shape invariant properties. • The potentials which are isospectral to the conventional Eckart potential are considered. • The scattering amplitude of these potentials has been obtained. • For a check, m=0 provide the scattering amplitude for the conventional potential. - Abstract: We consider the rationally extended exactly solvable Eckart potentials which exhibit extended shape invariance property. These potentials are isospectral to the conventional Eckart potential. The scattering amplitude for these rationally extended potentials is calculated analytically for the generalized mth (m=1,2,3,...) case by considering the asymptotic behavior of the scattering state wave functions which are written in terms of some new polynomials related to the Jacobi polynomials. As expected, in the m=0 limit, this scattering amplitude goes over to the scattering amplitude for the conventional Eckart potential.
Conformal higher spin scattering amplitudes from twistor space
Adamo, Tim; McLoughlin, Tristan
2016-01-01
We use the formulation of conformal higher spin (CHS) theories in twistor space to study their tree-level scattering amplitudes, finding expressions for all three-point anti-MHV amplitudes and all MHV amplitudes involving positive helicity conformal gravity particles and two negative helicity higher spins. This provides the on-shell analogue for the covariant coupling of CHS fields to a conformal gravity background. We discuss the restriction of the theory to a ghost-free unitary subsector, analogous to restricting conformal gravity to general relativity with a cosmological constant. We study the flat-space limit and show that the restricted amplitudes vanish, supporting the conjecture that in the unitary sector the S-matrix of CHS theories is trivial. However, by appropriately rescaling the amplitudes we find non-vanishing results which we compare with chiral flat-space higher spin theories.
New amplitude equation of single-mode laser
Institute of Scientific and Technical Information of China (English)
张莉; 曹力; 吴大进
2003-01-01
The white-gain model and the white-loss model of a single-mode laser are investigated in the presence of crosscorrelations between the real and imaginary parts of quantum noise as well as pump noise. It was found that, like the white cubic model (2001 Chin. Phys. Lett. 18 370), the amplitude equations are all decoupled from the phase equations for the two models, and the same novel term appears in the amplitude equations of the two models. So we can put the amplitude equations of all the models into a general form, that is, the new amplitude equation. We further use this new amplitude equation to study specifically the stationary properties of the laser intensity for the white-gain model.
Effective Field Theories from Soft Limits of Scattering Amplitudes.
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2015-06-05
We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.
Simplicity in the structure of QED and gravity amplitudes
Energy Technology Data Exchange (ETDEWEB)
Badger, Simon [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bjerrum-Bohr, N.E.J. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Vanhove, Pierre [Institut des Hautes Etudes Scientifiques IHES, Bures sur Yvette (France); CEA, IPhT, CNRS, URA, Gif-sur-Yvette, (France). Inst. de Physique Theorique
2008-11-15
We investigate generic properties of one-loop amplitudes in unordered gauge theories in four dimensions. For such theories the organisation of amplitudes in manifestly crossing symmetric expressions poses restrictions on their structure and results in remarkable cancellations. We show that one-loop multi-photon amplitudes in QED with at least eight external photons are given only by scalar box integral functions. This QED 'no-triangle' property is true for all helicity configurations and has similarities to the 'notriangle' property found in the case of maximal N=8 supergravity. Results are derived both via a world-line formalism as well as using on-shell unitarity methods. We show that the simple structure of the loop amplitude originates from the extremely good BCFW scaling behaviour of the QED tree-amplitude. (orig.)
Discontinuities of BFKL amplitudes and the BDS ansatz
Directory of Open Access Journals (Sweden)
V.S. Fadin
2015-12-01
Full Text Available We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2→2+n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N=4 supersymmetric Yang–Mills theory with large number of colors starting with n=2. Explicit expressions for the discontinuities of the 2→3 and 2→4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N=4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
Discontinuites of BFKL amplitudes and the BDS ansatz
Fadin, V S
2015-01-01
We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 $\\to$ 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colours starting with n = 2. Explicit expressions for the discontinuities of the 2 $\\to$ 3 and 2 $\\to$ 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N=4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
Discontinuities of BFKL amplitudes and the BDS ansatz
Fadin, V. S.; Fiore, R.
2015-12-01
We perform an examination of discontinuities of multiple production amplitudes, which are required for further development of the BFKL approach. It turns out that the discontinuities of 2 → 2 + n amplitudes obtained in the BFKL approach contradict to the BDS ansatz for amplitudes with maximal helicity violation in N = 4 supersymmetric Yang-Mills theory with large number of colors starting with n = 2. Explicit expressions for the discontinuities of the 2 → 3 and 2 → 4 amplitudes in the invariant mass of pairs of produced gluons are obtained in the planar N = 4 SYM in the next-to-leading logarithmic approximation. These expressions can be used for checking the conjectured duality between the light-like Wilson loops and the MHV amplitudes.
Bilocal expansion of Borel amplitude and hadronic tau decay width
Cvetic, G; Cvetic, Gorazd; Lee, Taekoon
2001-01-01
The singular part of Borel transform of a QCD amplitude near the infrared renormalon can be expanded in terms of higher order Wilson coefficients of the operators associated with the renormalon. In this paper we observe that this expansion gives nontrivial constraints on the Borel amplitude that can be used to improve the accuracy of the ordinary perturbative expansion of the Borel amplitude. In particular, we consider the Borel transform of the Adler function and its expansion around the first infrared renormalon due to the gluon condensate. Using the next-to-leading order Wilson coefficient of the gluon condensate operator, we obtain an exact constraint on the Borel amplitude at the first IR renormalon. We then extrapolate, using judiciously chosen conformal transformations and Pade approximants, the ordinary perturbative expansion of the Borel amplitude in such a way that this constraint is satisfied. This procedure allows us to predict the four-loop Adler function, which gives a result consistent with the...
New Formulas for Amplitudes from Higher-Dimensional Operators
He, Song
2016-01-01
In this paper we study tree-level amplitudes from higher-dimensional operators, including $F^3$ operator of gauge theory, and $R^2$, $R^3$ operators of gravity, in the Cachazo-He-Yuan formulation. As a generalization of the reduced Pfaffian in Yang-Mills theory, we find a new, gauge-invariant object that leads to gluon amplitudes with a single insertion of $F^3$, and gravity amplitudes by Kawai-Lewellen-Tye relations. When reduced to four dimensions for given helicities, the new object vanishes for any solution of scattering equations on which the reduced Pfaffian is non-vanishing. This intriguing behavior in four dimensions explains the vanishing of graviton helicity amplitudes produced by the Gauss-Bonnet $R^2$ term, and provides a scattering-equation origin of the decomposition into self-dual and anti-self-dual parts for $F^3$ and $R^3$ amplitudes.
On discrete-amplitude signal analysis and its applications
Institute of Scientific and Technical Information of China (English)
孙洪; 姚天任
1997-01-01
Discrete-amplitude signal analysis is studied. A reconstruction theorem of an arbitrary signal quantized in amplitude hut continuous in time, from 2 bits of its binary representation, is devised. A new concept of discrete-amplitude multiresolution (DAM), with the signal representation precision taken as its scale, is proposed. The singularities and the residue reducing effect of 2-bit reconstruction of some discrete-time signals are investigated. Two practical examples of applying the discrete-amplitude signal analysis to data compression and signal detection are presented It is shown both analytically and practically that the discrete-amplitude signal analysis is of simple formulation, parallel processing and efficient computation, and is well suited to hardware implementation and real-time signal processing
Verrier, N; Gross, M
2015-01-01
Sideband holography can be used to get fields images (E0 and E1) of a vibrating object for both the carrier (E0) and the sideband (E1) frequency with respect to vibration. We propose here to record E0 and E1 sequentially, and to image the correlation E1E * 0 . We show that this correlation is insensitive the phase related to the object roughness and directly reflect the phase of the mechanical motion. The signal to noise can be improved by averaging the correlation over neighbor pixel. Experimental validation is made with vibrating cube of wood and with a clarinet reed. At 2 kHz, vibrations of amplitude down to 0.01 nm are detected.
Laser frequency modulator for modulating a laser cavity
Erbert, Gaylen V.
1992-01-01
The present invention relates to a laser frequency modulator for modulating a laser cavity. It is known in the prior art to utilize a PZT (piezoelectric transducer) element in combination with a mirror to change the cavity length of a laser cavity (which changes the laser frequency). Using a PZT element to drive the mirror directly is adequate at frequencies below 10 kHz. However, in high frequency applications (100 kHz and higher) PZT elements alone do not provide a sufficient change in the cavity length. The present invention utilizes an ultrasonic concentrator with a PZT element and mirror to provide modulation of the laser cavity. With an ultrasonic concentrator, the mirror element at the end of a laser cavity can move at larger amplitudes and higher frequencies.
Grating light modulator for projection display
Institute of Scientific and Technical Information of China (English)
Jiyong Sun; Shanglian Huang; Jie Zhang; Zhihai Zhang; Yong Zhu
2009-01-01
A novel grating light modulator for projection display is introduced. It consists of an upper moveable grat-ing, a bottom mirror, and four supporting posts between them. The moveable grating and the bottom mir-ror compose a phase grating whose phase difference is controlled by the actuating voltage. When the phase difference is 2kπ, the grating light modulator will switch the incident light to zero-order diffraction; when the phase difference is (2k - 1)π, the grating light modulator will diffract light to first-order diffraction. A 16 × 16 modulator array is fabricated by the surface micromachining technology. The device works well when it is actuated by a voltage with 1-kHz frequency and 10-V amplitude. The fabricated grating light modulator can show blackness and brightness when controlled by the voltage. This modulator has potential applications in projection display system.
DFB laser with attached external intensity modulator
Energy Technology Data Exchange (ETDEWEB)
Marcuse, D. (AT and T Bell Labs. Holmdel, NJ (US))
1990-02-01
This paper presents a theoretical study of the frequency pulling effect exerted on a DFB laser by an external amplitude modulator that is directly attached to it. The modulator consists of a piece of waveguide whose loss is modulated by means of an externally applied voltage. The modulator affects the laser due to residual reflections from its far end which appear as a variable effective reflectivity to the output end of the DFB laser. Modulation affects the magnitude as well as the phase of the effective reflection coefficient presented to the laser due to the coupling of the real and imaginary parts of the effective refractive index of the modulator waveguide. The tuning problem is formulated as an eigenvalue equation for the DFB laser in the presence of an externally attached lossy cavity.
Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.
Leong, Victoria; Goswami, Usha
2015-01-01
When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS) and 90-98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across
Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.
Directory of Open Access Journals (Sweden)
Victoria Leong
Full Text Available When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes. Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS. Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz, syllables (Syllable AM, ~5 Hz and onset-rime units (Phoneme AM, ~20 Hz. We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words, syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS and 90-98% (rhythmically-regular CDS stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across
Photonic Crystal Fano Laser: Terahertz Modulation and Ultrashort Pulse Generation
DEFF Research Database (Denmark)
Mørk, Jesper; Chen, Yaohui; Heuck, Mikkel
2014-01-01
We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers....
Performance Analysis of Different Modulation Formats in Optical Communication
Singh, Kulwinder; Singh, Maninder; Bhatia, Kamaljit Singh; Ryait, Hardeep Singh
2016-06-01
In this paper, we demonstrated the variation of different parameters with quadrature amplitude modulation (QAM) and differential phase shift key (DPSK) sequence generator, which generates modulated signals, in data transmission for communication and analysed that how the difference of these sequence generators effect its resonant frequency (RF) value, eye diagram and electrical constellation representation of the system.
Amplitudes of stellar oscillations the implications for asteroseismology
Kjeldsen, H
1994-01-01
There are no good predictions for the amplitudes expected from solar-like oscillations in other stars. In the absence of a definitive model for convection, which is thought to be the mechanism that excites these oscillations, the amplitudes for both velocity and luminosity measurements must be estimated by scaling from the Sun. In the case of luminosity measurements, even this is difficult because of disagreement over the solar amplitude. This last point has lead us to investigate whether the luminosity amplitude of oscillations (dL/L) can be derived from the velocity amplitude v_osc. Using linear theory and observational data, we show that p-mode oscillations in a large sample of pulsating stars satisfy (dL/L)_bol proportional to v_osc/T_eff. Using this relationship, together with the best estimate of v_osc(Sun) = (23.4 +/- 1.4) cm/s, we estimate the luminosity amplitude of solar oscillations at 550 nm to be dL/L = (4.7 +/- 0.3) ppm. Next we discuss how to scale the amplitude of solar-like (i.e., convectivel...
Frequency adaptation for enhanced radiation force amplitude in dynamic elastography.
Ouared, Abderrahmane; Montagnon, Emmanuel; Kazemirad, Siavash; Gaboury, Louis; Robidoux, André; Cloutier, Guy
2015-08-01
In remote dynamic elastography, the amplitude of the generated displacement field is directly related to the amplitude of the radiation force. Therefore, displacement improvement for better tissue characterization requires the optimization of the radiation force amplitude by increasing the push duration and/or the excitation amplitude applied on the transducer. The main problem of these approaches is that the Food and Drug Administration (FDA) thresholds for medical applications and transducer limitations may be easily exceeded. In the present study, the effect of the frequency used for the generation of the radiation force on the amplitude of the displacement field was investigated. We found that amplitudes of displacements generated by adapted radiation force sequences were greater than those generated by standard nonadapted ones (i.e., single push acoustic radiation force impulse and supersonic shear imaging). Gains in magnitude were between 20 to 158% for in vitro measurements on agar-gelatin phantoms, and 170 to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved more than 4-fold with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy without increasing the risk of damaging tissues and transducer elements.
Bootstrapping Multi-Parton Loop Amplitudes in QCD
Energy Technology Data Exchange (ETDEWEB)
Bern, Zvi; /UCLA; Dixon, Lance J.; /SLAC; Kosower, David A.; /Saclay, SPhT
2005-07-06
The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.
Variable-amplitude oscillatory shear response of amorphous materials
Perchikov, Nathan; Bouchbinder, Eran
2014-06-01
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
Amplitude path corrections for regional phases in China
Energy Technology Data Exchange (ETDEWEB)
Phillips, W.S.; Velasco, A.A.; Taylor, S.R.; Randall, G.E.
1998-12-31
The authors investigate the effectiveness of amplitude path corrections for regional phases on seismic event discrimination and magnitude estimation. Waveform data from digital stations in China for regional, shallow (< 50 km) events were obtained from the IRIS Data Management Center (DMC) for years 1986 to 1996 using the USGS Preliminary Determination of Epicenters (PDE) and the Chinese State Seismological Bureau (SSB) catalogs. For each event, the amplitudes for each regional phase (P{sub n}, P{sub g}, S{sub n}, L{sub g}) were measured, as well as the P{sub g} and L{sub g} coda. Measured amplitudes were corrected for source scaling using estimates of m{sub b} and for distance using a power law that accounts for attenuation and spreading. The amplitude residuals were interpolated and mapped as 2-D amplitude correction surfaces. The authors employ several methods to create the amplitude correction surfaces: a waveguide method, and two interpolation methods (Baysian kriging and a circular moving window mean smoother). They explore the sensitivities of the surfaces to the method and to regional propagation, and apply these surfaces to correct amplitude data to reduce scatter in discrimination ratios and magnitude estimates.
Digital front-end module (DFEM) series; Digital front end module (DFEM) series
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-03-01
The digital front-end module (DFEM) is a module in which the processes ranging from the reception of digitally modulated radiofrequencies to the output of digital IF (Intermediate Frequency) signals or data streams are integrated. Beginning with a module for the MCNS (Multimedia Cable Network System) cable modem which was the first module in this business field approved by the Cable Labs, U.S., Toshiba has developed a series of DFEMs for various digital media for satellites, ground waves, and CATV (Cable Television) systems. The series is characterized by (1) the serialization of DFEMs compatible with various digital modulation techniques such as 8 PSK (Phase Shift Keying), OFDM (Orthogonal Frequency Division Multiplexing), and 256 QAM (Quadrature Amplitude Modulation), (2) easy connection with digital circuits thanks to the high shielding effect, and (3) the achievement of smaller size, higher performance, and lower power consumption. (translated by NEDO)
DEFF Research Database (Denmark)
Griskova, Inga; Mørup, Morten; Parnas, Josef
2007-01-01
The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected by the le......The aim of this study was to investigate, in healthy subjects, the modulation of amplitude and phase precision of the auditory steady-state response (ASSR) to 40 Hz stimulation in two resting conditions varying in the level of arousal. Previously, ASSR measures have shown to be affected...... it pertinent to know the effects of fluctuations in arousal on passive response to gamma-range stimulation. In nine healthy volunteers trains of 40 Hz click stimuli were applied during two conditions: in the "high arousal" condition subjects were sitting upright silently reading a book of interest; in the "low...
Spectroscopic amplitudes and microscopic substructure effects in nucleon capture reactions
Escher, J; Sherif, H S; Escher, Jutta; Jennings, Byron K.; Sherif, Helmy S.
2001-01-01
Spectroscopic amplitudes play an important role in nuclear capture reactions. These amplitudes are shown to include both single-particle and polarization effects: the former through their spatial dependence and the latter through their normalization (the spectroscopic factors). Coupled-channels equations are developed for the spectroscopic amplitudes. These equations serve as a convenient starting point for the derivation of several approximations: Hartree, Hartree-Fock and two different single-particle models. The single-particle models include antisymmetry in different ways, but both miss many-body effects. Therefore, cross sections calculated with either of these models need to be multiplied by the spectroscopic factor.
Scattering Amplitudes: The Most Perfect Microscopic Structures in the Universe
Energy Technology Data Exchange (ETDEWEB)
Dixon, Lance J.; /CERN /SLAC
2011-11-04
This article gives an overview of many of the recent developments in understanding the structure of relativistic scattering amplitudes in gauge theories ranging from QCD to N = 4 super-Yang-Mills theory, as well as (super)gravity. I also provide a pedagogical introduction to some of the basic tools used to organize and illuminate the color and kinematic structure of amplitudes. This article is an invited review introducing a special issue of Journal of Physics A devoted to 'Scattering Amplitudes in Gauge Theories'.
AMPLITUDE FLUCTUATIONS IN CURVATURE SENSING: COMPARISON OF TWO SCHEMES
Directory of Open Access Journals (Sweden)
V. V. Voitsekhovich
2010-01-01
Full Text Available Se investiga la influencia de las uctuaciones en amplitud sobre la calidad de la reconstrución de fases en la medición de la curvatura. Se comparan los dos es- quemas: el que emplea dos imágenes simétricas fuera de foco (esquema de Roddier y el que emplea una sola (esquema de Hickson. Se demuestra que la precisión de la reconstrucción de fases con el esquema de Hickson se ve fuertemente afectada por uctuaciones en amplitud incluso leves, mientras que el esquema de Roddier funciona bien incluso con grandes uctuaciones en amplitud.
Phase Synchronization of Coupled Rossler Oscillators: Amplitude Effect
Institute of Scientific and Technical Information of China (English)
LI Xiao-Wen; ZHENG Zhi-Gang
2007-01-01
Phase synchronization of two linearly coupled Rossler oscillators with parameter misfits is explored.It is found that depending on parameter mismatches,the synchronization of phases exhibits different manners.The synchronization regime can be divided into three regimes.For small mismatches,the amplitude-insensitive regime gives the phase-dominant synchronization; When the parameter misfit increases,the amplitudes and phases of oscillators are correlated,and the amplitudes will dominate the synchronous dynamics for very large mismatches.The lag time among phases exhibits a power law when phase synchronization is achieved.
Fatigue independent amplitude-frequency correlations in EMG signals
Siemienski, A; Klajner, P; Siemienski, Adam; Kebel, Alicja; Klajner, Piotr
2006-01-01
In order to assess fatigue independent amplitude-frequency correlations in EMG signals we asked nineteen male subjects to perform a series of isometric muscular contractions by extensors of the knee joint. Different amplitudes of the signal were due to randomly varying both the joint moment and the overall amplification factor of the EMG apparatus. Mean and median frequency, RMS and mean absolute value were calculated for every combination of joint moment and amplification at the original sampling rate of 5 kHz and at several simulated lower sampling rates. Negative Spearman and Kendall amplitude-frequency correlation coefficients were found, and they were more pronounced at high sampling rates.
Nonlinear Effects in the Amplitude of Cosmological Density Fluctuations
Juszkiewicz, Roman; Fry, J N; Jaffe, Andrew H
2009-01-01
The amplitude of cosmological density fluctuations, $\\sigma_8$, has been studied and estimated by analysing many cosmological observations. The values of the estimates vary considerably between the various probes. However, different estimators probe the value of $\\sigma_8$ in different cosmological scales and do not take into account the nonlinear evolution of the parameter at late times. We show that estimates of the amplitude of cosmological density fluctuations derived from cosmic flows are systematically higher than those inferred at early epochs because of nonlinear evolution at later times. Here we derive corrections to the value of $\\sigma_8$ and compare amplitudes after accounting for this effect.
Compact multigluonic scattering amplitudes with heavy scalars and fermions
Ferrario, P; Talavera, P; Ferrario, Paola; Rodrigo, German; Talavera, Pere
2006-01-01
Combining the Berends-Giele and on-shell recursion relations we obtain an extremely compact expression for the scattering amplitude of a complex scalar-antiscalar pair and an arbitrary number of positive helicity gluons. This is one of the basic building blocks for constructing other helicity configurations from recursion relations. We also show explicity that the all positive helicity gluons amplitude for heavy fermions is proportional to the scalar one, confirming in this way the recently advocated SUSY-like Ward identities relating both amplitudes.
Color-factor symmetry and BCJ relations for QCD amplitudes
Brown, Robert W
2016-01-01
Tree-level $n$-point gauge-theory amplitudes with $n-2k$ gluons and $k$ pairs of (massless or massive) particles in the fundamental (or other) representation of the gauge group are invariant under a set of symmetries that act as momentum-dependent shifts on the color factors in the cubic decomposition of the amplitude. These symmetries lead to gauge-invariant constraints on the kinematic numerators. They also directly imply the BCJ relations among the Melia-basis primitive amplitudes previously obtained by Johansson and Ochirov.
Higher Twist Distribution Amplitudes of the Nucleon in QCD
Braun, V M; Mahnke, N; Stein, E
2000-01-01
We present the first systematic study of higher-twist light-cone distribution amplitudes of the nucleon in QCD. We find that the valence three-quark state is described at small transverse separations by eight independent distribution amplitudes. One of them is leading twist-3, three distributions are twist-4 and twist-5, respectively, and one is twist-6. A complete set of distribution amplitudes is constructed, which satisfies equations of motion and constraints that follow from conformal expansion. Nonperturbative input parameters are estimated from QCD sum rules.
Statistical multiresolution analysis in amplitude-frequency domain
Institute of Scientific and Technical Information of China (English)
SUN Hong; GUAN Bao; Henri Maitre
2004-01-01
A concept of statistical multiresolution analysis in amplitude-frequency domain is proposed, which is to employ the wavelet transform on the statistical character of a signal in amplitude domain. In terms of the theorem of generalized ergodicity, an algorithm to estimate the transform coefficients based on the amplitude statistical multiresolution analysis (AMA) is presented. The principle of applying the AMA to Synthetic Aperture Radar (SAR) image processing is described, and the good experimental results imply that the AMA is an efficient tool for processing of speckled signals modeled by the multiplicative noise.
Symmetry limit properties of decay amplitudes with mirror matter admixtures
Sánchez-Colón, G; Sanchez-Colon, Gabriel; Garcia, Augusto
2006-01-01
We extend our previous analysis on the symmetry limit properties of non-leptonic and weak radiative decay amplitudes of hyperons in a scheme of mirror matter admixtures in physical hadrons to include the two-body non-leptonic decays of $\\Omega^-$ and the two photon and two pion decays of kaons. We show that the so-called parity-conserving amplitudes predicted for all the decays vanish in the strong flavor SU(3) symmetry limit. We also establish the specific conditions under which the corresponding so-called parity-violating amplitudes vanish in the same limit.
The amplitudes and the structure of the charge density wave in YBCO
Kharkov, Y. A.; Sushkov, O. P.
2016-10-01
We find unknown s- and d-wave amplitudes of the recently discovered charge density wave (CDW) in underdoped cuprates. To do so we perform a combined analysis of experimental data for ortho-II YBa2Cu3Oy. The analysis includes data on nuclear magnetic resonance, resonant inelastic X-ray scattering, and hard X-ray diffraction. The amplitude of doping modulation found in our analysis is 3.5 · 10‑3 in a low magnetic field and T = 60 K, the amplitude is 6.5 · 10‑3 in a magnetic field of 30T and T = 1.3 K. The values are in units of elementary charge per unit cell of a CuO2 plane. We show that the data rule out a checkerboard pattern, and we also show that the data might rule out mechanisms of the CDW which do not include phonons.
Vibration amplitude sonoelastography lesion imaging using low-frequency audible vibration
Taylor, Lawrence; Parker, Kevin
2003-04-01
Sonoelastography or vibration amplitude imaging is an ultrasound imaging technique in which low-amplitude, low-frequency shear waves, less than 0.1-mm displacement and 1-kHz frequency, are propagated deep into tissue, while real time Doppler techniques are used to image the resulting vibration pattern. Finite-element studies and experiments on tissue-mimicking phantoms verify that a discrete hard inhomogeneity present within a larger region of soft tissue will cause a decrease in the vibration field at its location. This forms the basis for tumor detection using sonoelastography. Real time relative imaging of the vibration field is possible because a vibrating particle will phase modulate an ultrasound signal. The particle's amplitude is directly proportional to the spectral spread of the reflected Doppler echo. Real time estimation of the variance of the Doppler power spectrum at each pixel allows the vibration field to be imaged. Results are shown for phantom lesions, thermal lesions, and 3-D in vitro and 2-D in vivo prostate cancer. MRI and whole mount histology is used to validate the system accuracy.
An unusual very low-mass high-amplitude pre-main sequence periodic variable
Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William
2012-01-01
We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...
Speckle interferometric sensor to measure low-amplitude high frequency Ocular Microtremor (OMT)
Ryle, James P.; Al-Kalbani, Mohammed; Gopinathan, Unnikrishnan; Boyle, Gerard; Coakley, Davis; Sheridan, John T.
2009-08-01
Ocular microtremor (OMT) is a physiological high frequency (up to 150Hz) low amplitude (150-2500nm) involuntary tremor of the human eye. It is one of the three fixational ocular motions described by Adler and Fliegelman in 1934 as well as microsaccades and drift. Clinical OMT investigations to date have used eye-contacting piezoelectric probes or piezoelectric strain gauges. Before contact can be made, the eye must first be anaesthetised. In some cases, this induces eyelid spasms (blepharospasm) making it impossible to measure OMT. Using the contact probe method, the eye motion is mechanically damped. In addition to this, it is not possible to obtain exact information about the displacement. Results from clinical studies to date have given electrical signal amplitudes from the probe. Recent studies suggest a number of clinical applications for OMT, these include monitoring the depth of anaesthesia of a patient in surgery, prediction of outcome in coma, diagnosis of brainstem death. In addition to this, abnormal OMT frequency content is present in patients with neurological disorders such as Multiple sclerosis and Parkinson's disease. However for ongoing clinical investigations the contact probe method falls short of a non-contact accurate measurement solution. In this paper, we design a compact non contact phase modulating optical fiber speckle interferometer to measure eye motions. We present our calibration results using a calibrated piezoelectric vibration simulator. Digital signal processing is then performed to extract the low amplitude high frequency displacement information.
Tainta, Santiago; Erro, María J.; Garde, María J.; Muriel, Miguel A.
2013-11-01
An electrically reconfigurable time-domain spectral amplitude encoding/decoding scheme is proposed herein. The setup is based on the concept of temporally pulse shaping dual to spatial arrangements. The transmitter is based on a short pulse source and uses two conjugate dispersive fiber gratings and an electro-optic intensity modulator placed in between. Proof of concept results are shown for an optical pulse train operating at 1.25 Gbps using codes from the Hadamard family with a length of eight chips. The system is electrically reconfigurable, compatible with fiber systems, and permits scalability in the size of the codes by modifying only the modulator velocity.
Analysis of Peak-to-Peak Current Ripple Amplitude in Seven-Phase PWM Voltage Source Inverters
Directory of Open Access Journals (Sweden)
Gabriele Grandi
2013-08-01
Full Text Available Multiphase systems are nowadays considered for various industrial applications. Numerous pulse width modulation (PWM schemes for multiphase voltage source inverters with sinusoidal outputs have been developed, but no detailed analysis of the impact of these modulation schemes on the output peak-to-peak current ripple amplitude has been reported. Determination of current ripple in multiphase PWM voltage source inverters is important for both design and control purposes. This paper gives the complete analysis of the peak-to-peak current ripple distribution over a fundamental period for multiphase inverters, with particular reference to seven-phase VSIs. In particular, peak-to-peak current ripple amplitude is analytically determined as a function of the modulation index, and a simplified expression to get its maximum value is carried out. Although reference is made to the centered symmetrical PWM, being the most simple and effective solution to maximize the DC bus utilization, leading to a nearly-optimal modulation to minimize the RMS of the current ripple, the analysis can be readily extended to either discontinuous or asymmetrical modulations, both carrier-based and space vector PWM. A similar approach can be usefully applied to any phase number. The analytical developments for all different sub-cases are verified by numerical simulations.
Simple receiver with soft decision forward error correction for binary amplitude modulation
Konyshev, V. A.; Nanii, O. E.; Treshchikov, V. N.; Ubaydullaev, R. R.
2015-06-01
A simple receiver with soft decision forward error correction (FEC) based on two comparators is proposed. It is shown that the gain in the optical signal-to-noise ratio (OSNR), as compared with conventional receivers with hard decision FEC, can reach 0.5 dB. Some design variants of such detectors are presented.
DEFF Research Database (Denmark)
Ghoreishy, Hoda; Varjani, Ali Yazdian; Mohamadian, Mustafa
2013-01-01
the optimization of the CHB dc sources’ values along with the optimized switching angles. This paper proposes a new SHE-PWAM control strategy and its realization in a drive application. Analysis and simulations are carried out on a fivelevel CHB inverter. Experimental verifications also validate the simulation...
Treating Cancer with Amplitude-Modulated Electromagnetic Fields: A Potential Paradigm Shift, Again?
The Zimmerman et al. (2011) study published here, coupled with the group's two preceding papers (Barbault et al. (2009), Costa et al. (2011)), identify a potential modality for treating tumors at a dramatic reduction in trauma and cost. This set of clinical and explanatory labora...
Elemans, C.P.H.; Muller, M.; Larsen, O.N.; Leeuwen, van J.L.
2009-01-01
Birdsong has developed into one of the important models for motor control of learned behaviour and shows many parallels with speech acquisition in humans. However, there are several experimental limitations to studying the vocal organ – the syrinx – in vivo. The multidisciplinary approach of combini
DEFF Research Database (Denmark)
Elemans, Coen; Muller, Mees; Larsen, Ole Næsbye
2009-01-01
of combining experimental data and mathematical modelling has greatly improved the understanding of neural control and peripheral motor dynamics of sound generation in birds. Here, we present a simple mechanical model of the syrinx that facilitates detailed study of vibrations and sound production. Our model...... resembles the ‘starling resistor', a collapsible tube model, and consists of a tube with a single membrane in its casing, suspended in an external pressure chamber and driven by various pressure patterns. With this design, we can separately control ‘bronchial' pressure and tension in the oscillating...... properties of the distal tube, most likely because of its reflective properties to sound waves. Our model is a gross simplification of the complex morphology found in birds, and more closely resembles mathematical models of the syrinx. Our results confirm several assumptions underlying existing mathematical...
Simple receiver with soft decision forward error correction for binary amplitude modulation
Energy Technology Data Exchange (ETDEWEB)
Konyshev, V A; Treshchikov, V N; Ubaydullaev, R R [T8 LLC, ul.Krasnobogatyrskaya 44/1, office 826, 107076 Moscow (Russian Federation); Nanii, O E [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation)
2015-06-30
A simple receiver with soft decision forward error correction (FEC) based on two comparators is proposed. It is shown that the gain in the optical signal-to-noise ratio (OSNR), as compared with conventional receivers with hard decision FEC, can reach 0.5 dB. Some design variants of such detectors are presented. (laser applications and other topics in quantum electronics)
DEFF Research Database (Denmark)
Isaeva, Olga B.; Kuznetsov, Sergey P.; Mosekilde, Erik
2011-01-01
The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current...
Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links
DEFF Research Database (Denmark)
Iglesias Olmedo, Miguel; Zuo, Tianjian; Jensen, Jesper Bevensee;
2014-01-01
Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optic...
Cavitation Generated by Amplitude Modulated HIFU: Investigation on the Inertial Cavitation Threshold
Gilles, Bruno; Saletes, Izella; Béra, Jean-Christophe
2007-05-01
An experimental investigation on cavitation threshold was carried out in order to compare monochromatic and dichromatic ultrasound excitations in their ability to generate inertial cavitation on a target. Using a cavitation activity spectral criterion, a precise inertial cavitation threshold could be extracted in every case considered. The results showed that these thresholds could be very different depending on the type of excitation used. More precisely, for the parameters investigated in the present study, the ratio between monochromatic and dichromatic thresholds decreased when cavitation thresholds are increased. The potential application of this study to purely ultrasonic thrombolysis is discussed.
Herbicide toxicity on river biofilms assessed by pulse amplitude modulated (PAM) fluorometry
Energy Technology Data Exchange (ETDEWEB)
Kim Tiam, Sandra, E-mail: sandra.kimtiam@gmail.com [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France); Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Laviale, Martin [Departamento de Biologia and CESAM – Centro de Estudos do Ambiente e do Mar Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-Sur-Mer (France); CNRS, UMR 7093, LOV, Observatoire Océanologique, F-06230, Villefranche-Sur-Mer France (France); Feurtet-Mazel, Agnès [Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Jan, Gwilherm [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France); Gonzalez, Patrice [Université de Bordeaux, EPOC, UMR 5805, F-33120 Arcachon (France); Mazzella, Nicolas; Morin, Soizic [Irstea, UR EABX, 50 Avenue de Verdun, F-33612, Cestas Cedex (France)
2015-08-15
Highlights: • Rapid Light Curves were shown to be early markers of toxicant exposure. • Diuron and norflurazon effects were significant at environmentally realistic concentrations. • Toxic effects in intact biofilms seem to be delayed compared to disrupted biofilms. - Abstract: The use of Rapid light curves (RLCs) as a toxicity endpoint for river biofilms was examined in this study and compared to “classical fluorescence parameters” i.e. minimal fluorescence (F{sub 0}), optimal and effective quantum yields of photosystem II (F{sub v}/F{sub m} and Φ{sub PSII}). Measurements were performed after exposure to five concentrations of diuron (from 0.3 to 33.4 μg L{sup −1}), its main degradation product (DCPMU) (from 1.0 to 1014 μg L{sup −1}) and norflurazon (from 0.6 to 585 μg L{sup −1}) with the lowest exposure concentrations corresponding to levels regularly encountered in chronically contaminated sites. Biofilm responses were evaluated after 1, 5, 7 and 14 days of exposure to the different toxicants. Overall, the responses of both “classical fluorescence parameters” and RLC endpoints were highly time dependent and related to the mode of action of the different compounds. Interestingly, parameters calculated from RLCs (α, ETR{sub max} and I{sub k}) were useful early markers of pesticide exposure since they revealed significant effects of all the tested toxicants from the first day of exposure. In comparison, classical fluorescence endpoints (F{sub 0} and F{sub v}/F{sub m}) measured at day 1 were only affected in the DCPMU treatment. Our results demonstrated the interest of RLCs as early markers of toxicant exposure particularly when working with toxicants with less specific mode of action than PSII inhibitors.
Brötzner, Christina P; Klimesch, Wolfgang; Kerschbaum, Hubert H
2015-01-21
Ovarian sex hormones modulate neuronal circuits not directly involved in reproductive functions. In the present study, we investigated whether endogenous fluctuations of estradiol and progesterone during the menstrual cycle are associated with early cortical processing stages in a cued spatial attention paradigm. EEG was monitored while young women responded to acoustically cued visual stimuli. Women with large mean amplitude of the event-related potential (ERP) (80-120 ms following visual stimuli) responded faster to visual stimuli. In luteal women, mean amplitude of the ERP as well as alpha amplitude, an indicator of attentional modulation, correlated positively with progesterone. Further, cerebral asymmetry in ERP amplitude in the alpha frequency band following target presentation was restricted to luteal women. Critically, early follicular women responded slower to right hemifield compared to left hemifield targets. In late follicular or luteal women, we did not detect a right hemifield disadvantage. Progesterone correlated negatively with RTs in luteal women. Therefore, whereas our behavioral data indicate a functional cerebral asymmetry in early follicular women, EEG recording reveal a physiological cerebral hemisphere asymmetry in the alpha frequency band in luteal women. We assume that a progesterone-associated enhancement in synchronization of synaptic activity in the alpha frequency band in luteal women improves early categorization of visual targets in a cued spatial attention paradigm.
Tu, Yiheng; Zhang, Zhiguo; Tan, Ao; Peng, Weiwei; Hung, Yeung Sam; Moayedi, Massieh; Iannetti, Gian Domenico; Hu, Li
2016-02-01
Ongoing fluctuations of intrinsic cortical networks determine the dynamic state of the brain, and influence the perception of forthcoming sensory inputs. The functional state of these networks is defined by the amplitude and phase of ongoing oscillations of neuronal populations at different frequencies. The contribution of functionally different cortical networks has yet to be elucidated, and only a clear dependence of sensory perception on prestimulus alpha oscillations has been clearly identified. Here, we combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) in a large sample of healthy participants to investigate how ongoing fluctuations in the activity of different cortical networks affect the perception of subsequent nociceptive stimuli. We observed that prestimulus EEG oscillations in the alpha (at bilateral central regions) and gamma (at parietal regions) bands negatively modulated the perception of subsequent stimuli. Combining information about alpha and gamma oscillations predicted subsequent perception significantly more accurately than either measure alone. In a parallel experiment, we found that prestimulus fMRI activity also modulated the perception of subsequent stimuli: perceptual ratings were higher when the BOLD signal was higher in nodes of the sensorimotor network and lower in nodes of the default mode network. Similar to what observed in the EEG data, prediction accuracy was improved when the amplitude of prestimulus BOLD signals in both networks was combined. These findings provide a comprehensive physiological basis to the idea that dynamic changes in brain state determine forthcoming behavioral outcomes. Hum Brain Mapp 37:501-514, 2016. © 2015 Wiley Periodicals, Inc.
Non-perturbative QCD amplitudes in quenched and eikonal approximations
Energy Technology Data Exchange (ETDEWEB)
Fried, H.M. [Physics Department, Brown University, Providence, RI 02912 (United States); Grandou, T., E-mail: Thierry.Grandou@inln.cnrs.fr [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France); Sheu, Y.-M., E-mail: ymsheu@alumni.brown.edu [Université de Nice-Sophia Antipolis, Institut Non Linéaire de Nice, UMR 6618 CNRS 7335, 1361 routes des Lucioles, 06560 Valbonne (France)
2014-05-15
Even though approximated, strong coupling non-perturbative QCD amplitudes remain very difficult to obtain. In this article, in eikonal and quenched approximations at least, physical insights are presented that rely on the newly-discovered property of effective locality. The present article also provides a more rigorous mathematical basis for the crude approximations used in the previous derivation of the binding potential of quarks and nucleons. Furthermore, the techniques of Random Matrix calculus along with Meijer G-functions are applied to analyze the generic structure of fermionic amplitudes in QCD. - Highlights: • We discuss the physical insight of effective locality to QCD fermionic amplitudes. • We show that an unavoidable delta function goes along with the effective locality property. • The generic structure of QCD fermion amplitudes is obtained through Random Matrix calculus.
Quantized amplitudes in a nonlinear resonant electrical circuit
Cretin, B
2008-01-01
We present a simple nonlinear resonant analog circuit which demonstrates quantization of resonating amplitudes, for a given excitation level. The system is a simple RLC resonator where C is an active capacitor whose value is related to the current in the circuit. This variation is energetically equivalent to a variation of the potential energy and the circuit acts as a pendulum in the gravitational field. The excitation voltage, synchronously switched at the current frequency, enables electrical supply and keeping the oscillation of the system. The excitation frequency has been set to high harmonic of the fundamental oscillation so that anisochronicity can keep constant the amplitude of the circuit voltage and current. The behavior of the circuit is unusual: different stable amplitudes have been measured depending on initial conditions and excitation frequency, for the same amplitude of the excitation. The excitation frequency is naturally divided by the circuit and the ratio is kept constant without external...
Laser beam complex amplitude measurement by phase diversity.
Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph
2014-02-24
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.
Some tree-level string amplitudes in the NSR formalism
Becker, Katrin; Melnikov, Ilarion V; Robbins, Daniel; Royston, Andrew B
2015-01-01
We calculate tree level scattering amplitudes for open strings using the NSR formalism. We present a streamlined symmetry-based and pedagogical approach to the computations, which we first develop by checking two-, three-, and four-point functions involving bosons and fermions. We calculate the five-point amplitude for massless gluons and find agreement with an earlier result by Brandt, Machado and Medina. We then compute the five-point amplitudes involving two and four fermions respectively, the general form of which has not been previously obtained in the NSR formalism. The results nicely confirm expectations from the supersymmetric $F^4$ effective action. Finally we use the prescription of Kawai, Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.
Cluster Functions and Scattering Amplitudes for Six and Seven Points
Harrington, Thomas
2015-01-01
Scattering amplitudes in planar super-Yang-Mills theory satisfy several basic physical and mathematical constraints, including physical constraints on their branch cut structure and various empirically discovered connections to the mathematics of cluster algebras. The power of the bootstrap program for amplitudes is inversely proportional to the size of the intersection between these physical and mathematical constraints: ideally we would like a list of constraints which determine scattering amplitudes uniquely. We explore this intersection quantitatively for two-loop six- and seven-point amplitudes by providing a complete taxonomy of the Gr(4,6) and Gr(4,7) cluster polylogarithm functions of arXiv:1401.6446 at weight 4.
Scattering Amplitudes/Wilson Loop Duality In ABJM Theory
Bianchi, Marco S; Mauri, Andrea; Penati, Silvia; Santambrogio, Alberto
2011-01-01
For N=6 superconformal Chern-Simons-matter theories in three dimensions, by a direct superspace Feynman diagram approach, we compute the two-loop four-point scatteringa amplitude with external chiral matter fields. We find that the result is in perfect agreement with the two-loop result for a light-like four-polygon Wilson loop. This is a nontrivial evidence of the scattering amplitudes/Wilson loop duality in three dimensions. Moreover, both the IR divergent and the finite parts of our two-loop result agree with a BDS-like ansatz for all-loop amplitudes where the scaling function is given in terms of the N=4 SYM one, according to the conjectured Bethe equations for ABJM. Consequently, we are able to make a prediction for the four-loop correction to the amplitude. We also discuss the dual conformal invariance of the two-loop result.
BFKL approach and 2->5 MHV amplitude
Bartels, J; Lipatov, L N; Prygarin, A
2011-01-01
We study MHV amplitude for the 2 -> 5 scattering in the multi-Regge kinematics. The Mandelstam cut correction to the BDS amplitude is calculated in the leading logarithmic approximation (LLA) and the corresponding remainder function is given to any loop order in a closed integral form. We show that the LLA remainder function at two loops for 2 -> 5 amplitude can be written as a sum of two 2 -> 4 remainder functions due to recursive properties of the leading order impact factors. We also make some generalizations for the MHV amplitudes with more external particles. The results of the present study are in agreement with all leg two loop symbol derived by Caron-Huot as shown in a parallel paper of one of the authors with collaborators.
The QCD triple Pomeron coupling from string amplitudes
Bialas, A; Peschanski, R
1998-01-01
Using the recent solution of the triple Pomeron coupling in the QCD dipole picture as a closed string amplitude with six legs, its analytical form in terms of hypergeometric functions and numerical value are derived.
Amplitude Equation for Instabilities Driven at Deformable Surfaces - Rosensweig Instability
Pleiner, Harald; Bohlius, Stefan; Brand, Helmut R.
2008-11-01
The derivation of amplitude equations from basic hydro-, magneto-, or electrodynamic equations requires the knowledge of the set of adjoint linear eigenvectors. This poses a particular problem for the case of a free and deformable surface, where the adjoint boundary conditions are generally non-trivial. In addition, when the driving force acts on the system via the deformable surface, not only Fredholm's alternative in the bulk, but also the proper boundary conditions are required to get amplitude equations. This is explained and demonstrated for the normal field (or Rosensweig) instability in ferrofluids as well as in ferrogels. An important aspect of the problem is its intrinsic dynamic nature, although at the end the instability is stationary. The resulting amplitude equation contains cubic and quadratic nonlinearities as well as first and (in the gel case) second order time derivatives. Spatial variations of the amplitudes cannot be obtained by using simply Newell's method in the bulk.
High Amplitude (delta)-Scutis in the Large Magellanic Cloud
Energy Technology Data Exchange (ETDEWEB)
Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M
2010-01-25
The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).
High Amplitude \\delta-Scutis in the Large Magellanic Cloud
Garg, A; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeï¬, N B; Welch, D L; Wood-Vasey, W M
2010-01-01
We present 2323 High-Amplitude \\delta-Scuti (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).
Amplitude fluctuations in the Berezinskii-Kosterlitz-Thouless phase
Jakubczyk, Pawel
2016-01-01
We analyze the interplay of thermal amplitude and phase fluctuations in a $U(1)$ symmetric two-dimensional $\\phi^4$-theory. To this end, we derive coupled renormalization group equations for both types of fluctuations. Discarding the amplitude fluctuations, the expected Berezinskii-Kosterlitz-Thouless (BKT) phase characterized by a finite phase stiffness and an algebraic decay of order parameter correlations is recovered at low temperatures. However, in contrast to the widespread expectation, amplitude fluctuations are not innocuous, since their mass vanishes due to a strong renormalization by phase fluctuations. Even at low temperatures the amplitude fluctuations lead to a logarithmic renormalization group flow of the phase stiffness, which ultimately vanishes. Hence, the BKT phase is strictly speaking replaced by a symmetric phase with a finite correlation length, which is however exponentially large at low temperatures. The vortex-driven BKT transition is then rounded to a crossover, which may be practical...
Experimental observation of partial amplitude death in coupled chaotic oscillators
Institute of Scientific and Technical Information of China (English)
Liu Wei-Qing; Yang Jun-Zhong; Xiao Jing-Hua
2006-01-01
The dynamics of coupled Lorenz circuits is investigated experimentally. The partial amplitude death reported in Phys. Rev. E 72, 057201 (2005) is verified by physical experiments with electronic circuits. With the increase of coupling constant, the coupled circuits undergo the transition from the breakdown of both the reflection symmetry and the translational symmetry to the partial amplitude death. Its stability is also confirmed by analysing the effects of noise.
Subharmonic and fundamental high amplitude excitation of an axisymmetric jet
Raman, Ganesh; Rice, Edward J.
1989-01-01
The effect of simultaneous excitation at the fundamental and subharmonic frequencies on the behavior of a circular jet shear layer is studied. Attention is given to the effect of the initial phase difference, the Strouhal number pair, and amplitudes of the fundamental and subharmonic tones. High-amplitude excitation devices which can provide a wide range of forcing conditions when used in conjunction with equipment that produces complex waveforms are used.
Weak measurements measure probability amplitudes (and very little else)
Sokolovski, D.
2016-04-01
Conventional quantum mechanics describes a pre- and post-selected system in terms of virtual (Feynman) paths via which the final state can be reached. In the absence of probabilities, a weak measurement (WM) determines the probability amplitudes for the paths involved. The weak values (WV) can be identified with these amplitudes, or their linear combinations. This allows us to explain the "unusual" properties of the WV, and avoid the "paradoxes" often associated with the WM.
Leading Twist Parton Distribution Amplitudes in Heavy Vector Mesons
Directory of Open Access Journals (Sweden)
Gao Fei
2016-01-01
Full Text Available We employed QCD’s Dyson-Schwinger equations (DSEs for heavy quarks and obtained the leading twist parton distribution amplitudes (PDAs in heavy vector mesons J/Ψ and ϒ. We found that all of the amplitudes are narrower than the asymptotic form, while they deviate from δ function. This indicates that the interaction between the two continent quarks are still important in the mesons consisted of charm and bottom quarks.
Lectures on scattering amplitudes via AdS/CFT
Energy Technology Data Exchange (ETDEWEB)
Alday, L.F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University (Netherlands)
2008-08-05
We review recent progress on computing scattering amplitudes of planar N=4 super Yang-Mills at strong coupling by using the AdS/CFT duality. We consider in detail the scattering of four gluons and do explicit computations by using both, dimensional regularization and a cut-off in the radial direction. The later scheme is particularly appropriate for understanding the conformal properties of the amplitudes. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Bootstrapping a Five-Loop Amplitude from Steinmann Relations
Caron-Huot, Simon; McLeod, Andrew; von Hippel, Matt
2016-01-01
The analytic structure of scattering amplitudes is restricted by Steinmann relations, which enforce the vanishing of certain discontinuities of discontinuities. We show that these relations dramatically simplify the function space for the hexagon function bootstrap in planar maximally supersymmetric Yang-Mills theory. Armed with this simplification, along with the constraints of dual conformal symmetry and Regge exponentiation, we obtain the complete five-loop six-particle amplitude.
Three-point disc amplitudes in the RNS formalism
Becker, Katrin; Becker, Melanie; Robbins, Daniel; Su, Ning
2016-06-01
We calculate all tree level string theory vacuum to Dp-brane disc amplitudes involving an arbitrary RR-state and two NS-NS vertex operators. This computation was earlier performed by K. Becker, Guo, and Robbins for the simplest case of a RR-state of type C (p - 3). Here we use the aid of a computer to calculate all possible three-point amplitudes involving a RR-vertex operator of type C (p + 1 + 2 k).
Effect Of Vibration Amplitude Level On Seated Occupant Reaction Time
Directory of Open Access Journals (Sweden)
Amzar Azizan
2015-08-01
Full Text Available The past decade has seen the rapid development of vibration comfort in the automotive industry. However little attention has been paid to vibration drowsiness. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment total transmitted acceleration measured at interfaces between the seat cushion and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude low vibration amplitude and medium vibration amplitude for 20-minutes in separate days. For the purpose of drowsiness measurement volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS before vibration every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. The results of this investigation suggest that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together these findings suggest a role of vibration in promoting drowsiness especially at higher vibration amplitude.
Reflection Amplitudes of ADE Toda Theories and Thermodynamic Bethe Ansatz
Ahn, C; Kim, C; Rim, C; Yang, B; Ahn, Changrim; Kim, Chanju; Rim, Chaiho; Yang, Bedl
2000-01-01
We study the ultraviolet asymptotics in affine Toda theories. These models are considered as perturbed non-affine Toda theories. We calculate the reflection amplitudes, which relate different exponential fields with the same quantum numbers. Using these amplitudes we derive the quantization condition for the vacuum wave function, describing zero-mode dynamics, and calculate the UV asymptotics of the effective central charge. These asymptotics are in a good agreement with thermodynamic Bethe ansatz results.
Energy Technology Data Exchange (ETDEWEB)
Saeki, T. [Japan National Oil Corporation, Tokyo (Japan). Technology Research Center
1996-10-01
For the seismic reflection method conducted on the ground surface, generator and geophone are set on the surface. The observed waveforms are affected by the ground surface and surface layer. Therefore, it is required for discussing physical properties of the deep underground to remove the influence of surface layer, preliminarily. For the surface consistent amplitude correction, properties of the generator and geophone were removed by assuming that the observed waveforms can be expressed by equations of convolution. This is a correction method to obtain records without affected by the surface conditions. In response to analysis and correction of waveforms, wavelet conversion was examined. Using the amplitude patterns after correction, the significant signal region, noise dominant region, and surface wave dominant region would be separated each other. Since the amplitude values after correction of values in the significant signal region have only small variation, a representative value can be given. This can be used for analyzing the surface consistent amplitude correction. Efficiency of the process can be enhanced by considering the change of frequency. 3 refs., 5 figs.
A proposed physical analog for a quantum probability amplitude
Boyd, Jeffrey
What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.
Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E
2013-10-22
A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.
Optical Modulation Characteristics and Applications of Liquid Crystal Televisions
1992-05-18
than binary or ternary, phase filters . The phase modulation present in the LCTV can be isolated from the amplitude modulation to some degree with the...however, it is known that the LCTV was used to display only a 128 x 128 binary phase filter . The research presented in this report will soon be...extended to use the analog phase modulation characteristics of LCTVs to encode an analog phase filter . Little attention has been given to using phase-encoded
Irreducible Specht modules are signed Young modules
Hemmer, David J.
2005-01-01
Recently Donkin defined signed Young modules as a simultaneous generalization of Young and twisted Young modules for the symmetric group. We show that in odd characteristic, if a Specht module $S^\\lambda$ is irreducible, then $S^\\lambda$ is a signed Young module. Thus the set of irreducible Specht modules coincides with the set of irreducible signed Young modules. This provides evidence for our conjecture that the signed Young modules are precisely the class of indecomposable self-dual module...