Cichalewski, w
2010-01-01
The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.
Discretization analysis of bifurcation based nonlinear amplifiers
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Discretization analysis of bifurcation based nonlinear amplifiers
Directory of Open Access Journals (Sweden)
S. Feldkord
2017-09-01
Full Text Available Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov–Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov–Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge–Kutta methods transform the truncated normalform equation of the Andronov–Hopf bifurcation into the normalform equation of the Neimark–Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark–Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov–Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark–Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Linear and nonlinear analysis of high-power rf amplifiers
International Nuclear Information System (INIS)
Puglisi, M.
1983-01-01
After a survey of the state variable analysis method the final amplifier for the CBA is analyzed taking into account the real beam waveshape. An empirical method for checking the stability of a non-linear system is also considered
On the unlimited gain of a nonlinear parametric amplifier
DEFF Research Database (Denmark)
Sorokin, Vladislav
2014-01-01
The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...
Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier
International Nuclear Information System (INIS)
Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.
2008-01-01
By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.
Spectral Analysis of Polynomial Nonlinearity with Applications to RF Power Amplifiers
Directory of Open Access Journals (Sweden)
G. Tong Zhou
2004-09-01
Full Text Available The majority of the nonlinearity in a communication system is attributed to the power amplifier (PA present at the final stage of the transmitter chain. In this paper, we consider Gaussian distributed input signals (such as OFDM, and PAs that can be modeled by memoryless or memory polynomials. We derive closed-form expressions of the PA output power spectral density, for an arbitrary nonlinear order, based on the so-called Leonov-Shiryaev formula. We then apply these results to answer practical questions such as the contribution of AM/PM conversion to spectral regrowth and the relationship between memory effects and spectral asymmetry.
Randomly amplified polymorphic DNA-polymerase chain reaction ...
Indian Academy of Sciences (India)
Genetic similarity and diversity of cultured catfish Silurus asotus populations collected from two areas in western Korea were examined using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Out of 20 random primers tested, 5 produced 1344 RAPD bands ranging from 8.2 to 13.6 polymorphic ...
On the power amplifier nonlinearity in MIMO transmit beamforming systems
Qi, Jian
2012-03-01
In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.
Nonlinear tearing mode and vortex chains
International Nuclear Information System (INIS)
Jovanovic, D.; Vranjes, J.
1996-01-01
We study the nonlinear stage of a tearing mode, whose island width exceeds the tearing layer thickness, and the wavelength is of the order of collisionless skin depth. A coherent solution is found in the form of a moving vortex chain. It is the result of a self-organization process, which adjusts the profile of the sheared poloidal magnetic field and excites a localized perpendicular sheared plasma flow, consisting of three counterstreaming jets. A numerical solution shows a twin chain of plasma vortices, coupled with a single chain of magnetic islands, whose width is of the order of collisionless skin depth. Adiabatic evolution of the vortex chain in the presence of small viscosity reveals its finite lifetime. The chain destruction may occur either directly, or through a sequence of bifurcations (corresponding to abrupt changes of the vortex chain parameters) to magnetic field stochastization within a layer of the collisionless skin depth scale, which occurs before the magnetic island overlapping takes place. This provides a new mechanism for the anomalous transport. (orig.)
Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu, Wang; Dan-qing, Wang; Xiao-peng, Hu; Tao, Li; Shi-ning, Zhu
2016-07-01
Surface plasmon polariton (SPP), a sub-wavelength surface wave promising for photonic integration, always suffers from the large metallic loss that seriously restricts its practical application. Here, we propose a compact SPP amplifier based on a nonlinear hybrid waveguide (a combination of silver, LiNbO3, and SiO2), where a couple of Bragg gratings are introduced in the waveguide to construct a cavity. This special waveguide is demonstrated to support a highly localized SPP-like hybrid mode and a low loss waveguide-like hybrid mode. To provide a large nonlinear gain, a pumping wave input from the LiNbO3 waveguide is designed to resonate inside the cavity and satisfy the cavity phase matching to fulfill the optical parametric amplification (OPA) of the SPP signal. Proper periods of gratings and the cavity length are chosen to satisfy the impedance matching condition to ensure the high input efficiency of the pump wave from the outside into the cavity. In theoretical calculations, this device demonstrates a high performance in a very compact scheme (∼ 3.32 μm) and a much lower pumping power for OPA compared with single-pass pumping. To obtain a comprehensive insight into this cavity OPA, the influences of the pumping power, cavity length, and the initial phase are discussed in detail. Project supported by the National Basic Research Program of China (Grant No. 2012CB921501), the National Natural Science Foundation of China (Grant Nos. 11322439, 11274165, 11321063, and 91321312), the Dengfeng Project B of Nanjing University, China, and the PAPD of Jiangsu Higher Education Institutions, China.
Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.
Hammi, Oualid
2014-01-01
A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.
Nonlinear carrier dynamics in a quantum dash optical amplifier
DEFF Research Database (Denmark)
Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten
2012-01-01
Results of experimental pump-probe spectroscopy of a quantum dash optical amplifier biased at transparency are presented. Using strong pump pulses we observe a competition between free carrier absorption and two-photon induced stimulated emission that can have drastic effects on the transmission...
A Highly Efficient Broadband Class-E Power Amplifier with Nonlinear Shunt Capacitance
Directory of Open Access Journals (Sweden)
Ninh Dang-Duy
2017-10-01
Full Text Available A new approach to designing a broadband and highly efficient class-E power amplifier based on nonlinear shunt capacitance analysis is proposed. The nonlinear shunt capacitance method accurately extracts optimum class-E power amplifier parameters, including an external shunt capacitance and an output impedance, at different frequencies. The dependence of the former parameter on the frequency is considered to select an optimal value of external shunt capacitor. Then, upon determining the latter parameter, an output matching network is optimized to obtain the highest efficiency across the bandwidth of interest. An analytical approach is presented to design the broadband class-E power amplifier of a MOSFET transistor. The proposed method is experimentally verified by a 140–170 MHz class-E power amplifier design with maximum added power efficiency of 82% and output power of 34 dBm.
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
Abstract. We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity (). We ﬁnd ...
Analysis & Design of Non-Linear Amplifiers for Efficient Microwave Transmitters
Roberg, Michael Dean
This thesis addresses analysis and design of high efficiency microwave power amplifiers and rectifiers. The focus of this body of work is to optimize narrow band power amplifiers for maximization of Power Added-Efficiency (PAE) and rectifiers for maximization of RF-DC power conversion efficiency. A power amplifier performs DC-RF conversion while a rectifier performs RF-DC conversion, therefore a strong analogy exists between the two. Design with non-linear devices suffers from lack of accurate models characterizing large signal behavior, therefore measurement based techniques are often adopted in order to create high performance designs. The theoretical analysis presented in this thesis provides the microwave circuit designer intuition concerning performance expectations of design options rather than a recipe for creating a successful design. The complexity of non-linear device physics results in behavior which is often limited to qualitative description, complicating accurate model development. The presented theoretical analysis is applied to load-pull based design of S-Band and X-Band power amplifiers and S-Band power rectifiers. The measured circuits exhibit high efficiency consistent with the analysis. An implementation of a high efficiency pulsed S-band AM radar transmitter is presented along with measured results. An extension of the presented analysis is investigated in the form of a harmonic injection amplifier, which conceptually allows realization of a high power, high efficiency broadband amplifier. In summary, this thesis details (1) the load-pull measurement based design technique applied to microwave power amplifiers and rectifiers, (2) a theoretical analysis technique characterizing the performance limitations of harmonically terminated power amplifiers which may be applied to power rectifiers as well, (3) the design and measurement of several successful high efficiency power amplifiers and rectifiers and (4) interesting implementations of the
Lv, Zhiguo; Yang, Zhi; Li, Feng; Yang, Xiaojun; Li, Qianglong; Zhang, Xin; Wang, Yishan; Zhao, Wei
2018-03-01
We report on an experimental study on fully fusion spliced high power all-polarization-maintaining Yb-doped photonic crystal fiber (PCF) femtosecond nonlinear chirped-pulse amplifier (CPA), which features large values of the positive third-order dispersion (TOD) superposed from the single-mode fiber stretcher (SMFs) and grating-pair compressor. Compensation of the TOD is realized by means of self-phase modulation (SPM) induced nonlinear phase shift during amplification. Up to 9.8 W of compressed average power at 275 kHz repetition rates with 36 μJ pulse energy and 495 fs pulse width has been obtained. To the best of our knowledge, this is the highest output power generated from the strictly all-fiber nonlinear CPA amplifier in femtosecond domain, which provides a possibility for the industrialized promotion and development of the high energy femtosecond fiber laser.
Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier
DEFF Research Database (Denmark)
Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel
2016-01-01
We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...
Casas, F. J.; Pascual, J. P.; de La Fuente, M. L.; Artal, E.; Portilla, J.
2010-07-01
This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA's nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experiment.
Strongly nonlinear waves in a chain of Teflon beads
Daraio, C.; Nesterenko, V. F.; Herbold, E. B.; Jin, S.
2005-01-01
One-dimensional “sonic vacuum” type phononic crystals were assembled from a chain of polytetrafluoroethylene (PTFE,Teflon) spheres with different diameters in a Teflon holder. It was demonstrated that this polymer-based sonic vacuum, with exceptionally low elastic modulus of particles, supports propagation of strongly nonlinear solitary waves with a very low speed. These solitary waves can be described using the classical nonlinear Hertz law despite the viscoelastic nature of the polymer and ...
Nonlinear instabilities induced by the F coil power amplifier at FTU: Modeling and control
International Nuclear Information System (INIS)
Zaccarian, L.; Boncagni, L.; Cascone, D.; Centioli, C.; Cerino, S.; Gravanti, F.; Iannone, F.; Mecocci, F.; Pangione, L.; Podda, S.; Vitale, V.; Vitelli, R.
2009-01-01
In this paper we focus on the instabilities caused by the nonlinear behavior of the F coil current amplifier at FTU. This behavior induces closed-loop instability of the horizontal position stabilizing loop whenever the requested current is below the circulating current level. In the paper we first illustrate a modeling phase where nonlinear dynamics are derived and identified to reproduce the open-loop responses measured by the F coil current amplifier. The derived model is shown to successfully reproduce the experimental behavior by direct comparison with experimental data. Based on this dynamic model, we then reproduce the closed-loop scenario of the experiment and show that the proposed nonlinear model successfully reproduces the nonlinear instabilities experienced in the experimental sessions. Given the simulation setup, we next propose a nonlinear control solution to this instability problem. The proposed solution is shown to recover stability in closed-loop simulations. Experimental tests are scheduled for the next experimental campaign after the FTU restart.
Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling
Energy Technology Data Exchange (ETDEWEB)
Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab
2016-06-01
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.
International Nuclear Information System (INIS)
Romeo, Francesco; Rega, Giuseppe
2006-01-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Livani, Abdolber Mallah; Kaatuzian, Hassan
2015-07-01
An amplifier that operates on surface plasmon polaritons has been analyzed and simulated. Nonlinearity behavior and the spontaneous emission effects of the plasmonic amplifier are investigated in this paper. A rate equations approach has been used in which parameters are derived from simulation results of the plasmonic amplifier (Silvaco/ATLAS). Details on the method of this derivation are included, which were not previously reported. Rate equations are solved numerically by MATLAB codes. These codes verify the Silvaco results. The plasmonic amplifier operates on surface plasmons with a free-space wavelength of 1550 nm. Results show that, even without the effect of spontaneous emission, gain of the plasmonic amplifier saturates in high input levels. Saturation power, which can be used for comparing nonlinearity of different amplifiers, is 2.1 dBm for this amplifier. Amplified spontaneous emission reduces the gain of the amplifiers, which is long. There is an optimum value for the length of the amplifier. For the amplifier of this work, the optimum length for the small signal condition is 265 μm.
International Nuclear Information System (INIS)
Qiu Chunrong; Ouyang Zhengbiao; Zhang Shichang; Zhang Huibo; Jin Jianbo; Lai Yingxin
2005-01-01
A self-consistent nonlinear theory for the outer-slotted-coaxial-waveguide cyclotron autoresonance maser (CARM) amplifier is presented, which includes the characteristic equation of the wave, coupling equation of the wave with the relativistic electron beam and the simulation model. The influences of the magnetic field, the slot depth and width are investigated. The interesting characteristic of the device is that the mode competition can be efficiently suppressed by slotting the outer wall of the coaxial waveguide. A typical example is given by the theoretical design of a 137 GHz outer-slotted-coaxial-waveguide CARM amplifier by utilizing an electron beam with a voltage of 90 kV, current of 50 A, velocity pitch angle of 0.85 and a magnetic field of 43.0 kG. The nonlinear simulation predicts a power of 467.9 kW, an electronic efficiency of 10.4% and a saturated gain of 46.7 dB, if the electron beam has no velocity spread. However, the axial velocity spread deteriorates the device; for example, if the axial velocity spread is 2%, the peak power decreases to 332.4 kW with an efficiency of 7.4% and a saturated gain of 45.22 dB. Simulation shows that the efficiency of the outer-slotted-coaxial-waveguide CARM amplifier may be increased from 10.4% to 29.6% by tapering the magnetic field
Directory of Open Access Journals (Sweden)
Santamaría Ignacio
2003-01-01
Full Text Available A comparative study among several nonlinear high-power amplifier (HPA models using real measurements is carried out. The analysis is focused on specific models for wideband OFDM signals, which are known to be very sensitive to nonlinear distortion. Moreover, unlike conventional techniques, which typically use a single-tone test signal and power measurements, in this study the models are fitted using subsampled time-domain data. The in-band and out-of-band (spectral regrowth performances of the following models are evaluated and compared: Saleh's model, envelope polynomial model (EPM, Volterra model, the multilayer perceptron (MLP model, and the smoothed piecewise-linear (SPWL model. The study shows that the SPWL model provides the best in-band characterization of the HPA. On the other hand, the Volterra model provides a good trade-off between model complexity (number of parameters and performance.
Numerical analysis of the performance of an atomic iodine laser amplifier chain
International Nuclear Information System (INIS)
Uchiyama, T.; Witte, K.J.
1981-05-01
The performance of an atomic iodine laser amplifier chain with output pulse powers close to 2 TW is analyzed by a numerical solution of the Maxwell-Bloch equations. Two subjects are discussed in detail. The first one refers to the pulse compression occurring in the chain as a result of saturation and some related aspects such as damage to components, self-focussing, correlation between the input and output pulse shapes, and the means of pulse shape control. The second deals with various schemes suited for achieving extraction efficiencies of about or larger than 55%. These include the single-pass and double-pass schemes, pulses with two carrier frequencies and a variation of the pulse carrier frequency. In addition, the response of the chain to a variation of those parameters which are most easily subject to change in a routine operation is investigated. (orig.)
The Dynamics of Multiple Pair-Wise Collisions in a Chain for Designing Optimal Shock Amplifiers
Directory of Open Access Journals (Sweden)
Bryan Rodgers
2009-01-01
Full Text Available The major focus of this work is to examine the dynamics of velocity amplification through pair-wise collisions between multiple masses in a chain, in order to develop useful machines. For instance low-cost machines based on this principle could be used for detailed, very-high acceleration shock-testing of MEMS devices. A theoretical basis for determining the number and mass of intermediate stages in such a velocity amplifier, based on simple rigid body mechanics, is proposed. The influence of mass ratios and the coefficient of restitution on the optimisation of the system is identified and investigated. In particular, two cases are examined: in the first, the velocity of the final mass in the chain (that would have the object under test mounted on it is maximised by defining the ratio of adjacent masses according to a power law relationship; in the second, the energy transfer efficiency of the system is maximised by choosing the mass ratios such that all masses except the final mass come to rest following impact. Comparisons are drawn between both cases and the results are used in proposing design guidelines for optimal shock amplifiers. It is shown that for most practical systems, a shock amplifier with mass ratios based on a power law relationship is optimal and can easily yield velocity amplifications of a factor 5–8 times. A prototype shock testing machine that was made using above principles is briefly introduced.
Thermodynamic limit beyond the stochasticity threshold in nonlinear chains
Alabiso, Carlo; Casartelli, Mario; Marenzoni, Paolo
1993-12-01
We present numerical experiments on Hamiltonian nonlinear chains at fixed specific energy in the stochastic domain with a growing number of degrees of freedom, up to N = 2048. Previous results on the rates of changes of action variables, with reference to translational invariance, are confirmed and specified. Furthermore, for models with other conserved quantities beside energy, an increasing number of degrees of freedom shows an increasing deviation from equipartition. Globally, the approach to equilibrium seems to be slower at larger N. This could cast a shadow over the effectiveness of stochasticity for systems with bounded spectrum and infinite degrees of freedom.
Nonlinear resonances in a multi-stage free-electron laser amplifier
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, S. [Graduate Univ. for Advanced Studies, Ibaraki-ken (Japan); Takayama, K. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)
1995-12-31
A two-beam accelerator (TBA) is a possible candidate of future linear colliders, in which the demanded rf power is provided by a multi-stage free-electron laser (MFEL). After if amplification in each stage, a driving beam is re-accelerated by an induction unit and propagates into the next stage. Recently it has been recognized that the multi-stage character of the MFEL causes resonances between its periodicity and the synchrotron motion in an rf bucket. Since the synchrotron oscillation is strongly modulated by the resonance and at the worst a large fraction of particles is trapped in the resonance islands, the nonlinear resonances in the FEL longitudinal beam dynamics can lead to notable degradation of the MFEL performance, such as output fluctuation and phase modulation which have been big concerns in the accelerator society. The overall efficiency of the MFEL and the quality of the amplified microwave power are key issues for realizing the TBA/FEL Particularly the rf phase and amplitude errors must be maintained within tolerance. One of significant obstacles is an amplification of undesired modes. If a small-size waveguide is employed, the FEL resonance energies for undesired higher order modes shift very far from that for a fundamental mode; so it is possible to prevent higher order modes from evolving. Such a small-size waveguide, however, gives a high power density in the FEL. Simulation results have demonstrated that the nonlinear resonances occur in die FEL longitudinal motion when the power density exceeds some threshold. An analytical method for studying the nonlinear resonance in the TBA/FEL is developed based on the macroparticle model which can describe analytically the drastic behaviors in the evolutions of the phase and amplitude. In the theory the basic 1D-FEL equations are reduced to a nonlinear pendulum equation with respect to the ponderomotive phase.
Liu, Guodong; Wu, Chongqing; Wang, Fu; Zhang, Tianyong; Shang, Chao; Gao, Kaiqiang
2015-06-01
A simple measurement scheme of the linewidth enhancement factor based on the nonlinear polarization rotation of a semiconductor optical amplifier is proposed. Considering the polarization dependent gain, the relationship between the linewidth enhancement factor and the Stokes vector was derived theoretically. It is proven that the linewidth enhancement factor can be calculated directly from the Stokes parameters without any other assistant measurement system. The results demonstrate that the linewidth enhancement factor varies in a small range from 10.5 to 8.5 for TE mode and from 8.2 to 5.8 for TM mode, respectively, when the input optical power varies from 50 μW to 1 mW and the bias current varies from 90 to 170 mA.
Zhang, Haijiang; Wen, Pengyue; Esener, Sadik
2007-07-01
We report, for the first time to our knowledge, the operation of a cascadable, low-optical-switching-power(~10 microW) small-area (~100 microm(2)) high-speed (80 ps fall time) all-optical inverter. This inverter employs cross-gain modulation, polarization gain anisotropy, and highly nonlinear gain characteristics of an electrically pumped vertical-cavity semiconductor optical amplifier (VCSOA). The measured transfer characteristics of such an optical inverter resemble those of standard electronic metal-oxide semiconductor field-effect transistor-based inverters exhibiting high noise margin and high extinction ratio (~9.3 dB), making VCSOAs an ideal building block for all-optical logic and memory.
Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin
2016-08-24
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.
Cubic nonlinear optical properties of platinum-terminated polyynediyl chains.
Samoc, Marek; Dalton, Gulliver T; Gladysz, John A; Zheng, Qinglin; Velkov, Yasen; Agren, Hans; Norman, Patrick; Humphrey, Mark G
2008-11-03
The wavelength dependence of the cubic nonlinearity of ligated platinum-terminated polyynes trans, trans-{(p-MeC6H4)3P}2(p-MeC6H4)Pt(C[triple bond]C)n Pt(p-C6H4Me){P(p-C6H4Me)3}2 (n = 3-6, 8, 10, 12) has been examined by femtosecond Z-scan studies in the wavelength range 520-1500 nm and the results rationalized by density functional theory calculations on the model complexes trans, trans-(H3P)2(C6H5)Pt(C[triple bond]C)n Pt(C6H5)(PH3)2 (n = 2-8, 10, 12). Although the final states for one- and two-photon transitions are not the same in these centrosymmetric molecules, the Z-scan studies reveal coincidences in one-photon absorption with features in the frequency dependencies of both real and imaginary parts of the cubic hyperpolarizability, as well as inflections in the frequency dependencies of the real part of gamma that correspond to resonances in the imaginary part of gamma. The theoretical studies suggest that the linear absorption spectra are dominated by X(1)A g --> n(1)B(3u) transitions, with the first state of B(3u) symmetry playing a steadily diminishing role upon oligoyne chain lengthening. The theoretical studies also predict a red-shift of two-photon absorption (TPA) profile with increasing conjugation length, and a significant enhancement on proceeding from the shortest to the longest chromophore, trends that are observed experimentally. The experimental low-energy TPA maxima for these complexes can be approximated by a simple Gaussian profile. The sp-carbon chain-length dependence of linear and nonlinear absorption maxima enable an estimate (neglecting saturation) of 660 and 1000 nm for the infinite carbon chain, carbyne.
1995-11-01
plified polymorphic DNA in the population genet- ics and systematics of grasshoppers . Genome 35: 569-574. Galvgo ALA, Damesceno RG 1942. Sobre urn...iynchus) albitarsis by Random Amplified Polymorphic DNA -Polymerase Chain Reaction (Diptera: Culicidae) Richard C Wilkerson/+, Thomas V Caffigan, Jo...Instituto de Biologia do ExCrcito, Rua Francisco Manuel 102, 2091 l-270 Rio de Janeiro, RJ, Brasil Species-specific Random Amplified Polymorphic DNA
Digital back-propagation for nonlinearity mitigation in distributed Raman amplified links.
Saavedra, Gabriel; Semrau, Daniel; Galdino, Lidia; Killey, Robert I; Bayvel, Polina
2017-03-06
The performance of digital back-propagation (DBP) for distributed Raman amplified optical communication systems is evaluated through analytical models and numerical simulations, and is compared with conventional lumped amplifier solutions, such as EDFA. The complexity of the DBP algorithm including the characteristic signal power profile of distributed Raman amplifiers is assessed. The use of full-field DBP in distributed Raman amplified systems leads to 1.3 dB additional gain with respect to systems employing lumped amplification, at the cost of only a 25% increase in complexity.
Bilal, Syed Muhammad; Goroshko, Kseniia; Louchet, Hadrien; Koltchanov, Igor; Richter, André
2017-07-01
In this work we investigate different nonlinearities compensation and mitigation techniques for an unrepeated Raman-amplified link over 420 km of ultra-low loss (ULL) optical fiber. For such long links (over 400 km) fiber nonlinearities become very significant as high forward pump power is needed to ensure sufficient optical-signal-to-noise-ratio (OSNR) to acquire a bit-error-rate (BER) not exceeding the forward-error-correction (FEC) threshold. Such nonlinearities will significantly limit the performance. Through numerical simulations, we show successful net 200 Gb/s single carrier and 1 Tb/s superchannel transmission using PM-QPSK and symbol-rate-optimization (SRO). First we implement single carrier 200 G transmission either using 28 Gbaud PM-16QAM or 56 Gbaud PM-QPSK. Nonlinearities are compensated by either using digital-back-propagation (DBP) or phase-conjugated twin waves (PCTWs). We compare the performance of DBP and PCTWs based single carrier 28 Gbaud PM-16QAM, at the same transmission distance and capacity, with single carrier PM-QPSK and find that PM-QPSK does not require any nonlinearity compensation to give better performance than 28 Gbaud PM-16QAM. Following this result, we show a successful unrepeated transmission of net 1 Tb/s PM-QPSK Nyquist-spaced superchannel with an intra-superchannel net spectral efficiency (SE) of ∼3.6 b/s/Hz, over 420 km of Raman amplified ULL fiber without using any nonlinearity compensation. To improve the performance of this superchannel we implement nonlinearity mitigation scheme based on SRO. We investigate 5 × 56 Gbaud, 10 × 28 Gbaud, 20 × 14 Gbaud and 40 × 7 Gbaud PM-QPSK channels and found that the best performance is shown by 20 × 14 Gbaud superchannel. For PM-16QAM, successful transmission is only possible either using DBP or PCTWs based transmission link. DBP has a very high computational complexity whereas PCTWs halves the overall link spectral efficiency. Even then both schemes do not outperform PM-QPSK for
Large net-normal dispersion Er-doped fibre laser mode-locked with a nonlinear amplifying loop mirror
Bowen, Patrick; Erkintalo, Miro; Broderick, Neil G. R.
2018-03-01
We report on an environmentally stable, all-PM-fibre, Er-doped, mode-locked laser with a central wavelength of 1550 nm. Significantly, the laser possesses large net-normal dispersion such that its dynamics are comparable to that of an all-normal dispersion fibre laser at 1 μm with an analogous architecture. The laser is mode-locked with a nonlinear amplifying loop mirror to produce pulses that are externally compressible to 500 fs. Experimental results are in good agreement with numerical simulations.
Jumps and bi-stability in the phase-gain characteristics of a nonlinear parametric amplifier
DEFF Research Database (Denmark)
Neumeyer, Stefan; van de Looij, Ruud; Thomsen, Jon Juel
2014-01-01
This work experimentally investigates the impact of nonlinearity on macromechanical parametric amplification. For a strong cubic stiffness nonlinearity we observe jumps in gain (ratio of steady-state vibration amplitude of the externally and parametrically excited system, to vibration amplitude o...
Keeports, David
2006-12-01
By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.
Dynamics of electron wave packet in a disordered chain with delayed nonlinear response
International Nuclear Information System (INIS)
Zhu Hongjun; Xiong Shijie
2010-01-01
We investigate the dynamics of one electron wave packet in a linear chain with random on-site energies and a nonadiabatic electron-phonon interaction which is described by a delayed cubic nonlinear term in the time-dependent Schroedinger equation. We show that in the regime where the wave packet is delocalized in the case with only the delayed nonlinearity, the wave packet becomes localized when the disorder is added and the localization is enhanced by increasing the disorder. In the regime where the self-trapping phenomenon occurs in the case with only the delayed nonlinearity, by adding the disorder the general dynamical features of the wave packet do not change if the nonlinearity parameter is small, but the dynamics shows the subdiffusive behavior if the nonlinearity parameter is large. The numerical results demonstrate complicated wave packet dynamics of systems with both the disorder and nonlinearity.
Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times
Directory of Open Access Journals (Sweden)
Songtao Zhang
2017-01-01
Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.
Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control
International Nuclear Information System (INIS)
Joyce, Bryan S; Tarazaga, Pablo A
2014-01-01
The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity. (papers)
Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control
Joyce, Bryan S.; Tarazaga, Pablo A.
2014-07-01
The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity.
Kong, Jia; Jing, Jietai; Wang, Hailong; Hudelist, F.; Liu, Cunjin; Zhang, Weiping
2013-01-01
Two four-wave mixing processes have been employed to experimentally construct a nonlinear interferometer [Jing et al., Appl. Phys. Lett. 99, 011110 (2011)], which has a better phase sensitivity than the traditional linear interferometer. For its applications in quantum measurement, interference fringe visibility can significantly affect the quantum detection efficiency. In this letter, we study how various parameters, such as the pump power, the one-photon detuning, and the two-photon detuning, influence the visibility of nonlinear interferometer. We find that the visibility greater than 0.9 can be achieved for large range of system parameters.
Nonlinear dynamics of zigzag molecular chains (in Russian)
DEFF Research Database (Denmark)
Savin, A. V.; Manevitsch, L. I.; Christiansen, Peter Leth
1999-01-01
models (two-dimensional alpha-spiral, polyethylene transzigzag backbone, and the zigzag chain of hydrogen bonds) shows that the zigzag structure essentially limits the soliton dynamics to finite, relatively narrow, supersonic soliton velocity intervals and may also result in that several acoustic soliton...
Strongly nonlinear wave dynamics in a chain of polymer coated beads
Daraio, C.; Nesterenko, V. F.
2006-01-01
Strongly nonlinear phononic crystals were assembled from a chain of Parylene-C coated steel spheres in a polytetrafluoroethylene (PTFE) holder. This system exhibits strongly nonlinear properties and extends the range of materials supporting "sonic vacuum" type behavior. The combination of a high density core and a soft (low elastic modulus) coating ensures a relatively low velocity of wave propagation. The beads contact interaction caused by the deformation of the Parylene coating can be desc...
Weak field nonlinear optical response of fermions in Frenkel exciton chains
International Nuclear Information System (INIS)
Spano, F.C.
1992-01-01
In this paper, the third order nonlinear optical response of a Frenkel chain composed of N dipole-dipole coupled two-level molecules is reviewed. The fundamantal electronic excitations of such a system are, in fact, fermions, a property which greatly simplifies the eigenspectrum for multiexciton states. The introduction of site disorder does not disrupt the fermion nature and is therefore easily incorporated into a general expression of the third order nonlinear optical susceptibility
Impact of Nonlinear Power Amplifier on Link Adaptation Algorithm of OFDM Systems
DEFF Research Database (Denmark)
Das, Suvra S.; Tariq, Faisal; Rahman, Muhammad Imadur
2007-01-01
The impact of non linear distortion due to High Power Amplifier (HPA) on the performance of Link Adaptation (LA) - Orthogonal Frequency Division Multiplexing (OFDM) based wireless system is analyzed. The performance of both Forward Error Control Coding (FEC) en-coded and uncoded system is evaluated....... LA maximizes the throughput while maintaining a required Block Error Rate (BLER). It is found that when OFDM signal, which has high PAPR, suffers non linear distortion due to non ideal HPA, the LA fails to meet the target BLER. Detailed analysis of the distortion and effects on LA are presented...
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
Energy Technology Data Exchange (ETDEWEB)
Runge, Patrick
2010-10-19
The presented work discusses physical properties of ultralong semiconductor optical amplifiers (UL-SOAs) and some of their possible applications in optical communication systems. At the beginning of this thesis the analytical framework for the optical properties of UL-SOAs is presented. Based on this theoretical description, a numerical simulation model is derived used for the investigation of this thesis. To obtain from the simulation model realistic results the important properties of UL-SOAs have to be included, e.g., being the saturation of the main part of the device. In this saturated part of the device, fast intraband effects dominate over the slow interband effects. The intention of UL-SOAs is to make use of these pronounced fast intraband effects in applications. Due to the short relaxation times of the fast intraband effects, they can be used for high-speed signal processing (>20 GBaud). With the help of an additional continuous wave (CW) signal propagating with the data signal in the UL-SOA, the capability for all-optical signal processing with 100 Gbit/s on-off keying RZ-50% pseudo random bit sequence signals has been demonstrated in this thesis. With an optimised device under proper driving conditions, bit pattern effects are negligible compared to the degradation due to amplified spontaneous emission. The suppression of the bit pattern effects can be ascribed to the additional CW signal operating as a holding beam. Investigations of the UL-SOA's driving condition showed that the data signal's extinction ratio (ER) can be regenerated if the two input signals are co-polarised and the data signal has a shorter wavelength than the CW signal. These two and other driving conditions have indicated, that parametric amplification due to four-wave mixing (FWM) (Bogatov-like effect) is the reason for the ER improvement. Moreover, due to the additional CW signal, all-optical wavelength conversion (AOWC) is possible which can be combined with the ER
Directory of Open Access Journals (Sweden)
Iñiguez Alena M
2003-01-01
Full Text Available The aim of this work was to determine approaches that would improve the quality of ancient DNA (aDNA present in coprolites to enhance the possibility of success in retrieving specific sequence targets. We worked with coprolites from South American archaeological sites in Brazil and Chile dating up to 7,000 years ago. Using established protocols for aDNA extraction we obtained samples showing high degradation as usually happens with this kind of material. The reconstructive polymerization pretreatment was essential to overcome the DNA degradation and the serial dilutions helped with to prevent polymerase chain reaction (PCR inhibitors. Moreover, the random amplified polymorphic DNA-PCR has been shown to be a reliable technique for further experiments to recover specific aDNA sequences.
Electro-optic side-chain polyimide system with large optical nonlinearity and high thermal stability
Sotoyama, Wataru; Tatsuura, Satoshi; Yoshimura, Tetsuzo
1994-04-01
We report electro-optic (EO) efficiency and thermal stability of a poled polyimide system with nonlinear optical dyes as side chains. The side-chain polyimide system is synthesized from a dianhydride containing azobenzene dye and a diamine. The dye in the polymer is chemically stable for temperatures below 250 °C. The polymer can be poled simultaneously with or after imidization of the polyamic acid. Our sample poled after imidization shows a large EO coefficient (r33=10.8 pm/V at λ=1.3 μm) and long-term thermal stability at 120 °C.
Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio
2017-01-01
Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517
Nonlinear Dynamics of a Two-Chain, Three-Body Formation System
Xu, Ming; Wei, Yan; Liu, Shengli
2012-12-01
Multibody formation constitutes a new architecture wherein the functional capabilities of a monolithic satellite are distributed, and some planned missions have begun to take advantage of the benefits offered by the use of satellite formations. The nonlinear dynamics of a two-chain, three-body formation system located on a circular orbit on the Earth is presented in this paper with the assist of nonlinear theory in astrodynamics. Different from only five libration points solved from the circular restricted three-body system, there exist sixteen equilibria for the chain system yielded by its geometry of the pseudo-potential function. For some hyperbolic equilibria, an iterative procedure is developed to correct numerically periodic orbits near them, which are referred as Lyapunov orbits in this paper. The invariant manifolds originating from those orbits are employed by Poincaré mapping to create the heteroclinic or homoclinic trajectories, and some non-transversal intersections between them are addressed in this paper.
Klijn, N; Weerkamp, A H; de Vos, W M
1991-01-01
Specific DNA probes based on variable regions V1 and V3 of 16S rRNA of lactic acid bacteria were designed. These probes were used in hybridization experiments with variable regions amplified by using the polymerase chain reaction. In this way, a rapid and sensitive method was developed for the identification and classification of Lactococcus and Leuconostoc species. Images PMID:1723586
David E. Schreiber; Karen J. Garner; James M. Slavicek
1997-01-01
Gypsy moths originating in Asia have recently been introduced into North America, making it necessary to develop markers for distinguishing the Asian strain from the established North American population. We have identified 3 randomly amplified polymorphic DNA-polymerase chain reaction generated (RAPD-PCR) markers which are specific for either Asian or North American...
Energy Technology Data Exchange (ETDEWEB)
Zia, Haider
2015-12-15
Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently
International Nuclear Information System (INIS)
Zia, Haider
2015-12-01
Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, duration and stability as needed to provide sufficient integrated detected electrons for high quality diffraction patterns that can be inverted to real space movies. In chapter 2, the construction of a novel stable and high power stretched pulse fiber oscillator outputting 300 mW at 31 MHz and compressible pulses to below 90 fs will be described. Chapter 3 describes the construction of a solid-state regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the amplifier. Chapter 4 derives a new, fast and powerful numerical theory that is implemented for generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can model complicated terms in these equations that outperforms other numerical methods with respect to minimizing numerical error and increased speed. These advantages are due to this method's Fourier nature. A simulation tool was created, employing this numerical technique to simulate white-light generation in bulk media. The simulation matches extremely well with published experimental data, and is superior to the original simulation method used to match the experiment. The use of this tool enables accurate calculations of continuum or white light generation as needed for different experimental protocols and serves as the primary input to generate wide bandwidth coherent light.This work has solved the problem of predictably designing continuum generation within targeted wavelength ranges. This information is needed as part of an overall scheme in laser source development to coherently
Directory of Open Access Journals (Sweden)
Richard C. Wilkerson
1995-12-01
Full Text Available Species-specific Random Amplified Polymorphic DNA-Polymerase chain Reaction (RAPD-PCR markers were used to identify four species related to Anopheles (Nyssorhynchus albitarsis Lynch-Arribàlzaga from 12 sites in Brazil and 4 in Venezuela. In a previous study (Wilkerson et al. 1995, which included sites in Paraguay and Argentina, these four species were designated "A", "B", "C" and "D". It was hypothesized that species A is An. (Nys. albitarsis, species B is undescribed, species C is An. (Nys marajoara Galvão and Damasceno and species D is An. (Nys. deaneorum Rosa-Freitas. Species D, previously characterized by RAPD-PCR from a small sample from northern Argentina and southern Brazil, is reported here from the type locality of An. (Nys. deaneorum, Guajará-Mirim, state of Rondônia, Brazil. Species C and D were found by RAPD-PCR to be sympatric at Costa Marques, state of Rondônia, Brazil. Species A and C have yet to be encountered at the same locality. The RAPD markers for species C were found to be conserved over 4,620 km; from Iguape, state of São Paulo, Brazil to rio Socuavo, state of Zulia, Venezuela. RAPD-PCR was determined to be an effective means for the identification of unknown species within this species complex.
A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers
Omran, Hesham
2016-11-16
A 12 - bit energy-efficient capacitive sensor interface circuit that fully relies on capacitance-domain successive approximation (SAR) technique is presented. Analysis shows that for SAR capacitance-to-digital converter (CDC) comparator offset voltage will result in parasitic-dependent conversion errors, which necessitates using an offset cancellation technique. Based on the presented analysis, a SAR CDC that uses a chain of cascode inverter-based amplifiers with near-threshold biasing is proposed to provide robust, energy-efficient, and fast operation. A hybrid coarse-fine capacitive digital-to-analog converter (CapDAC) achieves 11.7 - bit effective resolution, and provides 83% area saving compared to a conventional binary weighted implementation. The prototype fabricated in a 0.18μm CMOS technology is experimentally verified using MEMS capacitive pressure sensor. Experimental results show an energy efficiency figure-of-merit (FoM) of 33 f J/Step which outperforms the state-of-the-art. The CDC output is insensitive to analog references; thus, a very low temperature sensitivity of 2.3 ppm/°C is achieved without the need for calibration.
Propagation of transition fronts in nonlinear chains with non-degenerate on-site potentials
Shiroky, I. B.; Gendelman, O. V.
2018-02-01
We address the problem of transition front propagation in chains with a bi-stable nondegenerate on-site potential and a nonlinear gradient coupling. For generic nonlinear coupling, one encounters a special regime of transitions, characterized by extremely narrow fronts, far supersonic velocities of the front propagation, and long waves in the oscillatory tail. This regime can be qualitatively associated with a shock wave. The front propagation can be described with the help of a simple reduced-order model; the latter delivers a kinetic law, which is almost not sensitive to the fine details of the on-site potential. Besides, it is possible to predict all main characteristics of the transition front, including its velocity, as well as the frequency and the amplitude of the oscillatory tail. Numerical results are in good agreement with the analytical predictions. The suggested approach allows one to consider the effects of an external pre-load, the next-nearest-neighbor coupling and the on-site damping. When the damping is moderate, it is possible to consider the shock propagation in the damped chain as a perturbation of the undamped dynamics. This approach yields reasonable predictions. When the damping is high, the transition front enters a completely different asymptotic regime of a subsonic kink. The gradient nonlinearity generically turns negligible, and the propagating front converges to the regime described by a simple exact solution for a continuous model with linear coupling.
Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains
Przedborski, Michelle; Anco, Stephen C.
2017-09-01
A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.
Designing a Fresh Food Supply Chain Network: An Application of Nonlinear Programming
Directory of Open Access Journals (Sweden)
Yu-Chung Tsao
2013-01-01
Full Text Available In today’s business environment, many fresh food companies have complex supply networks to distribute their products. For example, agricultural products are distributed through a multiechelon supply chain which includes agricultural association, agricultural produce marketing corporations (APMCs, markets, and so forth. In this paper a fresh produce supply network model is designed to determine the optimal service area for APMCs, the replenishment cycle time of APMCs, and the freshness-keeping effort, while maximizing the total profit. The objective is to address the integrated facility location, inventory allocation, and freshness-keeping effort problems. This paper develops an algorithm to solve the nonlinear problem, provides numerical analysis to illustrate the proposed solution procedure, and discusses the effects of various system parameters on the decisions and total profits. A real case of an agricultural product supply chain in Taiwan is used to verify the model. Results of this study can serve as a reference for business managers and administrators.
Dolev, A.; Bucher, I.
2018-04-01
Mechanical or electromechanical amplifiers can exploit the high-Q and low noise features of mechanical resonance, in particular when parametric excitation is employed. Multi-frequency parametric excitation introduces tunability and is able to project weak input signals on a selected resonance. The present paper addresses multi degree of freedom mechanical amplifiers or resonators whose analysis and features require treatment of the spatial as well as temporal behavior. In some cases, virtual electronic coupling can alter the given topology of the resonator to better amplify specific inputs. An analytical development is followed by a numerical and experimental sensitivity and performance verifications, illustrating the advantages and disadvantages of such topologies.
Directory of Open Access Journals (Sweden)
Zhe Zhang
2014-06-01
Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.
Anchal, Abhishek; K, Pradeep Kumar; O'Duill, Sean; Anandarajah, Prince M.; Landais, Pascal
2018-04-01
We present a scheme of frequency-degenerate mid-span spectral inversion (MSSI) for nonlinearity compensation in fiber-optic transmission systems. The spectral inversion is obtained by using counter-propagating dual pump four-wave mixing in a semiconductor optical amplifier (SOA). Frequency-degeneracy between signal and conjugate is achieved by keeping two pump frequencies symmetrical about the signal frequency. We simulate the performance of MSSI for nonlinearity compensation by scrutinizing the improvement of the Q-factor of a 200 Gbps QPSK signal transmitted over a standard single mode fiber, as a function of launch power for different span lengths and number of spans. We demonstrate a 7.5 dB improvement in the input power dynamic range and an almost 83% increase in the transmission length for optimum MSSI parameters of -2 dBm pump power and 400 mA SOA current.
Dorren, H.J.S.; Lenstra, D.; Liu, Y.S.; Hill, M. T.; Khoe, G.D.
2003-01-01
We present a model for polarization-dependent gain saturation in strained bulk semiconductor optical amplifiers. We assume that the polarized optical field can be decomposed into transverse electric and transverse magnetic components that have indirect interaction with each other via the gain
BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
The propagation of waves in periodic systems with alternating properties has been of great interest to engineers and physicists. They exhibit unique dynamic characteristics that enable them to act as filters. Waves can propagate within specific bands of frequencies called pass bands, and attenuate...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...... attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...
Srivastava, Nilabh; Haque, Imtiaz
2009-03-01
Over the past two decades, extensive research has been conducted on developing vehicle transmissions that meet the goals of reduced exhaust emissions and increased vehicle efficiency. A continuously variable transmission is an emerging automotive transmission technology that offers a continuum of gear ratios between desired limits. A chain CVT is a friction-limited drive whose dynamic performance and torque capacity rely significantly on the friction characteristic of the contact patch between the chain and the pulley. Although a CVT helps to maximize the vehicle fuel economy, its complete potential has not been accomplished in a mass-production vehicle. The present research focuses on developing models to analyze friction-induced nonlinear dynamics of a chain CVT drive and identify possible mechanisms that cause degradation of the overall dynamic performance by inducing chaos and self-sustained vibrations in the system. Two different mathematical models of friction, which characterize different operating or loading conditions, are embedded into a detailed planar multibody model of chain CVT in order to capture the various friction-induced effects in the system. Tools such as stick-slip oscillator dynamics, Lyapunov exponents, phase-space reconstruction, and recurrence plotting are incorporated to characterize the nonlinear dynamics of such a friction-limited system. The mathematical models, the computational scheme, and the results corresponding to different loading scenarios are discussed. The results discuss the influence of friction characteristics on the nonlinear dynamics and torque transmitting capacity of a chain CVT drive.
Wang, Yongjun; Liu, Xinyu; Tian, Qinghua; Wang, Lina; Xin, Xiangjun
2018-03-01
Basic configurations of various all-optical clocked flip-flops (FFs) and optical random access memory (RAM) based on the nonlinear polarization rotation (NPR) effect of low-polarization-dependent semiconductor optical amplifiers (SOA) are proposed. As the constituent elements, all-optical logic gates and all-optical SR latches are constructed by taking advantage of the SOA's NPR switch. Different all-optical FFs (AOFFs), including SR-, D-, T-, and JK-types as well as an optical RAM cell were obtained by the combination of the proposed all-optical SR latches and logic gates. The effectiveness of the proposed schemes were verified by simulation results and demonstrated by a D-FF and 1-bit RAM cell experimental system. The proposed all-optical clocked FFs and RAM cell are significant to all-optical signal processing.
Angelos, John A; Ball, Louise M
2007-09-01
Moraxella ovis was historically the only coccoid Moraxella identified in cultures of ocular fluid from cattle with infectious bovine keratoconjunctivitis (IBK) and could be morphologically and biochemically differentiated from Moraxella bovis. Moraxella bovoculi sp. nov. is a recently characterized Moraxella isolated from ulcerated eyes of calves with IBK in northern California in 2002. Like Moraxella ovis, M. bovoculi sp. nov. is a gram-negative coccus/diplococcus. All 18 original isolates of M. bovoculi sp. nov. possessed phenylalanine deaminase (PADase) activity and could therefore be differentiated from M. ovis and M. bovis. During the characterization of 44 additional isolates of hemolytic gram-negative cocci that were cultured from ulcerated eyes of IBK-affected calves, 2 PADase-negative isolates were identified that could not be differentiated biochemically from M. ovis; however, the DNA sequence of the 16S-23S intergenic spacer region (ISR) of the isolates matched the 16S-23S ISR DNA sequence of M. bovoculi sp. nov. To facilitate the identification of PADase-negative moraxellae, a polymerase chain reaction (PCR) coupled with restriction enzyme digestion analysis of amplified DNA was developed. Amplification of the 16S-23S ISR followed by AfaI digestion of amplified DNA could differentiate M. bovoculi sp. nov. from M. ovis and other moraxellae. The DNA sequence analysis of the amplified 16S-23S ISR from the 42 PADase-positive isolates of hemolytic gram-negative cocci indicated that all were M. bovoculi sp. nov. and all possessed an AfaI site. A PCR coupled with restriction analysis of amplified DNA can aid in identifying M. bovoculi sp. nov.
Shukla, Deepak; Adiga, Shashishekar P; Ahearn, Wendy G; Dinnocenzo, Joseph P; Farid, Samir
2013-03-01
Photoinduced electron transfer to N-alkoxypyridiniums, which leads to N–O bond cleavage and alkoxyl radical formation, is highly chain amplified in the presence of a pyridine base such as lutidine. Density functional theory calculations support a mechanism in which the alkoxyl radicals react with lutidine via proton-coupled electron transfer (PCET) to produce lutidinyl radicals (BH•). A strong electron donor, BH• is proposed to reduce another alkoxypyridinium cation, leading to chain amplification, with quantum yields approaching 200. Kinetic data and calculations support the formation of a second, stronger reducing agent: a hydrogen-bonded complex between BH• and another base molecule (BH•···B). Global fitting of the quantum yield data for the reactions of four pyridinium salts (4-phenyl and 4-cyano with N-methoxy and N-ethoxy substituents) led to a consistent set of kinetic parameters. The chain nature of the reaction allowed rate constants to be determined from steady-state kinetics and independently determined chain-termination rate constants. The rate constant of the reaction of CH3O• with lutidine to form BH•, k1, is ~6 × 10(6) M(–1) s(–1); that of CH3CH2O• is ~9 times larger. Reaction of CD3O• showed a deuterium isotope effect of ~6.5. Replacing lutidine by 3-chloropyridine, a weaker base, decreases k1 by a factor of ~400.
DEFF Research Database (Denmark)
Rottwitt, Karsten
2017-01-01
The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....
Karni, O.; Mishra, A. K.; Eisenstein, G.; Reithmaier, J. P.
2015-03-01
We study the interplay between coherent light-matter interactions and nonresonant pulse propagation effects when ultrashort pulses propagate in room-temperature quantum dot (QD) semiconductor optical amplifiers (SOAs). The signatures observed on a pulse envelope after propagating in a transparent SOA, when coherent Rabi oscillations are absent, highlight the contribution of two-photon absorption (TPA), and its accompanying Kerr-like effect, as well as of linear dispersion, to the modification of the pulse complex electric field profile. These effects are incorporated into our previously developed finite-difference time-domain comprehensive model that describes the interaction between the pulses and the QD SOA. The present generalized model is used to investigate the combined effect of coherent and nonresonant phenomena in the gain and absorption regimes of the QD SOA. It confirms that in the QD SOA we examined, linear dispersion in the presence of the Kerr-like effect causes pulse compression, which counteracts the pulse peak suppression due to TPA, and also modifies the patterns which the coherent Rabi oscillations imprint on the pulse envelope under both gain and absorption conditions. The inclusion of these effects leads to a better fit with experiments and to a better understanding of the interplay among the various mechanisms so as to be able to better analyze more complex future experiments of coherent light-matter interaction induced by short pulses propagating along an SOA.
International Nuclear Information System (INIS)
Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.
2014-01-01
Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.
Directory of Open Access Journals (Sweden)
Hideki Shojo
Full Text Available Polymerase chain reaction-amplified product length polymorphism (PCR-APLP is one of the most convenient and reliable methods for single nucleotide polymorphism (SNP analysis. This method is based on PCR, but uses allele-specific primers containing SNP sites at the 3'-terminus of each primer. To use this method at least two allele-specific primers and one "counter-primer", which serves as a common forward or reverse primer of the allele-specific primers, are required. The allele-specific primers have SNP sites at the 3'-terminus, and another primer should have a few non-complementary flaps at the 5'-terminus to detect SNPs by determining the difference of amplicon length by PCR and subsequent electrophoresis. A major disadvantage of the addition of a non-complementary flap is the non-specific annealing of the primer with non-complementary flaps. However, a design principle for avoiding this undesired annealing has not been fully established, therefore, it is often difficult to design effective APLP primers. Here, we report allele-specific primers with an inosine chain at the 5'-terminus for PCR-APLP analysis. This unique design improves the competitiveness of allele-specific primers and the reliability of SNP analysis when using the PCR-APLP method.
2016-12-13
Technol.Lett.11, 39 (1999) 21. Y. Panbiharwala, C. S. Kumar, D. Venkitesh, and B. Srinivasan in International Conference on Fibre Optics and Photonics...24. Y. Panbiharwala, C. S. Kumar, D. Venkitesh, and B. Srinivasan in International Conference on Fibre Optics and Photonics, OSA Technical Digest...AFRL-AFOSR-JP-TR-2017-0001 The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and
Energy Technology Data Exchange (ETDEWEB)
AbdelMalek, Fathi; Aroua, Walid [National Institute of Applied Science and Technology, University of Carthage, Tunis (Tunisia); Haxha, Shyqyri [Computer Science and Technology Department, Bedfordshire University, Luton (United Kingdom); Flint, Ian [Selex ES Ltd, Luton, Bedfordshire (United Kingdom)
2016-08-15
In this research work, we propose all-optical transistor based on metallic nanoparticle cross-chains geometry. The geometry of the proposed device consists of two silver nanoparticle chains arranged along the x- and z-axis. The x-chain contains a Kerr nonlinearity, the source beam is set at the left side of the later, while the control beam is located at the top side of the z-chain. The control beam can turn ON and OFF the light transmission of an incoming light. We report a theoretical model of a very small all-optical transistor proof-of-concept made of optical 'light switching light' concept. We show that the transmission efficiency strongly depends on the control beam and polarization of the incoming light. We investigate the influence of a perfect reflector and reflecting substrate on the transmission of the optical signal when the control beam is turned ON and OFF. These new findings make our unique design a potential candidate for future highly-integrated optical information processing chips. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Macías-Díaz, J. E.
2018-02-01
In this work, we introduce a spatially discrete model that is a modification of the well-known α-Fermi-Pasta-Ulam chain with damping. The system is perturbed at one end by a harmonic disturbance irradiating at a frequency in the forbidden band-gap of the classical regime, and a nonlocal coupling between the oscillators is considered using discrete Riesz fractional derivatives. We propose fully discrete expressions to approximate an energy functional of the system, and we use them to calculate the total energy of fractional chains over a relatively long period of time [Fract. Diff. Appl. 4 (2004) 153-162]. The approach is thoroughly tested in the case of local couplings against known qualitative results, including simulations of the process of nonlinear recurrence in the traditional chains of anharmonic oscillators. As an application, we provide evidence that the process of supratransmission is present in spatially discrete Fermi-Pasta-Ulam lattices with Riesz fractional derivatives in space. Moreover, we perform numerical experiments for small and large amplitudes of the harmonic disturbance. In either case, we establish the dependency of the critical amplitude at which supratransmission begins as a function of the driving frequency. Our results are in good agreement with the analytic predictions for the classical Fermi-Pasta-Ulam chain.
Tetsuya, Saito; Nauta, Bram
2008-01-01
To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;
Yin, Sisi; Nishi, Tatsushi
2014-11-01
Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Jianxin; Zhang, Zhenjun [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Tong, Peiqing, E-mail: pqtong@njnu.edu.cn [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023 (China)
2013-07-15
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth.
International Nuclear Information System (INIS)
Zhang, Jianxin; Zhang, Zhenjun; Tong, Peiqing
2013-01-01
We investigate the spreading of an initially localized wave packet in one-dimensional generalized Fibonacci (GF) lattices by solving numerically the discrete nonlinear Schrödinger equation (DNLSE) with a delayed cubic nonlinear term. It is found that for short delay time, the wave packet is self-trapping in first class of GF lattices, that is, the second moment grows with time, but the corresponding participation number does not grow. However, both the second moment and the participation number grow with time for large delay time. This illuminates that the wave packet is delocalized. For the second class of GF lattices, the dynamic behaviors of wave packet depend on the strength of on-site potential. For a weak on-site potential, the results are similar to the case of the first class. For a strong on-site potential, both the second moment and the participation number does not grow with time in the regime of short delay time. In the regime of large delay time, both the second moment and the participation number exhibit stair-like growth
Dostal, Jiri
1993-01-01
This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits
Tetsuya, Saito; Nauta, Bram
2011-01-01
PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a
Tetsuya, S.; Nauta, Bram
2007-01-01
PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a
DEFF Research Database (Denmark)
Hu, Hao; Jopson, Robert M.; Gnauck, Alan H.
2017-01-01
We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 x 32-Gbaud PDM QPSK channels and 8 x 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear...... threshold and a best achievable Q(2) factor after transmission. In addition, after an even number of OPCs, the signal wavelength can be preserved after transmission. The performance of multiple OPCs for fiber nonlinearity mitigation was evaluated independently for WDM PDM QPSK signals and WDM PDM 16QAM...... to 1 dB compared to the case of mid-span OPC. The improvements in the best achievable Q(2) factors were more modest, ranging from 0.2 dB to 1.1 dB for the results presented. (C) 2017 Optical Society of America...
Noise-driven neuromorphic tuned amplifier
Fanelli, Duccio; Ginelli, Francesco; Livi, Roberto; Zagli, Niccoló; Zankoc, Clement
2017-12-01
We study a simple stochastic model of neuronal excitatory and inhibitory interactions. The model is defined on a directed lattice and internodes couplings are modulated by a nonlinear function that mimics the process of synaptic activation. We prove that such a system behaves as a fully tunable amplifier: the endogenous component of noise, stemming from finite size effects, seeds a coherent (exponential) amplification across the chain generating giant oscillations with tunable frequencies, a process that the brain could exploit to enhance, and eventually encode, different signals. On a wider perspective, the characterized amplification process could provide a reliable pacemaking mechanism for biological systems. The device extracts energy from the finite size bath and operates as an out of equilibrium thermal machine, under stationary conditions.
Bedia, Manuel G.; Di Paolo, Ezequiel
2012-01-01
Dual-process approaches of decision-making examine the interaction between affective/intuitive and deliberative processes underlying value judgment. From this perspective, decisions are supported by a combination of relatively explicit capabilities for abstract reasoning and relatively implicit evolved domain-general as well as learned domain-specific affective responses. One such approach, the somatic markers hypothesis (SMH), expresses these implicit processes as a system of evolved primary emotions supplemented by associations between affect and experience that accrue over lifetime, or somatic markers. In this view, somatic markers are useful only if their local capability to predict the value of an action is above a baseline equal to the predictive capability of the combined rational and primary emotional subsystems. We argue that decision-making has often been conceived of as a linear process: the effect of decision sequences is additive, local utility is cumulative, and there is no strong environmental feedback. This widespread assumption can have consequences for answering questions regarding the relative weight between the systems and their interaction within a cognitive architecture. We introduce a mathematical formalization of the SMH and study it in situations of dynamic, non-linear decision chains using a discrete-time stochastic model. We find, contrary to expectations, that decision-making events can interact non-additively with the environment in apparently paradoxical ways. We find that in non-lethal situations, primary emotions are represented globally over and above their local weight, showing a tendency for overcautiousness in situated decision chains. We also show that because they tend to counteract this trend, poorly attuned somatic markers that by themselves do not locally enhance decision-making, can still produce an overall positive effect. This result has developmental and evolutionary implications since, by promoting exploratory behavior
Energy Technology Data Exchange (ETDEWEB)
Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.
2011-06-08
The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.
Directory of Open Access Journals (Sweden)
Comfort O. AFOLAYAN
2015-09-01
Full Text Available The genetic differentiation of Archachatina marginata populations from three different zones of Nigeria was studied with a view to delimiting them into sub-species. One hundred and nineteen (119 snail specimens were collected, comprising of forty (40 specimens from Yenagoa (Mangrove forest and from Kabba (Guinea Savanna and thirty nine (39 specimens were from Ile-Ife (Rainforest. Eight parameters of the shell specimens of A. marginata which included height of shell, width of shell, aperture height, aperture width, spire length, spire width, penultimate whorl length and first whorl length were subjected to Principal Component Analysis (PCA and Canonical Variates Analysis (CVA to delimit the populations into sub-species. DNA of the various populations was extracted from the foot muscle using CTAB (Cetyl Trimethyl Ammonium Bromide method, which was subjected to RAPD analysis. The RAPD studies employed five (5 oligonucleotide primers (OPB – 17, OPH – 12, OPH – 17, OPI – 06 and OPU – 14 to amplify DNA from 27 samples of A. marginata selected. All five primers produced different band patterns, and the number of fragments amplified per primer varied. Among them, OPB- 17 gave DNA profiles with more numerous bands than the others primers. Both PCA and CVA produced overlapped clusters of A. marginata specimens from the three vegetation zones. The height of shell was observed to be the most variable feature and preferably the most suitable parameter for population grouping. Analysis of the proportions of polymorphic loci and band sharing based on similarity indices for A. marginata samples indicated a relatively high level of genetic variation in the populations from the three areas.
Predistortion of a Bidirectional Cuk Audio Amplifier
DEFF Research Database (Denmark)
Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold
2014-01-01
Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....
Miyazawa, Toshifumi; Iguchi, Wakana
2013-10-01
The enantioselectivity of the transesterification of the 2,2,2-trifluoroethyl esters of 2-(substituted phenoxy)propanoic acids, as catalyzed by the lipase from Carica papaya, was greatly improved by using long-chain ethers, such as di-n-hexyl ether, as solvents instead of the conventional diisopropyl ether. Thus, for example, the E value was enhanced from 21 [in diisopropyl ether (0.8 ml)] to 57 [in di-n-hexyl ether (0.8 ml)] in the reaction of 2,2,2-trifluoroethyl(RS)-2-phenoxypropanoate (0.1 mmol) with methanol (0.4 mmol) in the presence of the plant lipase preparation (10 mg); it was also improved from 13 (in diisopropyl ether) to 44 (in di-n-hexyl ether) in the reaction of 2,2,2-trifluoroethyl(RS)-2-(2-chlorophenoxy)propanoate with methanol under the same reaction conditions.
Abhinav, S.; Manohar, C. S.
2018-03-01
The problem of combined state and parameter estimation in nonlinear state space models, based on Bayesian filtering methods, is considered. A novel approach, which combines Rao-Blackwellized particle filters for state estimation with Markov chain Monte Carlo (MCMC) simulations for parameter identification, is proposed. In order to ensure successful performance of the MCMC samplers, in situations involving large amount of dynamic measurement data and (or) low measurement noise, the study employs a modified measurement model combined with an importance sampling based correction. The parameters of the process noise covariance matrix are also included as quantities to be identified. The study employs the Rao-Blackwellization step at two stages: one, associated with the state estimation problem in the particle filtering step, and, secondly, in the evaluation of the ratio of likelihoods in the MCMC run. The satisfactory performance of the proposed method is illustrated on three dynamical systems: (a) a computational model of a nonlinear beam-moving oscillator system, (b) a laboratory scale beam traversed by a loaded trolley, and (c) an earthquake shake table study on a bending-torsion coupled nonlinear frame subjected to uniaxial support motion.
International Nuclear Information System (INIS)
Kadowaki, T.; Kadowaki, H.; Taylor, S.I.
1990-01-01
Mutations in the insulin receptor gene can render the cell resistant to the biological action of insulin. The authors have studied a patient with leprechaunism (leprechaun/Minn-1), a genetic syndrome associated with intrauterine growth retardation and extreme insulin resistance. Genomic DNA from the patient was amplified by the polymerase chain reaction catalyzed by Thermus aquaticus (Taq) DNA polymerase, and the amplified DNA was directly sequenced. A nonsense mutations was identified at codon 897 in exon 14 in the paternal allele of the patient's insulin receptor gene. Levels of insulin receptor mRNA are decreased to <10% of normal in Epstein-Barr virus-transformed lymphoblasts and cultured skin fibroblasts from this patient. Thus, this nonsense mutation appears to cause a decrease in the levels of insulin receptor mRNA. In addition, they have obtained indirect evidence that the patient's maternal allele of the insulin receptor gene contains a cis-acting dominant mutation that also decreases the level of mRNA, but by a different mechanism. The nucleotide sequence of the entire protein-coding domain and the sequences of the intron-exon boundaries for all 22 exons of the maternal allele were normal. Presumably, the mutation in the maternal allele maps elsewhere in the insulin receptor gene. Thus, they conclude that the patient is a compound heterozygote for two cis-acting dominant mutations in the insulin receptor gene: (i) a nonsense mutation in the paternal allel that reduces the level of insulin receptor mRNA and (ii) an as yet unidentified mutation in the maternal allele that either decreases the rate of transcription or decreases the stability of the mRNA
Seichter, Felicia; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris
2017-01-25
The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The 'calibration transfer' approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time. Copyright © 2016 Elsevier B.V. All rights reserved.
Linearisation of RF Power Amplifiers
DEFF Research Database (Denmark)
Nielsen, Per Asbeck
2001-01-01
This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...
Predistortion of a Bidirectional Cuk Audio Amplifier
DEFF Research Database (Denmark)
Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold
2014-01-01
using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....
Amplifier for nuclear spectrometry
International Nuclear Information System (INIS)
Suarez Canner, E.
1996-01-01
The spectroscopy amplifier model AE-020 is designed to adjust suitable the pulses coming from nuclear radiation detectors. Due to is capacity and specifications, the amplifier can be used together with high and medium resolution spectroscopy system
International Nuclear Information System (INIS)
Anon.
1995-01-01
Even under the heavy burden of responsibility as CERN's Director General from 1989-3 the fertile mind of Carlo Rubbia the scientist was never still. A long-time Rubbia 'hobby' has been the search for new sources of nuclear energy, exploiting knowledge and skills from high energy physics. An initial objective was to adopt heavy ion techniques to induce controlled thermonuclear fusion, but in 1994 this quest changed direction. Putting the problems of thermonuclear fusion aside, Rubbia began to explore an alternative route to energy production through controlled nuclear fission. The idea is to use a particle accelerator producing neutrons by spallation (interaction of particles with a target) to feed a fuel/moderator assembly where the neutrons multiply by fission chain reactions. If the energy liberated becomes substantially greater than that needed to drive the accelerator, the process has a net gain and becomes selfsupporting. Hence the name ''Energy Amplifier'' (EA). Similar systems for energy production or for nuclear waste incineration have been proposed at Los Alamos and in Japan and Russia, but appear to require the prior development of innovative linear accelerators. For Rubbia's Amplifier, the requisite accelerator is a reasonable extrapolation of an existing cyclotron such that at the Swiss Paul Scherrer Institute. Moreover, the EA would require fuel rods very similar to those of conventional reactors, rather than demand-ing new technology using liquid fuel loops (molten salts) with on-line separation of radioactive products. Unlike a reactor, the EA's fission reaction is not self-sustaining: it is sub-critical and needs a continuous supply of neutrons from the accelerator. This makes Chernobyl-type meltdowns unlikely: if the accelerator stops, the reaction stops too. Another major advantage is that the old dream of using thorium as a fuel is now made possible. Thorium is not itself fissile, but under neutron
Amplification factor variable amplifier
Akitsugu, Oshita; Nauta, Bram
2007-01-01
PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and
Amplification factor variable amplifier
Akitsugu, Oshita; Nauta, Bram
2010-01-01
PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can
Albulet, Mihai
2001-01-01
This text presents a full account of RF amplifiers and provides a thorough understanding of power amplifier principles and their applications. This comprehensive book covers all important design techniques for power amplifiers and includes mathematical derivations and the assumptions used to develop design rules.
Modeling Distortion Effects in Class-D Amplifier Filter Inductors
DEFF Research Database (Denmark)
Knott, Arnold; Stegenborg-Andersen, Tore; Thomsen, Ole Cornelius
2010-01-01
Distortion is generally accepted as a quantifier to judge the quality of audio power amplifiers. In switchmode power amplifiers various mechanisms influence this performance measure. After giving an overview of those, this paper focuses on the particular effect of the nonlinearity of the output...
Rust, Georg-Friedemann; Aurich, Volker; Reiser, Maximilian
2002-04-01
Purpose: To evaluate a filter method to extract noise from 20mAs Computed Tomography (CT) data for virtual colonoscopy screening. Method: Nonlinear Gaussian filter chains (NLGF) applied to CT datasets were used to extract noise. To test the efficiency of NLGF a simulation of different ellipsoidal shells with different levels of noise were used. Phantom studies were performed using a multidetector CT (tube currents 10 to 140mAs). 15 patients at high risk for colon cancer underwent a virtual colonoscopy examination (140mAs) and conventional colonoscopy. Different noise levels were added to each CT raw dataset (analog to 40 and 20mAs scans). Virtual endoscopic fly-throughs were performed and rated by two radiologists (image quality). Results: NLGF were able to extract image noise while preserving image structures down to signal--to--noise ratio levels of 0.5. The phantom studies (perspex bars, simulated polyps) were reconstructed without relevant changes between 20 and 140mAs. There were no significant differences between the endoscopic fly-throughs of 140 and 20mAs examinations (2 readers). Conclusion: NLGF is a promising preprocessing method for effective noise reduction in CT datasets. Edges are preserved as well as accentuated in high contrast images.
Analysis of Power Amplifier Modeling Schemes for Crosscorrelation Predistorters
Kokkeler, Andre B.J.
2004-01-01
Amplification of signals with fluctuating envelopes leads to distortion because of non-linear behavior of the Power Amplifier (PA). Digital Predistortion can counteract these non-linear effects. A crosscorrelation predistorter is a digital predistorter, based on the calculation of crosscorrelation
Application of randomly amplified polymorphic DNA (RAPD ...
African Journals Online (AJOL)
Jane
2011-10-10
Oct 10, 2011 ... Polymerase chain reaction (PCR) based molecular markers have become increasingly popular for fingerprinting and cultivars identification since the development of PCR technology. (Saiki et al., 1988). RAPD-PCR (randomly amplified polymorphic DNA) was first conducted by Williams et al. (1990).
Dual Band High Efficiency Power Amplifier Based on CRLH Lines
Directory of Open Access Journals (Sweden)
D. Segovia-Vargas
2009-12-01
Full Text Available In this paper we propose the use of Composite Right/Left Hand (CRLH and Extended Composite Right/Left Hand (ECRLH transmission lines for the design of dual band high efficiency power amplifiers working in CE class. The harmonic termination can be synthesized using the meta-lines is particularly suitable for CE class amplifiers, which have a termination not as sensitive to the third harmonic as F class amplifier. This paper presents the design procedure and the design equations. The nonlinear phase response of a CRLH and ECRLH transmission line has been utilized to design arbitrary dual-band amplifiers.
International Nuclear Information System (INIS)
Stine, R.D.; Ross, G.F.; Silvernail, C.
1979-01-01
The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed
Digital automatic gain amplifier
Holley, L. D.; Ward, J. O. (Inventor)
1978-01-01
A circuit is described for adjusting the amplitude of a reference signal to a predetermined level so as to permit subsequent data signals to be interpreted correctly. The circuit includes an operational amplifier having a feedback circuit connected between an output terminal and an input terminal; a bank of relays operably connected to a plurality of resistors; and a comparator comparing an output voltage of the amplifier with a reference voltage and generating a compared signal responsive thereto. Means is provided for selectively energizing the relays according to the compared signal from the comparator until the output signal from the amplifier equals to the reference signal. A second comparator is provided for comparing the output of the amplifier with a second voltage source so as to illuminate a lamp when the output signal from the amplifier exceeds the second voltage.
Wideband pulse amplifiers for the NECTAr chip
Energy Technology Data Exchange (ETDEWEB)
Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others
2012-12-11
The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.
Auto-Zero Differential Amplifier
Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)
2017-01-01
An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.
Theoretical study of fiber Raman amplifiers by broadband pumps through moment method
International Nuclear Information System (INIS)
Teimorpour, M. H.; Pourmoghadas, A.; Rahimi, L.; Farman, F.; Bahrampour, A.
2007-01-01
The governing equations of Raman optical fiber amplifier with broadband pumps in the steady state are a system of Uncountable Nonlinear Ordinary Differential Equations. In this paper, the Moment Method is used to reduce the uncountable system of Nonlinear Ordinary Differential Equations to a system of finite number of Nonlinear Ordinary Differential Equations. This system of equations is solved numerically. It is shown that the Moment Method is a precise and fast technique for analysis of optical fiber Raman Amplifier with broadband pumps.
DEFF Research Database (Denmark)
Jeppesen, Palle
1997-01-01
Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....
LEHR, M. A.; KILPATRICK, C. W.; WILKERSON, R. C.; CONN, J. E.
2005-01-01
Random amplified polymorphic DNA (RAPD) diagnostic bands are one tool used to differentiate cryptic mosquito species in the Anopheles albitarsis Complex. Monophyly of four species (A. albitarsis Lynch-Arribálzaga, A. albitarsis B, A. deaneorum Rosa-Freitas, and A. marajoara Galvão & Damasceno) currently identified with the RAPD technique was assessed using sequences of the cytochrome oxidase I (COI) mitochondrial DNA (mtDNA) gene. Maximum parsimony, maximum likelihood, and Bayesian analyses s...
DEFF Research Database (Denmark)
Liu, Xiang; Hu, Hao; Chandrasekhar, S.
2014-01-01
We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all......-optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled...
Design and simulation of a gyroklystron amplifier
Energy Technology Data Exchange (ETDEWEB)
Chauhan, M. S., E-mail: mschauhan.rs.ece@iitbhu.ac.in; Swati, M. V.; Jain, P. K. [Centre of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)
2015-03-15
In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.
Nova chain design and performance
International Nuclear Information System (INIS)
Simmons, W.W.; Glaze, J.A.; Trenholme, J.B.; Hagen, W.F.
1980-01-01
During the past year design of the Nova laser has undergone significant change as a result of developments in our laser glass and optical coating evaluation programs. Two notable aspects of the glass development program deserve emphasis. First, vendor qualification for production of fluorophosphate laser glass is progressing satisfactorily. There is a reasonable expectation that vendors can meet fluorophosphate glass specifications within Nova schedule constraints. Secondly, recent gain saturation measurements have shown that the saturation fluence of the fluorophosphate glass is larger than previously supposed (approx. 5.5 J/cm 2 ) and in fact is somewhat larger than Shiva silicate glasses. Hence, performance of Nova for pulses in the 3 ns and longer range should be satisfactory. For pulses in the 1 ns regime, of course, the fluorophosphate chain will have superior performance to that of silicate because of its low nonlinear index of refraction (approx. 30% that of silicate). These and other considerations have led us to choose a chain design based upon the use of fluorophosphate glass in our amplifiers
Electrospun amplified fiber optics.
Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario
2015-03-11
All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.
International Nuclear Information System (INIS)
Lepetit, J.; Poussier, E.
1984-01-01
This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr
A micropower electrocardiogram amplifier.
Fay, L; Misra, V; Sarpeshkar, R
2009-10-01
We introduce an electrocardiogram (EKG) preamplifier with a power consumption of 2.8 muW, 8.1 muVrms input-referred noise, and a common-mode rejection ratio of 90 dB. Compared to previously reported work, this amplifier represents a significant reduction in power with little compromise in signal quality. The improvement in performance may be attributed to many optimizations throughout the design including the use of subthreshold transistor operation to improve noise efficiency, gain-setting capacitors versus resistors, half-rail operation wherever possible, optimal power allocations among amplifier blocks, and the sizing of devices to improve matching and reduce noise. We envision that the micropower amplifier can be used as part of a wireless EKG monitoring system powered by rectified radio-frequency energy or other forms of energy harvesting like body vibration and body heat.
Directory of Open Access Journals (Sweden)
Mrityunjoy Roy
2013-04-01
Full Text Available In this paper, a technique has been developed to determine the optimum mix of logistic service providers of a make-to-order (MTO supply chain. A serial MTO supply chain with different stages/ processes has been considered. For each stage different logistic service providers with different mean processing lead times, but same lead time variances are available. A realistic assumption that for each stage, the logistic service provider who charges more for his service consumes less processing lead time and vice-versa has been made in our study. Thus for each stage, for each service provider, a combination of cost and mean processing lead time is available. Using these combinations, for each stage, a polynomial curve, expressing cost of that stage as a function of mean processing lead time is fit. Cumulating all such expressions of cost for the different stages along with incorporation of suitable constraints arising out of timely delivery, results in the formulation of a constrained nonlinear cost optimization problem. On solving the problem using mathematica, optimum processing lead time for each stage is obtained. Using these optimum processing lead times and by employing a simple technique the optimum logistic service provider mix of the supply chain along with the corresponding total cost of processing is determined. Finally to examine the effect of changes in different parameters on the optimum total processing cost of the supply chain, sensitivity analysis has been carried out graphically.
Class-E Amplifier Design Improvements for GSM Frequencies
Directory of Open Access Journals (Sweden)
Z. Nadir
2011-06-01
Full Text Available Efficient power amplifiers are essential in portable battery-operated systems such as mobile phones. Also, the power amplifier (PA is the most power-consuming building block in the transmitter of a portable system. This paper investigates how the efficiency of the power amplifier (which is beneficial for multiple applications in communcation sector can be improved by increasing the efficiency of switching mode class E power amplifiers for frequencies of 900 MHz and 1800 MHz. The paper tackles modeling, design improvements and verification through simulation for higher efficiencies. This is the continuation of previous work by the authors. These nonlinear power amplifiers can only amplify constant-envelope RF signals without introducing significant distortion. Mobile systems such as Advanced Mobile Phone System (AMPS and Global System for Mobile communications (GSM use modulation schemes which generate constant amplitude RF outputs in order to use efficient but nonlinear power amplifiers. Improvements in designs are suggested and higher efficiencies are achieved, to the tune of 67.1% (for 900 MHz and 67.0% (1800 MHz.
Liu, Xiang; Hu, Hao; Chandrasekhar, S; Jopson, R M; Gnauck, A H; Dinu, M; Xie, C; Winzer, P J
2014-03-24
We experimentally demonstrate the generation of 1.024-Tb/s Nyquist-WDM phase-conjugated vector twin waves (PCTWs), consisting of eight 128-Gb/s polarization-division-multiplexed QPSK signals and their idlers, by a broadband polarization-insensitive fiber optic parametric amplifier. This novel all-optical signal processing approach to generate WDM-PCTWs enables a 2-fold reduction in the needed optical transmitters as compared to the conventional approach where each idler is generated by a dedicated transmitter. Digital coherent superposition of the twin waves at the receiver enables more than doubled reach in a dispersion-managed transmission link. We further study the impact of polarization-mode dispersion on the performance gain brought by the phase-conjugated twin waves, showing a gain of ~3.8 dB in signal quality factors.
Invited review article: The Josephson bifurcation amplifier.
Vijay, R; Devoret, M H; Siddiqi, I
2009-11-01
We review the theory, fabrication, and implementation of the Josephson bifurcation amplifier (JBA). At the core of the JBA is a nonlinear oscillator based on a reactively shunted Josephson junction. A weak input signal to the amplifier couples to the junction critical current I(0) and results in a dispersive shift in the resonator plasma frequency omega(p). This shift is enhanced by biasing the junction with a sufficiently strong microwave current I(rf) to access the nonlinear regime where omega(p) varies with I(rf). For a drive frequency omega(d) such that Omega=2Q(1-omega(d)/omega(p))>3, the oscillator enters the bistable regime where two nondissipative dynamical states O(L) and O(H), which differ in amplitude and phase, can exist. The sharp I(0) dependent transition from O(L) to O(H) forms the basis for a sensitive digital threshold amplifier. In the vicinity of the bistable regime (Omegaamplifier performance and discuss two specific applications--the readout of superconducting qubits (digital mode) and dispersive microwave magnetometry (analog mode).
Nonlinear Optics and Applications
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Characterisation of random DFB Raman laser amplifier for WDM transmission.
Rosa, Paweł; Rizzelli, Giuseppe; Tan, Mingming; Harper, Paul; Ania-Castañόn, Juan Diego
2015-11-02
We perform a full numerical characterisation of half-open cavity random DFB Raman fibre laser amplifier schemes for WDM transmission in terms of signal power variation, noise and nonlinear impairments, showcasing the excellent potential of this scheme to provide amplification for DWDM transmission with very low gain variation.
A weak current amplifier and output circuit used in nuclear weighing scales
International Nuclear Information System (INIS)
Sun Jinhua; Zheng Mingquan; Wang Mingqian; Jia Changchun; Jin Hanjuan; Shi Qicun; Tang Ke
1998-01-01
A weak current amplifier and output circuit with a maximum nonlinear error of +-0.06% has been developed. Experiments show that it can work stably and therefore be used in nuclear industrial instruments
Extinction Ratio and Gain Optimization of Dual- Pump Degenerate-Idler Phase Sensitive Amplifiers
DEFF Research Database (Denmark)
Kang, Ning; Lund-Hansen, Toke; Seoane, Jorge
2011-01-01
Numerical optimization of dual-pump degenerateidler phase sensitive amplifiers is performed for Al-doped and standard highly nonlinear fibers. Design considerations for operating the PSAs at an optimum combination of gain and extinction ratio are discussed.......Numerical optimization of dual-pump degenerateidler phase sensitive amplifiers is performed for Al-doped and standard highly nonlinear fibers. Design considerations for operating the PSAs at an optimum combination of gain and extinction ratio are discussed....
Electronic amplifiers for automatic compensators
Polonnikov, D Ye
1965-01-01
Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as
Simplified design of IC amplifiers
Lenk, John
1996-01-01
Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif
International Nuclear Information System (INIS)
Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng
2013-01-01
For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β
Directory of Open Access Journals (Sweden)
G. Tong Zhou
2010-01-01
Full Text Available Digital predistortion is an effective means to compensate for the nonlinear effects of a memoryless system. In case of a cellular transmitter, a digital baseband predistorter can mitigate the undesirable nonlinear effects along the signal chain, particularly the nonlinear impairments in the radiofrequency (RF amplifiers. To be practically feasible, the implementation complexity of the predistorter must be minimized so that it becomes a cost-effective solution for the resource-limited wireless handset. This paper proposes optimizations that facilitate the design of a low-cost high-performance adaptive digital baseband predistorter for memoryless systems. A comparative performance analysis of the amplitude and power lookup table (LUT indexing schemes is presented. An optimized low-complexity amplitude approximation and its hardware synthesis results are also studied. An efficient LUT predistorter training algorithm that combines the fast convergence speed of the normalized least mean squares (NLMSs with a small hardware footprint is proposed. Results of fixed-point simulations based on the measured nonlinear characteristics of an RF amplifier are presented.
Nonlinear distortion in wireless systems modeling and simulation with Matlab
Gharaibeh, Khaled M
2011-01-01
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems
Jones, Morgan
2013-01-01
Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or
2010-05-01
Technical University of Denmark, Oersteds Plads 343, DK-2800 Kgs. Lyngby, Denmark lris@fotonik.dtu.dk, karo@fotonik.dtu.dk Abstract: Impact on the second...1990). 9. P. Kylemark, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Semi-analytic saturation theory of fiber optical parametric amplifiers,” J...a flat broadband gain over 87 nm. 2. Theory In general we consider an electric field consisting of four CW waves, at frequencies ω1 through ω4. In non
Hollister, Allen L
2007-01-01
In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model
Superconducting digital logic amplifier
International Nuclear Information System (INIS)
Przybysz, J.X.
1989-01-01
This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions
Nonlinear optical interactions in silicon waveguides
Directory of Open Access Journals (Sweden)
Kuyken B.
2017-03-01
Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Laser Doppler velocimetry for measurement of nonlinearity in the vibrations of the middle ear
Peacock, John; Dirckx, Joris
2014-05-01
At audible Frequencies and at sound pressure below 96 dB SPL the mammalian middle ear is known to behave as an almost entirely linear system. However, as we go to higher sound pressure levels, smaller nonlinear distortions begin to appear, and increase with increasing pressure level. Some modern hearing aids seek to remedy hearing impairment by amplifying sounds to sound pressure levels as high as 130 or 140 dB SPL. Thus at these levels the small nonlinear distortions can become significant, and understanding their behaviour could help us to improve the design of these hearing aids. In order to measure the tiny vibration amplitudes of the middle ear, and to detect the even smaller nonlinear distortions, a very sensitive measurement and analysis method is needed. The tiny vibration amplitudes of the middle ear can easily be measured with laser vibrometry. Thanks to the highly linear response of LDV, the technique is also able to measure small nonlinearities. To detect the nonlinear distortions we developed a sophisticated measurement and analysis method based on the use of multisine excitation signals. These signals are specially designed to measure nonlinear systems. We will describe our set up and our stimulation and analysis method in detail, we will then go on to present some results of measurements at different points along the ossicular chain.
Metatronic transistor amplifier
Chettiar, Uday K.; Engheta, Nader
2015-10-01
Utilizing the notion of metamaterials, in recent years the concept of a circuit and lumped circuit elements have been extended to the optical domains, providing the paradigm of optical metatronics, i.e., metamaterial-inspired optical nanocircuitry, as a powerful tool for design and study of more complex systems at the nanoscale. In this paper we present a design for a new metatronic element, namely, a metatronic transistor that functions as an amplifier. As shown by our analytical and numerical paper here, this metatronic transistor provides gain as well as isolation between the input and output ports of such two-port device. The cascadability and fan-out aspects of this element are also explored.
Karthick, S.; Thirupugalmani, K.; Shanmugam, G.; Kannan, V.; Brahadeeswaran, S.
2018-03-01
We report on the studies performed on Morpholinium 2-chloro-4-nitrobenzoate (M2C4N), a second order nonlinear optical (NLO) material, which has been proved to crystallize with chiral structure as compared to its other two variants. The synthesized powder was studied for its composition, crystalline phase and NLO efficiency and phasematchability. The solubility and the metastable zone width (MSZW) of the title compound were measured for the growth of bulk crystals of M2C4N. A smoky pattern observed in the middle region of the crystals that could prevent it from optical applications was greatly reduced, through suitable modifications in the growth process. The optical properties such as luminescence and laser damage threshold resistance were studied for the bulk crystals whereas the molecular vibrations of M2C4N were studied through Fourier transform infrared (FTIR) and FT-Raman spectral analysis using the polycrystalline powders derived from the single crystals. In addition, quantum chemical studies on M2C4N molecule were performed by using density functional theory (DFT) at the B3LYP/6-311++G (d, p) basis set. These studies showed that the M2C4N is a phasematchable NLO crystal and could be used for device fabrication.
Modeling of semiconductor optical amplifiers
DEFF Research Database (Denmark)
Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther
We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....
The Modulation Response of a Semiconductor Laser Amplifier
DEFF Research Database (Denmark)
Mørk, Jesper; Mecozzi, Antonio; Eisenstein, Gadi
1999-01-01
We present a theoretical analysis of the modulation response of a semiconductor laser amplifier. We find a resonance behavior similar to the well-known relaxation oscillation resonance found in semiconductor lasers, but of a different physical origin. The role of the waveguide (scattering) loss...... are analyzed. The nonlinear transparent waveguide, i.e. an amplifier saturated to the point where the stimulated emission balances the internal losses, is shown to be analytically solvable and is a convenient vehicle for gaining qualitative understanding of the dynamics of modulated semiconductor optical...
Gain dynamics and saturation in semiconductor quantum dot amplifiers
DEFF Research Database (Denmark)
Berg, Tommy Winther; Mørk, Jesper; Hvam, Jørn Märcher
2004-01-01
Quantum dot (QD)-based semiconductor optical amplifiers offer unique properties compared with conventional devices based on bulk or quantum well material. Due to the bandfilling properties of QDs and the existence of a nearby reservoir of carriers in the form of a wetting layer, QD semiconductor...... optical amplifiers may be operated in regimes of high linearity, i.e. with a high saturation power, but can also show strong and fast nonlinearities by breaking the equilibrium between discrete dot states and the continuum of wetting layer states. In this paper, we analyse the interplay of these two...
Nonlinear Phase Noise Compensation in Experimental WDM Systems with 256QAM
DEFF Research Database (Denmark)
Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson
2017-01-01
Nonlinear phase noise (NLPN) is studied in an experimental wavelength division multiplexed (WDM) system operating at 256QAM. Extremely narrow linewidth lasers (extracting the phase part of the nonlinear noise in a Raman amplified link. Based...
Zheng, Qiang; Li, Kai
2017-07-01
Amplifier is at the heart of experiments carrying out the precise measurement of a weak signal. An idea quantum amplifier should have a large gain and minimum added noise simultaneously. Here, we consider the quantum measurement properties of the cavity with the OPA medium in the op-amp mode to amplify an input signal. We show that our nonlinear-cavity quantum amplifier has large gain in the single-value stable regime and achieves quantum limit unconditionally. Supported by the National Natural Science Foundation of China under Grant Nos. 11365006, 11364006, and the Natural Science Foundation of Guizhou Province QKHLHZ [2015]7767
Cascade Structure of Digital Predistorter for Power Amplifier Linearization
Directory of Open Access Journals (Sweden)
E. B. Solovyeva
2015-12-01
Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.
Fully differential cryogenic transistor amplifier
Beev, Nikolai; Kiviranta, Mikko
2013-10-01
We have constructed a dc-coupled differential amplifier capable of operating in the 4.2 K-300 K temperature range. The amplifier can be operated at high-bias setting, where it dissipates 5 mW, has noise temperature TN ≈ 0.7 K at RS ≈ 5 kΩ and >40 MHz bandwidth at 4.2 K bath temperature. The bias setting can be adjusted: at our lowest tested setting the amplifier dissipates 2 MHz bandwidth. The 1/f noise corner frequency is a few times 10 kHz. We foresee the amplifier to have an application in the readout of Superconducting Quantum Interference Devices (SQUIDs), Superconducting Tunnel Junction Detectors (STJs) and Transition Edge Sensors (TESes). We have verified the practical use of the amplifier by reading out a 4.2 K 480-SQUID array with 40 MHz bandwidth and <8 × 10-8 Φ0/Hz1/2 flux noise.
Millimeter-wave power amplifiers
du Preez, Jaco
2017-01-01
This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.
A near-quantum-limited Josephson traveling-wave parametric amplifier.
Macklin, C; O'Brien, K; Hover, D; Schwartz, M E; Bolkhovsky, V; Zhang, X; Oliver, W D; Siddiqi, I
2015-10-16
Detecting single-photon level signals—carriers of both classical and quantum information—is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz with sufficient dynamic range to read out 20 superconducting qubits. To achieve this performance, we introduce a subwavelength resonant phase-matching technique that enables the creation of nonlinear microwave devices with unique dispersion relations. We benchmark the amplifier with weak measurements, obtaining a high quantum efficiency of 75% (70% including noise added by amplifiers following the Josephson amplifier). With a flexible design based on compact lumped elements, this Josephson amplifier has broad applicability to microwave metrology and quantum optics. Copyright © 2015, American Association for the Advancement of Science.
Modeling Distortion Effects in Class-D Amplifier Filter Inductors
DEFF Research Database (Denmark)
Knott, Arnold; Stegenborg-Andersen, Tore; Thomsen, Ole Cornelius
2010-01-01
Distortion is generally accepted as a quantifier to judge the quality of audio power amplifiers. In switchmode power amplifiers various mechanisms influence this performance measure. After giving an overview of those, this paper focuses on the particular effect of the nonlinearity of the output...... filter components on the audio performance. While the physical reasons for both, the capacitor and the inductor induced distortion are given, the practical in depth demonstration is done for the inductor only. This includes measuring the inductors performance, modeling through fitting and resulting...... into simulation models. The fitted models achieve distortion values between 0.03 % and 0.2 % as a basis to enable the design of a 200 W amplifier....
Modal instabilities in very large mode area rod fiber amplifiers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Hansen, Kristian Rymann; Laurila, Marko
with the finite element method to allow complex micro structured fibers to be considered. Thereby the modal instability threshold is estimated for very large mode area fiber amplifiers of various photonic crystal fiber designs. Experimentally the modal instability threshold for very large mode area fiber......Optical fiber amplifiers have gained increased scientific and commercial interest due to high output powers with easy operation and maintenance. The main advantages of fiber amplifiers are good thermal properties, due to a large surface/volume ratio, excellent beam quality and stability [1]. Very...... large core fiber areas are highly desirable to mitigate various nonlinear processes, such as Kerr, four-wave mixing, Raman, and Brillouin effects. It is difficult to scale up the core area without going into a multi-moded regime. Microstructured fiber technology has allowed core diameters of 60...
Coherent combination of ultrafast fiber amplifiers
International Nuclear Information System (INIS)
Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N
2016-01-01
We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)
Ultrashort-pulse laser machining system employing a parametric amplifier
Perry, Michael D.
2004-04-27
A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.
Noise Shaping Filter Compensating PWM Distortion for Fully Digital Amplifier
Yoneya, Akihiko
The full-digital audio amplifiers have several merits such as a high power enabling a small size of the amplifier and digital implementation of the signal processing which allows desired precision of the processing except for the final stage switching amplifiers. Unfortunately, the pulse width modulation (PWM) causes signal distortions because of the non-linearity of the modulation from the viewpoint of the transient response. This paper proposes a compensation method of the PWM distortion with feedback approach. In the noise-shaping filter of the delta-sigma modulator to calculate the pulse codes for the PWM, the distortion caused by the PWM is evaluated and fed it back to compensate the distortion. Eventually the filter is implemented as a state-variable filter with non-linear feedback from the quantizer. The calculation of the filter elements is also described. By using proposed filters, PWM signals with small distortions and small floor noise can be obtained to realize high-fidelity audio amplifiers.
Small signal microwave amplifier design
Grosch, Theodore
2000-01-01
This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Measurements of non-linear noise re-distribution in an SOA
DEFF Research Database (Denmark)
Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper
2004-01-01
Measurements of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution with a strong power and bandwidth dependence.......Measurements of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution with a strong power and bandwidth dependence....
New Packaging for Amplifier Slabs
Energy Technology Data Exchange (ETDEWEB)
Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-03-18
The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.
Operational amplifiers theory and design
Huijsing, Johan
2017-01-01
This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...
TARC: Carlo Rubbia's Energy Amplifier
Laurent Guiraud
1997-01-01
Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.
Randomly amplified polymorphic DNA-polymerase chain reaction ...
Indian Academy of Sciences (India)
Unknown
The polymorphic DNA markers that were shown to genetically link to a trait of interest could be used for .... 2.3 Primers, markers and amplification conditions. Out of 20 decamer primers (Operon Technologies, ..... and stock structure of school mackerel and spotted mackerel in northern Australian waters; J. Fish Biol. 53 543– ...
Randomly amplified polymorphic DNA-polymerase chain reaction ...
Indian Academy of Sciences (India)
Unknown
Department of Animal Science, College of Industry Science, Kongju National University,. Yesan-kun ..... Appl. Genet. 97 1314–1320. Mohd-Azmi M, Ali A S and Kheng W K 2000 DNA finger- printing of red jungle fowl, village chicken and broilers;.
Demonstration of a reversible phase-insensitive optical amplifier
Yoshikawa, Jun-Ichi; Miwa, Yoshichika; Filip, Radim; Furusawa, Akira
2011-05-01
We experimentally demonstrate phase-insensitive linear amplification of a continuous variable system in the optical regime, preserving the ancilla system at the output. Since our amplification operation is unitary up to small excess noise, it is reversible beyond the classical limit. Here, entanglement between the amplified output system and the ancilla system is the resource for the reversibility, and the amplification gain is G=2.0. In addition, combining this amplifier with a beamsplitter, we also demonstrate approximate cloning of coherent states where an anticlone is present. We investigate the reversibility by reconstructing the initial state from the output correlations, and the results are slightly beyond the cloning limit. Furthermore, full characterization of the amplifier and cloner is given by using coherent states with several different mean values as inputs. Our amplifier is based on linear optics, offline-prepared additional ancillas in nonclassical states, and homodyne measurements followed by feedforward. Squeezed states are used as the additional ancillas, and nonlinear optical effects are exploited only for their generation. They introduce nonclassicality into the amplifying operation, making entanglement at the output.
Ways to suppress click and pop for class D amplifiers
Haishi, Wang; Bo, Zhang; Jiang, Sun
2012-08-01
Undesirable audio click and pop may be generated in a speaker or headphone. Compared to linear (class A/B/AB) amplifiers, class D amplifiers that comprise of an input stage and a modulation stage are more prone to producing click and pop. This article analyzes sources that generate click and pop in class D amplifiers, and corresponding ways to suppress them. For a class D amplifier with a single-ended input, click and pop is likely to be due to two factors. One is from a voltage difference (VDIF) between the voltage of an input capacitance (VCIN) and a reference voltage (VREF) of the input stage, and the other one is from the non-linear switching during the setting up of the bias and feedback voltages/currents (BFVC) of the modulation stage. In this article, a fast charging loop is introduced into the input stage to charge VCIN to roughly near VREF. Then a correction loop further charges or discharges VCIN, substantially equalizing it with VREF. Dummy switches are introduced into the modulation stage to provide switching signals for setting up BFVC, and the power switches are disabled until the BFVC are set up successfully. A two channel single-ended class D amplifier with the above features is fabricated with 0.5 μm Bi-CMOS process. Road test and fast Fourier transform analysis indicate that there is no noticeable click and pop.
Energy Technology Data Exchange (ETDEWEB)
Kautz, H.; Selman, B.; Milewski, A. [AT& T Laboratories, Murray Hill, NJ (United States)
1996-12-31
We propose an agent-based framework for assisting and simplifying person-to-person communication for information gathering tasks. As an example, we focus on locating experts for any specified topic. In our approach, the informal person-to-person networks that exist within an organization are used to {open_quotes}referral chain{close_quotes} requests for expertise. User-agents help automate this process. The agents generate referrals by analyzing records of e-mail communication patterns. Simulation results show that the higher responsiveness of an agent-based system can be effectively traded for the higher accuracy of a completely manual approach. Furthermore, preliminary experience with a group of users on a prototype system has shown that useful automatic referrals can be found in practice. Our experience with actual users has also shown that privacy concerns are central to the successful deployment of personal agents: an advanced agent-based system will therefore need to reason about issues involving trust and authority.
DEFF Research Database (Denmark)
Hughes, S.; Borri, P.; Knorr, A.
2001-01-01
We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....
A high speed, medium voltage pulse amplifier for diode reverse transient measurements
Chudobiak, Michael J.
1995-11-01
A dc-coupled nonlinear pulse amplifier circuit is presented. The circuit presented can produce 40 V peak-to-peak pulses with 3 ns rise and fall times. This speed is obtained by using class D transistor amplifier stages. This circuit is shown to be useful for measuring the reverse recovery transients of fast switching diodes such as the 1N4148, and fast recovery power rectifiers.
Thermal effects in high average power optical parametric amplifiers.
Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas
2013-03-01
Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Spectroscopic amplifier for pin diode
International Nuclear Information System (INIS)
Alonso M, M. S.; Hernandez D, V. M.; Vega C, H. R.
2014-10-01
The photodiode remains the basic choice for the photo-detection and is widely used in optical communications, medical diagnostics and field of corpuscular radiation. In detecting radiation it has been used for monitoring radon and its progeny and inexpensive spectrometric systems. The development of a spectroscopic amplifier for Pin diode is presented which has the following characteristics: canceler Pole-Zero (P/Z) with a time constant of 8 μs; constant gain of 57, suitable for the acquisition system; 4th integrator Gaussian order to waveform change of exponential input to semi-Gaussian output and finally a stage of baseline restorer which prevents Dc signal contribution to the next stage. The operational amplifier used is the TLE2074 of BiFET technology of Texas Instruments with 10 MHz bandwidth, 25 V/μs of slew rate and a noise floor of 17 nv/(Hz)1/2. The integrated circuit has 4 operational amplifiers and in is contained the total of spectroscopic amplifier that is the goal of electronic design. The results show like the exponential input signal is converted to semi-Gaussian, modifying only the amplitude according to the specifications in the design. The total system is formed by the detector, which is the Pin diode, a sensitive preamplifier to the load, the spectroscopic amplifier that is what is presented and finally a pulse height analyzer (Mca) which is where the spectrum is shown. (Author)
Kleinberg, L.
1982-01-01
Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.
Johnson, Ian T.
2018-01-01
A chain poset, by definition, consists of chains of ordered elements in a poset. We study the chain posets associated to two posets: the Boolean algebra and the poset of isotropic flags. We prove that, in both cases, the chain posets satisfy the strong Sperner property and are rank-log concave.
DEFF Research Database (Denmark)
Borri, Paola; Scaffetti, Stefano; Mørk, Jesper
1999-01-01
The nonlinear gain response of InGaAsP bulk optical amplifiers under ultrafast optical excitation at 1.53 ìm investigated. In particular, the dependence of the gain saturation energy on the pulse duration is measured in the range of pulse durations from 150 fs to 11 ps, for different bias current...... and lengths of the amplifier. By comparison with a theoretical model, a critical pulsewidth is inferred below which nonlinear carrier dynamics like carrier heating and spectral hole burning dominate the gain saturation....
Capacitively-coupled chopper amplifiers
Fan, Qinwen; Huijsing, Johan H
2017-01-01
This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.
All-Glass Fiber Amplifier Pumped by Ultra-High Brightness Pumps
2016-02-15
established. While kW- class Yb-doped cw fiber lasers are inherently nonlinear devices [7], using phase-modulated input to seed these fiber amplifiers ...Ding J., Holten, R., Ahmadi P., Wang C., Guintrand C., Farley, K., Christensen S., Tankala, K., "Performance of kW class fiber amplifiers spanning a...Goldizen, K., Murphy, D ., Sanchez, A. and Fan, T. Y., "Coherent combining of a 4 kW, eight-element fiber amplifier array," Opt. Lett., 36(14), 2686 (2011
National Research Council Canada - National Science Library
Rassias, Themistocles M
1987-01-01
... known that nonlinear partial differential equations can not be treated in the same systematic way as linear ones and this volume provides, among other things, proofs of existence and uniqueness theorems for nonlinear differential equations of a global nature. However, the basic techniques which have proven to be efficient in dealing with li...
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
Microfluidic polymerase chain reaction
Maltezos, George; Gomez, Alvaro; Zhong, Jiang; Gomez, Frank A.; Scherer, Axel
2008-12-01
We implement microfluidic technology to miniaturize a thermal cycling system for amplifying DNA fragments. By using a microfluidic thermal heat exchanger to cool a Peltier junction, we have demonstrated rapid heating and cooling of small volumes of solution. We use a miniature K-type thermocouple to provide a means for in situ sensing of the temperature inside the microrefrigeration system. By combining the thermocouple, two power supplies controlled by a relay system, and computer automation, we reproduce the function of a commercial polymerase chain reaction thermal cycler and demonstrate amplification of a DNA sample of about 1000 base pairs.
Picosecond optical nonlinearities in symmetrical and unsymmetrical ...
Indian Academy of Sciences (India)
We present our experimental results on the picosecond nonlinear optical. (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the. Z-scan technique. Both the open-aperture ... Z-scan measurements were performed using the amplified Ti:sapphire laser system. (LEGEND, Coherent) delivering ...
Globalization to amplify economic climate losses
Otto, C.; Wenz, L.; Levermann, A.
2015-12-01
Economic welfare under enhanced anthropogenic carbon emissions and associated future warming poses a major challenge for a society with an evolving globally connected economy. Unabated climate change will impact economic output for example through heat-stress-related reductions in productivity. Since meteorologically-induced production reductions can propagate along supply chains, structural changes in the economic network may influence climate-related losses. The role of the economic network evolution for climate impacts has been neither quantified nor qualitatively understood. Here we show that since the beginning of the 21st century the structural change of the global supply network has been such that an increase of spillover losses due to unanticipated climatic events has to be expected. We quantify primary, secondary and higher-order losses from reduced labor productivity under past and present economic and climatic conditions and find that indirect losses are significant and increase with rising temperatures. The connectivity of the economic network has increased in such a way as to foster the propagation of production loss. This supply chain connectivity robustly exhibits the characteristic distribution of self-organized criticality which has been shifted towards higher values since 2001. Losses due to this structural evolution dominated over the effect of comparably weak climatic changes during this decade. Our finding suggests that the current form of globalization may amplify losses due to climatic extremes and thus necessitate structural adaptation that requires more foresight than presently prevalent.
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
High power pulsed sources based on fiber amplifiers
Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre
2017-11-01
Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.
Zhu, Hong-Ming; Yu, Yu; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2017-12-01
We present a direct approach to nonparametrically reconstruct the linear density field from an observed nonlinear map. We solve for the unique displacement potential consistent with the nonlinear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to the nonlinear scale (rδrδL>0.5 for k ≲1 h /Mpc ) with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully nonlinear fields, potentially substantially expanding the baryon acoustic oscillations and redshift space distortions information content of dense large scale structure surveys, including for example SDSS main sample and 21 cm intensity mapping initiatives.
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
2016-07-01
architectures , practical nonlinearities, nonlinear dynamics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8. NUMBER OF PAGES...performers from Mesodynamic Architectures (MESO) and uPNT all to include devices in these runs. This cost-sharing was planned, and is necessary for...contributions to the performance of MEMS gyroscopes. In particular, we have demonstrated for the first time that Parametric Amplification can improve the
Jamshidi, Kambiz; Salehi, Jawad A.
2005-05-01
This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.
Low Cost RF Amplifier for Community TV
Ch, Syafaruddin; Sasongko, Sudi Mariyanto Al; Made Budi Suksmadana, I.; Mustiko Okta Muvianto, Cahyo; Ariessaputra, Suthami
2016-01-01
he capability of television to deliver audio video makes this media become the most effective method to spread information. This paper presents an experiment of RF amplifier design having low-cost design and providing sufficient RF power particularly for community television. The RF amplifier consists of two stages of amplifier. The first stage amplifier was used to leverage output of TV modulator from 11dBm to enable to drive next stage amplifier. CAD simulation and fabrication were run to reach optimum RF amplifier design circuit. The associated circuit was made by determining stability circle, stability gain, and matching impedance. Hence, the average power of first stage RF amplifier was 24.68dBm achieved. The second stage used RF modules which was ready match to 50 ohm for both input and output port. The experiment results show that the RF amplifier may operate at frequency ranging from 174 to 230MHz. The average output power of the 2nd stage amplifier was 33.38 Watt with the overall gain of 20.54dB. The proposed RF amplifier is a cheap way to have a stable RF amplifier for community TV. The total budget for the designed RF amplifier is only a 1/5 compared to local design of final TV amplifier.
Naturally stable Sagnac-Michelson nonlinear interferometer.
Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C
2016-12-01
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.
Single conversion stage amplifier - SICAM
Energy Technology Data Exchange (ETDEWEB)
Ljusev, P.
2005-12-15
This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and
Superconducting switch and amplifier device
International Nuclear Information System (INIS)
Faris, S.M.
1982-01-01
An amplifying or switching superconductive device is described whose current-voltage characteristic is drastically altered by heavy injection of excess energetic quasi-particles. In this device, the superconducting bandgap of a superconducting layer is greatly altered by overinjection of energetic quasi-particles so that the bandgap changes greatly with respect to its thermal equilibrium value, and in most cases is made to vanish. In a preferred embodiment, a three electrode device is fabricated where at least one of the electrodes is a superconductor. Tunnel barriers are located between the electrodes. A first tunnel junction is used to heavily inject energetic quasi-particles into the superconducting electrode to change its superconducting bandgap drastically. In turn, this greatly modifies the currentvoltage characteristics of the second tunnel junction. This device can be used to provide logic circuits, or as an amplifier, and has an output sufficiently large that it can drive other similar devices
All optical logic gates using semiconductor optical amplifiers
McAulay, Alastair D.
2002-11-01
All-optical logic can avoid expensive demultiplexing back to electronics in telecommunications. The term all-optical is used to described processing in which all signal paths are optical whether used for control or information. Semiconductor optical amplifiers (SOAs) can perform all optical logic because they have nonlinearity, low latency, and require low power. We use highly accurate computer models to simulate and evaluate NOR and NXOR logic gates using SOAs. These elements can act as building blocks for advanced logic systems. For example, in previous publications we described an approach to constructing arithmetic units from optical logic elements.
Recent advances in semiconductor optical amplifiers and their applications
DEFF Research Database (Denmark)
Stubkjær, Kristian; Mikkelsen, Benny; Djurhuus, Torsten
1992-01-01
The authors review recent advances in SOAs (semiconductor optical amplifiers) and some of their applications. SOAs are under rapid development to achieve polarization independent gain, low facet reflectivities, good coupling to optical fibers, and high saturation power. The package SOA can be made...... compact and possibly inexpensive, but its main advantage is the potential for optoelectronic integration. SOAs may be used as boosters and preamplifiers, but in the case of multichannel systems attention must be given to the inherent nonlinear behavior that is due to the short lifetime of the injected...
Identification of amplified fragment length polymorphism (AFLP ...
African Journals Online (AJOL)
Identification of amplified fragment length polymorphism (AFLP) fragments linked to soybean mosaic virus resistance gene in Glycine soja and conversion to a sequence characterized amplified regions (SCAR) marker for rapid selection.
Higher order mode optical fiber Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.
2016-01-01
We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....
High power regenerative laser amplifier
Energy Technology Data Exchange (ETDEWEB)
Miller, John L. (Livermore, CA); Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Dublin, CA); Zapata, Luis E. (Livermore, CA)
1994-01-01
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.
1977-01-01
The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.
Design considerations for a high power, ultrabroadband optical parametric chirped-pulse amplifier.
Prandolini, M J; Riedel, R; Schulz, M; Hage, A; Höppner, H; Tavella, F
2014-01-27
A conceptual design of a high power, ultrabroadband optical parametric chirped-pulse amplifier (OPCPA) was carried out comparing nonlinear crystals (LBO and BBO) for 810 nm centered, sub-7.0 fs pulses with energies above 1 mJ. These amplifiers are only possible with a parallel development of kilowatt-level OPCPA-pump amplifiers. It is therefore important to know good strategies to use the available OPCPA-pump energy efficiently. Numerical simulations, including self- and cross-phase modulation, were used to investigate the critical parameters to achieve sufficient spectral and spatial quality. At high output powers, thermal absorption in the nonlinear crystals starts to degrade the output beam quality. Strategies to minimize thermal effects and limits to the maximum average power are discussed.
Improved charge amplifier using hybrid hysteresis compensation
Amin-Shahidi, Darya; Trumper, David L.
2013-08-01
We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.
Switching power amplifier for TAR3
Moore, Eric Wesley
1995-01-01
This thesis describes the theory, design, construction, and testing of a switching power amplifier. The major emphasis of the research and development effort reported herein is to design and construct an efficient power amplifier for varying load conditions which provides 40 Watts of power, at 85% efficiency, and with no more than 10% harmonic distortion. The power amplifier will need one voltage supply and one input audio signal. The amplifier will be used to power demonstration thermoacoust...
Balanced Amplifier dengan Menggunakan Driver Op Amp
Khoswanto, Handry; T.D.S, Yohanes; Wahyudi, Iwan
2004-01-01
In Bahasa Indonesia : Pada umumnya amplifier konvensional melibatkan jalur power supply (ground) yang berhubungan dengan jalur audio. Hal ini mengakibatkan pengolahan sinyal audio akan muncul IHM (Interval Hum Modulation) noise. Oleh karena itu, untuk dapat menekan timbulnya noise seminimal mungkin, maka dibuat sebuah amplifier yang tidak bereferensi pada ground power supply. Amplifier tersebut harus benar-benar balance dari input sampai ke output. Untuk merealisasikan balance amplifier ...
Challenges in higher order mode Raman amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk
2015-01-01
A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...
European Research on THz Vacuum Amplifiers
DEFF Research Database (Denmark)
Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.
2010-01-01
The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...
Spontaneous emission from saturated parametric amplifiers
DEFF Research Database (Denmark)
Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik
2009-01-01
Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....
low pump power photonic crystal fibre amplifiers
DEFF Research Database (Denmark)
Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard
2003-01-01
Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....
Radio frequency amplifier with effective decoupling
Besling, W.F.A.; Bakker, T.W.; Lamy, Y.; Kochupurackal, J.; Roozeboom, F.
2011-01-01
A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier
Series transistors isolate amplifier from flyback voltage
Banks, W.
1967-01-01
Circuit enables high sawtooth currents to be passed through a deflection coil and isolate the coil driving amplifier from the flyback voltage. It incorporates a switch consisting of transistors in series with the driving amplifier and deflection coil. The switch disconnects the deflection coil from the amplifier during the retrace time.
Remote Acquisition Amplifier For 50-Ohm Cable
Amador, Jose J.
1995-01-01
Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier
Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi
2018-01-01
A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.
Semiconductor quantum-dot lasers and amplifiers
DEFF Research Database (Denmark)
Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.
2002-01-01
-power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....
High temperature charge amplifier for geothermal applications
Energy Technology Data Exchange (ETDEWEB)
Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.
2015-12-08
An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.
Status Report on the Energy Amplifier
Rubbia, Carlo
1994-01-01
0ne year after its first presentation,the Energy Amplifier (EA) Project holds its promises for a environmentally acceptable form of energy extraction from nuclei, namely to eliminate or at least greatly reduce(i) the environmental impact of the long-lived highly radioactive waste;(ii) the possibility of diversions toward military applications;(iii) the risks of an accidental divergence related to the critical operation of the chain reaction and (iv) make a more efficient use of a fuel which is less radio-toxic to extract and more abundant on Earth than Uranium. In these respects the EA (or equivalent scenarios from Los Alamos and elsewhere) is comparable in performance to Thermonuclear Fusion. Bot h approches offer pratically unl;imited fuel resources: the energetic content of Lithium on the Earth's crust needed by Fusion is estimated to be seven times the one of Thorium and they are both adequate for millions of years of very intensived utilisation.However the EA can be built economically,in a variety of siz...
Specific circuit design: electrocardiogram amplifier
International Nuclear Information System (INIS)
Laribiere, Laurent
1991-01-01
The electrocardiogram amplifier is a specific integrated circuit. It is based on a linear array of Raytheon. This circuit is fitted with the following functions and characteristics: - electrocardiogram signals amplification, - pacemaker detection, - electrode un-sticking detection, - defibrillator overload protection, - battery-powered, - internal regulation 5 V, - low supply current 2.5 mA, - according to French norms on electrocardiogram surveillance devices - 28 pin package, available in CMS version It can be used for any surveillance device, requiring an analog processing of cardiac signals. (author) [fr
Audio power amplifier design handbook
Self, Douglas
2013-01-01
This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro
Cathode-follower power amplifier
International Nuclear Information System (INIS)
Giordano, S.; Puglisi, M.
1983-01-01
In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms
Directory of Open Access Journals (Sweden)
Zhanghao Yu
2018-01-01
Full Text Available High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal–oxide–semiconductor (CMOS with a 400-fF compensation capacitor occupies 900- μ m 2 chip area and achieves 0.022–2.78-MHz unity gain bandwidth and over 65 ∘ phase margin with a load capacitance of 0.1–15 nF. The prototype amplifier consumes 7.6 μ W from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption.
Yu, Zhanghao; Yang, Xi; Chung, SungWon
2018-01-29
High-resolution electronic interface circuits for transducers with nonlinear capacitive impedance need an operational amplifier, which is stable for a wide range of load capacitance. Such operational amplifier in a conventional design requires a large area for compensation capacitors, increasing costs and limiting applications. In order to address this problem, we present a gain-boosted two-stage operational amplifier, whose frequency response compensation capacitor size is insensitive to the load capacitance and also orders of magnitude smaller compared to the conventional Miller-compensation capacitor that often dominates chip area. By exploiting pole-zero cancellation between a gain-boosting stage and the main amplifier stage, the compensation capacitor of the proposed operational amplifier becomes less dependent of load capacitance, so that it can also operate with a wide range of load capacitance. A prototype operational amplifier designed in 0.13-μm complementary metal-oxide-semiconductor (CMOS) with a 400-fF compensation capacitor occupies 900- μ m 2 chip area and achieves 0.022-2.78-MHz unity gain bandwidth and over 65 ∘ phase margin with a load capacitance of 0.1-15 nF. The prototype amplifier consumes 7.6 μ W from a single 1.0-V supply. For a given compensation capacitor size and a chip area, the prototype design demonstrates the best reported performance trade-off on unity gain bandwidth, maximum stable load capacitance, and power consumption.
... heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy chain ... disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy chain ...
Intrinsic distortion of a fully differential BD-modulated\\ud Class-D amplifier with analog feedback
Cox, Stephen M.; Yu, J.; Goh, W.L.; Tan, M.T.
2013-01-01
This paper presents a mathematical analysis of a fully differential BD-modulated Class-D amplifier with analog feedback, i.e., one having a bridge-tied-load output configuration with negative feedback and ternary PWM signal. Notwithstanding the highly nonlinear nature of\\ud the amplifier's operation, an extremely accurate closed-form expression for the audible output signal is derived and verified based on computer simulations. This expression demonstrates that there exist larger \\ud high-ord...
Nonlinear pulse propagation phenomena in 1D photonic crystals
Centini, Marco; D'Aguanno, Giuseppe; Scalora, Michael; Sibilia, Concita; Bloemer, Mark J.; Bowden, Charles M.; Bertolotti, Mario
2002-06-01
We numerically investigate nonlinear pulse propagation in finite, 1-d photonic crystals, and highlight novel properties that may help pave the way to a new class of high-efficiency nano-devices. We show that phase matching conditions for multiple wavelength generation and interactions can be achieved by judiciously combining material's index dispersions and geometrical features. We also show that enhanced nonlinear interactions can occur with efficiencies three orders of magnitude larger with respect to bulk materials having the same lengths and nonlinearity. Finally, we suggest potential applications as miniaturized second and third harmonic generators, nonlinear mirrors, parametric amplifiers, and optical switchers.
Kagawa, S; Moore, J E; Murayama, O; Matsuda, M
2001-05-01
Eight strains of Taylorella equigenitalis were identified by a polymerase chain reaction using a primer pair specific to the 16S rDNA of T equigenitalis. These eight strains were chosen because they had previously been shown to represent eight distinct genotypes by pulsed-field gel electrophoresis analysis after separate digestion of the genomic DNA with ApaI or NotI. The eight strains could be classified into six or seven types by random amplified polymorphic DNA analysis using different kinds of primers. Amplified rDNA restriction analysis after separate digestion with five restriction enzymes, including AluI and MboI, of the 1,500 bp fragments of rDNA amplified by polymerase chain reaction did not discriminate the genomic variations among the eight strains of T equigenitalis. Thus, pulsed-field gel electrophoresis was shown to discriminate these eight organisms better than random amplified polymorphic DNA analysis, while amplified rDNA restriction analysis was found to be unsuitable for subtyping T equigenitalis.
A system for biasing a differential amplifier
International Nuclear Information System (INIS)
Barbier, Daniel; Ittel, J.M.; Poujois, Robert
1975-01-01
This invention concerns a system for biasing a differential amplifier. It particularly applies to the integrated differential amplifiers designed with MOS field effect transistors. Variations in the technological parameters may well cause the amplifying transistors to work outside their usual operational area, in other words outside the linear part of the transfer characteristic. To ensure that these transistors function correctly, it is necessary that the value of the voltage difference at the output be equally null. To do this and to centre on the so called 'rest' point of the amplifier transfer charateristic, the condition will be set that the output potentials of each amplifier transistor should have a zero value or a constant value as sum. With this in view, the bias on the source (generally a transistor powered by its grid bias voltage) supplying current to the two amplifying transistors fitted in parallel, is permanently adjusted in a suitable manner [fr
An Implantable CMOS Amplifier for Nerve Signals
DEFF Research Database (Denmark)
Nielsen, Jannik Hammel; Lehmann, Torsten
2001-01-01
on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR......In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved. A continuous-time offset-compensation technique is utilized in order to minimize impact...... greater than 84 dB. The equivalent input referred noise in the bandwidth of interest is 5 nV/√Hz. The amplifier power consumption is 275 μW....
Measurements and simulations of non-linear noise re-distribution in an SOA
DEFF Research Database (Denmark)
Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper
2004-01-01
Measurements and statistical simulations demonstrate that a semiconductor optical amplifier (SOA) induces non-linear noise re-distribution with a strong power and bandwidth dependence. © 2004 Optical Society of America......Measurements and statistical simulations demonstrate that a semiconductor optical amplifier (SOA) induces non-linear noise re-distribution with a strong power and bandwidth dependence. © 2004 Optical Society of America...
Nonlinear evolution of astrophysical Alfven waves
Spangler, S. R.
1984-01-01
Nonlinear Alfven waves were studied using the derivative nonlinear Schrodinger equation as a model. The evolution of initial conditions, such as envelope solitons, amplitude-modulated waves, and band-limited noise was investigated. The last two furnish models for naturally occurring Alfven waves in an astrophysical plasma. A collapse instability in which a wave packet becomes more intense and of smaller spatial extent was analyzed. It is argued that this instability leads to enhanced plasma heating. In studies in which the waves are amplified by an electron beam, the instability tends to modestly inhibit wave growth.
Identification of Nonlinear Systems: Volterra Series Simplification
Directory of Open Access Journals (Sweden)
A. Novák
2007-01-01
Full Text Available Traditional measurement of multimedia systems, e.g. linear impulse response and transfer function, are sufficient but not faultless. For these methods the pure linear system is considered and nonlinearities, which are usually included in real systems, are disregarded. One of the ways to describe and analyze a nonlinear system is by using Volterra Series representation. However, this representation uses an enormous number of coefficients. In this work a simplification of this method is proposed and an experiment with an audio amplifier is shown.
Transverse pumped laser amplifier architecture
Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary
2013-07-09
An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.
Nonlinear frequency conversion in fiber lasers
DEFF Research Database (Denmark)
Svane, Ask Sebastian
wavelength and line width. Subsequently, the RFL is used for the demonstration of a Raman amplifier, for which both the gain and noise characteristics in the vicinity of 1800 nm wavelength are examined. The VIS FCR source can be considered for a broad range of applications in the field of biophotonics. FCR...... emission is characterized by a high temporal and spatial coherence, short temporal pulse duration, a tunable emission wave length in the tens of nanometer range, along with a potential for having very low noise properties. The pursuit of a compact, portable, and robust VIS FCR source, suitable...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...
Silicon Germanium Cryogenic Low Noise Amplifiers
Bardin, J. C.; Montazeri, S.; Chang, Su-Wei
2017-05-01
Silicon germanium heterojunction bipolar transistors have emerged in the last decade as an excellent option for use in cryogenic low noise amplifiers. This paper begins with a review of the critical developments that have led to today’s cryogenic low noise amplifiers. Next, recent work focused on minimizing the power consumption of SiGe cryogenic amplifiers is presented. Finally, open issues related to the cryogenic noise properties of SiGe HBTs are discussed.
Short Rayleigh Range Free Electron Laser Amplifiers
Yu, L H; Murphy, J B; Rose, J; Shaftan, T V; Wang, X J; Watanabe, T
2005-01-01
An important requirement for a high average power laser system is a manageable power density on the first optical element. One possibility to achieve this is a single pass amplifier which generates a short Rayleigh range (SRL) light beam. We present design parameters and calculated performances for several SRL configurations. These include a simulation of the optically guided (pinched) MW class FEL [1], the scalloped beam FEL amplifier [2] and high gain TOK amplifiers we propose to explore at our SDL facility.
Utilization of non-linear converters for audio amplification
DEFF Research Database (Denmark)
Iversen, Niels Elkjær; Birch, Thomas; Knott, Arnold
2012-01-01
Class D amplifiers fits the automotive demands quite well. The traditional buck-based amplifier has reduced both the cost and size of amplifiers. However the buck topology is not without its limitations. The maximum peak AC output voltage produced by the power stage is only equal the supply voltage....... The introduction of non-linear converters for audio amplification defeats this limitation. A Cuk converter, designed to deliver an AC peak output voltage twice the supply voltage, is presented in this paper. A 3V prototype has been developed to prove the concept. The prototype shows that it is possible to achieve...
Revuz, D
1984-01-01
This is the revised and augmented edition of a now classic book which is an introduction to sub-Markovian kernels on general measurable spaces and their associated homogeneous Markov chains. The first part, an expository text on the foundations of the subject, is intended for post-graduate students. A study of potential theory, the basic classification of chains according to their asymptotic behaviour and the celebrated Chacon-Ornstein theorem are examined in detail. The second part of the book is at a more advanced level and includes a treatment of random walks on general locally compact abelian groups. Further chapters develop renewal theory, an introduction to Martin boundary and the study of chains recurrent in the Harris sense. Finally, the last chapter deals with the construction of chains starting from a kernel satisfying some kind of maximum principle.
Dynamics of soliton cascades in fiber amplifiers.
Arteaga-Sierra, F R; Antikainen, A; Agrawal, Govind P
2016-11-15
We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of the input pulse.
Reflection amplifiers in self-regulated learning
Verpoorten, Dominique
2012-01-01
Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.
Nonlinear acoustic interactions in superfluid helium
International Nuclear Information System (INIS)
Wright, D.R.
1989-01-01
Studies of nonlinear acoustic interactions in superfluid helium at temperatures below 0.2 degree K have culminated in the construction of an all-acoustic parametric amplifier at gigahertz frequencies. This amplifier represents the shortest wavelength parametric amplifier ever made, with signal wavelengths shorter than 1000 angstrom and pump wavelengths shorter than 600 angstrom. Begun as part of a program to extend the frequency range, and hence improve the resolution, of the scanning acoustic microscope while maintaining an adequate signal-to-noise ratio, the early work on nonlinearity concentrated on the very high power densities achieved at the focus of an acoustic lens. In a pressure range where the dispersion forbids three-phonon processes, indirect evidence of four-phonon mixing is observed. In the parametric amplifier experiment, plane waves are mixed at a predefined angle in the superfluid helium. Two gain regimes are observed. The first regime is a four-phonon collinear process, in which gain on the signal is created by the second-harmonic of the pump. The second regime is a noncollinear phase-matched process, in which the signal phonon stimulates decay of the pump phonon to create gain at the signal frequency
HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.
Energy Technology Data Exchange (ETDEWEB)
BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.
2005-08-21
Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.
Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters
DEFF Research Database (Denmark)
Wang, Z.; Durhuus, T.; Mikkelsen, Benny
1994-01-01
A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....
High peak power picosecond hybrid fiber and solid-state amplifier system
International Nuclear Information System (INIS)
Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M
2010-01-01
We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit
High efficiency class-I audio power amplifier using a single adaptive supply
Zhenfei, Peng; Shanshand, Yang; Yong, Feng; Yang, Liu; Zhiliang, Hong
2012-09-01
A high efficiency class-I linear audio power amplifier (PA) with an adaptive supply is presented. Its efficiency is improved by a dynamic supply to reduce the power transistors' voltage drop. A gain compression technique is adopted to make the amplifier accommodate a single positive supply. Circuit complicity and chip area are reduced because no charge pump is necessary for the negative supply. A common shared mode voltage and a symmetric layout pattern are used to minimize the non-linearity. A peak efficiency of 80% is reached at peak output power. The measured THD+N before and after the supply switching point are 0.01% and 0.05%, respectively. The maximum output power is 410 mW for an 8 Ω speaker load. Unlike switching amplifiers, the class-I amplifier operates as a linear amplifier and hence has a low EMI. The advantage of a high efficiency and low EMI makes the class-I amplifier suitable for portable and RF sensitive applications.
International Nuclear Information System (INIS)
Bailey, D.
1998-04-01
The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation
Design and development of a spectroscopy amplifier
International Nuclear Information System (INIS)
Ahmad, N.; Khalaf, M.A.
1998-01-01
Spectroscopy amplifier is an integral part of my detection system used for the measurement and spectroscopy of nuclear radiations. Its performance determination the contribution of the electronics to the energy resolution of the system. A spectroscopy amplifier has been designed and developed using locally available components. The design and description of this unit is discussed in this article. (author)
Bevalac injector final stage RF amplifier upgrades
International Nuclear Information System (INIS)
Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.
1991-01-01
With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail
BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER
DEFF Research Database (Denmark)
2010-01-01
Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...
A CMOS current-mode operational amplifier
DEFF Research Database (Denmark)
Kaulberg, Thomas
1993-01-01
A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanc...
Enhanced Gain in Photonic Crystal Amplifiers
DEFF Research Database (Denmark)
Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann
2012-01-01
We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...
High Average Power Optical FEL Amplifiers
Ben-Zvi, I; Litvinenko, V
2005-01-01
Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...
An Implantable CMOS Amplifier for Nerve Signals
DEFF Research Database (Denmark)
Nielsen, Jannik Hammel; Lehmann, Torsten
2003-01-01
. A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...
Self-pulsation in Raman fiber amplifiers
DEFF Research Database (Denmark)
Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten
2009-01-01
Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....
Detection of Non-Amplified Genomic DNA
Corradini, Roberto
2012-01-01
This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...
Design of an 1800 nm Raman Amplifier
DEFF Research Database (Denmark)
Svane, Ask Sebastian; Rottwitt, Karsten
, also extended band amplifiers are required. As a solution to the latter challenge, Raman amplifiers are suggested as promising candidates. The main hurdle when designing a long wavelength Raman amplifier is the increased intrinsic fiber attenuation which as a consequence leads to an increase...... in the pump power requirement and deteriorated noise properties. Here we demonstrate a Raman amplifier designed for signal wavelengths around 1800 nm. The amplification fiber is an OFS PM Raman fiber, and is pumped by a Raman fiber laser emitting at 1680 nm [4]. The amplifier was pumped co......-polarized and backward, with respect to the singal. In Fig. 2 a measured Raman on/off gain exceeding 9 dB for 285 mW of injected pump power is obtained in a 4.35 km long fiber. A broadband supercontinuum source was used as a signal from 1700 nm to 1900 nm....
Dual-range linearized transimpedance amplifier system
Wessendorf, Kurt O.
2010-11-02
A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).
Design of an 1800nm Raman amplifier
DEFF Research Database (Denmark)
Svane, Ask Sebastian; Rottwitt, Karsten
2013-01-01
We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...... performance of the amplifier is also investigated for both configurations. Our results show an on/off gain exceeding 20 dB at 1810 nm for which the obtained effective noise figure is below 3 dB....
Ultrafast disk lasers and amplifiers
Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha
2012-03-01
Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.
Elson, Daniel J; Saavedra, Gabriel; Shi, Kai; Semrau, Daniel; Galdino, Lidia; Killey, Robert; Thomsen, Benn C; Bayvel, Polina
2017-08-07
The use of spectrally shaped amplified spontaneous emission noise (SS-ASE) as a method for emulating interfering channels in optical fibre transmission systems has been studied. It is shown that the use of SS-ASE leads to a slightly pessimistic performance relative to the use of conventionally modulated interfering channels in the nonlinear regime. The additional nonlinear interference noise (on the channel under test), due to the Gaussian nature of SS-ASE, has been calculated using a combination of the Gaussian noise (GN) and enhanced GN (EGN) models for the entire C-band (4.5 THz) and experimentally shown to provide a lower bound for transmission performance.
Directory of Open Access Journals (Sweden)
Sergio Ruíz-Hernández
2015-01-01
Full Text Available This paper addresses an adaptive control approach for synchronizing two chaotic oscillators with saturated nonlinear function series as nonlinear functions. Mathematical models to characterize the behavior of the transmitter and receiver circuit were derived, including in the latter the adaptive control and taking into account, for both chaotic oscillators, the most influential performance parameters associated with operational amplifiers. Asymptotic stability of the full synchronization system is studied by using Lyapunov direct method. Theoretical derivations and related results are experimentally validated through implementations from commercially available devices. Finally, the full synchronization system can easily be reproducible at a low cost.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A
2006-05-29
We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.
Static thermo-optic instability in double-pass fiber amplifiers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2016-01-01
A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...... for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. (C) 2016 Optical Society of America...
Elastic properties of a polymer chain
International Nuclear Information System (INIS)
Webman, I.; Lebowitz, J.L.; Kalos, M.H.
1981-01-01
We describe the results of computer simulations on a model polymer chain with excluded volume interactions in the presence of an external stretching force. For weak and moderate forces the response is linear while for strong forces the behavior is nonlinear, consistent with the non-Gaussian nature of the end-to-end vector R distribution for large R. In the vicinity of the THETA temperature the onset of nonlinearity occurs at larger forces
X-Parameter Based Modelling of Polar Modulated Power Amplifiers
DEFF Research Database (Denmark)
Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel
2013-01-01
X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....
Class-D amplifier design and performance for driving a Piezo Actuator Drive servomotor
DEFF Research Database (Denmark)
Zsurzsan, Tiberiu-Gabriel; Zhang, Zhe; Andersen, Michael A. E.
2016-01-01
This paper investigates the behavior of piezoelectric stacks in a Piezoelectric Actuator Drive (PAD) motor, which shows non-linear equivalent impedance and has a dramatic impact on the overall system performance. Therefore, in this paper, the piezo stackt’s model is discussed and an improved large...... signal model is proposed and verified by measurement. Finally, a Class-D amplifier as a power driver and its associated closed-loop control are implemented and tested to control PAD drive effectively....
DEFF Research Database (Denmark)
Öhman, Filip; Mørk, Jesper; Tromborg, Bjarne
2007-01-01
We have developed a second-order small-signal model for describing the nonlinear redistribution of noise in a saturated semiconductor optical amplifier. In this paper, the details of the model are presented. A numerical example is used to compare the model to statistical simulations. We show that...
Analysis of nonlinear behavior of loudspeakers using the instantaneous frequency
DEFF Research Database (Denmark)
Huang, Hai; Jacobsen, Finn
2003-01-01
It is well know that the weakest link in a sound reproduction chain is the loudspeaker. The most significant effect on the sound quality is nonlinear distortion of loudspeakers. Many methods are applied to analyze the nonlinear distortion of loudspeakers. Almost all of the methods are based...... on the Fourier transform. In this work, a new method using the instantaneous frequency is introduced for describing and characterizing loudspeaker nonlinearities. First, numerical integration is applied to simulate the nonlinearities of loudspeakers caused by two nonlinear parameters, force factor and stiffness......, separately. Then, a practical loudspeaker is used in an experiment and its nonlinear characteristics are analyzed with the instantaneous frequency. The results provide a clear physical interpretation of the nonlinearities of loudspeakers and will be useful for understanding the nonlinear behavior...
Measurements and Simulations of nonlinear noise redistribution in an SOA
DEFF Research Database (Denmark)
Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper
2005-01-01
Measurements and numerical simulations of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate nonlinear noise redistribution. The redistribution, which relies on self-modulation due to gain saturation and carrier dynamics, shows a strong power and bandwidth dependence...... and can be important for SOA-based regenerators....
A CHI wiggler ubitron amplifier experiment: Wiggler characterization
Energy Technology Data Exchange (ETDEWEB)
Taccetti, J.M.; Jackson, R.H.; Freund, H.P. [Naval Research Lab., Washington, DC (United States)] [and others
1995-12-31
A 35 GHz CHI (Coaxial Hybrid Iron) wiggler ubitron amplifier experiment is under construction at the Naval Research Laboratory. The CHI wiggler configuration has the potential of generating high wiggler magnetic fields at short periods with excellent beam focusing and transport properties. This makes it a desirable configuration for the generation of high power coherent radiation in relatively compact systems. The CHI wiggler consists of alternating rings of magnetic and non-magnetic materials concentric with a central rod of similar alternating design but shifted along the axis by half a period. Once inserted in a solenoidal magnetic field, the CHI structure deforms the axial field to create a radial field oscillating with the same periodicity as the rings. An annular electron beam is propagated through the coaxial gap where the oscillating radial field imparts an azimuthal wiggle motion. The principal goals of the experiment are to investigate the performance tradeoffs involved in the CHI configuration for high frequency amplifiers operating at low voltages with small wiggler periods. The nominal design parameters are a center frequency of 35 GHz, wiggler period of 0.75 cm, and beam voltage of approximately 150 kV. Calculations have shown an intrinsic (untapered) efficiency of {approximately} 7% when operating at 6.3 kG axial field (wiggler field, B{sub w}{approximately}1270 G). The calculated gain was 36 dB, saturating at a distance of 46 cm. These parameters yield an instantaneous amplifier bandwidth of {approximately} 25%. There appears to be room for further improvement in efficiency, a matter which will be scrutinized more closely in the final design. A prototype CHI wiggler is presently being fabricated for use in conjunction with an existing 30 kG superconducting solenoid. The performance properties of the prototype will be characterized and compared with linear and non-linear calculations.
Fundamentals of RF and microwave transistor amplifiers
Bahl, Inder J
2009-01-01
A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read
Quantum electronics maser amplifiers and oscillators
Fain, V M; Sanders, J H
2013-01-01
Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma
A parallel input composite transimpedance amplifier
Kim, D. J.; Kim, C.
2018-01-01
A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.
Self-Amplified Optical Pattern Recognizer
Liu, Hua-Kuang
1993-01-01
Self-amplified optical pattern recognizers developed for use in recognition of patterns, in optical computing, and in optoelectronic neural networks. In recognizer, photorefractive crystal serves as medium in which one holographically records diffraction-grating filter representing pattern with which recognition sought. Apparatus "self-amplified" because signal amplified within filter to many orders of magnitude greater than in prior optical pattern recognizers. Basic principle of operation applicable to many types of correlation filters, including (but not limited to) Vander Lugt matched filters, joint-transform filters, and phase-only filters.
Noiseless attenuation using an optical parametric amplifier
Brewster, R. A.; Nodurft, I. C.; Pittman, T. B.; Franson, J. D.
2017-10-01
The process of heralded noiseless amplification, and the inverse process of heralded noiseless attenuation, have potential applications in the context of quantum communications. Although several different physical implementations of heralded noiseless amplifiers have now been demonstrated, the research on heralded noiseless attenuators has been largely confined to a beam-splitter based approach. Here we show that an optical parametric amplifier (OPA), combined with appropriate heralding, can also serve as a heralded noiseless attenuator. The counterintuitive use of an optical amplifier as an attenuator is only possible due to the probabilistic nature of the device.
Microwave parametric amplifiers using externally pumped Josephson junctions
DEFF Research Database (Denmark)
Sørensen, O. H.; Mygind, Jesper; Pedersen, Niels Falsig
1978-01-01
Externally pumped parametric amplifiers are discussed. Theory and experiments on the singly degenerate parametric amplifier based on a Josephson junction are presented. Advantages and limitations of the singly degenerate and doubly degenerate parametric amplifiers are discussed. Some plans and pr...
International Nuclear Information System (INIS)
Kroy, Klaus; Glaser, Jens
2007-01-01
We introduce a new model for the dynamics of a wormlike chain (WLC) in an environment that gives rise to a rough free energy landscape, which we name the glassy WLC. It is obtained from the common WLC by an exponential stretching of the relaxation spectrum of its long-wavelength eigenmodes, controlled by a single parameter E. Predictions for pertinent observables such as the dynamic structure factor and the microrheological susceptibility exhibit the characteristics of soft glassy rheology and compare favourably with experimental data for reconstituted cytoskeletal networks and live cells. We speculate about the possible microscopic origin of the stretching, implications for the nonlinear rheology, and the potential physiological significance of our results
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
Curvature-induced symmetry breaking in nonlinear Schrodinger models
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Mingaleev, S. F.; Christiansen, Peter Leth
2000-01-01
We consider a curved chain of nonlinear oscillators and show that the interplay of curvature and nonlinearity leads to a symmetry breaking when an asymmetric stationary state becomes energetically more favorable than a symmetric stationary state. We show that the energy of localized states decrea...
Blind Equalization of a Nonlinear Satellite System Using MCMC Simulation Methods
Directory of Open Access Journals (Sweden)
Stéphane Sénécal
2002-01-01
Full Text Available This paper proposes the use of Markov Chain Monte-Carlo (MCMC simulation methods for equalizing a satellite communication system. The main difficulties encountered are the nonlinear distorsions caused by the amplifier stage in the satellite. Several processing methods manage to take into account the nonlinearity of the system but they require the knowledge of a training/learning input sequence for updating the parameters of the equalizer. Blind equalization methods also exist but they require a Volterra modelization of the system. The aim of the paper is also to blindly restore the emitted message. To reach the goal, we adopt a Bayesian point of view. We jointly use the prior knowledge on the emitted symbols, and the information available from the received signal. This is done by considering the posterior distribution of the input sequence and the parameters of the model. Such a distribution is very difficult to study and thus motivates the implementation of MCMC methods. The presentation of the method is cut into two parts. The first part solves the problem for a simplified model; the second part deals with the complete model, and a part of the solution uses the algorithm developed for the simplified model. The algorithms are illustrated and their performance is evaluated using bit error rate versus signal-to-noise ratio curves.
Genetic differentiation and inheritance of random amplified ...
African Journals Online (AJOL)
ufuoma
2013-09-11
populations; the pectoral spine phenotypic groups ... Key words: Random amplified polymorphic DNA (RAPD) marker, morphologic and genetic variability, Clarias gariepinus. ..... However, genetic variability of the stock will have to be.
Noise in phase-preserving linear amplifiers
Energy Technology Data Exchange (ETDEWEB)
Pandey, Shashank; Jiang, Zhang; Combes, Joshua [Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131-0001 (United States); Caves, Carlton M. [Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131-0001, USA and Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072 (Australia)
2014-12-04
The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.
Complementary DNA-amplified fragment length polymorphism ...
African Journals Online (AJOL)
Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.
(ISSR) and randomly amplified polymorphic DNA
African Journals Online (AJOL)
ajl yemi
2011-12-19
Dec 19, 2011 ... The phylogenic relationship within four species of Polygonum (including Polygonum hyrcanicum Rech. f. (three samples), Polygonum persicaria Boiss & Bushe Boiss, Polygonum avicular L., and Polygonum hydropiper L. subsp. Hydropiper) was investigated by randomly amplified polymorphic DNA ...
Relationship between morphological and amplified fragment length ...
African Journals Online (AJOL)
Relationship between morphological and amplified fragment length polymorphism (AFLP) marker based genetic distance with heterosis in hot pepper (Capsicum annuum L.) SL Krishnamurthy, A Mohan Rao, K Madhavi Reddy, S Ramesh, Shailaja Hittalmani, Rao M. Gopinath ...
Quantum-Limited Directional Amplifiers with Optomechanics
Malz, Daniel; Tóth, László D.; Bernier, Nathan R.; Feofanov, Alexey K.; Kippenberg, Tobias J.; Nunnenkamp, Andreas
2018-01-01
Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators; we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals.
EQUIPMENT WITH HYDROSTATIC AMPLIFIER MODELED 3D
Directory of Open Access Journals (Sweden)
EFTIMIE Dorin
2013-11-01
Full Text Available The equipment with hydrostatic amplifier is a new constructive solution modeled 3D using NX 7.5 software. Hydraulic equipment allows the amplification of a constant torque of a DC electric motor of low power at a variable speed. The hydrostatic speed amplifier of constant torque with electric control device is a hydraulic device which provides by design a bridge between the conventional hydraulic and the servo-hydraulic.
EQUIPMENT WITH HYDROSTATIC AMPLIFIER MODELED 3D
EFTIMIE Dorin; FRONE Alexandru
2013-01-01
The equipment with hydrostatic amplifier is a new constructive solution modeled 3D using NX 7.5 software. Hydraulic equipment allows the amplification of a constant torque of a DC electric motor of low power at a variable speed. The hydrostatic speed amplifier of constant torque with electric control device is a hydraulic device which provides by design a bridge between the conventional hydraulic and the servo-hydraulic.
Nonlinear dynamics of melted polymer layers
Semenov, A.N.; Subbotin, A.V.; Hadziioannou, G; ten Brinke, G.; Manias, E; Doi, M.
A theory for non-linear rheology of molten polymer layers between solid surfaces in the Rouse regime is discussed. It is shown that the effect of finite extensibility of polymer chains leads to I;he characteristic 1/3 power law for the shear stress vs. shear velocity in the regime of high
Multiple excitation regenerative amplifier inertial confinement system
International Nuclear Information System (INIS)
George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.
1980-01-01
The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation
Proposal of Switching Power Amplifier Using Small Capacity Linear Amplifier and LC Filter
Kamada, Jo; Funato, Hirohito; Ogasawara, Satoshi
The higher efficiency and the low noise in output voltage and current has been required in some applications, i.e. audio-video equipment, medical equipment and so on. This paper proposes a power amplifier in which a PWM inverter is used as a main circuit. In the proposed power amplifier, a hybrid filter composed of a simple and general LC filter and a small capacity linear amplifier is connected to the output of the inverter. The linear amplifier is inserted in series to the filter capacitor to improve the filtering effect of the LC filter. Switching ripples and LC resonances are considerably suppressed by controlling the amplifier using the proposed method and a low distortion switching power amplifier is realized. The effects of the proposal circuit are verified by simulations and experiments. As a result, the proposed circuit achieves low noise about THD=0.68% in simulation and THD=1.7% in experiment.
Theory of parametrically amplified electron-phonon superconductivity
Babadi, Mehrtash; Knap, Michael; Martin, Ivar; Refael, Gil; Demler, Eugene
2017-07-01
Ultrafast optical manipulation of ordered phases in strongly correlated materials is a topic of significant theoretical, experimental, and technological interest. Inspired by a recent experiment on light-induced superconductivity in fullerenes [M. Mitrano et al., Nature (London) 530, 461 (2016), 10.1038/nature16522], we develop a comprehensive theory of light-induced superconductivity in driven electron-phonon systems with lattice nonlinearities. In analogy with the operation of parametric amplifiers, we show how the interplay between the external drive and lattice nonlinearities lead to significantly enhanced effective electron-phonon couplings. We provide a detailed and unbiased study of the nonequilibrium dynamics of the driven system using the real-time Green's function technique. To this end, we develop a Floquet generalization of the Migdal-Eliashberg theory and derive a numerically tractable set of quantum Floquet-Boltzmann kinetic equations for the coupled electron-phonon system. We study the role of parametric phonon generation and electronic heating in destroying the transient superconducting state. Finally, we predict the transient formation of electronic Floquet bands in time- and angle-resolved photoemission spectroscopy experiments as a consequence of the proposed mechanism.
Time-dependent, multimode interaction analysis of the gyroklystron amplifier
Energy Technology Data Exchange (ETDEWEB)
Swati, M. V., E-mail: swati.mv.ece10@iitbhu.ac.in; Chauhan, M. S.; Jain, P. K. [Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)
2016-08-15
In this paper, a time-dependent multimode nonlinear analysis for the gyroklystron amplifier has been developed by extending the analysis of gyrotron oscillators by employing the self-consistent approach. The nonlinear analysis developed here has been validated by taking into account the reported experimental results for a 32.3 GHz, three cavity, second harmonic gyroklystron operating in the TE{sub 02} mode. The analysis has been used to estimate the temporal RF growth in the operating mode as well as the nearby competing modes. Device gain and bandwidth have been computed for different drive powers and frequencies. The effect of various beam parameters, such as beam voltage, beam current, and pitch factor, has also been studied. The computational results have estimated the gyroklystron saturated RF power ∼319 kW at 32.3 GHz with efficiency ∼23% and gain ∼26.3 dB with device bandwidth ∼0.027% (8 MHz) for a 70 kV, 20 A electron beam. The computed results are found to be in agreement with the experimental values within 10%.
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
An Electronically Tunable Transconductance Amplifier for Use in Auditory Prostheses
Directory of Open Access Journals (Sweden)
FARAGO, P.
2015-11-01
Full Text Available Low-voltage and low-power trends in analog electronics enable novel features in modern bio-medical devices, such as extensive portability, autonomy and even battery-less operation. One specific example is the cochlear implant (CI, which emulates the physiology of hearing to produce auditory sensations via neural stimulation. Besides low-voltage and low-power operation, a key feature in modern CIs is wide-range programmability of the speech processing parameters. This paper proposes an operational transconductance amplifier (OTA for use in CIs, with wide-range electronic tuning of the transconductance value. The proposed OTA is developed around a cascade of two transconductor stages, making the transconductance dependent on the bias current ratio. A combination of linearization techniques: bulk input, parallel differential pairs and feedback, is used to achieve sufficient linear range for CI speech processing. Wide-range parameter tuning of the speech processing sections is illustrated on a variable gain amplifier, a bandpass Tow-Thomas biquad and an envelope detector. Finally, the complete CI speech processing chain is illustrated. The proposed OTA and its employment in CI analog speech processing are validated on a 350 nm CMOS process.
Sobreviela, Guillermo; Riverola, Martin; Torres, Francesc; Uranga, Arantxa; Barniol, Nuria
2017-05-01
In this paper, the phase noise of a 24-MHz complimentary metal-oxide-semiconductor microelectromechanical systems (CMOS-MEMS) oscillator with zero-level vacuum package is studied. We characterize and analyze the nonlinear regime of each one of the modules that compose the oscillator (CMOS sustaining-amplifier and MEMS resonator). As we show, the presented resonator exhibits a high nonlinear behavior. Such a fact is exploited as a mechanism to stabilize the oscillation amplitude, allowing us to maintain the sustaining-amplifier working in the linear regime. Consequently, the nonlinear resonator becomes the main close-to-carrier phase noise source. The sustaining amplifier, which functions as a phase shifter, was developed such that MEMS operation point optimization could be achieved without an increase in circuitry modules. Therefore, the system saves on area and power, and is able to improve the phase noise 26 dBc/Hz (at 1-kHz carrier frequency offset).
Reverse Isolation and Backaction of the SLUG Microwave Amplifier
Thorbeck, T.; Zhu, S.; Leonard, E.; Barends, R.; Kelly, J.; Martinis, John M.; McDermott, R.
2017-11-01
An ideal preamplifier for qubit measurement must not only provide high gain and near quantum-limited noise performance, but also isolate the delicate quantum circuit from noisy downstream measurement stages while producing negligible backaction. Here, we use a superconducting low-inductance undulatory galvanometer (SLUG) microwave amplifier to read out a superconducting transmon qubit, and we characterize both reverse isolation and measurement backaction of the SLUG. For appropriate dc bias, the SLUG achieves reverse isolation that is better than that of a commercial cryogenic isolator. Moreover, SLUG backaction is dominated by thermal emission from dissipative elements in the device. When the SLUG is operated in pulsed mode, it is possible to characterize the transmon qubit using a measurement chain that is free from cryogenic isolators or circulators with no measurable degradation of qubit performance.
Linearization and efficiency enhancement of power amplifiers using digital predistortion
Energy Technology Data Exchange (ETDEWEB)
Safari, Nima
2008-07-01
Today, demand of higher spectral efficiency forces wireless communication systems to employ non-constant envelope modulation schemes such as Quadrature Amplitude Modulations (QAM), Code Division Multiple Access (CDMA) and Orthogonal Frequency-Division Multiplexing (OFDM) schemes. These modulation techniques generate signals with wide range of envelope fluctuation. This property makes these schemes sensitive to nonlinear amplifications. Nonlinearities introduced by Power Amplifiers (PA) cause both a distortion of the signal and an increased out of band output spectrum, which leads to a rise in adjacent channel interference. Thus, in order to ensure a high spectral efficiency and to avoid spectral regrowth, a linearization technique is required. Among all the linearization techniques, basedband Digital Predistortion (DPD) is one of the commonly used linearization techniques, which is characterized by robust operation, low implementation cost and high accuracy. In the first chapter of this thesis, an introduction on the motivation and necessity of using PA linearization techniques is presented. Digital Predistortion as a popular linearization technique aims to improve the efficiency and linearity of RF power amplifiers. The scope of the thesis, the goals to be achieved and the contributions are also discussed in chapter one. Chapter two, mainly discusses sample-by-sample updating algorithm in Digital Predistorters to adaptively linearize the PA memoryless nonlinearities. Look-up Table (LUT) and polynomial approaches are studied and implemented in Hardware using a test-bed provided by Nera Research. The experimental results together with a discussion are then given. A new DPD algorithm based on block estimation is proposed in chapter three to avoid realtime signal processing, reduce the complexity and also avoid the bad performance during the slow adaptation of adaptive the Adjacent Channel Power Ratio (ACPR) and the Error Vector Magnitude (EVM) requirements. In
Advances in high-power rf amplifiers
International Nuclear Information System (INIS)
Tallerico, P.J.
1979-01-01
Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems
Transpermeance Amplifier Applied to Magnetic Bearings
Directory of Open Access Journals (Sweden)
Jossana Ferreira
2017-02-01
Full Text Available The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil, it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom.
ZigBee Radio with External Power Amplifier and Low-Noise Amplifier
Directory of Open Access Journals (Sweden)
Allan HUYNH
2010-07-01
Full Text Available This paper presents the performance study of a ZigBee module with both an external power amplifier and a low-noise amplifier, measured in outdoor and indoor environments, respectively. Our previous study has already shown that the indoor campus environment such as walls and floors would reduce the radio link range drastically and the packet error rate increased. In this study, both an external power amplifier and a low-noise amplifier have been added to a ZigBee module to increase both the transmitter power and receiver sensitivity. It is shown that with an external power amplifier and a low-noise amplifier the outdoor radio range can reach up to 1600 m with a negligible packet error rate compared to 144 m without any external amplifier for point-to-point radio connection. Thus, by increasing both the transmitter power and receiver sensitivity the radio range can be increased significantly. The power consumption issue with the added amplifiers is studied as well, indicating that the module can still be battery driven with a battery lifetime of about 9 years at a normal sampling rate to the sensor.
The OPTHER Project: Progress toward the THz Amplifier
DEFF Research Database (Denmark)
Paoloni, C; Brunetti, F; Di Carlo, A
2011-01-01
This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within th...
Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation
Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram
2005-01-01
Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
Design Of A Doherty Power Amplifier For GSM Systems
Saad Wasmi Osman
2013-01-01
This paper presents the design and analysis of Doherty power amplifier. The Doherty amplifier is used in a base station for mobile system because of its high efficiency. The class AB power amplifier used in the configuration of the main and auxiliary amplifier. The result obtained shows that the Doherty power amplifier can be used on a wide band spectrum, the amplifier works at 900MHz and has very good power added efficiency (PAE) and gain. The amplifier can also work at 1800MHz at input pow...
Transistorized pulse amplifiers (A.I.T.)
International Nuclear Information System (INIS)
Feyt, J.; Couly, J.P.
1962-01-01
The two amplifiers whose design and operation are described in this report have been studied for neutron detection units used in piles. They are designed to allow an important reduction of the volume and of the weight of the detector and its amplifier, and to simplify the operation of the detection assembly. To these characteristics can be added the mechanical and electrical robustness and the very reduced micro-phony. The first transistorized amplifier (AIT.1) is simple, very robust, and can be used for radioprotection installations. The second (AIT.4) has a better performance and makes it possible to replace the APT.2 in most of its applications (it has even been used satisfactorily in an apparatus where the micro-phony and the sensitivity to interference of the APT.2 made this latter unusable). (author) [fr
Humanitarian relief supply chain
Indian Academy of Sciences (India)
This paper models a humanitarian relief chain that includes a relief goods supply chain and an evacuation chain in case of a natural disaster. Optimum network flow is studied for both the chains by considering three conflicting objectives, namely demand satisfaction in relief chain, demand satisfaction in evacuation chain ...
Analysis of bipolar and CMOS amplifiers
Sodagar, Amir M
2007-01-01
The classical approach to analog circuit analysis is a daunting prospect to many students, requiring tedious enumeration of contributing factors and lengthy calculations. Most textbooks apply this cumbersome approach to small-signal amplifiers, which becomes even more difficult as the number of components increases. Analysis of Bipolar and CMOS Amplifiers offers students an alternative that enables quick and intuitive analysis and design: the analysis-by-inspection method.This practical and student-friendly text demonstrates how to achieve approximate results that fall within an acceptable ran
Optimization of a high efficiency FEL amplifier
International Nuclear Information System (INIS)
Schneidmiller, E.A.; Yurkov, M.V.
2014-10-01
The problem of an efficiency increase of an FEL amplifier is now of great practical importance. Technique of undulator tapering in the post-saturation regime is used at the existing X-ray FELs LCLS and SACLA, and is planned for use at the European XFEL, Swiss FEL, and PAL XFEL. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. In this paper we perform detailed analysis of the tapering strategies for high power seeded FEL amplifiers. Application of similarity techniques allows us to derive universal law of the undulator tapering.
Cavity enhanced rephased amplified spontaneous emission
International Nuclear Information System (INIS)
A Williamson, Lewis; J Longdell, Jevon
2014-01-01
Amplified spontaneous emission is usually treated as an incoherent noise process. Recent theoretical and experimental work using rephasing optical pulses has shown that rephased amplified spontaneous emission (RASE) is a potential source of wide bandwidth time-delayed entanglement. Due to poor echo efficiency the plain RASE protocol does not in theory achieve perfect entanglement. Experiments done to date show a very small amount of entanglement at best. Here we show that RASE can, in principle, produce perfect multimode time-delayed two mode squeezing when the active medium is placed inside a Q-switched cavity. (paper)
Implementation of Digital Lock-in Amplifier
Bhattacharyya, Sabyasachi; Nasir Ahmed, Ragib; Bijoy Purkayastha, Basab; Bhattacharyya, Kaustubh
2016-10-01
The recovery of signal under the presence of noise is utmost essential for proper communication. The signals corrupted due to noise can be recovered using various techniques. However the weak signals are more prone to noise and hence they can be easily degraded due to noise. In such cases, a digital lock-in amplifier becomes an essential device for recovery of such weak signals. Keeping the cost, speed and other considerations, we will present the implementation of digital lock-in amplifier and how it recovers the weak signal under extreme noisy conditions.
Digital Distortion Caused by Traveling- Wave-Tube Amplifiers Simulated
Kory, Carol L.; Andro, Monty
2002-01-01
Future NASA missions demand increased data rates in satellite communications for near real-time transmission of large volumes of remote data. Increased data rates necessitate higher order digital modulation schemes and larger system bandwidth, which place stricter requirements on the allowable distortion caused by the high-power amplifier, or the traveling-wave-tube amplifier (TWTA). In particular, intersymbol interference caused by the TWTA becomes a major consideration for accurate data detection at the receiver. Experimentally investigating the effects of the physical TWTA on intersymbol interference would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to acquiring the required digital hardware. Thus, an accurate computational model is essential to predict the effects of the TWTA on system-level performance when a communication system is being designed with adequate digital integrity for high data rates. A fully three-dimensional, time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell code MAFIA (Solution of Maxwell's equations by the Finite-Integration-Algorithm). It comprehensively takes into account the effects of frequency-dependent AM (amplitude modulation)/AM and AM/PM (phase modulation) conversion, gain and phase ripple due to reflections, drive-induced oscillations, harmonic generation, intermodulation products, and backward waves. This physics-based TWT model can be used to give a direct description of the effects of the nonlinear TWT on the operational signal as a function of the physical device. Users can define arbitrary excitation functions so that higher order modulated digital signals can be used as input and that computations can directly correlate intersymbol interference with TWT parameters. Standard practice involves using communication-system-level software packages, such as SPW, to predict if adequate signal detection will be achieved. These models
Long wavelength mid-infrared from mixing two colors from a fiber amplifier
Bian, Siyuan; Loranger, Sébastien; Kashyap, Raman; Strickland, Donna
2015-05-01
At Waterloo, we are developing a high power, short pulse, two-color, Yb:fiber amplifier system to generate the long wavelength (TATP) occur between 15 and 20 μm. To date, we have achieved a tuning range from 16 to 20 μm with a maximum average power of 1.7 mW. On the short wavelength side, the two colors would need to be pulled further apart, which requires a higher power seed to beat the amplified spontaneous emission that appears at the gain peak of the amplifiers between the two seed colors. On the long wavelength side, we are limited to 20 μm by the transparency region of the nonlinear crystals. We would like to find new nonlinear materials that have transparency from 1 to 30μm. If we could generate wavelengths from 15 to 30 μm with sufficient power, we could extend the spectral region to also cover 8 to 15μm by frequency doubling the longer wavelengths. We are currently working on replacing bulk optics in the system with fiber based optical elements to select the wavelengths as well as stretch and recompress the pulses in order to make the system compact and stable.
High efficiency radiofrequency power amplifier module for parallel transmit arrays at 3 Tesla.
Twieg, Michael; Griswold, Mark A
2017-10-01
The purpose of this study is to develop an in-bore radiofrequency (RF) power amplifier (RFPA) module with high power efficiency and density for use in parallel transmit (pTX) arrays at 3 Tesla. The modules use a combination of current mode class D, class S, and class E amplifiers based on enhancement-mode gallium nitride-on-silicon field-effect transistors. Together the amplifiers implement envelope elimination and restoration to achieve amplitude modulation with high efficiency over a wide operating range. The static nonlinearity and power efficiency of the module were measured using pulsed RF measurements over a 37 dB dynamic range. Thermal performance was also measured with and without forced convection cooling. The modules produces peak RF power up to 130 W with an overall efficiency of 85%. When producing 100 W RF pulses at a duty cycle of 10%, maximum junction temperatures did not exceed 80 °C, even without the use of heatsinks or forced convection. The small size and low cost of the modules promise lower cost implementation of pTX systems compared with linear RFPAs located remotely. Further work must be done on control of the RF output in the presence of nonlinearities and coupling. Magn Reson Med 78:1589-1598, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier
International Nuclear Information System (INIS)
Sillard, Pierre
1998-01-01
The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr
Nonlinear elliptic differential equations with multivalued nonlinearities
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Nonlinear elliptic differential equations with multivalued ... has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth .... A is upper semicontinuous (as a set-valued map) from every finite dimensional subspace of X into ...
International Nuclear Information System (INIS)
Balogh, Brian.
1991-01-01
Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)
Amplifier Design for Proportional Ionization Chambers
Energy Technology Data Exchange (ETDEWEB)
Baker, W. H.
1950-08-24
This paper presents the requirements of a nuclear amplifier of short resolving time, designed to accept pulses of widely varying amplitudes. Data are given which show that a proportional ionization chamber loaded with a 1,000-ohm resistor develops pulses of 0.5 microsecond duration and several volts amplitude. Results indicate that seven basic requirements are imposed on the amplifier when counting soft beta and gamma radiation in the presence of alpha particles, without absorbers. It should, (1) have a fast recovery time, (2) have a relatively good low frequency response, (3) accept pulses of widely varying heights without developing spurious pulsed, (4) have a limiting output stage, (5) preserve the inherently short rise time of the chamber, (6) minimize pulse integration, and (7) have sufficient gain to detect the weak pulses well below the chamber voltage at which continuous discharge takes place. The results obtained with an amplifier which meets these requirements is described. A formula is derived which indicates that redesign of the proportional ionization chamber might eliminate the need for an amplifier. This may be possible if the radioactive particles are collimated parallel to the collecting electrode.
Optimization of Pr3+:ZBLAN fiber amplifiers
DEFF Research Database (Denmark)
Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.
1992-01-01
Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0...
Frequency Compensation of an Audio Power Amplifier
van der Zee, Ronan A.R.; van Heeswijk, R.
2006-01-01
A car audio power amplifier is presented that uses a frequency compensation scheme which avoids large compensation capacitors around the MOS power transistors, while retaining the bandwidth and stable load range of nested miller compensation. THD is 0.005%@(1kHz, 10W), SNR is 108dB, and the
Reducing Switching Artifacts in Chopper Amplifiers
Kusuda, Y.
2018-01-01
This thesis describes the theory, design, and implementation of chopper operational amplifiers (op-amps) in CMOS integrated circuits (ICs). The chopping technique periodically corrects DC errors of such op-amps, so that low 1/f noise and stable, microvolt-level offset can be achieved. However,
Compensation techniques for operational amplifier bias current
International Nuclear Information System (INIS)
Silva, M.S.
1981-01-01
Two techniques are proposed for the compensation of the input current on operational amplifiers that can be used on inverting and non-inverting configurations. A qualitative analysis of temperature drift problems is made, and as a practical application, the construction of a voltage follower for high impedance measurements is presented. (Author) [pt
Feedback analysis of transimpedance operational amplifier circuits
DEFF Research Database (Denmark)
Bruun, Erik
1993-01-01
The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op...
Molecular markers. Amplified fragment length polymorphism
Directory of Open Access Journals (Sweden)
Pržulj Novo
2005-01-01
Full Text Available Amplified Fragment Length Polymorphism molecular markers (AFLPs has been developed combining procedures of RFLPs and RAPDs molekular markers, i.e. the first step is restriction digestion of the genomic DNA that is followed by selective amplification of the restricted fragments. The advantage of the AFLP technique is that it allows rapid generation of a large number of reproducible markers. The reproducibility of AFLPs markers is assured by the use of restriction site-specific adapters and adapter-specific primers for PCR reaction. Only fragments containing the restriction site sequence plus the additional nucleotides will be amplified and the more selected nucleotides added on the primer sequence the fewer the number of fragments amplified by PCR. The amplified products are normally separated on a sequencing gel and visualized after exposure to X-ray film or by using fluorescent labeled primers. AFLP shave proven to be extremely proficient in revealing diversity at below the species level. A disadvantage of AFLP technique is that AFLPs are essentially a dominant marker system and not able to identify heterozygotes.
Complementary DNA-amplified fragment length polymorphism ...
African Journals Online (AJOL)
owner
2011-05-09
May 9, 2011 ... Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology was used to analyze ... that 9 of the studied expressed sequence tags (ESTs) are related to protein modification, 12 ESTs are involved in the .... primers were used during the first strand synthesis of our cDNA synthesis ...
Design of a lock-amplifier circuit
Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.
2017-01-01
The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.
Random amplified polymorphic DNA based genetic characterization ...
African Journals Online (AJOL)
Random amplified polymorphic DNA based genetic characterization of four important species of Bamboo, found in Raigad district, Maharashtra State, India. ... Bambusoideae are differentiated from other members of the family by the presence of petiolate blades with parallel venation and stamens are three, four, six or more, ...
Network science, nonlinear science and infrastructure systems
2007-01-01
Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Differential evolution Markov chain with snooker updater and fewer chains
Energy Technology Data Exchange (ETDEWEB)
Vrugt, Jasper A [Los Alamos National Laboratory; Ter Braak, Cajo J F [NON LANL
2008-01-01
Differential Evolution Markov Chain (DE-MC) is an adaptive MCMC algorithm, in which multiple chains are run in parallel. Standard DE-MC requires at least N=2d chains to be run in parallel, where d is the dimensionality of the posterior. This paper extends DE-MC with a snooker updater and shows by simulation and real examples that DE-MC can work for d up to 50--100 with fewer parallel chains (e.g. N=3) by exploiting information from their past by generating jumps from differences of pairs of past states. This approach extends the practical applicability of DE-MC and is shown to be about 5--26 times more efficient than the optimal Normal random walk Metropolis sampler for the 97.5% point of a variable from a 25--50 dimensional Student T{sub 3} distribution. In a nonlinear mixed effects model example the approach outperformed a block-updater geared to the specific features of the model.
Directory of Open Access Journals (Sweden)
Xia Liu
2017-02-01
Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz nonlinear...
Nonlinear Microwave Optomechanics
Shevchuk, O.
2017-01-01
The nonlinearity is essential for creation of non-classical states of the cavity or mechanical resonator such as squeezed or cat states. A microwave cavity can be made nonlinear by, for instance, adding Josephson junctions. The mechanical resonator is inherently nonlinear. The radiation pressure
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
A Double Polymerase Chain Reaction Method for Detecting African ...
African Journals Online (AJOL)
A Double Polymerase Chain Reaction Method for Detecting African Swine Fever and Swine Vesicular Disease Virus. ... specificity as only the recombinant plasmids of ASFV and SVDV were amplified and control plasmids for three other diseases - porcine circovirus (PCV), pseudorabies virus (PRV), and porcine parvovirus ...
Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers
Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane
2018-02-01
High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.
Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams
Energy Technology Data Exchange (ETDEWEB)
Spentzouris, Linda Klamp [Northwestern U.
1996-12-01
Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.
Optimal beamforming in MIMO systems with HPA nonlinearity
Qi, Jian
2010-09-01
In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.
Chain Drive Simulation Using Spatial Multibody Dynamics
Directory of Open Access Journals (Sweden)
Mohamed A. Omar
2014-04-01
Full Text Available This paper presents an efficient approach for modeling chain derives using multibody dynamics formulation based on the spatial algebra. The recursive nonlinear dynamic equations of motion are formulated using spatial Cartesian coordinates and joint variables to form an augmented set of differential-algebraic equations. The spatial algebra is used to express the kinematic and dynamic equations leading to consistent and compact set of equations. The connectivity graph is used to derive the system connectivity matrix based on the system topological relations. The connectivity matrix is used to eliminate the Cartesian quantities and to project the forces and inertia into the joint subspace. This approach will result in a minimum set of equation and can avoid iteratively solving the system of differential and algebraic equations to satisfy the constraint equations. In order to accurately capture the full dynamics of the chain links, each link in the chain is modeled as rigid body with full 6 degrees of freedom. To avoid singularities in closed loop configurations, the chain drive is considered a kinematically decoupled subsystem and the interaction between the links and other system components is modeled using force elements. The out-of-plane misalignment between the sprockets can be easily modeled using a compliant force element to model the joints between each two adjacent links. The nonlinear three dimensional contact forces between the chain links and the sprockets are modeled using elastic spring-damper element and accounts for the sliding friction. The proposed approach can be used to model complex drive chain, bicycle chain as well as conveyance systems. Results show that realistic behavior of the chain as well as out-of-plane vibration can be easily captured using the presented approach. The proposed approach for chain drive subsystem could be easily appended to any other multibody simulation system.
Nonlinear effects in modulated quantum optomechanics
Yin, Tai-Shuang; Lü, Xin-You; Zheng, Li-Li; Wang, Mei; Li, Sha; Wu, Ying
2017-05-01
The nonlinear quantum regime is crucial for implementing interesting quantum effects, which have wide applications in modern quantum science. Here we propose an effective method to reach the nonlinear quantum regime in a modulated optomechanical system (OMS), which is originally in the weak-coupling regime. The mechanical spring constant and optomechanical interaction are modulated periodically. This leads to the result that the resonant optomechanical interaction can be effectively enhanced into the single-photon strong-coupling regime by the modulation-induced mechanical parametric amplification. Moreover, the amplified phonon noise can be suppressed completely by introducing a squeezed vacuum reservoir, which ultimately leads to the realization of photon blockade in a weakly coupled OMS. The reached nonlinear quantum regime also allows us to engineer the nonclassical states (e.g., Schrödinger cat states) of the cavity field, which are robust against the phonon noise. This work offers an alternative approach to enhance the quantum nonlinearity of an OMS, which should expand the applications of cavity optomechanics in the quantum realm.
International Nuclear Information System (INIS)
Wang Hanchao; Huang Lirong; Shi Zhongwei
2011-01-01
A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)
The Nonlinear Distortions in the Oscillatory System of Generator on CFOA
Directory of Open Access Journals (Sweden)
Yuriy Konstantinovich Rybin
2012-01-01
Full Text Available In recent years, many articles came out where one could find the analysis of oscillatory systems of electric sinusoid signals generators with amplifiers called CFOA—current feedback operational amplifiers. As a rule, the analysis of such systems is made by applying mathematical modeling methods on the basis of the amplifier linear model, which does not allow estimating advantages and disadvantages of the systems realized with those amplifiers in comparison with classical systems. A nonlinear model of a current feedback operational amplifier (CFOA is introduced in the paper; nonlinearity of “current mirror” is reflected in the form of current double limiting. The analysis of two known oscillatory systems has been carried out with the use of this non-linear model. Dependence between current limiting level, output voltage amplitude, and maximum oscillation frequency has been obtained. The paper shows that output current limiting under current output connection of capacitive load reduces frequency range and output voltage amplitude considerably and increases harmonic distortions in comparison with classical oscillatory systems. The research done has found that the application of new amplifiers does not give considerable advantages to the oscillatory systems with CFOA.
Operational amplifier based stretcher for stripline beam position monitors
International Nuclear Information System (INIS)
Sellyey, W.C.; Kruse, R.W.
1991-01-01
The stretcher amp was designed to accommodate existing instrumentation at the Boeing Free-Electron Laser (FEL) facility. The beam format for this system consists of two macropulses per second. Each macropulse contains several hundred micropulses separated by 462ns. Thus, 462ns is the upper limit to which the pulse can be stretched. The corresponding filter bandwidth would be about 3 Mhz. In the stripline data acquisition system, one of six striplines is switched to a single transient digitizer channel. Tektronix TSS46 microwave relay switches are used. The output of the TSS46 goes into stretcher amps described here. The resulting signals are digitized by Analytek 2004S or 2008S transient digitizers. The transient digitizer timing is such that it samples the negative peak of the stripline signal from each micropulse. Its analogue bandwidth is 300 Mhz. For good temperature stability and linearity, the stretcher bandwidth should be much less than 300MHz, for example 30Mhz. This defines a lower limit to the pulse width. 30Mhz was chosen for the filter bandwidth. Making the bandwidth smaller would have required more gain in the output amplifier. This would have resulted in too much noise at the output. Additionally, temperature drift and nonlinearity would also increase
Cryogenic cooling for high power laser amplifiers
Directory of Open Access Journals (Sweden)
Perin J.P.
2013-11-01
Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.
High gain, multiatmosphere CO2 laser amplifier
Stuart, G. C.; Houtman, H.; Meyer, J.
1987-02-01
A novel TE discharge, 15-mm aperture, multiatmosphere, CO2 laser amplifier is described, with measured electrical characteristics and gain measurements on the 9.294-micron, 9R (16) line. The electrical circuit used in this amplifier is a realistic alternative to the Marx bank or conventional LC inversion circuit and, similarly, it would be useful for excitation of other gas lasers as well. This automatically preionized, double-sided, fourfold LC inversion circuit uses only one spark gap, and it is shown to provide small-signal gains of 5.7 percent/cm, at 120 J/l atm and 10 atm. The generalization to an n-stage device, which would be suitable for higher pressures, and larger apertures, is discussed.
Amplified music exposure carries risks to hearing.
da Silva, Valéria Gomes; de Oliveira, Carlos Augusto Costa Pires; Tauil, Pedro Luíz; de Castro Silva, Isabella Monteiro; Sampaio, André Luiz Lopes
2017-02-01
To investigate the association between changes in the outer hair cells and exposure to amplified music in a group of high-school students. In this retrospective, case-control study, 86 subjects underwent audiometry, immittance audiometry, and distortion-product otoacoustic emission tests. The subjects were questioned about their listening habits and divided into 2 groups: exposed and unexposed. Most of the subjects had reduced function in their outer hair cells, mainly beginning at 8 kHz. Among 60 subjects-30 cases and 30 controls-75% were considered exposed and 25% unexposed. The exposed subjects were 9.33 times more likely to have altered outer hair cells than the unexposed subjects were. Exposure to amplified music is associated with reduced function in the hair cells. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Zhou G Tong
2007-01-01
Full Text Available Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM and code-division multiple access (CDMA, have high peak-to-average power ratios (PARs. A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs, but also leads to low transmission power efficiency. Selected mapping (SLM and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.
Theoretical investigation of anomalously high efficiency in a three cavity gyroklystron amplifier
International Nuclear Information System (INIS)
Latham, P.E.; Koc, U.V.; Main, W.; Tantawi, S.G.
1992-01-01
The University of Maryland's three cavity gyroklystron amplifier operating at a frequency of 10 GHz, voltage of 425 kV, current of 160 A, and pitch angle (v perpendicular/v z ) near .82, has demonstrated an efficiency of 35%. The author's simulations using fixed field profiles predict a significantly lower efficiency, primarily because of the small pitch angle in the experiment. They will be investigating two methods of improving the efficiency in their simulations: Beam-wave interaction after the output cavity, and modification of the first two cavity Qs due to beam loading. Results of their nonlinear code will be given for both cases
Self-amplifying mRNA vaccines.
Brito, Luis A; Kommareddy, Sushma; Maione, Domenico; Uematsu, Yasushi; Giovani, Cinzia; Berlanda Scorza, Francesco; Otten, Gillis R; Yu, Dong; Mandl, Christian W; Mason, Peter W; Dormitzer, Philip R; Ulmer, Jeffrey B; Geall, Andrew J
2015-01-01
This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization. Copyright © 2015 Elsevier Inc. All rights reserved.
Fast Electrocardiogram Amplifier Recovery after Defibrillation Shock
Directory of Open Access Journals (Sweden)
Ivan Dotsinsky
2005-04-01
Full Text Available A procedure for fast ECG amplifier recovery after defibrillation shocks was developed and simulated in the MATLAB environment. Exponentially decaying post-shock voltages have been recorded. Signals from the AHA database are taken and mixed with the recorded exponential disturbances. The algorithm applies moving averaging (comb filter on the compound input signal, thereby obtaining the samples of the disturbance. They are currently subtracted from the input signal. The results obtained show that its recovery is practically instantaneous.
Spaceflight 2 um Tm Fiber MOPA Amplifier, Phase I
National Aeronautics and Space Administration — Fibertek proposes to design, develop, and test a spaceflight prototype 2051 nm thulium (Tm)-doped fiber amplifier (TDFA) optical master oscillator power amplifier...
Conversion of the random amplified polymorphic DNA (RAPD ...
African Journals Online (AJOL)
Conversion of the random amplified polymorphic DNA (RAPD) marker UBC#116 linked to Fusarium crown and root rot resistance gene (Frl) into a co-dominant sequence characterized amplified region (SCAR) marker for marker-assisted selection of tomato.
Generalized Impedance Converter (GIC) Filter Utilizing Composite Amplifier
National Research Council Canada - National Science Library
Cheong, Heng W
2005-01-01
.... A composite operational amplifier utilizing the BiCMOS standard operational amplifier that was designed and introduced in a previous thesis is presented and its improved performance is investigated...
Parametric Amplifiers for Readout of Low-Temperature Detectors
National Aeronautics and Space Administration — This project aims to make microwave parametric amplifiers with high gain, large bandwidth, ultra-low noise, and low power dissipation. Our amplifiers are designed to...
Charge sensitive amplifies. The state of arts
Energy Technology Data Exchange (ETDEWEB)
Mori, Kunishiro [Clear Pulse Co., Tokyo (Japan)
1996-07-01
In the radiation detectors, signals are essentially brought with charges produced by radiation, then it is naturally the best way to use a charge sensitive amplifier (CSA) system to extract those signals. The CSA is thought to be the best amplifier suitable to almost all the radiation detectors, if neglecting economical points of view. The CSA has been only applied to special fields like radiation detection because the concept of `charges` is not so universal against the concepts of `voltage` and `current`. The CSA, however, is low in noise and a high speed amplifier and may be applicable not only to radiation measurement but also piezoelectric devices and also bolometers. In this article, noise in the CSA, basic circuit on the CSA, concepts of `equivalent noise charge` (ENC), a method for the ENC, and importance of the `open-loop gain` in the CSA to achieve better performance of it and how to realize in a practical CSA were described. And, characteristics on a counting rate of the CSA, various circuit used in the CSA, and CSAs which are commercially available at present and special purpose CSAs were also introduced. (G.K.)
Pump to signal noise transfer in parametric fiber amplifiers
DEFF Research Database (Denmark)
Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe
2010-01-01
Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....
High Efficiency Power Amplifier for High Frequency Radio Transmitters
Vasic, Miroslav; García Suárez, Oscar; Oliver Ramírez, Jesús Angel; Alou Cervera, Pedro; Díaz López, Daniel; Cobos Márquez, José Antonio; Gimeno Martín, Alejandro; Pardo Martin, José Manuel; Benavente Peces, César; Ortega González, Francisco Javier
2010-01-01
Modern transmitters usually have to amplify and transmit complex communication signals with simultaneous envelope and phase modulation. Due to this property of the transmitted signal, linear power amplifiers (class A, B or AB) are usually employed as a solution for the power amplifier stage. These amplifiers have high linearity, but suffer from low efficiency when the transmitted signal has high peak-to-average power ratio. The Kahn envelope elimination and restoration (EER) technique is used...
Transient processes in high-power gas laser amplifiers
Energy Technology Data Exchange (ETDEWEB)
Bakanina, L.P.; Belonuchkin, V.E.; Kozel, S.M.; Kuznetsov, E.P.; Lokshin, T.R.
1980-01-01
A system of equations is derived which describes the laser onset process in a high-gain gas laser amplifier. The intrinsic, amplified spontaneous emission plays the determinate role in the transient processes. The transient processes for a HeFe (3.39 micrometers) laser amplifier are calculated on a computer for three amplifier lengths (40, 80 and 200 centimeters) with the instantaneous onset of inversion.
Theory for nonlinear dynamic force spectroscopy.
Björnham, Oscar; Andersson, Magnus
2017-04-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information on the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear manner. For example, bacterial adhesion pili and polymers with worm-like chain properties are structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work, we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory, we modeled a bio-complex expressed on a stiff, an elastic, and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found that the nonlinear DFS (NLDFS) theory correctly predicted the numerical results. We also present a protocol suggesting an experimental approach and analysis method of the data to estimate the bond length and the thermal off-rate.
RAMAN amplifier gain dynamics with ASE : Numerical analysis and ...
African Journals Online (AJOL)
... understanding the basic properties of the gain medium. So in this work, we demonstrate an analytical formalism and a numerical horizon of the amplified spontaneous emission (ASE) noise power for distributed Raman amplifier (DRA). Keywords: Amplified spontaneous emission (ASE), optical noise, Raman amplification ...
Digital system provides superregulation of nanosecond amplifier-discriminator circuit
Forges, K. G.
1966-01-01
Feedback system employing a digital logic comparator to detect and correct amplifier drift provides stable gain characteristics for nanosecond amplifiers used in counting applications. Additional anticoincidence logic enables application of the regulation circuit to the amplifier and discriminator while they are mounted in an operable circuit.
Ooi, Kelvin J. A.; Tan, Dawn T. H.
2017-10-01
The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Generation and growth rates of nonlinear distortions in a traveling wave tube.
Wöhlbier, John G; Dobson, Ian; Booske, And John H
2002-11-01
The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results.
Generation and growth rates of nonlinear distortions in a traveling wave tube
International Nuclear Information System (INIS)
Woehlbier, John G.; Dobson, Ian; Booske, John H.
2002-01-01
The structure of a steady state multifrequency model of a traveling wave tube amplifier is exploited to describe the generation of intermodulation frequencies and calculate their growth rates. The model describes the evolution of Fourier coefficients of circuit and electron beam quantities and has the form of differential equations with quadratic nonlinearities. Intermodulation frequencies are sequentially generated by the quadratic nonlinearities in a series solution of the differential equations. A formula for maximum intermodulation growth rates is derived and compared to simulation results
Stationary nonlinear Airy beams
International Nuclear Information System (INIS)
Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.
2011-01-01
We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.
MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL
Directory of Open Access Journals (Sweden)
Eder Oliveira Abensur
2014-05-01
Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Development of Random Amplified Polymorphic DNA markers for authentification of Cissus repanda vahl.
Harisha, C R; Acharya, Rabinarayan; Chauhan, Maltiben G
2012-04-01
Cissus repanda Vahl. belongs to the family Vitaceae, commonly known in Hindi as "Panivel," is a large climber distributed all over India. The crushed or powder of root is prescribed by tribal people and traditional medical practitioners of Orissa for its healing properties in cases of bone fracture, cuts and wounds, swellings, and so on. In spite of its reputation, its leaves have not been investigated scientifically. The present study deals with pharmacognostical and molecular characterization by Random Amplified Polymorphic DNA (RAPD) markers and their role in laying down standardization and pharmacopoeial parameters. Genomic isolation of DNA from fresh leaves was amplified by RAPD markers. The diagnostic characters are mucilage, calcium oxalate rosette crystals, spiral vessels, and fibers. The unique bands obtained in Polymerase Chain Reaction (PCR) amplification clearly discriminated having, many bright and light bands indicating the genuinity of the plant. RAPD may serve as a complementary tool in quality control of many herbal sources.
A fast-and-robust profiler for improving polymerase chain reaction diagnostics.
Directory of Open Access Journals (Sweden)
George J Besseris
Full Text Available Polymerase chain reaction (PCR is an in vitro technology in molecular genetics that progressively amplifies minimal copies of short DNA sequences in a fast and inexpensive manner. However, PCR performance is sensitive to suboptimal processing conditions. Compromised PCR conditions lead to artifacts and bias that downgrade the discriminatory power and reproducibility of the results. Promising attempts to resolve the PCR performance optimization issue have been guided by quality improvement tactics adopted in the past for industrial trials. Thus, orthogonal arrays (OAs have been employed to program quick-and-easy structured experiments. Profiling of influences facilitates the quantification of effects that may counteract the detectability of amplified DNA fragments. Nevertheless, the attractive feature of reducing greatly the amount of work and expenditures by planning trials with saturated-unreplicated OA schemes is known to be relinquished in the subsequent analysis phase. This is because of an inherent incompatibility of ordinary multi-factorial comparison techniques to convert small yet dense datasets. Treating unreplicated-saturated data with either the analysis of variance (ANOVA or regression models destroys the information extraction process. Both of those mentioned approaches are rendered blind to error since the examined effects absorb all available degrees of freedom. Therefore, in lack of approximating an experimental uncertainty, any outcome interpretation is rendered subjective. We propose a profiling method that permits the non-linear maximization of amplicon resolution by eliminating the necessity for direct error estimation. Our approach is distribution-free, calibration-free, simulation-free and sparsity-free with well-known power properties. It is also user-friendly by promoting rudimentary analytics. Testing our method on published amplicon count data, we found that the preponderant effect is the concentration of MgCl2 (p0
A fast-and-robust profiler for improving polymerase chain reaction diagnostics.
Besseris, George J
2014-01-01
Polymerase chain reaction (PCR) is an in vitro technology in molecular genetics that progressively amplifies minimal copies of short DNA sequences in a fast and inexpensive manner. However, PCR performance is sensitive to suboptimal processing conditions. Compromised PCR conditions lead to artifacts and bias that downgrade the discriminatory power and reproducibility of the results. Promising attempts to resolve the PCR performance optimization issue have been guided by quality improvement tactics adopted in the past for industrial trials. Thus, orthogonal arrays (OAs) have been employed to program quick-and-easy structured experiments. Profiling of influences facilitates the quantification of effects that may counteract the detectability of amplified DNA fragments. Nevertheless, the attractive feature of reducing greatly the amount of work and expenditures by planning trials with saturated-unreplicated OA schemes is known to be relinquished in the subsequent analysis phase. This is because of an inherent incompatibility of ordinary multi-factorial comparison techniques to convert small yet dense datasets. Treating unreplicated-saturated data with either the analysis of variance (ANOVA) or regression models destroys the information extraction process. Both of those mentioned approaches are rendered blind to error since the examined effects absorb all available degrees of freedom. Therefore, in lack of approximating an experimental uncertainty, any outcome interpretation is rendered subjective. We propose a profiling method that permits the non-linear maximization of amplicon resolution by eliminating the necessity for direct error estimation. Our approach is distribution-free, calibration-free, simulation-free and sparsity-free with well-known power properties. It is also user-friendly by promoting rudimentary analytics. Testing our method on published amplicon count data, we found that the preponderant effect is the concentration of MgCl2 (p0.1). Comparison of the
Characterization of a Common-Source Amplifier Using Ferroelectric Transistors
Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.
2010-01-01
This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.
The quasi-equilibrium phase of nonlinear chains
Indian Academy of Sciences (India)
. Bangalore 560 037, India ... reflecting and periodic boundaries in the system leads to collisions between the DSWs and. DASWs. Such collisions lead to ... Later the perturbation energy is, on average, equally distributed among the available ...
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
through a maximum and starts to decrease with further increase of temperature. The three phases are summarized in the inset of figure 3 in ref. [10]. The application of the above approach to the FSW model leads to d ∼ 1 and to the absence of a self-trapped regime. Instead, for large temperatures, the leading order anhar-.
The quasi-equilibrium phase of nonlinear chains
Indian Academy of Sciences (India)
We show that time evolution initiated via kinetic energy perturbations in conservative, discrete, spring-mass ... The problem of how a perturbation spreads through a harmonic system in real time has been solved exactly (see for ... in figures 1c and 1d, again in pairs of compression and dilation pulses as can be seen from the ...
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
[5] G Roati, C D'Errico, L Fallani, M Fattori, C Fort, M Zaccanti, G Modugno, M Modugno and. M Inguscio, Nature 453, 895 (2008). [6] R Dalichaouch, J P Armstrong, S Schultz, P M Platzman and S L Mccall, Nature 354, 53 (1991). C Dembowski, H-D Gräf, R Hofferbert, H Rehfeld, A Richter and T Weiland, Phys. Rev. E60,.
Grijpink, J.H.A.M.
2012-01-01
This article is available in English and DutchGuidelines are presented to cope with identity problems in chains. A chain is a collaboration of a great number of autonomous organisations and professionals to tackle a dominant chain problem. In many chains identity fraud is an aspect of the dominant
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...
Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.
1995-01-01
Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to
Solitons in an isolated helix chain
DEFF Research Database (Denmark)
Christiansen, Peter Leth; Zolotaryuk, Alexander; Savin, A.V.
1997-01-01
-, and third-nearest neighbors. The set of nonlinear field equations with respect to the longitudinal and transverse (torsional and radial) displacements of the chain molecules has been derived and treated. Stable nontopological soliton solutions which describe supersonic pulses of longitudinal compression...... propagating together with localized transverse thickening (bulge) and torsional stretching (untwisting) have been found. The stability properties of these (three-component) soliton solutions have been studied by using numerical techniques developed for seeking solitary-wave solutions in complex molecular...
High sensitivity amplifier/discriminator for PWC's
International Nuclear Information System (INIS)
Hansen, S.
1983-01-01
The facility support group at Fermilab is designing and building a general purpose beam chamber for use in several locations at the laboratory. This pwc has 128 wires per plane spaced 1 mm apart. An initial production of 25 signal planes is anticipated. In proportional chambers, the size of the signal depends exponentially on the charge stored per unit of length along the anode wire. As the wire spacing decreases, the capacitance per unit length decreases, thereby requiring increased applied voltage to restore the necessary charge per unit length. In practical terms, this phenomenon is responsible for difficulties in constructing chambers with less than 2 mm wire spacing. 1 mm chambers, therefore, are frequently operated very near to their breakdown point and/or a high gain gas containing organic compounds such as magic gas is used. This argon/iso-butane mixture has three drawbacks: it is explosive when exposed to the air, it leaves a residue on the wires after extended use and is costly. An amplifier with higher sensitivity would reduce the problems associated with operating chambers with small wire spacings and allow them to be run a safe margin below their breakdown voltage even with an inorganic gas mixture such as argon/CO2, this eliminating the need to use magic gas. Described here is a low cost amplifier with a usable threshold of less than 0.5 μA. Data on the performance of this amplifier/discriminator in operation on a prototype beam chamber are given. This data shows the advantages of the high sensitivity of this design
A new semicustom integrated bipolar amplifier for silicon strip detectors
International Nuclear Information System (INIS)
Zimmerman, T.
1989-01-01
The QPA02 is a four channel DC coupled two stage transimpedance amplifier designed at Fermilab on a semicustom linear array (Quickchip 2S) manufactured by Tektronix. The chip was developed as a silicon strip amplifier but may have other applications as well. Each channel consists of a preamplifier and a second stage amplifier/sharper with differential output which can directly drive a transmission line (90 to 140 ohms). External bypass capacitors are the only discrete components required. QPA02 has been tested and demonstrated to be an effective silicon strip amplifier. Other applications may exist which can use this amplifier or a modified version of this amplifier. For example, another design is now in progress for a wire chamber amplifier, QPA03, to be reported later. Only a relatively small effort was required to modify the design and layout for this application. 11 figs
Low power RF amplifier circuit for ion trap applications
Noriega, J. R.; García-Delgado, L. A.; Gómez-Fuentes, R.; García-Juárez, A.
2016-09-01
A low power RF amplifier circuit for ion trap applications is presented and described. The amplifier is based on a class-D half-bridge amplifier with a voltage mirror driver. The RF amplifier is composed of an RF class-D amplifier, an envelope modulator to ramp up the RF voltage during the ion analysis stage, a detector or amplitude demodulation circuit for sensing the output signal amplitude, and a feedback amplifier that linearizes the steady state output of the amplifier. The RF frequency is set by a crystal oscillator and the series resonant circuit is tuned to the oscillator frequency. The resonant circuit components have been chosen, in this case, to operate at 1 MHz. In testings, the class-D stage operated at a maximum of 78 mW at 1.1356 MHz producing 225 V peak.
On Distortion in Digital Microwave Power Amplifiers
Al-Mozani, Dhamia; Wentzel, Andreas; Heinrich, Wolfgang
2017-01-01
In this paper, a first study of distortion in digital power amplifiers (PA) is presented. The work is based on a voltage mode class-S PA with a GaN MMIC for the 900 MHz frequency band. The investigation focuses on the quasi-static amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortions. Different digital modulation schemes are applied and studied versus output power back-off. This includes two pulse-width modulation (PWM) versions as well as band-pass delta-sigma (BPDS) modulation. The results are verified by measurement data.
Amplifier development for multiplexed cryogenic detectors
Kiviranta, Mikko
2012-12-01
We make some considerations on the question of driving the cable from the cryogenic stage of refrigerators to the room temperature, in the case of multiplexed detector array systems where a high total Shannon information capacity is required. We have constructed large SQUID arrays for the purpose, some of which exhibit lower than 5 × 10-8 Φ0 Hz-1/2 flux noise at 4.2 K and do not require magnetic shielding in a typical laboratory environment. The option of using class-D amplifiers to reduce the cryogenic heat load is briefly reviewed.
Nonlinear spectroscopy of trapped ions
Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas
2014-08-01
Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.
Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers
International Nuclear Information System (INIS)
Sze, R.C.
1991-01-01
The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission [ASE] considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk
A CONCEPTUAL FRAMEWORK FOR SUSTAINABLE POULTRY SUPPLY CHAIN MODEL
Directory of Open Access Journals (Sweden)
Mohammad SHAMSUDDOHA
2013-12-01
Full Text Available Now a day, sustainable supply chain is the crucially considerable matter for future focused industries. As a result, attention in supply chain management has increasingly amplified since the 1980s when firms discovered its benefits of mutual relationships within and beyond their own organization. This is why, concern researchers are trying hard to develop new theory or model which might help the corporate sector for achieving sustainability in their supply chains. This kind of reflection can be seen by the number of papers published and in particular by journal since 1980. The objectives of this paper are twofold. First, it offers a literature review on sustainable supply chain management taking papers published in last three decades. Second, it offers a conceptual sustainable supply chain process model in light of triple bottom line theory. The model has been developed by taking in-depth interview of an entrepreneur from a Poultry case industry in Bangladesh.
Sheen, Jyh-Jong; Bishop, Robert H.
1992-01-01
The feedback linearization technique is applied to the problem of spacecraft attitude control and momentum management with control moment gyros (CMGs). The feedback linearization consists of a coordinate transformation, which transforms the system to a companion form, and a nonlinear feedback control law to cancel the nonlinear dynamics resulting in a linear equivalent model. Pole placement techniques are then used to place the closed-loop poles. The coordinate transformation proposed here evolves from three output functions of relative degree four, three, and two, respectively. The nonlinear feedback control law is presented. Stability in a neighborhood of a controllable torque equilibrium attitude (TEA) is guaranteed and this fact is demonstrated by the simulation results. An investigation of the nonlinear control law shows that singularities exist in the state space outside the neighborhood of the controllable TEA. The nonlinear control law is simplified by a standard linearization technique and it is shown that the linearized nonlinear controller provides a natural way to select control gains for the multiple-input, multiple-output system. Simulation results using the linearized nonlinear controller show good performance relative to the nonlinear controller in the neighborhood of the TEA.
Lasers for nonlinear microscopy.
Wise, Frank
2013-03-01
Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.
Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.
Zeng, Xianchun; Barbic, Mladen; Chen, Liangliang; Qian, Chunqi
2017-11-01
To improve the imaging quality of vessel walls with an endoesophageal Wireless Amplified NMR Detector (WAND). A cylindrically shaped double-frequency resonator has been constructed with a single metal wire that is self-connected by a pair of nonlinear capacitors. The double-frequency resonator can convert wirelessly provided pumping power into amplified MR signals. This compact design makes the detector easily insertable into a rodent esophagus. The detector has good longitudinal and axial symmetry. Compared to an external surface coil, the WAND can enhance detection sensitivity by at least 5 times, even when the distance separation between the region of interest and the detector's cylindrical surface is twice the detector's own radius. Such detection capability enables us to observe vessel walls near the aortic arch and carotid bifurcation with elevated sensitivity. A cylindrical MRI detector integrated with a wireless-powered amplifier has been developed as an endoesophageal detector to enhance detection sensitivity of vessel walls. This detector can greatly improve the imaging quality for vessel regions that are susceptible to atherosclerotic lesions. Magn Reson Med 78:2048-2054, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Directory of Open Access Journals (Sweden)
Domarova Ekaterina Vladimirovna
2014-02-01
Full Text Available In the article the authors propose a simplified method of dynamic analysis of the resistance to progressive collapse of a fragment of the building bearing system with amplified floors. This method is based on representing the building bearing system as a dynamic model with a denumerable number of degrees of freedom, in which the resistance of the system is provided mainly by the behavior of the columns. The degrees of freedom number is determined by the number of floors «hanging» to amplified floors. Thecontribution of slabs in the total system resistance is not taken into account. Stress-strain state of the columns is determined by the non-linear resistance diagram, including three stages: elastic, elastic with cracks and plastic stage connected with plastic yield in the steel of the columns. The criterion of sustainability to the progressive collapse is relative strain of steel of the undestroyed columns. A numerical example of the calculation of the building resistance to progressive collapse in case of sudden destruction of one vertical element based on proposed theoretical method is offered. A model with two numbers of degrees was considered. The suggested method allows estimating the strength, deformability and stability of monolithic reinforced concrete frame buildings with separate amplified floors. In the future it is intended to complicate the model by the accounting for the influence of deformation and constructive solution of the slabs on the stiffness characteristics of the model as a system with a finite number of degrees of freedom.
Hanto, D.; Ula, R. K.
2017-05-01
Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor.
Yoneya, Akihiko; Watanabe, Akira
The full-digital audio amplifiers are advantageous with the points of its high power efficiency and its possibility of high fidelity due to the digital signal processing. With the full-digital amplifier, class-D amplifiers are used to drive the load with PWM signals produced from the source signal. Unfortunately, the signals are distorted when the PCM signals are converted to the PWM signals because the pulse-width modulation is a nonlinear conversion from the viewpoint of transient responses. This paper proposes a way to compensate the distortion caused by the pulse-width modulation. A feedforward compensation approach is used because of the simplicity of implementation. The distortion components are estimated with the source signals and its time-derivative signals and used to cancel out them by subtracting them from the source signals. A numerical example with two-tone test is performed to show the effectiveness of the proposed method. The distortion compensation scheme used here may be applicative to other applications.
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
EMG amplifier with wireless data transmission
Kowalski, Grzegorz; Wildner, Krzysztof
2017-08-01
Wireless medical diagnostics is a trend in modern technology used in medicine. This paper presents a concept of realization, architecture of hardware and software implementation of an elecromyography signal (EMG) amplifier with wireless data transmission. This amplifier consists of three components: analogue processing of bioelectric signal module, micro-controller circuit and an application enabling data acquisition via a personal computer. The analogue bioelectric signal processing circuit receives electromyography signals from the skin surface, followed by initial analogue processing and preparation of the signals for further digital processing. The second module is a micro-controller circuit designed to wirelessly transmit the electromyography signals from the analogue signal converter to a personal computer. Its purpose is to eliminate the need for wired connections between the patient and the data logging device. The third block is a computer application designed to display the transmitted electromyography signals, as well as data capture and analysis. Its purpose is to provide a graphical representation of the collected data. The entire device has been thoroughly tested to ensure proper functioning. In use, the device displayed the captured electromyography signal from the arm of the patient. Amplitude- frequency characteristics were set in order to investigate the bandwidth and the overall gain of the device.
Sustainable Supply Chain Design
DEFF Research Database (Denmark)
Bals, Lydia; Tate, Wendy
A significant conceptual and practical challenge is how to integrate triple bottom line (TBL; including economic, social and environmental) sustainability into global supply chains. Although this integration is necessary to slow down global resource depletion, understanding is limited of how...... to implement TBL goals across the supply chain. In supply chain design, the classic economic perspective still dominates, although the idea of the TBL is more widely disseminated. The purpose of this research is to add to the sustainable supply chain management literature (SSCM) research agenda...... by incorporating the physical chain, and the (information and financial) support chains into supply chain design. This manuscript tackles issues of what the chains are designed for and how they are designed structurally. Four sustainable businesses are used as illustrative case examples of innovative supply chain...
Nonlinear elasticity of alginate gels
Hashemnejad, Seyed Meysam; Kundu, Santanu
Alginate is a naturally occurring anionic polysaccharide extracted from brown algae. Because of biocompatibility, low toxicity, and simple gelation process, alginate gels are used in biomedical and food applications. Here, we report the rheological behavior of ionically crosslinked alginate gels, which are obtained by in situ gelation of alginates with calcium salts, in between two parallel plates of a rheometer. Strain stiffening behavior was captured using large amplitude oscillatory shear (LAOS) experiments. In addition, negative normal stress was observed for these gels, which has not been reported earlier for any polysaccharide networks. The magnitude of negative normal stress increases with applied strain and can exceed that of the shear stress at large strain. Rheological results fitted with a constitutive model that considers both stretching and bending of chains indicate that nonlinearity is likely related to the stretching of the chains between the crosslink junctions. The results provide an improved understanding of the deformation mechanism of ionically crosslinked alginate gel and the results will be important in developing synthetic extracellular matrix (ECM) from these materials.
Simulation of a Nonlinear GaAs MESFET Model for use in the ...
African Journals Online (AJOL)
A computer program has been developed that performs a large-signal simulation of a GaAs Metal-Semiconductor-Field-Effect-Transistor (MESFET) using the Curtice-Ettenberg model [1]. The model is then used to design non-linear microwave circuits such as frequency multipliers and power amplifiers. The simulation ...
Measurements and simulations of non-linear noise re-distribution in an SOA
DEFF Research Database (Denmark)
Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper
2005-01-01
Measurements and numerical simulations of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution. The re-distribution, which depends on self-modulation due to gain saturation and carrier dynamics, show a strong power and bandwidth dependence...... and can be important for SOA based regenerators....
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
Stochastic resonance in overdamped systems with fractional power nonlinearity
Yang, Jianhua; Sanjuán, Miguel A. F.; Chen, Pengpeng; Liu, Houguang
2017-10-01
The stochastic resonance phenomenon in overdamped systems with fractional power nonlinearity is thoroughly investigated. The first kind of nonlinearity is a general fractional power function. The second kind of nonlinearity is a fractional power function with deflection. For the first case, the response is clearly divergent for some fractional exponent values. The curve of the spectral amplification factor versus the fractional exponent presents some discrete regions. For the second case, the response will not be divergent for any fractional exponent value. The spectral amplification factor decreases with the increase in the fractional exponent. For both cases, the nonlinearity is the necessary ingredient to induce stochastic resonance. However, it is not the sufficient cause to amplify the weak signal. On the one hand, the noise cannot induce stochastic resonance in the corresponding linear system. On the other hand, the spectral amplification factor of the nonlinear system is lower than that of the corresponding linear system. Through the analysis carried out in this paper, we are able to find that the system with fractional deflection nonlinearity is a better stochastic resonance system, especially when an appropriate exponent value is chosen. The results in this paper might have a certain reference value for signal processing problems in relation with the stochastic resonance method.
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Direct coupled amplifiers using field effect transistors
International Nuclear Information System (INIS)
Fowler, E.P.
1964-03-01
The concept of the uni-polar field effect transistor (P.E.T.) was known before the invention of the bi-polar transistor but it is only recently that they have been made commercially. Being produced as yet only in small quantities, their price imposes a restriction on use to circuits where their peculiar properties can be exploited to the full. One such application is described here where the combination of low voltage drift and relatively low input leakage current are necessarily used together. One of the instruments used to control nuclear reactors has a logarithmic response to the mean output current from a polarised ionisation chamber. The logarithmic signal is then differentiated electrically, the result being displayed on a meter calibrated to show the reactor divergence or doubling time. If displayed in doubling time the scale is calibrated reciprocally. Because of the wide range obtained in the logarithmic section and the limited supply voltage, an output of 1 volt per decade change in ionisation current is used. Differentiating this gives a current of 1.5 x 10 -8 A for p.s.D. (20 sec. doubling time) in the differentiating amplifier. To overcome some of the problems of noise due to statistical variations in input current, the circuit design necessitates a resistive path to ground at the amplifier input of 20 M.ohms. A schematic diagram is shown. 1. It is evident that a zero drift of 1% can be caused by a leakage current of 1.5 x 10 -10 A or an offset voltage of 3 mV at the amplifier input. Although the presently used electrometer valve is satisfactory from the point of view of grid current, there have been sudden changes in grid to grid voltage (the valve is a double triode) of up to 10 m.V. It has been found that a pair of F.E.T's. can be used to replace the electrometer valve so long as care is taken in correct balance of the two devices. An investigation has been made into the characteristics of some fourteen devices to see whether those with very
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave...... to the previous theory of two-wave mixing, the theory presented here is more general and the application of the theory to the photorefractive materials, Kerr media and semiconductor broad-area amplifiers are described....
Microchip amplifier for in vitro, in vivo, and automated whole cell patch-clamp recording.
Harrison, Reid R; Kolb, Ilya; Kodandaramaiah, Suhasa B; Chubykin, Alexander A; Yang, Aimei; Bear, Mark F; Boyden, Edward S; Forest, Craig R
2015-02-15
Patch clamping is a gold-standard electrophysiology technique that has the temporal resolution and signal-to-noise ratio capable of reporting single ion channel currents, as well as electrical activity of excitable single cells. Despite its usefulness and decades of development, the amplifiers required for patch clamping are expensive and bulky. This has limited the scalability and throughput of patch clamping for single-ion channel and single-cell analyses. In this work, we have developed a custom patch-clamp amplifier microchip that can be fabricated using standard commercial silicon processes capable of performing both voltage- and current-clamp measurements. A key innovation is the use of nonlinear feedback elements in the voltage-clamp amplifier circuit to convert measured currents into logarithmically encoded voltages, thereby eliminating the need for large high-valued resistors, a factor that has limited previous attempts at integration. Benchtop characterization of the chip shows low levels of current noise [1.1 pA root mean square (rms) over 5 kHz] during voltage-clamp measurements and low levels of voltage noise (8.2 μV rms over 10 kHz) during current-clamp measurements. We demonstrate the ability of the chip to perform both current- and voltage-clamp measurement in vitro in HEK293FT cells and cultured neurons. We also demonstrate its ability to perform in vivo recordings as part of a robotic patch-clamping system. The performance of the patch-clamp amplifier microchip compares favorably with much larger commercial instrumentation, enabling benchtop commoditization, miniaturization, and scalable patch-clamp instrumentation. Copyright © 2015 the American Physiological Society.
Class D audio amplifiers for high voltage capacitive transducers
DEFF Research Database (Denmark)
Nielsen, Dennis
Audio reproduction systems contains two key components, the amplifier and the loudspeaker. In the last 20 – 30 years the technology of audio amplifiers have performed a fundamental shift of paradigm. Class D audio amplifiers have replaced the linear amplifiers, suffering from the well-known issues...... of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice...... and E.W. Kellog in 1925 [1]. The poor efficiency of the electrodynamic transducer remains a key issue, and a significant limit of the efficiency of the complete audio reproduction systems. Also the geometric limits of the electrodynamic transducer imposes significant limits on the design of loudspeakers...
Hagedorn, Peter
1982-01-01
Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Hinton, Samuel R.
2016-08-01
ChainConsumer is a python package written to consume the output chains of Monte-Carlo processes and fitting algorithms, such as the results of MCMC. ChainConsumer's main function is to produce plots of the likelihood surface inferred from the supplied chain. In addition to showing the two-dimensional marginalised likelihood surfaces, marginalised parameter distributions are given, and maximum-likelihood statistics are used to present parameter constraints. In addition to this, parameter constraints can be output in the form of a LaTeX table. Finally, ChainConsumer also provides the functionality to plot the chains as a series of walks in parameter values, which provides an easy visual check on chain mixing and chain convergence.
Indian Academy of Sciences (India)
. Keywords. Gibbs sampling, Markov Chain. Monte Carlo, Bayesian inference, stationary distribution, conver- gence, image restoration. Arnab Chakraborty. We describe the mathematics behind the Markov. Chain Monte Carlo method of ...
A highly linear power amplifier for WLAN
International Nuclear Information System (INIS)
Jin Jie; Shi Jia; Ai Baoli; Zhang Xuguang
2016-01-01
A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P 1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. (paper)
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
Self-amplified optical pattern recognition system
Liu, Hua-Kuang (Inventor)
1994-01-01
A self amplifying optical pattern recognizer includes a geometric system configuration similar to that of a Vander Lugt holographic matched filter configuration with a photorefractive crystal specifically oriented with respect to the input beams. An extraordinarily polarized, spherically converging object image beam is formed by laser illumination of an input object image and applied through a photorefractive crystal, such as a barium titanite (BaTiO.sub.3) crystal. A volume or thin-film dif ORIGIN OF THE INVENTION The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.
Gain characteristics of erbium doped fiber amplifier
Zhang, Lihua; Du, Yungang; Xi, Ying; Li, Jijun; Zhao, Chunwang
2008-12-01
In the design of Erbium Doped Fiber Amplifier (EDFA), improving flat-gain has great important significance. The working principle and gain characteristics of EDFA are introduced briefly, the influence of the factors such as Erbium doped fiber (EDF) length and pump power on the gain of EDFA is analyzed in detail, and the simulation experiments were carried out with Optisystem software. The result shows that, when pump power is constant, with EDF length departing the optimal value, the gain of each channel decreases at different degrees; when EDF length is constant, with pump power departing the optimal value, the gain of each channel changes at different degrees. Moreover, Er3+ concentration has significant effect on the gain, and there is an optimal Er3+ concentration to get the largest gain.
Compressed magnetic flux amplifier with capacitive load
International Nuclear Information System (INIS)
Stuetzer, O.M.
1980-03-01
A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime
InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz
Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard
2009-01-01
Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.
Modeling and design techniques for RF power amplifiers
Raghavan, Arvind; Laskar, Joy
2008-01-01
The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.
GaN-based Power amplifiers for microwave applications
Directory of Open Access Journals (Sweden)
Jorge Julián Moreno-Rubio
2016-01-01
Full Text Available This paper presents a discussion about the design strategies of different kind of power amplifiers for RF/Microwave appli- cations, such as the tuned load power amplifier, class F, class F-1 and Doherty. Furthermore, it is shown the continuous wave characterization of the amplifiers above mentioned. A comparison between the obtained results, in terms of gain, efficiency and output power is presented.
Therapeutic Strategies Against Cyclin E1 Amplified Ovarian Cancers
2017-10-01
hypothesize that HSP90-inhibitors may be effective against CCNE1-amplified ovarian tumors because they suppress HR, downregulate BRCA1, and...of FOXM1 and RB interaction is an effective approach for targeting CCNE1-amplified ovarian tumors . Specifically, suppression of FOXM1/RB...cells. In the third aim, we hypothesize that miR-1255b, miR-148b*, and miR-193b* may be effective against CCNE1- amplified ovarian tumors in
Dudley, Scott C.; Heerema, Bret D.; Haaland, Ryan K.
1997-06-01
The common classroom demonstration of a human chain, charged by a Van de Graaff generator, and then discharged via the person at the end of the chain touching ground, is analyzed as a capacitor and resistor circuit model. The energy deposited in each person in the chain is determined. Further, the effect of increasing energy deposited in the person who touched ground, as the number of people in the chain is increased, is shown and quantified.
DEFF Research Database (Denmark)
Sørensen, Olav Jull
The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...
Semiflexible Chains at Surfaces: Worm-Like Chains and beyond
Directory of Open Access Journals (Sweden)
Jörg Baschnagel
2016-08-01
Full Text Available We give an extended review of recent numerical and analytical studies on semiflexible chains near surfaces undertaken at Institut Charles Sadron (sometimes in collaboration with a focus on static properties. The statistical physics of thin confined layers, strict two-dimensional (2D layers and adsorption layers (both at equilibrium with the dilute bath and from irreversible chemisorption are discussed for the well-known worm-like-chain (WLC model. There is mounting evidence that biofilaments (except stable d-DNA are not fully described by the WLC model. A number of augmented models, like the (super helical WLC model, the polymorphic model of microtubules (MT and a model with (strongly nonlinear flexural elasticity are presented, and some aspects of their surface behavior are analyzed. In many cases, we use approaches different from those in our previous work, give additional results and try to adopt a more general point of view with the hope to shed some light on this complex field.
NONLINEAR RHEOLOGY OF POLYMER MELTS UNDER SHEAR-FLOW
Subbotin, A.V.; Semenov, A.N.; Manias, E; Hadziioannou, G; ten Brinke, G.
1995-01-01
The nonlinear theology of an unentangled polymer melt under shear flow is considered theoretically. The finite chain extensibility is taken into account explicitly. The tangential stress and the first and the second normal-stress differences are calculated as a function of shear rate gamma. It is
Modeling a Common-Source Amplifier Using a Ferroelectric Transistor
Sayyah, Rana; Hunt, Mitchell; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
This paper presents a mathematical model characterizing the behavior of a common-source amplifier using a FeFET. The model is based on empirical data and incorporates several variables that affect the output, including frequency, load resistance, and gate-to-source voltage. Since the common-source amplifier is the most widely used amplifier in MOS technology, understanding and modeling the behavior of the FeFET-based common-source amplifier will help in the integration of FeFETs into many circuits.
Pulse shaping amplifier (PSA) for nuclear spectroscopy system
International Nuclear Information System (INIS)
Lombigit, L.; Maslina Mohd Ibrahim; Nolida Yusup; Nur Aira Abdul Rahman; Yong, C.F.
2014-01-01
Pulse Shaping Amplifier (PSA) is an essential components in nuclear spectroscopy system. This networks have two functions; to shape the output pulse and performs noise filtering. In this paper, we describes procedure for design and development of a pulse shaping amplifier which can be used for nuclear spectroscopy system. This prototype was developed using high performance electronics devices and assembled on a FR4 type printed circuit board. Performance of this prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model SILENA 7611). The test results show that the performance of this prototype is comparable to the commercial spectroscopic amplifier. (author)
Nylon Sleeve for Cavity Amplifier Holds Tuning Despite Heat
Derr, Lloyd
1964-01-01
The problem: Detuning of cavity amplifiers with change in temperature. This results in deterioration of the performance of the amplifier at its design frequency. In cavity amplifiers and filters it is desirable that constant performance be maintained regardless of thermal changes. These changes often cause an "off resonance shift" in a cavity filter and a deterioration of performance in a cavity amplifier. The solution: Mount the tuning probe in a nylon sleeve. Thermal expansion and contraction of the nylon nullifies unwanted capacitive and inductive changes in the resonant elements.
Switching-mode Audio Power Amplifiers with Direct Energy Conversion
DEFF Research Database (Denmark)
Ljusev, Petar; Andersen, Michael Andreas E.
2005-01-01
has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced......This paper presents a new class of switching-mode audio power amplifiers, which are capable of direct energy conversion from the AC mains to the audio output. They represent an ultimate integration of a switching-mode power supply and a Class D audio power amplifier, where the intermediate DC bus...
Ring cavity for a Raman capillary waveguide amplifier
Kurnit, N.A.
1981-01-27
A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.
Controlling the dynamic range of a Josephson parametric amplifier
International Nuclear Information System (INIS)
Eichler, Christopher; Wallraff, Andreas
2014-01-01
One of the central challenges in the development of parametric amplifiers is the control of the dynamic range relative to its gain and bandwidth, which typically limits quantum limited amplification to signals which contain only a few photons per inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson parametric amplifiers by using Josephson junction arrays. We discuss gain, bandwidth, noise, and dynamic range properties of both a transmission line and a lumped element based parametric amplifier. Based on these investigations we derive useful design criteria, which may find broad application in the development of practical parametric amplifiers. (orig.)
Matching of scattered radiation with a laser amplifier
Energy Technology Data Exchange (ETDEWEB)
Kozel, S.M.; Lokshin, G.R.
1975-08-01
The question of choosing the aperture of an optical system to be used for matching a weak scattered field with a laser amplifier is examined. It is shown that in the case of a regenerative amplifier the maximum energy of the received signal is equal to the energy of the radiation in the coherence area. In the case of a traveling-wave amplifier the effectively usable energy of the scattered field is determined by the amplifier geometry and can be significantly larger (by several orders of magnitude) than the average energy in one diffraction spot.
Nasarabadi, Shanavaz [Livermore, CA
2011-01-11
A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.
parametric nonlinear quasivariational inequalities
Directory of Open Access Journals (Sweden)
Zeqing Liu
2005-01-01
uniqueness results and sensitivity analysis of solutions are also established for the system of generalized nonlinear parametric quasivariational inequalities and some convergence results of iterative sequence generated by the algorithm with errors are proved.
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE...... of a proposed NSE system with high dynamic performance. The goal of the work is to achieve a state-of-the art transient time of 10 µs. In order to produce the arbitrary nonlinear curve, the exponential function of a typical diode is used, but the diode can be replaced by other nonlinear curve reference...... simulation of nonlinear source systems with higher output power. In this work, a module will consist of two fundamental units: an isolated power supply and an NSE. The isolated power supply has to possess a very low circuit input-to-output capacitance (very low Cio) in order to reduce the effect...
2013-01-01
filter, Bayesian decision theory, Generalized Likelihood Ratio Test (GLRT), and constant false alarm rate ( CFAR ) processing (31). Once the...Abbreviations, and Acronyms CFAR constant false alarm rate CNR cognitive nonlinear radar EM electromagnetic FCC Federal Communications Comission
Nonlinear Optical Terahertz Technology
National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...
Nonlinear differential equations
Struble, Raimond A
2017-01-01
Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.
Nonlinear ambipolar diffusion waves
Energy Technology Data Exchange (ETDEWEB)
Mendonca, J.T.; Rowlands, G.
1985-07-01
The evolution of a plasma perturbation in a neutral gas is considered using the ambipolar diffusion approximation. A nonlinear diffusion equation is derived and, in the one-dimensional case, exact solutions of shock type are obtained.
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Crossing a Nonlinear Resonance
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 9. Crossing a Nonlinear Resonance: Adiabatic Invariants and the Melnikov-Arnold Integral. Sudhir R Jain. General Article Volume 19 Issue 9 September 2014 pp 797-813 ...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
L.J. Pegler (Lee)
2009-01-01
textabstractThe co-ordination of global production and trade within value chains has amplified debates concerning the impact of globalisation on labour, especially for developing countries. Whilst many development agencies argue for value chain insertion and upgrading as optimistic development
Performance analysis of AF cooperative systems with HPA nonlinearity in semi-blind relays
Qi, Jian
2012-12-01
In this paper, dual-hop amplify-and-forward (AF) cooperative systems in the presence of high-power amplifier (HPA) nonlinearity at semi-blind relays, are investigated. Based on the modified AF cooperative system model taking into account the HPA nonlinearity, the expression for the output signal-to-noise ratio (SNR) at the destination node is derived, where the interference due to both the AF relaying mechanism and the HPA nonlinearity is characterized. The performance of the AF cooperative system under study is evaluated in terms of average symbol error probability (SEP), which is derived using the moment-generating function (MGF) approach, considering transmissions over Nakagami-m fading channels. Numerical results are provided and show the effects of some system parameters, such as the HPA parameters, numbers of relays, quadrature amplitude modulation (QAM) order, Nakagami parameters, on performance. © 2012 IEEE.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
DEFF Research Database (Denmark)
Wæhrens, Brian Vejrum; Slepniov, Dmitrij
2015-01-01
This workbook is recommended for the attention of students of and managers in Danish small and medium sized enterprises (SMEs). Danish SMEs are currently facing a number of key challenges related to their position in global value chains. This book provides an insight into value chain management...... that may help these SMEs to occupy and sustain a competitive position in the value chain. It addresses this objective by introducing and discussing: • The concept of global value chains and its founding principles • The buyer-supplier relationships • Various SMEs operations configurations • Ideas...... for positional change in the value chain • Practical case examples • Key take-aways and recommendations...
Nonlinear feedback control of multiple robot arms
Tarn, T. J.; Yun, X.; Bejczy, A. K.
1987-01-01
Multiple coordinated robot arms are modeled by considering the arms: (1) as closed kinematic chains, and (2) as a force constrained mechanical system working on the same object simultaneously. In both formulations a new dynamic control method is discussed. It is based on a feedback linearization and simultaneous output decoupling technique. Applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, by choosing a general output equation, researchers can superimpose the position and velocity error feedback with the force-torque error feedback in the task space simultaneously.
Fundamentals of nonlinear optical materials
Indian Academy of Sciences (India)
Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.
Accumulating trade costs and competitiveness in global value chains
Diakantoni, Antonia; Escaith, Hubert; Roberts, Michael; Verbeet, Thomas
2017-01-01
Trade costs such as applied tariffs, transportation and insurance costs are amplified as they pass through the multiple production steps associated with modern supply chains. This so-called "cascade effect" arises since trade costs accumulate as intermediate goods are imported and then re-exported further downstream, going through different processing nodes before reaching the final consumer. Moreover, the financial impact of these trade costs is magnified in the "trade in tasks" rationale wh...
Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout
England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm
Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.
International Nuclear Information System (INIS)
Barbaro, V; Bartolini, P; Calcagnini, G; Censi, F; Beard, B; Ruggera, P; Witters, D
2003-01-01
The aim of this study was to investigate the mechanisms by which the radiated radiofrequency (RF) GSM (global system for mobile communication) signal may affect pacemaker (PM) function. We measured the signal at the output of the sensing amplifier of PMs with various configurations of low-pass filters. We used three versions of the same PM model: one with a block capacitor which short circuits high-frequency signals; one with a ceramic feedthrough capacitor, a hermetically sealed mechanism connecting the internal electronics to the external connection block, and one with both. The PMs had been modified to have an electrical shielded connection to the output of the sensing amplifier. For each PM, the output of the sensing amplifier was monitored under exposure to modulated and non-modulated RF signals, and to GSM signals (900 and 1800 MHz). Non-modulated RF signals did not alter the response of the PM sensing amplifier. Modulated RF signals showed that the block capacitor did not succeed in short circuiting the RF signal, which is somehow demodulated by the PM internal non-linear circuit elements. Such a demodulation phenomenon poses a critical problem because digital cellular phones use extremely low-frequency modulation (as low as 2 Hz), which can be mistaken for normal heartbeat
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
Towards a THz Backward Wave Amplifier in European FP7 OPTHER Project
DEFF Research Database (Denmark)
Dispenza, Massimiliano; Cojocaru, C.-S.; De Rossi, Alfredo
2010-01-01
Within the EC funded international project OPTHER (OPtically Driven TeraHertz AmplifiERs) a considerable technological effort is being undertaken, in terms of technological development, THz device design and integration. The ultimate goal is to develop a miniaturised THz amplifier based on vacuum...... with a proper device configuration and careful optimization of the different parts of the amplifier. Two parallel schemes will be employed for amplifier realisation: THz Drive Signal Amplifier and Optically Modulated Beam THz Amplifier....
International Nuclear Information System (INIS)
Shen Yuanrang
2011-01-01
This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)
A 205GHz Amplifier in 90nm CMOS Technology
2017-03-01
disadvantages at the higher frequency range with the worst case scenario happening when the device operates near its fmax. This is chiefly due to...measured S-parameters of the fabricated 205GHz amplifier. C1 in out 14.17-17.50 GHz Signal Generator Amplifier/ Multiplier 0.9 V
A Power Efficient Audio Amplifier Combining Switching and Linear Techniques
van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria
1998-01-01
Integrated Class D audio amplifiers are very power efficient, but require an external filter which prevents further integration. Also due to this filter, large feedback factors are hard to realise, so that the load influences the distortion- and transfer characteristics. The amplifier presented in
47 CFR 2.815 - External radio frequency power amplifiers.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815 External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power...
External Peltier Cooler For Low-Noise Amplifier
Soper, Terry A.
1990-01-01
Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.
Energy Efficient and Compact RF High-Power Amplifiers
Calvillo Cortés, D.A.
2014-01-01
The main objectives of this thesis are to improve the energy efficiency and physical form-factor of high-power amplifiers in base station applications. As such, the focus of this dissertation is placed on the outphasing amplifier concept, which can offer high-efficiency, good linearity and excellent
PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer
DEFF Research Database (Denmark)
Narendra, K.; Limiti, E.; Paoloni, C.
2013-01-01
A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω tran...
Optically amplifying planar glass waveguides: Laser on a chip
DEFF Research Database (Denmark)
Guldberg-Kjær, Søren Andreas
The objective of this work was to devlop optically amplifying planar wavguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar lightw...
Methylation sensitive-sequence related amplified polymorphism (MS ...
African Journals Online (AJOL)
Methylation sensitive-sequence related amplified polymorphism (MS-SRAP) marker system and its application to de novo methylation detection in Brassica napus. ... Combined methylation sensitive restriction enzyme digested genomic DNA with SRAP and methylation sensitive-sequence related amplified polymorphism ...
Ultrafast Dynamics of Quantum-Dot Semiconductor Optical Amplifiers
DEFF Research Database (Denmark)
Poel, Mike van der; Hvam, Jørn Märcher
2007-01-01
We report on a series of experiments on the dynamical properties of quantum-dot semiconductor optical amplifiers. We show how the amplifier responds to one or several ultrafast (170 fs) pulses in rapid succession and our results demonstrate applicability and ultimate limitations to application...
A Review of High Voltage Drive Amplifiers for Capacitive Actuators
DEFF Research Database (Denmark)
Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.
2012-01-01
This paper gives an overview of the high voltage amplifiers, which are used to drive capacitive actuators. The amplifiers for both piezoelectric and DEAP (dielectric electroactive polymer) actuator are discussed. The suitable topologies for driving capacitive actuators are illustrated in detail...
CARM and harmonic gyro-amplifier experiments at 17 GHz
International Nuclear Information System (INIS)
Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.
1993-01-01
Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed
A novel method to design variable gain amplifier | Mahdavi | Journal ...
African Journals Online (AJOL)
A novel method to design variable gain amplifier. S Mahdavi, A Soltani, M Jafarzadeh, T Moradi Khanshan. Abstract. A novel method to design of Variable gain Amplifiers (VGAs) is proposed. A low power VGA with wide range of gain variation and appropriate bandwidth using new technique is presented in this paper.
Fast processes in semiconductor optical amplifiers: theory and experiment
DEFF Research Database (Denmark)
Mørk, Jesper
2002-01-01
We review the physical processes responsible for ultrafast gain and index dynamics in semiconductor optical amplifiers and discuss their impact on optical switching applications......We review the physical processes responsible for ultrafast gain and index dynamics in semiconductor optical amplifiers and discuss their impact on optical switching applications...
Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide
DEFF Research Database (Denmark)
Öhman, Filip; Yvind, Kresten; Mørk, Jesper
2006-01-01
We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....
Efficiency of random amplified polymorphic DNA (RAPD) and inter ...
African Journals Online (AJOL)
Efficiency of random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers for genotype fingerprinting and genetic diversity studies in canola ( ) ... The number of amplified fragments with RAPD primers ranged from 8 to 21, with the size of amplicons ranging from 162 to 3154 bp.
Thermal-recovery of modal instability in rod fiber amplifiers
DEFF Research Database (Denmark)
Jørgensen, Mette Marie; Laurila, Marko; Noordegraaf, Danny
2013-01-01
We investigate the temporal dynamics of Modal instabilities (MI) in ROD fiber amplifiers using a 100 μm core rod fiber in a single-pass amplifier configuration, and we achieve ~200W of extracted output power before the onset of MI. Above the MI threshold, we investigate the temporal dynamics...
Subjective test of class D amplifiers without output filter
DEFF Research Database (Denmark)
Agerkvist, Finn T.; Fenger, Lars M.
2004-01-01
This paper presents the results of subjective listening tests designed to determine whether the output filter on class D amplifiers used in active loudspeakers can be omitted without audible errors occurring. The frequency range of the amplifiers was limited to 0-3 kHz corresponding to a woofer...
Gain characteristics of a saturated fiber optic parametric amplifier
DEFF Research Database (Denmark)
Rottwitt, Karsten; Lorenzen, Michael Rodas; Noordegraaf, Danny
2008-01-01
In this work we discuss saturation performance of a fiber optic parametric amplifier. A simple numerical model is described and applied to specific cases. A system experiment using a saturated amplifier illustrates a 4 dB improvement in required signal to noise ratio for a fixed bit error ratio....
Amplifying Islam : Pluralism, Secularism, and Religious Sounds in The Netherlands
Tamimi Arab, P.
2015-01-01
This dissertation is an ethnographic study of the amplified azan, the Islamic call to prayer, in the Netherlands, adding a sonic dimension to analyses of the politics of Islamic aesthetics in the western world. Often rejected by opponents as noise pollution, facilitating the amplified azan is an
Soliton decay in a Toda chain caused by dissipation
Brinkman, G.J.; Valkering, T.P.
1990-01-01
Consider a Toda chain with uniform friction. Starting with an initial condition that represents a soliton, we investigate its decay. The main result is that the solitary character is almost completely preserved. During the decay the wave activates other nonlinear modes. The corresponding actions
Developing an active artificial hair cell using nonlinear feedback control
Joyce, Bryan S.; Tarazaga, Pablo A.
2015-09-01
The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.
Abu-Marasa, Mahmoud O Mahmoud; El-Khozondar, Hala Jarallah
2015-01-01
The composite right/left-handed (CRLH) transmission line (TL) is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. RH materials have both positive permittivity and positive permeability, and LH materials have both negative permittivity and negative permeability. This paper aims to design and analyze nonlinear CRLH-TL transmission line loaded with resonant tunneling diode (RTD). The main application of this design is a very wideband and compact filter that amplifies the travelling signal. We used OrCAD and ADS software to analyze the proposed circuit. CRLH-TL consists of a microstrip line which is loaded with complementary split-rings resonators (CSRRs), series gaps, and shunt inductor connected parallel to the RTD. The designed structure possess a wide band that ranges from 5 to 10.5 GHz and amplifies signal up to 50 %. The proposed design is of interest to microwave compact component designers.
Fiber optic signal amplifier using thermoelectric power generation
Hart, Mark M.
1995-01-01
A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.
Cryogenic ultra-low-noise SiGe transistor amplifier.
Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G
2011-10-01
An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.
Airborne Methane Measurements using Optical Parametric Amplifiers
Riris, H.; Numata, K.; Li, S.; Wu, S.; Ramanathan, A.; Dawsey, M.; Abshire, J. B.; Kawa, S. R.; Mao, J.
2012-12-01
We report on airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from clathrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment and more measurements are needed. In this paper we report on an airborne demonstration of atmospheric methane column optical depth measurements at 1.65 μm using widely tunable, seeded optical parametric amplifier (OPA) and a photon counting detector. Our results show good agreement between the experimentally derived optical depth measurements and theoretical calculations and follow the expected changes for aircraft altitudes from 3 to 11 km. The technique has also been used to measure carbon dioxide and monoxide, water vapor, and other trace gases in the near and mid-infrared spectral regions on the ground.
Efficient and Compact Optical Amplifier Using EYDF
Directory of Open Access Journals (Sweden)
Sulaiman Wadi Harun
2010-09-01
Full Text Available An efficient Erbium/Ytterbium doped fiber amplifier (EYDFA is demonstrated using a 1058nm pumping wavelength, where the amplification is assisted by energy transfer between Yb and Er ions. The energy transfer increases the limit of erbium doping concentration that is imposed by concentration quenching in Erbium-doped fiber (EDF. Therefore, the gain and noise figure are severely degraded with 1480 nm pumping, where the energy transfer cannot be achieved. The use of optical isolator improves the small signal gain and noise figure by about 4.8 dB and 1.6 dB, respectively. By employing a double-pass configuration, a higher gain can be obtained with an expense of a noise figure penalty. The gain improvement of 17.0 dB is obtained at 20 mW and -50 dBm of pump and input signal powers. This shows that the double-pass configuration is an important aspect to consider when designing an efficient EYDFA.
Gold Nanoparticle Labels Amplify Ellipsometric Signals
Venkatasubbarao, Srivatsa
2008-01-01
The ellipsometric method reported in the immediately preceding article was developed in conjunction with a method of using gold nanoparticles as labels on biomolecules that one seeks to detect. The purpose of the labeling is to exploit the optical properties of the gold nanoparticles in order to amplify the measurable ellipsometric effects and thereby to enable ultrasensitive detection of the labeled biomolecules without need to develop more-complex ellipsometric instrumentation. The colorimetric, polarization, light-scattering, and other optical properties of nanoparticles depend on their sizes and shapes. In the present method, these size-and-shape-dependent properties are used to magnify the polarization of scattered light and the diattenuation and retardance of signals derived from ellipsometry. The size-and-shape-dependent optical properties of the nanoparticles make it possible to interrogate the nanoparticles by use of light of various wavelengths, as appropriate, to optimally detect particles of a specific type at high sensitivity. Hence, by incorporating gold nanoparticles bound to biomolecules as primary or secondary labels, the performance of ellipsometry as a means of detecting the biomolecules can be improved. The use of gold nanoparticles as labels in ellipsometry has been found to afford sensitivity that equals or exceeds the sensitivity achieved by use of fluorescence-based methods. Potential applications for ellipsometric detection of gold nanoparticle-labeled biomolecules include monitoring molecules of interest in biological samples, in-vitro diagnostics, process monitoring, general environmental monitoring, and detection of biohazards.
Supply Chain Management og Supply Chain costing
DEFF Research Database (Denmark)
Nielsen, Steen; Mortensen, Ole
2002-01-01
Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed...
Nonlinear interaction model of subsonic jet noise.
Sandham, Neil D; Salgado, Adriana M
2008-08-13
Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.
Editorial: Supply Chain Management
Directory of Open Access Journals (Sweden)
Dimitrios Aidonis
2017-05-01
Full Text Available This special issue has followed up the 3rd Olympus International Conference on Supply Chains held on Athens Metropolitan Expo, November 7 & 8 2015, Greece. The Conference was organized by the Department of Logistics Technological Educational Institute of Central Macedonia, in collaboration with the: a Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH, b Greek Association of Supply Chain Management (EEL of Northern Greece and the c Supply Chain & Logistics Journal. During the 2-Days Conference more than 60 research papers were presented covering the following thematic areas: (i Transportation, (ii Best Practices in Logistics, (iii Information and Communication Technologies in Supply Chain Management, (iv Food Logistics, (v New Trends in Business Logistics, and (vi Green Supply Chain Management. Three keynote invited speakers addressed interesting issues for the Operational Research, the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.
Multidimensional nonlinear descriptive analysis
Nishisato, Shizuhiko
2006-01-01
Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Directory of Open Access Journals (Sweden)
Vieraşu, T.
2011-01-01
Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.
Vieraşu, T.; Bălăşescu, M.
2011-01-01
In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Fully nonlinear elliptic equations
Caffarelli, Luis A
1995-01-01
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equa
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...... discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term...