WorldWideScience

Sample records for amplifying planar glass

  1. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar lightw...

  2. Er3+/Yb3+ Codoped Phosphate Glass for Ion-Exchanged Planar Waveguide Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Shilong Zhao; Baoyu Chen; Zhuping Liu; Lili Hu

    2003-01-01

    A novel Er3+/Yb3+ codoped phosphate glass was developed, which exhibited good chemical durability in molten salts and excellent spectroscopic properties. Preliminary results of ion exchange at different time and temperature, and with varying melt concentrations indicated that WM4 glass was suitable for ion-exchange experiments and there was no deterioration of surface quality.

  3. Er~(3+)/Yb~(3+) Codoped Phosphate Glass for Ion-Exchanged Planar Waveguide Amplifiers

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel Er3+/Yb3+ codoped phosphate glass was developed, which exhibited good chemical durability in molten salts and excellent spectroscopic properties. Preliminary results of ion exchange at different time and temperature, and with varying melt concentrations indicated that WM4 glass was suitable for ion-exchange experiments and there was no deterioration of surface quality.

  4. Compact cladding-pumped planar waveguide amplifier and fabrication method

    Science.gov (United States)

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  5. Erbium Doped Phosphate Glass For Optical Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    R.S.F.Wong; S.Q.Man; E.Y.B.Pun; P.S.Chung

    2000-01-01

    @@ Erbium (Er3+) doped phosphate glasses was prepared and the optical properties of these glasses were investigated. The emission parameters were calculated using the Judd-Ofelt treatment. The radiative lifetime of the 4I13/2 level is calculated to be 7.2ms. The fluorescence lifetime is measured to be 6ms, and the quantum efficiency is estimated to be 83%. Ion-exchanged optical waveguides were fabricated in these glasses by using pure KNO3 meet at 370℃, and diluted AgNO3 molten salt at 270℃. It was found that the lower temperature diluted AgNO3 molten salt is better for the ion exchange process. Planar waveguide with 5 modes at the 633nm and 2 modes at the 1550nm was demonstrated using the diluted AgNO3. Our results show that phosphate glass is a potential candidate for the 1.5μm optical amplifier device.

  6. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... fluorescence level. In addition the first measurement of the diffusion coefficient of erbim in silica is presented and it is shown that erbium rich precipitates are formed in areas of high erbium concentration. The manufacturing of planar waveguide structures using RIE (Reactive Ion Etching) is described...... concentration and the relative erbium/aluminium contenct. Waveguides with a gain factor of 0.3 dB/cm are presented and used to fabricate a loss less lightwave circuit consisting of an amplifier-and a splitter section. It is shown that the refractive index of the fabricated amplifying waveguides can be changed...

  7. Fluorescent Er2O3 doped lead silicate glass for optical amplifiers

    OpenAIRE

    Mennig, Martin; Niegisch, Nico; Kalleder, Axel; Schmidt, Helmut K.; Graf, Jürgen; Sautter, Helmut

    1999-01-01

    A hot-pressing method is investigated for the fabrication of a planar optical waveguide amplifier. Therefore commercially available LaSFN15 produced by Schott is used as substrate and cladding material in combination with Er2O3 doped lead silicate glass as core material, synthesised by a hybrid sol-gel melting technique. The lead silicate glass is selected for its low melting temperature required for the waveguide processing. The core glass is adapted to the LaSFN15 with respect to the therma...

  8. Microstructured apertures in planar glass substrates for ion channel research.

    Science.gov (United States)

    Fertig, Niels; George, Michael; Klau, Michèle; Meyer, Christine; Tilke, Armin; Sobotta, Constanze; Blick, Robert H; Behrends, Jan C

    2003-01-01

    We have developed planar glass chip devices for patch clamp recording. Glass has several key advantages as a substrate for planar patch clamp devices. It is a good dielectric, is well-known to interact strongly with cell membranes and is also a relatively in-expensive material. In addition, it is optically neutral. However, microstructuring processes for glass are less well established than those for silicon-based substrates. We have used ion-track etching techniques to produce micron-sized apertures into borosilicate and quartz-glass coverslips. These apertures, which can be easily produced in arrays, have been used for high resolution recording of single ion channels as well as for whole-cell current recordings from mammalian cell lines. An additional attractive application that is greatly facilitated by the combination of planar geometry with the optical neutrality of the substrate is single-molecule fluorescence recording with simultaneous single-channel measurements.

  9. Planar glass devices for efficient periodic poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase-matching wav......We demonstrate that frequency-converting devices of high quality can be realised with glass poling. The devices, made with silica-on-silicon technology, are poled with periodic, embedded electrodes, and used for second-harmonic generation. We obtain precise control of the quasi phase......-matching wavelength and bandwidth, and a normalised conversion efficiency of 1.4×10-3 %/W/cm2 which, to our knowledge, is the highest obtained so far with periodic glass poling....

  10. Power neodymium-glass amplifier of a repetitively pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Aleksandr V; Gaganov, V E; Garanin, Sergey G; Zhidkov, N V; Krotov, V A; Martynenko, S P; Pozdnyakov, E V; Solomatin, I I [Russian Federal Nuclear Center ' All-Russian Research Institute of Experimental Physics' , Sarov, Nizhnii Novgorod region (Russian Federation)

    2011-11-30

    A neodymium-glass diode-pumped amplifier with a zigzag laser beam propagation through the active medium was elaborated; the amplifier is intended for operation in a repetitively pulsed laser. An amplifier unit with an aperture of 20 Multiplication-Sign 25 mm and a {approx}40-cm long active medium was put to a test. The energy of pump radiation amounts to 140 J at a wavelength of 806 nm for a pump duration of 550 {mu}s. The energy parameters of the amplifier were experimentally determined: the small-signal gain per pass {approx}3.2, the linear gain {approx}0.031 cm{sup -1} with a nonuniformity of its distribution over the aperture within 15%, the stored energy of 0.16 - 0.21 J cm{sup -3}. The wavefront distortions in the zigzag laser-beam propagation through the active element of the amplifier did not exceed 0.4{lambda} ({lambda} = 0.63 {mu}m is the probing radiation wavelength).

  11. Modeling of a planar FEL amplifier with a sheet relativistic electron beam

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitsky, S L

    2002-01-01

    The paper is devoted to the modeling of a 75 GHz planar FEL-amplifier. This amplifier is driven by a sheet electron beam (1 MeV, 2 kA) produced by the U-3 accelerator (BINP). Different approaches based on non-averaged self-consistent system of equations as well as the averaged equations were used for the description of interaction between the electron beam and the TEM-mode of the planar waveguide. Both methods demonstrated similar results with maximum gains 24-25 db, corresponding to an output power of about 250-300 MW and an efficiency of 14-17%. The 2-D version of the PIC-code KARAT was used for additional modeling. KARAT-based simulations demonstrated a maximum gain up to 22 db, output power 160-170 MW and an efficiency of 9%. The reduction of gain can be explained by the space-charge effects.

  12. Simulation of planar FEL-amplifier with tape relativistic electron beam

    CERN Document Server

    Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitskij, S L

    2001-01-01

    The simulation of the planar microwave (4 mm) amplifier on the basis of the powerful laser on free electrons (FEL- amplifier) is carried out. The tape relativistic electron beam with the energy up to 1 MeV and operating current up to 2 kA is formed by the Y-3 accelerators. The complete nonaveraging system of the self-consistent equations describing the process of interaction of the particles, moving in the plane ondulator field is obtained. Thereafter the averaging of the above-mentioned equations was carried out and the linear and nonlinear stages of the amplification process were studied. The additional simulation of the FEL-amplifier is carried out on the basis of the two-dimensional version of the KARAT PIC-code. It is shown that the applied approaches give sufficiently close results

  13. Design and Simulation of the Recirculating Crossed-Field Planar Amplifier

    Science.gov (United States)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Simon, David; Lau, Yue Ying; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is a high power microwave device adapted from the Recirculating Planar Magnetron1, developed at the University of Michigan. A travelling-wave, rectangular, meander-line design has been developed in simulation that amplifies a 1.3 MW signal at 3 GHz to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulation also shows that the RPCFA is zero-drive stable, e.g., output of any appreciable power is dependent on the presence of an input RF signal. The amplifier was designed to be driven by the Michigan Electron Long Beam Accelerator (MELBA), which is currently configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. Taking these parameters into consideration, a slow wave structure, cathode, and housing were designed using the finite element frequency domain code Ansys HFSS. The cold tube characteristics and RF field structures were then verified using the particle in cell code, MAGIC. Hot tube simulations on MAGIC were also run to calculate the RPCFA's performance, including gain and efficiency. Future work will include building a prototype RPCFA, cold testing, and performing experiments to verify the hot tube simulations. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  14. Tunneling Planar Hall Effect in Topological Insulators: Spin Valves and Amplifiers

    Science.gov (United States)

    Scharf, Benedikt; Matos-Abiague, Alex; Han, Jong E.; Hankiewicz, Ewelina M.; Žutić, Igor

    2016-10-01

    We investigate tunneling across a single ferromagnetic barrier on the surface of a three-dimensional topological insulator. In the presence of a magnetization component along the bias direction, a tunneling planar Hall conductance (TPHC), transverse to the applied bias, develops. Electrostatic control of the barrier enables a giant Hall angle, with the TPHC exceeding the longitudinal tunneling conductance. By changing the in-plane magnetization direction, it is possible to change the sign of both the longitudinal and transverse differential conductance without opening a gap in the topological surface state. The transport in a topological-insulator-ferromagnet junction can, thus, be drastically altered from a simple spin valve to an amplifier.

  15. All-atom Molecular-level Computational Simulations of Planar Longitudinal Shockwave Interactions with Polyurea, Soda-lime Glass and Polyurea/Glass Interfaces

    Science.gov (United States)

    2014-01-01

    All-atom molecular-level computational simulations of planar longitudinal shockwave interactions with polyurea, soda- lime glass and polyurea/glass...of this paper is to study the mechanical response of polyurea, soda- lime glass (glass, for short), polyurea/glass/polyurea and glass/polyurea/glass...methods, the interaction of shockwaves with material boundaries. Keywords Polyurea, Material interface, Shockwaves, Soda- lime glass Paper type Research

  16. Fabrication and characterization of Er+3 doped SiO2/SnO2 glass-ceramic thin films for planar waveguide applications

    Science.gov (United States)

    Guddala, S.; Chiappini, A.; Armellini, C.; Turell, S.; Righini, G. C.; Ferrari, M.; Narayana Rao, D.

    2015-02-01

    Glass-ceramics are a kind of two-phase materials constituted by nanocrystals embedded in a glass matrix and the respective volume fractions of crystalline and amorphous phase determine the properties of the glass-ceramics. Among these properties transparency is crucial in particular when confined structures, such as, dielectric optical waveguides, are considered. Moreover, the segregation of dopant rare-earth ions, like erbium, in low phonon energy crystalline medium makes these structures more promising in the development of waveguide amplifiers. Here we are proposing a new class of low phonon energy tin oxide semiconductor medium doped silicate based planar waveguides. Er3+ doped (100-x) SiO2-xSnO2 (x= 10, 20, 25 and 30mol%), glass-ceramic planar waveguide thin films were fabricated by a simple sol-gel processing and dip coating technique. XRD and HRTEM studies indicates the glass-ceramic phase of the film and the dispersion of ~4nm diameter of tin oxide nanocrystals in the amorphous phase of silica. The spectroscopic assessment indicates the distribution of the dopant erbium ions in the crystalline medium of tin oxide. The observed low losses, 0.5±0.2 dB/cm, at 1.54 μm communication wavelength makes them a quite promising material for the development of high gain integrated optical amplifiers.

  17. Microfabricated planar glass gas chromatography with photoionization detection.

    Science.gov (United States)

    Lewis, Alastair C; Hamilton, Jacqueline F; Rhodes, Christopher N; Halliday, Jaydene; Bartle, Keith D; Homewood, Philip; Grenfell, Robin J P; Goody, Brian; Harling, Alice M; Brewer, Paul; Vargha, Gergely; Milton, Martin J T

    2010-01-29

    We report the development of a microfabricated gas chromatography system suitable for the separation of volatile organic compounds (VOCs) and compatible with use as a portable measurement device. Hydrofluoric acid etching of 95x95mm Schott B270 wafers has been used to give symmetrical hemi-spherical channels within a glass substrate. Two matching glass plates were subsequently cold bonded with the channels aligned; the flatness of the glass surfaces resulted in strong bonding through van der Waals forces. The device comprised gas fluidic interconnections, injection zone and 7.5 and 1.4m long, 320microm internal diameter capillaries. Optical microscopy confirmed the capillaries to have fully circular channel profiles. Direct column heating and cooling could be achieved using a combination of resistive heaters and Peltier devices. The low thermal conductivity of glass allowed for multiple uniform temperature zones to be achieved within a single glass chip. Temperature control over the range 10-200 degrees C was achieved with peak power demand of approximately 25W. The 7.5m capillary column was static coated with a 2microm film of non-polar dimethylpolysiloxane stationary phase. A standard FID and a modified lightweight 100mW photoionization detector (PID) were coupled to the column and performance tested with gas mixtures of monoaromatic and monoterpene species at the parts per million concentration level. The low power GC-PID device showed good performance for a small set of VOCs and sub ng detection sensitivity to monoaromatics.

  18. On the optimal design of glass grid shells with planar quadrilateral elements

    DEFF Research Database (Denmark)

    Sassone, Mario; Pugnale, Alberto

    2010-01-01

    This paper presents an optimization procedure for the solution of the planarity problem, a requirement of grid shells with four or more sides faces that need of having four adjacent nodes laying on a plane in order to use plane glass slabs as cladding elements. It can be satisfied by applying...

  19. Femtosecond Optical Parametric Amplifier for Petawatt Nd:Glass Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Min; QIAN Lie-Jia; YUAN Peng; LUO Hang; ZHU He-Yuan; ZHU Qi-Hua; WEI Xiao-Feng; FAN Dian-Yuan

    2006-01-01

    @@ We study a femtosecond Ti:sapphire laser pumped optical parametric amplifier (OPA) at 1053nm. The OPA generates stable signal pulses with duration smaller than 100 fs, wavelength drift smaller than 0.5nm, and pulse-to-pulse fluctuation of about ±4%, by employing an external seeder. In a terawatt laser pumped large-aperture LiNbO3 OPA, pulse energy at signal has been scaled up to 4mJ. This m J-class femtosecond OPA at 1053nm presents a feasible alternative to optical parametric chirped-pulse amplification, and is ready to be applied to petawatt lasers.

  20. Wideband Erbium-Ytterbium Co-Doped Phosphate Glass Waveguide Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new '(?)' type of wideband erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with medium thin film filter is proposed, Average gain about 15.5dB between 1530nm and 1570nm with gain difference of below 2 dB is obtained.

  1. Multi-Rare-Earth Ions Codoped Tellurite Glasses for Potential Dual Wavelength Fibre-Optic Amplifiers

    Institute of Scientific and Technical Information of China (English)

    DAI Shi-Xun; YANG Jian-Hu; XU Shi-Qing; DAI Neng-Li; WEN Lei; HU Li-Li; JIANG Zhong-Hong

    2003-01-01

    A novel co-doping method of multi-rare-earth (RE) ions was demonstrated in tellurite glasses for fibre amplifiers. Fluorescence emissions at both 1.53 and 1.63 fj,m communication windows were Brstly observed from Er3+ /Yb3+ /Tm3+ -codoped tellurite glasses under a single wavelength pumping at 980 nm. The full width at half maximum of Suorescence at 1.53 and 1.63 [im are 55 nm and 50 urn, respectively. Tm's codoping method of three RE ions could be applied to other low photon energy glasses, which would be possibly used for potential dual wavelength fibre-optic amplifiers to broaden the communication windows.

  2. Optical planar waveguides in Yb3+-doped phosphate glasses produced by He+ ion implantation

    Institute of Scientific and Technical Information of China (English)

    Liu Chun-Xiao; Li Wei-Nan; Wei Wei; Peng Bo

    2012-01-01

    Optical planar waveguides in Yb3+-doped phosphate glasses are fabricated by implanting triple-energy helium ions.The guiding modes and the near-field intensity distribution are measured by using the prism-coupling method and the end-face coupling setup with a He-Ne laser at 633 nm The intensity calculation method (ICM) is used to reconstruct the refractive index profile of the waveguide.The absorption and the fluorescence investigations reveal that the glass bulk features are well preserved in the active volumes of the waveguides,suggesting the fabricated structures for possible applications as waveguide lasers.

  3. Engineered disorder and light propagation in a planar photonic glass.

    Science.gov (United States)

    Romanov, Sergei G; Orlov, Sergej; Ploss, Daniel; Weiss, Clemens K; Vogel, Nicolas; Peschel, Ulf

    2016-06-09

    The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses.

  4. Spectral Properties of Erbium-Doped Oxyfluoride Silicate Glasses for Broadband Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    徐时清; 杨中民; 戴世勋; 杨建虎; 温磊; 胡丽丽; 姜中宏

    2003-01-01

    The new oxyfluoride silicate glasses of Er3+-doped 50SiO2-(50-x)PbO-xPbF2 were prepared. With increasing PbF2 content in the glass composition, the fluorescence full width at half maximum and lifetimes of the 4I13/2level of Er3+ increase, while the refractive indices and densities decrease. Er3+-doped 50SiO2-50PbF2 glass showed broad fluorescence spectra of 1.55μm with a large stimulated emission cross-section and long lifetimes of 4I13/2level of Er3+. Compared with other glass hosts, the gain bandwidth properties of Er3+-doped 50SiO2-50PbF2glass are close to those of tellurite and bismuth glasses, and have advantages over those of silicate, phosphate and germante glasses. The broad and flat 4I13/2 → 4I15/2 emission of Er3+ around 1.55μm can be used as host material for potential broadband optical amplifier in wavelength-division-multiplexing network system.

  5. GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields

    Science.gov (United States)

    Schmidt, Kasper B.; Schmidt

    The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores with the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8-1.7μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches intrinsic spectroscopic 1σ flux limits of roughly 10-18erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS which are, I) exploring the universe at the epoch of reionization, II) describe how metals cycle in and out of galaxies, and III) asses the environmental dependence of galaxy evolution. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey, including improving cluster lens modeling and searches for supernovae. Here we present the survey and the GLASS data releases, which are continuously being made available to the community through https://archive.stsci.edu/prepds/glass/. For further information we refer to Schmidt et al. (2014), Treu et al. (2015), and http://glass.physics.ucsb.edu.

  6. Damage behavior of Nd:glass of high-power disk amplifier medium in ICF Facility

    Science.gov (United States)

    He, Shaobo; Chen, Lin; Yuan, Xiaodong; Chen, Yuanbin; Cheng, Xiaofeng; Xie, Xudong; Wang, Wenyi; Zu, Xiaotao

    2016-12-01

    Large aperture Nd:glass disk is often used as the amplifier medium in the inertial confinement fusion (ICF) facilities. The typical size of Nd:glass is up to 810mm×460mm×40mm and more than 3,000 Nd:glass components are needed in the ICF facility. At present, the 3ω fused silica glass and DKDP crystal are mainly responsible for the damage of driver used for ICF. However, with the enlargement of the facility and increase of laser shot number, the laser damage of Nd:glass at 1ω waveband is still an important problem to limit the stable operation of facility and improvement of laser beam quality. In this work, the influence of Nd:glass material itself, mechanical processing, service environment, and laser beam quality on its damage behavior is investigated experimentally and theoretically. The results and conclusions can be summarized as follows: (1) It is very important to control the concentration of platinum impurity particles during melting and the sputtering effect of the cladding materials. (2) The number and length of fractural and brittle scratches should be strictly suppressed during mechanical processing of Nd:glass. (3) The B-integral of high power laser beam should be rigorously controlled. Particularly, the top shape of pulses must be well controlled when operating at high peak laser power. (4) The service environment should be well managed to make sure the cleanness of the surface of Nd:glass better than 100/A level during mounting and running. (5) The service environment and beam quality should be monitored during operation.

  7. Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F. [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, B.J. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Lin, H., E-mail: lhai8686@yahoo.com [School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034 (China); Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-02-15

    Highlights: • Effective near-infrared emission (1380-1525 nm) is observed in Pr{sup 3+}-doped phosphate glasses. • Effective bandwidth of {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm. • Channel waveguides have been fabricated by K{sup +}-Na{sup +} ion-exchange method. • Pr{sup 3+}-doped phosphate glasses are promising in developing integrated broadband waveguide amplifier. - Abstract: Effective near-infrared emission covering the fifth optical telecommunication window (1380-1525 nm) has been observed in Pr{sup 3+}-doped phosphate (NMAP) glasses. Judd-Ofelt parameters Ω{sub 2} (6.38 × 10{sup −20} cm{sup 2}), Ω{sub 4} (20.30 × 10{sup −20} cm{sup 2}) and Ω{sub 6} (0.40 × 10{sup −20} cm{sup 2}) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth (Δλ{sub eff}) of the corresponding {sup 1}D{sub 2} → {sup 1}G{sub 4} transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σ{sub em-max}) at 1468 nm is derived to be 1.14 × 10{sup −20} cm{sup 2}. Channel waveguide was fabricated successfully by K{sup +}-Na{sup +} ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr{sup 3+}-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

  8. GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields.

    Science.gov (United States)

    Borello Schmidt, Kasper

    2015-08-01

    The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores in the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8 - 1.7 μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches excellent spectroscopic limits of ˜10-18 erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS, which are: I) Use the hundreds of spectra of galaxies at z>6 to shed light on the epoch of reionization, the role galaxies play in reionizing the universe, and the Lyα escape fraction at the cosmic dawn. II) Study gas accretion, star formation, and outflows by spatially mapping resolved star formation and determine metallicity gradients from emission lines at z˜2. III) Explore the environmental dependence of galaxy evolution using the first comprehensive census of spatially resolved star formation in dense environments, i.e., the cluster cores as well as the cluster infall regions. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey. One particularly interesting example is the search for supernovae in the more than 40 GLASS visits, which resulted in the detection of the first multiple imaged supernova, SN Refsdal. I will present the survey, give an update on the current science results, in particular on the GLASS galaxies at the epoch of reionization, and provide a status report on the GLASS data releases, which are continuously being made available to the community.

  9. Ultra-broadband amplification properties of Ni2+-doped glass-ceramics amplifiers.

    Science.gov (United States)

    Jiang, Chun

    2009-04-13

    The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.

  10. Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass

    Science.gov (United States)

    Frantz, J. A.; Shaw, L. B.; Sanghera, J. S.; Aggarwal, I. D.

    2006-03-01

    Waveguide amplifiers fabricated in Er3+-doped gallium lanthanum sulfide (GLS) glass are demonstrated. GLS is deposited onto fused silica substrates by RF magnetron sputtering, and waveguides are patterned by use of the lift-off technique. The waveguides exhibit a total internal gain of 6.7 dB (2.8 dB/cm) for a signal with a wavelength of 1.55 μm. This experiment is, to the best of our knowledge, the first demonstration of gain in an Er3+-doped chalcogenide glass waveguide. The fabrication methods we apply, if used with other rare earth dopants, could potentially be employed to produce sources operating in the mid-IR.

  11. Sol-gel broadband antireflective coatings for advanced laser-glass amplifiers

    Science.gov (United States)

    Floch, Herve G.; Belleville, Philippe F.; Pegon, Philippe M.

    1994-10-01

    The cost of a large laser system is a strong function of the overall electrical to final photon efficiency. To improve the stored energy and therefore the pumping efficiency of sophisticated and costly laser-glass amplifiers, we have developed a novel two-layer broadband antireflective coating for the blast-shield component. The blast-shield is an optic placed between the flashlamps and the laser disk amplifiers to prevent damage of laser disks by possible explosion of a flashlamp. The sol-gel antireflective coating was dip-coated at room temperature onto 8-cm diameter glass samples. The coating basically consisted of a halfwave- thick high-index material such as ZrO2-PVP (PolyVinyl Pyrrolidone) and a quarterwave- thick low-index material such as SiO2-siloxane. To improve the abrasion resistance of the coated part, a lubricating and water-repellent material was applied as a very thin overcoat. In addition to a 6.5 to 7.2% transmission gain over the spectrum of interest, the coating was moderately abrasion resistant and chemically durable. Flashlamp-induced damage to the antireflective coating for 1000 glow discharges at 10 to 12 J/cm2 were minimal and similar to uncoated parts.

  12. Femtosecond pulses at 50-W average power from an Yb:YAG planar waveguide amplifier seeded by an Yb:KYW oscillator.

    Science.gov (United States)

    Leburn, Christopher G; Ramírez-Corral, Cristtel Y; Thomson, Ian J; Hall, Denis R; Baker, Howard J; Reid, Derryck T

    2012-07-30

    We report the demonstration of a high-power single-side-pumped Yb:YAG planar waveguide amplifier seeded by an Yb:KYW femtosecond laser. Five passes through the amplifier yielded 700-fs pulses with average powers of 50 W at 1030 nm. A numerical simulation of the amplifier implied values for the laser transition saturation intensity, the small-signal intensity gain coefficient and the gain bandwidth of 10.0 kW cm(-2), 1.6 cm(-1), and 3.7 nm respectively, and identified gain-narrowing as the dominant pulse-shaping mechanism.

  13. The Grism Lens-Amplified Survey from Space (GLASS). I. Survey overview and first data release

    CERN Document Server

    Treu, T; Brammer, G B; Vulcani, B; Wang, X; Bradač, M; Dijkstra, M; Dressler, A; Fontana, A; Gavazzi, R; Henry, A L; Hoag, A; Huang, K H; Jones, T A; Kelly, P L; Malkan, M A; Mason, C; Pentericci, L; Poggianti, B; Stiavelli, M; Trenti, M; von der Linden, A

    2015-01-01

    We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of ten massive clusters of galaxies at redshift z=0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 yields near infrared spectra of the cluster cores, covering the wavelength range 0.81-1.69mum through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACSJ0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than H_AB=23 is visually inspected by at least two...

  14. Acupuncture injection for field amplified sample stacking and glass microchip-based capillary gel electrophoresis.

    Science.gov (United States)

    Ha, Ji Won; Hahn, Jong Hoon

    2017-02-01

    Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.

  15. Gain and Noise Figure of a Double-Pass Waveguide Amplifier Based on Er/Yb-Doped Phosphate Glass

    Institute of Scientific and Technical Information of China (English)

    JIN Guo-Liang; SHAO Gong-Wang; Mu Huan; HU Li-Li; LI Qu

    2005-01-01

    @@ A waveguide amplifier is fabricated by Ag+-Na+ two-step ion exchange on Er/Yb-doped phosphate glass. Thespectroscopic performance of glass and the properties of channel waveguide are characterized. A double-passconfiguration is adopted to measure the gain and noise figure (NF) of the waveguide amplifier, and the comparisonof gain and NF for the single and double-pass configuration of the waveguide amplifier is presented. The resultsshow that the double-pass configuration can make the gain increase from 8.8dB (net gain 2.2dB/cm) of thesingle-pass one to 14.6dB (net gain 3.65dB/cm) for small input power at 1534nm, and the NF are all lower than5.5dB for both the configurations.

  16. Planar waveguides formed in a new chemically stable Er3+/Yb3+ co-doped phosphate glass

    Institute of Scientific and Technical Information of China (English)

    Shilong Zhao; Baoyu Chen; Junjiang Hu; Lili Hu

    2005-01-01

    @@ A new Er3+/Yb3+ co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectral properties. Planar graded index waveguides have been fabricated in the glass by Ag+-Na+ ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.

  17. Development of Alternative Glass Ceramic Seal for a Planar Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    P. Lemes-Rachadel

    2012-01-01

    Full Text Available LZSA glass ceramic (LiO2-ZrO2-SiO2-Al2O3 was tested for its thermomechanical compatibility as a sealing material with a stainless steel interconnect (AISI 430 of a planar SOFC. With this purpose, the densification and crystallization behavior of LZSA were investigated initially. It was observed that the material reached maximum relative density and shrinkage, respectively 95% and 17%, at 800°C, which corresponded approximately to the crystallization temperature of the material as evidenced by DTA analysis. In the next step, LZSA tapes were cast from slurries and prepared either as LZSA laminates or LZSA-steel bilayers. The densification behavior and microstructural features of cofired LZSA laminates and LZSA-steel bilayers were analyzed at 800 and 900°C. Maximum relative density and defect-free interfaces were observed for laminates and bi-layers cofired at 800°C, whereas increased porosity and detached bi-layer were the characteristics of the samples fired at 900°C.

  18. K+-Na+ ion-exchanged sodium magnesium aluminum germanate glass waveguide amplifier operating in the first telecommunications window

    Science.gov (United States)

    Yang, Dianlai; Zhang, Jie; Pun, Edwin Yue-Bun; Lin, Hai

    2010-12-01

    Potassium-sodium (K+-Na+) ion-exchanged multimode channel waveguide amplifiers have been fabricated based on Tm3+/Yb3+ codoped sodium magnesium aluminum germanate (NMAG) glass substrates. The normalized optical and relative gain coefficients of a 2.20 cm long device were identified to be 3.65 dB/cm and 1.58 dB/cm, respectively, at a signal wavelength of 810 nm under 457 mW 980 nm laser diode excitation. These are the highest values reported, and the results indicate that Tm3+/Yb3+ codoped NMAG glasses are an attractive material for optical amplification in the first telecommunications window.

  19. A simple and versatile electronic control system for a picosecond Nd:YLF oscillator - Nd:glass amplifier laser chain

    Science.gov (United States)

    Navathe, C. P.; Ansari, M. S.; Upadhyay, J.; Sreedhar, N.; Chandra, R.; Bundel, H. R.; Moorti, A.; Gupta, P. D.

    1997-11-01

    An electronic control system, developed for power conditioning of a picosecond Nd:YLF - Nd:glass laser oscillator - amplifier chain is described. The system generates charging and firing signals required for a commercial picosecond oscillator operated in a repetitive mode, and also carries out a charging and firing sequence of external amplifiers for single-shot operation. The system also controls a mechanical shutter to selectively pass a laser pulse from the oscillator for subsequent amplification. The laser chain includes a Faraday isolator incorporated with a safety check. A control signal is generated by this unit when conditions suitable for a sufficient level of isolation are achieved, and the same is used for gating the oscillator pulse. Good synchronization is confirmed from the measurements of amplifier gain as a function of the relative time delay in firing of different stages. The electronics developed is simple and modular, with sufficient scope for expansion of the system, and resistant to electromagnetic interference.

  20. The Grism Lens-Amplified Survey from Space (GLASS). VI. Comparing the Mass and Light in MACSJ0416.1-2403 using Frontier Field imaging and GLASS spectroscopy

    CERN Document Server

    Hoag, Austin; Treu, Tommaso; Bradač, Maruša; Schmidt, Kasper B; Wang, Xin; Brammer, Gabriel B; Broussard, Adam; Amorin, Ricardo; Castellano, Marco; Fontana, Adriano; Merlin, Emiliano; Schrabback, Tim; Trenti, Michele; Vulcani, Benedetta

    2016-01-01

    We present a strong and weak gravitational lens model of the galaxy cluster MACSJ0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 31 multiple images belonging to 16 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for 6 of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and 9 multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting total mass density map is compared with a stellar mass density map obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total m...

  1. Annealing behaviour of structure and morphology and its effects on the optical gain of Er3+/Yb3+ co-doped Al2O3 planar waveguide amplifier

    Institute of Scientific and Technical Information of China (English)

    Tan Na; Zhang Qing-Yu

    2006-01-01

    Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped Al2O3 films in the temperature range from 600℃-900℃. Bycomparison with TEM observation, the annealing behaviours of photoluminescence (PL) emission and optical loss were found to have relation to the structure and morphology. The increase of PL intensity and optical loss above 800℃ might result from the crystallization of amorphous Al2O3 films. Based on the study on the structure and morphology,a rate equation propagation model of a multilevel system was used to calculate the optical gains of Er-doped Al2O3 planar waveguide amplifiers involving the variation of PL efficiency and optical loss with annealing temperature. It was found that the amplifiers had an optimized optical gain at the temperature corresponding to the minimum of optical loss, rather than at the temperature corresponding to the maximum of PL efficiency, suggesting that the optical loss is a key factor for determining the optical gain of an Er-doped Al2O3 planar waveguide amplifier.

  2. Enhanced 1.32 μm fluorescence and broadband amplifying for O-band optical amplifier in Nd3+-doped tellurite glass

    Science.gov (United States)

    Zhou, Zi-zhong; Zhou, Ming-han; Su, Xiu-e.; Cheng, Pan; Zhou, Ya-xun

    2017-01-01

    WO3 oxides with relatively high phonon energy and different concentrations were introduced into the Nd3+-doped tellurite-based glasses of TeO2-ZnO-Na2O to improve the 1.32 μm band fluorescence emission. The absorption spectra, Raman spectra, 1.32 μm band fluorescence spectra and differential scanning calorimeter (DSC) curves were measured, together with the Judd-Ofelt intensity parameters, stimulated emission and gain parameters were calculated to evaluate the effects of WO3 amount on the glass structure and spectroscopic properties of 1.32 μm band fluorescence. It is shown that the introduction of an appropriate amount of WO3 oxide can effectively improve the 1.32 μm band fluorescence intensity through the enhanced multi-phonon relaxation (MPR) processes between the excited levels of Nd3+. The results indicate that the prepared Nd3+-doped tellurite glass with an appropriate amount of WO3 oxide is a potential gain medium applied for the O-band broad and high-gain fiber amplifier.

  3. Thermal stability and spectroscopic properties of erbium-doped niobic-tungsten-tellurite glasses for laser and amplifier devices

    Energy Technology Data Exchange (ETDEWEB)

    Boetti, Nadia G., E-mail: nadia.boetti@polito.it [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Lousteau, Joris [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Chiasera, Alessandro; Ferrari, Maurizio [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab. via alla Cascata 56/C, Povo, 38123 Trento (Italy); Mura, Emanuele; Scarpignato, Gerardo C. [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Abrate, Silvio [PhotonLab, Istituto Superiore Mario Boella, Via P.C. Boggio, 61, 10138 Torino (Italy); Milanese, Daniel [PhotonLab, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2012-05-15

    Er{sup 3+} doped niobic-tungsten-tellurite glasses doped with concentration of Er{sup 3+} ion up to 3 wt% were fabricated. The effect of Er{sup 3+} doping concentration on thermal stability and optical properties was investigated in order to obtain the most suitable rare earth content for developing 1.5 {mu}m compact fiber amplifier pumped with a commercial telecom 980 nm laser diode. The maximum doping concentration allowed was found to be around 1.77 Multiplication-Sign 10{sup 20} ions/cm{sup 3}, for which a broad 1.5 {mu}m emission spectra of 65 nm FWHM and a lifetime of 3.4 ms for the {sup 4}I{sub 13/2} level was measured. - Highlights: Black-Right-Pointing-Pointer Thermal and optical properties of Er{sup 3+} doped niobic-tungsten-tellurite glasses. Black-Right-Pointing-Pointer Spectroscopic properties measured when pumped by commercial telecom 980 nm LD. Black-Right-Pointing-Pointer Investigation of the effect of Er{sup 3+}doping level on glass properties. Black-Right-Pointing-Pointer Present glass is a good candidate for efficient 1.5 {mu}m compact fiber amplifier or laser.

  4. High-Performance, High-Index-Contrast Chalcogenide Glass Photonics on Silicon and Unconventional Non-planar Substrates

    CERN Document Server

    Zou, Yi; Lin, Hongtao; Li, Lan; Moreel, Loise; Zhou, Jie; Du, Qingyang; Ogbuu, Okechukwu; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Dobson, Kevin D; Birkmire, Robert; Hu, Juejun

    2013-01-01

    This paper reports a versatile, roll-to-roll and backend compatible technique for the fabrication of high-index-contrast photonic structures on both silicon and plastic substrates. The fabrication technique combines low-temperature chalcogenide glass film deposition and resist-free single-step thermal nanoimprint to process low-loss (1.6 dB/cm), sub-micron single-mode waveguides with a smooth surface finish using simple contact photolithography. Using this approach, the first chalcogenide glass micro-ring resonators are fabricated by thermal nanoimprint. The devices exhibit an ultra-high quality-factor of 400,000 near 1550 nm wavelength, which represents the highest value reported in chalcogenide glass micro-ring resonators. Furthermore, sub-micron nanoimprint of chalcogenide glass films on non-planar plastic substrates is demonstrated, which establishes the method as a facile route for monolithic fabrication of high-index-contrast devices on a wide array of unconventional substrates.

  5. Microstructure of planar glass substrates modified by Laser Ablation Backwriting (LAB) of metal targets

    Energy Technology Data Exchange (ETDEWEB)

    Rey-García, F. [UA Microóptica and Óptica GRIN, Departamento de Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), María de Luna 3, E-50018 Zaragoza (Spain); Flores-Arias, M.T.; Gómez-Reino, C. [UA Microóptica and Óptica GRIN, Departamento de Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Lahoz, R. [Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), María de Luna 3, E-50018 Zaragoza (Spain); Fuente, G.F. de la, E-mail: xerman@unizar.es [Instituto de Ciencia de Materiales de Aragón (CSIC-Universidad de Zaragoza), María de Luna 3, E-50018 Zaragoza (Spain); Assenmacher, W.; Mader, W. [Institut für Anorganische Chemie, Universität Bonn, Romerstrasse 164, D-53117 Bonn (Germany)

    2014-07-01

    Geometrically controlled, channel-like structures were prepared on commercial, soda-lime glass substrates, by a Laser Ablation Backwriting (LAB) process using a commercial Nd:YVO{sub 4} laser fitted with a beam steering galvanometer mirror unit. 70Cu30Zn Brass alloy, Ag and Al metal targets were evaporated onto glass substrates by simple irradiation through the same glass substrates. The resultant structures were characterized by SEM, TEM, and UV-vis-nIR spectroscopy. These revealed the presence of metal nanostructures in the case of brass and Ag targets, with their typical local surface plasmon resonance (LSPR) bands. In contrast, Al was not found in its elemental form, but rather integrated into the glass substrate. These results were confirmed by energy dispersive X-ray microanalysis (EDS) studies, performed with TEM and SEM observation on representative, polished cross section samples. Preliminary light guiding studies demonstrated the potential to develop burried waveguides just below the surface of the glass substrates in all cases, suggesting that LAB may be a convenient method to prepare stable waveguides by modifying inexpensive, commercial window glass.

  6. Formation of highly planarized Ni-W electrodeposits for glass imprinting mold

    Science.gov (United States)

    Yasui, Manabu; Kaneko, Satoru; Kurouchi, Masahito; Ito, Hiroaki; Ozawa, Takeshi; Arai, Masahiro

    2017-01-01

    We confirmed that increasing the total metal concentration is effective for the planarization of Ni-W films and Ni-W nanopatterns formed with a uniform height and a 480 nm pitch. At the same time, the W content in Ni-W films decreased. We investigated the relationship between the planarization of Ni-W films and the W content in Ni-W films, and confirmed that increasing the total metal concentration is effective for the inhibition of hydrogen generation. We pointed to the inhibition of hydrogen gas generation as a cause of the planarization of Ni-W films, and the reduction in the hydrogen generation amount necessary for the deposition of W as a cause of the reduction in the W content in Ni-W films. In order to obtain a flat plating film with a high W content, it is necessary to generate an adequate amount of hydrogen on the surface of the cathode and to remove hydrogen gas from the cathode surface immediately.

  7. The OpenPicoAmp : an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience

    CERN Document Server

    Shlyonsky, Vadim; Gall, David

    2014-01-01

    Neuroscience education can be promoted by the availability of low cost and engaging teaching materials. To address this, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences concerning the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. This experimental setup can be used in simple experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionophores like gramicidin A. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biop...

  8. Fabrication of internal diffraction gratings in planar fluoride glass using low-density plasma formation induced by a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Hak [Nano Machining Laboratory, KIMM (Korea Institute of Machinery and Material), 171 Jang-dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)], E-mail: shcho@kimm.re.kr; Chang, Won-Seok; Kim, Jae-Goo [Nano Machining Laboratory, KIMM (Korea Institute of Machinery and Material), 171 Jang-dong, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Kwang-Ryul [Department of Electronics and Computer Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jong Wook [Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2008-12-30

    The fabrication of internal diffraction gratings with photo-induced refractive index modification in planar fluoride plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (130 fs) Ti:sapphire laser ({lambda}{sub p} = 790 nm). The refractive index modifications with diameters ranging from 350 nm to 5 {mu}m were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 1 x 10{sup 12} W/cm{sup 2}. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred. The maximum refractive index change ({delta}n) was estimated to be 1.3 x 10{sup -2}. The low-density plasma formation (n{sub c} < 1.79 x 10{sup 27} m{sup -3}]) causes the increase of the refractive index modification with fluoride glass.

  9. The OpenPicoAmp: an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience.

    Science.gov (United States)

    Shlyonsky, Vadim; Dupuis, Freddy; Gall, David

    2014-01-01

    Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.

  10. The OpenPicoAmp: an open-source planar lipid bilayer amplifier for hands-on learning of neuroscience.

    Directory of Open Access Journals (Sweden)

    Vadim Shlyonsky

    Full Text Available Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.

  11. Erbium-doped oxide and oxyhalide lead borate glasses for near-infrared broadband optical amplifiers

    Science.gov (United States)

    Pisarski, Wojciech A.; Pisarska, Joanna; Lisiecki, Radosław; Grobelny, Łukasz; Dominiak-Dzik, Grażyna; Ryba-Romanowski, Witold

    2009-04-01

    Near-infrared luminescence spectra at 1.53 μm due to main 4I 13/2- 4I 15/2 laser transition of Er 3+ ions in oxide and oxyhalide lead borate glasses were examined. Spectroscopic parameters like spectral linewidth and luminescence lifetime were analyzed with PbX 2 (X = F, Cl or Br) doping. An introduction of lead halide to the borate glass results in the reduction of spectral linewidth and the increase of luminescence lifetime of Er 3+. The luminescence decay from the 4I 13/2 upper state of Er 3+ is longer for glass sample with PbF 2 than PbX 2 (X = Cl or Br).

  12. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    Science.gov (United States)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-20

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  13. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    Science.gov (United States)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  14. Planar gas chromatography column on glass plate with nanodispersed silica as the stationary phase

    Science.gov (United States)

    Platonov, I. A.; Platonov, V. I.; Pavelyev, V. S.; Agafonov, A. N.

    2016-04-01

    The paper presents the GC column in the plane of the glass plate with the adsorption layer nanodispersed silica. Created gas chromatographic column allows to separate a mixture of five alkanes from pentane to nonane in isothermal (90 ° C) mode less than one minute.

  15. Yb~(3+)/Er~(3+)-Codoped Tungsten-Tellurite Glasses for Broadband Optical Amplifier

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Emission spectra and fluorescence lifetime of Er3+ in Yb3+/Er3+-codoped tungsten-tellurite glasses were measured. Effects of Yb3+concentration on 1.5μm emission intensity and bandwidth of Er3+ were investigated and a FWHM of 81 nm was demonstrated.

  16. Amplifying modeling for broad bandwidth pulse in Nd:glass based on hybrid-broaden mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sujingqin; Lanqin, L; Wenyi, W; Feng, J; Xiaofeng, W; Xiaomin, Z [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-988, Mianyang, China, 621900 (China); Bin, L [School of Computer and Communication Engineering, Southwest Jiaotong University, Chengdu. China, 610031 (China)], E-mail: sujingqin@tom.com

    2008-05-15

    In this paper, the cross relaxation time is proposed to combine the homogeneous and inhomogeneous broaden mechanism for broad bandwidth pulse amplification model. The corresponding velocity equation, which can describe the response of inverse population on upper and low energy level of gain media to different frequency of pulse, is also put forward. The gain saturation and energy relaxation effect are also included in the velocity equation. Code named CPAP has been developed to simulate the amplifying process of broad bandwidth pulse in multi-pass laser system. The amplifying capability of multi-pass laser system is evaluated and gain narrowing and temporal shape distortion are also investigated when bandwidth of pulse and cross relaxation time of gain media are different. Results can benefit the design of high-energy PW laser system in LFRC, CAEP.

  17. Applications of Kinetic Inductance: Parametric Amplifier & Phase Shifter, 2DEG Coupled Co-planar Structures & Microstrip to Slotline Transition at RF Frequencies

    Science.gov (United States)

    Surdi, Harshad

    Kinetic inductance springs from the inertia of charged mobile carriers in alternating electric fields and it is fundamentally different from the magnetic inductance which is only a geometry dependent property. The magnetic inductance is proportional to the volume occupied by the electric and magnetic fields and is often limited by the number of turns of the coil. Kinetic inductance on the other hand is inversely proportional to the density of electrons or holes that exert inertia, the unit mass of the charge carriers and the momentum relaxation time of these charge carriers, all of which can be varied merely by modifying the material properties. Highly sensitive and broadband signal amplifiers often broaden the field of study in astrophysics. Quantum-noise limited travelling wave kinetic inductance parametric amplifiers offer a noise figure of around 0.5 K +/- 0.3 K as compared to 20 K in HEMT signal amplifiers and can be designed to operate to cover the entire W-band (75 GHz -- 115 GHz). The research cumulating to this thesis involves applying and exploiting kinetic inductance properties in designing a W-band orthogonal mode transducer, quadratic gain phase shifter with a gain of ~49 dB over a meter of microstrip transmission line. The phase shifter will help in measuring the maximum amount of phase shift Deltaφmax(I) that can be obtained from half a meter transmission line which helps in predicting the gain of a travelling wave parametric amplifier. In another project, a microstrip to slot line transition is designed and optimized to operate at 150 GHz and 220 GHz frequencies, that is used as a part of horn antenna coupled microwave kinetic inductance detector proposed to operate from 138 GHz to 250 GHz. In the final project, kinetic inductance in a 2D electron gas (2DEG) is explored by design, simulation, fabrication and experimentation. A transmission line model of a 2DEG proposed by Burke (1999), is simulated and verified experimentally by fabricating a

  18. Broadband 1.5-μm emission of erbium-doped TeO2-WO3-Nb2O5 glass for potential WDM amplifier

    Institute of Scientific and Technical Information of China (English)

    Shiqing Xu(徐时清); Shixun Dai(戴世勋); Junjie Zhang(张军杰); Lili Hu(胡丽丽); Zhonghong Jiang(姜中宏)

    2004-01-01

    @@ Erbium-doped glass showing the wider 1.5-/μm emission band is reported in a novel oxide system TeO2-WO3-Nb2O5 and their thermal stability and optical properties such as absorption,emission spectra,cross-sections and fluorescence lifetime were investigated.Compared with other glass hosts,the gain bandwidthproperties of Er3+ in TWN glass is close to that of bismuth glasses,and larger than those of tellurite,germanatc,silicate and phosphate glasses.The broad and flat 4I13/2 → 4I15/2 emission and the largestimulated emission cross-section of Er3+ ions around 1.5 μm can be used as host material for potentialbroadband optical amplifier in the wavelength-division-multiplexing(WDM)network system.

  19. Chalcogenide glass planar MIR couplers for future chip based Bracewell interferometers

    CERN Document Server

    Goldsmith, Harry-Dean Kenchington; Ireland, Michael; Ma, Pan; Tuthill, Peter; Eggleton, Ben; Lawrence, John S; Debbarma, Sukanta; Luther-Davies, Barry; Madden, Stephen J

    2016-01-01

    Photonic integrated circuits are established as the technique of choice for a number of astronomical processing functions due to their compactness, high level of integration, low losses, and stability. Temperature control, mechanical vibration and acoustic noise become controllable for such a device enabling much more complex processing than can realistically be considered with bulk optics. To date the benefits have mainly been at wavelengths around 1550 nm but in the important Mid-Infrared region, standard photonic chips absorb light strongly. Chalcogenide glasses are well known for their transparency to beyond 10000 nm, and the first results from coupler devices intended for use in an interferometric nuller for exoplanetary observation in the Mid-Infrared L band (3800-4200 nm) are presented here showing that suitable performance can be obtained both theoretically and experimentally for the first fabricated devices operating at 4000 nm.

  20. Optical properties of erbium doped antimony based glasses: Promising visible and infrared amplifiers materials

    Energy Technology Data Exchange (ETDEWEB)

    Hamzaoui, M.; Baazouzi, M. [UMR 6226- Verres et Ceramiques - Campus de Beaulieu, Universite de Rennes1, 35042 Rennes (France); Departement de physique, Faculte des sciences exactes, Universite de Biskra, BP 145, RP, 07000, Biskra (Algeria); Soltani, M.T.; Tioua, B. [Departement de physique, Faculte des sciences exactes, Universite de Biskra, BP 145, RP, 07000, Biskra (Algeria); Ivanova, Z.G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Lebullenger, R.; Poulain, M. [UMR 6226- Verres et Ceramiques - Campus de Beaulieu, Universite de Rennes1, 35042 Rennes (France); Zavadil, J. [Institute of Photonics and Electronics AS CR, 182 51 Prague 8-Kobylisy (Czech Republic)

    2012-11-15

    Highly stable glasses in the (70 - x)Sb{sub 2}O{sub 3}-20Na{sub 2}O-10ZnO-xEr{sub 2}O{sub 3} (x = 0.25, 0.5, and 1.0 mol%) system have been prepared and investigated by UV-Vis-NIR absorption, near infrared photoluminescence and time-resolved spectroscopy. Judd-Ofelt study has been used to determine the intensity parameters ({Omega}{sub 2}, {Omega}{sub 4}, and {Omega}{sub 6}), spontaneous emission probabilities, branching ratios, and radiative lifetimes ({tau}{sub R}) related to the corresponding optical transitions of Er{sup 3+} ions. Details of the emission at {proportional_to}1530 nm and spectroscopic characteristics such as the stimulated emission cross-section ({sigma}{sub e}), effectiveband width ({Delta}{lambda}{sub eff}), quantum efficiency, and the optical gain have been summarized, accounting the role of the increased Er content. The obtained results indicate that these new low phonon energy glasses could be used as a laser medium and for optical amplification in the 1.5 {mu}m region. In particular, the composition containing 0.5 mol% Er{sub 2}O{sub 3} exhibits optimal values of {Omega}{sub 2} (4.5 x 10{sup -20} cm{sup 2}), {Delta}{lambda}{sub eff} = 57 nm, {sigma}{sub e} = 7.28 x 10{sup -21} cm{sup 2}, {tau}{sub meas} (3.36 ms), and quantum efficiency of the {sup 4}I{sub 13/2} level of Er{sup 3+} ions {proportional_to}71%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Controllability of self-aligned four-terminal planar embedded metal double-gate low-temperature polycrystalline-silicon thin-film transistors on a glass substrate

    Science.gov (United States)

    Ohsawa, Hiroki; Sasaki, Shun; Hara, Akito

    2016-03-01

    Self-aligned four-terminal n-channel (n-ch) and p-channel (p-ch) planar embedded metal double-gate polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) were fabricated on a glass substrate at a low temperature of 550 °C. This device includes a metal top gate (TG) and a metal bottom gate (BG), which are used as the drive and control gates or vice versa. The BG was embedded in a glass substrate, and a poly-Si channel with large lateral grains was fabricated by continuous-wave laser lateral crystallization. The threshold voltage modulation factors under various control gate voltages (γ = ΔVth/ΔVCG) were nearly equal to the theoretical predictions in both the n- and p-ch TFTs. By exploiting this high controllability, an enhancement depletion (ED) inverter was fabricated, and successful operation at 2.0 V was confirmed.

  2. S-type Er-Yb Co-doped Phosphate Glass Waveguide Amplifier Integrated with Cascaded Multilayer Medium Thin Film Filter

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-yan; DAI Ji-zhi; LIU Yong-zhi

    2004-01-01

    A new S-type of erbium-ytterbium co-doped phosphate glass waveguide amplifier integrated with cascaded multilayer medium thin film filter is proposed,this S-type geometry waveguide structure is used to achieve a long path in a compact chip,and obtained higher gain with lower Er-doped concentration. The cascaded multilayer medium thin film filter is utilized to achieve a broader flattening gain bandwidth.The intrinsical gain spectrum is obtained by solving rate and power propagation equations,the effect of transmittance spectrum of thin film filter on flattening gain is discussed.

  3. Theoretical Study on a New Non-Planar Multi-Pass Laser Amplifier%新型非平面多程激光放大器的理论研究

    Institute of Scientific and Technical Information of China (English)

    杨清; 霍玉晶; 何淑芳

    2012-01-01

    A new non-planar multi-pass laser amplifier based on the two-mirror ring optical path is proposed. It has the advantages of simple structure, small size, good space symmetry, easily adjustable and more amplification times. In the cavity of the amplifier, the signal beam goes through the laser medium many times for amplification along the three-dimensional non-planar symmetric path, and the high-power amplified laser can be obtained in a small-size laser medium. Theoretical modeling and parametric analysis of the optical path in the cavity of the amplifier are done. Simulation graphs for a portion of modes of optical path are given, optical loss and power amplification are also analyzed. A basic design of a solid-state non-planar multi-pass thin-disk laser amplifier based on Yb: YAG thin disk and laser diode (LD) end-pumping is given for high-power laser amplification.%提出了一种基于双镜环行光路的新型非平面多程激光放大器,它具有结构简单、体积小、空间对称性好、调节容易、光通放大次数多的优点.信号光束在放大器腔内沿着立体环行的非平面空间对称路径多次通过激光介质被放大,可在小型激光介质中获得高功率的放大激光输出.对放大器腔内光路进行了理论建模和参量分析,给出了部分光路模式的模拟图,分析了光路损耗与功率放大;初步设计了基于Yb∶YAG薄片和激光二极管(LD)端面抽运的全固态非平面多程薄片激光放大器,适用于高功率激光放大.

  4. The Grism Lens-Amplified Survey from Space (GLASS). III. A census of Ly\\alpha\\ Emission at $z\\gtrsim$7 from HST Spectroscopy

    CERN Document Server

    Schmidt, K B; Bradač, M; Vulcani, B; Huang, K -H; Hoag, A; Maseda, M; Guaita, L; Pentericci, L; Brammer, G B; Dijkstra, M; Dressler, A; Fontana, A; Henry, A L; Jones, T A; Mason, C; Trenti, M; Wang, X

    2015-01-01

    [abbreviated] We present a census of Ly\\alpha\\ emission at $z\\gtrsim7$ utilizing deep near infrared HST grism spectroscopy from the first six completed clusters of the Grism Lens-Amplified Survey from Space (GLASS). In 24/159 photometrically selected galaxies we detect emission lines consistent with Ly\\alpha\\ in the GLASS spectra. Based on the distribution of signal-to-noise ratios and on simulations we expect the completeness and the purity of the sample to be 40-100% and 60-90%, respectively. For the objects without detected emission lines we show that the observed (not corrected for lensing magnification) 1$\\sigma$ flux limits reaches $5\\times10^{-18}$erg/s/cm$^{2}$ per position angle over the full wavelength range of GLASS (0.8-1.7$\\mu$m). Based on the conditional probability of Ly\\alpha\\ emission measured from the ground at $z\\sim7$ we would have expected 12-18 Ly\\alpha\\ emitters. This is consistent with the number of detections, within the uncertainties, confirming the drop in Ly\\alpha\\ emission with re...

  5. Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 µm infrared laser

    Science.gov (United States)

    Lin, Hai; Wang, Xueying; Lin, Lin; Li, Changmin; Yang, Dianlai; Tanabe, Setsuhisa

    2007-06-01

    Intense 1.8 µm and efficient 1.47 µm infrared emissions have been recorded in Tm3+-doped alkali-barium-bismuth-tellurite (LKBBT) glasses with lower phonon energies under the excitation of a 792 nm diode laser. The maximum emission cross-sections for the 1.8 and 1.47 µm emission bands are derived to be 6.643 × 10-21 and 3.551 × 10-21 cm2 and the peak values are obviously higher than those in Tm3+-doped ZBLAN fluoride and TBSN tellurite glasses, respectively. In low concentration doping, the full-widths at half-maximum (FWHMs) of the two emission bands are 206 nm and 109 nm, respectively, and peak intensity ratio between them is about 2. When the doping concentration increases to 1 wt%, the peak intensity ratio exceeds 7 and the quantum efficiency of 3H4 level is only 64.6% due to the cross-relaxation process [3H4, 3H6] → [3F4, 3F4], which benefits to achieve powerful 1.8 µm emission. The efficient and broad 1.8 and 1.47 µm infrared emission bands indicate that Tm3+-doped LKBBT glasses are suitable materials in developing S- and U-band amplifiers and 1.8 µm infrared laser.

  6. Emission Properties of Yb3+/Er3+ Doped TeO2-WO3-ZnO Glasses for Broadband Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Jiacheng LI; Shunguang LI; Hefang HU; Fuxi GAN

    2004-01-01

    The YbS+/Er3+ doped TeO2-WO3-ZnO glasses were prepared. The absorption spectra, emission spectra and fluorescence lifetime of Era+ at 1.5μm, excited by 970 nm were measured. The influence of Er2Oa, Yb2Oa and Ohcontents on emission properties of Era+ at 1.5 μm was investigated. The optimum doping concentrations for Era+and Yba+ is around 3.34× 1020 ions/cma and 6.63×1020 ions/cma, respectively. The peak emission cross section is 0.83~0.87 pm2. With the increasing concentration of Yba+, the FWHM of Era+ emission at 1.5 μm in the glass increases from 77 nm to 83 nm. The results show that Yba+/Era+ doped meO2-Woa-ZnO glasses are promising candidate for Era+-doped broadband optical amplifier.

  7. Optical properties and spectroscopic study of different modifier based Pr(3+):LiFB glasses as optical amplifiers.

    Science.gov (United States)

    Balakrishna, A; Babu, S; Kumar, Vinod; Ntwaeaborwa, O M; Ratnakaram, Y C

    2017-01-05

    In this paper, we report the preparation and optical characterization of Pr(3+) doped lithium fluoro borate (LiFB) glasses for six different chemical compositions of Li2B4O7-BaF2-NaF-MO (where M=Mg, Ca, Cd and Pb), Li2B4O7-BaF2-NaF-MgO-CaO and Li2B4O7-BaF2-NaF-CdO-PbO. The structural and optical properties of these glasses were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), optical absorption and photoluminescence techniques. The optical absorption spectra of Pr(3+) ions in LiFB glasses have been recorded in the UV-VIS-NIR region. The optical absorption data are used to calculate various spectroscopic parameters such as Racah (E(1), E(2), E(3)) and spin-orbit interaction (ξ4f) parameters. Judd-Ofelt (J-O) (Ωλ where λ=2, 4 and 6) intensity parameters were determined by applying J-O theory, which in turn used to calculate the radiative properties such as radiative transition probabilities (A), radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βr) for all emission levels of Pr(3+) ion in different LiFB glass matrices. By using the J-O theory and luminescence parameters, stimulated emission cross sections (σp) of prominent transitions, (3)P0→(3)H4 and (1)D2→(3)H4 of Pr(3+) ion in all LiFB glasses were calculated. (3)P0→(3)H4 possesses higher branching ratios and stimulated emission cross-sections for the Pr(3+):LiFB(Mg-Ca) glass, which can be used as a best laser excitation. The optical gain parameter (σpxτR) was noticed higher in Pr(3+):LiFB(Mg-Ca) and Pr(3+):LiFB(Cd-Pb) glasses for the transition (3)P0→(3)H4 transition, and these glasses have potential for optical amplification at 488 nm wavelength.

  8. Optical properties and spectroscopic study of different modifier based Pr3 +:LiFB glasses as optical amplifiers

    Science.gov (United States)

    Balakrishna, A.; Babu, S.; Kumar, Vinod; Ntwaeaborwa, O. M.; Ratnakaram, Y. C.

    2017-01-01

    In this paper, we report the preparation and optical characterization of Pr3 + doped lithium fluoro borate (LiFB) glasses for six different chemical compositions of Li2B4O7-BaF2-NaF-MO (where M = Mg, Ca, Cd and Pb), Li2B4O7-BaF2-NaF-MgO-CaO and Li2B4O7-BaF2-NaF-CdO-PbO. The structural and optical properties of these glasses were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), optical absorption and photoluminescence techniques. The optical absorption spectra of Pr3 + ions in LiFB glasses have been recorded in the UV-VIS-NIR region. The optical absorption data are used to calculate various spectroscopic parameters such as Racah (E1, E2, E3) and spin-orbit interaction (ξ4f) parameters. Judd-Ofelt (J-O) (Ωλ where λ = 2, 4 and 6) intensity parameters were determined by applying J-O theory, which in turn used to calculate the radiative properties such as radiative transition probabilities (A), radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βr) for all emission levels of Pr3 + ion in different LiFB glass matrices. By using the J-O theory and luminescence parameters, stimulated emission cross sections (σp) of prominent transitions, 3P0 → 3H4 and 1D2 → 3H4 of Pr3 + ion in all LiFB glasses were calculated. 3P0 → 3H4 possesses higher branching ratios and stimulated emission cross-sections for the Pr3 +:LiFB(Mg-Ca) glass, which can be used as a best laser excitation. The optical gain parameter (σpxτR) was noticed higher in Pr3 +:LiFB(Mg-Ca) and Pr3 +:LiFB(Cd-Pb) glasses for the transition 3P0→ 3H4 transition, and these glasses have potential for optical amplification at 488 nm wavelength.

  9. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  10. Wireless Josephson amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  11. Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier.

    Science.gov (United States)

    Wei, Tao; Chen, Fangze; Tian, Ying; Xu, Shiqing

    2014-05-21

    Er(3+) doped and Er(3+)/Ce(3+) co-doped silica-germanate glasses were synthesized by high-temperature melt-quenching technique. A detailed study of the 1.53μm spectroscopic properties and thermal stability was presented in this work. The absorption spectra, 1.53μm emission spectra and fluorescence lifetimes were measured and investigated, along with the quantitative calculations and analyses of Judd-Ofelt intensity parameters, stimulated absorption and emission cross-sections and the product of FWHM×σem(p). It was found that the prepared samples have outstanding thermal stability (Tg=585°C), large FWHM (77nm and 108nm) and high stimulated emission cross-sections (9.55×10(-28)cm(3) and 8.72×10(-28)cm(3)) of Er(3+). The 1.53μm fluorescence intensity improved significantly with the introduction of Ce(3+). Furthermore, the wavelength dependent gain coefficient G(λ) of (4)I13/2→(4)I15/2 transition of Er(3+) was determined by means of the absorption and emission cross-sections. The results indicate that the developed glass co-doped with Er(3+)/Ce(3+) is a promising gain medium applied for broadband amplifier pumped with a 980nm laser diode.

  12. The Grism lens-amplified survey from space (GLASS). VIII. The influence of the cluster properties on Halpha emitter galaxies at 0.3

    CERN Document Server

    Vulcani, Benedetta; Nipoti, Carlo; Schmidt, Kasper B; Dressler, Alan; Morshita, Takahiro; Poggianti, Bianca M; Malkan, Matthew; Hoag, Austin; Bradač, Marusa; Abramson, Louis; Trenti, Michele; Pentericci, Laura; von der Linden, Anja; Morris, Glenn; Wang, Xin

    2016-01-01

    Exploiting the data of the Grism Lens-Amplified Survey from Space (GLASS), we characterize the spatial distribution of star formation in 76 galaxies in 10 clusters at 0.3< z <0.7. In a companion paper we contrast the properties of field and cluster galaxies, whereas here we correlate the properties of Halpha emitters to a number of tracers of the cluster environment to investigate its role in driving galaxy transformations. Halpha emitters are found in the clusters out to 0.5 virial radii, the maximum radius covered by GLASS. The peak of the Halpha emission is offset with respect to the peak of the UV-continuum. We decompose this offsets into a radial and tangential component. The radial component points away from the cluster center in 60% of the cases, with 95% confidence. The decompositions agree with cosmological simulations, i.e. the Halpha emission offset correlates with galaxy velocity and ram pressure stripping signatures. Our clusters span a wide range of morphologies. Trends between Halpha emit...

  13. Near-infrared emission character of Tm{sup 3+}-doped heavy metal tellurite glasses for optical amplifiers and 1.8 {mu}m infrared laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin Hai [Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034 (China); Wang Xueying [Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034 (China); Lin Lin [Dalian Medical University, Dalian 116027 (China); Li Changmin [Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034 (China); Yang Dianlai [Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034 (China); Tanabe, Setsuhisa [Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2007-06-21

    Intense 1.8 {mu}m and efficient 1.47 {mu}m infrared emissions have been recorded in Tm{sup 3+}-doped alkali-barium-bismuth-tellurite (LKBBT) glasses with lower phonon energies under the excitation of a 792 nm diode laser. The maximum emission cross-sections for the 1.8 and 1.47 {mu}m emission bands are derived to be 6.643 x 10{sup -21} and 3.551 x 10{sup -21} cm{sup 2} and the peak values are obviously higher than those in Tm{sup 3+}-doped ZBLAN fluoride and TBSN tellurite glasses, respectively. In low concentration doping, the full-widths at half-maximum (FWHMs) of the two emission bands are 206 nm and 109 nm, respectively, and peak intensity ratio between them is about 2. When the doping concentration increases to 1 wt%, the peak intensity ratio exceeds 7 and the quantum efficiency of {sup 3}H{sub 4} level is only 64.6% due to the cross-relaxation process [{sup 3}H{sub 4}, {sup 3}H{sub 6}] {yields} [{sup 3}F{sub 4}, {sup 3}F{sub 4}], which benefits to achieve powerful 1.8 {mu}m emission. The efficient and broad 1.8 and 1.47 {mu}m infrared emission bands indicate that Tm{sup 3+}-doped LKBBT glasses are suitable materials in developing S- and U-band amplifiers and 1.8 {mu}m infrared laser.

  14. Planar periodic structures fabricated in Er/Yb-codoped phosphate glass using multi-beam ultraviolet laser holography.

    Science.gov (United States)

    Pissadakis, Stavros; Pappas, Christos

    2007-04-02

    The inscription of a two-dimensional periodic lattice in the Schott IOG1 phosphate glass, by employing a laser assisted selective chemical etching method, is presented here. A two step patterning approach is employed, wherein damage is induced into the glass volume by exposure to intense laser radiation and subsequently, a chemical development in an alkali solution, selectively etches the exposed areas. A simple four beam interferometric setup is used for defining the two-dimensional periodic pattern on the sample surface. The exposures were performed by using the output of a high coherence 213nm, 150ps Nd:YAG laser; while the chemical developing was carried out in aqueous KOH solution. The periodic structures inscribed have periodicities of the order of 500nm and depth greater than 200nm. These Bragg reflectors are characterized by means of diffraction efficiency, and surface topology by employing atomic force and scanning electron microscopy. Issues related with the interferometric and wet etching processes are also presented and discussed.

  15. The Grism Lens-Amplified Survey from Space (GLASS). VI. Comparing the Mass and Light in MACS J0416.1-2403 Using Frontier Field Imaging and GLASS Spectroscopy

    Science.gov (United States)

    Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Wang, X.; Brammer, G. B.; Broussard, A.; Amorin, R.; Castellano, M.; Fontana, A.; Merlin, E.; Schrabback, T.; Trenti, M.; Vulcani, B.

    2016-11-01

    We present a model using both strong and weak gravitational lensing of the galaxy cluster MACS J0416.1-2403, constrained using spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) and Hubble Frontier Fields (HFF) imaging data. We search for emission lines in known multiply imaged sources in the GLASS spectra, obtaining secure spectroscopic redshifts of 30 multiple images belonging to 15 distinct source galaxies. The GLASS spectra provide the first spectroscopic measurements for five of the source galaxies. The weak lensing signal is acquired from 884 galaxies in the F606W HFF image. By combining the weak lensing constraints with 15 multiple image systems with spectroscopic redshifts and nine multiple image systems with photometric redshifts, we reconstruct the gravitational potential of the cluster on an adaptive grid. The resulting map of total mass density is compared with a map of stellar mass density obtained from the deep Spitzer Frontier Fields imaging data to study the relative distribution of stellar and total mass in the cluster. We find that the projected stellar mass to total mass ratio, f ⋆, varies considerably with the stellar surface mass density. The mean projected stellar mass to total mass ratio is =0.009+/- 0.003 (stat.), but with a systematic error as large as 0.004-0.005, dominated by the choice of the initial mass function. We find agreement with several recent measurements of f ⋆ in massive cluster environments. The lensing maps of convergence, shear, and magnification are made available to the broader community in the standard HFF format.

  16. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). V. EXTENT AND SPATIAL DISTRIBUTION OF STAR FORMATION IN z ∼ 0.5 CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Vulcani, Benedetta [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), the University of Tokyo, Kashiwa, 277-8582 (Japan); Treu, Tommaso; Malkan, Matthew; Abramson, Louis [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Schmidt, Kasper B. [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States); Poggianti, Bianca M. [INAF-Astronomical Observatory of Padova (Italy); Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fontana, Adriano; Pentericci, Laura [INAF—Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone (Italy); Bradac, Marusa; Hoag, Austin; Huang, Kuan-Han; He, Julie [Department of Physics, University of California, Davis, CA 95616 (United States); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Trenti, Michele [School of Physics, University of Melbourne, VIC 3010 (Australia); Linden, Anja von der [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Morris, Glenn [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States)

    2015-12-01

    We present the first study of the spatial distribution of star formation in z ∼ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS 0717.5+3745 and MACS 1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as a field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10{sup 8}–10{sup 11} M{sub ⊙} and star formation rates in the range 1–20 M{sub ⊙} yr{sup −1}. Both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside-out growth. In ∼20% of the cases, the Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models, and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental processes that regulate star formation. Upcoming analysis of the full GLASS data set will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial data set.

  17. Quasi-flat-top frequency-doubled Nd:glass laser for pumping of high-power Ti:sapphire amplifiers at a 0.1 Hz repetition rate.

    Science.gov (United States)

    Yanovsky, Victor; Kalinchenko, Galina; Rousseau, Pascal; Chvykov, Vladimir; Mourou, Gerard; Krushelnick, Karl

    2008-04-20

    A Nd:glass laser based on a novel design delivers up to 120 J energy pulses with a quasi-flat-top spatial profile at a 0.1 Hz repetition rate. The laser output is frequency-doubled with 50% efficiency and used to pump Ti:sapphire amplifiers. The developed design is perspective for use in the currently contemplated next step in ultra-high-intensity laser development.

  18. Leaky mode suppression in planar optical waveguides written in Er:TeO{sub 2}–WO{sub 3} glass and CaF{sub 2} crystal via double energy implantation with MeV N{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, Budapest H-1525 (Hungary); Berneschi, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF{sub 2} and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in Er:Te glass, and up to 980 nm in CaF{sub 2}. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  19. Single- and double energy N{sup +} ion irradiated planar optical waveguides in Er: Tungsten–tellurite oxide glass and sillenite type Bismuth Germanate crystals working up to telecommunications wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Department of Crystal Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Zolnai, Z.; Fried, M.; Lohner, T. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Righini, G.C. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Pelli, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2013-07-15

    Ion implantation proved to be a universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er{sup 3+}-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Fabrication of channel waveguides in such a material via N{sup +} ion implantation was reported recently. Sillenite type Bismuth Germanate (BGO) crystals are good nonlinear optical materials. Parameters of waveguide fabrication in both materials via implantation of MeV-energy N{sup +} ions were optimized. First single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in both materials. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.1 MeV were performed to suppress leaky modes by increasing barrier width. Improvement of waveguide characteristics was found by m-line spectroscopy and spectroscopic ellipsometry.

  20. Study on energy-storage efficiency of xenon flash-lamp pumped Nd: glass amplifier%氙灯泵浦钕玻璃放大器储能效率研究

    Institute of Scientific and Technical Information of China (English)

    罗亦鸣; 刘建国; 陈林; 郝欣; 王正辉; 刘勇; 陈远斌

    2013-01-01

    The courses of the energy transfer from electricity to the Nd:glass disk were numerically analyzed,such as electricity-light conversion of Xenon flash lamp,cavity transformation,the absorbing of pump-light converting to the laser-energy level and decay.The theoretical and experimental results show that the boosting of energy-storage efficiency of the flash-lamp pumped Nd.:glass amplifier should be achieved by means of improving the material,design and fabrication of the amplifier and its power conditioning system.%按照激光放大器能量传输和转化过程,利用激光速率方程和氙灯辐射方程、光线追迹软件等理论方法和分析计算工具,对氙灯泵浦钕玻璃激光放大器进行储能效率和能量转换环节的理论分析以及定量、半定量计算,系统分析各种能量转化与损耗因素对放大器储能效率的影响.理论研究的成果与放大器实验考核的结果相一致.

  1. Photoluminescence quenching by OH in Er- and Pr-doped glasses for 1.5 and 1.3 um optical amplifiers

    NARCIS (Netherlands)

    Faber, A.J.; Simons, D.R.; Yan, Y.; Waal, H. de

    1994-01-01

    In this paper we report on the effect of hydroxyl (OH) groups on the photoluminescence in the near IR (1.5 and 1.3 μm) in rare earth (Er, Pr)-doped glasses. The 1.5 μm emission of Er-doped phosphate glasses was studied, before and after a special heat treatment. The luminescent lifetime of the 1.5 μ

  2. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  3. 用于1.5μm光波导放大器的高浓度Er3+掺杂玻璃%High Erbium Doped Glasses for Waveguide Amplifiers at 1.5 μm

    Institute of Scientific and Technical Information of China (English)

    张龙; 林凤英; 祁长鸿; 胡和方

    2000-01-01

    制备了用于1.5μm光波导放大器高浓度掺杂Er3+的氟铝酸盐、氟锆酸盐及磷酸盐玻璃。在0.80μm和0.98μm连续激光二极管激发下分析比较了这三种玻璃1.5μm发射的光谱特性、浓度猝灭及其机制。研究表明:由于在0.98 μm激发下,激发态吸收较0.80μm激发下小得多,因而其1.5 μm荧光发射量子效率也比0.80μm激发下高得多;氟铝酸盐玻璃具有最大的荧光强度和最小的浓度猝灭效应,是理想的1.5 μm光波导放大器基质玻璃材料。%High erbium doped fluoroaluminate, fluorozirconate and phosphate glasses were melt for waveguide amplifiers at 1. 5 μm. The spectroscopic properties, concentration quenching and its mechanism were investigated and compared in these glasses with excitation of laser diode operating at 0. 80 μm and 0. 98 μm. The experimental results indicate that the quantum efficiency for the emission at 1.5 μm is higher upon excitation at 0. 98 μm than that at 0. 80 μm, owing to the much weaker excited state absorption (ESA) compared with those of excitation at 0. 80 μm. In addition to the solvency of high rare earth concentration, Er3+ doped fluoroaluminate glass has a much higher quantum efficiency and stronger fluorescence for the 4I13/2 → 4I15/2 emission at 1. 54 μm than Er3+ doped ZBLAN and PE glasses, and also has the smallest concentration quenching in these glasses. It can be considered to be an excellent host for wavesuide amplifiers at 1.5 μm.

  4. Characterization of Er3+-doped Na2O-WO3-TeO2 glass for ion-exchanged waveguide amplifiers and lasers

    Institute of Scientific and Technical Information of China (English)

    Baoyu Chen; Shilong Zhao; Lili Hu; Zhonghong Jiang

    2005-01-01

    @@ Er3+-doped Na2O-WO3-TeO2 glass consistent with standard ion-exchange technology has been fabricated and characterized. The measured absorption and emission spectra of the glass were analyzed by the JuddOfelt and McCumber theories. The intensity parameters are Ω2 = 7.01 × 10-20 cm2, Ω4 = 1.80 × 10-20 cm2, Ω6 = 1.03 × 10-20 cm2. The maximum emission cross-section is 0.91 × 10-20 cm2 at 1.533 μm, and a broad 1.5-μm emission spectrum of 65-nm full width at half-maximum (FWHM) is demonstrated. Glass transition temperature, crystallization onset temperature, density, refractive index are also reported for reference in the design and modelling of the ion-exchange process.

  5. Near-infrared emissions and quantum efficiencies in Tm{sup 3+}-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 {mu}m infrared laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H. [Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034 (China)], E-mail: lhai8686@yahoo.com; Wang, X.Y.; Li, C.M.; Yang, H.X. [Faculty of Chemical Engineering and Materials, Dalian Institute of Light Industry, Dalian 116034 (China); Pun, E.Y.B. [Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tanabe, S. [Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan)

    2008-01-15

    Intense 1.8 {mu}m and efficient 1.48 {mu}m infrared emissions have been recorded in Tm{sup 3+}-doped alkali-barium-bismuth-gallate (LKBBG) glasses with low phonon energies under the excitation of 792 nm diode laser. The maximum emission cross-sections for 1.8 and 1.48 {mu}m emission bands are derived to be 6.26x10{sup -21} and 3.34x10{sup -21} cm{sup 2}, respectively, and the peak values are much higher than those in Tm{sup 3+}-doped ZBLAN glass. In low-concentration doping, the full-widths at half-maximum (FWHMs) of the two emission bands are 223 and 122 nm, and the quantum efficiencies of the {sup 3}F{sub 4} and {sup 3}H{sub 4} levels are proved to be {approx}100% and 86%, respectively. When the doping concentration increases to 1 wt%, the quantum efficiency of the {sup 3}H{sub 4} level is reduced to 60% due to the cross-relaxation processes in high-concentration doping. Efficient 1.8 {mu}m infrared emission in Er{sup 3+}/Tm{sup 3+}-codoped LKBBG glass has also been achieved under the excitation of 970 nm diode laser, and the probability and the efficiency of non-radiative energy transfer from Er{sup 3+} to Tm{sup 3+} are as high as 354 s{sup -1} and 58.4%, respectively. Efficient and broad 1.8 and 1.48 {mu}m infrared emission bands indicate that Tm{sup 3+}-doped LKBBG glasses are suitable materials in developing S- and U-band amplifiers and 1.8 {mu}m infrared laser.

  6. 50GeSe2-25In2Se3-25CsI glass doped with Tm3+, Tm3+/Ho3+ and Tm3+/Er3+ for amplifiers working at 1.22 μm

    Institute of Scientific and Technical Information of China (English)

    XIONG Huihua; TANG Gao; LUO Lan; CHEN Wei

    2011-01-01

    Se-based chalcohalide glass of 50GeSe2-25In2Se3-25CsI was prepared.The thermal and optical characterizations revealed that this host was thermally and optically superior for practical applications.Strong emission centered at 1.22 μm was observed in all Tm3+ single-doped,Tm3+/Ho3+ and Tm3+/Er3+ co-doped samples with an excitation of 808 nm wavelength.The emission was attributed to the Tm3+:3H5→3H6 transition.The co-doping of Ho3+ or Er3+ largely broadened the width and slightly strengthened the intensity of the 1.22 μm emission.The possible energy transfer processes and luminescence kinetics were figured.In addition,its potential application as the host material for novel optical amplifiers was discussed.

  7. Glasses for photonic applications

    NARCIS (Netherlands)

    Richardson, K.; Krol, D.M.; Hirao, K.

    2010-01-01

    Recent advances in the application of glassy materials in planar and fiber-based photonic structures have led to novel devices and components that go beyond the original thinking of the use of glass in the 1960s, when glass fibers were developed for low-loss, optical communication applications. Expl

  8. The Grism Lens-Amplified Survey from Space (GLASS). IX. The dual origin of low-mass cluster galaxies as revealed by new structural analyses

    CERN Document Server

    Morishita, Takahiro; Treu, Tommaso; Vulcani, Benedetta; Schmidt, Kasper B; Dressler, Alan; Poggianti, Bianca; Malkan, Matthew A; Wang, Xin; Huang, Kuang-Han; Trenti, Michele; Bradac, Marusa; Hoag, Austin

    2016-01-01

    Using deep Hubble Frontier Field imaging and slitless spectroscopy from the Grism Lens-Amplified Survey from Space, we analyze 2200 cluster and 1748 field galaxies at $0.2\\leq z\\leq0.7$ to determine the impact of environment on galaxy size and structure at $\\log M_*/M_\\odot>7.8$, an unprecedented limit at these redshifts. Based on both simple--$r_e= f(M_*)$--and more complex analyses--$r_e = f(M_*, C, n, z,\\Sigma)$--we find local density ($\\Sigma$) to induce a $7\\%\\pm3\\%$ ($95\\%$ confidence) reduction in half-light radii ($r_e$) beyond what can be accounted for by stellar mass ($M_*$), $U-V$ color ($C$), S\\'ersic index ($n$), and redshift ($z$) effects. Almost any size difference between galaxies in high- and low-density regions is thus attributable to their different distributions in properties other than environment. Yet, we do find a clear correlation between $U-V$ color and $r_{e}$ in low-mass red cluster galaxies ($\\log M_*/M_\\odot<9.8$) such that bluer systems are larger, with the bluest having sizes...

  9. Design and performance of the beamlet amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  10. The Grism lens-amplified survey from space (GLASS). VII. The diversity of the distribution of star formation in cluster and field galaxies at 0.3

    CERN Document Server

    Vulcani, Benedetta; Schmidt, Kasper B; Morishita, Takahiro; Dressler, Alan; Poggianti, Bianca M; Abramson, Louis; Bradač, Marusa; Brammer, Gabriel B; Hoag, Austin; Malkan, Matthew; Pentericci, Laura; Trenti, Michele

    2016-01-01

    Exploiting the slitless spectroscopy taken as part of the Grism Lens-Amplified Survey from Space (GLASS), we present an extended analysis of the spatial distribution of star formation in 76 galaxies in 10 clusters at 0.3< z <0.7. We use 85 foreground and background galaxies in the same redshift range as a field sample. The samples are well matched in stellar mass (10^8-10^11 M_sun) and star formation rate (0.5-50 M_sun/yr). We visually classify galaxies in terms of broad-band morphology, Halpha morphology and likely physical process acting on the galaxy. Most Halpha emitters have a spiral morphology (41+/-8% in clusters, 51+/-8% in the field), followed by mergers/interactions (28+/-8%, 31+/-7%, respectively) and early-type galaxies (remarkably as high as 29+/-8% in clusters and 15+/-6% in the field). A diversity of Halpha morphologies is detected, suggesting a diversity of physical processes. In clusters, 30+/-8% of the galaxies present a regular morphology, mostly consistent with star formation diffuse...

  11. Effects of Nb2O5 on thermal stability and optical properties of Er3+-doped tellurite glasses

    Institute of Scientific and Technical Information of China (English)

    Zhao Chun; Zhang Qin-Yuan; Pan Yue-Xiao; Jiang Zhong-Hong

    2006-01-01

    Er3+-doped tellurite glasses with molar compositions of xNb2O5 - (14.7 - x)Na2O-10ZnO-SK2O-10GeO2-60TeO2-0.3Er2O3 (x = 0, 3, 5, 7 and 9) have been investigated for developing 1.5 μm fibre and planar amplifiers. The effects of Nb2O5 on the thermal stability and optical properties of Er3+-doped tellurite glasses have been discussed.It is noted that the incorporation of Nb2O5 (x=5) increases the thermal stability of tellurite glasses significantly.Er3+-doped niobium tellurite glasses exhibit a large stimulated emission cross-section (7.2×10-21 - 10.7×10-21 cm2)and the gain bandwidth, FWHM×σepeak (274×10-28 -480×10-28 cm3), which are significantly higher than that of silicate and phosphate glasses. In addition, the intensity of upconversion luminescence of the Er3+-doped niobium tellurite glasses decreases rapidly with increasing Nb2O5 content. As a result, Er3+-doped niobium tellurite glasses might be a potential candidate for developing laser or optical amplifier devices.

  12. Perturbations of planar algebras

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2010-01-01

    We introduce the concept of {\\em weight} of a planar algebra $P$ and construct a new planar algebra referred as the {\\em perturbation of $P$} by the weight. We establish a one-to-one correspondence between pivotal structures on 2-categories and perturbations of planar algebras by weights. To each bifinite bimodule over $II_1$-factors, we associate a {\\em bimodule planar algebra} bimodule corresponds naturally with sphericality of the bimodule planar algebra. As a consequence of this, we reproduce an extension of Jones' theorem (of associating 'subfactor planar algebras' to extremal subfactors). Conversely, given a bimodule planar algebra, we construct a bifinite bimodule whose associated bimodule planar algebra is the one which we start with using perturbations and Jones-Walker-Shlyakhtenko-Kodiyalam-Sunder method of reconstructing an extremal subfactor from a subfactor planar algebra. We show that the perturbation class of a bimodule planar algebra contains a unique spherical unimodular bimodule planar algeb...

  13. Long-Period Gratings in Planar Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    Kin; Seng; Chiang

    2003-01-01

    Our progress in the study of long-period gratings (LPGs) in planar optical waveguides is reviewed. In particular, experimental LPGs in glass and polymer waveguides are presented to demonstrate the potential of LPG-based waveguide devices.

  14. Long-Period Gratings in Planar Optical Waveguides

    Institute of Scientific and Technical Information of China (English)

    Kin Seng Chiang

    2003-01-01

    Our progress in the study of long-period gratings (LPGs) in planar optical waveguides is reviewed. In particular,experimental LPGs in glass and polymer waveguides are presented to demonstrate the potential of LPG-based waveguide devices.

  15. The warm, rich sound of valve guitar amplifiers

    Science.gov (United States)

    Keeports, David

    2017-03-01

    Practical solid state diodes and transistors have made glass valve technology nearly obsolete. Nevertheless, valves survive largely because electric guitar players much prefer the sound of valve amplifiers to the sound of transistor amplifiers. This paper discusses the introductory-level physics behind that preference. Overdriving an amplifier adds harmonics to an input sound. While a moderately overdriven valve amplifier produces strong even harmonics that enhance a sound, an overdriven transistor amplifier creates strong odd harmonics that can cause dissonance. The functioning of a triode valve explains its creation of even and odd harmonics. Music production software enables the examination of both the wave shape and the harmonic content of amplified sounds.

  16. Planar microcoil-based microfluidic NMR probes.

    NARCIS (Netherlands)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P-A; Daridon, A.; Verpoorte, E.; de Rooij, N.F.; Popovic, R.S.

    2003-01-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120

  17. Broadband amplified spontaneous emission from Er3+-doped single-mode tellurite fibre

    Institute of Scientific and Technical Information of China (English)

    Chen Dong-Dan; Zhang Qin-Yuan; Liu Yue-Hui; Xu Shan-Hui; Yang Zhong-Min; Deng Zai-De; Jiang Zhong-Hong

    2006-01-01

    This paper reports on the fabrication and characterization of a newly erbium-doped single-mode tellurite glass-fibre applicable for 1.5-μm optical amplifiers. A very broad erbium amplified spontaneous emission in the range 1450-1650 nm from erbium-doped single-mode tclluritc glass-fibre is obtained upon excitation of a 980-nm laser diode. The effects of the length of glass-fibre and the pumping power of laser diode on the amplified spontaneous emission are discussed.The result indicates that the tellurite glass-fibre is a promising candidate for designing fibre-optic amplifiers and lasers.

  18. Cross-differential amplifier

    Science.gov (United States)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  19. Laser Cooled High-Power Fiber Amplifier

    CERN Document Server

    Nemova, Galina

    2009-01-01

    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence of a small deviation in the value of the amplified signal on the temperature of the fiber with the fixed distribution of the Tm3+ions in the fiber cladding is investigated.

  20. Portable musical instrument amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Christian, David E. (Danbury, CT)

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  1. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide

    Science.gov (United States)

    Wang, Fei; Chen, Baojie; Pun, Edwin Yue Bun; Lin, Hai

    2015-04-01

    Alkaline aluminum phosphate glasses (NMAP) with excellent chemical durability for thermal ion-exchanged optical waveguide have been designed and investigated. The transition temperature Tg (470 °C) is higher than the ion-exchange temperature (390 °C), which is favorable to sustain the stability of the glass structure for planar waveguide fabrication. The effective diffusion coefficient De of K+-Na+ ion exchange in NMAP glasses is 0.110 μm2/min, indicating that ion exchange can be achieved efficiently in the optical glasses. Single-mode channel waveguide has been fabricated on Er3+/Yb3+ doped NMAP glass substrate by standard micro-fabrication and K+-Na+ ion exchange. The mode field diameter is 9.6 μm in the horizontal direction and 6.0 μm in the vertical direction, respectively, indicating an excellent overlap with a standard single-mode fiber. Judd-Ofelt intensity parameter Ω2 is 5.47 × 10-20 cm2, implying a strong asymmetrical and covalent environment around Er3+ in the optical glasses. The full width at half maximum and maximum stimulated emission cross section of the 4I13/2 → 4I15/2 are 30 nm and 6.80 × 10-21 cm2, respectively, demonstrating that the phosphate glasses are potential glass candidates in developing compact optoelectronic devices. Pr3+, Tm3+ and Ho3+ doped NMAP glasses are promising candidates to fabricate waveguide amplifiers and lasers operating at special telecommunication windows.

  2. Nanopatterning planar and non-planar mold surfaces for a polymer replication

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi;

    2013-01-01

    , freestanding nickel foil with a reversed pattern. This foil is then used either as a direct master for polymer replication or as a master for an extremely high pressure embossing of such master onto a metallic injection mold cavity surface coated with special coating, which, when cured, forms robust and hard......, glass-like material. We have demonstrated nanopattern transfer on both planar and non-planar geometries and our nanopatterned mold coating can sustain more than 10.000 injection molding cycles. We can coat our nanopatterned mold surfaces with a monolayer of perfluorosilane to further reduce surface...

  3. High Quantum Efficiency and High Concentration Erbium-Doped Silica Glasses Fabricated by Sintering Nanoporous Glasses

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method was used to prepare erbium-doped high silica (SiO2%>96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6×103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.

  4. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...... of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed....

  5. Planar Difference Functions

    CERN Document Server

    Hall, Joanne L; Donovan, Diane

    2012-01-01

    In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop's construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, $x^3$ is the only Alltop type function.

  6. Learning planar ising models

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jason K [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Netrapalli, Praneeth [STUDENT UT AUSTIN

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  7. Characterization of Er{sup 3+}-doped fluoride glass ceramics waveguides containing LaF{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Boulard, Brigitte, E-mail: brigitte.boulard@univ-lemans.f [Laboratoire des Oxydes et Fluorures, UMR CNRS 6010, Universite du Maine, Av. O. Messiaen, 72085 Le Mans (France); Peron, O. [Laboratoire des Oxydes et Fluorures, UMR CNRS 6010, Universite du Maine, Av. O. Messiaen, 72085 Le Mans (France); Jestin, Y.; Ferrari, M. [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Group, via alla Cascata 56/C, 38050 Povo (Italy); Duverger-Arfuso, C. [Laboratoire des Oxydes et Fluorures, UMR CNRS 6010, Universite du Maine, Av. O. Messiaen, 72085 Le Mans (France)

    2009-12-15

    Highly Er{sup 3+}-doped fluoride glass ceramics planar waveguides containing LaF{sub 3} nanocrystals have been fabricated by physical vapor deposition (PVD). The solubility of Er{sup 3+} in the segregated nanocrystals can reach 30 mol% which is much larger than the value found in LaF{sub 3}-oxide glass ceramics. A quantitative analysis of the photoluminescence of the 1.54 {mu}m emission band of Er{sup 3+} ions has demonstrated that erbium ions are partitioned in both crystals and vitreous phase. The short lifetime (2.2 ms) measured for erbium incorporated in LaF{sub 3} crystal lattice is a consequence of concentration quenching while the lifetime is close to 10 ms in the glassy phase. The emission bandwidth has been found to be greater than that of the precursor glass (71 nm at the half-height width). The high Er{sup 3+} concentration and spectral width could make this nanostructured fluoride material suitable for planar amplifier in the C telecommunication band.

  8. Laser Amplifier Development for the Remote Sensing of CO2 from Space

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Storm, Mark; Betin, Alexander

    2015-01-01

    Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the approximately x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a approximately 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.

  9. Optoisolators simplify amplifier design

    Science.gov (United States)

    Ting, Joseph Wee

    2007-09-01

    Simplicity and low parts count are key virtues to this high voltage amplifier. Optoisolators replace complex high voltage transistor biasing schemes. This amplifier employs only 2 optoisolators, 16 high voltage mosfets transistors, 2 low voltage ones, 6 linear IC's and a score of passive components. Yet it can amplify opamp signals to 5 kV peak-to-peak from DC to sine waves up to 20 kHz. Resistor feedback guarantees the fidelity of the signal. It can source and sink 10 mA of output current. This amplifier was conceived to power ion traps for biological whole cell mass measurements. It is a versatile tool for a variety of applications.

  10. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  11. Charge-sensitive amplifier

    Directory of Open Access Journals (Sweden)

    Startsev V. I.

    2008-02-01

    Full Text Available The authors consider design and circuit design techniques of reduction of the influence of the pyroelectric effect on operation of the charge sensitive amplifiers. The presented experimental results confirm the validity of the measures taken to reduce the impact of pyroelectric currents. Pyroelectric currents are caused by the influence of the temperature gradient on the piezoelectric sensor and on the output voltage of charge sensitive amplifiers.

  12. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  13. Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation

    Science.gov (United States)

    Feve, Jean-Philippe; Kliner, Dahv A. V.; Farrow; Roger L.

    2011-02-01

    An optical amplifier, such as an optical waveguide amplifier (e.g., an optical fiber amplifier or a planar waveguide) or a non-guiding optical amplifier, that exhibits a net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation thereof is disclosed. In one aspect of the invention, an optical amplifier structure includes at least one optical amplifier having a length and a gain region. The at least one optical amplifier exhibits a net phase-mismatch that varies along at least part of the length thereof selected to at least partially reduce gain-induced phase-matching during operation thereof.

  14. Planar, monolithically integrated coil

    NARCIS (Netherlands)

    Roozeboom, F.; Reefman, D.; Klootwijk, J.H.; Tiemeijer, L.F.; Ruigrok, J.

    2013-01-01

    The present invention provides a means to integrate planar coils on silicon, while providing a high inductance. This high inductance is achieved through a special back- and front sided shielding of a material. In many applications, high-value inductors are a necessity. In particular, this holds for

  15. Complex Planar Splines.

    Science.gov (United States)

    1981-05-01

    try todefine a complex planar spline by holomorphic elements like polynomials, then by the well known identity theorem (e.g. Diederich- Remmert [9, p...R. Remmert : Funktionentheorie I, Springer, Berlin, Heidelberg, New York, 1972, 246 p. 10 0. Lehto - K.I. Virtanen: Quasikonforme AbbildunQen, Springer

  16. UWB planar antenna technology

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent developments of the ultra-wideband(UWB)planar antennas are reviewed,where the progress in UWB plate monopole antennas,UWB printed monopole antennas and the UWB printed slot antennas is introduced and compared.In addition,the UWB printed antennas with the band-notched functions are also presented.

  17. In-plane spectroscopy with optical fibers and liquid-filled APEX™ glass microcuvettes

    Science.gov (United States)

    Gaillard, William R.; Hasan Tantawi, Khalid; Waddell, Emanuel; Fedorov, Vladimir; Williams, John D.

    2013-10-01

    Chemical etching and laser drilling of microstructural glass results in opaque or translucent sidewalls, limiting the optical analysis of glass microfluidic devices to top down or non-planar topologies. These non-planar observation topologies prevent each layer of a multilayered device from being independently optically addressed. However, novel photosensitive glass processing techniques in APEX™ have resulted in microfabricated glass structures with transparent sidewalls. Toward the goal of a transparent multilayered glass microfluidic device, this study demonstrates the ability to perform spectroscopy with optical fibers and microcuvettes fabricated in photosensitive APEX™ glass.

  18. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  19. Planar electrochemical device assembly

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  20. Dielectric Covered Planar Antennas

    Science.gov (United States)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  1. Routed planar networks

    Directory of Open Access Journals (Sweden)

    David J. Aldous

    2016-04-01

    Full Text Available Modeling a road network as a planar graph seems very natural. However, in studying continuum limits of such networks it is useful to take {\\em routes} rather than {\\em edges} as primitives. This article is intended to introduce the relevant (discrete setting notion of {\\em routed network} to graph theorists. We give a naive classification of all 71 topologically different such networks on 4 leaves, and pose a variety of challenging research questions.

  2. Comparison of Er-doped sol-gel glasses with various hosts

    Science.gov (United States)

    Xiang, Qing; Zhou, Yan; Lam, Yee Loy; Ooi, Boon Siew; Chan, Yuen Chuen; Kam, Chan Hin

    1999-11-01

    Using the sol-gel process, we prepared three groups of Er-doped glasses, namely, Er-doped Si02-A101.5 (SAB) glass, Er-doped Si02-Ti02-A101.5 (STAE) glass, and Er-doped Si02-Ge02-Al01.5 (SGAE) glass. Various erbium concentration and different host composition under the same processing condition have been studied in order to optimize the material composition to get the strongest fluorescence emission for each material system. It has been found that for SAE glass, the strongest fluorescence emission is obtained when the mole ratio of the three constituent oxides is lOOSiO2 : 20A101.5 2ErO1.5. For the STAE material system, the best composition ratio for the strongest fluorescence emission is 93 Si02 : 7TiO2: 20A101.5 : lErO1.5, whereas the value for SGAE glass is 9OSiO2:lOGeO2 : 2OAlO1.5: 1ErO1.5. But the relative lifetimes were obtained with the recipe lOOSiO2:10A101.5:1ErO1.5 for SAE series, 90 Si02:lOGeO2:1OAlO1.5: 1ErO1.5 for STAE group and 93 Si02:7Ti02:20A101.5:1ErO1.5 for STAE group. Using these recipes, three 20-layer (up to 2.5 μm) crack-free films have been deposited on silica-on-silicon (SOS) substrates with multiple spin-coating and rapid thermal annealing (RTA). Only the STAE film and the SGAE film are found to guide light. The experimental results show that STAB glasses have higher hydrophilicity than SGAE glasses and SGAE glasses has lower crystallization temperature than STAE glasses. The fact that these waveguiding films emit relatively strong fluorescence around the wavelength of 1.55 μm implies that such planar waveguides are potential candidates from which integrated optical waveguide amplifiers and lasers operating at the third optical fiber communication window can be fabricated.

  3. Fourier plane image amplifier

    Science.gov (United States)

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  4. Fourier plane image amplifier

    Science.gov (United States)

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  5. Sm3+-doped fluorophosphate glass: Formation of Ag nanoparticles via Ag+/K+ ion exchange and their effects on optical and dielectric properties

    Science.gov (United States)

    Thomas, Sunil; Sajna, M. S.; Nayab Rasool, Sk.; Gopinath, Manju; Joseph, Cyriac; Unnikrishnan, N. V.

    2015-01-01

    Silver-potassium ion exchange on Sm3+-doped fluorophosphate glass has been carried out via thermal diffusion method. The crystallite size of silver was estimated to be 19 nm from X-ray diffraction pattern and it was confirmed using transmission electron microscopy analysis. Assessment of the optical properties has been carried out by absorption, photoluminescence and lifetime measurements. Present glass system exhibits favorable optical properties for possible uses as optical amplifiers, sensors and planar waveguides. The energy transfer mechanism from silver to samarium and the surface plasmon resonance of silver nanoparticles are discussed for the ion exchanged glass. The dielectric studies have been carried out in order to assess the influence of silver on the dielectric properties and ac conductivity of the ion exchanged glass. Coulomb blockade effects have been discussed to clarify the enhancement in the insulating behavior of the glass by the incorporation of silver nanoparticles. The power-law and Cole-Cole parameters were determined and the influence of silver on these parameters is discussed.

  6. Microprocessor based interface unit for coupling a picosecond laser oscillator with external laser amplifiers

    Science.gov (United States)

    Navathe, C. P.; Ansari, M. S.; Upadhyaya, J.; Sreedhar, N.; Chandra, R.; Kumbhare, S. R.; Chakera, J. A.; Gupta, P. D.

    1996-07-01

    A microprocessor based interface unit for coupling a commercial picosecond Nd:YLF laser oscillator amplifier to external high power Nd:phosphate glass laser amplifier stages is described. The system generates charging and firing signals required for the picosecond oscillator, and also carries out the charging and firing sequence of external amplifiers for a single shot or a repetitive mode of operation. The electronics developed is simple and modular, with sufficient scope for expansion of the system, and resistant to electromagnetic interference.

  7. Experimental examinations of semiconductor laser amplifiers for optical communication technology

    Science.gov (United States)

    Ludwig, Reinhold

    1993-01-01

    Properties of SLA (Semiconductor Laser Amplifier), which are particularly interesting for application to linear repeaters in coherent multichannel systems, are studied and design rules for future optimized amplifier structure are deduced. Laser diode antireflection was examined and reflection factor was measured. Low signal properties were discussed considering injection current, wavelengths, temperature and polarization. The coupling between amplifiers and glass fibers was examined. The utilization of cascade amplifiers as linear repeaters in multichannel heterodyne systems and television distribution systems was investigatied. The following results are obtained: measurement and calculation of the paradiaphony between two signals radiated in a SLA; multichannel data transfer through a SLA; polarization independent amplification with SLA configurations; measurement of the frequency dependence of four wave mixing sidelines in a SLA; measurement of the system degradation through echoes in a bidirectional SLA chain; data transmission with frequency conversion and calculation of multichannel transmission systems with cascade SLA, taking into account saturation, signal to noise ratio, bandwidth reduction and echo.

  8. STABILIZED TRANSISTOR AMPLIFIER

    Science.gov (United States)

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  9. Prediction for RNA planar pseudoknots

    Institute of Scientific and Technical Information of China (English)

    Li Hengwu; Zhu Daming; Liu Zhendong; Li Hong

    2007-01-01

    Based on m-stems and semi-extensible structure, a model is presented to represent RNA planar pseudoknots, and corresponding dynamic programming algorithm is designed and implemented to predict arbitrary planar pseudoknots and simple non-planar pseudoknots with O(n4) time and O(n3) space. The algorithm folds total 245 sequences in the Pseudobase database, and the test results indicate that the algorithm has good accuracy, sensitivity and specificity.

  10. Polarization effect in parametric amplifier

    Institute of Scientific and Technical Information of China (English)

    Junhe Zhou; Jianping Chen; Xinwan Li; Guiling Wu; Yiping Wang

    2005-01-01

    @@ Polarization effect in parametric amplifiers is studied. Coupled equations are derived from the basic propagation equations and numerical solutions are given for both one-wavelength-pump and two-wavelengthpump systems. Several parametric amplifiers driven by pumps at one wavelength and two wavelengths are analyzed and the polarization independent parametric amplifier is proposed.

  11. Radio Frequency Solid State Amplifiers

    CERN Document Server

    Jacob, J

    2015-01-01

    Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.

  12. Multiple pass laser amplifier system

    Science.gov (United States)

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  13. Glass devices for efficient second harmonic generation

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    We show here that quasi-phase matched (QPM) planar nonlinear devices of high quality can be fabricated by means of periodic poling of the glass. The devices, used for second-harmonic generation (SHG), have accurately-controlled centre wavelengths, and the normalised conversion efficiencies...... are approximately one order of magnitude higher than what has previously been reported for periodically poled glass. In conclusion, we have demonstrated that high-quality nonlinear QPM devices can be fabricated in glass-on-silicon. The technology is easily adaptable to any desired wavelength (e.g. 1550 nm) and can...

  14. Study on durability for thermal cycle of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi [Tonen Corp., Saitama (Japan)] [and others

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  15. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  16. Electronic amplifiers for automatic compensators

    CERN Document Server

    Polonnikov, D Ye

    1965-01-01

    Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as

  17. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  18. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  19. REGENERATIVE TRANSISTOR AMPLIFIER

    Science.gov (United States)

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  20. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  1. Planar Para Algebras, Reflection Positivity

    CERN Document Server

    Jaffe, Arthur

    2016-01-01

    We define the notion of a planar para algebra, which arises naturally from combining planar algebras with the idea of $\\Z_{N}$ para symmetry in physics. A subfactor planar para algebra is a Hilbert space representation of planar tangles with parafermionic defects, that are invariant under isotopy. For each $\\Z_{N}$, we construct a family of subfactor planar para algebras which play the role of Temperley-Lieb-Jones planar algebras. The first example in this family is the parafermion planar para algebra. Based on this example, we introduce parafermion Pauli matrices, quaternion relations, and braided relations for parafermion algebras which one can use in the study of quantum information. Two different reflections play an important role in the theory of planar para algebras. One is the adjoint operator; the other is the modular conjugation in Tomita-Takesaki theory. We use the latter one to define the double algebra and to introduce reflection positivity. We give a new and geometric proof of reflection positivi...

  2. Improved Dynamic Planar Point Location

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Arge, Lars; Georgiadis, Loukas

    2006-01-01

    We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time.......We develop the first linear-space data structures for dynamic planar point location in general subdivisions that achieve logarithmic query time and poly-logarithmic update time....

  3. Ferromagnetic Planar Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Carbucicchio, M.; Rateo, M. [University of Parma, and INFM, Department of Physics (Italy)

    2004-12-15

    Modern permanent magnets require a high coercive field on account of a strong magnetocrystalline anisotropy, as well as a high saturation magnetization and high Curie temperature. The achievement of so different characteristics in a unique phase is the present main difficulty. In principle, this problem can be solved combining the high saturation magnetization of a soft phase with the high magnetic anisotropy of a hard phase, via the exchange coupling on a nanometric scale. The first attempts showed the feasibility of planar magnetic nanocomposites, where soft and hard magnetic layers are intercalated, but on the other hand they also stressed the difficulties still existing. The present paper reviews some theoretical aspects and experimental results, pointing out the potentiality of Moessbauer spectroscopy in determining the spin configuration, as well as the nature and thickness of interfaces, which strongly influence the exchange interaction in these systems.

  4. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Jacob, Riko

    We determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure...... is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull......, and the tangent queries to determine whether a given point is inside the convex hull. The space usage of the data structure is O(n). We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  5. Dynamic Planar Convex Hull

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølfting; Jacob, Rico

    2002-01-01

    In this paper we determine the computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage...... of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects...... the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure....

  6. Planar elliptic growth

    Energy Technology Data Exchange (ETDEWEB)

    Mineev, Mark [Los Alamos National Laboratory

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  7. A Planarity Criterion for Graphs

    CERN Document Server

    Dosen, Kosta

    2012-01-01

    It is proven that a connected graph is planar if and only if all its cocycles with at least four edges are "grounded" in the graph. The notion of grounding of this planarity criterion, which is purely combinatorial, stems from the intuitive idea that with planarity there should be a linear ordering of the edges of a cocycle such that in the two subgraphs remaining after the removal of these edges there can be no crossing of disjoint paths that join the vertices of these edges. The proof given in the paper of the right-to-left direction of the equivalence is based on Kuratowski's Theorem for planarity involving $K_{3,3}$ and $K_5$, but the criterion itself does not mention $K_{3,3}$ and $K_5$. Some other variants of the criterion are also shown necessary and sufficient for planarity.

  8. An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube

    DEFF Research Database (Denmark)

    Zhao, Bin; Wang, Gang; Hurley, William G.;

    2016-01-01

    is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...

  9. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  10. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  11. Nanoscale electromechanical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  12. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo;

    Most work on planar photonic crystals has been performed on structures based on semiconducting crystals such as Si and III-V compounds. Due to the high index contrast between the host material and the air holes (e.g., Si has n = 3.5), these structures exhibit a large photonic band gap. However......ON glasses with different indices between 1.46 and 1.77 and we are currently fabricating photonic crystals in SiON on a silica buffer layer on Si. Simulations show that a complete band gap can indeed be created for TE-polarised light in the SiON structures, making them promising candidates for new photonic......, at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  13. Closed planar curves without inflections

    CERN Document Server

    Ohno, Shuntaro; Umehara, Masaaki

    2011-01-01

    We define a computable topological invariant $\\mu(\\gamma)$ for generic closed planar regular curves $\\gamma$, which gives an effective lower bound for the number of inflection points on a given generic closed planar curve. Using it, we classify the topological types of locally convex curves (i.e. closed planar regular curves without inflections) whose numbers of crossings are less than or equal to five. Moreover, we discuss the relationship between the number of double tangents and the invariant $\\mu(\\gamma)$ on a given $\\gamma$.

  14. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  15. Quadratic Tangles in Planar Algebras

    CERN Document Server

    Jones, Vaughan F R

    2010-01-01

    In planar algebras, we show how to project certain simple "quadratic" tangles onto the linear space spanned by "linear" and "constant" tangles. We obtain some corollaries about the principal graphs and annular structure of subfactors.

  16. Planar immersion lens with metasurfaces

    CERN Document Server

    Ho, John S; Tanabe, Yuji; Yeh, Alexander J; Fan, Shanhui; Poon, Ada S Y

    2015-01-01

    The solid immersion lens is a powerful optical tool that allows light entering material from air or vacuum to focus to a spot much smaller than the free-space wavelength. Conventionally, however, they rely on semispherical topographies and are non-planar and bulky, which limits their integration in many applications. Recently, there has been considerable interest in using planar structures, referred to as metasurfaces, to construct flat optical components for manipulating light in unusual ways. Here, we propose and demonstrate the concept of a planar immersion lens based on metasurfaces. The resulting planar device, when placed near an interface between air and dielectric material, can focus electromagnetic radiation incident from air to a spot in material smaller than the free-space wavelength. As an experimental demonstration, we fabricate an ultrathin and flexible microwave lens and further show that it achieves wireless energy transfer in material mimicking biological tissue.

  17. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  18. Drinfeld center of planar algebra

    CERN Document Server

    Das, Paramita; Gupta, Ved Prakash

    2012-01-01

    We introduce fusion and contragadient of affine representations of a planar algebra $P$ (not necessarily having finite depth). We prove that if $N \\subset M$ is a subfactor realization of $P$, then the Drinfeld center of the $N$-$N$-bimodule category generated by $_N L^2 (M)_M$, is equivalent to the category Hilbert affine representations of $P$ satisfying certain finiteness criterion. As a consequence, we prove Kevin Walker's conjecture for planar algebras.

  19. High-quality global hydrogen silsequioxane contact planarization for nanoimprint lithography

    NARCIS (Netherlands)

    Büyükköse, S.; Vratzov, B.; Wiel, van der W.G.

    2011-01-01

    The authors present a novel global contact planarization technique based on the spin-on-glass material hydrogen silsequioxane (HSQ) and demonstrate its excellent performance on patterns of 70 nm up to several microns generated by UV-based nanoimprint lithography. The HSQ layer (∼165 nm) is spin coa

  20. High-quality global hydrogen silsequioxane contact planarization for nanoimprint lithography

    NARCIS (Netherlands)

    Büyükköse, Serkan; Vratzov, Boris; Wiel, van der Wilfred G.

    2011-01-01

    The authors present a novel global contact planarization technique based on the spin-on-glass material hydrogen silsequioxane (HSQ) and demonstrate its excellent performance on patterns of 70 nm up to several microns generated by UV-based nanoimprint lithography. The HSQ layer (∼165 nm) is spin coat

  1. Mid-IR acoustooptic interaction in planar waveguides

    Science.gov (United States)

    Deriugin, L. N.; Anikin, V. I.; Gudzenko, A. I.; Dneprovskii, V. G.; Terichev, V. F.

    1980-04-01

    The interaction of surface acoustic waves (SAW) and surface optical waves in planar infrared waveguides has been studied experimentally at a wavelength of 10.6 microns, corresponding to the output wavelength of a CO2 laser. In the planar waveguide used, the supporting layer was a film of As-Se chalcogenide glass deposited by thermal evaporation on a substrate of a high-resistivity cadmium sulfide single crystal. Diffraction efficiency vs acoustic power and diffraction efficiency vs SAW frequency plots are presented. The maximum intensity of the diffracted light was observed when the infrared light was incident on the acoustic column at an angle of 1 deg 59 min, which is in good agreement with the calculated value.

  2. Planar patch-clamp force microscopy on living cells

    Energy Technology Data Exchange (ETDEWEB)

    Pamir, Evren [Center for Nano Science, Ludwig-Maximilians University, Amalienstr 54, 80799 Munich (Germany); George, Michael; Fertig, Niels [Nanion Technologies GmbH, Erzgiessereistr. 4, 80335 Munich (Germany); Benoit, Martin [Center for Nano Science, Ludwig-Maximilians University, Amalienstr 54, 80799 Munich (Germany)], E-mail: martin.benoit@physik.uni-muenchen.de

    2008-05-15

    Here we report a new combination of the patch-clamp technique with the atomic force microscope (AFM). A planar patch-clamp chip microstructured from borosilicate glass was used as a support for mechanical probing of living cells. The setup not only allows for immobilizing even a non-adherent cell for measurements of its mechanical properties, but also for simultaneously measuring the electrophysiological properties of a single cell. As a proof of principle experiment we measured the voltage-induced membrane movement of HEK293 and Jurkat cells in the whole-cell voltage clamp configuration. The results of these measurements are in good agreement with previous studies. By using the planar patch-clamp chip for immobilization, the AFM not only can image non-adhering cells, but also gets easily access to an electrophysiologically controlled cellular probe at low vibrational noise.

  3. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  4. Capacities of quantum amplifier channels

    Science.gov (United States)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  5. Small signal microwave amplifier design

    CERN Document Server

    Grosch, Theodore

    2000-01-01

    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  6. International Standardization Activities for Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  7. Characterization of SLUG microwave amplifiers

    Science.gov (United States)

    Hoi, I.-C.; Zhu, S.; Thorbeck, T.; McDermott, R.; Mutus, J.; Jeffrey, E.; Barends, R.; Chen, Y.; Roushan, P.; Fowler, A.; Sank, D.; White, T.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    2015-03-01

    With the rapid growth of superconducting circuits quantum technology, a near quantum-limited amplifier at GHz frequency is needed to enable high fidelity measurements. We describe such an amplifier, the SQUID based, superconducting low inductance undulatory galvanometer (SLUG) amplifier. We measure the full scattering matrix of the SLUG. In particular, we measure both forward and reverse gain, as well as reflection. We see 15dB forward gain with added noise from one quanta to several quanta. The -1 dB compression point is around -95 dBm, about two orders of magnitude higher than that of typical Josephson parametric amplifiers. With these properties, SLUG is well suited for the high fidelity, simultaneous multiplexed readout of superconducting qubits.

  8. PID Controller with Operational Amplifier

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents a PID controller made with LM741 operational amplifier that implement the PID controllers laws and allow for a widerange of applications of in the field of automatic control of technicalprocesses and systems.

  9. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  10. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  11. Operational amplifiers theory and design

    CERN Document Server

    Huijsing, Johan

    2017-01-01

    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  12. A KIND OF NEW AMPLIFIER

    Institute of Scientific and Technical Information of China (English)

    YIN XUN-HE; FENG RU-PENG; REN YONG

    2000-01-01

    Chaotic characteristics in the iteration of logistic map (one-dimensional discrete dynamic system) are simulatedand analyzed. The circuit implementation of a kind of chaotic amplifier model is based on the chaotic characteristicsthat chaos is sensitively dependent on its initial conditions, and the circuit simulation result is given using simulationprogram with integrated circuit emphasis for personal computer (PSPICE), and is compared with linear amplifier.Advantages and disadvantages of such a model are indicated.

  13. Literature Review of Spin On Glass

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Reuben James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-02

    Spin on glass (SOG) is a promising material that combines the planarization properties of a low-viscosity liquid with a dielectric constant lower than that of silicon dioxide. However, as this paper will show, this material comes with significant processing and material properties challenges that must be understood and overcome. Significant research has been accomplished through a variety of processing techniques that will be reviewed here.

  14. Parasitic oscillations, absorption, stored energy density and heat density in active-mirror and disk amplifiers.

    Science.gov (United States)

    Brown, D C; Jacobs, S D; Nee, N

    1978-01-15

    We present detailed calculations of the absorption, stored energy density, and heat density distributions for these commercial laser glasses of current interest (silicate-ED-2, phosphates-EV-2, LHG-5). The form of the stored energy density distribution is shown to be important in the consideration of parasitic oscillations in active-mirror and disk amplifiers. In active-mirror amplifiers, the application of multilayer dielectric coatings has been found not to affect the threshold for bulk parasitic oscillations. Due to the unique geometry of active mirrors, amplified spontaneous emission rather than parasitics is found to limit energy storage ultimately.

  15. Bandwidth enhancement for parametric amplifiers operated in chirped multi-beam mode

    CERN Document Server

    Terranova, F; Pegoraro, F

    2008-01-01

    In this paper we discuss the bandwidth enhancement that can be achieved in multi-Joule OPCPA systems exploiting the tunability of parametric amplification. In particular, we consider a pair of single pass amplifiers based on DKDP, pumped by the second harmonic of Nd:glass and tuned to amplify adjacent regions of the signal spectrum. We demonstrate that a bandwidth enhancement up to 50% is possible in two configurations; in the first case, one of the two amplifiers is operated near its non-collinear broadband limit; to allow for effective recombination and recompression of the outgoing signals this configuration requires filtering and phase manipulation of the spectral tail of the amplified pulses. In the second case, effective recombination can be achieved simply by spectral filtering: in this configuration, the optimization of the parameters of the amplifiers (pulse, crystal orientation and crystal length) does not follow the recipes of non-collinear OPCPA.

  16. The planar two point algorithm

    NARCIS (Netherlands)

    O. Booij; Z. Zivkovic

    2009-01-01

    Vision-based localization, mapping and navigation is often performed by searching for corresponding image points and estimating the epipolar geometry. It is known that the possible relative poses of a camera mounted on a mobile robot that moves over a planar ground floor, has two degrees of freedom.

  17. Tuneable planar integrated optical systems.

    Science.gov (United States)

    Amberg, M; Oeder, A; Sinzinger, S; Hands, P J W; Love, G D

    2007-08-20

    Planar integrated free-space optical systems are well suited for a variety of applications, such as optical interconnects and security devices. Here, we demonstrate for the first time dynamic functionality of such microoptical systems by the integration of adaptive liquid-crystal-devices.

  18. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient-driven...

  19. Femtosecond pulse generation at 50 W average powers from an Yb:KYW-Yb:YAG planar-waveguide MOPA

    Directory of Open Access Journals (Sweden)

    Baker H. J.

    2013-03-01

    Full Text Available An Yb:YAG planar-waveguide power amplifier seeded by an Yb:KYW master oscillator is reported. The system produced 700-fs pulses at 1032 nm at average output powers of 50 W and a frequency of 53 MHz.

  20. STRUCTURE AND DYNAMICS OF ALKALI BORATE GLASSES - A MOLECULAR-DYNAMICS STUDY

    NARCIS (Netherlands)

    VERHOEF, AH; DENHARTOG, HW

    1995-01-01

    Structural and dynamical properties of lithium, cesium and mixed alkali (i.e., lithium and cesium) borate glasses have been studied by the molecular dynamics method. The calculations yield glass structures consisting of planar BO3 triangles and BO4 tetrahedrons with no sixfold ring structures at all

  1. MPACVD processing technologies for planar integrated optics

    Science.gov (United States)

    Li, Cheng-Chung; Boudreau, Robert A.; Bowen, Terry P.

    1998-06-01

    Optical circuits based on low-loss glass waveguide are the practical and promising approaches to integrate different functional components for optical communication system. Microwave plasma assisted chemical vapor deposition produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. A microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer thus deposited on the substrates with reasonable high growth rate. Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The main emphasis has been on optimizing the deposition parameters and reproducibility. An uniform, low-loss film can be made by properly balancing the precursor flows. The refractive index of deposited film can also be controlled by adjusting the flow ratio of SiCl4 and GeCl4 bubblers. Deposited films was characterized by prism coupler, loss measurement, residual stress, and composition analysis. The resulted refractive index step can be varied between 1.46 to 1.60. Waveguide can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on mask layer. Core layer was remove by the plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma etch. Etch rate of 3000-4000 angstrom/min has been achieved by using ICP compared to typical etch rate of 200-300 angstrom/min by using conventional RIE.

  2. Imaging Properties of Planar Microlens Arrays

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The planar microlens arrays is a two-dimensional array of optical component which is fabricated monolithically available. Imaging properties of planar microlens arrays are described, which provide both image multiplexer and erect, unit magnification images.

  3. Planar Cell Polarity: A Bridge Too Far?

    OpenAIRE

    2008-01-01

    Summary The mechanisms of planar cell polarity are being revealed by genetic analysis. Recent studies have provided new insights into interactions between three proteins involved in planar cell polarity: Flamingo, Frizzled and Van Gogh.

  4. EMI-resilient amplifier circuits

    CERN Document Server

    van der Horst, Marcel J; Linnenbank, André C

    2014-01-01

    This book enables circuit designers to reduce the errors introduced by the fundamental limitations and electromagnetic interference (EMI) in negative-feedback amplifiers.  The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER).  This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in  application specific amplifiers in order to meet the SER requirements.   ·         Describes design methods that incorporate electromagnetic interference (EMI) in the design of application specific negative-feedback amplifiers; ·         Provides designers with a structured methodology to avoid the use of trial and error in meeting signal-to-error ratio (SER) requirements; ·         Equips designers to increase EMI immunity of the amplifier itself, thus avoiding filtering at the input, reducing the number of components and avoiding detr...

  5. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2...

  6. Capacitively-coupled chopper amplifiers

    CERN Document Server

    Fan, Qinwen; Huijsing, Johan H

    2017-01-01

    This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.

  7. Planarization using chemical mechanical planarization (CMP) on a 16-megabit SRAM with quadruple polysilicon stacks

    Science.gov (United States)

    Perry, Kathleen A.; Radhakrishna, Sandya; Lage, Craig; Nkansah, Franklin; Pol, Victor; Kobayashi, Thom; West, Jeff P.; Crabtree, Phil

    1994-09-01

    Chemical mechanical planarization (CMP) has been used to fabricate a 0.35 micrometers 16 Meg SRAM with quadruple polysilicon stacks. The use of CMP results in complete planarization of over one micron of topography. CMP planarization results in improved photolithography depth of field when compared to standard resist etchback planarization (REB). Data from a lot processed using CMP at contact dielectric and interlayer dielectric is compared to a lot that was processed using standard REB for planarization.

  8. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  9. Thermal recovery of NIF amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Marshall, C.; Petty, C.; Smith, L.; van Wonterghem, B.; Mills, S.

    1997-02-01

    The issue of thermal recovery of the NIF amplifiers has taken on increased emphasis as program goals move toward increasing the shot rate to once every four hours. This paper addresses the technical issues associated with achieving thermal recovery in the NIF amplifiers. We identify two temperature related thermal recovery quantities: (1) the difference between the average slab temperature and the temperature of other surfaces in the amplifier cavity, and (2) the temperature difference in the slab over the aperture. The first quantity relates to optical disturbances in the gas column in the system, while the second quantity is associated with optical aberrations in the laser media itself. Calculations and experiments are used to quantify recovery criteria, and develop cooling approaches. The cooling approaches discussed are (1) active cooling of the flashlamps with ambient gas and chilled gas, and (2) active cooling of the slab edge cladding. Calculations indicate that the NIF baseline cooling approach of 20 cfm per lamp ambient temperature gas flow in both the central and side flashlamp cassettes is capable of meeting thermal recovery requirements for an 8 hour shot period, while to achieve a 4 hour shot period requires use of chilled gas and edge cladding cooling. In addition, the effect of changing the amplifier cavity and beamtube fill gas from nitrogen to helium is addressed, showing that a factor of 8 reduction in the sensitivity to thermal disturbances is possible. 6 refs., 9 figs., 1 tab.

  10. Optical spectroscopy of erbium and thulium doped SnO glass ceramics

    OpenAIRE

    2003-01-01

    The advantages of multifunctional integrated optical components in planar devices are well known. For these devices to be small, a planar amplifier with high rare-earth solubility and photosensitivity would be highly desirable. Tin-doped silica has been found to have high negative photosensitivity, with excellent thermal stability. Optical spectroscopy has been carried out on a range of erbium- and thulium-doped tin-silicates, with rare earth doping levels from 200-10,000ppm and tin concentra...

  11. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  12. Glass Fibers: Quo Vadis?

    Directory of Open Access Journals (Sweden)

    Edith Mäder

    2017-02-01

    Full Text Available Since the early 1930s, the process of melting glass and subsequently forming fibers, in particular discontinuous fiber glass or continuous glass filaments, evolved into commercial-scale manufacturing.[...

  13. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  14. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  15. 338-GHz Semiconductor Amplifier Module

    Science.gov (United States)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  16. Planar Algebra of the Subgroup-Subfactor

    Indian Academy of Sciences (India)

    Ved Prakash Gupta

    2008-11-01

    We give an identification between the planar algebra of the subgroup-subfactor $R \\rtimes H \\subset R \\rtimes G$ and the -invariant planar subalgebra of the planar algebra of the bipartite graph $\\star_n$, where $n=[G:H]$. The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant of $R \\rtimes H \\subset R \\rtimes G$ in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor $R^G \\subset R^H$ and the -invariant planar subalgebra of the planar algebra of the `flip’ of $\\star_n$.

  17. Advances in Planar and Integrated Magnetics

    DEFF Research Database (Denmark)

    Ouyang, Ziwei

    The trend toward high power density, high operating frequency, and low profile in power converters has exposed a number of limitations in the use of conventional wirewound magnetic component structures. Transformers made of the planar principle eliminate virtually some shortcomings of old......‐fashioned wire wound types, and thus planar magnetics, has in recent years, become increasingly popular in high frequency power converters. First, an overview of basic planar magnetics technology used in general dc‐dc converters is presented. PCB or flexible PCB windings as a main construction together...... with planar cores yield a number of advantages over the conventional magnetics. Meanwhile, some limitations of planar magnetics are also introduced. Secondly, fundamental characteristics of planar magnetics are investigated through winding conduction loss, core loss, leakage inductance and interwinding...

  18. Planar Algebra of the Subgroup-Subfactor

    CERN Document Server

    Gupta, Ved Prakash

    2008-01-01

    We give an identification between the planar algebra of the subgroup-subfactor $R \\rtimes H \\subset R \\rtimes G$ and the $G$-invariant planar subalgebra of the planar algebra of the bipartite graph $\\star_n$, where $n = [G : H]$. The crucial step in this identification is an exhibition of a model for the basic construction tower, and thereafter of the standard invariant, of $R \\rtimes H \\subset R \\rtimes G$ in terms of operator matrices. We also obtain an identification between the planar algebra of the fixed algebra subfactor $R^G \\subset R^H$ and the $G$-invariant planar subalgebra of the planar algebra of the `flip' of $\\star_n $.

  19. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  20. Small and lightweight power amplifiers

    Science.gov (United States)

    Shams, Qamar A.; Barnes, Kevin N.; Fox, Robert L.; Moses, Robert W.; Bryant, Robert G.; Robinson, Paul C.; Shirvani, Mir

    2002-07-01

    The control of u wanted structural vibration is implicit in most of NASA's programs. Currently several approaches to control vibrations in large, lightweight, deployable structures and twin tail aircraft at high angles of attack are being evaluated. The Air Force has been examining a vertical tail buffet load alleviation system that can be integrated onboard an F/A-18 and flown. Previous wind tunnel and full-scale ground tests using distributed actuators have shown that the concept works; however, there is insufficient rom available onboard an F/A-18 to store current state-of- the-art system components such as amplifiers, DC-to-DC converter and a computer for performing vibration suppression. Sensor processing, power electronics, DC-to-DC converters, and control electronics that may be collocated with distributed actuators, are particularly desirable. Such electronic system would obviate the need for complex, centralized, control processing and power distribution components that will eliminate the weight associated with lengthy wiring and cabling networks. Several small and lightweight power amplifiers ranging from 300V pp to 650V pp have been designed using off the shelf components for different applications. In this paper, the design and testing of these amplifiers will be presented under various electrical loads.

  1. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  2. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  3. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  4. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.;

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  5. Planar Schottky technology for submillimeter wavelengths

    Science.gov (United States)

    Crowe, Thomas W.; Bishop, William L.; Hesler, Jeffrey L.; Marazita, Steven M.; Koh, Philip J.; Porterfield, David W.

    1996-01-01

    Work carried out in relation to the development of planar integrated Schottky diodes with the aim of increasing the sensitivity, reliability and efficiency of spaceborne heterodyne receivers, is reported. The results of this work include a planar diode mixer at 585 GHz with a total receiver noise temperature of 2,380 K double side band, and planar diode multipliers. The prospects for further integration of circuit elements with the GaAs diodes are discussed.

  6. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk;

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  7. Improved charge amplifier using hybrid hysteresis compensation

    Science.gov (United States)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  8. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  9. Silica-based planar lightwave circuits; Sekieikei planar koha kairogata shusekiko buhin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. [NTT Opto-Electronics Laboratories, Tokyo (Japan)

    1997-08-01

    This paper describes the latest trend of silica-based planar lightwave circuit (PLC) technology. For the waveguide composing PLC, silica-based waveguides using various dopants based on SiO2 have been positively developed. Silica-based glass is physically and chemically stable, and has a good matching with optical fiber transmitter. The optical branch circuit which branches and meets light is a basically significant part for constructing networks. There are splitter with multiple connected Y-branches, wavelength independent coupler using a Mach-Zender interferometer, and NtimesN star coupler. The optical switch is a basic circuit for switching the optical path of light signal. Arrayed-waveguide grating type branching and meeting circuits are also described. The programmable PLC attracts attention as an advanced PLC for realizing various optical filtration performances. To extend further functions of PLC, hybrid integration of optical function device, such as semiconductor laser, and electrical wiring on the PLC platform is investigated. 12 refs., 7 figs., 2 tabs.

  10. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar...... Hall effect bridge sensors....

  11. A Construction of the "2221" Planar Algebra

    CERN Document Server

    Han, Richard

    2011-01-01

    In this paper, we construct the "2221" subfactor planar algebra by finding it as a subalgebra of the graph planar algebra of its principal graph. In particular, we give a presentation of the "2221" subfactor planar algebra consisting of generators and relations. As a corollary, we have a planar algebra proof of the existence of a subfactor with principal graph "2221". To show the subfactor property, we use the jellyfish algorithm for evaluating closed diagrams. Lastly, we show uniqueness up to conjugation of "2221".

  12. The simulation model of planar electrochemical transducer

    Science.gov (United States)

    Zhevnenko, D. A.; Vergeles, S. S.; Krishtop, T. V.; Tereshonok, D. V.; Gornev, E. S.; Krishtop, V. G.

    2016-12-01

    Planar electrochemical systems are very perspective to build modern motion and pressure sensors. Planar microelectronic technology is successfully used for electrochemical transducer of motion parameters. These systems are characterized by an exceptionally high sensitivity towards mechanic exposure due to high rate of conversion of the mechanic signal to electric current. In this work, we have developed a mathematical model of this planar electrochemical system, which detects the mechanical signals. We simulate the processes of mass and charge transfer in planar electrochemical transducer and calculated its transfer function with different geometrical parameters of the system.

  13. Improved optical planar waveguides for lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate efficacy of a novel growth technique for planar waveguides (PWG) Enable PWG laser technology with improved performance, efficiency and manufacturability....

  14. Planar Hall effect bridge magnetic field sensors

    Science.gov (United States)

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  15. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  16. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  17. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  18. A High-performance Small Signal Amplifier

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance.

  19. Optical-fiber laser amplifier for ultrahigh-speed communications

    Energy Technology Data Exchange (ETDEWEB)

    Gosnell, T.; Xie, Ping; Cockroft, N.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to develop a praseodymium-based 1.31-{mu}m fiber amplifier that can be optically pumped with off-the-shelf semiconductor diode lasers. Development of optical amplifiers for the 1.31-{mu}m communications window is motivated by the push towards ``all-optical`` networks that will support multigigabits per second communication rates. Our approach exploited radiationless energy transfer from optically pumped Yb{sup 3+} ions co-doped with Pr{sup 3+} into a fluorozirconate glass (ZBLAN). We obtained a gain of approximately 10 on a 1.31-{mu}m amplifier, a value too low for practical applications. In two spin- off applications, all-solid-state operation at all four output wavelengths was achieved in the development of a four-color visible laser, and laser cooling of a solid material was demonstrated for the first time in the development of a fluorescent cryogenic refrigerator.

  20. Log amplifier with pole-zero compensation

    Science.gov (United States)

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  1. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  2. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  3. Automated planar patch-clamp.

    Science.gov (United States)

    Milligan, Carol J; Möller, Clemens

    2013-01-01

    Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner(®) and SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress(®) 7000A, IonWorks(®) Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dynaflow(®) HT (Cellectricon

  4. Angular dependent light emission from planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaison.peter@gmail.com [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Prabhu, Radhakrishna [CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India)

    2015-01-07

    We have investigated the angular dependence of amplified spontaneous emission (ASE) and laser emission from an asymmetric and free-standing polymer thin films doped with rhodamine 6G, which is transversely pumped by a pulsed Nd:YAG laser. A semi-leaky waveguide or quasi-waveguide structure has been developed by spin coating technique. In these waveguides, the light was confined by the film/air-film/glass substrate interfaces. At the film/substrate interface, a portion of light will reflect back into the film (guided mode) and the remaining refracted to the substrate resulting in cutoff modes. A blue-shift in ASE has been observed when the pump power was increased from 8 to 20 mW allowing a limited range of tuning of emission wavelength. To study the directionality of the ASE from the waveguide, we have measured the output intensity and FWHM of emission spectra as a function of viewing angle (θ) from the plane parallel to film. From the detailed examination of the output emission spectra, as +θ increases from 0° there has been an initial decrease in output intensity, but at a particular angle ≈10° an increase in output intensity was observed. This additional peak in output intensity as +θ is a clear indication of coexistence of the cutoff mode. We also present a compact solid-state laser based on leaky mode propagation from the dye-doped polymer free-standing film (∼50 μm thickness) waveguide. The partial reflections from the broad lateral surfaces of the free-standing films provided the optical feedback for the laser emission with high directionality. For a pump power of 22 mW, an intense line with FWHM <0.2 nm was observed at 578 nm.

  5. DESIGN OF SEQUENTIALLY FED BALANCED AMPLIFYING ANTENNA FOR CIRCULAR POLARIZATION

    Directory of Open Access Journals (Sweden)

    S. K. Behera

    2010-12-01

    Full Text Available This paper presents a sequentially fed balanced amplifying antenna that exhibits circularly polarized radiation. The inherent benefits of good isolation between input and output ports as well as improved matching capabilities of balanced amplifiers provide overall system gain of 8 dBi at frequency 2.36GHz. The planar arrangement of the patch antenna elements are considered to form an array. The phase of the feeding in the array increases progressively from 00 to 2700.Each element in the array is linearly polarized. Here four elements were considered and 2arranged at the four corners of a square domain. This arrangement shows that each antenna sees its adjacent ones to be radiating from an edge orthogonal to its edge of radiation. Circular polarization is achieved due to this sequential feeding. This array is designed with operating frequency 2.4 GHz. A good axial ratio of 2.4 is obtained at 2.37 GHz frequency. The noise figure is considerably reduced and which is around -19dB.

  6. High temperature charge amplifier for geothermal applications

    Science.gov (United States)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  7. Audio power amplifier design handbook

    CERN Document Server

    Self, Douglas

    2013-01-01

    This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  8. Ion-exchanged Er3+/Yb3+ co-doped waveguide amplifiers longitudinally pumped by broad area lasers.

    Science.gov (United States)

    Donzella, V; Toccafondo, V; Faralli, S; Di Pasquale, F; Cassagnettes, C; Barbier, D; Figueroa, H Hernandez

    2010-06-07

    A multimode pumping scheme for Er(3+)/Yb(3+) co-doped waveguide amplifiers based on broad area lasers at around 980 nm is presented. The proposed amplifier is fabricated by ion-exchange (IE) technique on silicate and phosphate glasses. The highly efficient energy transfer from Yb(3+) to Er(3+) ions, combined with the use of low cost and high power broad area laser, allows the realization of high performance and cost-effective integrated amplifiers. The structure has been designed and numerically studied using a 3D finite element modelling tool, and over 3 dB/cm small signal gain has been predicted for an optimized amplifier. Preliminary characterization of an amplifier structure provides a first experimental evidence of the novel multimode longitudinal pumping.

  9. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric...

  10. Piecewise planar Möbius bands

    DEFF Research Database (Denmark)

    Gravesen, Jens

    2005-01-01

    t is shown that a closed polygon with an odd number of vertices is the median of exactly one piecewise planar cylinder and one piecewise planar Möbius band, intersecting each other orthogonally. A closed polygon with an even number of vertices is in the generic case neither the median of a piecew...

  11. Positron Emission Mammotomography with Dual Planar Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  12. Reversed planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Rasmussen, Henrik K.; Skov, Anne Ladegaard

    2011-01-01

    The newly developed planar elongation fixture, designed as an add-on to the filament stretch rheometer, is used to measure reversible large amplitude planar elongation on soft elastomers. The concept of this new fixture is to elongate an annulus, by keeping the perimeter constant. The deformation...

  13. Planar Lenses at Visible Wavelengths

    CERN Document Server

    Khorasaninejad, Mohammadreza; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-01-01

    Sub-wavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as meta-lenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405 nm, 532 nm, and 660 nm with corresponding efficiencies of 86%, 73%, and 66%. The meta-lenses can resolve nanoscale features separated by sub-wavelength distances and provide magnification as high as 170x with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that meta-lenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  14. The planar parabolic optical antenna.

    Science.gov (United States)

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-09

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  15. Ten inch Planar Optic Display

    Energy Technology Data Exchange (ETDEWEB)

    Beiser, L. [Beiser (Leo) Inc., Flushing, NY (United States); Veligdan, J. [Brookhaven National Lab., Upton, NY (United States)

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  16. The simplicity of planar networks

    Science.gov (United States)

    Viana, Matheus P.; Strano, Emanuele; Bordin, Patricia; Barthelemy, Marc

    2013-12-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  17. Insight into planar cell polarity.

    Science.gov (United States)

    Sebbagh, Michael; Borg, Jean-Paul

    2014-11-01

    Planar cell polarity or PCP refers to a uniform cellular organization within the plan, typically orthogonal to the apico-basal polarity axis. As such, PCP provides directional cues that control and coordinate the integration of cells in tissues to build a living organism. Although dysfunctions of this fundamental cellular process have been convincingly linked to the etiology of various pathologies such as cancer and developmental defects, the molecular mechanisms governing its establishment and maintenance remain poorly understood. Here, we review some aspects of invertebrate and vertebrate PCPs, highlighting similarities and differences, and discuss the prevalence of the non-canonical Wnt signaling as a central PCP pathway, as well as recent findings on the importance of cell contractility and cilia as promising avenues of investigation.

  18. The simplicity of planar networks

    CERN Document Server

    Viana, Matheus P; Bordin, Patricia; Barthelemy, Marc

    2013-01-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  19. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  20. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    Science.gov (United States)

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 μm) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input∕output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10−5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s−1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface∕volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  1. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  2. Quantum Noise in Amplifiers and Hawking/Dumb-Hole Radiation as Amplifier Noise

    CERN Document Server

    Unruh, W G

    2011-01-01

    The quantum noise in a linear amplifier is shown to be thermal noise. The theory of linear amplifiers is applied first to the simplest, single or double oscillator model of an amplifier, and then to linear model of an amplifier with continuous fields and input and outputs. Finally it is shown that the thermal noise emitted by black holes first demonstrated by Hawking, and of dumb holes (sonic and other analogs to black holes), arises from the same analysis as for linear amplifiers. The amplifier noise of black holes acting as amplifiers on the quantum fields living in the spacetime surrounding the black hole is the radiation discovered by Hawking. For any amplifier, that quantum noise is completely characterized by the attributes of the system regarded as a classical amplifier, and arises out of those classical amplification factors and the commutation relations of quantum mechanics.

  3. Interface exchange coupling induced fourfold symmetry planar Hall effect in Fe3O4/NiO bilayers

    Science.gov (United States)

    Li, P.; Cui, W. Y.; Bai, H. L.

    2015-10-01

    An unexpected fourfold symmetry planar Hall effect was observed in Fe3O4/NiO bilayers. As the thickness of the antiferromagnetic layer exceeds 37 nm, the planar Hall effect of the bilayer further shifts to twofold symmetry, which is ascribed to the dying interfacial coupled effect with increasing antiferromagnetic NiO layer thickness. According to the fitting based on the Stoner-Wohlfarth model, it was notable that an extra cubic anisotropic field in the bilayer structure was obviously amplified by attenuating the thickness of the antiferromagnetic layer. First principle calculations reveal that the amplified cubic anisotropic field was ascribed to the synergistic effect from interfacial bonding structure and charge transfer.

  4. YANG-MILLS FIELD AMPLIFIER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-09-01

    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  5. Locoregional MYCN-amplified neuroblastoma.

    Science.gov (United States)

    Morales La Madrid, Andres; Volchenboum, Samuel; Gastier-Foster, Julie M; Pyatt, Robert; Liu, Don; Pytel, Peter; Lavarino, Cinzia; Rodriguez, Eva; Cohn, Susan L

    2012-10-01

    MYCN-amplification is strongly associated with other high-risk prognostic factors and poor outcome in neuroblastoma. Infrequently, amplification of MYCN has been identified in localized tumors with favorable biologic features. Outcome for these children is difficult to predict and optimal treatment strategies remain unclear. We report a 5-month-old who presented with an MYCN-amplified INSS stage 3, pelvic neuroblastoma. The tumor had favorable histology, hyperdiploidy, and lacked 1p36 and 11q23 aberrations. Although the patient met the criteria for high-risk neuroblastoma, because of the discordant prognostic markers we elected to treat her according to an intermediate-risk protocol. She remains event-free more than 18 months.

  6. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  7. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  8. Piezo Voltage Controlled Planar Hall Effect Devices

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  9. DYNAMIC DESIGN OF VARIABLE SPEED PLANAR LINKAGES

    Institute of Scientific and Technical Information of China (English)

    Yao Yanan; Yan Hongsen; Zou Huijun

    2005-01-01

    A method for improving dynamic characteristics of planar linkages by actively varying the speed function of the input link is presented. Design criteria and constraints for the dynamic design of variable speed planar linkages are developed. Both analytical and optimization approaches for determining suitable input speed functions to minimize the driving torque, the shaking moment, or both simultaneously of planar linkages, subject to various design requirements and constraints, are derived.Finally, some examples are given to illustrate the design procedure and to verify its feasibility.

  10. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  11. Reflection amplifiers in self-regulated learning

    NARCIS (Netherlands)

    Verpoorten, Dominique

    2012-01-01

    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  12. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth......We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  13. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... performance of the amplifier is also investigated for both configurations. Our results show an on/off gain exceeding 20 dB at 1810 nm for which the obtained effective noise figure is below 3 dB....

  14. Dynamics of Soliton Cascades in Fiber Amplifiers

    CERN Document Server

    Arteaga-Sierra, F R; Agrawal, Govind P

    2016-01-01

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  15. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  16. Planar doped barrier subharmonic mixers

    Science.gov (United States)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  17. Dynamic Planar Range Maxima Queries

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Tsakalidis, Konstantinos

    2011-01-01

    We consider the dynamic two-dimensional maxima query problem. Let P be a set of n points in the plane. A point is maximal if it is not dominated by any other point in P. We describe two data structures that support the reporting of the t maximal points that dominate a given query point, and allow...... for insertions and deletions of points in P. In the pointer machine model we present a linear space data structure with O(logn + t) worst case query time and O(logn) worst case update time. This is the first dynamic data structure for the planar maxima dominance query problem that achieves these bounds...... in the worst case. The data structure also supports the more general query of reporting the maximal points among the points that lie in a given 3-sided orthogonal range unbounded from above in the same complexity. We can support 4-sided queries in O(log^2 n + t) worst case time, and O(log^2 n) worst case...

  18. Local tuning of photonic crystal cavities using chalcogenide glasses

    CERN Document Server

    Faraon, Andrei; Bulla, Douglas; Luther-Davies, Barry; Eggleton, Benjamin J; Stoltz, Nick; Petroff, Pierre; Vuckovic, Jelena

    2007-01-01

    We demonstrate a method to locally change the refractive index in planar optical devices by photodarkening of a thin chalcogenide glass layer deposited on top of the device. The method is used to tune the resonance of GaAs-based photonic crystal cavities by up to 3 nm at 940 nm, with only 5% deterioration in cavity quality factor. The method has broad applications for postproduction tuning of photonic devices.

  19. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  20. Non-planar microfabricated gas chromatography column

    Science.gov (United States)

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  1. Planar Elongation Measurements on Soft Elastomers

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Skov, Anne Ladegaard; Rasmussen, Henrik K.;

    2009-01-01

    A new fixture to the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks. To validate this new technique, soft polymeric networks of poly(propyleneoxide) (PPO) were investigated during deformation....

  2. Point Location in Disconnected Planar Subdivisions

    CERN Document Server

    Bose, Prosenjit; Douieb, Karim; Dujmovic, Vida; King, James; Morin, Pat

    2010-01-01

    Let $G$ be a (possibly disconnected) planar subdivision and let $D$ be a probability measure over $\\R^2$. The current paper shows how to preprocess $(G,D)$ into an O(n) size data structure that can answer planar point location queries over $G$. The expected query time of this data structure, for a query point drawn according to $D$, is $O(H+1)$, where $H$ is a lower bound on the expected query time of any linear decision tree for point location in $G$. This extends the results of Collette et al (2008, 2009) from connected planar subdivisions to disconnected planar subdivisions. A version of this structure, when combined with existing results on succinct point location, provides a succinct distribution-sensitive point location structure.

  3. Planar cell polarity of the kidney.

    Science.gov (United States)

    Schnell, Ulrike; Carroll, Thomas J

    2016-05-01

    Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.

  4. Structure of The Planar Galilean Conformal Algebra

    Science.gov (United States)

    Gao, Shoulan; Liu, Dong; Pei, Yufeng

    2016-08-01

    In this paper, we compute the low-dimensional cohomology groups of the planar Galilean conformal algebra introduced by Bagchi and Goparkumar. Consequently we determine its derivations, central extensions, and automorphisms.

  5. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny;

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  6. Amplified spontaneous emission and its restraint in a terawatt Ti:sapphire amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Amplified spontaneous emission (ASE) and its restraint in a femtosecond Ti: sapphire chirped_pulse amplifier were investigated. The noises arising from ASE were effectively filtered out in the spatial, temporal and spectral domain. Pulses as short as 38 fs were amplified to peak power of 1.4 TW. The power ratio between the amplified femtosecond pulse and the ASE was higher than 106:1.

  7. Piezo Voltage Controlled Planar Hall Effect Devices

    OpenAIRE

    Bao Zhang; Kang-Kang Meng; Mei-Yin Yang; Edmonds, K. W.; Hao Zhang; Kai-Ming Cai; Yu Sheng; Nan Zhang; Yang Ji; Jian-Hua Zhao; Hou-Zhi Zheng; Kai-You Wang

    2015-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the pie...

  8. Planar Gravitational Corrections For Supersymmetric Gauge Theories

    CERN Document Server

    Dijkgraaf, R; Ooguri, H; Vafa, C; Zanon, D

    2004-01-01

    In this paper we discuss the contribution of planar diagrams to gravitational F-terms for N=1 supersymmetric gauge theories admitting a large N description. We show how the planar diagrams lead to a universal contribution at the extremum of the glueball superpotential, leaving only the genus one contributions, as was previously conjectured. We also discuss the physical meaning of gravitational F-terms.

  9. Terahertz planar waveguide devices based on graphene

    Science.gov (United States)

    Yuan, Yizhe; Guo, Xiaoyong; An, Liqun; Xu, Wen

    2017-02-01

    We present a theoretical study on graphene-semiconductor planar structures. The frequency of the photonic modes in the structure, which can be efficiently tuned via varying the sample parameters, is within the terahertz (THz) bandwidth. Furthermore, it is found that a roughly linear dispersion relation can be obtained for photonic modes in the THz region. Hence, the proposed graphene-semiconductor planar structures can be served as THz waveguide with desirable transmission characteristics.

  10. Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology

    Science.gov (United States)

    Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo

    2011-12-01

    A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.

  11. An interleaved structure for a high-voltage planar transformer for a Travelling-wave Tube

    DEFF Research Database (Denmark)

    Zhao, Bin; Wang, Gang; Hurley, William G.;

    2016-01-01

    Fully interleaved structure can significantly reduce leakage inductance in transformers, However, it is hard to apply them into high-voltage applications due to the electric insulation. In this paper, a partially interleaved structure that is suitable for high-voltage high frequency applications...... is proposed to reduce leakage inductance and the insulation’s thickness is adjusted to optimize the electric isolation. In addition, the resistance and parasitic capacitance are investigated. With this method, a planar transformer used for a Travelling-Wave Tube Amplifier (TWTA) is designed. Calculations...

  12. Planarity certification of ATLAS Micromegas detector panels

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Herrmann, Maximilian [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2016-07-01

    During the second long LHC shutdown, 2019/20, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. A panel is composed of three consecutive layers FR4 - aluminum honeycomb - FR4. Single plane spatial particle resolution below 100 μm is achievable when the deviations from planarity of the strip-anodes do not exceed 80 μm RMS over the whole active area and the parallelism of the readout strips is within 30 μm. In order to measure the dimensional accuracy of each panel, laser distance sensors combined with a coordinate measurement system have been investigated. The sensor requirements to measure the planarity of the panels are a resolution of 0.3 μm and a beam spot diameter of ∼20 μm, well below 100 μ m the size of the smallest structures. We report on achieved planarities of the panels and the performance of the laser sensor system. A panel with an RMS better than 30 μm was build and the evolution of its planarity due to humidity and temperature effects is shown.

  13. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  14. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  15. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  16. Amplified OTDR systems for multipoint corrosion monitoring.

    Science.gov (United States)

    Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  17. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Joaquim F. Martins-Filho

    2012-03-01

    Full Text Available We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  18. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  19. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2001-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...

  20. Passive optical losses in laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Caird, J.A.; Milanovich, F.P.; Nielsen, N.D.; Powell, H.T.; Marion, J.E.; Pertica, A.J.; Roe, J.N.

    1989-05-11

    Background absorption, scattering, and stress-birefringence loss measurements are reported for phosphate laser glass amplifier media used in fusion and high average power laser systems. Typical background absorption and stress birefringence losses were found to be comparable, and on the order of 10/sup /minus/3/ cm/sup /minus/1/. Scattering losses, on the other hand, were typically found to be more than an order of magnitude smaller. The results indicate that improvements in the cost/performance ratio can be achieved by reducing background absorption of birefringence, and possibly also through the use of cheaper polishing techniques. 6 refs.

  1. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  2. Minimization of the impact of a broad bandwidth high-gain nonlinear preamplifier to the amplified spontaneous emission pedestal of the Vulcan petawatt laser facility.

    Science.gov (United States)

    Musgrave, I O; Hernandez-Gomez, C; Canny, D; Collier, J; Heathcote, R

    2007-10-01

    To generate petawatt pulses using the Vulcan Nd:glass laser requires a broad bandwidth high-gain preamplifier. The preamplifier used is an optical parametric amplifier that provides a total gain of 10(8) in three amplification stages. We report on a detailed investigation of the effect of the Vulcan optical parametric chirped pulse amplification (OPCPA) preamplifier on contrast caused by the amplified spontaneous emission (ASE) pedestal that extends up to 2 ns before the arrival of the main pulse. The contrast after compression is improved to 4x10(8) of the intensity of the main pulse using near-field apertures between the stages of the OPCPA preamplifier. Further reduction of the level of the ASE pedestal can be achieved at the cost of a reduction in amplified bandwidth by solely phosphate glass amplification after initial preamplification rather than a mixed glass amplification scheme.

  3. SOME APPLICATIONS OF PLANAR GRAPH IN KNOT THEORY

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhiyun; Gao Hongzhu

    2012-01-01

    The relationship between a link diagram and its corresponding planar graph is briefly reviewed.A necessary and sufficient condition is given to detect when a planar graph corresponds to a knot.The relationship between planar graph and almost planar Seifert surface is discussed.Using planar graph,we construct an alternating amphicheiral prime knot with crossing number n for any even number n ≥ 4.This gives an affirmative answer to problem 1.66(B) on Kirby's problem list.

  4. Mid-infrared supercontinuum generation in tapered As2S3 chalcogenide planar waveguide

    Science.gov (United States)

    Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.

    2016-10-01

    We numerically demonstrate mid-infrared supercontinuum generation in a non-uniformly tapered chalcogenide planar waveguide. This planar rib waveguide of As2S3 glass on MgF2 is 2 cm long with increasing etch depth longitudinally to manage the total dispersion. This waveguide has zero dispersion at two wavelengths. The dispersion profile varies along the propagation distance, leading to continuous modification of the phase-matching condition for dispersive wave emission and enhancement of energy transfer efficiency between solitons and dispersive waves. Numerical simulations are conducted for secant input pulses at a wavelength of 1.55 μm with a width of 50 fs and peak power of 2 kW. Results show this proposed scheme significantly broadens the generated continuum, extending from ~1 to ~7 μm.

  5. Accurate geometry scalable complementary metal oxide semiconductor modelling of low-power 90 nm amplifier circuits

    Directory of Open Access Journals (Sweden)

    Apratim Roy

    2014-05-01

    Full Text Available This paper proposes a technique to accurately estimate radio frequency behaviour of low-power 90 nm amplifier circuits with geometry scalable discrete complementary metal oxide semiconductor (CMOS modelling. Rather than characterising individual elements, the scheme is able to predict gain, noise and reflection loss of low-noise amplifier (LNA architectures made with bias, active and passive components. It reduces number of model parameters by formulating dependent functions in symmetric distributed modelling and shows that simple fitting factors can account for extraneous (interconnect effects in LNA structure. Equivalent-circuit model equations based on physical structure and describing layout parasites are developed for major amplifier elements like metal–insulator–metal (MIM capacitor, spiral symmetric inductor, polysilicon (PS resistor and bulk RF transistor. The models are geometry scalable with respect to feature dimensions, i.e. MIM/PS width and length, outer-dimension/turns of planar inductor and channel-width/fingers of active device. Results obtained with the CMOS models are compared against measured literature data for two 1.2 V amplifier circuits where prediction accuracy for RF parameters (S(21, noise figure, S(11, S(22 lies within the range of 92–99%.

  6. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    Directory of Open Access Journals (Sweden)

    Marco Crescentini

    2016-05-01

    Full Text Available High-throughput screening (HTS using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i design of scalable microfluidic devices; (ii design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  7. Measuring Optimal Length of the Amplifying Fiber in Different Working Conditions of the Amplifier

    Directory of Open Access Journals (Sweden)

    Radek Poboril

    2014-01-01

    Full Text Available The aim of this article is to highlight possible unwanted behaviour of an EDFA optical amplifier during temperature changes. After a brief introduction dealing with amplifiers and doped fibers in general we focus on the assembly of our own EDFA amplifier with standard construction and the IsoGain I-6 amplifying fiber, and on the parameters of its individual components. Since an erbium doped fiber has usually no direct thermal stabilization, temperature changes can affect performance of the entire amplifier. The next part of the article therefore describes the impacts of such changes on behaviour of our amplifier. At the very end we performed a measurement of the amplifier deployed in the actual WDM-PON the description of which can be found in the last chapter.

  8. Integration of planar transformer and/or planar inductor with power switches in power converter

    Science.gov (United States)

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  9. High power Ka band TWT amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  10. Rotation planar extraction and rotation planar chromatography of oak (Quercus robur L.) bark.

    Science.gov (United States)

    Vovk, Irena; Simonovska, Breda; Andrensek, Samo; Vuorela, Heikki; Vuorela, Pia

    2003-04-04

    The versatile novel instrument for rotation planar extraction and rotation planar chromatography was exploited for the investigation of oak bark (Quercus robur L.). The same instrument enabled extraction of the bark, analytical proof of (+)-catechin directly in the crude extract and also its fractionation. Additionally, epimeric flavan-3-ols, (+)-catechin and (-)-epicatechin were separated by analytical ultra-micro rotation planar chromatography on cellulose plates with pure water as developing solvent. A comparison of the extraction of oak bark with 80% aqueous methanol by rotation planar extraction and medium pressure solid-liquid extraction was carried out and both techniques were shown to be suitable for the efficient extraction of oak bark. The raw extracts and fractions on thin-layer chromatography showed many compounds that possessed antioxidant activity after spraying with 1,1-diphenyl-2-picrylhydrazyl. Rotation planar fractionation of 840 mg of crude oak bark extract on silica gel gave 6.7 mg of pure (+)-catechin in one run.

  11. Paleomagnetism of Lonar Crater Impact Glass

    Science.gov (United States)

    Garrick-Bethell, I.; Weiss, B. P.; Maloof, A. C.; Stewart, S. T.; Louzada, K. L.; Soule, S. A.; Swanson-Hysell, N.

    2006-12-01

    changed relative to the paleofield. We are currently working to determine whether Lonar glasses accurately record the paleofield intensity in which they cooled. Because the glasses acquired their NRM during the first tens of seconds after crater formation, a comparison of paleointensities derived from glass that cooled while rotating in mid-air and glass that cooled while stationary, may also allow us to determine if an impact at Lonar Crater amplified the ambient magnetic field.

  12. An Envelope Hammerstein Model for Power Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Hua-Dong Wang; Song-Bai He; Jing-Fu Bao; Zheng-De Wu

    2007-01-01

    In this paper, an envelope Hammerstein(EH) model is introduced to describe dynamic inputoutput characteristics of RF power amplifiers. In the modeling approach, we use a new truncation method and an established nonlinear time series method to determine model structure. Then, we discuss the process of model parameter extraction in detailed. Finally, a 2 W WCDMA power amplifier is measured to verify the performance of EH model, and good agreement between model output and measurement result shows our model can accurately predict output characteristic of the power amplifier.

  13. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  14. Effect of Soliton Propagation in Fiber Amplifiers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.

  15. High Efficiency Microwave Power Amplifier (HEMPA) Design

    Science.gov (United States)

    Sims, W. Herbert

    2004-01-01

    This paper will focus on developing an exotic switching technique that enhances the DC-to-RF conversion efficiency of microwave power amplifiers. For years, switching techniques implemented in the 10 kHz to 30 MHz region have resulted in DC-to-RF conversion efficiencies of 90-95-percent. Currently amplifier conversion efficiency, in the 2-3 GHz region approaches, 10-20-percent. Using a combination of analytical modeling and hardware testing, a High Efficiency Microwave Power Amplifier was built that demonstrated conversion efficiencies four to five times higher than current state of the art.

  16. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  17. Experimental design of laminar proportional amplifiers

    Science.gov (United States)

    Hellbaum, R. F.

    1976-01-01

    An experimental program was initiated at Langley Research Center to study the effects of various parameters on the design of laminar proportional beam deflection amplifiers. Matching and staging of amplifiers to obtain high-pressure gain was also studied. Variable parameters were aspect ratio, setback, control length, receiver distance, receiver width, width of center vent, and bias pressure levels. Usable pressure gains from 4 to 19 per stage can now be achieved, and five amplifiers were staged together to yield pressure gains up to 2,000,000.

  18. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  19. Achieving and maintaining cleanliness in NIF amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A. K.; Horvath, J. A.; Letts, S. A.; Menapace, J. A.; Stowers, I. F.

    1998-07-28

    Cleanliness measurements made on AMPLAB prototype National Ignition Facility (NIF) laser amplifiers during assembly, cassette transfer, and amplifier operation are summarized. These measurements include particle counts from surface cleanliness assessments using filter swipe techniques and from airborne particle monitoring. Results are compared with similar measurements made on the Beamlet and Nova lasers and in flashlamp test fixtures. Observations of Class 100,000 aerosols after flashlamp firings are discussed. Comparisons are made between typical damage densities on laser amplifier optics from Novette, NOVA, Beamlet, and AMPLAB.

  20. High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors.

    Science.gov (United States)

    Siraji, Ashfaqul Anwar; Zhao, Yang

    2015-04-01

    We investigate the properties of a planar photonic crystal cavity on glass and its applications as sensors. An airbridged twofold defect cavity on Schott glass background and Gorilla glass substrate has been designed for high Q-factor up to 4459. The average sensitivity of the cavity resonance to background refractive index is 388 nm/Refractive Index Unit. The resonant wavelength is sensitive to background temperature by 18.5 pm/°C. The designed sensors show much higher sensitivity than those based on waveguide interferometers or photonic bandgap structures without cavity resonance. The results are also useful for experimental studies of glass photonic devices.

  1. Study of built-in amplifier performance on HV-CMOS sensor for the ATLAS phase-II strip tracker upgrade

    Science.gov (United States)

    Liang, Z.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; Huffman, B. T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Peric, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-09-01

    This paper focuses on the performance of analog readout electronics (built-in amplifier) integrated on the high-voltage (HV) CMOS silicon sensor chip, as well as its radiation hardness. Since the total collected charge from minimum ionizing particle (MIP) for the CMOS sensor is 10 times lower than for a conventional planar sensor, it is crucial to integrate a low noise built-in amplifier on the sensor chip to improve the signal to noise ratio of the system. As part of the investigation for the ATLAS strip detector upgrade, a test chip that comprises several pixel arrays with different geometries, as well as standalone built-in amplifiers and built-in amplifiers in pixel arrays has been fabricated in a 0.35 μm high-voltage CMOS process. Measurements of the gain and the noise of both the standalone amplifiers and built-in amplifiers in pixel arrays were performed before and after gamma radiation of up to 60 Mrad. Of special interest is the variation of the noise as a function of the sensor capacitance. We optimized the configuration of the amplifier for a fast rise time to adapt to the LHC bunch crossing period of 25 ns, and measured the timing characteristics including jitter. Our results indicate an adequate amplifier performance for monolithic structures used in HV-CMOS technology. The results have been incorporated in the next submission of a large-structure chip.

  2. Study of built-in amplifier performance on HV-CMOS sensor for the ATLAS phase-II strip tracker upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z., E-mail: zhijun.liang@cern.ch [University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP) (United States); Institute of High Energy Physics, Beijing (China); Affolder, A. [University of Liverpool (United Kingdom); Arndt, K. [University of Oxford (United Kingdom); Bates, R. [SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Benoit, M.; Di Bello, F. [University of Geneva (Switzerland); Blue, A. [SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Bortoletto, D. [University of Oxford (United Kingdom); Buckland, M. [University of Liverpool (United Kingdom); CERN, European Center for Nuclear Research (Switzerland); Buttar, C. [SUPA – School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Caragiulo, P. [SLAC National Accelerator Laboratory (United States); Das, D.; Dopke, J. [Rutherford Appleton Laboratory, Didcot (United Kingdom); Dragone, A. [SLAC National Accelerator Laboratory (United States); Ehrler, F. [Karlsruhe Institute of Technology (Germany); Fadeyev, V.; Galloway, Z.; Grabas, H. [University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP) (United States); Gregor, I.M. [Deutsches Elektronen-Synchrotron (Germany); Grenier, P. [SLAC National Accelerator Laboratory (United States); and others

    2016-09-21

    This paper focuses on the performance of analog readout electronics (built-in amplifier) integrated on the high-voltage (HV) CMOS silicon sensor chip, as well as its radiation hardness. Since the total collected charge from minimum ionizing particle (MIP) for the CMOS sensor is 10 times lower than for a conventional planar sensor, it is crucial to integrate a low noise built-in amplifier on the sensor chip to improve the signal to noise ratio of the system. As part of the investigation for the ATLAS strip detector upgrade, a test chip that comprises several pixel arrays with different geometries, as well as standalone built-in amplifiers and built-in amplifiers in pixel arrays has been fabricated in a 0.35 μm high-voltage CMOS process. Measurements of the gain and the noise of both the standalone amplifiers and built-in amplifiers in pixel arrays were performed before and after gamma radiation of up to 60 Mrad. Of special interest is the variation of the noise as a function of the sensor capacitance. We optimized the configuration of the amplifier for a fast rise time to adapt to the LHC bunch crossing period of 25 ns, and measured the timing characteristics including jitter. Our results indicate an adequate amplifier performance for monolithic structures used in HV-CMOS technology. The results have been incorporated in the next submission of a large-structure chip.

  3. Photowritten gratings in ion-exchanged glass waveguides.

    Science.gov (United States)

    Roman, J E; Winick, K A

    1993-05-15

    The fabrication of an ion-exchanged waveguide beam deflector containing a photowritten grating is described. The planar waveguide was fabricated by thermal K(+) exchange in a borosilicate glass. The grating was written by photobleaching an absorption defect centered at 330 am, which was created by gamma-ray irradiation of the glass. The bleaching was accomplished with the 351-nm line from an argon laser. The device achieved 35% deflection efficiency at 633 nm, which corresponded to a grating with a photoinduced index change of 2.6 x 10(-5). This is to our knowledge the first demonstration of an ion-exchanged glass waveguide device containing a permanent photowritten grating.

  4. Electrospun SiO2 "necklaces" on unglazed ceramic tiles: a planarizing strategy

    Science.gov (United States)

    Di Mauro, Alessandro; Fragalà, Maria Elena

    2015-05-01

    Silica based nanofibres have been deposited on unglazed ceramic tiles by combining electrospinning and sol-gel processes. Poly(vinyl pyrrolidone) (PVP) alcoholic solutions and commercial spin on glass (Accuglass) mixtures have been used to obtain composite fibrous non-woven mats totally converted, after thermal annealing at 600 °C, to SiO2 microsphere "necklaces". The possibility to get an uniform fibres coverage onto the tile surface confirms the validity of electrospinning (easily scalable to large surface samples) as coating strategy to cover the macroscopic defects typical of the polished unglazed tile surface and improve surface planarization.

  5. Liquid Glass: A Facile Soft Replication Method for Structuring Glass.

    Science.gov (United States)

    Kotz, Frederik; Plewa, Klaus; Bauer, Werner; Schneider, Norbert; Keller, Nico; Nargang, Tobias; Helmer, Dorothea; Sachsenheimer, Kai; Schäfer, Michael; Worgull, Matthias; Greiner, Christian; Richter, Christiane; Rapp, Bastian E

    2016-06-01

    Liquid glass is a photocurable amorphous silica nanocomposite that can be structured using soft replication molds and turned into glass via thermal debinding and sintering. Simple polymer bonding techniques allow the fabrication of complex microsystems in glass like microfluidic chips. Liquid glass is a step toward prototyping of glass microstructures at low cost without requiring cleanroom facilities or hazardous chemicals.

  6. Planar Zeros in Gauge Theories and Gravity

    CERN Document Server

    Jimenez, Diego Medrano; Vazquez-Mozo, Miguel A

    2016-01-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU(N) with N=2,3,5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  7. Planar bilayer membranes from photoactivable phospholipids.

    Science.gov (United States)

    Borle, F; Sänger, M; Sigrist, H

    1991-07-22

    Planar bilayer membranes formed from photoactivable phospholipids have been characterized by low frequency voltametry. Cyclic voltametric measurements were applied for simultaneous registration of planar membrane conductivity and capacitance. The procedure has been utilized to characterize the formation and stability of planar bilayer membranes. Bilayer membranes were formed from N'-(1,2-dimyristoyl-sn-glycero-3-phosphoethyl)-N-((m-3- trifluoromethyldiazirine)phenyl)thiourea (C14-PED), a head-group photosensitive phospholipid. In situ photoactivation of C14-PED at wavelengths greater than or equal to 320 nm altered neither the mean conductivity nor the capacitance of the bilayer. Ionophore (valinomycin) and ion channel (gramicidin) activities were not impaired upon photoactivation. In contrast, bilayer membranes formed from 1,2-bis(hexadeca-2,4-dienoyl)-sn- glycero-3-phosphocholine (C16-DENPC) revealed short life times. In situ photopolymerization of the diene fatty acids significantly increased the membrane conductivity or led to membrane rupture.

  8. The Feynman Identity for Planar Graphs

    Science.gov (United States)

    da Costa, G. A. T. F.

    2016-08-01

    The Feynman identity (FI) of a planar graph relates the Euler polynomial of the graph to an infinite product over the equivalence classes of closed nonperiodic signed cycles in the graph. The main objectives of this paper are to compute the number of equivalence classes of nonperiodic cycles of given length and sign in a planar graph and to interpret the data encoded by the FI in the context of free Lie superalgebras. This solves in the case of planar graphs a problem first raised by Sherman and sets the FI as the denominator identity of a free Lie superalgebra generated from a graph. Other results are obtained. For instance, in connection with zeta functions of graphs.

  9. Radiation effects in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ehrt, D.; Vogel, W. (Otto-Schott-Inst., Chemische Fakultaet, Friedrich-Schiller-Univ., Jena (Germany))

    1992-03-01

    Glass was produced by man about 4000 years ago. The scientific exploration of glass is very young and closely connected with Jena. Fraunhofer, Goethe, Dobereiner, Abbe, Zeiss and Schott are famous names on this field. Both crystals and glasses are solids. However, there are fundamental differences in their properties and behavior. Glass is a thermodynamically unstable state and has a defect structure compared to the crystal. Glass and its properties are subject to a variety of changes under the influence of high energy radiation. In general, effects extend from the reduction of specific ions to the collapse of the entire network. Ultraviolet and X-ray radiation effects on UV-transmitting glasses will be discussed. (orig.).

  10. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf;

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  11. Self-pulsation in Raman fiber amplifiers

    OpenAIRE

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.

  12. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  13. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  14. Raman Spectra of Glasses

    Science.gov (United States)

    1986-11-30

    17), Raman spectra, plus a , . theoretical treatment of the data, f complex fluorozirconate 14 I anions in ZBLAN glasses and melts (16), and...based ZBLAN glasses ) 17. ICORS (International Conference on Raman Spectroscopy) Proceedings, London, England. Conferencf 5-9 Sep 88. (Molten silica...RESEARCH FINAL REPORT DTIC CONTRACT N00014-81-K-0501 &JELECTE 1 MAY 81 -- 30 NOV 86 EJJAN041989 V "RAMAN SPECTRA OF GLASSES " 0 During the five years of the

  15. Efficient Power Amplifier for Motor Control

    Science.gov (United States)

    Brown, R. J.

    1986-01-01

    Pulse-width-modulated amplifier supplies high current as efficiently as low current needed for starting and running motor. Key to efficiency of motor-control amplifier is V-channel metal-oxide/semiconductor transistor Q1. Device has low saturation resistance. However, has large gate input capacitance and small margin between its turn-on voltage and maximum allowable gate-to-source voltage. Circuits for output stages overcome limitations of VMOS device.

  16. Quantum cloning with an optical fiber amplifier

    CERN Document Server

    Fasel, S; Ribordy, G; Scarani, V; Zbinden, H; Fasel, Sylvain; Gisin, Nicolas; Ribordy, Gregoire; Scarani, Valerio; Zbinden, Hugo

    2002-01-01

    It has been shown theoretically that a light amplifier working on the physical principle of stimulated emission should achieve optimal quantum cloning of the polarization state of light. We demonstrate close-to-optimal universal quantum cloning of polarization in a standard fiber amplifier for telecom wavelengths. For cloning $1\\to 2$ we find a fidelity of 0.82, the optimal value being ${5/6}=0.83$.

  17. CMOS current amplifiers : speed versus nonlinearity

    OpenAIRE

    2000-01-01

    This work deals with analogue integrated circuit design using various types of current-mode amplifiers. These circuits are analysed and realised using modern CMOS integration technologies. The dynamic nonlinearities of these circuits are discussed in detail as in the literature only linear nonidealities and static nonlinearities are conventionally considered. For the most important open-loop current-mode amplifier, the second-generation current-conveyor (CCII), a macromodel is derived tha...

  18. MMIC Amplifiers for 90 to 130 GHz

    Science.gov (United States)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  19. Planar Tri-Band Antenna Design

    Directory of Open Access Journals (Sweden)

    M. Pokorny

    2008-04-01

    Full Text Available The paper briefly uncovers techniques used for a design of compact planar antennas in order to achieve the wideband and the multi-band capability. The main topic is aimed to the multi-objective optimization using genetic algorithms. A quarter-wavelength planar inverted-F antenna (PIFA using a slot and shorted parasitic patches is chosen to cover GSM900, GSM1800 and ISM2400 bands. A global multi-objective optimization uses a binary genetic algorithm with a composite objective function to tune this antenna. The impedance match and the direction of maximum gain are desired parameters to improve.

  20. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  1. On the Classification of Planar Contact Structures

    CERN Document Server

    Arikan, M Firat

    2010-01-01

    In this paper, we focus on contact structures supported by planar open book decompositions. We study right-veering diffeomorphisms to keep track of overtwistedness property of contact structures under some monodromy changes. We also develop some techniques to understand how certain monodromy changes affect the $EH-$invariant of planar contact structures. As an application we give infinitely many examples of overtwisted and tight contact structures supported by open books whose pages are the four-punctured sphere, and also we prove that a certain family is holomorphically fillable using lantern relation.

  2. Optical Planar Discrete Fourier and Wavelet Transforms

    Science.gov (United States)

    Cincotti, Gabriella; Moreolo, Michela Svaluto; Neri, Alessandro

    2007-10-01

    We present all-optical architectures to perform discrete wavelet transform (DWT), wavelet packet (WP) decomposition and discrete Fourier transform (DFT) using planar lightwave circuits (PLC) technology. Any compact-support wavelet filter can be implemented as an optical planar two-port lattice-form device, and different subband filtering schemes are possible to denoise, or multiplex optical signals. We consider both parallel and serial input cases. We design a multiport decoder/decoder that is able to generate/process optical codes simultaneously and a flexible logarithmic wavelength multiplexer, with flat top profile and reduced crosstalk.

  3. Planar Inlet Design and Analysis Process (PINDAP)

    Science.gov (United States)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  4. Optimal Polygonal Representation of Planar Graphs

    CERN Document Server

    Duncan, Christian A; Hu, Yifan; Kaufmann, Michael; Kobourov, Stephen G

    2011-01-01

    In this paper, we consider the problem of representing graphs by polygons whose sides touch. We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound of six sides with a linear-time algorithm for representing any planar graph by touching hexagons. Moreover, our algorithm produces convex polygons with edges having at most three slopes and with all vertices lying on an O(n)xO(n) grid.

  5. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator.

    Science.gov (United States)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P D

    2013-09-01

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  6. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D. [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  7. Metal Halide Optical Glasses.

    Science.gov (United States)

    1988-01-01

    while some of the multi- component "modified" glasses (e.g., ZBLAN ) could easily be cast into pieces several mm thick. 23 The difference between the...energy. 7-1 0 Typical plots pf 24 of log Iqi versus ]/Tf for ZB-I, ZBL, ZBLA, ZBLAN and ZBLALi glasses are presented in Fig. 3. These plots are linear... ZBLAN glasses are more resistant to devitrification than the corresponding ZBLLi or ZBLN glasses , although this does not appear to be manifested in

  8. Some Notes on Wideband Feedback Amplifiers

    Science.gov (United States)

    Fitch, V.

    1949-03-16

    The extension of the passband of wideband amplifiers is a highly important problem to the designer of electronic circuits. Throughout the electronics industry and in many research programs in physics and allied fields where extensive use is made of video amplifiers, the foremost requirement is a passband of maximum width. This is necessary if it is desired to achieve a more faithful reproduction of transient wave forms, a better time resolution in physical measurements, or perhaps just a wider band gain-frequency response to sine wave signals. The art of electronics is continually faced with this omnipresent amplifier problem. In particular, the instrumentation techniques of nuclear physics require amplifiers with short rise times, a high degree of gain stability, and a linear response to high signal levels. While the distributed amplifier may solve the problems of those seeking only a wide passband, the requirements of stability and linearity necessitate using feedback circuits. This paper considers feedback amplifiers from the standpoint of high-frequency performance. The circuit conditions for optimum steady-state (sinusoidal) and transient response are derived and practical circuits (both interstage and output) are presented which fulfill these conditions. In general, the results obtained may be applied to the low-frequency end.

  9. Sol-gel coatings: An alternative route for producing planar optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Rey-Garcia, F.; Gomez-Reino, C. [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); Flores-Arias, M.T., E-mail: maite.flores@usc.es [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); De La Fuente, G.F., E-mail: xerman@unizar.es [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Maria de Luna 3, E-50018 Zaragoza (Spain); Duran, A. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain); Castro, Y., E-mail: castro@icv.csic.es [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain)

    2011-09-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and {approx} 1.99 ({lambda} = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  10. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    Science.gov (United States)

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  11. A new secondary relaxation in the rigid and planar 1-methylindole: Evidence from binary mixture studies

    Science.gov (United States)

    Wang, Meng; Li, Xiangqian; Guo, Yuxing; Wu, Tao; Liu, Ying Dan; Ngai, K. L.; Wang, Li-Min

    2016-12-01

    Found in our recent dielectric study of a planar and rigid glass-former, 1-methylindole (1MID), is an unusual secondary relaxation unrelated in its dynamic properties to the structural α-relaxation. We speculated that it originates from the in-plane motion of the molecules, and the supposedly universal Johari-Goldstein (JG) β-relaxation with strong connection to the structural α-relaxation in rigid glass-formers is not resolved [X. Q. Li et al. J. Chem. Phys. 143, 104505 (2015)]. In this work, dielectric measurements are performed in binary mixtures of 1MID with two aromatics of weak polarity, ethylbenzene (EB) and triphenylethylene (TPE), in the highly viscous regimes near glass transition. EB and TPE have smaller and larger molecular sizes and glass transition temperatures Tg than 1MID, respectively. Strikingly, the results show that the resolved secondary relaxations of 1MID in the two mixtures share the same relaxation time and their temperature dependence as pure 1MID, independent of the mode and degree of dilution. The results indicate that the unusual secondary relaxation is not directly coupled with the α-relaxation, and support the in-plane-rotation interpretation of its origin. On the other hand, the supposedly universal and intermolecular JG β-relaxation coming from the out-of-plane motion of the planar molecule has weaker dielectric strength, and it cannot be resolved from the more intense in-plane-rotation secondary relaxation because the dipole moment of 1MID lies on the plane.

  12. Linear and nonlinear optical properties of tellurite glasses

    Science.gov (United States)

    Jin, Zhian

    Tellurite glasses have been widely studied from bulk materials to structured devices, with the emphasis on the development of nonlinear optical fibers to demonstrate the functionalities of supercontinuum generation, erbium doped fiber amplifier and Raman amplifiers, etc. The new type tellurite-based optical fibers exhibit superior advantages over conventional silica ones, due to their high optical nonlinearity, broad transmission window, high rare earth element solubility and Raman gain intensity. Like silica fibers, tellurite fibers may also incorporate various fiber structures including solid core-cladding one and microstructure one (e.g. photonic crystal). The fiber loss was ever reported as low as ˜1dB/m using rod-in-tube fabrication process. Beyond all those progresses, little success has been made on improving the optical nonlinear property of tellurite glasses chi(3) ˜ 50 times bigger than fused silica). The challenge remains for tellurite glasses that their optical nonlinearity is more than 1 order smaller to compare with chalcogenides, although they are more stable chemically and structurally. In this work, after carefully reviewing the trend of optical nonlinearity for solid glasses, we adopted two strategies to potentially increase the linear and third-order optical nonlinear properties for tellurite glasses. A more polarizable electronic excitation may be achievable by introducing chalcogen elements (e.g. Sulfur or Selenium) into TeO2 vitreous network and synthesizing glasses with a linear helical chainlike structure. The ab initio computational results of microscopic hyper-polarizabilities of hypothetical mixed - 2 - tellurite chalcogenide glass molecular structure (TeO2(TeOX)n) confirmed the enhanced effect as Te-X (X=S or Se) bonds exist and the molecular size (n) grows. Quantitative estimates of the macroscopic linear and nonlinear properties for a mixed glass made from chains of n = 5 units leads to a conclusion that the extra Te-S (or Te

  13. Planar Hall Sensor for Influenza Immunoassay

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph

    2006-01-01

    at udføre målinger ved brug af en kompakt elektronisk enhed. Nærværende ph.d. projekt har fokuseret på at udvikle og karakterisere passende magnetfeltssensorer samt at demonstrere magnetisk biodetektion. På baggrund af et litteraturstudie blev der valgt sensorer baseret på den såkaldte planare Hall effekt...

  14. Lattice Planar QED in external magnetic field

    CERN Document Server

    Cea, Paolo; Giudice, Pietro; Papa, Alessandro

    2011-01-01

    We investigate planar Quantum ElectroDynamics (QED) with two degenerate staggered fermions in an external magnetic field on the lattice. Our preliminary results indicate that in external magnetic fields there is dynamical generation of mass for two-dimensional massless Dirac fermions in the weak coupling region. We comment on possible implications to the quantum Hall effect in graphene.

  15. Chemical Mechanical Planarization of Cu: Nanoscale Processes

    Science.gov (United States)

    Arthur, Michael; Fishbeck, Kelly; Muessig, Kara; McDonald, James; Williams, Christine; White, Daniel; Koeck, Deborah; Perry, Scott; Galloway, Heather

    2002-10-01

    Interconnect lines in state of the art integrated circuits are made of copper in a process that requires the repeated planarization of the copper layer. During this process the material is subjected to an aqueous slurry containing active chemicals, corrosion inhibitors and abrasive particles. A model slurry buffered to pH2, pH4 and pH6, contained nitric acid, silica particles and benzotriazole (BTA) as a corrosion inhibitor. The degree of copper planarization was investigated as a function of slurry composition and pH using atomic force microscopy. Chemical surface changes can be explained by the effect of slurry composition on the charge at the material surface. This surface charge controls the amount of friction between the abrasive and the surface which, in turn, effects the global planarization of the material. Experiments using a macroscopic polishing system with AFM characterization along with the microscopic interaction of the AFM tip and sample provide insights into the fundamental mechanisms of a planarization process.

  16. Wideband Flat Radomes Using Inhomogeneous Planar Layers

    Directory of Open Access Journals (Sweden)

    Mohammad Khalaj-Amirhosseini

    2008-01-01

    Full Text Available Inhomogeneous planar layers (IPLs are optimally designed as flat radomes in a desired frequency range. First, the electric permittivity function of the IPL is expanded in a truncated Fourier series. Then, the optimum values of the coefficients of the series are obtained through an optimization approach. The performance of the proposed structure is verified using some examples.

  17. OPE in planar QCD from integrability

    CERN Document Server

    Ahn, Changrim; Nepomechie, Rafael I

    2012-01-01

    We consider the operator product expansion of local single-trace operators composed of the self-dual components of the field strength tensor in planar QCD. Using the integrability of the one-loop matrix of anomalous dimensions of such operators, we obtain a determinant expression for certain tree-level structure constants in the OPE.

  18. Piecewise-Planar Parabolic Reflectarray Antenna

    Science.gov (United States)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  19. DWDM Devices Based on Planar Waveguide Technologies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A review is presented on some of our recent results for designs, simulations and fabrication of several photonic integrated devices, such as arrayed-waveguide gratings (AWGs) and etched diffraction gratings (EDGs), based on planar waveguide technologies. Some novel designs for flat-top AWGs and EDGs with flat-top spectral responses are presented.

  20. Development of planar detectors with active edge

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento) (Italy); Giacomini, G.; Vianello, E.; Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2011-12-01

    We report on the first batch of planar active edge sensors fabricated at Fondazione Bruno Kessler (Trento, Italy) on the way to the development of full 3D detectors with active edges. The main design and technological aspects are reported, along with selected results from the electrical characterization of detectors and test structures.

  1. Dynamics of the classical planar spin chain

    NARCIS (Netherlands)

    Raedt, Bart De; Raedt, Hans De

    1978-01-01

    In this paper we pay attention to the classical one-dimensional planar spin system and, in particular, to the dynamics of such a model. We use the Monte Carlo method to calculate the static correlation functions, needed to determine the relaxation functions completely. We are then able to give the r

  2. Static Theory for Planar Ferromagnets and Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    Feng Bo HANG; Fang Hua LIN

    2001-01-01

    Here we generalize the "BBH"-asymptotic analysis to a simplified mathematical model for the planar ferromagnets and antiferromagncts. To develop such a static theory is a necessary step for a rigorous mathematical justification of dynamical laws for the magnetic vortices formally derived in [1] and [2].

  3. Planar antenna system for direction finding

    Science.gov (United States)

    Mardale, Iulia-Cezara; Cocias, Gabriela; Dumitrascu, Ana; Tamas, Razvan; Berescu, Serban

    2015-02-01

    Applications of direction finding techniques include detection and localization of pulsed electromagnetic sources. This paper presents the design and analysis of a planar antenna system for direction finding. Our proposed system includes 4 hybrid couplers that generate 900 shifted signals, 2 crossover couplers also known as 0dB couplers, two 450 phase shifters, two 00 phase shifters and 4 patch antennas.

  4. Numerical Study of Planar GPR Antenna Measurements

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    The formulation of planar near-field measurements of GPR antennas determines the plane-wave spectra of the GPR antenna in terms of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical study investigates how the formulation is affected by (1...

  5. Image Alignment by Piecewise Planar Region Matching

    NARCIS (Netherlands)

    Lou, Z.; Gevers, T.

    2014-01-01

    Robust image registration is a challenging problem, especially when dealing with severe changes in illumination and viewpoint. Previous methods assume a global geometric model (e.g., homography) and, hence, are only able to align images under predefined constraints (e.g., planar scenes and parallax-

  6. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core reg...

  7. Analyzing planar cell polarity during zebrafish gastrulation.

    Science.gov (United States)

    Jessen, Jason R

    2012-01-01

    Planar cell polarity was first described in invertebrates over 20 years ago and is defined as the polarity of cells (and cell structures) within the plane of a tissue, such as an epithelium. Studies in the last 10 years have identified critical roles for vertebrate homologs of these planar cell polarity proteins during gastrulation cell movements. In zebrafish, the terms convergence and extension are used to describe the collection of morphogenetic movements and cell behaviors that contribute to narrowing and elongation of the embryonic body plan. Disruption of planar cell polarity gene function causes profound defects in convergence and extension creating an embryo that has a shortened anterior-posterior axis and is broadened mediolaterally. The zebrafish gastrula-stage embryo is transparent and amenable to live imaging using both Nomarski/differential interference contrast and fluorescence microscopy. This chapter describes methods to analyze convergence and extension movements at the cellular level and thereby connect embryonic phenotypes with underlying planar cell polarity defects in migrating cells.

  8. Planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Hassager, Ole; Rasmussen, Henrik K.

    2010-01-01

    A new test fixture for the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks with application towards pressure-sensitive adhesives (PSAs). The concept of this new geometry is to elongate a tube-like sample by keeping the perimeter constant...

  9. Lanthanoides in Glass and Glass Ceramics

    Science.gov (United States)

    Meinhardt, Jürgen; Kilo, Martin; Somorowsky, Ferdinand; Hopp, Werner

    2017-03-01

    Many types of glass contain lanthanoides; among them, special glass for optical applications is the one with the highest content of lanthanoides. The precise determination of the lanthanoides' concentration is performed by inductively coupled plasma-optical emission spectrometry (ICP-OES). However, up to now, there are no established standard processes guaranteeing a uniform approach to the lanthanoide analysis. The knowledge of the lanthanoides' concentrations is necessary on the microscale in some cases, especially if a suitable separation and recycling procedure is to be applied. Here, the analysis is performed by energy-dispersive X-ray (EDX) or wavelength-dispersive X-ray (WDX) analytics in the scanning electron microscope.

  10. Versatile fs laser-written glass chip lasers

    Science.gov (United States)

    Lancaster, D. G.; Gross, S.; Fuerbach, A.; Ebendorff Heidepriem, H.; Monro, T. M.; Withford, M. J.

    2013-03-01

    We report laser-written chip lasers with potential to be a platform planar technology versatile enough to cover the visible through to the mid-infrared spectral region. By femtosecond laser direct-writing a thulium doped fluoride based glass host (ZBLAN), we have demonstrated a 151% quantum efficiency λ=1.9 μm laser with a close to diffraction limited beam quality (M2~ 1.12 +/- 0.08) with 225 nm of continuous tunability in a device that can be rapidly fabricated by singlestep optical processing. The 9 mm long planar chip developed for concept demonstration contains fifteen large modearea waveguides that can operate in semi-monolithic or external cavity laser configurations. This chip laser has achieved the highest quantum efficiency from a planar glass waveguide laser. The depressed cladding geometry supports the largest fundamental modes reported for a rare-earth doped waveguide laser thereby favouring high peak-power operation which is demonstrated by achieving 1.9 kW peak-power pulses when Q-switched.

  11. lead glass brick

    CERN Multimedia

    As well as accelerators to boost particles up to high energy, physicists need detectors to see what happens when those particles collide. This lead glass block is part of a CERN detector called OPAL. OPAL uses some 12 000 blocks of glass like this to measure particle energies.

  12. Getting Started with Glass

    Science.gov (United States)

    White, Heather

    2007-01-01

    The metamorphosis of glass when heated is a magical process to students, yet teachers are often reluctant to try it in class. The biggest challenge in working with glass in the classroom is to simplify procedures just enough to ensure student success while maintaining strict safety practices so no students are injured. Project concepts and safety…

  13. Glass Sword of Damocles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A string of accidents draws attention to the safety of the gleaming glass-walled skyscrapers, now common in China’s major cities On July 8, as 19-year-old Zhu Yiyi was walking past a 23-story building in Hangzhou, east China’s Zhejiang Province, shards of glass falling

  14. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  15. Adhesion of Spores of Bacillus thuringiensis on a Planar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Lee, Ida [University of Tennessee, Knoxville (UTK); Joy, David Charles [ORNL; Palumbo, Anthony Vito [ORNL; Tsouris, Costas [ORNL

    2010-01-01

    Adhesion of spores of Bacillus thuringiensis (Bt) and spherical silica particles on surfaces was experimentally and theoretically investigated in this study. Topography analysis via atomic force microscopy (AFM) and electron microscopy indicates that Bt spores are rod shaped, {approx}1.3 {mu}m in length and {approx}0.8 {mu}m in diameter. The adhesion force of Bt spores and silica particles on gold-coated glass was measured at various relative humidity (RH) levels by AFM. It was expected that the adhesion force would vary with RH because the individual force components contributing to the adhesion force depend on RH. The adhesion force between a particle and a planar surface in atmospheric environments was modeled as the contribution of three major force components: capillary, van der Waals, and electrostatic interaction forces. Adhesion force measurements for Bt spore (silica particle) and the gold surface system were comparable with calculations. Modeling results show that there is a critical RH value, which depends on the hydrophobicity of the materials involved, below which the water meniscus does not form and the contribution of the capillary force is zero. As RH increases, the van der Waals force decreases while the capillary force increases to a maximum value.

  16. Ultracompact Planar Positioner Driven by Unbalanced Frictional Forces

    Directory of Open Access Journals (Sweden)

    Mikio Muraoka

    2015-08-01

    Full Text Available This paper proposes a new ultracompact planar positioner driven by unbalanced frictional forces. The prototype of the designed positioner is 17 mm × 17 mm × 9 mm in size, and is simply constructed using lead zirconate titanate piezoelectric elements, neodymium magnetic feet, and junction pieces. Alternating static and kinetic frictional forces are utilized to control the motion of the positioner. The working principle is illustrated, and the performance of the positioner is evaluated under atmospheric and vacuum conditions. Under atmospheric conditions, the positioner had a minimum step size of approximately 17 nm at 55 V, a maximum step size of approximately 1.6 μm, and a moving speed of approximately 4 μm/s at 138 V. However, the step size significantly decreased in vacuum. The step size can be controlled by adjusting the frictional forces on the magnetic feet. In addition, the positioner showed instability caused by the wear of the stainless plate. This problem was resolved by using a borosilicate glass that was fixed on the stainless plate, and the position accuracy was obviously improved.

  17. Methacrylate-based monolithic layers for planar chromatography of polymers.

    Science.gov (United States)

    Maksimova, E F; Vlakh, E G; Tennikova, T B

    2011-04-29

    A series of macroporous monolithic methacrylate-based materials was synthesized by in situ free radical UV-initiated copolymerization of functional monomers, such as glycidyl methacrylate (GMA), butyl methacrylate (BuMA), 2-aminoethyl methacrylate (AEMA), 2-hydroxyethyl methacrylate (HEMA) and 2-cyanoethyl methacrylate (CEMA), with crosslinking agent, namely, ethylene glycol dimethacrylate (EDMA). The materials obtained were applied as the stationary phases in simple and robust technique - planar chromatography (PLC). The method of separation layer fabrication representing macroporous polymer monolith bound to the specially prepared glass surface was developed and optimized. The GMA-EDMA and BuMA-EDMA matrixes were successfully applied for the separation of low molecular weight compounds (the mixture of several dies), as well as poly(vinylpyrrolidone) and polystyrene homopolymers of different molecular weights using reversed-phase mechanism. The materials based on copolymers AEMA-HEMA-EDMA and CEMA-HEMA-EDMA were used for normal-phase PLC separation of 2,4-dinitrophenyl amino acids and polystyrene standards.

  18. Transpermeance Amplifier Applied to Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Jossana Ferreira

    2017-02-01

    Full Text Available The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil, it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom.

  19. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  20. Defense HLW Glass Degradation Model

    Energy Technology Data Exchange (ETDEWEB)

    D. Strachan

    2004-10-20

    The purpose of this report is to document the development of a model for calculating the release rate for radionuclides and other key elements from high-level radioactive waste (HLW) glasses under exposure conditions relevant to the performance of the repository. Several glass compositions are planned for the repository, some of which have yet to be identified (i.e., glasses from Hanford and Idaho National Engineering and Environmental Laboratory). The mechanism for glass dissolution is the same for these glasses and the glasses yet to be developed for the disposal of DOE wastes. All of these glasses will be of a quality consistent with the glasses used to develop this report.

  1. Infinitesimal nonrigidity of convex surfaces with planar boundary

    Institute of Scientific and Technical Information of China (English)

    LI Chunhe; HONG Jiaxing

    2005-01-01

    In the present paper infinitesimal nonrigidity of a class of convex surfaces with planar boundary is given. This result shows that if the image of the Gauss map of an evolution convex surface with planar boundary covers some hemisphere, this surface may be of infinitesimal nonrigidity for the isometric deformation of planar boundary.

  2. The OPTHER Project: Progress toward the THz Amplifier

    DEFF Research Database (Denmark)

    Paoloni, C; Brunetti, F; Di Carlo, A

    2011-01-01

    This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within th...

  3. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach.

    Science.gov (United States)

    Guerfi, Y; Doucet, J B; Larrieu, G

    2015-10-23

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  4. Mechanical constraint converts planar waves into helices on tunicate and sea urchin sperm flagella.

    Science.gov (United States)

    Ishijima, Sumio

    2012-01-01

    The change in the flagellar waves of spermatozoa from a tunicate and sea urchins was examined using high-speed video microscopy to clarify the regulation of localized sliding between doublet microtubules in the axoneme. When the tunicate Ciona spermatozoa attached to a coverslip surface by their heads in seawater or they moved in seawater with increased viscosity, the planar waves of the sperm flagella were converted into left-handed helical waves. On the other hand, conversion of the planar waves into helical waves in the sea urchin Hemicentrotus spermatozoa was not seen in seawater with an increased viscosity as well as in ordinary seawater. However, the sea urchin Clypeaster spermatozoa showed the conversion, albeit infrequently, when they thrust their heads into seawater with an increased viscosity. The chirality of the helical waves of the Clypeaster spermatozoa was right-handed. When Ciona spermatozoa swam freely near a glass surface, they moved in relatively large circular paths (yawing motion). There was no difference in the proportion of spermatozoa yawing in either a clockwise or counterclockwise direction when viewed from above, which was also different from that of the sea urchin spermatozoa. These observations suggest that the planar waves generally observed on the sperm flagella are mechanically regulated, although their stability must depend on the Ca(2+) concentration in the cell. Furthermore, the chirality of the helical waves may be determined by the intracellular Ca(2+) concentration and changed by transmitting the localized active sliding between the doublet microtubules around the axoneme in an alternative direction.

  5. Single-mode planar optics for 4-20um wavelengths astronomical interferometry

    Science.gov (United States)

    Laurent, E.; Kern, P.; Schanen, I.; Rousselet-Perraut, K.

    2002-06-01

    Single-mode planar optics for 4-20 micrometers wavelengths astronomical interferometry. Spatial filtering is a critical issue to achieve nulling interferometry in the framework of spatial missions aimed at the detection of exoplanets. Several working interferometric instruments take benefits of guided optics for spatial filtering in the near IR wavelengths and thus provide accurate visibility measurements. Futhermore planar optics would also provides beam combining functions within a single compact and stable device. Existing telecom technology allows beam combiner realizations for 0.8 to 1.6 micrometers wavelengths. Last works allow us to valid these technologies up to 2.4 micrometers for stellar interferometry in the H and K bands. Technological developments are required to meet the scientific domain of the spatial missions like IRSI/DARWIN and TPF dedicated to thermal infrared wavelengths [4-20 micrometers]. We present the most promising materials with their technologies to manufacture single-mode planar optics for this wavelength range. First set of solutions involved chalcogenide glasses. Channel waveguides could be manufactured by photo-exposition method or thin layer etching process. Another solution is using porous silicon obtained from an acid dissolution of a silicon substrate which allows refractive index modulation. The last set of solution is based on thin films etching of semiconductor materials like silicon, germanium, zinc sulfide and zinc selenide.Test benches for the single-mode behavior are also presented. For each solutions, we present some manufactured waveguides with their optical characterizations.

  6. Thin-dielectric-layer engineering for 3D nanostructure integration using an innovative planarization approach

    Science.gov (United States)

    Guerfi, Y.; Doucet, J. B.; Larrieu, G.

    2015-10-01

    Three-dimensional (3D) nanostructures are emerging as promising building blocks for a large spectrum of applications. One critical issue in integration regards mastering the thin, flat, and chemically stable insulating layer that must be implemented on the nanostructure network in order to build striking nano-architectures. In this letter, we report an innovative method for nanoscale planarization on 3D nanostructures by using hydrogen silesquioxane as a spin-on-glass (SOG) dielectric material. To decouple the thickness of the final layer from the height of the nanostructure, we propose to embed the nanowire network in the insulator layer by exploiting the planarizing properties of the SOG approach. To achieve the desired dielectric thickness, the structure is chemically etched back with a highly diluted solution to control the etch rate precisely. The roughness of the top surface was less than 2 nm. There were no surface defects and the planarity was excellent, even in the vicinity of the nanowires. This newly developed process was used to realize a multilevel stack architecture with sub-deca-nanometer-range layer thickness.

  7. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Science.gov (United States)

    Anne, Marie-Laure; Keirsse, Julie; Nazabal, Virginie; Hyodo, Koji; Inoue, Satoru; Boussard-Pledel, Catherine; Lhermite, Hervé; Charrier, Joël; Yanakata, Kiyoyuki; Loreal, Olivier; Le Person, Jenny; Colas, Florent; Compère, Chantal; Bureau, Bruno

    2009-01-01

    Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors. PMID:22423209

  8. Wideband pulse amplifiers for the NECTAr chip

    Science.gov (United States)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  9. Wideband pulse amplifiers for the NECTAr chip

    Energy Technology Data Exchange (ETDEWEB)

    Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others

    2012-12-11

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  10. The Electron Beam Semiconductor (EBS) amplifier

    Science.gov (United States)

    True, R. M.; Baxendale, J. F.

    1980-07-01

    The Electron Beam Semiconductor (EBS) concept has existed for three decades; but only within the last decade has an active, well-defined program been underway to develop devices that can operate as high-power radio frequency(RF) amplifiers, fast risetime switches, and current and voltage pulse amplifiers. This report discusses the test procedures, data and results of reliability testing of RF and video pulse EBS amplifiers at Electronics Research and Development Command (ERADCOM), Fort Monmouth, New Jersey. Also, the experimental analysis of the series connected diode EBS device is described in detail. Finally, the report concludes with a discussion of the state-of-the-art of EBS and future trends of the technology.

  11. Design Of A Doherty Power Amplifier For GSM Systems

    Directory of Open Access Journals (Sweden)

    Saad Wasmi Osman

    2013-04-01

    Full Text Available This paper presents the design and analysis of Doherty power amplifier. The Doherty amplifier is used in  a base station for mobile system because of its high efficiency. The class AB power amplifier used in the configuration of the main and auxiliary amplifier. The result obtained shows that the Doherty power amplifier can be used on a wide band spectrum, the amplifier works at 900MHz and has very good power added efficiency (PAE and gain. The amplifier can also work at 1800MHz at input power greater than 20dBm. 

  12. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    with different gas compositions. The foam glasses were characterised concerning densities, open/closed porosity and crystallinity. We find out, through analytical calculations and experiments, how the thermal conductivity of foam glass depends on density, glass composition and gas composition. Certain glass......Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...

  13. Novel Chemically Stable Er3+-Yb3+ Codopded Phosphate Glass for Ion-Exchanged Active Waveguide Devices

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 赵士龙; 胡丽丽

    2003-01-01

    A novel Er3+-Yb3+ codoped phosphate glass,which combines good chemical durability with good spectroscopic properties,is developed for the ion-exchange process.The relevant properties of this glass are presented for reference in the design and modelling of ion-exchanged active waveguide devices.The weight-loss rate of this glass is 1.45 × 10-5 g.cm-2.h-1 in boiling water,which is comparable to that of Kigre's Q-246 silicate glass.The emission cross section of Er3+ in this glass is calculated to be 0.72 × 10-20 cm2 using the McCumber theory.It is found that a planar waveguide with three modes at 632.8 nm is readily realized in this glass from our primary ion-exchange experiments.

  14. Implementation of Digital Lock-in Amplifier

    Science.gov (United States)

    Bhattacharyya, Sabyasachi; Nasir Ahmed, Ragib; Bijoy Purkayastha, Basab; Bhattacharyya, Kaustubh

    2016-10-01

    The recovery of signal under the presence of noise is utmost essential for proper communication. The signals corrupted due to noise can be recovered using various techniques. However the weak signals are more prone to noise and hence they can be easily degraded due to noise. In such cases, a digital lock-in amplifier becomes an essential device for recovery of such weak signals. Keeping the cost, speed and other considerations, we will present the implementation of digital lock-in amplifier and how it recovers the weak signal under extreme noisy conditions.

  15. Double Clad Er-doped Fiber Amplifier

    Institute of Scientific and Technical Information of China (English)

    FU Yong-jun; MAO Xiang-qiao; WEI Huai; LI jian

    2007-01-01

    Presented is a theoretical study of double-clad Er-doped fiber power amplifier(EDFA). Two kinds of double clad fibers(DCF) with rectangular and "flower" inner clad shapes are studied, and these fibers have different coupling constants and propagation losses. We calculate the effective pump power absorption ratio along the fiber with different coupling constants from the first cladding to the doped core and with different propagation losses for the power in the inner cladding. Then the gains of the double clad Er-doped fiber amplifiers versus fiber lengths are calculated using the EDFA model based on propagation and rate equations of a homogeneous, two-level medium.

  16. Optimization of Pr3+:ZBLAN fiber amplifiers

    OpenAIRE

    Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.

    1992-01-01

    Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0.25. Lengthening the metastable state lifetime from 110 to 300 μs would significantly improve amplifier performance while concentration quenching can appreciably degrade it

  17. Dynamic range meter for radiofrequency amplifiers

    Directory of Open Access Journals (Sweden)

    Drozd S. S.

    2009-04-01

    Full Text Available The new measurement setup having increased on 20…30 dB the own dynamic range in comparison with the standard circuit of the dynamic range meter is offered and the rated value of an error bringing by setup in the worst case does not exceed ± 2,8 dB. The measurement setup can be applied also to determinate levels of intermodulation components average power amplifiers and powerful amplifiers of a low-frequency at replacement of the quartz filter on meeting low-frequency the LC-filter and the spectrum analyzer.

  18. Analysis of bipolar and CMOS amplifiers

    CERN Document Server

    Sodagar, Amir M

    2007-01-01

    The classical approach to analog circuit analysis is a daunting prospect to many students, requiring tedious enumeration of contributing factors and lengthy calculations. Most textbooks apply this cumbersome approach to small-signal amplifiers, which becomes even more difficult as the number of components increases. Analysis of Bipolar and CMOS Amplifiers offers students an alternative that enables quick and intuitive analysis and design: the analysis-by-inspection method.This practical and student-friendly text demonstrates how to achieve approximate results that fall within an acceptable ran

  19. Linear Amplifier Model for Optomechanical Systems

    CERN Document Server

    Botter, Thierry; Brahms, Nathan; Schreppler, Sydney; Stamper-Kurn, Dan M

    2011-01-01

    We model optomechanical systems as linear optical amplifiers. This provides a unified treatment of diverse optomechanical phenomena. We emphasize, in particular, the relationship between ponderomotive squeezing and optomechanically induced transparency, two foci of current research. We characterize the amplifier response to quantum and deliberately applied fluctuations, both optical and mechanical. Further, we apply these results to establish quantum limits on external force sensing both on and off cavity resonance. We find that the maximum sensitivity attained on resonance constitutes an absolute upper limit, not surpassed when detuning off cavity resonance. The theory can be extended to a two-sided cavity with losses and limited detection efficiency.

  20. Operational amplifier circuits analysis and design

    CERN Document Server

    Nelson, J C C

    1995-01-01

    This book, a revised and updated version of the author's Basic Operational Amplifiers (Butterworths 1986), enables the non-specialist to make effective use of readily available integrated circuit operational amplifiers for a range of applications, including instrumentation, signal generation and processing.It is assumed the reader has a background in the basic techniques of circuit analysis, particularly the use of j notation for reactive circuits, with a corresponding level of mathematical ability. The underlying theory is explained with sufficient but not excessive, detail. A range of compu

  1. Overview of Planar Magnetic Technology — Fundamental Properties

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2014-01-01

    The momentum towards high efficiency, high frequency, and high power density in power supplies limits wide use of conventional wire-wound magnetic components. This article gives an overview of planar magnetic technologies with respect to the development of modern power electronics. The major...... advantages and disadvantages in the use of planar magnetics for high frequency power converters are covered, and publications on planar magnetics are reviewed. A detailed survey of winding conduction loss, leakage inductance and winding capacitance for planar magnetics is presented so power electronics...... engineers and researchers can have a clear understanding of the intrinsic properties of planar magnetics....

  2. Planar growth generates scale free networks

    CERN Document Server

    Haslett, Garvin; Brede, Markus

    2016-01-01

    In this paper we introduce a model of spatial network growth in which nodes are placed at randomly selected locations on a unit square in $\\mathbb{R}^2$, forming new connections to old nodes subject to the constraint that edges do not cross. The resulting network has a power law degree distribution, high clustering and the small world property. We argue that these characteristics are a consequence of the two defining features of the network formation procedure; growth and planarity conservation. We demonstrate that the model can be understood as a variant of random Apollonian growth and further propose a one parameter family of models with the Random Apollonian Network and the Deterministic Apollonian Network as extreme cases and our model as a midpoint between them. We then relax the planarity constraint by allowing edge crossings with some probability and find a smooth crossover from power law to exponential degree distributions when this probability is increased.

  3. Planar multijunction high voltage solar cells

    Science.gov (United States)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  4. Isotropic-planar illumination for PIV experiments

    Science.gov (United States)

    Atkins, Michael D.; Kim, Tongbeum

    2015-03-01

    A new method for laser illumination in particle image velocimetry (PIV) has been introduced: internal "isotropic-planar" illumination that provides laser light to regions of the flow field that were previously cast into shadow using the conventional external (laser light sheet) illumination method. To demonstrate the effectiveness of the isotropic-planar illumination method, a comparison of the measured velocity field around five side-by-side circular cylinders that are immersed in uniform flow is made against the conventional external illumination method. The new method is effective at eliminating the shadow region, allowing the velocity field of the upstream, gap and downstream regions around the five side-by-side circular cylinders to be measured simultaneously. These PIV measurements provide new insight into the behavior of the gap flow that passes between the cylinders.

  5. Planar and spherical stick indices of knots

    CERN Document Server

    Adams, Colin; Hawkins, Katherine; Sia, Charmaine; Silversmith, Rob; Tshishiku, Bena; 10.1142/S0218216511008954

    2011-01-01

    The stick index of a knot is the least number of line segments required to build the knot in space. We define two analogous 2-dimensional invariants, the planar stick index, which is the least number of line segments in the plane to build a projection, and the spherical stick index, which is the least number of great circle arcs to build a projection on the sphere. We find bounds on these quantities in terms of other knot invariants, and give planar stick and spherical stick constructions for torus knots and for compositions of trefoils. In particular, unlike most knot invariants,we show that the spherical stick index distinguishes between the granny and square knots, and that composing a nontrivial knot with a second nontrivial knot need not increase its spherical stick index.

  6. Stable planar mesoscopic photonic crystal cavities

    CERN Document Server

    Magno, Giovanni; Grande, Marco; Lozes-Dupuy, Françoise; Gauthier-Lafaye, Olivier; Calò, Giovanna; Petruzzelli, Vincenzo

    2014-01-01

    Mesoscopic self-collimation in mesoscopic photonic crystals with high reflectivity is exploited to realize a novel high-Q factor cavity by means of mesoscopic PhC planar mirrors. These mirrors efficiently confine a mode inside a planar Fabry-Perot-like cavity, due to a beam focusing effect that stabilises the cavity even for small beam sizes, resembling the focusing behaviour of curved mirrors. Moreover, they show an improved reflectivity with respect to their standard distributed Bragg reflector counterparts that allows higher compactness. A Q factor higher than 10^4 has been achieved for an optimized 5-period-long mirror cavity. The optimization of the Q factor and the performances in terms of energy storage, field enhancement and confinement are detailed.

  7. Copper Planar Microcoils Applied to Magnetic Actuation

    CERN Document Server

    Moulin, J; Martincic, E; Dufour-Gergam, E

    2008-01-01

    Recent advances in microtechnology allow realization of planar microcoils. These components are integrated in MEMS as magnetic sensor or actuator. In the latter case, it is necessary to maximize the effective magnetic field which is proportional to the current passing through the copper track and depends on the distance to the generation microcoil. The aim of this work was to determine the optimal microcoil design configuration for magnetic field generation. The results were applied to magnetic actuation, taking into account technological constraints. In particular, we have considered different realistic configurations that involve a magnetically actuated device coupled to a microcoil. Calculations by a semi-analytical method using Matlab software were validated by experimental measurements. The copper planar microcoils are fabricated by U.V. micromoulding on different substrates: flexible polymer (Kapton) and silicate on silicon. They are constituted by a spiral-like continuous track. Their total surface is ...

  8. Planar cell polarity: one or two pathways?

    Science.gov (United States)

    Lawrence, Peter A; Struhl, Gary; Casal, José

    2007-07-01

    In multicellular organisms, cells are polarized in the plane of the epithelial sheet, revealed in some cell types by oriented hairs or cilia. Many of the underlying genes have been identified in Drosophila melanogaster and are conserved in vertebrates. Here we dissect the logic of planar cell polarity (PCP). We review studies of genetic mosaics in adult flies - marked cells of different genotypes help us to understand how polarizing information is generated and how it passes from one cell to another. We argue that the prevailing opinion that planar polarity depends on a single genetic pathway is wrong and conclude that there are (at least) two independently acting processes. This conclusion has major consequences for the PCP field.

  9. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-09-01

    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an

  10. Planar graphical models which are easy

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV

    2009-01-01

    We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.

  11. Planar doped barrier devices for subharmonic mixers

    Science.gov (United States)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1991-01-01

    An overview is given of planar doped barrier (PDB) devices for subharmonic mixer applications. A simplified description is given of PDB characteristics along with a more complete numerical analysis of the current versus voltage characteristics of typical structures. The analysis points out the tradeoffs between the device structure and the resulting characteristics that are important for mixer performance. Preliminary low-frequency characterization results are given for the device structures, and a computer analysis of subharmonic mixer parameters and performance is presented.

  12. Generalized Lantern Relations and Planar Line Arrangements

    CERN Document Server

    Hironaka, Eriko

    2011-01-01

    In this paper we show that to each planar line arrangement defined over the real numbers, for which no two lines are parallel, one can write down a corresponding relation on Dehn twists that can be read off from the combinatorics and relative locations of intersections. This leads to an alternate proof of Wajnryb's generalized lantern relations, and of Endo, Mark and Horn-Morris' daisy relations.

  13. Macdonald formula for curves with planar singularities

    CERN Document Server

    Maulik, Davesh

    2011-01-01

    We generalize Macdonald's formula for the cohomology of Hilbert schemes of points on a curve from smooth curves to curves with planar singularities: we relate the cohomology of the Hilbert schemes to the cohomology of the compactified Jacobian of the curve. The new formula is a consequence of a stronger identity between certain perverse sheaves defined by a family of curves satisfying mild conditions, whose proof makes an essential use of Ng\\^o's support theorem for compactified Jacobians.

  14. Planarity of 3,4-jump Graphs

    Institute of Scientific and Technical Information of China (English)

    魏二玲; 刘颜佩

    2004-01-01

    For a graph G of size ε≥1 and its edge-induced subgraphs H1 and H2 of size γ(1 < γ < ε), H1 is said to be obtained from H2 by an edge jump if there exist four distinct vertices u, v, ω and x in G such that (u,v)∈E(H2), (ω,x)∈E(G) - E(H2) and H1=H2 - (u, v) + (ω, x). In this article, the γ-jump graphs(r≥3) are discussed. A graph H is said to be an γ-jump graph of G if its vertices correspond to the edge induced graph of size γ in G and two vertices are adjacent if and only if one of the two corresponding subgraphs can be obtained from the other by an edge jump. For k≥2, the k-th iterated γ-jump graph Jrk(G) is defined as Jγ(Jγk-1 (G)), where Jγ1 (G) = Jγ(G). An infinite sequence {Gi} of graphs is planar if every graph Gi is planar. It is shown that there does not exist a graph G for which the sequence {J3k(G)} is planar, where k is any positive integer. Meanwhile, lim gen(J3k(G)) =∞, where gen(G) denotes the genus of a graph G, if the sequence k→∞J3k(G) is defined for every positive integer k. As for the 4-jump graph of a graph G,{J4k(G)} is planar if and only if G = C5. For γ≥5, whether the fix graph of the sequence {Jγk(G))exists is determined.

  15. Modelling planar cell polarity in Drosophila melanogaster

    OpenAIRE

    2009-01-01

    During development, polarity is a common feature of many cell types. One example is the polarisation of whole fields of epithelial cells within the plane of the epithelium, a phenomenon called planar cell polarity (PCP). It is widespread in nature and plays important roles in development and physiology. Prominent examples include the epithelial cells of external structures of insects like the fruit fly Drosophila melanogaster, polarised tissue morphogenesis in vertebrates and sensory hair cel...

  16. Modelling consideration of praseodymium-doped fiber amplifiers for 1.3 μm wavelength applications

    Science.gov (United States)

    Berkdemir, Cüneyt; Özsoy, Sedat

    2007-01-01

    To obtain the temperature-sensitive rate equations, a new energy level diagram of Praseodymium ion (Pr 3+) in a glass host is modelled. By solving the modified rate equations, an analytical expression is presented to investigate the temperature dependence of the signal gain of a praseodymium-doped fiber amplifier (PDFA). It is seen that a change in the signal gain slightly depends on the variation of the distribution of Pr 3+-ions in transitions 3F 4 ↔ 3F 3 with the temperature. Numerical calculations are carried out for the temperature range which is changing from -20 to +60 °C. Pr 3+-doped ZBLAN fiber amplifier pumped at 1017 nm and Pr 3+-doped sulfide fiber amplifier pumped at 1028 nm are selected as an application for the 1.3 μm signal wavelengths. It is also seen that the prediction of the model is in good agrement with their experimental results.

  17. Planar Tunneling Spectroscopy of Graphene Nanodevices

    Science.gov (United States)

    Wang, Joel I.-Jan; Bretheau, Landry; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2-D Van-der-Waals mesoscopic physics have seen a rapid development in the last 10 years, with new materials each year added to the toolbox. Stacking them like Lego enables the combination of their individual electronic properties. In particular, hexagonal boron nitride, which is an insulator, gives the possibility to perform planar (2-D to 2-D) tunneling spectroscopy within this type of heterostructures. Unlike standard transport measurements, tunneling spectroscopy enables to probe the electronic properties in the energy domain. Moreover, since planar tunneling probes a large area of the system, global quantum features such as quantum Hall effect, superconducting proximity effect or quantum confinement can be investigated. In this talk, we will present implementation of heterostructures consisting of graphene, hexagonal boron nitride, and graphite, fabricated for planar tunneling spectroscopy. In order to reveal the intrinsic properties of materials, the fabrication scheme aims at preserving the pristine nature of the 2-DEGS as well as minimizing the doping introduced by external probes. As a demonstration, measurements of these devices in normal states, high magnetic field environment, and induced superconducting state will be presented.

  18. Adaptive Techniques to find Optimal Planar Boxes

    CERN Document Server

    Barbay, J; Pérez-Lantero, P

    2012-01-01

    Given a set $P$ of $n$ planar points, two axes and a real-valued score function $f()$ on subsets of $P$, the Optimal Planar Box problem consists in finding a box (i.e. axis-aligned rectangle) $H$ maximizing $f(H\\cap P)$. We consider the case where $f()$ is monotone decomposable, i.e. there exists a composition function $g()$ monotone in its two arguments such that $f(A)=g(f(A_1),f(A_2))$ for every subset $A\\subseteq P$ and every partition $\\{A_1,A_2\\}$ of $A$. In this context we propose a solution for the Optimal Planar Box problem which performs in the worst case $O(n^2\\lg n)$ score compositions and coordinate comparisons, and much less on other classes of instances defined by various measures of difficulty. A side result of its own interest is a fully dynamic \\textit{MCS Splay tree} data structure supporting insertions and deletions with the \\emph{dynamic finger} property, improving upon previous results [Cort\\'es et al., J.Alg. 2009].

  19. Miniaturized Air-Driven Planar Magnetic Generators

    Directory of Open Access Journals (Sweden)

    Jingjing Zhao

    2015-10-01

    Full Text Available This paper presents the design, analysis, fabrication and testing of two miniaturized air-driven planar magnetic generators. In order to reduce the magnetic resistance torque, Generator 1 establishes a static magnetic field by consisting a multilayer planar coil as the stator and two multi-pole permanent-magnet (PM rotors on both sides of the coil. To further decrease the starting torque and save more space, Generator 2 adopts the multilayer planar coil as the rotor and the multi-pole PMs as the stator, eliminating the casing without compromising the magnetic structure or output performance. The prototypes were tested gathering energy from wind which can work at a low wind speed of 1~2 m/s. Prototype of Generator 1 is with a volume of 2.61 cm3 and its normalized voltage reaches 485 mV/krpm. Prototype of Generator 2 has a volume of 0.92 cm3 and a normalized voltage as high as 538 mV/krpm. Additionally, output voltage can be estimated at better than 96% accuracy by the theoretical model developed in this paper. The two micro generators are capable of producing substantial electricity with little volume to serve as compact power conversion devices.

  20. Chemical Mechanical Planarization (CMP) for Microelectronic Applications

    Institute of Scientific and Technical Information of China (English)

    Li Yuzhuo

    2004-01-01

    Surface planarity is of paramount importance in microelectronics. Chemical Mechanical Polishing (CMP) is the most viable approach to address the planarity issues during the fabrication of advanced semiconductor devices. With the integration of copper as interconnect and low k materials as dielectric, the CMP community is facing an ever increasing demand on reducing defectivity without scarifying production throughput. Key issues in CMP today include reduction of surface defectivity and enhancement of planarization efficiency. More specifically, the polished surface should be free of defects such as scratches, pits, corrosion spots, and residue particles. To accomplish these goals, we have investigated a wide range of pathways including reduction of oversized particles,use of unique abrasives such as functionalized nanoparticles, and development of polishing solution without abrasive particles.In this presentation, some fundamental aspects of the CMP process will be given first.Several academic and industrial examples will be used to illustrate the issues and challenges during the implementation of various slurry designs into the CMP processes.

  1. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  2. Glass Stronger than Steel

    Science.gov (United States)

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  3. Shattering the Glass Ceiling

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ "Shattering the Glass Ceiling: the Myths, Opportunities and Chal lenges of Women in Corporate China" was the theme of CEIBS'first Women in Management Forum held on December l 1 on the school's main campus in Shanghai.

  4. Feedback analysis of transimpedance operational amplifier circuits

    DEFF Research Database (Denmark)

    Bruun, Erik

    1993-01-01

    The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op...

  5. High-Performance Operational and Instrumentation Amplifiers

    NARCIS (Netherlands)

    Shahi, B.

    2015-01-01

    This thesis describes techniques to reduce the offset error in precision instrumentation and operational amplifiers. The offset error which is considered a major error source associated with gain blocks, together with other errors are reviewed. Conventional and newer approaches to remove offset and

  6. Holographic preamplifier for a quantum amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, K.I.; Kazarian, M.A.; Orlova, N.G.; Liuksiutov, S.F.; Odulov, S.G.

    1988-08-01

    Successive amplification of a weak optical signal was realized experimentally in holographic and quantum amplifiers. The signal was a coherent one with an intensity less than the actual noise of the copper-vapor active medium; the technique involved the use of a coherent holographic preamplifier based on a lithium niobate/sodium photorefractive crystal. 8 references.

  7. Optimization of Pr3+:ZBLAN fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.

    1992-01-01

    Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0...

  8. Predistortion of a Bidirectional Cuk Audio Amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold;

    2014-01-01

    Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduce...

  9. A THEORY FOR BROADBAND VARACTOR PARAMETRIC AMPLIFIERS

    Science.gov (United States)

    design and synthesis of broadband varactor parametric amplifiers. The circuit considered in this thesis is that of linear variable capacitors embedded...second and more important inherent property is that, due to the frequency-coupling action of the variable capacitor , the scattering coefficient at the

  10. Offset Correction Techniques for Voltage Sense Amplifiers

    NARCIS (Netherlands)

    Groeneveld, S.

    2006-01-01

    This report deals with offset correction techniques for voltage sense amplifiers and is divided into two different parts: 1) mismatch and 2) offset correction techniques. First a literature study is done on the subject mismatch with specially focus on the future. Mismatch of a transistor is determin

  11. Ultra-low Voltage CMOS Cascode Amplifier

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique...

  12. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    to breakage without any warning or ductility, which can be catastrophic if no precautions are taken. One aspect of this issue is treated here by looking at the possibility of mechanically reinforcing glass beams in order to obtain ductile failure for such a structural component. A mechanically reinforced...... the mechanical behavior of the beam is explained. Finally, some design criterions for reinforced glass beams are discussed....

  13. Baseline LAW Glass Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [USDOE Office of River Protection, Richland, WA (United States); Mooers, Cavin [The Catholic University of America, Washington, DC (United States). Vitreous State Lab.; Bazemore, Gina [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Pegg, Ian L. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Hight, Kenneth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Lai, Shan Tao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Buechele, Andrew [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Rielley, Elizabeth [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Gan, Hao [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Muller, Isabelle S. [The Catholic University of America, Washington, DC (United States). Vitreous State Lab; Cecil, Richard [The Catholic University of America, Washington, DC (United States). Vitreous State Lab

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  14. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik;

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surface...

  15. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    CERN Document Server

    Liu, Xiaoping; Vlasov, Yurii A; Green, William M J

    2010-01-01

    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to comp...

  16. Colloid Aspects of Chemical-Mechanical Planarization

    Directory of Open Access Journals (Sweden)

    Matijević, E.

    2010-09-01

    Full Text Available The essential parts of interconnects for silicon based logic and memory devices consist of metal wiring (e.g. copper, a barrier metal (Ta, TaN, and of insulation (SiO2 , low-k polymer. The deposition of the conducting metal cannot be confined to trenches, resulting in additional coverage of Cu and Ta/TaN on the surface of the dielectrics, yielding an electrically conducting continuous but an uneven surface. The surplus metal must be removed until a perfectly flat surface consisting of electrically isolated metal lines is achieved with no imperfections. This task is accomplished by the chemical-mechanical planarization (CMP process, in which the wafer is polished with a slurry containing abrasives of finely dispersed particles in submicrometer to nanometer size. The slurries also contain dissolved chemicals to modify the surfaces to be planarized. Eventually the final product must be cleared of any adhered particles and debris left after polishing is completed. Obviously the entire process deals with materials and interactions which are the focal subjects of colloid and surface science, such as the natures of abrasive particles and their stability in the slurry, the properties of various surfaces and their modifications, adhesion and detachment of the particles and different methods for the characterization of constituents, as well as elucidation of the relevant interfacial phenomena. This review endeavors to describe the colloid approach to optimize the materials and processes in order to achieve desirable polish rates and final surfaces with no imperfections. Specifically, the effects of the composition, size, shape, and charge of abrasive particles on the polish process and the quality of planarized wafers is described in detail. Furthermore, the interactions of metal surfaces with oxidizing, chelating, and other species which affect the dissolution and surface modification of metal (copper surfaces are illustrated and related to the

  17. A balanced wide-band amplifier for microwave applications

    Science.gov (United States)

    Panzariu, Mircea; Lupescu, Horia; Dumitrascu, Ana; Tamas, Razvan D.

    2015-02-01

    Due to its better performance, high fiability and large power capability, balanced amplifier is one of the most popular designs used in narrow band applications. However, with a balanced amplifier in class A operation, the band-pass is still narrow with classical coupler [1]. In this paper, we propose a new method for widen the band-pass and linearity of the amplifier, by using two Lange couplers and by adding two drivers, so that small signal could be amplified [2], [3], [4], [5]. The proposed amplifier works in the 0.9 - 2.4 GHz band, with good performances. We also propose an A class X-band amplifier, with Wilkinson power divider used as a combiner and divider. The amplifier will operate at 9,5 GHz with Continuous Wave (C.W). The two methods were validated by simulating the balanced amplifier with Lange coupler and the balanced amplifier with Wilkinson power divider, in class A operation.

  18. Multi-pass amplifier architecture for high power laser systems

    Science.gov (United States)

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  19. Thermal degradation of ultrabroad bismuth NIR luminescence in bismuth-doped tantalum germanate laser glasses.

    Science.gov (United States)

    Wang, Liping; Zhao, Yanqi; Xu, Shanhui; Peng, Mingying

    2016-04-01

    Because of ultra-broadband luminescence in 1000-1700 nm and consequent applications in fiber amplifier and lasers in the new spectral range where traditional rare earth cannot work, bismuth-doped laser glasses have received rising interest recently. For long-term practical application, thermal degradation must be considered for the glasses. This, however, has seldom been investigated. Here we report the thermal degradation of bismuth-doped germanate glass. Heating and cooling cycle experiments at high temperature reveal strong dependence of the thermal degradation on glass compositions. Bismuth and tantalum lead to the reversible degradation, while lithium can produce permanent irreversible degradation. The degradation becomes worse as lithium content increases in the glass. Absorption spectra show this is due to partial oxidation of bismuth near-infrared emission center. Surprisingly, we notice the emission of bismuth exhibits blueshift, rather than redshift at a higher temperature, and the blueshift can be suppressed by increasing the lithium content.

  20. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  1. Glass microsphere lubrication

    Science.gov (United States)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  2. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  3. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  4. Low phase noise oscillator using two parallel connected amplifiers

    Science.gov (United States)

    Kleinberg, Leonard L.

    1987-01-01

    A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.

  5. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier*

    Institute of Scientific and Technical Information of China (English)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influenced by the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled.

  6. Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification

    Science.gov (United States)

    Yang, D. L.; Pun, E. Y. B.; Lin, H.

    2009-10-01

    K+-Na+ ion-exchanged channel waveguide amplifiers have been fabricated in Tm3+-doped acid-resistant aluminum germanate glasses. The optical and relative gains of a 3.15-cm-long waveguide channel were achieved to be 4.05 and 2.29 dB at 1.482 μm wavelength under 110 mW 793 nm laser excitation, respectively. After compensating the propagation loss, an internal gain of 1.50 dB and a remarkable gain coefficient of 0.48 dB/cm were obtained, which reveals a definite S-band signal amplification in the low phonon energy glass waveguide. As an expectation, UV-radiation-sensitive glass waveguide should promote the developments of gain-flatten S-band waveguide amplifiers, infrared UV-writing grating waveguide lasers, and compact multifunctional integrated optical devices.

  7. Preparation and Optical Properties of Er3+ -Doped Gadolinium Borosilicate Glasses

    Institute of Scientific and Technical Information of China (English)

    Sun Jiangting; Zhang Jiahua; Chen Baojiu; Lu Shaozhe; Ren Xinguang; Wang Xiaojun

    2005-01-01

    Er3+-doped Gd2 O3 -SiO2 -B2 O3 -Na2O glasses were prepared, and formation range of glass of Gd2 O3 -SiO2 -B2O3 system was experimentally obtained. It is found that the glass phase can be formed only when the content of SiO2 is 0~50%(molar fraction), Gd2O3 is 0~30%(molar fraction) and B2 O3 is above 20%(molar fraction) in this glass system. The glass can also be obtained but becomes translucent at the contents of 60%(molar fraction) SiO2 and 30% Gd2O3 , or at the contents of 60%(molar fraction) SiO2 and 30%(molar fraction) B2O3. There is no glass phase formed in other glass components. Glass forming ability for Gd2O3 content of 10%, was characterized by the value of β, the parameter of crystallization tendency, which is 0.32~1.76, obtained from the differential thermal analysis. The absorption and emission cross section, the J-O parameters Ωt(2,4,6) and radiative transition probabilities were calculated by using the theory of McCumber and Judd-Ofelt. The emission properties at 1.5 μm of the samples are discussed with the product of full width at half maximum and stimulated emission cross section. It can be seen that the value of the FWHM×σepeak product in the prepared glass is more than those of germanate, silicate and phosphate glasses. Furthermore, the maximum value of the product among these glasses reported in this work is close to that of oxyfluoride silicate glass. Therefore, the Er3+-doped gadolinium borosilicate glass in this paper is a candidate for broadband erbium doped fiber amplifiers.

  8. Laser micromachining of transparent glass using ultrafast Bessel beams

    Science.gov (United States)

    Zambon, Véronique; McCarthy, Nathalie; Piché, Michel

    2009-06-01

    We fabricated optical waveguides in fused silica by focusing femtosecond laser pulses with an axicon. With this technique, we also produced microholes by using chemical etching. The axicon, which is a conical lens, generates an optical beam with a transverse intensity profile that follows a zero-order Bessel function. Bessel beams produced by axicon focusing have a narrow focal line of a few micron width which is invariant along a long distance (>1 cm). By focusing femtosecond pulses with an axicon into fused silica, we induced permanent modifications over the extented focal line of the axicon without scanning axially the glass sample. The waveguides so fabricated exhibit low losses and no detectable birefringence due their excellent circular symmetry. By translating the glass sample during the inscription process, we have fabricated planar waveguides. Microfluidic channels were obtained by soaking the exposed samples into a HF solution.

  9. Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Zardán Gómez de la Torre, T.

    2013-01-01

    We compare measurements of the Brownian relaxation response of magnetic nanobeads in suspension using planar Hall effect sensors of cross geometry and a newly proposed bridge geometry. We find that the bridge sensor yields six times as large signals as the cross sensor, which results in a more...... accurate determination of the hydrodynamic size of the magnetic nanobeads. Finally, the bridge sensor has successfully been used to measure the change in dynamic magnetic response when rolling circle amplified DNA molecules are bound to the magnetic nanobeads. The change is validated by measurements...... performed in a commercial AC susceptometer. The presented bridge sensor is, thus, a promising component in future lab-on-a-chip biosensors for detection of clinically relevant analytes, including bacterial genomic DNA and proteins....

  10. Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors.

    Science.gov (United States)

    Østerberg, F W; Rizzi, G; Zardán Gómez de la Torre, T; Strömberg, M; Strømme, M; Svedlindh, P; Hansen, M F

    2013-02-15

    We compare measurements of the Brownian relaxation response of magnetic nanobeads in suspension using planar Hall effect sensors of cross geometry and a newly proposed bridge geometry. We find that the bridge sensor yields six times as large signals as the cross sensor, which results in a more accurate determination of the hydrodynamic size of the magnetic nanobeads. Finally, the bridge sensor has successfully been used to measure the change in dynamic magnetic response when rolling circle amplified DNA molecules are bound to the magnetic nanobeads. The change is validated by measurements performed in a commercial AC susceptometer. The presented bridge sensor is, thus, a promising component in future lab-on-a-chip biosensors for detection of clinically relevant analytes, including bacterial genomic DNA and proteins.

  11. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling.

    Science.gov (United States)

    Tree, David R P; Shulman, Joshua M; Rousset, Raphaël; Scott, Matthew P; Gubb, David; Axelrod, Jeffrey D

    2002-05-03

    Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization. In the absence of Prickle, Frizzled and Dishevelled remain symmetrically distributed. Prickle localizes to the proximal side of pupal wing cells and binds the Dishevelled DEP domain, inhibiting Dishevelled membrane localization and antagonizing Frizzled accumulation. This activity is linked to Frizzled activity on the adjacent cell surface. Prickle therefore functions in a feedback loop that amplifies differences between Frizzled levels on adjacent cell surfaces.

  12. 100 kHz thousand-frame burst-mode planar imaging in turbulent flames.

    Science.gov (United States)

    Michael, James B; Venkateswaran, Prabhakar; Miller, Joseph D; Slipchenko, Mikhail N; Gord, James R; Roy, Sukesh; Meyer, Terrence R

    2014-02-15

    High-repetition-rate, burst-mode lasers can achieve higher energies per pulse compared with continuously pulsed systems, but the relatively few number of laser pulses in each burst has limited the temporal dynamic range of measurements in unsteady flames. A fivefold increase in the range of timescales that can be resolved by burst-mode laser-based imaging systems is reported in this work by extending a hybrid diode- and flashlamp-pumped Nd:YAG-based amplifier system to nearly 1000 pulses at 100 kHz during a 10 ms burst. This enables an unprecedented burst-mode temporal dynamic range to capture turbulent fluctuations from 0.1 to 50 kHz in flames of practical interest. High pulse intensity enables efficient conversion to the ultraviolet for planar laser-induced fluorescence imaging of nascent formaldehyde and other potential flame radicals.

  13. Planar patch clamp approach to characterize ionic currents from intact lysosomes.

    Science.gov (United States)

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian

    2010-01-01

    Since its launch in the early 1980s, the patch clamp method has been extensively used to study ion channels in the plasma membrane, but its application to the study of intracellular ion channels has been limited. Unlike the plasma membrane, intracellular membranes are usually not stable enough to withstand mechanical manipulation by glass electrodes during seal formation and rupturing of the membrane. To circumvent these problems, we developed a method involving the immobilization of isolated organelles on a solid matrix planar glass chip. This glass chip contains a microstructured hole that supports the formation of gigaseals and subsequent electrophysiological recordings despite the high fragility of intracellular membranes. Here, we report the experimental details of this method using lysosomes, which are the smallest cellular organelles, as a model system. We demonstrate that we can record endogenous ionic currents from wild-type lysosomes, as well as from lysosomes overexpressing ion channels, and expect that this method will provide electrophysiological access to a broad range of intracellular ion channels.

  14. Efficient photon extraction from a quantum dot in a broad-band planar cavity antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yong, E-mail: y.ma@hw.ac.uk; Kremer, Peter E.; Gerardot, Brian D., E-mail: B.D.Gerardot@hw.ac.uk [Institute of Photonics and Quantum Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2014-01-14

    We analyse the extraction of photons emitted from single InAs quantum dots embedded in planar microcavities. The structures are designed to achieve broad-band operation and high-collection efficiency from a device requiring straightforward fabrication, even with electrical contacts. The designs consist of a quantum dot in a GaAs membrane with asymmetric top and bottom mirrors and a top-side solid immersion lens (SIL). Four separate cases are considered in our design: a GaAs membrane only (case 1), GaAs membrane with a glass SIL on top (case 2), a GaAs membrane with a glass SIL on top and a back mirror consisting of Au (case 3), a GaAs membrane with a glass SIL on top of a distribute Bragg reflector mirror and Au back mirror (case 4). Both finite difference time domain and analytical simulations are used to calculate the electric field, power density, and far-field radiation pattern. For optimized structures (case 4), we obtain significant extraction efficiencies (>50%) with modest Purcell enhancements (∼20%) and a large spectral full-width-half-maximum (>100 nm). The high-extraction efficiency, broad-band operation, and facile fabrication make the proposed structures promising for realistic quantum dot devices.

  15. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  16. A Broadband Quantum-Limited Josephson Parametric Amplifier, Part I: Exp.

    Science.gov (United States)

    White, T. C.; Barends, R.; Bochmann, J.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Megrant, A.; Mutus, J. Y.; Neill, C.; O'Malley, P.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, J. M.

    2014-03-01

    While Josephson parametric amplifiers (JPA) have achieved noise performance near the quantum limit, their bandwidth and saturation power is constrained by the resonant design. For a 50 ohm environment the relationship between junction critical current, frequency, and coupled Q means that bandwidth and saturation vary inversely. We present a device in which the coupled Q was lowered by engineering the environment impedance, increasing both bandwidth and saturation power without changing the resonator circuit parameters. The 50 ohm environment was transformed to 15 ohms at the resonator using a hybrid co-planar waveguide/micro-strip transmission line to create a broadband impedance matching network. This device exhibits regions with near quantum-limited bandwidth exceeding 700 MHz and saturation powers as high as -105 dBm.

  17. Design of an 1800 nm Raman Amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    in the pump power requirement and deteriorated noise properties. Here we demonstrate a Raman amplifier designed for signal wavelengths around 1800 nm. The amplification fiber is an OFS PM Raman fiber, and is pumped by a Raman fiber laser emitting at 1680 nm [4]. The amplifier was pumped co......-polarized and backward, with respect to the singal. In Fig. 2 a measured Raman on/off gain exceeding 9 dB for 285 mW of injected pump power is obtained in a 4.35 km long fiber. A broadband supercontinuum source was used as a signal from 1700 nm to 1900 nm.......Different approaches are being explored to increase the capacity of communication systems [1,2], both long and short range systems. One approach is by exploiting new optical wavelength bands, outside the conventional communication window from 1530 nm to 1625 nm. Hollow core fibers have been...

  18. Behavioral modeling of Digitally Adjustable Current Amplifier

    Directory of Open Access Journals (Sweden)

    Josef Polak

    2015-03-01

    Full Text Available This article presents the digitally adjustable current amplifier (DACA and its analog behavioral model (ABM, which is suitable for both ideal and advanced analyses of the function block using DACA as active element. There are four levels of this model, each being suitable for simulation of a certain degree of electronic circuits design (e.g. filters, oscillators, generators. Each model is presented through a schematic wiring in the simulation program OrCAD, including a description of equations representing specific functions in the given level of the simulation model. The design of individual levels is always verified using PSpice simulations. The ABM model has been developed based on practically measured values of a number of DACA amplifier samples. The simulation results for proposed levels of the ABM model are shown and compared with the results of the real easurements of the active element DACA.

  19. Noise Gain Features of Fiber Raman Amplifier

    Directory of Open Access Journals (Sweden)

    Georgii S. Felinskyi

    2016-01-01

    Full Text Available The formation dynamics of the optical noise in a silica single mode fiber (SMF as function of the pump power variation in the counter pumped fiber Raman amplifier (FRA is experimentally studied. The ratio between the power of amplified spontaneous emission and the power of incoherent optical noise is quantitatively determined by detailed analysis of experimental data in the pump powers range of 100–300 mW within the full band of Stokes frequencies, including FRA working wavelengths over the C + L transparency windows. It is found out the maximum of Raman gain coefficient for optical noise does not exceed ~60% of corresponding peak at the gain profile maximum of coherent signal. It is shown that the real FRA noise figure may be considerably less than 3 dB over a wide wavelength range (100 nm at a pump power of several hundreds of mW.

  20. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  1. Linear control of oscillator and amplifier flows*

    Science.gov (United States)

    Schmid, Peter J.; Sipp, Denis

    2016-08-01

    Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.

  2. Fundamentals of fiber lasers and fiber amplifiers

    CERN Document Server

    Ter-Mikirtychev, Valerii (Vartan)

    2014-01-01

    This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics in this rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries, etc.

  3. Exceptional points in anisotropic planar microcavities

    Science.gov (United States)

    Richter, Steffen; Michalsky, Tom; Sturm, Chris; Rosenow, Bernd; Grundmann, Marius; Schmidt-Grund, Rüdiger

    2017-02-01

    Planar microcavities allow the control and manipulation of spin polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational symmetry, realized by aligning the optic axis of a uniaxial cavity material in the cavity plane, giving rise to exceptional points in the dispersion relation. These occur pairwise, are circularly polarized, and are cores of polarization vortices. The exceptional points are result of the non-Hermitian character of the system and are in close relationship to singular optic axes in absorptive biaxial systems.

  4. Exceptional points in anisotropic planar microcavities

    CERN Document Server

    Richter, Steffen; Sturm, Chris; Rosenow, Bernd; Grundmann, Marius; Schmidt-Grund, Rüdiger

    2016-01-01

    Planar microcavities allow the control and manipulation of spin-polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational symmetry, realized by aligning the optical axis of a uniaxial cavity material in the cavity plane. We demonstrate that the in-plane optical anisotropy gives rise to exceptional points in the dispersion relation, which occur pair-wise, are circularly polarized, and are cores of polarization vortices. These exceptional points are a result of the non-Hermitian character of the system, and are in close relationship to singular optical axes in absorptive biaxial systems.

  5. Planar jumping-drop thermal diodes

    Science.gov (United States)

    Boreyko, Jonathan B.; Zhao, Yuejun; Chen, Chuan-Hua

    2011-12-01

    Phase-change thermal diodes rectify heat transport much more effectively than solid-state ones, but are limited by either the gravitational orientation or one-dimensional configuration. Here, we report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of over 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface.

  6. Optimal External-Memory Planar Point Enclosure

    DEFF Research Database (Denmark)

    Arge, Lars; Samoladas, Vasilis; Yi, Ke

    2007-01-01

    In this paper we study the external memory planar point enclosure problem: Given N axis-parallel rectangles in the plane, construct a data structure on disk (an index) such that all K rectangles containing a query point can be reported I/O-efficiently. This problem has important applications in e...... term O(K/B) is desired. To show this we prove a general lower bound on the tradeoff between the size of the data structure and its query cost. We also develop a family of structures with matching space and query bounds....

  7. Underpotential deposition: From planar surfaces to nanoparticles

    Science.gov (United States)

    Oviedo, O. A.; Vélez, P.; Macagno, V. A.; Leiva, E. P. M.

    2015-01-01

    An overview is given of selected theoretical, experimental and computer simulation research on thermodynamic modeling applied to the metal underpotential deposition. Focus is made mainly on the last 20 years. The upd-theory on planar surfaces is revisited and the thermodynamic framework is extended to consider underpotential deposition on nanoparticles and to include anion coadsorption, solvation and double layer charging. Results from molecular dynamics and Monte Carlo simulations are shown for systems of experimental interest. At the end some perspectives for further advanced modeling of the present problem are given.

  8. Multi-frequency recirculating planar magnetrons

    Science.gov (United States)

    Greening, Geoffrey B.; Jordan, Nicholas M.; Exelby, Steven C.; Simon, David H.; Lau, Y. Y.; Gilgenbach, Ronald M.

    2016-08-01

    The multi-frequency recirculating planar magnetron (MFRPM) is the first magnetron capable of simultaneous generation of significantly different output frequencies (1 and 2 GHz) in a single operating pulse. Design and simulation of a prototype MFRPM were followed by hardware fabrication and experimental verification using the Michigan Electron Long Beam Accelerator with a Ceramic insulator at -300 kV, 1-5 kA, and 0.14-0.23 T axial magnetic field. Preliminary results demonstrated simultaneous generation of microwave pulses near 1 GHz and 2 GHz at powers up to 44 MW and 21 MW, respectively, with peak total efficiencies up to 9%.

  9. Structural Stability of Planar Bimodal Linear Systems

    Directory of Open Access Journals (Sweden)

    Josep Ferrer

    2014-01-01

    Full Text Available Structural stability ensures that the qualitative behavior of a system is preserved under small perturbations. We study it for planar bimodal linear dynamical systems, that is, systems consisting of two linear dynamics acting on each side of a given hyperplane and assuming continuity along the separating hyperplane. We describe which one of these systems is structurally stable when (real spiral does not appear and when it does we give necessary and sufficient conditions concerning finite periodic orbits and saddle connections. In particular, we study the finite periodic orbits and the homoclinic orbits in the saddle/spiral case.

  10. Planar-waveguide integrated spectral comparator.

    Science.gov (United States)

    Mossberg, T W; Iazikov, D; Greiner, C

    2004-06-01

    A cost-effective yet robust and versatile dual-channel spectral comparator is presented. The silica-on-silicon planar-waveguide integrated device includes two holographic Bragg-grating reflectors (HBRs) with complementary spectral transfer functions. Output comprises projections of input signal spectra onto the complementary spectral channels. Spectral comparators may be useful in optical code-division multiplexing, optical packet decoding, spectral target recognition, and the identification of molecular spectra. HBRs may be considered to be mode-specific photonic crystals.

  11. Vortex gyroscope imaging of planar superfluids.

    Science.gov (United States)

    Powis, A T; Sammut, S J; Simula, T P

    2014-10-17

    We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.

  12. Planar cell polarity and vertebrate organogenesis.

    Science.gov (United States)

    Karner, Courtney; Wharton, Keith A; Carroll, Thomas J

    2006-04-01

    In addition to being polarized along their apical/basal axis, cells composing most (if not all) organs are also polarized in a plane vertical to the A/B axis. Recent studies indicate that this so-called planar cell polarity (PCP) plays an essential role in the formation of multiple organ systems regulating directed cell migrations, polarized cell division and proper differentiation. In this review we will discuss the molecular mechanisms regulating PCP, including the hypothesized roles for Wnt ligands in this process, and its roles in vertebrate organogenesis.

  13. Coupling planar cell polarity signaling to morphogenesis.

    Science.gov (United States)

    Axelrod, Jeffrey D; McNeill, Helen

    2002-02-15

    Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical-basal axes, referred to as Planar Cell Polarity (PCP). The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly, Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate to Drosophila PCP signaling.

  14. Theoretical analysis of planar pulse microwiggler

    Energy Technology Data Exchange (ETDEWEB)

    Qing-Xiang Liu [Institute of Applied Electronics, Sichuan (China)]|[Southwest Jiaotong Univ., Sichuan (China); Yong Xu [Southwest Jiatong Univ., Sichuan (China)

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  15. Design and simulation of a gyroklystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, M. S., E-mail: mschauhan.rs.ece@iitbhu.ac.in; Swati, M. V.; Jain, P. K. [Centre of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2015-03-15

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  16. High-Performance Operational and Instrumentation Amplifiers

    OpenAIRE

    Shahi, B.

    2015-01-01

    This thesis describes techniques to reduce the offset error in precision instrumentation and operational amplifiers. The offset error which is considered a major error source associated with gain blocks, together with other errors are reviewed. Conventional and newer approaches to remove offset and low frequency noise are discussed, with a focus on the work of this thesis “Chopper-Stabilized Auto-Zeroed Chopper Instrumentation Amplifiers”. The technique is demonstrated through the application...

  17. Self-amplifying mRNA vaccines.

    Science.gov (United States)

    Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J

    2015-01-01

    This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.

  18. Fast Electrocardiogram Amplifier Recovery after Defibrillation Shock

    Directory of Open Access Journals (Sweden)

    Ivan Dotsinsky

    2005-04-01

    Full Text Available A procedure for fast ECG amplifier recovery after defibrillation shocks was developed and simulated in the MATLAB environment. Exponentially decaying post-shock voltages have been recorded. Signals from the AHA database are taken and mixed with the recorded exponential disturbances. The algorithm applies moving averaging (comb filter on the compound input signal, thereby obtaining the samples of the disturbance. They are currently subtracted from the input signal. The results obtained show that its recovery is practically instantaneous.

  19. Amplifying the Hawking Signal in BECs

    Directory of Open Access Journals (Sweden)

    Roberto Balbinot

    2014-01-01

    Full Text Available We consider simple models of Bose-Einstein condensates to study analog pair-creation effects, namely, the Hawking effect from acoustic black holes and the dynamical Casimir effect in rapidly time-dependent backgrounds. We also focus on a proposal by Cornell to amplify the Hawking signal in density-density correlators by reducing the atoms’ interactions shortly before measurements are made.

  20. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  1. Transportable setup for amplifier phase fidelity measurements

    OpenAIRE

    Troebs, Michael; Bogan, C.; Barke, S.; Kuehn, G.; Reiche, J.; Heinzel, Gerhard; Danzmann, Karsten

    2015-01-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the la...

  2. Short wavelength regenerative amplifier free electron lasers

    OpenAIRE

    Dunning, D J; McNeil, B. W. J.; Thompson, N. R.

    2008-01-01

    In this paper we discuss extending the operating wavelength range of tunable Regenerative Amplifier FELs to shorter wavelengths than current design proposals, notably into the XUV regions of the spectrum and beyond where the reflectivity of broadband optics is very low. Simulation studies are presented which demonstrate the development of good temporal coherence in generic systems with a broadband radiation feedback of less than one part in ten thousand.

  3. Broadband and High Efficient 1530 nm Emission from Oxyfluoride Glass Ceramics Codoped with Er3+ and Yb3+ Ions

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-Rong; ZHAO Li-Juan; SUN Jian; YU Hua; SONG Jie; XU Jing-Jun

    2007-01-01

    The emission at 1530 nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass doped by Er3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 1530 nm increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.

  4. Broadband and High Efficient 1530 nm Emission from Oxyfluoride Glass Ceramics Codoped with Er3+ and Yb3+ Ions

    Science.gov (United States)

    Liu, Bao-Rong; Zhao, Li-Juan; Sun, Jian; Yu, Hua; Song, Jie; Xu, Jing-Jun

    2007-02-01

    The emission at 1530 nm and its applications in optical communications are discussed. The efficient width of the emission band Δeff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass doped by Er3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 1530 nm increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.

  5. Parallel reservoir computing using optical amplifiers.

    Science.gov (United States)

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  6. Charge sensitive amplifies. The state of arts

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)

    1996-07-01

    In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)

  7. Microstrip SQUID amplifiers for quantum information science

    Science.gov (United States)

    Defeo, M. P.; Plourde, B. L. T.

    2012-02-01

    Recent progress in SQUID amplifiers suggests that these devices might approach quantum-limited sensitivity in the microwave range, thus making them a viable option for measurement of superconducting quantum systems. In the microstrip SQUID amplifier configuration, gains of around 20dB are possible at frequencies of several hundred MHz, and the gain is limited by the maximum voltage modulation available from the SQUID. One route for increasing the voltage modulation involves using larger resistive shunts, however maintaining non-hysteretic device operation requires smaller junction capacitances than is possible with conventional photolithographically patterned junctions. Operating at higher frequencies requires a shorter input coil which reduces mutual inductance between the coil and washer and therefore gain. We have fabricated microstrip SQUID amplifiers using submicron Al-AlOx-Al junctions and large shunts. The input coil and SQUID washer are optimized for producing high gain at frequencies in the gigahertz range. Recent measurements of gain and noise temperature will be discussed as well as demonstrations of these devices as a first stage of amplification for a superconducting system

  8. Transistor circuit increases range of logarithmic current amplifier

    Science.gov (United States)

    Gilmour, G.

    1966-01-01

    Circuit increases the range of a logarithmic current amplifier by combining a commercially available amplifier with a silicon epitaxial transistor. A temperature compensating network is provided for the transistor.

  9. Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers.

    Science.gov (United States)

    Paul, M C; Harun, S W; Huri, N A D; Hamzah, A; Das, S; Pal, M; Bhadra, S K; Ahmad, H; Yoo, S; Kalita, M P; Boyland, A J; Sahu, J K

    2010-09-01

    In this Letter, we present a comprehensive comparison of the performance of a zirconia-based erbium-doped fiber amplifier (Zr-EDFA) and a bismuth-based erbium-doped fiber amplifier (Bi-EDFA). The experimental results reveal that a Zr-EDFA can achieve comparable performance to the conventional Bi-EDFA for C-band and L-band operations. With a combination of both Zr and Al, we could achieve a high erbium-doping concentration of about 2800 ppm (parts per million) in the glass host without any phase separations of rare earths. The Zr-based erbium-doped fiber (Zr-EDF) was fabricated using in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through a solution-doping technique along with modified chemical vapor deposition. At a high input signal of 0 dBm, a flat gain at average value of 13 dB is obtained with a gain variation of less than 2 dB within the wavelength region of 1530-1575 nm and using 2 m of Zr-EDF and 120 mW pump power. The noise figures are less than 9.2 at this wavelength region. It was found that a Zr-EDFA can achieve even better flat-gain value and bandwidth as well as lower noise figure than the conventional Bi-EDFA.

  10. Bio-Glasses An Introduction

    CERN Document Server

    Jones, Julian

    2012-01-01

    This new work is dedicated to glasses and their variants which can be used as biomaterials to repair diseased and damaged tissues. Bio-glasses are superior to other biomaterials in many applications, such as healing bone by signaling stem cells to become bone cells.   Key features:  First book on biomaterials to focus on bio-glassesEdited by a leading authority on bio-glasses trained by one of its inventors, Dr Larry HenchSupported by the International Commission on Glass (ICG)Authored by members of the ICG Biomedical Glass Committee, with the goal of creating a seamless textb

  11. Glass strengthening and patterning methods

    Science.gov (United States)

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  12. Glass formation - A contemporary view

    Science.gov (United States)

    Uhlmann, D. R.

    1983-01-01

    The process of glass formation is discussed from several perspectives. Particular attention is directed to kinetic treatments of glass formation and to the question of how fast a given liquid must be cooled in order to form a glass. Specific consideration is paid to the calculation of critical cooling rates for glass formation, to the effects of nucleating heterogeneities and transients in nucleation on the critical cooling rates, to crystallization on reheating a glass, to the experimental determination of nucleation rates and barriers to crystal nucleation, and to the characteristics of materials which are most conducive to glass formation.

  13. STRONG EMBEDDINGS OF PLANAR GRAPHS ON HIGHER SURFACES

    Institute of Scientific and Technical Information of China (English)

    刘同印; 刘彦佩

    2002-01-01

    In this paper, the authors discuss the upper bound for the genus of strong embeddings for 3-connected planar graphs on higher surfaces. It is shown that the problem of determining the upper bound for the strong embedding of 3-connected planar neartriangulations on higher non-orientable surfaces is NP-hard. As a corollary, a theorem of Richter, Seymour and Siran about the strong embedding of 3-connected planar graphs is generalized to orientable surface.

  14. An algorithm of graph planarity testing and cross minimization

    Directory of Open Access Journals (Sweden)

    Vitalie Cotelea

    2007-11-01

    Full Text Available This paper presents an overview on one compartment from the graph theory, called graph planarity testing. It covers the fundamental concepts and important work in this area. Also a new approach is presented, which tests if a graph is planar in linear time O(n and it can be used to determine the minimum crosses in a graph if it isn't planar.

  15. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  16. Heavy Metal Fluoride Glasses.

    Science.gov (United States)

    1987-04-01

    i 2N E ihhhhh1112h MEmhhhhEEEohhhhE I.’....momo 111111111’-20 LA ’Ll2. AFWL-TR-86-37 AFWL-TR- 86-37 oT C ,l C ’-’ N HEAVY METAL FLUORIDE GLASSES 0nI...Secwrit CkasmfcationJ HEAVY METAL FLUORIDE GLASSES 12. PERSONAL AUTHOR(S) Reisfield, Renata; and Eyal, Mrek 13. TYPE OF REPORT 113b. TIME COVERED 114...glasses containing about 50 mole% of ZrF4 [which can be replaced by HfF 4 or TIF 4 (Refs. 1-3) or heavy metal fluorides based on PbF2 and on 3d-group

  17. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  18. Glass-based confined structures enabling light control

    Energy Technology Data Exchange (ETDEWEB)

    Chiappini, Andrea; Normani, Simone; Chiasera, Alessandro [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Lukowiak, Anna [Institute of Low Temperature and Structure Research PAS, Okolna St. 2, 50-422 Wroclaw (Poland); Vasilchenko, Iustyna [IFN–CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento (Italy); Dipartimento di Fisica, Università di Trento, via Sommarive 14 Povo, 38123Trento (Italy); Ristic, Davor [Institut Ruđer Bošković, Bijenička cesta 54, 10000 Zagreb (Croatia); Boulard, Brigitte [IMMM, CNRS Equipe Fluorures, Université du Maine, Av. Messiaen, 72085 Le Mans cedex 9 (France); Dorosz, Dominik [Department of Power Engineering, Photonics and Lighting Technology, Bialystok University of Technology, Wiejska Street 45D, 15-351 Bialystok (Poland); Scotognella, Francesco [Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133, Milan (Italy); Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vaccari, Alessandro [FBK -CMM, ARES Unit, 38123 Trento (Italy); Taccheo, Stefano [College of Engineering, Swansea University, Singleton Park, SA2 8PP, Swansea (United Kingdom); Pelli, Stefano; Righini, Giancarlo C. [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Museo Storico della Fisica e Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma (Italy); Conti, Gualtiero Nunzi [IFAC - CNR, MiPLab., 50019 Sesto Fiorentino (Italy); Ramponi, Roberta [Politecnico di Milano, Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); and others

    2015-04-24

    When a luminescent ion is confined in a system characterized by one or more specific properties such as spatial size, geometrical dimension and shape, refractive index, local crystal field, cut-off vibrational energy and so on, it's possible to control its emission. The control of branching ratios as a function of the composition, the luminescence enhancement induced by a photonic crystal, or the laser action in a microresonator, are well known examples of light control. Photonic glass-based structures are extremely viable systems to exploit the above mentioned properties and in our research team we have successfully fabricated luminescent photonic structures by different techniques, including sol-gel, rf sputtering, drawing, melting, and physical vapour deposition. Here we will discuss some of them with the aim to make the reader aware of the chemical-physical properties related to each specific system. We will demonstrate that glass ceramic waveguides in some cases present superior spectroscopic properties in respect to the parent glass, that compositional properties can play a positive role in reducing luminescence quenching and in developing novel planar waveguides and fibers, that colloids allow to obtain high internal quantum efficiency and that photonic crystals, microcavities and microresonators can enable the handling of the rare earth luminescence. Finally, the pros and cons of the systems and of the different techniques employed for their fabrication will be discussed and some perspectives concerning the glass photonics will be proposed looking at both possible applications and investigation of physical properties.

  19. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  20. Microwave parametric amplifiers using externally pumped Josephson junctions

    DEFF Research Database (Denmark)

    Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig

    1978-01-01

    Externally pumped parametric amplifiers are discussed. Theory and experiments on the singly degenerate parametric amplifier based on a Josephson junction are presented. Advantages and limitations of the singly degenerate and doubly degenerate parametric amplifiers are discussed. Some plans and pr...... and proposals for future research are presented....

  1. An integrated charge amplifier for a pyroelectric sensor

    NARCIS (Netherlands)

    Setiadi, D.; Armitage, A.; Binnie, T.D.; Regtien, P.P.L.; Sarro, P.M.

    1997-01-01

    This paper presents an integrated charge amplifier that measures a small charge. This charge is generated by a pyroelectric detector. The charge amplifier consists of a single-stage c-annon source configuration with a passive feedback network. The charge amplifier has a bandwidth of 700 kHz and an o

  2. Polarization of Tapered Semiconductor Travelling-Wave Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Huang Dexiu; Li Hong

    2001-01-01

    The polarization of a tapered semi-conductor travelling-wave amplifier has been investigated with the transfer matrix method based on convective equation. It is shown that the apparent polarization mode competition exists, and polarization-independent tapered semiconductor travellingwave amplifiers can be obtained through the optimization of amplifier parameters.

  3. Differential transimpedance amplifier circuit for correlated differential amplification

    Science.gov (United States)

    Gresham, Christopher A.; Denton, M. Bonner; Sperline, Roger P.

    2008-07-22

    A differential transimpedance amplifier circuit for correlated differential amplification. The amplifier circuit increase electronic signal-to-noise ratios in charge detection circuits designed for the detection of very small quantities of electrical charge and/or very weak electromagnetic waves. A differential, integrating capacitive transimpedance amplifier integrated circuit comprising capacitor feedback loops performs time-correlated subtraction of noise.

  4. Fungal melanins differ in planar stacking distances.

    Science.gov (United States)

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R; Eisner, Melvin

    2012-01-01

    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  5. Betweenness centrality patterns in random planar graphs

    CERN Document Server

    Lion, Benjamin

    2016-01-01

    Random planar graphs appear in a variety of context and it is important for many different applications to be able to characterize their structure. Local quantities fail to give interesting information and it seems that path-related measures are able to convey relevant information about the organization of these structures. In particular, nodes with a large betweenness centrality (BC) display non-trivial patterns, such as loops of very central nodes. We discuss briefly empirical results for different random planar graphs and we propose a toy model which allows us to discuss the condition for the emergence of non-trivial patterns such as central loops. This toy model is made of a star network with $N_b$ branches of size $n$ and links of weight $1$, superimposed to a loop at distance $\\ell$ from the center and with links of weight $w$. We estimate for this model the BC at the center and on the loop and we show that the loop can be more central than the origin if $w

  6. Orientifold Planar Equivalence: The Chiral Condensate

    CERN Document Server

    Armoni, A; Patella, A; Pica, C

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric) representation and $N_f$ flavours of Majorana fermions in the adjoint representation have the same large $N$ value for any value of the mass of the (degenerate) fermions. Assuming the invariance of the theory under charge conjugation, we prove this statement on the lattice for staggered quenched condensates in SU($N$) Yang-Mills in the large $N$ limit. Then, we compute numerically those quenched condensates for $N$ up to 8. After separating the even from the odd corrections in $1/N$, we are able to show that our data support the equivalence; however, unlike other quenched observables, subleading terms in $1/N$ are needed for describing the data for the symmetric and antisymmetric representation at $N$=3. Possible lesson...

  7. Multistability in planar liquid crystal wells

    KAUST Repository

    Luo, Chong

    2012-06-08

    A planar bistable liquid crystal device, reported in Tsakonas, is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W≥0, while rotated solutions only exist for W≥W c>0, where W c is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary. © 2012 American Physical Society.

  8. Fidelity in planar cell polarity signalling.

    Science.gov (United States)

    Ma, Dali; Yang, Chung-hui; McNeill, Helen; Simon, Michael A; Axelrod, Jeffrey D

    2003-01-30

    The polarity of Drosophila wing hairs displays remarkable fidelity. Each of the approximately 30,000 wing epithelial cells constructs an actin-rich prehair that protrudes from its distal vertex and points distally. The distal location and orientation of the hairs is virtually error free, thus forming a nearly perfect parallel array. This process is controlled by the planar cell polarity signalling pathway. Here we show that interaction between two tiers of the planar cell polarity signalling mechanism results in the observed high fidelity. The first tier, mediated by the cadherin Fat, dictates global orientation by transducing a directional signal to individual cells. The second tier, orchestrated by the 7-pass transmembrane receptor Frizzled, aligns each cell's polarity with that of its neighbours through the action of an intercellular feedback loop, enabling polarity to propagate from cell to cell. We show that all cells need not respond correctly to the presumably subtle signal transmitted by Fat. Subsequent action of the Frizzled feedback loop is sufficient to align all the cells cooperatively. This economical system is therefore highly robust, and produces virtually error-free arrays.

  9. Er-doped and Er, Yb co-doped oxyfluoride glasses and glass-ceramics, structural and optical properties

    Science.gov (United States)

    Lisiecki, Radosław; Augustyn, Elżbieta; Ryba-Romanowski, Witold; Żelechower, Michał

    2011-09-01

    The selected glasses and glass-ceramics pertinent to following chemical composition in mol%:48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-11%PbF 2-3%ErF 3 and 48%SiO 2-11%Al 2O 3-7%Na 2O-10%CaO-10%PbO-10%PbF 2-1%ErF 3-3%YbF 3 have been manufactured from high purity components (Aldrich) at 1450 °C in normal atmosphere. Glass optical fibers were successfully drawn. Subsequently they were subject to the heat-treatment at 700 °C in various time periods. The preceding differential thermal analysis (DTA) studies allowed estimating both the fiber drawing temperature and the controlled crystallization temperature of glass fibers. It has been observed that the controlled heat-treatment of oxyfluoride glass fibers results in the creation of Pb 5Al 3F 19, Er 4F 2O 11Si 3 and Er 3FO 10Si 3 crystalline phases. The identified phases were characterized by X-ray powder diffraction (XRD) and confirmed by selected area electron diffraction (SAED). The fibers consist of mixed amorphous-crystalline microstructure with nano-crystals of size even below 10 nm distributed in the glassy host. Their morphology was investigated applying high-resolution transmission electron microscopy. Optical properties and excited state relaxation dynamics of optically active ions (Er 3+, Yb 3+) in glass and glass-ceramics have been studied. Based on absorption spectra the Judd-Ofelt analysis was carried out. The main attention was directed to NIR luminescence at. 1.6 μm related to 4I 13/2 → 4I 15/2 Er 3+ and less effective emission associated with 4I 11/2 → 4I 15/2 Er 3+ and 2F 5/2 → 2F 7/2 Yb 3+ transitions. The dissimilar spectroscopic properties have been revealed for glasses and glass-ceramic samples, respectively. The reduction of emission linewidth at 1.6 and 1.0 μm combined with substantial increase of 4I 13/2 lifetimes of erbium in glass-ceramics appear to be evidences that Er 3+ ions are accommodated in crystalline phases. The structural and optical characteristics of oxyfluoride glass

  10. Electro-optical circuit board with single-mode glass waveguide optical interconnects

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Pernthaler, Dominik; Weber, Daniel; Sirbu, Bogdan; Herbst, Christian; Frey, Christopher; Queisser, Marco; Wöhrmann, Markus; Manessis, Dionysios; Schild, Beatrice; Oppermann, Hermann; Eichhammer, Yann; Schröder, Henning; Hâkansson, Andreas; Tekin, Tolga

    2016-03-01

    A glass optical waveguide process has been developed for fabrication of electro-optical circuit boards (EOCB). Very thin glass panels with planar integrated single-mode waveguides can be embedded as a core layer in printed circuit boards for high-speed board-level chip-to-chip and board-to-board optical interconnects over an optical backplane. Such singlemode EOCBs will be needed in upcoming high performance computers and data storage network environments in case single-mode operating silicon photonic ICs generate high-bandwidth signals [1]. The paper will describe some project results of the ongoing PhoxTroT project, in which a development of glass based single-mode on-board and board-to-board interconnection platform is successfully in progress. The optical design comprises a 500 μm thin glass panel (Schott D263Teco) with purely optical layers for single-mode glass waveguides. The board size is accommodated to the mask size limitations of the fabrication (200 mm wafer level process, being later transferred also to larger panel size). Our concept consists of directly assembling of silicon photonic ICs on cut-out areas in glass-based optical waveguide panels. A part of the electrical wiring is patterned by thin film technology directly on the glass wafer surface. A coupling element will be assembled on bottom side of the glass-based waveguide panel for 3D coupling between board-level glass waveguides and chip-level silicon waveguides. The laminate has a defined window for direct glass access for assembling of the photonic integrated circuit chip and optical coupling element. The paper describes the design, fabrication and characterization of glass-based electro-optical circuit board with format of (228 x 305) mm2.

  11. Dual-pump wave mixing in semiconductor optical amplifiers: performance enhancement with long amplifiers

    Science.gov (United States)

    Tomkos, Ioannis; Zacharopoulos, Ioannis; Syvridis, Dimitrios

    1999-05-01

    We demonstrate experimentally the improvement of the performance of the dual pump wave mixing scheme in semiconductor optical amplifiers, using long amplifier chips and high optical pump powers. The optical amplifiers used in the experiment had a ridge waveguide structure with bulk active layer and antireflective-coated angled facets. Measurements of the conversion efficiency and SBR as a function of wavelength shift are presented for a wavelength shift of more than 40 nm. The above measurements are carried out for three amplifier lengths (500 micrometers , 1000 micrometers , and 1500 micrometers ) and for different levels of the optical power of the two pumps. It will be shown that an increase in the amplifier length from 500 micrometers to 1500 micrometers results to an increase of more than 25 dB for the efficiency and more than 20 dB for the SBR. This improvement combined with the inherent advantages of the dual pump scheme (almost constant SBR and high efficiency for large wavelength shifts) results in a highly performing wavelength converter/phase conjugator, suitable for many applications.

  12. Fabrication of glass optical power splitter in thallium source by ion-exchange method

    Institute of Scientific and Technical Information of China (English)

    Zigang Zhou(周自刚); Desen Liu(刘德森)

    2003-01-01

    The use of a new thallium-ion (T1+) source for glass optical power splitter fabrication based on a NaNO3-TlaSO4 mixture is proposed and demonstrated. Planar optical power splitters were made using glassessuch as K6, K8, K9. The optical quality of the devices prepared compares favorably with the qualityobtained using other fabrication techniques (such as dry etching) and the processing time is considerablyreduced.

  13. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  14. Stained-Glass Pastels

    Science.gov (United States)

    Laird, Shirley

    2009-01-01

    The author has always liked the look of stained-glass windows. Usually the designs are simplified and the shapes are easier for younger students to draw. This technique seemed to be the perfect place for her fifth-graders to try their hand at color mixing. The smaller spaces and simple shapes were just what she needed for this group. Her students…

  15. Microchips on glass

    NARCIS (Netherlands)

    Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  16. "Stained Glass" Landscape Windows

    Science.gov (United States)

    Vannata, Janine

    2008-01-01

    Both adults and children alike marvel at the grand vivid stained-glass windows created by American artist Louis Comfort Tiffany. Today he is commonly recognized as one of America's most influential designers and artists throughout the last nineteenth and early twentieth century. In the lesson described in this article, students created their own…

  17. Supercooled Liquids and Glasses

    OpenAIRE

    1999-01-01

    In these lectures, which were presented at "Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow" University of St. Andrews, 8 July - 22 July, 1999, I give an introduction to the physics of supercooled liquids and glasses and discuss some computer simulations done to investigate these systems.

  18. Shattering women's glass ceiling

    OpenAIRE

    Camilleri Podesta, Marie Therese; Duca, Edward

    2013-01-01

    The role of women in academia has always greatly interested me. Several years ago, when I was asked to become Gender Issues Committee chairperson at the University of Malta, I readily accepted. http://www.um.edu.mt/think/shattering-womens-glass-ceiling/

  19. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  20. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2016-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2016.