WorldWideScience

Sample records for amplifier output power

  1. Maximizing power output from continuous-wave single-frequency fiber amplifiers.

    Science.gov (United States)

    Ward, Benjamin G

    2015-02-15

    This Letter reports on a method of maximizing the power output from highly saturated cladding-pumped continuous-wave single-frequency fiber amplifiers simultaneously, taking into account the stimulated Brillouin scattering and transverse modal instability thresholds. This results in a design figure of merit depending on the fundamental mode overlap with the doping profile, the peak Brillouin gain coefficient, and the peak mode coupling gain coefficient. This figure of merit is then numerically analyzed for three candidate fiber designs including standard, segmented acoustically tailored, and micro-segmented acoustically tailored photonic-crystal fibers. It is found that each of the latter two fibers should enable a 50% higher output power than standard photonic crystal fiber.

  2. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    Science.gov (United States)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; hide

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  3. Mode control in a high gain relativistic klystron amplifier with 3 GW output power

    Science.gov (United States)

    Wu, Yang; Xie, Hong-Quan; Xu, Zhou

    2014-01-01

    Higher mode excitation is very serious in the relativistic klystron amplifier, especially for the high gain relativistic amplifier working at tens of kilo-amperes. The mechanism of higher mode excitation is explored in the PIC simulation and it is shown that insufficient separation of adjacent cavities is the main cause of higher mode excitation. So RF lossy material mounted on the drift tube wall is adopted to suppress higher mode excitation. A high gain S-band relativistic klystron amplifier is designed for the beam current of 13 kA and the voltage of 1 MV. PIC simulation shows that the output power is 3.2 GW when the input power is only 2.8 kW.

  4. Enhanced performance CCD output amplifier

    Science.gov (United States)

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  5. W-band power amplifier MMIC with 400 mW output power in 0.1 μm AlGaN/GaN technology

    NARCIS (Netherlands)

    Heijningen,M. van; Rodenburg, M.; Vliet, F.E. van; Massler, M.; Tessmann, A.; Brückner, F.; Müller, S.; Schwantuschke, D.; Quay; Narhi, T.

    2012-01-01

    The 0.1 μm AlGaN/GaN technology and design of two W-band power amplifiers in this technology are described. The dual-stage amplifier reaches an output power of 400 mW at 90 GHz at an operation bias of 20 V. Two designs with different driver to final stage gate width ratio are discussed. More than 10

  6. Millimeter-wave power amplifiers

    CERN Document Server

    du Preez, Jaco

    2017-01-01

    This book provides a detailed review of millimeter-wave power amplifiers, discussing design issues and performance limitations commonly encountered in light of the latest research. Power amplifiers, which are able to provide high levels of output power and linearity while being easily integrated with surrounding circuitry, are a crucial component in wireless microwave systems. The book is divided into three parts, the first of which introduces readers to mm-wave wireless systems and power amplifiers. In turn, the second focuses on design principles and EDA concepts, while the third discusses future trends in power amplifier research. The book provides essential information on mm-wave power amplifier theory, as well as the implementation options and technologies involved in their effective design, equipping researchers, circuit designers and practicing engineers to design, model, analyze, test and implement high-performance, spectrally clean and energy-efficient mm-wave systems.

  7. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW.

    Science.gov (United States)

    Bolpasi, V; von Klitzing, W

    2010-11-01

    A 1 W tapered amplifier requiring only 200 μW of injection power at 780 nm is presented in this paper. This is achieved by injecting the seeding light into the amplifier from its tapered side and feeding the amplified light back into the small side. The amplified spontaneous emission of the tapered amplifier is suppressed by 75 dB. The double-passed tapered laser, presented here, is extremely stable and reliable. The output beam remains well coupled to the optical fiber for a timescale of months, whereas the injection of the seed light did not require realignment for over a year of daily operation.

  8. Power Amplifier Design for E-band Wireless System Communications

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan; Krozer, Viktor; Johansen, Tom Keinicke

    2008-01-01

    E-band wireless communications will become important as the microwave backhaul for high-speed data transmission. One of the most critical components is the front-end power amplifier in this system. The paper analyzes different technologies with potential in the E-band frequency range and present...... a power amplifier design satisfying the E-band system specifications. The designed power amplifier achieves a maximum output power of ges 20 dBm with a state-of-the-art power-added efficiency of 15%. The power is realized using InP DHBT technology. To the best of our knowledge it is the highest output...... power and efficiency reported for an InP HBT power amplifier in this frequency range. The predicted power-added efficiency is higher than that of power amplifiers based on SiGe HBT and GaAs pHEMT technologies. The design shows the capabilities of InP DHBT for power amplifier applications...

  9. Design And Construction Of 300W Audio Power Amplifier For Classroom

    Directory of Open Access Journals (Sweden)

    Shune Lei Aung

    2015-07-01

    Full Text Available Abstract This paper describes the design and construction of 300W audio power amplifier for classroom. In the construction of this amplifier microphone preamplifier tone preamplifier equalizer line amplifier output power amplifier and sound level indicator are included. The output power amplifier is designed as O.C.L system and constructed by using Class B among many types of amplifier classes. There are two types in O.C.L system quasi system and complementary system. Between them the complementary system is used in the construction of 300W audio power amplifier. The Multisim software is utilized for the construction of audio power amplifier.

  10. Class H power amplifier for power saving in fluxgate current transducers

    OpenAIRE

    Velasco Quesada, Guillermo; Román Lumbreras, Manuel; Pérez Delgado, Raul; Conesa Roca, Alfons

    2016-01-01

    This paper presents a new improvement in the design of a fluxgate-based current transducer in order to reduce the power consumption of control electronics. The proposed improvement involves the replacement of the output linear amplifier of the transducer by a class H amplifier. The output amplifier is devoted to the magnetic flux compensation and generates the transducer output current, which is proportional to the current to be measured. In this way, it is possible to reduce significantly th...

  11. Analysis and evaluation of the power amplifier device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. K.; Ryu, J. W. [Kongju National University, Gongju (Korea, Republic of)

    2011-11-15

    We developed a master oscillator power amplifier (MOPA) type fiber amplifier for the separation of the Ca-48 isotope by using a fiber laser. The ytterbium (Yb)-doped end-capped rod-type photonic crystal fiber (PCF) was used as a gain medium of MOPA amplifier. The PCFs used in our experiments were a 56-cm and an 81-cm rod-type end-capped Yb-doped double-clad PM fibers 'DC-285/100-PM-Yb-Rod', with a 100-{mu}m core (NA 0.02) and a 285-{mu}m cladding (NA 0.6) fabricated by NKT Photonics. The mode field diameter (MFD) of the rod-type PCF was 75-{mu}m, and an absorption efficiency of 30 dB/m at 976 nm and a low NA 0.02 helped to sustain the excellent lasing beam quality. We obtained an output power of 112 W at a pump power of 380 W with a repetition rate of 150 kHz. The measured pulse width was 13 ns at 150 kHz, 1056 nm. The laser beam quality shows a single mode amplification characteristics with a beam quality factor values of M2 are 2 -3. The PCF launching efficiency reached a maximum value of 86.7% with an average efficiencies of above 80%. At a pump power of 250 W and seed power input of 4 W, the CW PCF amplifier was found to generate average output powers of 138 W, 110 W, and 82 W at 1056-nm, 1070-nm, and 1089-nm wavelengths, respectively. The amplified PCF output beam had a line width of 70 MHz full width at half maximum (FWHM). These PCF amplified beams had good beam qualities with M2values of less than 1.8 at all three wavelengths. The gain saturation seed input power in the 81-cm PCF was found to be {approx}6 W at 1056 nm. The temperature of the PCF core reached over 230 .deg. C at the pumping section of the PCF. The temperatures of the end-cap heads on both the pumping and the output end-cap sides were 81.4 .deg. C and 35.7 .deg. C, respectively. The PCF amplifier maintained good polarization mode characteristics with an average DOP of over 87%. The slight decrease in the DOP oat output powers over 170 W output power may have been caused by a

  12. A 25 W 70% Efficiency Doherty Power Amplifier at 6 dB Output Back-Off for 2.4 GHz Applications with VGS, PEAK

    Directory of Open Access Journals (Sweden)

    Jorge Moreno Rubio

    2015-01-01

    Full Text Available This paper shows the design and simulation results of a hybrid Doherty power amplifier. The amplifier has been designed at 2,4 GHz, obtaining power-added efficiency above 70 % for 6 dB output power back-off, together with a small signal gain of 17 dB. Design and analysis equations are presented considering class AB bias conditions for the main amplifier and class C for the peak one in back-off larger than 6 dB, and FET device assumption. An additional control on the bias point of the peak device has been carried out, in order to increase the gain on the Doherty region and ease the design of the peak branch. A Cree’s GaN-HEMT CGH40010F device has been used with a nonlinear model guarantied up to 6 GHz and with an expected output power of 10 W. The obtained output power is higher than 25-W. The simulation has been carried out using Agilent ADS CAD tools. The present design could present the state of the art in terms of continuous-wave (CW characterization

  13. GaN-based Power amplifiers for microwave applications

    Directory of Open Access Journals (Sweden)

    Jorge Julián Moreno-Rubio

    2016-01-01

    Full Text Available This paper presents a discussion about the design strategies of different kind of power amplifiers for RF/Microwave appli- cations, such as the tuned load power amplifier, class F, class F-1 and Doherty. Furthermore, it is shown the continuous wave characterization of the amplifiers above mentioned. A comparison between the obtained results, in terms of gain, efficiency and output power is presented.

  14. Design and analysis of optimised class E power amplifier using shunt capacitance in the output structure

    Science.gov (United States)

    Hayati, Mohsen; Roshani, Sobhan; Zirak, Ali Reza

    2017-05-01

    In this paper, a class E power amplifier (PA) with operating frequency of 1 MHz is presented. MOSFET non-linear drain-to-source parasitic capacitance, linear external capacitance at drain-to-source port and linear shunt capacitance in the output structure are considered in design theory. One degree of freedom is added to the design of class E PA, by assuming the shunt capacitance in the output structure in the analysis. With this added design degree of freedom it is possible to achieve desired values for several parameters, such as output voltage, load resistance and operating frequency, while both zero voltage and zero derivative switching (ZVS and ZDS) conditions are satisfied. In the conventional class E PA, high value of peak switch voltage results in limitations for the design of amplifier, while in the presented structure desired specifications could be achieved with the safe margin of peak switch voltage. The results show that higher operating frequency and output voltage can also be achieved, compared to the conventional structure. PSpice software is used in order to simulate the designed circuit. The presented class E PA is designed, fabricated and measured. The measured results are in good agreement with simulation and theory results.

  15. Calculation of the output power in self-amplified spontaneous radiation using scaling of power with number of simulation particles

    International Nuclear Information System (INIS)

    Yu, L.H.

    1998-01-01

    Recent advances in self-amplified spontaneous emission (SASE) experiments stimulate interest in quantitative comparison of measurements with theory. In this paper we show that the widely used simulation code TDA3D, developed by Tran and Wurtele [Comput. Phys. Commun. 54, 263 (1989)] even though a single frequency code, can be used to determine the output power in the SASE process with excellent approximation in the exponential growth regime. The method applies when the gain is not very high, which is a special advantage, because when the gain is not very high, the analytical calculation is particularly difficult since the exponential growing term does not dominate. The analysis utilizes a scaling relation between the output power and the number of simulation particles in the code TDA3D: left-angle P right-angle=N λ ' /N λ left-angle P ' right-angle, where left-angle P right-angle is the output power and N λ is the line density of the electrons, while left-angle P ' right-angle is the calculated output power using a line density N λ ' of the number of simulation particles in the code TDA3D. Because of the scaling property, the number of simulation particles can be taken to be many orders of magnitude less than the actual experiment. Comparison of our results with experiment yields new insight into the SASE process. copyright 1998 The American Physical Society

  16. A high-power two stage traveling-wave tube amplifier

    International Nuclear Information System (INIS)

    Shiffler, D.; Nation, J.A.; Schachter, L.; Ivers, J.D.; Kerslick, G.S.

    1991-01-01

    Results are presented on the development of a two stage high-efficiency, high-power 8.76-GHz traveling-wave tube amplifier. The work presented augments previously reported data on a single stage amplifier and presents new data on the operational characteristics of two identical amplifiers operated in series and separated from each other by a sever. Peak powers of 410 MW have been obtained over the complete pulse duration of the device, with a conversion efficiency from the electron beam to microwave energy of 45%. In all operating conditions the severed amplifier showed a ''sideband''-like structure in the frequency spectrum of the microwave radiation. A similar structure was apparent at output powers in excess of 70 MW in the single stage device. The frequencies of the ''sidebands'' are not symmetric with respect to the center frequency. The maximum, single frequency, average output power was 210 MW corresponding to an amplifier efficiency of 24%. Simulation data is also presented that indicates that the short amplifiers used in this work exhibit significant differences in behavior from conventional low-power amplifiers. These include finite length effects on the gain characteristics, which may account for the observed narrow bandwidth of the amplifiers and for the appearance of the sidebands. It is also found that the bunching length for the beam may be a significant fraction of the total amplifier length

  17. A Reduced Switch Voltage Stress Class E Power Amplifier Using Harmonic Control Network

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    In this paper, a harmonic control network (HCN) is presented to reduce the voltage stress (maximum MOSFET voltage) of the class E power amplifier (PA). Effects of the HCN on the amplifier specifications are investigated. The results show that the proposed HCN affects several specifications of the amplifier, such as drain voltage, switch current, output power capability (Cp factor), and drain impedance. The output power capability of the presented amplifier is also improved, compared with the ...

  18. Multilevel tracking power supply for switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Lazarevic, Vladan; Vasic, Miroslav

    2018-01-01

    to the power supply in order to improve efficiency. A 100 W prototype system was designed. Measured results show that systems employing envelope tracking can improve system efficiency from 2% to 12%, i.e. a factor of 6. The temperature rise is strongly reduced, especially for the switching power MOSFETs where......Switch-mode technology is the common choice for high efficiency audio power amplifiers. The dynamic nature of real audio reduces efficiency as less continuous output power can be achieved. Based on methods used for RF amplifiers this paper proposes to employ envelope tracking techniques...

  19. Advances in high-power rf amplifiers

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1979-01-01

    Several powerful accelerators and storage rings are being considered that will require tens or even hundreds of megawatts of continuous rf power. The economics of such large machines can be dictated by the cost and efficiency of the rf amplifiers. The overall design and performance of such narrow-band amplifiers, operating in the 50- to 1500-MHz region, are being theoretically studied as a function of frequency to determine the optimum rf amplifier output power, gain, efficiency, and dc power requirements. The state of the art for three types of amplifiers (gridded tubes, klystrons, and gyrocons) is considered and the development work necessary to improve each is discussed. The gyrocon is a new device, hence its various embodiments are discussed in detail. The Soviet designs are reviewed and the gyrocon's strengths and weaknesses are compared to other types of microwave amplifiers. The primary advantages of the gyrocon are the very large amount of power available from a single device and the excellent efficiency and stable operation. The klystron however, has much greater gain and is simpler mechanically. At very low frequencies, the small size of the gridded tube makes it the optimum choice for all but the most powerful systems

  20. 5 Watt GaN HEMT Power Amplifier for LTE

    Directory of Open Access Journals (Sweden)

    K. Niotaki

    2014-04-01

    Full Text Available This work presents the design and implementation of a stand-alone linear power amplifier at 2.4 GHz with high output power. A GaN HEMT transistor is selected for the design and implementation of the power amplifier. The device exhibits a gain of 11.7 dB and a drain efficiency of 39% for an output power of 36.7 dBm at 2.4 GHz for an input power of 25dBm. The carrier to intermodulation ratio is better than 25 dB for a two tone input signal of 25 dBm of total power and a spacing of 5 MHz. The fabricated device is also tested with LTE input signals of different bandwidths (5MHz to 20MHz.

  1. PHEMT Distributed Power Amplifier Adopting Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, K.; Limiti, E.; Paoloni, C.

    2013-01-01

    A non-uniform drain line distributed power amplifier (DPA) employing a broadband impedance transformer is presented. The DPA is based on GaAs PHEMT technology. The impedance transformer employs asymmetric coupled lines and transforms a low output impedance of the amplifier to a standard 50 Ω...

  2. An 8–18 GHz broadband high power amplifier

    International Nuclear Information System (INIS)

    Wang Lifa; Yang Ruixia; Li Yanlei; Wu Jingfeng

    2011-01-01

    An 8–18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8–13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm 3 . (semiconductor integrated circuits)

  3. Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers.......Semiconductor quantum dot amplifiers are predicted to exhibit superior characteristics such as high gain, and output power and low noise. The analysis provides criteria and design guidelines for the realization of high quality amplifiers....

  4. Linear Distributed GaN MMIC Power Amplifier with Improved Power-added Efficiency

    Science.gov (United States)

    2017-03-01

    QPSK LTE waveform, the ACPR1improved by ~10 dBc at average output power of 23 dBm, without digital pre-distortion. Keywords: GaN, linear amplifiers...wideband amplifier, OIP3, LTE Introduction RF communications with spectral efficiency utilizes complex modulation schemes that require amplifier...wideband amplifiers remain. In this paper, we report on the measured CW performance of a multi-octave (100 MHz ‒ 8 GHz) GaN MMIC NDPA fabricated with

  5. High efficiency class-I audio power amplifier using a single adaptive supply

    International Nuclear Information System (INIS)

    Peng Zhenfei; Yang Shanshand; Feng Yong; Hong Zhiliang; Liu Yang

    2012-01-01

    A high efficiency class-I linear audio power amplifier (PA) with an adaptive supply is presented. Its efficiency is improved by a dynamic supply to reduce the power transistors' voltage drop. A gain compression technique is adopted to make the amplifier accommodate a single positive supply. Circuit complicity and chip area are reduced because no charge pump is necessary for the negative supply. A common shared mode voltage and a symmetric layout pattern are used to minimize the non-linearity. A peak efficiency of 80% is reached at peak output power. The measured THD+N before and after the supply switching point are 0.01% and 0.05%, respectively. The maximum output power is 410 mW for an 8 Ω speaker load. Unlike switching amplifiers, the class-I amplifier operates as a linear amplifier and hence has a low EMI. The advantage of a high efficiency and low EMI makes the class-I amplifier suitable for portable and RF sensitive applications. (semiconductor integrated circuits)

  6. 75 GHz InP DHBT power amplifier based on two-stacked transistors

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Midili, Virginio; Johansen, Tom Keinicke

    2017-01-01

    In this paper we present the design and measurements of a two-stage 75-GHz InP Double Heterojunction Bipolar Transistor (DHBT) power amplifier (PA). An optimized two-stacked transistor power cell has been designed, which represents the building block in the power stage as well as in the driver st......, the power amplifier exhibits a small signal gain of G = 12.6 dB, output power at 1-dB compression of Pout, 1dB = 18.6 dBm and a saturated output power of Psat > 21.4 dBm....

  7. Current-Driven Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Buhl, Niels Christian; Andersen, Michael A. E.

    2012-01-01

    The conversion of electrical energy into sound waves by electromechanical transducers is proportional to the current through the coil of the transducer. However virtually all audio power amplifiers provide a controlled voltage through the interface to the transducer. This paper is presenting...... a switch-mode audio power amplifier not only providing controlled current but also being supplied by current. This results in an output filter size reduction by a factor of 6. The implemented prototype shows decent audio performance with THD + N below 0.1 %....

  8. Multicanonical evaluation of the tails of the probability density function of semiconductor optical amplifier output power fluctuations

    DEFF Research Database (Denmark)

    Tromborg, Bjarne; Reimer, Michael; Yevick, David

    2010-01-01

    This paper presents a multicanonical Monte Carlo method for simulating the tails of a pdf distribution of the filtered output power from a semiconductor optical amplifier down to values of the order of 10−40. The influence of memory effects on the pdf is examined in order to demonstrate the manner...... in which the calculated pdf approaches the true pdf with increasing integration time. The simulated pdf is shown to be in good agreement with a second order analytic expression for the pdf....

  9. A broadband high-efficiency Doherty power amplifier using symmetrical devices

    Science.gov (United States)

    Cheng, Zhiqun; Zhang, Ming; Li, Jiangzhou; Liu, Guohua

    2018-04-01

    This paper proposes a method for broadband and high-efficiency amplification of Doherty power amplifier (DPA) using symmetric devices. In order to achieve the perfect load modulation, the carrier amplifier output circuit total power length is designed to odd multiple of 90°, and the peak amplifier output total power length is designed to even multiple of 180°. The proposed method is demonstrated by designing a broadband high-efficiency DPA using identical 10-W packaged GaN HEMT devices. Measurement results show that over 51% drain efficiency is achieved at 6-dB back-off power, over the frequency band of 1.9–2.4 GHz. Project supported by the National Natural Science Foundation of China (No. 60123456), the Zhejiang Provincial Natural Science Foundation of China (No. LZ16F010001), and the Zhejiang Provincial Public Technology Research Project (No. 2016C31070).

  10. Two-stage, high power X-band amplifier experiment

    International Nuclear Information System (INIS)

    Kuang, E.; Davis, T.J.; Ivers, J.D.; Kerslick, G.S.; Nation, J.A.; Schaechter, L.

    1993-01-01

    At output powers in excess of 100 MW the authors have noted the development of sidebands in many TWT structures. To address this problem an experiment using a narrow bandwidth, two-stage TWT is in progress. The TWT amplifier consists of a dielectric (e = 5) slow-wave structure, a 30 dB sever section and a 8.8-9.0 GHz passband periodic, metallic structure. The electron beam used in this experiment is a 950 kV, 1 kA, 50 ns pencil beam propagating along an applied axial field of 9 kG. The dielectric first stage has a maximum gain of 30 dB measured at 8.87 GHz, with output powers of up to 50 MW in the TM 01 mode. In these experiments the dielectric amplifier output power is about 3-5 MW and the output power of the complete two-stage device is ∼160 MW at the input frequency. The sidebands detected in earlier experiments have been eliminated. The authors also report measurements of the energy spread of the electron beam resulting from the amplification process. These experimental results are compared with MAGIC code simulations and analytic work they have carried out on such devices

  11. Digitally Controlled Envelope Tracking Power Supply for an RF Power Amplifier

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2007-01-01

    due to clock frequency quantization. An envelope tracking power supply for an RF Power Amplifier (RFPA) can help improve system efficiency by reducing the power consumption of the RFPA. To show the advantage of the DiSOM over traditional counter based Digital PWM modulators two designs were compared...... in both simulation and by experiment. The results shows that the DiSOM could give an increase in open loop bandwidth by more than a factor of two and an reduce the closed loop output impedance of the power supply by a factor of 5 at the output filter resonance frequency....

  12. Multi Carrier Modulator for Switch-Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Pfaffinger, Gerhard; Andersen, Michael Andreas E.

    2008-01-01

    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment, in particular radio receivers. Lowering the EMI of swit...

  13. Multi Carrier Modulation Audio Power Amplifier with Programmable Logic

    DEFF Research Database (Denmark)

    Christiansen, Theis; Andersen, Toke Meyer; Knott, Arnold

    2009-01-01

    While switch-mode audio power amplifiers allow compact implementations and high output power levels due to their high power efficiency, they are very well known for creating electromagnetic interference (EMI) with other electronic equipment. To lower the EMI of switch-mode (class D) audio power a...

  14. An RF Power Amplifier in a Digital CMOS Process

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck; Fallesen, Carsten

    2002-01-01

    A two stage class B power amplifier for 1.9 GHz is presented. The amplifier is fabricated in a standard digital EPI-CMOS process with low resistivity substrate. The measured output power is 29 dBm in a 50 Omega load. A design method to find the large signal parameters of the output transistor...... is presented. It separates the determination of the optimal load resistance and the determination of the large signal drain-source capacitance. Based on this method, proper values for on-chip interstage matching and off-chip output matching can be derived. A envelope linearisation circuit for the PA...... is proposed. Simulations and measurements of a fabricated linearisation circuit are presented and used to calculate the achievable linearity in terms of the spectral leakage and the error vector magnitude of a EDGE (3 pi /8-8PSK) modulated signal....

  15. Repeated Evolution of Power-Amplified Predatory Strikes in Trap-Jaw Spiders.

    Science.gov (United States)

    Wood, Hannah M; Parkinson, Dilworth Y; Griswold, Charles E; Gillespie, Rosemary G; Elias, Damian O

    2016-04-25

    Small animals possess intriguing morphological and behavioral traits that allow them to capture prey, including innovative structural mechanisms that produce ballistic movements by amplifying power [1-6]. Power amplification occurs when an organism produces a relatively high power output by releasing slowly stored energy almost instantaneously, resulting in movements that surpass the maximal power output of muscles [7]. For example, trap-jaw, power-amplified mechanisms have been described for several ant genera [5, 8], which have evolved some of the fastest known movements in the animal kingdom [6]. However, power-amplified predatory strikes were not previously known in one of the largest animal classes, the arachnids. Mecysmaucheniidae spiders, which occur only in New Zealand and southern South America, are tiny, cryptic, ground-dwelling spiders that rely on hunting rather than web-building to capture prey [9]. Analysis of high-speed video revealed that power-amplified mechanisms occur in some mecysmaucheniid species, with the fastest species being two orders of magnitude faster than the slowest species. Molecular phylogenetic analysis revealed that power-amplified cheliceral strikes have evolved four times independently within the family. Furthermore, we identified morphological innovations that directly relate to cheliceral function: a highly modified carapace in which the cheliceral muscles are oriented horizontally; modification of a cheliceral sclerite to have muscle attachments; and, in the power-amplified species, a thicker clypeus and clypeal apodemes. These structural innovations may have set the stage for the parallel evolution of ballistic predatory strikes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  17. Design of mm-wave InP DHBT power amplifiers

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Yan, Lei

    2011-01-01

    In this paper suitable topologies for mm-wave integrated power amplifiers using InP DHBT technology is investigated. Among the standard topologies for mm-wave power cells: common-emitter, common-base, and cascode configuration, the cascode configuration proves the most promising in terms of output...

  18. A Doherty Power Amplifier with Large Back-Off Power Range Using Integrated Enhancing Reactance

    Directory of Open Access Journals (Sweden)

    Wa Kong

    2018-01-01

    Full Text Available A symmetric Doherty power amplifier (DPA based on integrated enhancing reactance (IER was proposed for large back-off applications. The IER was generated using the peaking amplifier with the help of a desired impedance transformation in the low-power region to enhance the back-off efficiency of the carrier amplifier. To convert the impedances properly, both in the low-power region and at saturation, a two-impedance matching method was employed to design the output matching networks. For verification, a symmetric DPA with large back-off power range over 2.2–2.5 GHz was designed and fabricated. Measurement results show that the designed DPA has the 9 dB back-off efficiency of higher than 45%, while the saturated output power is higher than 44 dBm over the whole operation bandwidth. When driven by a 20 MHz LTE signal, the DPA can achieve good average efficiency of around 50% with adjacent channel leakage ratio of about –50 dBc after linearization over the frequency band of interest. The linearity improvement of the DPA for multistandard wireless communication system was also verified with a dual-band modulated signal.

  19. Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks

    OpenAIRE

    Ali Reza Zirak; Sobhan Roshani

    2016-01-01

    A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...

  20. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  1. CMOS 60-GHz and E-band power amplifiers and transmitters

    CERN Document Server

    Zhao, Dixian

    2015-01-01

    This book focuses on the development of design techniques and methodologies for 60-GHz and E-band power amplifiers and transmitters at device, circuit and layout levels. The authors show the recent development of millimeter-wave design techniques, especially of power amplifiers and transmitters, and presents novel design concepts, such as “power transistor layout” and “4-way parallel-series power combiner”, that can enhance the output power and efficiency of power amplifiers in a compact silicon area. Five state-of-the-art 60-GHz and E-band designs with measured results are demonstrated to prove the effectiveness of the design concepts and hands-on methodologies presented. This book serves as a valuable reference for circuit designers to develop millimeter-wave building blocks for future 5G applications.

  2. A describing function approach to bipolar RF-power amplifier simulation

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    1981-01-01

    A method for fast and accurate computations of the primary performance parameters such as gain, efficiency, output power, and bandwidth in class-C biased RF-power amplifier stages is presented. The method is based on a describing function characterization of the RF-power transistor where the term...

  3. S-Band AlGaN/GaN Power Amplifier MMIC with over 20 Watt Output Power

    NARCIS (Netherlands)

    Heijningen, M. van; Visser, G.C.; Wuerfl, J.; Vliet, F.E. van

    2008-01-01

    This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz. An output

  4. Development of high sensitivity transimpedance amplifier module for self powered neutron detectors

    International Nuclear Information System (INIS)

    Khan, T.K.; Tamboli, P.K.; Antony, J.; Balasubramanian, R.; Agilandaeswari, K.; Pramanik, M.

    2010-01-01

    This paper describes design and development of a Transimpedance Amplifier for amplification of very low current from in core Self Powered Neutron Detectors (SPND). Measurement of neutron flux is very important for operation, control and protection of Nuclear Power Plant (NPP). SPND is used to measure Reactor incore flux/power. Based on sensitivity of emitter material used in SPND, pitch length and neutron flux (power level); the current output from SPND varies from few pA to few μA. The described amplifier is suitable to use for this current range. The amplifier provides a very high gain using a resistive T network feedback topology. The amplifier is designed in two stages using ultra low bias current FET OPAMPs. Design of Transimpedance amplifier is carefully done to include ultra low input bias current, low offset voltage and noise. The amplifier has in built test facility for calibration and on line test facility for measurement of insulation resistance (IR). The amplifier module has on board isolated DC-DC converter circuit complying MIL/STD/461C/D which generate isolated +/-15V and +12V supply to provide parameter to parameter ground isolation and independence among each module/signal.The output from the amplifier is 0V to 6V for 0 to 150%FP. The design is simulated in computer and amplifier used at TAPS-3 was modified as per new design and has been tested at TAPS-3 site. The amplifier performed satisfactorily. The results showed that the IR measurement technique adopted in the design can tolerate lower IR of SPND in existing design. (author)

  5. A novel power amplifier structure for RFID tag applications

    International Nuclear Information System (INIS)

    Deng Jianbao; Zhang Shilin; Li De; Zhang Yanzheng; Mao Luhong; Xie Sheng

    2011-01-01

    A novel matching method between the power amplifier (PA) and antenna of an active or semi-active RFID tag is presented. A PCB dipole antenna is used as the resonance inductor of a differential power amplifier. The total PA chip area is reduced greatly to only 240 × 70 μm 2 in a 0.18 μm CMOS process due to saving two on-chip integrated inductors. Operating in class AB with a 1.8 V supply voltage and 2.45 GHz input signal, the PA shows a measured output power of 8 dBm at the 1 dB compression point. (semiconductor integrated circuits)

  6. High power pulsed sources based on fiber amplifiers

    Science.gov (United States)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  7. Optimized Envelope Tracking Power Supply for Tetra2 Base Station RF Power Amplifier

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    An ultra-fast tracking power supply (UFTPS) for envelope tracking in a 50kHz 64-QAM Tetra2 base station power amplification system is demonstrated. A simple method for optimizing the step response of the PID+PD sliding-mode control system is presented and demonstrated, along with a PLL-based scheme...... application. Also demonstrated is the effect of non-zero UFTPS output impedance on envelope tracking performance. At 13W average (156W peak) RF output, a reduction of DC input power consumption from 93W (14% efficiency) to 54W (24% efficiency) is obtained by moving from a fixed RF power amplifier supply...

  8. Subjective test of class D amplifiers without output filter

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Fenger, Lars M.

    2004-01-01

    This paper presents the results of subjective listening tests designed to determine whether the output filter on class D amplifiers used in active loudspeakers can be omitted without audible errors occurring. The frequency range of the amplifiers was limited to 0-3 kHz corresponding to a woofer...

  9. Programmable Input Mode Instrumentation Amplifier Using Multiple Output Current Conveyors

    Directory of Open Access Journals (Sweden)

    Pankiewicz Bogdan

    2017-03-01

    Full Text Available In this paper a programmable input mode instrumentation amplifier (IA utilising second generation, multiple output current conveyors and transmission gates is presented. Its main advantage is the ability to choose a voltage or current mode of inputs by setting the voltage of two configuration nodes. The presented IA is prepared as an integrated circuit block to be used alone or as a sub-block in a microcontroller or in a field programmable gate array (FPGA, which shall condition analogue signals to be next converted by an analogue-to-digital converter (ADC. IA is designed in AMS 0.35 µm CMOS technology and the power supply is 3.3 V; the power consumption is approximately 9.1 mW. A linear input range in the voltage mode reaches ± 1.68 V or ± 250 µA in current mode. A passband of the IA is above 11 MHz. The amplifier works in class A, so its current supply is almost constant and does not cause noise disturbing nearby working precision analogue circuits.

  10. A 500-600 MHz GaN power amplifier with RC-LC stability network

    Science.gov (United States)

    Ma, Xinyu; Duan, Baoxing; Yang, Yintang

    2017-08-01

    A 500-600 MHz high-efficiency, high-power GaN power amplifier is designed and realized on the basis of the push-pull structure. The RC-LC stability network is proposed and applied to the power amplifier circuit for the first time. The RC-LC stability network can significantly reduce the high gain out the band, which eliminates the instability of the power amplifier circuit. The developed power amplifier exhibits 58.5 dBm (700 W) output power with a 17 dB gain and 85% PAE at 500-600 MHz, 300 μs, 20% duty cycle. It has the highest PAE in P-band among the products at home and abroad. Project supported by the National Key Basic Research Program of China (No. 2014CB339901).

  11. Antares laser power amplifier

    International Nuclear Information System (INIS)

    Stine, R.D.; Ross, G.F.; Silvernail, C.

    1979-01-01

    The overall design of the Antares laser power amplifier is discussed. The power amplifier is the last stage of amplification in the 100-kJ Antares laser. In the power amplifier a single, cylindrical, grid-controlle, cold-cathode electron gun is surrounded by 12 large-aperture CO 2 electron-beam sustained laser discharge sectors. Each power amplifier will deliver 18 kJ and the six modules used in Antares will produce the required 100 kJ for delivery to the target. A large-scale interaction between optical, mechanical, and electrical disciplines is required to meet the design objectives. Significant component advances required by the power amplifier design are discussed

  12. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  13. A 30 KW RF power amplifier for the RFQ accelerator (Paper No. CP 27)

    International Nuclear Information System (INIS)

    Luktuke, R.D.; Garud, A.N.; Murthy, P.N.K.; Sethi, R.C.

    1990-01-01

    A radio frequency quadrupole (RFQ) accelerator, to accelerate deuterons to an energy of 150 keV with beam current of 20 mA, has been designed and is under construction. This accelerator needs approximately 30 kW of RF power to generate the desired voltage of 55 kV on the electrodes, at a frequency of 45 MHz. The power amplifier is designed with four stages of RF amplification using vacuum tubes. The first two stages are built with the tubes 6146 and BEL 250 CX, to deliver about 100 watts power to the grid circuit of the pre driver. The pre driver (EIMAC 5 CX 1500 A) and the driver (BEL 4000 CX) give an output power of about 5kW, at the grid of the high power amplifier. All the four tubes operate in class A/AB mode. The high power amplifier has been designed and is being built around the BEL power tetrode tube CQK-50-2. The output from the high power amplifier is fed to the RFQ, via a matching network to tranform the plate impedance to 50 ohm loop impedeance at the RFQ. The paper presents the design aspects of the high power amplifier, matching network and the results obtained for the earlier stages. (author). 3 refs., 3 tabs., 2 figs

  14. MMIC for High-Efficiency Ka-BAnd GaN Power Amplifiers (2007043), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for high-efficiency, high-output power amplifiers operating in the Ka-band frequencies. For space communications, the power...

  15. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power:Amplifiers: Analysis and Optimization

    OpenAIRE

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic compara...

  16. Efficient performance simulation of class D amplifier output stages

    DEFF Research Database (Denmark)

    Nyboe, Flemming; Risbo, Lars; Andreani, Pietro

    2005-01-01

    Straightforward simulation of amplifier distortion involves transient simulation of operation on a sine wave input signal, and a subsequent FFT of the output voltage. This approach is very slow on class D amplifiers, since the switching behavior forces simulation time steps that are many orders...... of magnitude smaller than the duration of one period of an audio sine wave. This work presents a method of simulating the amplifier transfer characteristic using a minimum amount of simulation time, and then deriving THD from the results....

  17. Microwave dynamic large signal waveform characterization of advanced InGaP HBT for power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lixin; Jin Zhi; Liu Xinyu, E-mail: zhaolixin@ime.ac.c [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2009-12-15

    In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs. (semiconductor devices)

  18. NASA satellite communications application research. Phase 2: Efficient high power, solid state amplifier for EFH communications

    Science.gov (United States)

    Benet, James

    1993-01-01

    The final report describes the work performed from 9 Jun. 1992 to 31 Jul. 1993 on the NASA Satellite Communications Application Research (SCAR) Phase 2 program, Efficient High Power, Solid State Amplifier for EHF Communications. The purpose of the program was to demonstrate the feasibility of high-efficiency, high-power, EHF solid state amplifiers that are smaller, lighter, more efficient, and less costly than existing traveling wave tube (TWT) amplifiers by combining the output power from up to several hundred solid state amplifiers using a unique orthomode spatial power combiner (OSPC).

  19. A 240W Monolithic Class-D Audio Amplifier Output Stage

    OpenAIRE

    Nyboe, Flemming; Kaya, Cetin; Risbo, Lars; Andreani, Pietro

    2006-01-01

    A single-channel class-D audio amplifier output stage outputs 240W undipped into 4Omega 0.1% open-loop THD+N allows using the device in a fully-digital audio signal path with no feedback. The output current capability is plusmn18A and the part is fabricated in a 0.4mum/1.8mum high-voltage BiCMOS process. Over-current sensing protects the output from short circuits.

  20. High linearity 5.2-GHz power amplifier MMIC using CPW structure technology with a linearizer circuit

    International Nuclear Information System (INIS)

    Wu Chiasong; Lin Tah-Yeong; Wu Hsien-Ming

    2010-01-01

    A built-in linearizer was applied to improve the linearity in a 5.2-GHz power amplifier microwave monolithic integrated circuit (MMIC), which was undertaken with 0.15-μm AlGaAs/InGaAs D-mode PHEMT technology. The power amplifier (PA) was studied taking into account the linearizer circuit and the coplanar waveguide (CPW) structures. Based on these technologies, the power amplifier, which has a chip size of 1.44 x 1.10 mm 2 , obtained an output power of 13.3 dBm and a power gain of 14 dB in the saturation region. An input third-order intercept point (HP 3 ) of -3 dBm, an output third-order intercept point (OIP 3 ) of 21.1 dBm and a power added efficiency (PAE) of 22% were attained, respectively. Finally, the overall power characterization exhibited high gain and high linearity, which illustrates that the power amplifier has a compact circuit size and exhibits favorable RF characteristics. This power circuit demonstrated high RF characterization and could be used for microwave power circuit applications at 5.2 GHz. (semiconductor integrated circuits)

  1. X-Band GaN Power Amplifier MMIC with a Third Harmonic-Tuned Circuit

    Directory of Open Access Journals (Sweden)

    Kyung-Tae Bae

    2017-11-01

    Full Text Available This paper presents an X-band GaN HEMT power amplifier with a third harmonic-tuned circuit for a higher power density per area and a higher power-added efficiency (PAE using a 0.25 μm GaN HEMT process of WIN semiconductors, Inc. The optimum load impedances at the fundamental and third harmonic frequencies are extracted from load-pull simulations at the transistor’s extrinsic plane, including the drain-source capacitance and the series drain inductance. The third harmonic-tuned circuit is effectively integrated with the output matching circuit at the fundamental frequency, without complicating the whole output matching circuit. The input matching circuit uses a lossy matching scheme, which allows a good return loss and a simple LC low-pass circuit configuration. The fabricated power amplifier monolithic microwave integrated circuit (MMIC occupies an area of 13.26 mm2, and shows a linear gain of 20 dB or more, a saturated output power of 43.2~44.7 dBm, and a PAE of 35~37% at 8.5 to 10.5 GHz.

  2. A 240W Monolithic Class-D Audio Amplifier Output Stage

    DEFF Research Database (Denmark)

    Nyboe, Flemming; Kaya, Cetin; Risbo, Lars

    2006-01-01

    A single-channel class-D audio amplifier output stage outputs 240W undipped into 4Omega 0.1% open-loop THD+N allows using the device in a fully-digital audio signal path with no feedback. The output current capability is plusmn18A and the part is fabricated in a 0.4mum/1.8mum high-voltage Bi...

  3. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  4. Class D audio amplifier with 4th order output filter and self-oscillating full-state hysteresis based feedback driving capacitive transducers

    OpenAIRE

    Nielsen, Dennis; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    A practical solution is presented for the design of a non-isolated high voltage DC/AC power converter. The converter is intended to be used as a class D audio amplifier for a Dielectric Electro Active Polymer (DEAP) transducer. A simple and effective hysteretic control scheme for the converter (buck with fourth- order output filter) is developed and analyzed. The proposed design is verified experimentally by a 125 VAR prototype amplifier, capable of delivering a peak output voltage of 240 V w...

  5. A 900 MHz, 21 dBm CMOS linear power amplifier with 35% PAE for RFID readers

    Energy Technology Data Exchange (ETDEWEB)

    Han Kefeng; Cao Shengguo; Tan Xi; Yan Na; Wang Junyu; Tang Zhangwen; Min Hao, E-mail: tanxi@fudan.edu.cn [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-12-15

    A two-stage differential linear power amplifier (PA) fabricated by 0.18 {mu}m CMOS technology is presented. An output matching and harmonic termination network is exploited to enhance the output power, efficiency and harmonic performance. Measurements show that the designed PA reaches a saturated power of 21.1 dBm and the peak power added efficiency (PAE) is 35.4%, the power gain is 23.3 dB from a power supply of 1.8 V and the harmonics are well controlled. The total area with ESD protected PAD is 1.2 x 0.55 mm{sup 2}. System measurements also show that this power amplifier meets the design specifications and can be applied for RFID reader. (semiconductor integrated circuits)

  6. A 900 MHz, 21 dBm CMOS linear power amplifier with 35% PAE for RFID readers

    International Nuclear Information System (INIS)

    Han Kefeng; Cao Shengguo; Tan Xi; Yan Na; Wang Junyu; Tang Zhangwen; Min Hao

    2010-01-01

    A two-stage differential linear power amplifier (PA) fabricated by 0.18 μm CMOS technology is presented. An output matching and harmonic termination network is exploited to enhance the output power, efficiency and harmonic performance. Measurements show that the designed PA reaches a saturated power of 21.1 dBm and the peak power added efficiency (PAE) is 35.4%, the power gain is 23.3 dB from a power supply of 1.8 V and the harmonics are well controlled. The total area with ESD protected PAD is 1.2 x 0.55 mm 2 . System measurements also show that this power amplifier meets the design specifications and can be applied for RFID reader. (semiconductor integrated circuits)

  7. Class 1 bluetooth power amplifier with 24dBm output power and 48% PAE at 2.4GHz in 0.25um CMOS

    NARCIS (Netherlands)

    Vathulay, V.; Sowlati, T.; Leenaerts, D.M.W.

    2001-01-01

    In this paper, we report an RF power amplifier design in digital CMOS technology for the Class 1 power level specification (20 dBm) in the Bluetooth Communications standard. We have also investigated hot carrier effects under large signal RF operation of the power amplifier. The two stage circuit,

  8. A review on power reducing methods of neural recording amplifiers

    Directory of Open Access Journals (Sweden)

    samira mehdipour

    2016-10-01

    Full Text Available Implantable multi-channel neural recording Microsystems comprise a large number of neural amplifiers, that can affect the overall power consumption and chip area of the analog part of the system.power, noise, size and dc offset are the main challenge faced by designers. Ideally the output of the opamp should be at zero volts when the inputs are grounded.In reality the input terminals are at slightly different dc potentials.The input offset voltage is defined as the voltage that must be applied between the two input terminals of the opamp to obtain zero volts at the output. Amplifier must have capability to reject this dc offset. First method that uses a capacitor feedback network with ac coupling of input devices to reject the offset is very popular in designs.very small low-cutoff frequency.The second method employs a closed-loop resistive feedback and electrode capacitance to form a highpass filter.Moreover,The third method adopts the symmetric floating resistor the feedback path of low noise amplifier to achieve low-frequency cutoff and rejects DC offset voltage. .In some application we can use folded cascade topology.The telescopic topology is a good candidate in terms of providing large gain and phase margin while dissipating small power. the cortical VLSI neuron model reducing power consumption of circuits.Power distribution is the best way to reduce power, noise and silicon area. The total power consumption of the amplifier array is reduced by applying the partial OTA sharing technique. The silicon area is reduced as a benefit of sharing the bulky capacitor.

  9. Design of a Programmable Gain, Temperature Compensated Current-Input Current-Output CMOS Logarithmic Amplifier.

    Science.gov (United States)

    Ming Gu; Chakrabartty, Shantanu

    2014-06-01

    This paper presents the design of a programmable gain, temperature compensated, current-mode CMOS logarithmic amplifier that can be used for biomedical signal processing. Unlike conventional logarithmic amplifiers that use a transimpedance technique to generate a voltage signal as a logarithmic function of the input current, the proposed approach directly produces a current output as a logarithmic function of the input current. Also, unlike a conventional transimpedance amplifier the gain of the proposed logarithmic amplifier can be programmed using floating-gate trimming circuits. The synthesis of the proposed circuit is based on the Hart's extended translinear principle which involves embedding a floating-voltage source and a linear resistive element within a translinear loop. Temperature compensation is then achieved using a translinear-based resistive cancelation technique. Measured results from prototypes fabricated in a 0.5 μm CMOS process show that the amplifier has an input dynamic range of 120 dB and a temperature sensitivity of 230 ppm/°C (27 °C- 57°C), while consuming less than 100 nW of power.

  10. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  11. Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2018-05-01

    Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.

  12. Ultra-Fast Tracking Power Supply with 4th order Output Filter and Fixed-Frequency Hysteretic Control

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2008-01-01

    A practical solution is presented for the design of a non-isolated DC/DC power converter with very low output ripple voltage and very fast output voltage step response. The converter is intended for use as an envelope tracking power supply for an RFPA (Radio Frequency Power Amplifier) in a Tetra2...

  13. On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 μm CMOS

    International Nuclear Information System (INIS)

    Ren Zhixiong; Zhang Kefeng; Liu Lanqi; Li Cong; Chen Xiaofei; Liu Dongsheng; Liu Zhenglin; Zou Xuecheng

    2015-01-01

    Three linear CMOS power amplifiers (PAs) with high output power (more than watt-level output power) for high data-rate mobile applications are introduced. To realize watt-level output power, there are two 2.4 GHz PAs using an on-chip parallel combining transformer (PCT) and one 1.95 GHz PA using an on-chip series combining transformer (SCT) to combine output signals of multiple power stages. Furthermore, some linearization techniques including adaptive bias, diode linearizer, multi-gated transistors (MGTR) and the second harmonic control are applied in these PAs. Using the proposed power combiner, these three PAs are designed and fabricated in TSMC 0.18 μm RFCMOS process. According to the measurement results, the proposed two linear 2.4 GHz PAs achieve a gain of 33.2 dB and 34.3 dB, a maximum output power of 30.7 dBm and 29.4 dBm, with 29% and 31.3% of peak PAE, respectively. According to the simulation results, the presented linear 1.95 GHz PA achieves a gain of 37.5 dB, a maximum output power of 34.3 dBm with 36.3% of peak PAE. (paper)

  14. Final installation and testing of the feedback power amplifier for the Scyllac feedback experiment

    International Nuclear Information System (INIS)

    Kutac, K.J.; Kewish, R.W. Jr.; Gribble, R.F.; Rawcliffe, A.S.; Miller, G.; Kemp, E.L.; Bartsch, R.R.

    1975-01-01

    The Scyllac feedback system consists of eight subsystems. The installation and testing of the many components and eight subsystems are described. The eight subsystems are: (1) ML-8618 power amplifiers; (2) dc plate and bias power supplies; (3) ac filament power supplies; (4) position detector and signal processor (intermediate amplifier); (5) l = 0 and l = 2 output load coils; (6) control system and interlock system; (7) computer controlled analog-to-digital transient recorders; and (8) cable distribution and cooling-water supply system

  15. NASA developments in solid state power amplifiers

    Science.gov (United States)

    Leonard, Regis F.

    1990-01-01

    Over the last ten years, NASA has undertaken an extensive program aimed at development of solid state power amplifiers for space applications. Historically, the program may be divided into three phases. The first efforts were carried out in support of the advanced communications technology satellite (ACTS) program, which is developing an experimental version of a Ka-band commercial communications system. These first amplifiers attempted to use hybrid technology. The second phase was still targeted at ACTS frequencies, but concentrated on monolithic implementations, while the current, third phase, is a monolithic effort that focusses on frequencies appropriate for other NASA programs and stresses amplifier efficiency. The topics covered include: (1) 20 GHz hybrid amplifiers; (2) 20 GHz monolithic MESFET power amplifiers; (3) Texas Instruments' (TI) 20 GHz variable power amplifier; (4) TI 20 GHz high power amplifier; (5) high efficiency monolithic power amplifiers; (6) GHz high efficiency variable power amplifier; (7) TI 32 GHz monolithic power amplifier performance; (8) design goals for Hughes' 32 GHz variable power amplifier; and (9) performance goals for Hughes' pseudomorphic 60 GHz power amplifier.

  16. Power amplifier circuits for functional electrical stimulation systems

    Directory of Open Access Journals (Sweden)

    Delmar Carvalho de Souza

    Full Text Available Abstract Introduction: Functional electrical stimulation (FES is a technique that has been successfully employed in rehabilitation treatment to mitigate problems after spinal cord injury (SCI. One of the most relevant modules in a typical FES system is the power or output amplifier stage, which is responsible for the application of voltage or current pulses of proper intensity to the biological tissue, applied noninvasively via electrodes, placed on the skin surface or inside the muscular tissue, closer to the nervous fibers. The goals of this paper are to describe and discuss about the main power output designs usually employed in transcutaneous functional electrical stimulators as well as safety precautions taken to protect patients. Methods A systematic review investigated the circuits of papers published in IEEE Xplore and ScienceDirect databases from 2000 to 2016. The query terms were “((FES or Functional electric stimulator and (circuit or design” with 274 papers retrieved from IEEE Xplore and 29 from ScienceDirect. After the application of exclusion criteria the amount of papers decreased to 9 and 2 from IEEE Xplore and ScienceDirect, respectively. One paper was inserted in the results as a technological contribution to the field. Therefore, 12 papers presented power stage circuits suitable to stimulate great muscles. Discussion The retrieved results presented relevant circuits with different electronic strategies and circuit components. Some of them considered patient safety strategies or aimed to preserve muscle homeostasis such as biphasic current application, which prevents charge accumulation in stimulated tissues as well as circuits that dealt with electrical impedance variation to keep the electrode-tissue interface within an electrochemical safe regime. The investigation revealed a predominance of design strategies using operational amplifiers in power circuits, current outputs, and safety methods to reduce risks of electrical

  17. TEDS Base Station Power Amplifier using Low-Noise Envelope Tracking Power Supply

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael A. E.

    2009-01-01

    This paper demonstrates a highly linear and efficient TETRA enhanced data service (TEDS) base-station RF power amplifier (RFPA). Based on the well-known combination of an envelope tracking (ET) power supply and a linear class-A/B RFPA, adequate adjacent channel power ratio (ACPR) and wideband noise...... experimentally with a 9.6-dB peak-to-average 50-kHz 16 quadrature amplitude modulation TEDS carrier, the setup providing 44-dBm (25 W) average RF output power at 400 MHz with 44% dc-to-RF efficiency state-of-the-art ACPR of less than ${-}$67 dBc, switching noise artifacts around ${-}$ 85 dBc, and an overall rms...

  18. S-Band AlGaN/GaN power amplifier MMIC with over 20 Watt output power

    NARCIS (Netherlands)

    van Heijningen, M; Visser, G.C.; Wurfl, J.; van Vliet, Frank Edward

    2008-01-01

    Abstract This paper presents the design of an S-band HPA MMIC in AlGaN/GaN CPW technology for radar TR-module application. The trade-offs of using an MMIC solution versus discrete power devices are discussed. The MMIC shows a maximum output power of 38 Watt at 37% Power Added Efficiency at 3.1 GHz.

  19. A high power picosecond Nd:YVO4 master oscillator power amplifier system pumped by 880 nm diodes

    International Nuclear Information System (INIS)

    Yan, S; Yan, X; Yu, H; Zhang, L; Guo, L; Sun, W; Hou, W; Lin, X

    2013-01-01

    We present a high power 880 nm diode-pumped passively mode-locked Nd:YVO 4 oscillator, followed by an 880 nm diode-pumped Nd:YVO 4 amplifier. In the oscillator, a maximum power of 8.7 W was obtained with a repetition rate of 63 MHz and pulse duration of 32 ps, corresponding to an optical efficiency of 36%. The beam quality factors M 2 were measured to be M x 2 =1.2 and M y 2 =1.1 9, respectively. The amplifier generated up to 19.1 W output power with the pulse width and repetition rate remaining unaltered after amplification. (paper)

  20. 5.2 GHz variable-gain amplifier and power amplifier driver for WLAN IEEE 802.11a transmitter front-end

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuelian; Yan Jun; Shi Yin [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Foster, Dai Fa, E-mail: xlzhang@semi.ac.c [Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201 (United States)

    2009-01-15

    A 5.2 GHz variable-gain amplifier (VGA) and a power amplifier (PA) driver are designed for WLAN IEEE 802.11a monolithic RFIC. The VGA and the PA driver are implemented in a 50 GHz 0.35 mum SiGe BiCMOS technology and occupy 1.12 x 1.25 mm{sup 2} die area. The VGA with effective temperature compensation is controlled by 5 bits and has a gain range of 34 dB. The PA driver with tuned loads utilizes a differential input, single-ended output topology, and the tuned loads resonate at 5.2 GHz. The maximum overall gain of the VGA and the PA driver is 29 dB with the output third-order intercept point (OIP3) of 11 dBm. The gain drift over the temperature varying from -30 to 85 deg. C converges within +-3 dB. The total current consumption is 45 mA under a 2.85 V power supply.

  1. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    2005-01-01

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  2. S-band 300 W pulsed solid state microwave amplifier development for driving high power klystrons for electron accelerators

    International Nuclear Information System (INIS)

    Mohania, Praveen; Shrivastava, Purushottam; Hannurkar, P.R.

    2005-01-01

    S-Band Microwave electron accelerators like microtrons and linear accelerators need pulsed microwaves from few megawatts to tens of megawatts to accelerator the electrons to desired energy and intensity. Klystron tube based driver amplifiers were used to drive the high power klystrons, which need microwave power from few tens of watts to 1 kW depending on tube output power and gain. A endeavour was initiated at Centre for Advanced Technology to develop state of art solid state S-band microwave amplifiers indigenously to drive the klystron tubes. A modular design approach was used and individual modules up to 160 W power levels were developed and tested. Finally combining 160 W modules will give up to 300 W output power. Several more modules can be combined to achieve even high power levels. Present paper describes the developmental efforts of 300 W S-band solid-state amplifiers and related microwave technologies. (author)

  3. Power Amplifiers in CMOS Technology: A contribution to power amplifier theory and techniques

    NARCIS (Netherlands)

    Acar, M.

    2011-01-01

    In order to meet the demands from the market on cheaper, miniaturized mobile communications devices realization of RF power amplifiers in the mainstream CMOS technology is essential. In general, CMOS Power Amplifiers (PAs) require high voltage to decrease the matching network losses and for high

  4. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    International Nuclear Information System (INIS)

    Chen, Zukun

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode R , a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  5. Mechanical Design and Fabrication of a New RF Power Amplifier for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zukun [Los Alamos National Laboratory

    2011-01-01

    A Full-scale prototype of a new 201.25 MHz RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, assembled and installed in the test facility. This prototype was successfully tested and met the physics and electronics design criteria. The team faced design and manufacturing challenges, having a goal to produce 2 MW peak power at 13% duty factor, at the elevation of over 2 km in Los Alamos. The mechanical design of the final power amplifier was built around a Thales TH628 Diacrode{sup R}, a state-of-art tetrode power tube. The main structure includes Input circuit, Output circuit, Grid decoupling circuit, Output coupler, Tuning pistons, and a cooling system. Many types of material were utilized to make this new RF amplifier. The fabrication processes of the key components were completed in the Prototype Fabrication Division shop at Los Alamos National Laboratory. The critical plating procedures were achieved by private industry. The FPA mass is nearly 600 kg and installed in a beam structural support stand. In this paper, we summarize the FPA design basis and fabrication, plating, and assembly process steps with necessary lifting and handling fixtures. In addition, to ensure the quality of the FPA support structure a finite element analysis with seismic design forces has also been carried out.

  6. A high-linearity InGaP/GaAs HBT power amplifier for IEEE 802.11a/n

    International Nuclear Information System (INIS)

    Cui Jie; Chen Lei; Kang Chunlei; Shi Jia; Zhang Xuguang; Ai Baoli; Liu Yi

    2013-01-01

    A three-stage 4.8–6 GHz monolithic power amplifier (PA) compatible with IEEE 802.11a/n designed based on an advanced 2 μm InGaP/GaAs hetero-junction bipolar transistor (HBT) process is presented. The PA integrates input matching and closed-loop power control circuits on chip. Under 3.3 V DC bias, the amplifier achieves a ∼31 dB small signal gain, excellent wide band input and output matching among overall 1.2 GHz bandwidth, and up to 24.5 dBm linear output power below EVM 3% with IEEE 802.11a 64QAM OFDM input signal. (semiconductor integrated circuits)

  7. Design and Characterization of a 6 W GaN HEMT Microwave Power Amplifier with Digital Predistortion Linearization

    OpenAIRE

    Mitrevski, Dragan

    2011-01-01

    In this thesis, characterization of a 6W GaN HEMT power amplifier for optimal operating conditions through load pull simulations and measurements is investigated.The purpose is to find source and load impedances to achieve for instance maximum efficiency and maximum output power, and investigate whether thesimulated results can be replicated in a measurement setup. Simulations show that when matching for maximum output power, a peak output power of 13W is achieved, while in 1 dB compression, ...

  8. Design and analysis of a highly-integrated CMOS power amplifier for RFID readers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Tongqiang [Department of Electronics, Tsinghua University, Beijing 100084 (China); Zhang Chun; Chi Baoyong; Wang Zhihua, E-mail: gtq03@mails.tsinghua.edu.c [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2009-06-01

    To implement a fully-integrated on-chip CMOS power amplifier (PA) for RFID readers, the resonant frequency of each matching network is derived in detail. The highlight of the design is the adoption of a bonding wire as the output-stage inductor. Compared with the on-chip inductors in a CMOS process, the merit of the bondwire inductor is its high quality factor, leading to a higher output power and efficiency. The disadvantage of the bondwire inductor is that it is hard to control. A highly integrated class-E PA is implemented with 0.18-mum CMOS process. It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm. The maximum power-added efficiency (PAE) is 32.1%. Also, the spectral performance of the PA is analyzed for the specified RFID protocol.

  9. Design and analysis of a highly-integrated CMOS power amplifier for RFID readers

    International Nuclear Information System (INIS)

    Gao Tongqiang; Zhang Chun; Chi Baoyong; Wang Zhihua

    2009-01-01

    To implement a fully-integrated on-chip CMOS power amplifier (PA) for RFID readers, the resonant frequency of each matching network is derived in detail. The highlight of the design is the adoption of a bonding wire as the output-stage inductor. Compared with the on-chip inductors in a CMOS process, the merit of the bondwire inductor is its high quality factor, leading to a higher output power and efficiency. The disadvantage of the bondwire inductor is that it is hard to control. A highly integrated class-E PA is implemented with 0.18-μm CMOS process. It can provide a maximum output power of 20 dBm and a 1 dB output power of 14.5 dBm. The maximum power-added efficiency (PAE) is 32.1%. Also, the spectral performance of the PA is analyzed for the specified RFID protocol.

  10. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    Giordano, S.; Puglisi, M.

    1983-01-01

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  11. Design considerations for RF power amplifiers demonstrated through a GSM/EDGE power amplifier module

    NARCIS (Netherlands)

    Baltus, P.G.M.; Bezooijen, van A.; Huijsing, J.H.; Steyaert, M.; Roermund, van A.H.M.

    2002-01-01

    This paper describes the design considerations for RF power amplifiers in general, including trends in systems, linearity and efficiency, the PA environment, implementation is sues and technology. As an example a triple-band (900/1800/1900MHz) dual mode (GSMIEdge) power amplifier module is described

  12. High-energy master oscillator power amplifier with near-diffraction-limited output based on ytterbium-doped PCF fiber

    Science.gov (United States)

    Li, Rao; Qiao, Zhi; Wang, Xiaochao; Fan, Wei; Lin, Zunqi

    2017-10-01

    With the development of fiber technologies, fiber lasers are able to deliver very high power beams and high energy pulses which can be used not only in scientific researches but industrial fields (laser marking, welding,…). The key of high power fiber laser is fiber amplifier. In this paper, we present a two-level master-oscillator power amplifier system at 1053 nm based on Yb-doped photonic crystal fibers. The system is used in the front-end of high power laser facility for the amplification of nano-second pulses to meet the high-level requirements. Thanks to the high gain of the system which is over 50 dB, the pulse of more than 0.89 mJ energy with the nearly diffraction-limited beam quality has been obtained.

  13. A low power and low distortion rail-to-rail input/output amplifier using constant current technique

    International Nuclear Information System (INIS)

    Liu Yan; Zhao Yiqiang; Zhang Shilin; Zhao Hongliang

    2011-01-01

    A rail-to-rail amplifier with constant transconductance, intended for audio processing, is presented. The constant transconductance is obtained by a constant current technique based on the input differential pairs operating in the weak inversion region. MOSFETs working in the weak inversion region have the advantages of low power and low distortion. The proposed rail-to-rail amplifier, fabricated in a standard 0.35 μm CMOS process, occupies a core die area of 75 x 183 μm 2 . Measured results show that the maximum power consumption is 85.37 μW with a supply voltage of 3.3 V and the total harmonic distortion level is 1.2% at 2 kHz. (semiconductor integrated circuits)

  14. External-cavity high-power dual-wavelength tapered amplifier with tunable THz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W is achie......A tunable 800 nm high-power dual-wavelength diode laser system with double-Littrow external-cavity feedback is demonstrated. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5.0 THz. A maximum output power of 1.54 W...... is achieved with a frequency difference of 0.86 THz, the output power is higher than 1.3 W in the 5.0 THz range of frequency difference, and the amplified spontaneous emission intensity is more than 20 dB suppressed in the range of frequency difference. The beam quality factor M2 is 1.22±0.15 at an output...

  15. Spatial Power Combining Amplifier for Ground and Flight Applications

    Science.gov (United States)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  16. Efficiency Optimization in Class-D Audio Amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2015-01-01

    This paper presents a new power efficiency optimization routine for designing Class-D audio amplifiers. The proposed optimization procedure finds design parameters for the power stage and the output filter, and the optimum switching frequency such that the weighted power losses are minimized under...... the given constraints. The optimization routine is applied to minimize the power losses in a 130 W class-D audio amplifier based on consumer behavior investigations, where the amplifier operates at idle and low power levels most of the time. Experimental results demonstrate that the optimization method can...... lead to around 30 % of efficiency improvement at 1.3 W output power without significant effects on both audio performance and the efficiency at high power levels....

  17. A highly linear power amplifier for WLAN

    International Nuclear Information System (INIS)

    Jin Jie; Shi Jia; Ai Baoli; Zhang Xuguang

    2016-01-01

    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P 1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. (paper)

  18. Design of a power amplifier for the LAMPF proton storage ring transverse damper system

    International Nuclear Information System (INIS)

    Lunsford, J.S.

    1981-01-01

    A power amplifier has been designed to drive the 50-Ω stripline deflection structures in the transverse active damper of the Los Alamos 800-MeV Proton Storage Ring (PSR). The unit will provide 600-V peak-to-peak with a dc-to-100-MHz bandwidth. Other important characteristics include < 40-ns delay time, 50-dB voltage gain, and 4-ns risetime with < 5% overshoot and ringing. Because of the current-drive properties of the amplifier, two amplifiers could be combined to provide over 1000-V peak-to-peak into 50 Ω, with very little bandwidth degradation. Components in the power amplifier that represent new designs are a 20-tube distributed-amplifier output stage; a driver stage, using VMOS FET and bipolar transistors; a high-voltage probe, with good dc stability and 150-MHz bandwidth; a transient suppressor circuit, using PIN diodes to protect the transistorized drivers from tube arcing; a nonlinear amplifier to compensate for the nonlinear characteristics of the distributed amplifier; and a first-fail indicator circuit to aid in locating the prime causes of equipment failures

  19. High-gain (43 dB), high-power (40 W), highly efficient multipass amplifier at 995 nm in Yb:LiYF4

    Science.gov (United States)

    Manni, Jeffrey; Harris, Dennis; Fan, Tso Yee

    2018-06-01

    A simple implementation of a multipass amplifier along with the use of a cryogenic Yb:LiYF4 (YLF) gain medium has enabled the demonstration of a bulk amplifier with an unprecedented combination of large-signal gain (43 dB), efficiency (>50% optical), average output power (40 W) and a near-diffraction-limited output beam.

  20. Transmission characteristics of acoustic amplifier in thermoacoustic engine

    International Nuclear Information System (INIS)

    Sun Daming; Qiu Limin; Wang Bo; Xiao Yong

    2008-01-01

    Thermoacoustic engines are promising in practical applications for the merits of simple configuration, reliable operation and environmentally friendly working gas. An acoustic amplifier can increase the output pressure amplitude of a thermoacoustic engine (TE) and improve the matching between the engine and its load. In order to make full use of an acoustic amplifier, the transmission characteristics are studied based on linear thermoacoustic theory. Computational and experimental results show that the amplifying ability of an acoustic amplifier is mainly determined by its geometry parameters and output resistance impedance. The amplifying ability of an acoustic amplifier with appropriate length and diameter reaches its maximum when the output resistance impedance is infinite. It is also shown that the acoustic amplifier consumes an amount of acoustic power when amplifying pressure amplitude and the acoustic power consumption increases with amplifying ratio. Furthermore, a novel cascade acoustic amplifier is proposed, which has a much stronger amplifying ability with reduced acoustic power consumption. In experiments, a two-stage cascade acoustic amplifier amplifies the pressure ratio from 1.177 to 1.62 and produces a pressure amplitude of 0.547 MPa with nitrogen of 2.20 MPa as working gas. Good agreements are obtained between the theoretical analysis and experimental results. This research is instructive for comprehensively understanding the mechanism and making full use of the acoustic amplifier

  1. High-Bandwidth, High-Efficiency Envelope Tracking Power Supply for 40W RF Power Amplifier Using Paralleled Bandpass Current Sources

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a high-performance power conversion scheme for power supply applications that require very high output voltage slew rates (dV/dt). The concept is to parallel 2 switching bandpass current sources, each optimized for its passband frequency space and the expected load current....... The principle is demonstrated with a power supply, designed for supplying a 40 W linear RF power amplifier for efficient amplification of a 16-QAM modulated data stream...

  2. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    International Nuclear Information System (INIS)

    Stappel, M; Steinborn, R; Kolbe, D; Walz, J

    2013-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO 3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity. (paper)

  3. A high power cross-field amplifier at X-Band

    International Nuclear Information System (INIS)

    Eppley, K.; Feinstein, J.; Ko, K.; Kroll, N.; Lee, T.; Nelson, E.

    1991-05-01

    A high power cross-field amplifier is under development at SLAC with the objective of providing sufficient peak power to feed a section of an X-Band (11.424 GHz) accelerator without the need for pulse compression. The CFA being designed employs a conventional distributed secondary emission cathode but a novel anode structure which consists of an array of vane resonators alternatively coupled to a rectangular waveguide. The waveguide impedance (width) is tapered linearly from input to output so as to provide a constant RF voltage at the vane tips, leading to uniform power generation along the structure. Nominal design for this tube calls for 300 MW output power, 20 dB gain, DC voltage 142 KV, magnetic field 5 KG, anode-cathode gap 3.6 mm and total interaction length of about 60 cm. These specifications have been supported by computer simulations of both the RF slow wave structure as well as the electron space charge wave interaction. We have used ARGUS to model the cold circuit properties and CONDOR to model the electronic power conversion. An efficiency of 60 percent can be expected. We will discuss the details of the design effort. 5 refs., 6 figs

  4. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  5. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    Science.gov (United States)

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-01

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  6. A C-band 55% PAE high gain two-stage power amplifier based on AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Zheng Jia-Xin; Ma Xiao-Hua; Zhang Hong-He; Zhang Meng; Hao Yue; Lu Yang; Zhao Bo-Chao; Cao Meng-Yi

    2015-01-01

    A C-band high efficiency and high gain two-stage power amplifier based on AlGaN/GaN high electron mobility transistor (HEMT) is designed and measured in this paper. The input and output impedances for the optimum power-added efficiency (PAE) are determined at the fundamental and 2nd harmonic frequency (f 0 and 2f 0 ). The harmonic manipulation networks are designed both in the driver stage and the power stage which manipulate the second harmonic to a very low level within the operating frequency band. Then the inter-stage matching network and the output power combining network are calculated to achieve a low insertion loss. So the PAE and the power gain is greatly improved. In an operation frequency range of 5.4 GHz–5.8 GHz in CW mode, the amplifier delivers a maximum output power of 18.62 W, with a PAE of 55.15% and an associated power gain of 28.7 dB, which is an outstanding performance. (paper)

  7. 6‐GHz‐to‐18‐GHz AlGaN/GaN Cascaded Nonuniform Distributed Power Amplifier MMIC Using Load Modulation of Increased Series Gate Capacitance

    Directory of Open Access Journals (Sweden)

    Dong‐Hwan Shin

    2017-10-01

    Full Text Available A 6‐GHz‐to‐18‐GHz monolithic nonuniform distributed power amplifier has been designed using the load modulation of increased series gate capacitance. This amplifier was implemented using a 0.25‐μm AlGaN/GaN HEMT process on a SiC substrate. With the proposed load modulation, we enhanced the amplifier's simulated performance by 4.8 dB in output power, and by 13.1% in power‐added efficiency (PAE at the upper limit of the bandwidth, compared with an amplifier with uniform gate coupling capacitors. Under the pulse‐mode condition of a 100‐μs pulse period and a 10% duty cycle, the fabricated power amplifier showed a saturated output power of 39.5 dBm (9 W to 40.4 dBm (11 W with an associated PAE of 17% to 22%, and input/output return losses of more than 10 dB within 6 GHz to 18 GHz.

  8. Portable musical instrument amplifier

    Science.gov (United States)

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  9. Design and modeling of InP DHBT power amplifiers at millimeter-wave frequencies

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom K.

    2012-01-01

    In this paper, the design and modeling of InP DHBT based millimeter-wave(mm-wave) power amplifiers is described. This includes the modeling of InP DHBT devices and layout parasitics. An EM-circuit co-simulation approach is described to allow all parasitics to be modeled for accurate circuit...... demonstrates a power gain of 4.5dB with a saturated output power of 14.2dBm at 69.2GHz. © 2012 European Microwave Assoc....

  10. Low-Power Amplifier-Discriminators for High Time Resolution Detection

    CERN Document Server

    Despeisse, M; Anghinolfi, F; Tiuraniemi, S; Osmic, F; Riedler, P; Kluge, A; Ceccucci, A

    2009-01-01

    Low-power amplifier-discriminators based on a so-called NINO architecture have been developed with high time resolution for the readout of radiation detectors. Two different circuits were integrated in the NINO13 chip, processed in IBM 130 nm CMOS technology. The LCO version (Low Capacitance and consumption Optimization) was designed for potential use as front-end electronics in the Gigatracker of the NA62 experiment at CERN. It was developed as pixel readout for solid-state pixel detectors to permit minimum ionizing particle detection with less than 180 ps rms resolution per pixel on the output pulse, for power consumption below 300 mu W per pixel. The HCO version (High Capacitance Optimization) was designed with 4 mW power consumption per channel to provide timing resolution below 20 ps rms on the output pulse, for charges above 10 fC. Results presented show the potential of the LCO and HCO circuits for the precise timing readout of solid-state detectors, vacuum tubes or gas detectors, for applications in h...

  11. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    Science.gov (United States)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  12. The design study of the high power solid-state amplifier in S-band

    International Nuclear Information System (INIS)

    Tozyo, E.; Kobayashi, K.; Yoshida, K.

    1976-01-01

    We have designed the 500W high power solid-state amplifier for the microwave system of INS electron linac. In this design study the output pulse power level of each module is set as possible as high, so the total number of elements is well reduced within the present microwave technics. In comparison with TWTA highly stabilized and maintenance-free operations are expected with 5 years' MTF. (auth.)

  13. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Kumar, Yashwant; Kumari, S.; Ghosh, M.K.; Bera, A.; Sadhukhan, A.; Pal, S.S.; Khare, V.K.; Tiwari, T.P.; Thakur, S.K.; Saha, S.

    2013-01-01

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  14. Class D audio amplifiers for high voltage capacitive transducers

    DEFF Research Database (Denmark)

    Nielsen, Dennis

    of high volume, weight, and cost. High efficient class D amplifiers are now widely available offering power densities, that their linear counterparts can not match. Unlike the technology of audio amplifiers, the loudspeaker is still based on the traditional electrodynamic transducer invented by C.W. Rice......Audio reproduction systems contains two key components, the amplifier and the loudspeaker. In the last 20 – 30 years the technology of audio amplifiers have performed a fundamental shift of paradigm. Class D audio amplifiers have replaced the linear amplifiers, suffering from the well-known issues...... with the low level of acoustical output power and complex amplifier requirements, have limited the commercial success of the technology. Horn or compression drivers are typically favoured, when high acoustic output power is required, this is however at the expense of significant distortion combined...

  15. A Read-out and Data Acquisition System for the Outputs of Multi-channel Spectroscopy Amplifiers

    International Nuclear Information System (INIS)

    Kong Jie; Qian Yi; Su Hong; Dong Chengfu

    2009-01-01

    A read-out and data acquisition system for the outputs of multi-channel spectroscopy amplifiers is introduced briefly in this paper. The 16-channel gating integrator/multiplexer developed by us and PXI-DAQ card are used to construct this system. A virtual instrument system for displaying, indicating,measuring and recording of output waveform is accomplished by integrating the PC, hardware, software together flexibly based on the Lab Windows/CVI platform in our read-out and data acquisition system. In this system, an ADC can face the 16 outputs of 16-channel spectroscopy amplifiers, which can improve the system integration and reduce the cost of data acquisition system. The design provided a new way for building the read-out and data acquisition system using the normal modules and spectroscopy amplifiers. This system has been tested and demonstrated that it is intelligent, reliable, real-time and low cost. (authors)

  16. A weak current amplifier and output circuit used in nuclear weighing scales

    International Nuclear Information System (INIS)

    Sun Jinhua; Zheng Mingquan; Wang Mingqian; Jia Changchun; Jin Hanjuan; Shi Qicun; Tang Ke

    1998-01-01

    A weak current amplifier and output circuit with a maximum nonlinear error of +-0.06% has been developed. Experiments show that it can work stably and therefore be used in nuclear industrial instruments

  17. Design of 0.8–2.7 GHz High Power Class-F Harmonic-Tuned Power Amplifier with Parasitic Compensation Circuit

    Directory of Open Access Journals (Sweden)

    Zhiqun Cheng

    2017-01-01

    Full Text Available The design, implementation, and measurements of a high efficiency and high power wideband GaN HEMT power amplifier are presented. Package parasitic effect is reduced significantly by a novel compensation circuit design to improve the accuracy of impedance matching. An improved structure is proposed based on the traditional Class-F structure with all even harmonics and the third harmonic effectively controlled, respectively. Also the stepped-impedance matching method is applied to the third harmonic control network, which has a positive effect on the expansion bandwidth. CGH40025F power transistor is utilized to build the power amplifier working at 0.8 to 2.7 GHz, with the measured saturated output power 20–50 W, drain efficiency 52%–76%, and gain level above 10 dB. The second and the third harmonic suppression levels are maintained at −16 to −36 dBc and −16 to −33 dBc, respectively. The simulation and the measurement results of the proposed power amplifier show good consistency.

  18. Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications.

    Directory of Open Access Journals (Sweden)

    Eswaran Uthirajoo

    Full Text Available For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC power amplifier (PA is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR and error vector magnitude (EVM specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.

  19. Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications.

    Science.gov (United States)

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.

  20. Wideband LTE Power Amplifier with Integrated Novel Analog Pre-Distorter Linearizer for Mobile Wireless Communications

    Science.gov (United States)

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA’s power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics. PMID:25033049

  1. Free-electron laser system with Raman amplifier outcoupling

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.

    1988-05-03

    A free-electron laser system is described comprising: a free-electron laser pump beam generator producing a high-power optical output beam in a vacuum environement; a Raman amplifier cell located in the path of the output beam from the pump beam generator; means for generating and introducing a Stokes seed beam into the Raman amplifier cell, a pair of gaseous windows through which the output beam enters and leaves the Raman amplifier cell, each window having a stream of gas moving continuously in a direction generally perpendicular to the beam; and a mirror positioned in the path of the output beam from the Raman amplifier, the mirror functioning to reflect and further direct the output beam, but not the unwanted spectral components.

  2. A highly linear power amplifier for WLAN

    Science.gov (United States)

    Jie, Jin; Jia, Shi; Baoli, Ai; Xuguang, Zhang

    2016-02-01

    A three-stage power amplifier (PA) for WLAN application in 2.4-2.5 GHz is presented. The proposed PA employs an adaptive bias circuit to adjust the operating point of the PA to improve the linearity of the PA. Two methods to short the 2nd harmonic circuit are compared in the area of efficiency and gain of the PA. The PA is taped out in the process of 2 μm InGaP/GaAs HBT and is tested by the evaluation board. The measured results show that 31.5 dB power gain and 29.3 dBm P1dB with an associated 40.4% power added efficiency (PAE) under the single tone stimulus. Up to 26.5 dBm output power can be achieved with an error vector magnitude (EVM) of lower than 3% under the 64QAM/OFDM WLAN stimulus. Project supported by the National Natural Science Foundation of China (No. 61201244) and the Natural Science Fund of SUES (No. E1-0501-14-0168).

  3. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  4. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  5. Millimeter‐wave INP DHBT power amplifier based on power‐optimized cascode configuration

    DEFF Research Database (Denmark)

    Johansen, Tom K.; Yan, Lei; Dupuy, Jean‐Yves

    2013-01-01

    This letter describes the use of a power‐optimized cascode configuration for obtaining maximum output power at millimeter‐wave (mm‐wave) frequencies for a two‐way combined power amplifier (PA). The PA has been fabricated in a high‐speed InP double heterojunction bipolar transistor technology and ...... configuration at mm‐wave frequencies are confirmed by both simulations and experimental results. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1178–1182, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27477...

  6. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  7. Design and characterization of a high-power ultrasound driver with ultralow-output impedance

    Science.gov (United States)

    Lewis, George K.; Olbricht, William L.

    2009-11-01

    We describe a pocket-sized ultrasound driver with an ultralow-output impedance amplifier circuit (less than 0.05 Ω) that can transfer more than 99% of the voltage from a power supply to the ultrasound transducer with minimal reflections. The device produces high-power acoustical energy waves while operating at lower voltages than conventional ultrasound driving systems because energy losses owing to mismatched impedance are minimized. The peak performance of the driver is measured experimentally with a PZT-4, 1.54 MHz, piezoelectric ceramic, and modeled using an adjusted Mason model over a range of transducer resonant frequencies. The ultrasound driver can deliver a 100 Vpp (peak to peak) square-wave signal across 0-8 MHz ultrasound transducers in 5 ms bursts through continuous wave operation, producing acoustic powers exceeding 130 W. Effects of frequency, output impedance of the driver, and input impedance of the transducer on the maximum acoustic output power of piezoelectric transducers are examined. The small size, high power, and efficiency of the ultrasound driver make this technology useful for research, medical, and industrial ultrasonic applications.

  8. 45-GHz and 60-GHz 90 nm CMOS power amplifiers with a fully symmetrical 8-way transformer power combiner

    Institute of Scientific and Technical Information of China (English)

    Zhengdong JIANG; Kaizhe GUO; Peng HUANG; Yiming FAN; Chenxi ZHAO; Yongling BAN; Jun LIU; Kai KANG

    2017-01-01

    In this paper,45 GHz and 60 GHz power amplifiers (PAs) with high output power have been successfully designed by using 90 nm CMOS process.The 45 GHz (60 GHz) PA consists of two (four) differential stages.The sizes of transistors have been designed in an appropriate way so as to trade-off gain,efficiency and stability.Due to limited supply voltage and low breakdown voltage of CMOS MOSFET compared with the traditional Ⅲ-Ⅴ technologies,the technique of power combining has been applied to achieve a high output power.In particular,a novel 8-way distributed active transformer power combiner has been proposed for realizing such mm-wave PA.The proposed transformer combiner with a fully symmetrical layout can improve its input impedance balance at mm-wave frequency regime significantly.Taking its advantages of this novel transformer based power combiner,our realized 45 GHz (60 GHz) mm-wave PA has achieved the gain of 20.3 dB (16.8 dB),the maximum PAE of 14.5% (13.4%) and the saturated output power of 21 dBm (21 dBm) with the 1.2 V supply voltage.

  9. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.

    2013-12-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  10. Compressed sensing based joint-compensation of power amplifier's distortions in OFDMA cognitive radio systems

    KAUST Repository

    Ali, Anum Z.; Hammi, Oualid; Al-Naffouri, Tareq Y.

    2013-01-01

    Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.

  11. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  12. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    International Nuclear Information System (INIS)

    Ali, Mohammed H; Chakrabarty, C K; Hock, Goh C; Abdalla, Ahmed N

    2013-01-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  13. An Optimized 2.4GHz RF Power Amplifier Performance for WLAN System

    Science.gov (United States)

    Ali, Mohammed H.; Chakrabarty, C. K.; Abdalla, Ahmed N.; Hock, Goh C.

    2013-06-01

    Recently, the design of RF power amplifiers (PAs) for modern wireless systems are faced with a difficult tradeoff for example, cellphone; battery lifetime is largely determined by the power efficiency of the PA and high spectral efficiency which have ability to transmit data at the highest possible rate for a given channel bandwidth. This paper presents the design a multi stage class AB power Amplifier with high power added efficiency (PAE) and acceptable linearity for the WLAN applications. The open-circuited third harmonic control circuit enhances the efficiency of the PA without deteriorating the linearity of class-AB mode of the PA. The voltage and current waveforms are simulated to evaluate the appropriate operation for the modes. The effectiveness of the proposed controller has been verified by comparing proposed method with another methods using simulation study under a variety of conditions. The proposed circuit operation for a WLAN signals delivers a power-added efficiency (PAE) of 37.6% is measured at 31.6-dBm output power while dissipating 34.61 mA from a 1.8V supply. Finally, the proposed PA is show a good and acceptable result for the WLAN system.

  14. A Decade-Bandwidth Distributed Power Amplifier MMIC Using 0.25 μm GaN HEMT Technology

    Directory of Open Access Journals (Sweden)

    Dong-Hwan Shin

    2017-10-01

    Full Text Available This study presents a 2–20 GHz monolithic distributed power amplifier (DPA using a 0.25 μm AlGaN/GaN on SiC high electron mobility transistor (HEMT technology. The gate width of the HEMT was selected after considering the input capacitance of the unit cell that guarantees decade bandwidth. To achieve high output power using small transistors, a 12-stage DPA was designed with a nonuniform drain line impedance to provide optimal output power matching. The maximum operating frequency of the proposed DPA is above 20 GHz, which is higher than those of other DPAs manufactured with the same gate-length process. The measured output power and power-added efficiency of the DPA monolithic microwave integrated circuit (MMIC are 35.3–38.6 dBm and 11.4%–31%, respectively, for 2–20 GHz.

  15. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    Science.gov (United States)

    Bai, Xianchen; Yang, Jianhua; Zhang, Jiande

    2012-08-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  16. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xianchen; Yang Jianhua; Zhang Jiande [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  17. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    International Nuclear Information System (INIS)

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-01-01

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  18. Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators

    Science.gov (United States)

    Galantowicz, T. A.

    1975-01-01

    The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.

  19. Stabilization of the outputs of pulse amplifiers utilizing non-linear feedback networks. Application to nuclear spectrometer amplifiers

    International Nuclear Information System (INIS)

    Henein, K.L.

    1978-02-01

    In nuclear spectroscopy, baseline instability and random fluctuations at the output of the amplifier create imperfectly solved problems mainly at high counting rates. After a critical examination of current systems, solutions are proposed which surpass existing ones. It is shown that restorers and stabilizers of baselines have their own preferential application. Considering natural limits of performance the proposed solutions give entirely satisfactory results [fr

  20. Spectral Analysis of Polynomial Nonlinearity with Applications to RF Power Amplifiers

    Directory of Open Access Journals (Sweden)

    G. Tong Zhou

    2004-09-01

    Full Text Available The majority of the nonlinearity in a communication system is attributed to the power amplifier (PA present at the final stage of the transmitter chain. In this paper, we consider Gaussian distributed input signals (such as OFDM, and PAs that can be modeled by memoryless or memory polynomials. We derive closed-form expressions of the PA output power spectral density, for an arbitrary nonlinear order, based on the so-called Leonov-Shiryaev formula. We then apply these results to answer practical questions such as the contribution of AM/PM conversion to spectral regrowth and the relationship between memory effects and spectral asymmetry.

  1. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  2. Modeling Distortion Effects in Class-D Amplifier Filter Inductors

    DEFF Research Database (Denmark)

    Knott, Arnold; Stegenborg-Andersen, Tore; Thomsen, Ole Cornelius

    2010-01-01

    Distortion is generally accepted as a quantifier to judge the quality of audio power amplifiers. In switchmode power amplifiers various mechanisms influence this performance measure. After giving an overview of those, this paper focuses on the particular effect of the nonlinearity of the output f...

  3. High power 352 MHz solid state amplifiers developed at the Synchrotron SOLEIL

    Directory of Open Access Journals (Sweden)

    P. Marchand

    2007-11-01

    Full Text Available In SOLEIL, 5 solid state amplifiers provide the required rf power at 352  MHz: 1×35  kW in the booster and 4×190  kW in the storage ring. They consist in a combination of a large number of 330 W elementary modules (1×147 in the booster and 4×724 in the storage ring, based on a design developed in-house, with MOSFETs (metal-oxide-semiconductor field-effect transistors, integrated circulators, and individual power supplies. Although quite innovative and challenging for the required power range, this technology is very attractive and presents significant advantages as compared to the more conventional vacuum tubes, klystrons, or inductive output tubes (IOTs. The booster and two of the storage ring power plants have been successfully commissioned and the first operational experience is quite satisfactory. The amplifiers proved to be very reliable as well as easy and flexible in operation; they have not been responsible for any beam time loss.

  4. The Multidisk Diode-Pumped High Power Yb:YAG Laser Amplifier of High-Intensity Laser System with 1 kHz Repetition Rate

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Petrov, V. A.; Laptev, A. V.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2018-04-01

    The source of instabilities in the multidisk diode-pumped high power Yb:YAG laser amplifier with cryogenic closed-loop cooling in the laser amplification channel of the high-intensity laser system with 1 kHz repetition rate was determined. Dissected copper mounts were designed and used to suppress instabilities and to achieve repeatability of the system. The equilibrium temperature dependency of the active elements on average power was measured. The seed laser for the multidisk amplifier was numerically simulated and designed to allow one to increase pulses output energy after the amplifier up to 500 mJ.

  5. Testing of inductive output tube based RF amplifier for 650 MHz SRF cavities

    International Nuclear Information System (INIS)

    Mandal, A.; Som, S.; Manna, S.K.; Ghosh, S.; Seth, S.; Thakur, S.K.; Saha, S.; Panda, U.S.

    2012-01-01

    A 650 MHz IOT based RF amplifier has been developed in VECC. It can be used to power several cavity modules in high energy high current proton linear accelerator to be built for ADSS programme in India and in Project-X at Fermilab, USA. The IOT based amplifier requires different powers supplies, water cooling and forced air cooling for its operation. A Programmable Logic Controller (PLC) based interlocks has been incorporated to take care of systematic on/off of the power supplies and driver amplifier, water flow, air flow and other interlocks for the safe operation of the RF System. In addition to that EPICS based RF operating console and data logging/monitoring system has been added. (author)

  6. Power output and efficiency of a thermoelectric generator under temperature control

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Wu, Po-Hua; Wang, Xiao-Dong; Lin, Yu-Li

    2016-01-01

    Highlights: • Power output and efficiency of a thermoelectric generator (TEG) is studied. • Temperatures at the module’s surfaces are approximated by sinusoidal functions. • Mean output power and efficiency are enhanced by the temperature oscillation. • The maximum mean efficiency of the TEG in this study is 8.45%. • The phase angle of 180° is a feasible operation for maximizing the performance. - Abstract: Operation control is an effective way to improve the output power of thermoelectric generators (TEGs). The present study is intended to numerically investigate the power output and efficiency of a TEG and find the operating conditions for maximizing its performance. The temperature distributions at the hot side and cold side surfaces of the TEG are approximated by sinusoidal functions. The influences of the temperature amplitudes at the hot side surface and the cold side surface, the phase angle, and the figure-of-merit (ZT) on the performance of the TEG are analyzed. The predictions indicate that the mean output power and efficiency of the TEG are significantly enhanced by the temperature oscillation, whereas the mean absorbed heat by the TEG is slightly influenced. An increase in the temperature amplitude of the hot side surface and the phase angle can effectively improve the performance. For the phase angle of 0°, a smaller temperature amplitude at the cold side surface renders the better performance compared to that with a larger amplitude. When the ZT value increases from 0.736 to 1.8, the mean efficiency at the phase angle of 180° is amplified by a factor of 1.72, and the maximum mean efficiency is 8.45%. In summary, a larger temperature amplitude at the hot side surface with the phase angle of 180° is a feasible operation for maximizing the performance.

  7. Self-oscillating modulators for direct energy conversion audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating modulators can be used with the direct switching-mode audio power amplifier to improve its performance by providing fast hysteretic control with high power supply rejection ratio, open-loop stability and high bandwidth. Its operation is thoroughly analyzed and simulated waveforms of a prototype amplifier are presented. (au)

  8. IOT based RF power systems as an alternative to klystron amplifier in Indus-2 at the rate 505.812 MHz

    International Nuclear Information System (INIS)

    Deo, R.K.; Jain, M.K.; Kumar, Gautam; Lad, Mahendra; Badapanda, M.K.; Bagre, Sunil; Upadhyay, Rinki; Tripathi, Akhilesh; Rao, J.N.; Pandiyar, Mohan; Hannurkar, P.R.

    2013-01-01

    Due to non-availability of replacement Klystron tube in Indus-2, an IOT based high power RF amplifier system is realized. It is based on E2V make 80 kW IOTD2130 tube with its circuit assembly IMD2000ST. This amplifier system is easily available commercially due to its application in DTV broadcast. It has inherent advantages over klystron amplifier viz. high efficiency (η), less phase and amplitude sensitivity to HV ripple, higher linearity, compactness and less cooling requirement. This high power IOT amplifier is tested with its required control system, cooling system, electron gun auxiliary supplies, beam supply and focusing supply. The nominal beam voltage for this IOT is -36 kV however amplifier was tested successfully with indigenously developed -32 kV, crowbar less power supply. The optimum load impedance for IOT beam was calculated for this bias voltage ( 32kV). For the required load impedance, coupling coefficient (β) of output coupler to the O/P cavity was estimated and accordingly loop angle was adjusted. The amplifier has been tested up to 50 kW with amplifier efficiency 60% and gain 23 dB at - 32 kV beam voltage. (author)

  9. Class-E Amplifier Design Improvements for GSM Frequencies

    Directory of Open Access Journals (Sweden)

    Z. Nadir

    2011-06-01

    Full Text Available Efficient power amplifiers are essential in portable battery-operated systems such as mobile phones. Also, the power amplifier (PA is the most power-consuming building block in the transmitter of a portable system. This paper investigates how the efficiency of the power amplifier (which is beneficial for multiple applications in communcation sector can be improved by increasing the efficiency of switching mode class E power amplifiers for frequencies of 900 MHz and 1800 MHz. The paper tackles modeling, design improvements and verification through simulation for higher efficiencies. This is the continuation of previous work by the authors. These nonlinear power amplifiers can only amplify constant-envelope RF signals without introducing significant distortion. Mobile systems such as Advanced Mobile Phone System (AMPS and Global System for Mobile communications (GSM use modulation schemes which generate constant amplitude RF outputs in order to use efficient but nonlinear power amplifiers. Improvements in designs are suggested and higher efficiencies are achieved, to the tune of 67.1% (for 900 MHz and 67.0% (1800 MHz.

  10. A high-efficiency superconductor distributed amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Q P, E-mail: quentin.herr@ngc.co [Northrop Grumman Corporation, 7323 Aviation Boulevard, Baltimore, MD 21240 (United States)

    2010-02-15

    A superconductor output amplifier that converts single-flux-quantum signals to a non-return-to-zero pattern is reported using a twelve-stage distributed amplifier configuration. The output amplitude is measured to be 1.75 mV over a wide bias current range of {+-} 12%. The bit error rate is measured using a Delta-Sigma data pattern to be less than 1 x 10{sup -9} at 10 Gb s{sup -1} per channel. Analysis of the eye diagram suggests that the actual bit error rate may be much lower. The amplifier has power efficiency of 12% neglecting the termination resistor, which may be eliminated from the circuit with a small modification. (rapid communication)

  11. High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers

    Science.gov (United States)

    Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan

    2018-03-01

    A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.

  12. Design development and testing of high voltage power supply with crowbar protection for IOT based RF amplifier system in VECC

    Science.gov (United States)

    Thakur, S. K.; Kumar, Y.

    2018-05-01

    This paper described the detailed design, development and testing of high voltage power supply (‑30 kV, 3.2 A) and different power supplies for biasing electrodes of Inductive Output Tube (IOT) based high power Radio Frequency (RF) amplifier. This IOT based RF amplifier is further used for pursuing research and development activity in superconducting RF cavity project at Variable Energy Cyclotron Centre (VECC) Kolkata. The state-of-the-art technology of IOT-based high power RF amplifier is designed, developed, and tested at VECC which is the first of its kind in India. A high voltage power supply rated at negative polarity of 30 kV dc/3.2 A is required for biasing cathode of IOT with crowbar protection circuit. This power supply along with crowbar protection system is designed, developed and tested at VECC for testing the complete setup. The technical difficulties and challenges occured during the design of cathode power supply, its crowbar protection techniques along with other supported power supplies i.e. grid and ion pump power supplies are discussed in this paper.

  13. Frequency resolved transverse mode instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Laurila, Marko; Maack, Martin D.

    2013-01-01

    Frequency dynamics of transverse mode instabilities (TMIs) are investigated by testing three 285/100 rod fibers in a single-pass amplifier setup reaching up to ~200W of extracted output power without beam instabilities. The pump power is increased well above the TMI threshold to uncover output dy...

  14. Introduction to RF power amplifier design and simulation

    CERN Document Server

    Eroglu, Abdullah

    2015-01-01

    Introduction to RF Power Amplifier Design and Simulation fills a gap in the existing literature by providing step-by-step guidance for the design of radio frequency (RF) power amplifiers, from analytical formulation to simulation, implementation, and measurement. Featuring numerous illustrations and examples of real-world engineering applications, this book:Gives an overview of intermodulation and elaborates on the difference between linear and nonlinear amplifiersDescribes the high-frequency model and transient characteristics of metal-oxide-semiconductor field-effect transistorsDetails activ

  15. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  16. Embedded control system for high power RF amplifiers

    International Nuclear Information System (INIS)

    Sharma, Deepak Kumar; Gupta, Alok Kumar; Jain, Akhilesh; Hannurkar, P.R.

    2011-01-01

    RF power devices are usually very sensitive to overheat and reflected RF power; hence a protective interlock system is required to be embedded with high power solid state RF amplifiers. The solid state RF amplifiers have salient features of graceful degradation and very low mean time to repair (MTTR). In order to exploit these features in favour of lowest system downtime, a real-time control system is embedded with high power RF amplifiers. The control system is developed with the features of monitoring, measurement and network publishing of various parameters, historical data logging, alarm generation, displaying data to the operator and tripping the system in case of any interlock failure. This paper discusses the design philosophy, features, functions and implementation details of the embedded control system. (author)

  17. SINGLE CONVERSION ISOLATED IMPEDANCE TRANSFORMATION AMPLIFIER

    DEFF Research Database (Denmark)

    2003-01-01

    The invention relates to a switch mode power amplifier. A first and a second change-over switch are inserted between a DC voltage supply and a primary side of an isolation transformer. Two secondary windings are connected to a power output terminal. A first and a second secondary side power switc...

  18. High-performace cladding-pumped erbium-doped fibre laser and amplifier

    International Nuclear Information System (INIS)

    Kotov, L V; Likhachev, M E; Bubnov, M M; Medvedkov, O I; Lipatov, D S; Vechkanov, N N; Guryanov, Aleksei N

    2012-01-01

    We report cladding-pumped erbium-doped fibre laser and amplifier configurations. Through fibre design optimisation, we have achieved a record-high laser slope efficiency, 40 % with respect to absorbed pump power (λ = 976 nm), and an output power of 7.5 W. The erbium-doped fibre amplifier efficiency reaches 32 %.

  19. Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier

    Science.gov (United States)

    Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.

    2018-02-01

    An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.

  20. 47 CFR 2.815 - External radio frequency power amplifiers.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false External radio frequency power amplifiers. 2... AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS Marketing of Radio-frequency Devices § 2.815 External radio frequency power amplifiers. (a) As used in this part, an external radio frequency power...

  1. A high-power compact regenerative amplifier FEL

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Sheffield, R.L.; Fortgang, C.M.; Kinross-Wright, J.M.; Ebrahim, N.A.; Goldstein, J.C.

    1997-01-01

    The Regenerative Amplifier FEL (RAFEL) is a new FEL approach aimed at achieving the highest optical power from a compact rf-linac FEL. The key idea is to feed back a small fraction ( 5 in single pass) wiggler to enable the FEL to reach saturation in a few passes. This paper summarizes the design of a high-power compact regenerative amplifier FEL and describes the first experimental demonstration of the RAFEL concept

  2. Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.

    2009-01-01

    In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.

  3. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications.

    Science.gov (United States)

    Gao, Zheng; Gui, Ping

    2012-07-01

    In this paper, we present a digital predistortion technique to improve the linearity and power efficiency of a high-voltage class-AB power amplifier (PA) for ultrasound transmitters. The system is composed of a digital-to-analog converter (DAC), an analog-to-digital converter (ADC), and a field-programmable gate array (FPGA) in which the digital predistortion (DPD) algorithm is implemented. The DPD algorithm updates the error, which is the difference between the ideal signal and the attenuated distorted output signal, in the look-up table (LUT) memory during each cycle of a sinusoidal signal using the least-mean-square (LMS) algorithm. On the next signal cycle, the error data are used to equalize the signal with negative harmonic components to cancel the amplifier's nonlinear response. The algorithm also includes a linear interpolation method applied to the windowed sinusoidal signals for the B-mode and Doppler modes. The measurement test bench uses an arbitrary function generator as the DAC to generate the input signal, an oscilloscope as the ADC to capture the output waveform, and software to implement the DPD algorithm. The measurement results show that the proposed system is able to reduce the second-order harmonic distortion (HD2) by 20 dB and the third-order harmonic distortion (HD3) by 14.5 dB, while at the same time improving the power efficiency by 18%.

  4. A system for biasing a differential amplifier

    International Nuclear Information System (INIS)

    Barbier, Daniel; Ittel, J.M.; Poujois, Robert

    1975-01-01

    This invention concerns a system for biasing a differential amplifier. It particularly applies to the integrated differential amplifiers designed with MOS field effect transistors. Variations in the technological parameters may well cause the amplifying transistors to work outside their usual operational area, in other words outside the linear part of the transfer characteristic. To ensure that these transistors function correctly, it is necessary that the value of the voltage difference at the output be equally null. To do this and to centre on the so called 'rest' point of the amplifier transfer charateristic, the condition will be set that the output potentials of each amplifier transistor should have a zero value or a constant value as sum. With this in view, the bias on the source (generally a transistor powered by its grid bias voltage) supplying current to the two amplifying transistors fitted in parallel, is permanently adjusted in a suitable manner [fr

  5. Semiconductor optical amplifiers for the 1000-1100-nm spectral range

    International Nuclear Information System (INIS)

    Lobintsov, A A; Shramenko, M V; Yakubovich, S D

    2008-01-01

    Two types of semiconductor optical amplifiers (SOAs) based on a double-layer quantum-well (InGa)As/(GaAl)As/GaAs heterostructure are investigated. The optical gain of more than 30 dB and saturation output power of more than 30 mW are achived at 1060 nm in pigtailed SOA modules. These SOAs used as active elements of a tunable laser provide rapid continuous tuning within 85 nm and 45 nm at output powers of 0.5 mW and more than 30 mW, respectively. (active media, lasers, and amplifiers)

  6. Empirical multichannel power consumption model for erbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia; de Paiva, Getulio E. R.; Argentato, Marcio Colazza

    2015-01-01

    In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified simu......-users, it is relevant to study channel number dependent power consumption for devising EDFA power efficient control and design.......In this paper we report on the first experimental power consumption analysis and model of single and multi-stage booster erbium-doped fiber amplifiers (EDFAs) with automatic gain control (AGC), accounting for channel number dependency. Results show that the amount of channels being amplified...... simultaneously contributes significantly, up to 48%, to the total power consumption due to the circuitry used for controlling the EDFA. As the number of simultaneous amplified WDM channels in high capacity long and medium reach transmission links reflects closely traffic patterns generated by end...

  7. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin' an, E-mail: wangxa@szpku.edu.c [Key Laboratory of Integrated Microsystems, Shenzhen Graduate School of Peking University, Shenzhen 518055 (China)

    2009-06-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching. The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 x 200 mum{sup 2} without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  8. An RF power amplifier with inter-metal-shuffled capacitor for inter-stage matching in a digital CMOS process

    International Nuclear Information System (INIS)

    Feng Xiaoxing; Zhang Xing; Ge Binjie; Wang Xin'an

    2009-01-01

    One challenge of the implementation of fully-integrated RF power amplifiers into a deep submicro digital CMOS process is that no capacitor is available, especially no high density capacitor. To address this problem, a two-stage class-AB power amplifier with inter-stage matching realized by an inter-metal coupling capacitor is designed in a 180-nm digital CMOS process. This paper compares three structures of inter-metal coupling capacitors with metal-insulator-metal (MIM) capacitor regarding their capacitor density. Detailed simulations are carried out for the leakage, the voltage dependency, the temperature dependency, and the quality factor between an inter-metal shuffled (IMS) capacitor and an MIM capacitor. Finally, an IMS capacitor is chosen to perform the inter-stage matching. The techniques are validated via the design and implement of a two-stage class-AB RF power amplifier for an UHF RFID application. The PA occupies 370 x 200 μm 2 without pads in the 180-nm digital CMOS process and outputs 21.1 dBm with 40% drain efficiency and 28.1 dB power gain at 915 MHz from a single 3.3 V power supply.

  9. Design of a power amplifier for wireless communications using microstrip technology and Microwave Office

    Directory of Open Access Journals (Sweden)

    Christian Tipantuña

    2015-12-01

    Full Text Available This paper provides a detailed description and all the procedures involved in designing a power amplifier using microstrip technology and the design software Microwave OfficeTM. Specifically, the design is oriented to build an amplifier with central frequency at 14 GHz, but the same fundamentals and principles could be applied in the whole range of radio frequency. For the design, a MESFET transistor and simultaneous input and output matching networks are considered. The values of the parameters and the simulation for every stage are computed and performed using AWR Microwave OfficeTM. At the end of the document, a fully functional circuit layout represented in 2D and 3D is shown with all their complementary elements

  10. A high efficiency PWM CMOS class-D audio power amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhangming; Liu Lianxi; Yang Yintang [Institute of Microelectronics, Xidian University, Xi' an 710071 (China); Lei Han, E-mail: zmyh@263.ne [Xi' an Power-Rail Micro Co., Ltd, Xi' an 710075 (China)

    2009-02-15

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 mum CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 muA. The active area of the class-D audio power amplifier is about 1.47 x 1.52 mm{sup 2}. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  11. A high efficiency PWM CMOS class-D audio power amplifier

    International Nuclear Information System (INIS)

    Zhu Zhangming; Liu Lianxi; Yang Yintang; Lei Han

    2009-01-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 x 1.52 mm 2 . With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  12. A high efficiency PWM CMOS class-D audio power amplifier

    Science.gov (United States)

    Zhangming, Zhu; Lianxi, Liu; Yintang, Yang; Han, Lei

    2009-02-01

    Based on the difference close-loop feedback technique and the difference pre-amp, a high efficiency PWM CMOS class-D audio power amplifier is proposed. A rail-to-rail PWM comparator with window function has been embedded in the class-D audio power amplifier. Design results based on the CSMC 0.5 μm CMOS process show that the max efficiency is 90%, the PSRR is -75 dB, the power supply voltage range is 2.5-5.5 V, the THD+N in 1 kHz input frequency is less than 0.20%, the quiescent current in no load is 2.8 mA, and the shutdown current is 0.5 μA. The active area of the class-D audio power amplifier is about 1.47 × 1.52 mm2. With the good performance, the class-D audio power amplifier can be applied to several audio power systems.

  13. Influence of mode competition on beam quality of fiber amplifier

    International Nuclear Information System (INIS)

    Xiao Qi-Rong; Yan Ping; Sun Jun-Yi; Chen Xiao; Ren Hai-Cui; Gong Ma-Li

    2014-01-01

    Theoretical and experimental studies of the influence of the mode competition on the output beam quality of fiber amplifiers are presented. Rate equations and modal decomposition method are used in the theoretical model. In the experiment, the output beam-quality factor of a fiber amplifier, which is based on a Yb-doped double-clad large mode area fiber as a function of the seed beam quality and the pump power of the amplifier, is measured. The experimental results are consistent with the theoretical analysis. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. A high efficiency Ku-band radial line relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang; Zhang, Jun; Ju, Jinchuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-07-15

    To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a high power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.

  15. Self-oscillating modulators for direct energy conversion audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    Direct energy conversion audio power amplifier represents total integration of switching-mode power supply and Class D audio power amplifier into one compact stage, achieving high efficiency, high level of integration, low component count and eventually low cost. This paper presents how self-oscillating...

  16. A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications

    NARCIS (Netherlands)

    Pelk, M.J.; Neo, W.C.E.; Gajadharsing, J.R.; Pengelly, R.S.; De Vreede, L.C.N.

    2008-01-01

    A three-way Doherty 100-W GaN base-station power amplifier at 2.14 GHz is presented. Simple, but accurate design equations for the output power combiner of the amplifier are introduced. Mixed-signal techniques are utilized for uncompromised control of the amplifier stages to optimize efficiency, as

  17. Governmentally amplified output volatility

    Science.gov (United States)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  18. Design and study of photomultiplier pulse-shaping amplifier powered by the current flowing through a voltage divider

    International Nuclear Information System (INIS)

    Vladimir Popov

    2003-01-01

    A new version of Photomultiplier Tube (PMT) pulse amplifier, entirely powered by the current flowing through the base voltage divider, was designed and tested. This amplifier was designed for application in the JLAB G0 Experiment E00-006 as a part of high voltage base for XP2262 Photonis PMT. According to JLAB G0 experiment requirement, these PMT's operate with plastic scintillators at high counting rate (about MHz). Tests in JLAB experimental Hall C indicate that low energy gamma background cause up to 0.1 mA of PMT average anode current (without amplifier). At this radiation condition, PMT gain decreases by 50% within about 1 month of operation. The amplifier needs to reduce PMT anode current and to shape PMT anode pulse prior to sending it through a long cable line (more then 400 ft of RG-213 and RG-58 coax cables). Shaping of the PMT output pulse helps to reduce attenuation effect of the long cable line without significant reduction of timing accuracy. The results of this study of designed amplifier and PMT plus amplifier system are presented

  19. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  20. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources in this...... an axial resolution of 15 µm in air (~11µm in tissue) for OCT applications can be achieved....

  1. Development of 360-W LD pumped Nd:YAG amplifier with a phase conjugation mirror

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Nagai, Toru; Yamakawa, Koichi; Kageyama, Nobuto; Miyajima, Hirofumi; Kan, Hirofumi; Yoshida, Hidetsugu; Nakatsuka, Masahiro

    2004-01-01

    We report on a high-average-power laser-diode (LD) pumped Nd:YAG master-oscillator-power-amplifier (MOPA) system with a minimum number of element for the single multi-pass zigzag-slab amplifier-stage for pumping of a high-peak and high-average power Ti:sapphire laser system. This phase conjugated system produces an average-power of 362 W at 1 kHz in a 30 ns pulse with an optical-to-optical conversion efficiency of 14%. With an external KTP doubler, this system generates 132 W of green average-output-power at 1 kHz with a conversion efficiency of 60% when pumped at a power level of 222 W. To the best of our knowledge, these results represent the highest average-output-power at both infrared and green wavelengths achieved in a single-amplifier-stage. (author)

  2. SiC MOSFET Switching Power Amplifier Project Summary

    Science.gov (United States)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex

    2017-10-01

    Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.

  3. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  4. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.

  5. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-01-06

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) for the two-hop Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with the multiantenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the sourcedestination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) which separate the EH and ID transfer over the power domain and the time domain, respectively.

  6. Tapered amplifier laser with frequency-shifted feedback

    Directory of Open Access Journals (Sweden)

    A. Bayerle, S. Tzanova, P. Vlaar, B. Pasquiou, F. Schreck

    2016-10-01

    Full Text Available We present a frequency-shifted feedback (FSF laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  7. Dual-wavelength high-power diode laser system based on an external-cavity tapered amplifier with tunable frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2012-01-01

    knowledge, this is the broadest tuning range of the frequency difference from a dual-wavelength diode laser system. The spectrum, output power, and beam quality of the diode laser system are characterized. The power stability of each wavelength is measured, and the power fluctuations of the two wavelengths......A dual-wavelength high-power semiconductor laser system based on a tapered amplifier with double-Littrow external cavity is demonstrated around 800 nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 10.0 THz. To our...

  8. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  9. Low-power, enhanced-gain adaptive-biasing-based Operational Transconductance Amplifiers

    DEFF Research Database (Denmark)

    Moradi, Farshad

    A symmetrical PMOS OTA (Operational Transconductance Amplifier) is used to build an advanced rail-to-rail amplifier with improved DC-gain and reduced power consumption. By using the adaptive biasing circuit for two differential inputs, a low stand-by current can be achieved, reducing power...

  10. A real-time control system architecture for industrial power amplifiers

    NARCIS (Netherlands)

    Qureshi, F.; Spinu, V.; Wijnands, C.G.E.; Lazar, M.

    2013-01-01

    Power amplifiers are a highly important component in a range of industrial applications, such as, servo-drives, magnetic resonance imaging, energy systems, and audio. The control system for power amplifiers should satisfy a range of requirements, e.g., offset free tracking, stability margins, and

  11. Accurate Modeling and Analysis of Isolation Performance in Multiport Amplifiers

    Directory of Open Access Journals (Sweden)

    Marinella Aloisio

    2012-01-01

    Full Text Available A Multiport Amplifier (MPA is an implementation of the satellite power amplification section that allows sharing the payload RF power among several beams/ports and guarantees a highly efficient exploitation of the available DC satellite power. This feature is of paramount importance in multiple beam satellite systems where the use of MPAs allows reconfiguring the RF output power among the different service beams in order to handle unexpected traffic unbalances and traffic variations over time. This paper presents Monte Carlo simulations carried out by means of an ESA in-house simulator developed in Matlab environment. The objective of the simulations is to analyse how the MPA performance, in particular in terms of isolation at the MPA output ports, is affected by the amplitude and phase tracking errors of the high power amplifiers within the MPA.

  12. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  13. High-power piezo drive amplifier for large stack and PFC applications

    Science.gov (United States)

    Clingman, Dan J.; Gamble, Mike

    2001-08-01

    This paper describes the continuing development of Boeing High Power Piezo Drive Amplifiers. Described is the development and testing of a 1500 Vpp, 8 amp switching amplifier. This amplifier is used to drive a piezo stack driven rotor blade trailing edge flap on a full size helicopter. Also discuss is a switching amplifier designed to drive a Piezo Fiber Composite (PFC) active twist rotor blade. This amplifier was designed to drive the PFC material at 2000 Vpp and 0.5 amps. These amplifiers recycle reactive energy, allowing for a power and weight efficient amplifier design. This work was done in conjunction with the DARPA sponsored Phase II Smart Rotor Blade program and the NASA Langley Research Center sponsored Active Twist Rotor (ATR) blade program.

  14. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

    International Nuclear Information System (INIS)

    Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Kaneda, Yushi; Wada, Satoshi; Imai, Shinichi

    2009-01-01

    A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199 nm with a power of 50 mW was achieved at 2.4 MHz PRF. The 1 μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5 μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion

  15. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  16. A single-to-differential low-noise amplifier with low differential output imbalance

    International Nuclear Information System (INIS)

    Duan Lian; Ma Chengyan; He Xiaofeng; Ye Tianchun; Huang Wei; Jin Yuhua

    2012-01-01

    This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting the inductive coupling of a transformer or center-tapped differential inductor. A detailed analysis of the theory of imbalance reduction, as well as a discussion on the principle of choosing the dimensions of a transformer, are given. An LNA has been implemented using TSMC 0.18 μm technology with ESD-protected. Measurement on board shows a voltage gain of 24.6 dB at 1.575 GHz and a noise figure of 3.2 dB. The gain imbalance is below 0.2 dB and phase imbalance is less than 2 degrees. The LNA consumes 5.2 mA from a 1.8 V supply. (semiconductor integrated circuits)

  17. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)

  18. Audio power amplifier design handbook

    CERN Document Server

    Self, Douglas

    2013-01-01

    This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  19. Power amplifiers for the S-, C-, X- and Ku-bands an EDA perspective

    CERN Document Server

    Božanić, Mladen

    2016-01-01

    This book provides a detailed review of power amplifiers, including classes and topologies rarely covered in books, and supplies sufficient information to allow the reader to design an entire amplifier system, and not just the power amplification stage. A central aim is to furnish readers with ideas on how to simplify the design process for a preferred power amplifier stage by introducing software-based routines in a programming language of their choice. The book is in two parts, the first focusing on power amplifier theory and the second on EDA concepts. Readers will gain enough knowledge of RF and microwave transmission theory, principles of active and passive device design and manufacturing, and power amplifier design concepts to allow them to quickly create their own programs, which will help to accelerate the transceiver design process. All circuit designers facing the challenge of designing an RF or microwave power amplifier for frequencies from 2 to 18 GHz will find this book to be a valuable asset.

  20. Gyrocon: a deflection-modulated, high-power microwave amplifier

    International Nuclear Information System (INIS)

    Tallerico, P.J.

    1977-10-01

    A large-signal, relativistic theory of the electron-field interaction in a new class of microwave amplifiers is presented and applied to the analysis of a high-power, 450-MHz amplifier for accelerator applications. The analysis indicates that electronic efficiencies in excess of 90 percent are obtainable and that overall efficiencies of 90 percent are possible. The amplifier is unique in several respects; the electron velocity is perpendicular to the circuit energy flow, the device uses a fast-wave circuit, and the electron beam is deflection modulated

  1. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify design, increase efficiency and integration level, reduce product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented. (au)

  2. Direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper discusses the advantages and problems when implementing direct energy conversion switching-mode audio power amplifiers. It is shown that the total integration of the power supply and Class D audio power amplifier into one compact direct converter can simplify the design, increase...... efficiency, reduce the product volume and lower its cost. As an example, the principle of operation and the measurements made on a direct-conversion switching-mode audio power amplifier with active capacitive voltage clamp are presented....

  3. High-power dual-wavelength external-Cavity diode laser based on tapered amplifier with tunable terahertz frequency difference

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2011-01-01

    Tunable dual-wavelength operation of a diode laser system based on a tapered diode amplifier with double-Littrow external-cavity feedback is demonstrated around 800nm. The two wavelengths can be tuned individually, and the frequency difference of the two wavelengths is tunable from 0.5 to 5:0 THz......, this is the highest output power from a dual-wavelength diode laser system operating with tunable terahertz frequency difference. © 2011 Optical Society of America....

  4. Simulation of Distributed PV Power Output in Oahu Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-08-01

    Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presented by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.

  5. Output power analyses for the thermodynamic cycles of thermal power plants

    International Nuclear Information System (INIS)

    Sun Chen; Cheng Xue-Tao; Liang Xin-Gang

    2014-01-01

    Thermal power plant is one of the important thermodynamic devices, which is very common in all kinds of power generation systems. In this paper, we use a new concept, entransy loss, as well as exergy destruction, to analyze the single reheating Rankine cycle unit and the single stage steam extraction regenerative Rankine cycle unit in power plants. This is the first time that the concept of entransy loss is applied to the analysis of the power plant Rankine cycles with reheating and steam extraction regeneration. In order to obtain the maximum output power, the operating conditions under variant vapor mass flow rates are optimized numerically, as well as the combustion temperatures and the off-design flow rates of the flue gas. The relationship between the output power and the exergy destruction rate and that between the output power and the entransy loss rate are discussed. It is found that both the minimum exergy destruction rate and the maximum entransy loss rate lead to the maximum output power when the combustion temperature and heat capacity flow rate of the flue gas are prescribed. Unlike the minimum exergy destruction rate, the maximum entransy loss rate is related to the maximum output power when the highest temperature and heat capacity flow rate of the flue gas are not prescribed. (general)

  6. Audio power amplifier techniques with energy efficient power conversion. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Karsten

    1998-04-01

    A fundamental study of both analog and digital pulse modulation methods is carried out. A novel class of multi-level pulse modulation methods - Phase Shifted Carrier Pulse Width Modulation (PSCPWM) - is introduced and show to have several advantageous features, primarily caused by the much improved synthesis of the modulating signal. Enhanced digital pulse modulation methods for digital Pulse Modulation Amplifier (PMA) systems are investigated, and a simple methodology for digital PWM modulator synthesis is devised. It is concluded, that the modulator performance is not a limitation in the system, regardless of the domain of modulator implementation. Power conversion in PMA systems is adressed from the perspective of both linearity and efficienty optimization. Based on detailed studies of the distortion mechanisms in the power conversion stage it is concluded, that this is the fundamental limitation on system performance due to several physical limitations. The analysis of general power stage efficiency concludes that dramatic improvements in energy efficiency are possible with PMA systems that are optimized for efficiency. A control system design methodology is devised as a platform for synthesis of robust control systems. Investigations of three fundamental control structures show that even simple control systems offer a remarkable value, although the considered topologies also have their limitations which is verified by practical evaluation in hardware. A novel control method is introduced - Multivariable Enhanced Cascade Control (MECC). MECC provides flexible control over all essential system parameters and is furthermore simple in realization. Practical evaluation of a MECC based PMA shows state-of-the-art performance. The application of non-linear control methods is investigated with the introduction of an enhanced non-linear control/modulator topology. Although the non-linear controller is theoretically interesting, the method proves to suffer from various

  7. Single-mode operation of a coiled multimode fiber amplifier

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Kliner, Dahv A. V.; Goldberg, Lew

    2000-01-01

    We report a new approach to obtaining single-transverse-mode operation of a multimode fiber amplifier in which the gain fiber is coiled to induce significant bend loss for all but the lowest-order mode. We demonstrated this method by constructing a coiled amplifier using Yb-doped, double-clad fiber with a core diameter of 25 μm and a numerical aperture of ∼0.1 (V≅7.4) . When the amplifier was operated as an amplified-spontaneous-emission source, the output beam had an M 2 value of 1.09±0.09 ; when seeded at 1064 nm, the slope efficiency was similar to that of an uncoiled amplifier. This technique will permit scaling of pulsed fiber lasers and amplifiers to significantly higher pulse energies and peak powers and cw fiber sources to higher average powers while maintaining excellent beam quality. (c) 2000 Optical Society of America

  8. Control interlock and monitoring system for 80 KW IOT based RF power amplifier system at 505.812 MHz for Indus-2

    International Nuclear Information System (INIS)

    Kumar, Gautam; Deo, R.K.; Jain, M.K.; Bagre, Sunil; Hannurkar, P.R.

    2013-01-01

    For 80 kW inductive output tube (IOT) based RF power amplifier system at 505.812 MHz for Indus-2, a control, interlock and monitoring system is realized. This is to facilitate proper start-up and shutdown of the amplifier system, monitor various parameters to detect any malfunction during its operation and to bring the system in a safe stage, thereby assuring reliable operation of the amplifier system. This high power amplifier system incorporates interlocks such as cooling interlocks, various voltage and current interlocks and time critical RF interlocks. Processing of operation sequence, cooling interlocks and various voltage and current interlocks have been realized by using Siemens make S7-CPU-315-2DP (CPU) based programmable logic controller (PLC) system. While time critical or fast interlocks have been realized by using Siemens make FPGA based Boolean Co-processor FM-352-5 which operates in standalone mode. Siemens make operating panel OP277 6'' is being used as a human machine interface (HMI) device for command, data, alarm generation and process parameter monitoring. (author)

  9. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  10. ICC Experiment Performance Improvement through Advanced Feedback Controllers for High-Power Low-Cost Switching Power Amplifiers

    International Nuclear Information System (INIS)

    Nelson, Brian A.

    2006-01-01

    Limited resources force most smaller fusion energy research experiments to have little or no feedback control of their operational parameters, preventing achievement of their full operational potential. Recent breakthroughs in high-power switching technologies have greatly reduced feedback-controlled power supply costs, primarily those classified as switching power amplifiers. However, inexpensive and flexible controllers for these power supplies have not been developed. A uClinux-based micro-controller (Analog Devices Blackfin BF537) was identified as having the capabilities to form the base of a digital control system for switching power amplifiers. A control algorithm was created, and a Linux character device driver was written to realize the algorithm. The software and algorithm were successfully tested on a switching power amplifier and magnetic field coil using University of Washington (subcontractor) resources

  11. Mode control in a high-gain relativistic klystron amplifier

    Science.gov (United States)

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang

    2010-05-01

    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  12. Ka-Band Klystron Amplifier for CUBESATs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Ka-Band klystron amplifier for use in CubeSats. It will operate at 35.7 GHz, have 400 MHz of bandwidth, and output at least 32 watts of saturated power....

  13. Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration

    Science.gov (United States)

    Albrodt, P.; Hanna, M.; Moron, F.; Decker, J.; Winterfeldt, M.; Blume, G.; Erbert, G.; Crump, P.; Georges, P.; Lucas-Leclin, G.

    2018-02-01

    Improved diode laser beam combining techniques are in strong demand for applications in material processing. Coherent beam combining (CBC) is the only combining approach that has the potential to maintain or even improve all laser properties, and thus has high potential for future systems. As part of our ongoing studies into CBC of diode lasers, we present recent progress in the coherent superposition of high-power single-pass tapered laser amplifiers. The amplifiers are seeded by a DFB laser at λ = 976 nm, where the seed is injected into a laterally single-mode ridge-waveguide input section. The phase pistons on each beam are actively controlled by varying the current in the ridge section of each amplifier, using a sequential hill-climbing algorithm, resulting in a combined beam with power fluctuations of below 1%. The currents into the tapered sections of the amplifiers are separately controlled, and remain constant. In contrast to our previous studies, we favour a limited number of individual high-power amplifiers, in order to preserve a high extracted power per emitter in a simple, low-loss coupling arrangement. Specifically, a multi-arm interferometer architecture with only three devices is used, constructed using 6 mm-long tapered amplifiers, mounted junction up on C-mounts, to allow separate contact to single mode and amplifier sections. A maximum coherently combined power of 12.9 W is demonstrated in a nearly diffraction-limited beam, corresponding to a 65% combining efficiency, with power mainly limited by the intrinsic beam quality of the amplifiers. Further increased combined power is currently sought.

  14. Stability investigation for InP DHBT mm‐wave power amplifier

    DEFF Research Database (Denmark)

    Yan, Lei; Johansen, Tom Keinicke; Kammersgaard, Jacob

    2013-01-01

    microwave integrated circuit power amplifier. Experimental results from a redesigned power amplifier with improved stability are presented to confirm that the previously detected oscillation loop is removed using odd‐mode stabilization resistors with the correct choice of values and locations. © 2012 Wiley......In this article, we discuss stability issues for mm‐wave monolithic integrated power amplifiers using InP double heterojunction bipolar transistor (DHBT) technology targeting E‐band applications at 71–76 GHz and 81–86 GHz. Different stability detection methods based on the classical two‐port K......‐Δs pair, linear three‐port graphical analysis, system identifications, circuit modal analysis, and normalized determinant function are all reviewed. The corresponding techniques are employed to predict the occurrence of instability at 15 GHz observed during measurements on a fabricated monolithic...

  15. Development of High Power Amplifiers for Space and Ground-based Applications

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla

    The power amplifier used in the transmitter of a microwave system is a key issue, and it derermines the system performance, cost, power consumption and reliability to a considerable extent. Traditionally, most of high power amplifiers used in military and commercial applications were tube......, the device was delivering power levels larger than 75 W, PAE >35% and gain oscillating between 7.5 +/- 0.5 dB. Measurements were shifted down in frequency 1 GHz, but simulations predicted maximum power levels similar to the ones measured....

  16. Design of an integrated analog controller for a Class-D Audio Amplifier

    OpenAIRE

    Verbrugghe, Jochen; De Bock, Maarten; Rombouts, Pieter

    2009-01-01

    An integrated analog controller for a self-oscillating class-D audio power amplifier is designed in a 0.35 μm CMOS technology for a 3.3 Volt power supply. It is intended to be used with an external output stage and passive filter, for medium power applications of upto a few 100 Watts. The controller was optimized with regard to its loop gain to suppress the distortion of the output stage. In typical commercially available output stages, the distortion is dominated by dead time effects and th...

  17. Gallium nitride based transistors for high-efficiency microwave switch-mode amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Maroldt, Stephan

    2012-07-01

    Highly-efficient switch-mode power amplifiers form key elements in future fully-digital base stations for mobile communication. This novel digital base station concept reduces system energy consumption, complexity, size and costs, while the flexibility in terms of multi-band operation and signal modulation improves. In this work, innovative core circuits for digital high-efficiency class-D and class-S power amplifiers based on gallium nitride (GaN) technology were developed for the application in digital base stations. A combination of optimized GaN devices and improvements in circuit design allow a highly-efficient switch-mode operation at mobile communication frequencies between 0.45 GHz and 2 GHz. Transistor device modeling for switch-mode operation, the simulation environment, and a broadband measurement system were established for the design and evaluation of digital switchmode power amplifiers. The design of broadband core circuits for switch-mode amplifier concepts was analyzed for dual-stage amplifier circuits, using an initial GaN technology with a gate length of 0.25 {mu}m. A speed-enhanced driver stage improved the circuit switching speed sufficiently above 1 GHz. Speed and efficiency of the amplifier core circuits were studied related to transistor parameters like cut-off frequency or gate capacitance. A reduced gate length was found to improve the switching speed, while a lower on-resistance allows the reduction of the inherent static losses of the GaN-based switches. Apart from this, the restriction of a 50 Ohm environment was found to be a major output power and switching speed limitation, due to a poor switching drive capability of the input capacitance of the GaN circuit. Finally, the optimized transistor and circuit design with an output gate width of 1.2 mm were effectively implemented in the given environment for an operation up to 2 GHz with a high drain efficiency of >65% and a digital output power of 5 W. A maximum output power of 9.7 W and a

  18. Large power microwave nonlinear effects on multifunction amplifier chip for Ka-band T/R module of phased array radar

    Science.gov (United States)

    Guo, Guo; Gu, Ling; Wu, Ruowu; Xu, Xiong; Zhou, Taifu; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu; Guo, Changyong

    2017-12-01

    Nonlinear effects of large power millimeter wave on critical chips for the T/R module of phased array radar is experimental studied and analyzed in this paper. A multifunction amplifier chip is selected for our experiments. A solid continuous wave (CW) source and a large power pulsed magnetron are both employed to generate the Ka-band microwave. The input-output characteristics, the degradation and destroy threshold of the chips are obtained through a series of experimental tests. At last, the results are given by figures and analyzed theoretically.

  19. Quasi-CW diode-pumped self-starting adaptive laser with self-Q-switched output.

    Science.gov (United States)

    Smith, G; Damzen, M J

    2007-05-14

    An investigation is made into a quasi-CW (QCW) diode-pumped holographic adaptive laser utilising an ultra high gain (approximately 10(4)) Nd:YVO(4) bounce amplifier. The laser produces pulses at 1064 nm with energy approximately 0.6 mJ, duration laser configuration, the output was amplified to obtain pulses of approximately 5.6 mJ energy, approximately 7 ns duration and approximately 1 MW peak power. The output spatial quality is also M(2)diode-pumped self-adaptive holographic lasers can provide a useful source of high peak power, short duration pulses with excellent spatial quality and narrow linewidth spectrum.

  20. Comparison of Power Supply Pumping of Switch-Mode Audio Power Amplifiers with Resistive Loads and Loudspeakers as Loads

    DEFF Research Database (Denmark)

    Knott, Arnold; Petersen, Lars Press

    2013-01-01

    Power supply pumping is generated by switch-mode audio power amplifiers in half-bridge configuration, when they are driving energy back into their source. This leads in most designs to a rising rail voltage and can be destructive for either the decoupling capacitors, the rectifier diodes...... in the power supply or the power stage of the amplifier. Therefore precautions are taken by the amplifier and power supply designer to avoid those effects. Existing power supply pumping models are based on an ohmic load attached to the amplifier. This paper shows the analytical derivation of the resulting...... waveforms and extends the model to loudspeaker loads. Measurements verify, that the amount of supply pumping is reduced by a factor of 4 when comparing the nominal resistive load to a loudspeaker. A simplified and more accurate model is proposed and the influence of supply pumping on the audio performance...

  1. Dual-range linearized transimpedance amplifier system

    Science.gov (United States)

    Wessendorf, Kurt O.

    2010-11-02

    A transimpedance amplifier system is disclosed which simultaneously generates a low-gain output signal and a high-gain output signal from an input current signal using a single transimpedance amplifier having two different feedback loops with different amplification factors to generate two different output voltage signals. One of the feedback loops includes a resistor, and the other feedback loop includes another resistor in series with one or more diodes. The transimpedance amplifier system includes a signal linearizer to linearize one or both of the low- and high-gain output signals by scaling and adding the two output voltage signals from the transimpedance amplifier. The signal linearizer can be formed either as an analog device using one or two summing amplifiers, or alternately can be formed as a digital device using two analog-to-digital converters and a digital signal processor (e.g. a microprocessor or a computer).

  2. PULSE MODULATION POWER AMPLIFIER WITH ENHANCED CASCADE CONTROL METHOD

    DEFF Research Database (Denmark)

    1998-01-01

    a single local feedback path A (7) with a lowpass characteristic and local forward blocks B¿1? or B (3, 4). The leads to a much improved system with a very low sensitivity to errors in the switching power stage. In the second preferred embodiment of the invention the control structure is extended...... and feedback path A to determine stable self-oscillating conditions. An implemented 250W example MECC digital power amplifier has proven superior performance in terms of audio performance (0.005 % distortion, 115 dB dynamic range) and efficiency (92 %).......A digital switching power amplifier with Multivariable Enhanced Cascade Controlled (MECC) includes a modulator, a switching power stage and a low pass filter. In the first preferred embodiment an enhanced cascade control structure local to the switching power stage is added, characterised by having...

  3. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    Science.gov (United States)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are

  4. A digitally assisted, signal folding neural recording amplifier.

    Science.gov (United States)

    Chen, Yi; Basu, Arindam; Liu, Lei; Zou, Xiaodan; Rajkumar, Ramamoorthy; Dawe, Gavin Stewart; Je, Minkyu

    2014-08-01

    A novel signal folding and reconstruction scheme for neural recording applications that exploits the 1/f(n) characteristics of neural signals is described in this paper. The amplified output is 'folded' into a predefined range of voltages by using comparison and reset circuits along with the core amplifier. After this output signal is digitized and transmitted, a reconstruction algorithm can be applied in the digital domain to recover the amplified signal from the folded waveform. This scheme enables the use of an analog-to-digital convertor with less number of bits for the same effective dynamic range. It also reduces the transmission data rate of the recording chip. Both of these features allow power and area savings at the system level. Other advantages of the proposed topology are increased reliability due to the removal of pseudo-resistors, lower harmonic distortion and low-voltage operation. An analysis of the reconstruction error introduced by this scheme is presented along with a behavioral model to provide a quick estimate of the post reconstruction dynamic range. Measurement results from two different core amplifier designs in 65 nm and 180 nm CMOS processes are presented to prove the generality of the proposed scheme in the neural recording applications. Operating from a 1 V power supply, the amplifier in 180 nm CMOS has a gain of 54.2 dB, bandwidth of 5.7 kHz, input referred noise of 3.8 μVrms and power dissipation of 2.52 μW leading to a NEF of 3.1 in spike band. It exhibits a dynamic range of 66 dB and maximum SNDR of 43 dB in LFP band. It also reduces system level power (by reducing the number of bits in the ADC by 2) as well as data rate to 80% of a conventional design. In vivo measurements validate the ability of this amplifier to simultaneously record spike and LFP signals.

  5. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    Science.gov (United States)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  6. Practical considerations for integrating switch mode audio amplifiers and loudspeakers for a higher power efficiency

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    An integration of electrodynamic loudspeakers and switch mode amplifiers has earlier been proposed in [1]. The work presented in this paper is related to the practical aspects of integration of switch mode audio amplifiers and electro dynamic loudspeakers, using the speaker’s voice coil as output...

  7. Instabilities in RF-power amplifiers caused by a self-oscillation in the transistor bias network

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    1976-01-01

    This paper describes a self-oscillation in the bias network of an amplifier which is commonly used for the output stage in mobile transmitters. It is demonstrated how some often observed spurious oscillations may be related to the self-oscillation and a method for stabilizing the amplifier...

  8. 1-MHz high power femtosecond Yb-doped fiber chirped-pulse amplifier

    Science.gov (United States)

    Hu, Zhong-Qi; Yang, Pei-Long; Teng, Hao; Zhu, Jiang-Feng; Wei, Zhi-Yi

    2018-01-01

    A practical femtosecond polarization-maintaining Yb-doped fiber amplifier enabling 153 fs transform-limited pulse duration with 32 μJ pulse energy at 1 MHz repetition rate corresponding to a peak power of 0.21 GW is demonstrated. The laser system based on chirped-pulse amplification (CPA) technique is seeded by a dispersion managed, nonlinear polarization evolution (NPE) mode-locked oscillator with spectrum bandwidth of 31 nm at 1040 nm and amplified by three fiber pre-amplifying stages and a rod type fiber main amplifying stage. The laser works with beam quality of M2 of 1.3 and power stability of 0.63% (root mean square, RMS) over 24 hours will be stable sources for industrial micromachining, medical therapy and scientific research.

  9. A fluidic/pneumatic interface amplifier

    Science.gov (United States)

    Limbert, D. E.; Kegel, T. M.

    The development of a low cost, reliable, linear pressure amplifier to interface Laminar Proportional Amplifiers (LPA) to pneumatic controllers is presented. The amplifier consists of an LPA input stage and an output stage consisting of a venturi in series with a bellows nozzle valve. The LPA output drives the bellows nozzle valve thereby altering the flowrate through the venturi. The pressure within the venturi throat region, which is the amplifier output, changes with the flowrate. Non-linear characteristics, due to supersonic flow within the venturi, are altered through the use of feedback to the LPA input. A computer based model, to aid in optimizing the amplifier design, is developed. This model incorporates the effects of shock waves and boundary layers within the venturi. Good correspondence between the model and an experimental prototype is shown.

  10. Pulse GaAs field transistor amplifier with subnanosecond time transient

    International Nuclear Information System (INIS)

    Sidnev, A.N.

    1987-01-01

    Pulse amplifier on fast field effect GaAs transistors with Schottky barrier is described. The amplifier contains four cascades, the first three of which are made on combined transistors on the common-drain circuit. The last cascade is made on high-power field effect GaAs transistor for coordination with 50 ohm load. The amplifier operates within the range of input signals from 0.5 up to 100 mV with repetition frequency up to 16 Hz, The gain of the amplifier is ≅ 20 dB. The setting time at output pulses amplitude up to 1 V constitutes ∼ 0.2 ns

  11. A Power Efficient Audio Amplifier Combining Switching and Linear Techniques

    NARCIS (Netherlands)

    van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria

    1998-01-01

    Integrated Class D audio amplifiers are very power efficient, but require an external filter which prevents further integration. Also due to this filter, large feedback factors are hard to realise, so that the load influences the distortion- and transfer characteristics. The amplifier presented in

  12. CMOS Optoelectronic Lock-In Amplifier With Integrated Phototransistor Array.

    Science.gov (United States)

    An Hu; Chodavarapu, Vamsy P

    2010-10-01

    We describe the design and development of an optoelectronic lock-in amplifier (LIA) for optical sensing and spectroscopy applications. The prototype amplifier is fabricated using Taiwan Semiconductor Manufacturing Co. complementary metal-oxide semiconductor 0.35-μm technology and uses a phototransistor array (total active area is 400 μm × 640μm) to convert the incident optical signals into electrical currents. The photocurrents are then converted into voltage signals using a transimpedance amplifier for subsequent convenient signal processing by the LIA circuitry. The LIA is optimized to be operational at 20-kHz modulation frequency but is operational in the frequency range from 13 kHz to 25 kHz. The system is tested with a light-emitting diode (LED) as the light source. The noise and signal distortions are suppressed with filters and a phase-locked loop (PLL) implemented in the LIA. The output dc voltage of the LIA is proportional to the incident optical power. The minimum measured dynamic reserve and sensitivity are 1.31 dB and 34 mV/μW, respectively. The output versus input relationship has shown good linearity. The LIA consumes an average power of 12.79 mW with a 3.3-V dc power supply.

  13. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    Science.gov (United States)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  14. Auto-Zero Differential Amplifier

    Science.gov (United States)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  15. LOAD THAT MAXIMIZES POWER OUTPUT IN COUNTERMOVEMENT JUMP

    Directory of Open Access Journals (Sweden)

    Pedro Jimenez-Reyes

    2016-02-01

    Full Text Available ABSTRACT Introduction: One of the main problems faced by strength and conditioning coaches is the issue of how to objectively quantify and monitor the actual training load undertaken by athletes in order to maximize performance. It is well known that performance of explosive sports activities is largely determined by mechanical power. Objective: This study analysed the height at which maximal power output is generated and the corresponding load with which is achieved in a group of male-trained track and field athletes in the test of countermovement jump (CMJ with extra loads (CMJEL. Methods: Fifty national level male athletes in sprinting and jumping performed a CMJ test with increasing loads up to a height of 16 cm. The relative load that maximized the mechanical power output (Pmax was determined using a force platform and lineal encoder synchronization and estimating the power by peak power, average power and flight time in CMJ. Results: The load at which the power output no longer existed was at a height of 19.9 ± 2.35, referring to a 99.1 ± 1% of the maximum power output. The load that maximizes power output in all cases has been the load with which an athlete jump a height of approximately 20 cm. Conclusion: These results highlight the importance of considering the height achieved in CMJ with extra load instead of power because maximum power is always attained with the same height. We advise for the preferential use of the height achieved in CMJEL test, since it seems to be a valid indicative of an individual's actual neuromuscular potential providing a valid information for coaches and trainers when assessing the performance status of our athletes and to quantify and monitor training loads, measuring only the height of the jump in the exercise of CMJEL.

  16. Broadband 0.25-um Gallium Nitride (GaN) Power Amplifier Designs

    Science.gov (United States)

    2017-08-14

    networking, and sensor systems of interest to Department of Defense applications, particularly for next-generation radar systems. Broadband, efficient, high...simulations of MMIC (3–6 GHz, 28 V/180 mA) 1.75-mm HEMT power amplifier ............................................... 13 Fig. 20 Simple schematic...design simple , a single 1.75-mm high-electron-mobility transistor (HEMT) was used for a preliminary ideal design of the broadband power amplifier

  17. Accurate expressions for the power efficiency of a class-D power amplifier in a limit-cycle transmitter configuration

    NARCIS (Netherlands)

    Sarkeshi, M.; Mahmoudi, R.; Roermund, van A.H.M.

    2009-01-01

    Limit-cycle based, self-oscillating amplifiers are promising candidates for linear amplification of complex signals with high peak-to-average ratio, while maintaining high power efficiency. Limit-cycle transmitters employ switch class-D power amplifiers in order to achieve high Efficiency. In this

  18. An 11 μ w, two-electrode transimpedance biosignal amplifier with active current feedback stabilization.

    Science.gov (United States)

    Inan, O T; Kovacs, G T A

    2010-04-01

    A novel two-electrode biosignal amplifier circuit is demonstrated by using a composite transimpedance amplifier input stage with active current feedback. Micropower, low gain-bandwidth product operational amplifiers can be used, leading to the lowest reported overall power consumption in the literature for a design implemented with off-the-shelf commercial integrated circuits (11 μW). Active current feedback forces the common-mode input voltage to stay within the supply rails, reducing baseline drift and amplifier saturation problems that can be present in two-electrode systems. The bandwidth of the amplifier extends from 0.05-200 Hz and the midband voltage gain (assuming an electrode-to-skin resistance of 100 kΩ) is 48 dB. The measured output noise level is 1.2 mV pp, corresponding to a voltage signal-to-noise ratio approaching 50 dB for a typical electrocardiogram (ECG) level input of 1 mVpp. Recordings were taken from a subject by using the proposed two-electrode circuit and, simultaneously, a three-electrode standard ECG circuit. The residual of the normalized ensemble averages for both measurements was computed, and the power of this residual was 0.54% of the power of the standard ECG measurement output. While this paper primarily focuses on ECG applications, the circuit can also be used for amplifying other biosignals, such as the electroencephalogram.

  19. Design of resonant converter based DC power supply for RF amplifier

    International Nuclear Information System (INIS)

    Mohan, Kartik; Suthar, Gajendra; Dalicha, Hrushikesh; Agarwal, Rohit; Trivedi, R.G.; Mukherjee, Aparajita

    2017-01-01

    ITER require 20 MW of RF power to a large variety of plasmas in the Ion Cyclotron frequency range for heating and driving plasma current. Nine RF sources of 2.5MW RF power level each collectively will accomplish the above requirement. Each RF source consists of SSPA, driver and end stage, above which driver and end stage amplifier are tube (Tetrode/Diacrode) based which requires auxiliary DC power source viz. filament, screen grid and control grid DC power supply. DC power supply has some stringent requirements like low stored energy, fast turn off, and low ripple value, etc. This paper will focus only on Zero Current Switching (ZCS) resonant converter based buck converter. This can serve the purpose of control grid and screen grid DC power supply for above requirement. IGBT switch will be used at 20 kHz so as to lower the filter requirement hence low stored energy and ripple in the output voltage. ZCS operation will also assist us in reducing EMI/EMC effect. Design of resonant tank circuit is important aspect of the converter as it forms the backbone of the complete system and basis of selection of other important parameters as well hence mathematical model analysis with the help of circuit equations for various modes have been shown as a part of selection criteria. Peak current through the switch, duty cycle, switching frequency will be the design parameters for selecting resonant tank circuit

  20. Solid state high power amplifier for driving the SLC injector klystron

    International Nuclear Information System (INIS)

    Judkins, J.G.; Clendenin, J.E.; Schwarz, H.D.

    1985-03-01

    The SLC injector klystron rf drive is now provided by a recently developed solid-state amplifier. The high gain of the amplifier permits the use of a fast low-power electronic phase shifter. Thus the SLC computer control system can be used to shift the phase of the high-power rf rapidly during the fill time of the injector accelerator section. These rapid phase shifts are used to introduce a phase-energy relationship in the accelerated electron pulse in conjunction with the operation of the injector bunch compressor. The amplifier, the method of controlling the rf phase, and the operational characteristics of the system are described. 5 refs., 4 figs

  1. Class-D audio amplifiers with negative feedback

    OpenAIRE

    Cox, Stephen M.; Candy, B. H.

    2006-01-01

    There are many different designs for audio amplifiers. Class-D, or switching, amplifiers generate their output signal in the form of a high-frequency square wave of variable duty cycle (ratio of on time to off time). The square-wave nature of the output allows a particularly efficient output stage, with minimal losses. The output is ultimately filtered to remove components of the spectrum above the audio range. Mathematical models are derived here for a variety of related class-D amplifier de...

  2. Free electron laser amplifier experiments on SG-1

    International Nuclear Information System (INIS)

    Hui Zhongxi; Zhou Chuanming; Wu Ruian

    1994-01-01

    The SG-1 FEL facility is composed of a linear induction accelerator (LIA), an electron beam transport system, a wiggler, a microwave source and a diagnostic system. SG-1 LIA provides a 2 kA, 3.0 MeV beam with a normalized emittance of 0.4∼0.6 (π rad·cm), an energy spread (FWHM) of 4%, resulting in a beam brightness of nearly 10 8 A/πm·rad) 2[1] . The beam current through the wiggler is about 600 A. The first ASE experiments began in September 1991. A 2.6-m long wiggler with a peak magnetic field of 0.3 T was used. At 35.8∼36.5 GHz an ASE output of 0.5 W was obtained for a beam current of nearly 50 A. After a shutdown of about 8 months, the second series of ASE experiments began in October 1992. The second series of ASE experiments were performed with a wiggler magnetic field between 0.25∼0.27 T. The maximum output power is about 100 kw for B w = 0.24 T, I = 600 A, At ν = 35.2 GHz. Based on the ASE experiments the amplifier experiments was carried out on SG-1. Using an 300 W input signal (TE 01 ), a beam current of about 600 A and wiggler magnetic fields of 0.24∼0.28 T, the authors measured the FEL output power as a function of the wiggler magnetic field. The resonant magnetic field was about 0.25 T. Meanwhile, in order to study the amplifier gain, the authors measured the FEL output power as a function of the wiggler length at a peak wiggler magnetic field of 0.26 T. The exponential gain is approximately 19 dB/m and the maximum output power is about 10 MW

  3. Measuring nuclear power plant output by neutrino detection

    International Nuclear Information System (INIS)

    Korovkin, V.A.; Kodanev, S.A.; Panashchenko, N.S.; Sokolov, D.A.; Solov'yanov, O.M.; Tverdovskii, N.D.; Yarichin, A.D.; Ketov, S.N.; Kopeikin, V.I.; Machulin, I.N.; Mikaelyan, L.A.; Sinev, V.V.

    1989-01-01

    Neutrino emission from a reactor is inseparably linked with the fission process of heavy nuclei: each fission contributes a specific amount to the overall power output and gives rise to neutrinos which are emitted by the fission fragments created. Using a detector to record the neutrino flux gives a curve for the number of nuclei undergoing fission and the reactor power output. The question of whether it is practically possible to make use of neutrino emission from reactors was first posed in the mid-70s in connection with preparations for neutrino research at the Roven nuclear power plant (RAES) and in 1986 at an IAEA symposium on the topic of guarantees. Since 1982, research has been carried on at RAES on the fundamental properties and interactions of neutrinos. Based on this research and in parallel with it, in 1983 specialists from the Kurchatov Nuclear Power Institute and RAES jointly conducted an experiment which demonstrated in principle the possibility of remotely measuring reactor power output using the neutrino emission. This experiment had extremely limited statistics and is of interest today as the first demonstration of practical usage of neutrino emission from a reactor. At present the statistics for detecting neutrino events have increased tenfold and experience in lengthy measurements has been accumulated. This allows better analysis for the possibilities of the method. This paper reviews neutrino detection, theoretical bases of the method, determining the fission scale values for converting a number of neutrinos into power output, and measuring the power output

  4. A 0.8V, 7μA, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18μm CMOS

    OpenAIRE

    Citakovic, J; Nielsen, I. Riis; Nielsen, Jannik Hammel; Asbeck, P; Andreani, Pietro

    2005-01-01

    A two-stage amplifier, operational at 0.8V and drawing 7μA, has been integrated in a standard digital 0.18μm CMOS process. Rail-to-rail operations at the input are enabled by complementary transistor pairs with gm control. The efficient rail-to-rail output stage is biased in class AB. The measured DC gain of the amplifier is 75dB, and the unity-gain frequency is 870kHz with a 12pF, 100kΩload. Both input and output stage transistors are biased in weak inversion.

  5. Design and evaluation of laser diodes with distributed bragg reflectors and diffracted waves amplifiers bound to their association into a powerful coherent source; Conception et Evaluation de Diodes Laser a Reflecteurs de Bragg Distribues et d`amplificateurs a onde Diffractee et vue de leur Association en une Source Coherente de Puissance

    Energy Technology Data Exchange (ETDEWEB)

    Dagens, B.

    1995-09-29

    This work is concerned with the evaluation of AlGaAs/GaAs MOPAs (Master Oscillator Power Amplifier) based on the association of a distributed Bragg reflector (DBR) quantum well laser diode with an optical power amplifier. For any given structure and incident wave, the software SIMLAS allows to describe the behaviour of a travelling wave amplifier and to obtain its working characteristics including the output power, the amplified spontaneous emission and the quality of the output beam. This model takes into account the nonlinear interaction between the wave, the injected carriers distribution and the complex index of the structure. The application of the software to a flared non-guided amplified shows that the output power associated with a good beam quality is limited to a range less than one watt. Then a new design is proposed to greatly improve this performance. The modelling software of the DBR laser takes into account wave propagation in a second-order grating structure and the gain and absorption properties in the quantum well. Thus, the output optical power, efficiency, threshold current and model discrimination of the device can be predicted. The model has been used to establish the definition of design criteria in order to promote edge emission relative to surface emission. Finally the fabrication of each device is established. Special attention is paid to the design of the grating region. The fabrication process is validated by the prototypes performance. (author) refs.

  6. Very fast, high peak-power, planar triode amplifiers for driving optical gates

    International Nuclear Information System (INIS)

    Howland, M.M.; Davis, S.J.; Gagnon, W.L.

    1979-01-01

    Recent extensions of the peak power capabilities of planar triodes have made possible the latter's use as very fast pulse amplifiers, to drive optical gates within high-power Nd:glass laser chains. These pulse amplifiers switch voltages in the 20 kV range with rise times of a few nanoseconds, into crystal optical gates that are essentially capacitive loads. This paper describes a simplified procedure for designing these pulse amplifiers. It further outlines the use of bridged-T constant resistance networks to transform load capacitance into pure resistance, independent of frequency

  7. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  8. Time Difference Amplifier with Robust Gain Using Closed-Loop Control

    Science.gov (United States)

    Nakura, Toru; Mandai, Shingo; Ikeda, Makoto; Asada, Kunihiro

    This paper presents a Time Difference Amplifier (TDA) that amplifies the input time difference into the output time difference. Cross coupled chains of variable delay cells with the same number of stages are applicable for TDA, and the gain is adjusted via the closed-loop control. The TDA was fabricated using 65nm CMOS and the measurement results show that the time difference gain is 4.78 at a nominal power supply while the designed gain is 4.0. The gain is stable enough to be less than 1.4% gain shift under ±10% power supply voltage fluctuation.

  9. Dual-Polarized Antenna Arrays with CMOS Power Amplifiers for SiP Integration at W-Band

    Science.gov (United States)

    Giese, Malte; Vehring, Sönke; Böck, Georg; Jacob, Arne F.

    2017-09-01

    This paper presents requirements and front-end solutions for low-cost communication systems with data rates of 100 Gbit/s. Link budget analyses in different mass-market applications are conducted for that purpose. It proposes an implementation of the front-end as an active antenna array with support for beam steering and polarization multiplexing over the full W-band. The critical system components are investigated and presented. This applies to a transformer coupled power amplifier (PA) in 40 nm bulk CMOS. It shows saturated output power of more than 10 dBm and power-added-efficiency of more than 10 % over the full W-band. Furthermore, the performance of microstrip-to-waveguide transitions is shown exemplarily as an important part of the active antenna as it interfaces active circuitry and antenna in a polymer-and-metal process. The transition test design shows less than 0.9 dB insertion loss and more than 12 dB return loss for the differential transition over the full W-band.

  10. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bai Xianchen; Zhang Jiande; Yang Jianhua; Jin Zhenxing [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.

  11. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    Science.gov (United States)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  12. Minimizing Crosstalk in Self Oscillating Switch Mode Audio Power Amplifiers

    DEFF Research Database (Denmark)

    Knott, Arnold; Ploug, Rasmus Overgaard

    2012-01-01

    a method to minimize this phenomenon by improving the integrity of the various power distribution systems of the amplifier. The method is then applied to an amplifier built for this investigation. The results show that the crosstalk is suppressed with 30 dB, but is not entirely eliminated......The varying switching frequencies of self oscillating switch mode audio amplifiers have been known to cause interchannel intermodulation disturbances in multi channel configurations. This crosstalk phenomenon has a negative impact on the audio performance. The goal of this paper is to present...

  13. Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Temkin, R.J.

    1996-01-01

    The first multimegawatt harmonic relativistic gyrotron traveling-wave tube (gyro-twt) amplifier experiment has been designed, built, and tested. Results from this experimental setup, including the first ever reported third-harmonic gyro-twt results, are presented. Operation frequency is 17.1 GHz. Detailed phase measurements are also presented. The electron beam source is SNOMAD-II, a solid-state nonlinear magnetic accelerator driver with nominal parameters of 400 kV and 350 A. The flat-top pulsewidth is 30 ns. The electron beam is focused using a Pierce geometry and then imparted with transverse momentum using a bifilar helical wiggler magnet. Experimental operation involving both a second-harmonic interaction with the TE 21 mode and a third-harmonic interaction with the TE 31 mode, both at 17 GHz, has been characterized. The third-harmonic interaction resulted in 4-MW output power and 50-dB single-pass gain, with an efficiency of up to ∼8%. The best measured phase stability of the TE 31 amplified pulse was ±10 degree over a 9-ns period. The phase stability was limited because the maximum RF power was attained when operating far from wiggler resonance. The second harmonic, TE 21 had a peak amplified power of 2 MW corresponding to 40-dB single-pass gain and 4% efficiency. The second-harmonic interaction showed stronger superradiant emission than the third-harmonic interaction. Characterizations of the second- and third-harmonic gyro-twt experiments presented here include measurement of far-field radiation patterns, gain and phase versus interaction length, phase stability, and output power versus input power

  14. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    International Nuclear Information System (INIS)

    Kaushik, Meenu; Joshi, L. M.

    2016-01-01

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  15. Design of spherical electron gun for ultra high frequency, CW power inductive output tube

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Meenu, E-mail: mkceeri@gmail.com; Joshi, L. M., E-mail: lmj1953@gmail.com [Microwave Tubes Division, CSIR-Central Electronics Engineering Research Institute (CEERI), Pilani, Rajasthan (India); Academy of Scientific and Innovative Research (AcSIR), New Delhi (India)

    2016-03-09

    Inductive Output Tube (IOT) is an amplifier that usually operates in UHF range. It is an electron tube whose basic structure is similar to conventional vacuum devices. This device is widely used in broadcast applications but is now being explored for scientific applications also specifically, particle accelerators and fusion plasma heating purposes. The paper describes the design approach of a spherical gridded electron gun of a 500 MHz, 100 kW CW power IOT. The electron gun structure has been simulated and optimized for operating voltage and current of 40kV and 3.5 A respectively. The electromagnetic analysis of this spherical electron gun has been carried out in CST and TRAK codes.

  16. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  17. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability

    DEFF Research Database (Denmark)

    Laurila, Marko; Jørgensen, Mette Marie; Hansen, Kristian Rymann

    2012-01-01

    We demonstrate a high power fiber (85μm core) amplifier delivering up to 292Watts of average output power using a mode-locked 30ps source at 1032nm. Utilizing a single mode distributed mode filter bandgap rod fiber, we demonstrate 44% power improvement before the threshold-like onset of mode inst...

  18. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    Science.gov (United States)

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  19. Design and Fabrication of a 1 THz Backward Wave Amplifier

    DEFF Research Database (Denmark)

    Paoloni, Claudio; Di Carlo, Aldo; Brunetti, Francesca

    2011-01-01

    , to get a level of output power to enable applications at these frequencies. The OPTHER (Optically driven THz amplifier) project, funded by the European Community, is on the road to realize the first 1 THz vacuum tube amplifier. Technology at the state of the art has been used for the realization...... of the parts with dimensions supporting THz frequencies. A backward wave amplifier configuration is chosen to make the parts realizable. A carbon nanotube cold cathode has been considered for electron generation. A thermionic micro electron gun is designed to test the tube. A novel slow-wave structure (SWS...

  20. Operation amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2008-01-01

    To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a differential amplifier circuit 1;

  1. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  2. Design and analysis of an integrated pulse modulated s-band power amplifier in gallium nitride process

    Energy Technology Data Exchange (ETDEWEB)

    Sedlock, Steve [Kansas State Univ., Manhattan, KS (United States)

    2012-01-01

    The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not sufficient by itself to ensure a stable and robust design. It will be shown that the universal belief that unconditional stability is obtained through an analysis of the scattering matrix S to determine if 1 and |{Delta}{sub S}| < 1 is only part of the procedure and other tools must be used to validate the criteria. The research shown contributes to the state of the art by developing a more thorough stability design technique for designing amplifiers of any class, whether that be current mode or switch mode, than is currently undertaken with the goal of obtaining first pass design success.

  3. Complementary power output characteristics of electromagnetic generators and triboelectric generators.

    Science.gov (United States)

    Fan, Feng-Ru; Tang, Wei; Yao, Yan; Luo, Jianjun; Zhang, Chi; Wang, Zhong Lin

    2014-04-04

    Recently, a triboelectric generator (TEG) has been invented to convert mechanical energy into electricity by a conjunction of triboelectrification and electrostatic induction. Compared to the traditional electromagnetic generator (EMG) that produces a high output current but low voltage, the TEG has different output characteristics of low output current but high output voltage. In this paper, we present a comparative study regarding the fundamentals of TEGs and EMGs. The power output performances of the EMG and the TEG have a special complementary relationship, with the EMG being a voltage source and the TEG a current source. Utilizing a power transformed and managed (PTM) system, the current output of a TEG can reach as high as ∼3 mA, which can be coupled with the output signal of an EMG to enhance the output power. We also demonstrate a design to integrate a TEG and an EMG into a single device for simultaneously harvesting mechanical energy. In addition, the integrated NGs can independently output a high voltage and a high current to meet special needs.

  4. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1991-01-01

    This paper reports on the development an extra fast current feedback amplifier and a level discriminator employing a dielectrically-isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity-gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  5. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1990-01-01

    This paper reports an extra fast current feedback amplifier and a level discriminator developed employing a dielectrically isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity- gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  6. Amplifiers with ground-isolated inputs and outputs

    International Nuclear Information System (INIS)

    Da Costa Vieira, David; Merite, Bernard; Tattegrain, Alain

    1969-06-01

    The amplifiers described in this note aim at ensuring a connection between different apparatuses with grounds being at a different potential. They will be inserted in the measurement channels of the Cabri reactor

  7. Analysis and evaluation of zig-zag slab laser amplifier with optical diamond geometry

    International Nuclear Information System (INIS)

    Matsumoto, Osamu; Yasuhara, Ryo; Kanabe, Tadashi

    2007-01-01

    In this paper, we describe the development of a high-average-power solid-state laser system and the derivation of equations for the amplification of a laser beam. This laser system is capable of generating an output energy of 10J per pulse at a wavelength of 1,053nm in a 10 Hz operation for scientific and industrial applications. The main amplifier of our system is a laser-diode-pumped solid-state amplifier. A water-cooled Nd:glass slab is pumped with two 803 nm AlGaAs laser-diode modules. The laser beam propagates through zig-zag optical paths four times and is amplified. To estimate laser output energy, we have derived and evaluated equations for the amplification of the laser beam, and designed and constructed a laser system based on the calculated results. Experimental results reveal an output energy of 10.6 J at 1 Hz, which closely fits the results calculated using the derived equations. (author)

  8. Auxetic piezoelectric energy harvesters for increased electric power output

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2017-01-01

    Full Text Available This letter presents a piezoelectric bimorph with auxetic (negative Poisson’s ratio behaviors for increased power output in vibration energy harvesting. The piezoelectric bimorph comprises a 2D auxetic substrate sandwiched between two piezoelectric layers. The auxetic substrate is capable of introducing auxetic behaviors and thus increasing the transverse stress in the piezoelectric layers when the bimorph is subjected to a longitudinal stretching load. As a result, both 31- and 32-modes are simultaneously exploited to generate electric power, leading to an increased power output. The increasing power output principle was theoretically analyzed and verified by finite element (FE modelling. The FE modelling results showed that the auxetic substrate can increase the transverse stress of a bimorph by 16.7 times. The average power generated by the auxetic bimorph is 2.76 times of that generated by a conventional bimorph.

  9. Thermal-recovery of modal instability in rod fiber amplifiers

    DEFF Research Database (Denmark)

    Jørgensen, Mette Marie; Laurila, Marko; Noordegraaf, Danny

    2013-01-01

    We investigate the temporal dynamics of Modal instabilities (MI) in ROD fiber amplifiers using a 100 μm core rod fiber in a single-pass amplifier configuration, and we achieve ~200W of extracted output power before the onset of MI. Above the MI threshold, we investigate the temporal dynamics of b...... and thermally annealed between each test series. We find that the MI threshold degrades as it is reached multiple times, but is recovered by thermal annealing. We also find that the test history of the rods affects the temporal dynamics....

  10. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  11. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    International Nuclear Information System (INIS)

    Schulz, Michael

    2013-08-01

    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  12. Design, construction and test of RF solid state power amplifier for IRANCYC-10

    Science.gov (United States)

    Azizi, H.; Dehghan, M.; Abbasi Davani, F.; Ghasemi, F.

    2018-03-01

    In this paper, design, simulation and construction of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. The Push-Pull designed amplifier can generate 750 W at the operating frequency of 71 MHz continous wave (CW). In this study, achieving the best efficiency of the amplifier, as well as reducing overall volume using baluns, were two important goals. The new offered water-cooled heat sink was used for cooling the amplifier which increases the operating life of the transistor. The gain and PAE of the SSPA were obtained 20 dB and 77.7%, respectively. The simulated and measured RF results are in good agreement with each other. The results show that, using an RF transformer in matching impedance of matching networks, it causes a smaller size and also a better amplifier performance.

  13. Amplifier Distortion

    Science.gov (United States)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  14. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  15. High Power Narrow Linewidth 1.26 Micron Ho-Doped Fiber Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of an innovative, high power, and extremely reliable 1.26-micron Ho-doped fluoride fiber amplifier. The proposed fiber amplifier...

  16. Simultaneous Wireless Information and Power Transfer for MIMO Amplify-and-Forward Relay Systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-03-28

    © 2015 IEEE. In this paper, we investigate two-hop Multiple- Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication systems with simultaneous wireless information and power transfer (SWIPT) at the multi-antenna energy harvesting relay. We derive the optimal source and relay covariance matrices to characterize the achievable region between the source-destination rate and the harvested energy at the relay, namely Rate-Energy (R-E) region. In this context, we consider the ideal scenario where the energy harvester (EH) receiver and the information decoder (ID) receiver at the relay can simultaneously decode the information and harvest the energy at the relay. This scheme provides an outer bound for the achievable R-E region since practical energy harvesting circuits are not yet able to harvest the energy and decode the information simultaneously. Then, we consider more practical schemes which are the power splitting (PS) and the time switching (TS) proposed in [1] and which separate the EH and ID transfer over the power domain and the time domain, respectively. In our study, we derive the boundary of the achievable R- E region and we show the effect of the source transmit power, the relay transmit power and the position of the relay between the source and the destination on the achievable R-E region for the ideal scenario and the two practical schemes.

  17. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    Zhou G Tong

    2007-01-01

    Full Text Available Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM and code-division multiple access (CDMA, have high peak-to-average power ratios (PARs. A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs, but also leads to low transmission power efficiency. Selected mapping (SLM and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  18. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    Science.gov (United States)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  19. Differential Amplifier with Current-Mirror Load: Influence of Current Gain, Early Voltage, and Supply Voltage on the DC Output Voltage

    Science.gov (United States)

    Paulik, G. F.; Mayer, R. P.

    2012-01-01

    A differential amplifier composed of an emitter-coupled pair is useful as an example in lecture presentations and laboratory experiments in electronic circuit analysis courses. However, in an active circuit with zero input load V[subscript id], both laboratory measurements and PSPICE and LTspice simulation results for the output voltage…

  20. Output power distributions of terminals in a 3G mobile communication network.

    Science.gov (United States)

    Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan

    2012-05-01

    The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.

  1. Investigation of Energy Consumption and Sound Quality for Class-D Audio Amplifiers using Tracking Power Supplies

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Schneider, Henrik; Knott, Arnold

    2015-01-01

    power supply tracking and its influence on power losses, audio performance and environmental impact for a 130 W class-D amplifier prototype as well as a commercialized class-D amplifier. Both modeled and experimental results verify that a large improvement of efficiency can be achieved. The total...... harmonic is found to be unaffected by stepless power supply tracking due the high supply rejection ratio of the used amplifiers under test.......The main advantage of Class-D audio amplifiers is high efficiency which is often stated to be more than 90 % but at idle or low power levels the efficiency is much lower. The waste energy is an environmental concern, a concern in mobile applications where long battery operation is required...

  2. Optimization of output power and transmission efficiency of magnetically coupled resonance wireless power transfer system

    Science.gov (United States)

    Yan, Rongge; Guo, Xiaoting; Cao, Shaoqing; Zhang, Changgeng

    2018-05-01

    Magnetically coupled resonance (MCR) wireless power transfer (WPT) system is a promising technology in electric energy transmission. But, if its system parameters are designed unreasonably, output power and transmission efficiency will be low. Therefore, optimized parameters design of MCR WPT has important research value. In the MCR WPT system with designated coil structure, the main parameters affecting output power and transmission efficiency are the distance between the coils, the resonance frequency and the resistance of the load. Based on the established mathematical model and the differential evolution algorithm, the change of output power and transmission efficiency with parameters can be simulated. From the simulation results, it can be seen that output power and transmission efficiency of the two-coil MCR WPT system and four-coil one with designated coil structure are improved. The simulation results confirm the validity of the optimization method for MCR WPT system with designated coil structure.

  3. Intermittent Smoothing Approaches for Wind Power Output: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Jabir

    2017-10-01

    Full Text Available Wind energy is one of the most common types of renewable energy resource. Due to its sustainability and environmental benefits, it is an emerging source for electric power generation. Rapid and random changes of wind speed makes it an irregular and inconsistent power source when connected to the grid, causing different technical problems in protection, power quality and generation dispatch control. Due to these problems, effective intermittent smoothing approaches for wind power output are crucially needed to minimize such problems. This paper reviews various intermittent smoothing approaches used in smoothing the output power fluctuations caused by wind energy. Problems associated with the inclusion of wind energy resources to grid are also briefly reviewed. From this review, it has been found that battery energy storage system is the most suitable and effective smoothing approach, provided that an effective control strategy is available for optimal utilization of battery energy system. This paper further demonstrates different control strategies built for battery energy storage system to obtain the smooth output wind power.

  4. Development of 350 MHz/1000 Watt intermediate power amplifier for 400 keV RFQ accelerator

    International Nuclear Information System (INIS)

    Pande, M.M.; Patel, N.R.; Shinde, K.R.; Rao, M.K.V.; Handu, V.K.

    2005-01-01

    Two numbers of high power RF systems, each delivering around 35 to 40 kW of power at 350 MHz are being developed in BARC. These High Power Amplifiers (HPA) cater to the total need of 70 kW of RF power required by the 400 keV (Deuterium) RFQ accelerator. This RFQ will replace the existing 400 keV DC accelerator of 14 MeV Neutron Generator. The RFQ will accelerate a deuterium beam from 50 keV to 400 keV to impinge upon a tritium target inside a sub critical assembly. Each of these 35 / 40 KW HPA requires a drive power of around 1000 / 1500 Watt respectively. Hence a intermediate power amplifier (IPA) bas been designed to deliver the power of 1000 Watt at the rate of 350 MHz. The paper describes the development of this amplifier

  5. The design of a linear L-band high power amplifier for mobile communication satellites

    Science.gov (United States)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  6. A digital output piezoelectric accelerometer using a Pb(Zr, Ti)O3 thin film array electrically connected in series

    International Nuclear Information System (INIS)

    Kobayashi, T; Okada, H; Maeda, R; Itoh, T; Masuda, T

    2010-01-01

    A digital output piezoelectric accelerometer is proposed to realize an ultra-low power consumption wireless sensor node. The accelerometer has patterned piezoelectric thin films (piezoelectric plates) electrically connected in series accompanied by CMOS switches at the end of some of the piezoelectric plates. The connected piezoelectric plates amplify the output voltage without the use of amplifiers. The CMOS switches turn on when the output voltage of the piezoelectric plates is higher than the CMOS threshold voltage. The piezoelectric accelerometer converts the acceleration into a number of on-state CMOS switches, which can be called the digital output. The proposed digital output piezoelectric accelerometer, using Pb(Zr, Ti)O 3 (PZT) thin films as the piezoelectric material, was fabricated through a microelectromechanical system (MEMS) microfabrication process. The output voltage was found to be amplified by the number of connected piezoelectric plates. The DC output voltage obtained by using an AC to DC conversion circuit is proportional to the number of connections. The results show the potential for realizing the proposed digital output piezoelectric accelerometer

  7. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To data the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modeling are presented

  8. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To date the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modelling are presented. 5 refs., 5 figs

  9. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  10. W-band Solid State Power Amplifier for Remote Sensing Radars, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High power, compact, reliable and affordable power amplifiers operating in the W-band (94 GHz region) are critical to realizing transmitters for many NASA missions...

  11. W-Band Solid State Power Amplifier for Remote Sensing Radars, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — High power, compact, reliable and affordable power amplifiers operating in the W-band (94 GHz region) are critical to realizing transmitters for many NASA missions...

  12. Static thermo-optic instability in double-pass fiber amplifiers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2016-01-01

    A coupled-mode formalism, earlier used to describe transverse mode instabilities in single-pass optical fiber amplifiers, is extended to the case of double-pass amplifiers. Contrary to the single-pass case, it is shown that the thermo-optic nonlinearity can couple light at the same frequency...... between the LP01 and LP11 modes, leading to a static deformation of the output beam profile. This novel phenomenon is caused by the interaction of light propagating in either direction with thermo-optic index perturbations caused by light propagating in the opposite direction. The threshold power...... for the static deformation is found to be several times lower than what is typically found for the dynamic modal instabilities observed in single-pass amplifiers. (C) 2016 Optical Society of America...

  13. High brightness photonic lantern kW-class amplifier

    Science.gov (United States)

    Montoya, Juan; Hwang, Chris; Aleshire, Chris; Reed, Patricia; Martz, Dale; Riley, Mike; Trainor, Michael; Belley, Catherine; Shaw, Scot; Fan, T. Y.; Ripin, Dan

    2018-02-01

    Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control was achieved. A photonic lantern front end was used to inject an arbitrary superposition of modes on the input to a kW-class fiber amplifier to achieve a nearly diffraction-limited output. We report on the adaptive spatial mode control architecture which allows for compensating transverse-mode disturbances at high power. We also describe the advantages of adaptive spatial mode control for optical phased array systems. In particular, we show that the additional degrees of freedom allow for broader steering and improved atmospheric turbulence compensation relative to piston-only optical phased arrays.

  14. On the power amplifier nonlinearity in MIMO transmit beamforming systems

    KAUST Repository

    Qi, Jian

    2012-03-01

    In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.

  15. On the power amplifier nonlinearity in MIMO transmit beamforming systems

    KAUST Repository

    Qi, Jian; Aissa, Sonia

    2012-01-01

    In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.

  16. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    International Nuclear Information System (INIS)

    Rubbia, C.; Rubio, J.A.; Buono, S.

    1997-01-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing

  17. CERN-group conceptual design of a fast neutron operated high power energy amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C; Rubio, J A [European Organization for Nuclear Research, CERN, Geneva (Switzerland); Buono, S [Laboratoire du Cyclotron, Nice (France); and others

    1997-11-01

    The practical feasibility of an Energy Amplifier (EA) with power and power density which are comparable to the ones of the present generation of large PWR is discussed in this paper. This is only possible with fast neutrons. Schemes are described which offer a high gain, a large maximum power density and an extended burn-up, well in excess of 100 GW x d/t corresponding to about five years at full power operation with no intervention on the fuel core. The following topics are discussed: physics considerations and parameter definition, the accelerator complex, the energy amplifier unit, computer simulated operation, and fuel cycle closing. 84 refs, figs, tabs.

  18. Fabrication of Very High Efficiency 5.8 GHz Power Amplifiers using AlGaN HFETs on SiC Substrates for Wireless Power Transmission

    Science.gov (United States)

    Sullivan, Gerry

    2001-01-01

    For wireless power transmission using microwave energy, very efficient conversion of the DC power into microwave power is extremely important. Class E amplifiers have the attractive feature that they can, in theory, be 100% efficient at converting, DC power to RF power. Aluminum gallium nitride (AlGaN) semiconductor material has many advantageous properties, relative to silicon (Si), gallium arsenide (GaAs), and silicon carbide (SiC), such as a much larger bandgap, and the ability to form AlGaN/GaN heterojunctions. The large bandgap of AlGaN also allows for device operation at higher temperatures than could be tolerated by a smaller bandgap transistor. This could reduce the cooling requirements. While it is unlikely that the AlGaN transistors in a 5.8 GHz class E amplifier can operate efficiently at temperatures in excess of 300 or 400 C, AlGaN based amplifiers could operate at temperatures that are higher than a GaAs or Si based amplifier could tolerate. Under this program, AlGaN microwave power HFETs have been fabricated and characterized. Hybrid class E amplifiers were designed and modeled. Unfortunately, within the time frame of this program, good quality HFETs were not available from either the RSC laboratories or commercially, and so the class E amplifiers were not constructed.

  19. Development of 650 MHz solid state RF amplifier for proton accelerator

    International Nuclear Information System (INIS)

    Jain, Akhilesh; Sharma, Deepak; Gupta, Alok; Tiwari, Ashish; Rao, Nageswar; Sekar, Vasanthi; Lad, M.; Hannurkar, P.R.; Gupta, P.D.

    2011-01-01

    Design and development of 30 kW high powers RF source at 650 MHz, using solid RF state technology, has been initiated at RRCAT. The indigenous technology development efforts will be useful for the proposed high power proton accelerators for SNS/ADS applications. In this 650 MHz amplifier scheme, 30 kW CW RF power will be generated using modular combination of 8 kW amplifier units. Necessary studies were carried out for device selection, choice of amplifier architecture and design of high power combiners and dividers. Presently RF amplifier delivering 250 W at 650 MHz has been fabricated and tested. Towards development of high power RF components, design and engineering prototyping of 16-port power combiner, directional coupler and RF dummy loads has been completed. The basic 8 kW amplifier unit is designed to provide power gain of 50 dB, bandwidth of 20 MHz and spurious response below 30 dB from fundamental signal. Based on the results of circuit simulation studies and engineering prototyping of amplifier module, two RF transistor viz. MRF3450 and MRF 61K were selected as solid state active devices. Impedance matching network in amplifier module is designed using balanced push pull configuration with transmission line BALUN. Due to high circulating current near drain side, metal clad RF capacitors were selected which helps in avoiding hot spot from output transmission path, ensuring continuous operation at rated RF power without damage to RF board. 350 W circulator is used to protect the RF devices from reflected power. Based on the prototype design and measured performance, one of these RF transistors will be selected to be used as workhorse for all amplifier modules. Two amplifier modules are mounted on water cooled copper heat-sink ensuring proper operating temperature for reliable and safe operation of amplifier. Also real time control system and data logger has been developed to provide DAQ and controls in each rack. For power combining and power measurement

  20. Output power distributions of mobile radio base stations based on network measurements

    International Nuclear Information System (INIS)

    Colombi, D; Thors, B; Persson, T; Törnevik, C; Wirén, N; Larsson, L-E

    2013-01-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  1. Output power distributions of mobile radio base stations based on network measurements

    Science.gov (United States)

    Colombi, D.; Thors, B.; Persson, T.; Wirén, N.; Larsson, L.-E.; Törnevik, C.

    2013-04-01

    In this work output power distributions of mobile radio base stations have been analyzed for 2G and 3G telecommunication systems. The approach is based on measurements in selected networks using performance surveillance tools part of the network Operational Support System (OSS). For the 3G network considered, direct measurements of output power levels were possible, while for the 2G networks, output power levels were estimated from measurements of traffic volumes. Both voice and data services were included in the investigation. Measurements were conducted for large geographical areas, to ensure good overall statistics, as well as for smaller areas to investigate the impact of different environments. For high traffic hours, the 90th percentile of the averaged output power was found to be below 65% and 45% of the available output power for the 2G and 3G systems, respectively.

  2. Ultra-low Voltage CMOS Cascode Amplifier

    OpenAIRE

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique.

  3. Ultra-low Voltage CMOS Cascode Amplifier

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique......, which reduces the MOST threshold voltage by forcing a constant current though the transistor bulk terminal. We also look at limitations and improvements of this CDB technique....

  4. CMOS Current-mode Operational Amplifier

    OpenAIRE

    Kaulberg, Thomas

    1992-01-01

    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-r...

  5. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, Saito; Nauta, Bram

    2011-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. SOLUTION: The operation amplifier comprises: a

  6. Operation Amplifier

    NARCIS (Netherlands)

    Tetsuya, S.; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an operation amplifier which improves power source voltage removal ratios while assuring phase compensation characteristics, and therefore can be realized with a small-scale circuit and low power consumption. ; SOLUTION: The operation amplifier comprises: a

  7. Large area electron beam pumped krypton fluoride laser amplifier

    International Nuclear Information System (INIS)

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-01-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm x 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high x 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. copyright 1997 American Institute of Physics

  8. Predicting Output Power for Nearshore Wave Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Henock Mamo Deberneh

    2018-04-01

    Full Text Available Energy harvested from a Wave Energy Converter (WEC varies greatly with the location of its installation. Determining an optimal location that can result in maximum output power is therefore critical. In this paper, we present a novel approach to predicting the output power of a nearshore WEC by characterizing ocean waves using floating buoys. We monitored the movement of the buoys using an Arduino-based data collection module, including a gyro-accelerometer sensor and a wireless transceiver. The collected data were utilized to train and test prediction models. The models were developed using machine learning algorithms: SVM, RF and ANN. The results of the experiments showed that measurements from the data collection module can yield a reliable predictor of output power. Furthermore, we found that the predictors work better when the regressors are combined with a classifier. The accuracy of the proposed prediction model suggests that it could be extremely useful in both locating optimal placement for wave energy harvesting plants and designing the shape of the buoys used by them.

  9. Initial performance of the two-dimensional 1024-channel amplifier array

    International Nuclear Information System (INIS)

    Kishishita, Tetsuichi; Ikeda, Hirokazu; Tamura, Ken-ichi; Hiruta, Tatsuro; Nakazawa, Kazuhiro; Takashima, Takeshi; Takahashi, Tadayuki

    2007-01-01

    This paper describes the initial performance of a two-dimensional analog ASIC that has been developed to read out CdTe pixel detectors for the next-generation hard X-ray imager. The readout chip consists of a 32x32 matrix of identical 200μmx200μm pixel cells. Each readout cell contains a low noise charge-sensitive amplifier, three-stage pulse shaping amplifiers and a comparator circuit. Pulse processing circuits have been also designed to achieve lower power consumption for the space application. Analog outputs by injecting a test pulse have been obtained from 991 pixels out of 1024 pixels. The mean noise level is 297+/-29 electrons (rms) and power consumption is 110μW/pixel

  10. Low noise amplifier for ZnS(Ag) scintillation chamber

    International Nuclear Information System (INIS)

    Do Hoang Cuong

    1998-01-01

    A new pulse amplifier that can be used with standard photomultiplier tubes coupled with Zn(Ag) scintillation chamber is presented. The amplifier based on an IC operational amplifier LF 356N consists of a low-noise charge sensitive preamplifier and pulse shaping circuits for optimization of signal to noise ratio. Temperature instability is ≤ 0.05%/ o C. Dynamic range for linear output signals is equal +7 V. The presented amplifier is used in a measuring head for 0.17 L Lucas chambers developed in Department of Nuclear Instruments and Methods of the INCT in laboratory investigations aimed to develop methods and instruments for measurement of radon concentration in the air. The amplifier can also be employed for measurement of ionizing radiation by means of other scintillators coupled to PM tube. The amplifier is followed by a pulse discriminator with adjustable discrimination level. The amplifier output signal and discriminator output pulses are fed to external devices. (author)

  11. Artificial Neural Networks to Predict the Power Output of a PV Panel

    Directory of Open Access Journals (Sweden)

    Valerio Lo Brano

    2014-01-01

    Full Text Available The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs for the power energy output forecasting of photovoltaic (PV modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP, a recursive neural network (RNN, and a gamma memory (GM trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.

  12. Design Methodology of High Power Distributed Amplifier Employing Broadband Impedance Transformer

    DEFF Research Database (Denmark)

    Narendra, Kumar; Zhurbenko, Vitaliy; Collantes, Juan Mari

    2009-01-01

    A novel topology of a high power distributed amplifier (DA) in combination with a broadband impedance transformer is presented. The advantages of the proposed topology are explored analytically and verified by a full-wave 3D simulations. Stability of the high power DA is verified with the pole...

  13. Waveform measurement in mocrowave device characterization: impact on power amplifiers design

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-07-01

    Full Text Available This paper describes an example of a measurement setup enabling waveform measurements during the load-pull characterization of a microwave power device. The significance of this measurement feature is highlighted showing how waveform engineering can be exploited to design high efficiency microwave power amplifiers.

  14. Solid State Power Amplifier for 805 MegaHertz at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Davis, J.L.; Lyles, J.T.M.

    1998-01-01

    Particle accelerators for protons, electrons, and other ion species often use high-power vacuum tubes for RF amplification, due to the high RF power requirements to accelerate these particles with high beam currents. The final power amplifier stages driving large accelerators are unable to be converted to solid-state devices with the present technology. In some instances, radiation levels preclude the use of transistors near beamlines. Work is being done worldwide to replace the RF power stages under about ten kilowatts CW with transistor amplifiers, due to the lower maintenance costs and obsolescence of power tubes in these ranges. This is especially practical where the stages drive fifty Ohm impedance and are not located in high radiation zones. The authors are doing this at the Los Alamos Neutron Science Center (LANSCE) proton linear accelerator (linac) in New Mexico. They replaced a physically-large air-cooled UHF power amplifier using a tetrode electron tube with a compact water-cooled unit based on modular amplifier pallets developed at LANSCE. Each module uses eight push-pull bipolar power transistor pairs operated in class AB. Four pallets can easily provide up to 2,800 watts of continuous RF at 805 MHz. A radial splitter and combiner parallels the modules. This amplifier has proven to be completely reliable after over 10,000 hours of operation without failure. A second unit was constructed and installed for redundancy, and the old tetrode system was removed in 1998. The compact packaging for cooling, DC power, impedance matching, RF interconnection, and power combining met the electrical and mechanical requirements. CRT display of individual collector currents and RF levels is made possible with built-in samplers and a VXI data acquisition unit

  15. The Nike electron-beam-pumped KrF laser amplifiers

    International Nuclear Information System (INIS)

    Sethian, J.D.; Pawley, C.J.; Obenschain, S.P.

    1997-01-01

    Nike is a recently completed multikilojoule krypton-fluoride (KrF) laser that has been built to study the physics of direct-drive inertial confinement fusion. The two final amplifiers of the Nike laser are both electron-beam-pumped systems. This paper describes these two amplifiers, with an emphasis on the pulsed power. The smaller of the two has a 20 x 20 cm aperture, and produces an output laser beam energy in excess of 100 J. This 20 cm Amplifier uses a single 12 kJ Marx generator to inject two 300 kV, 75 kA, 140 ns flat-top electron beams into opposite sides of the laser cell. The larger amplifier in Nike has a 60 x 60 cm aperture, and amplifies the laser beam up to 5 kJ. This 60 cm amplifier has two independent electron beam systems. Each system has a 170 kJ Marx generator that produces a 670 kV, 540 kA, 240 ns flat-top electron beam. Both amplifiers are complete, fully integrated into the laser, meet the Nike system requirements, and are used routinely for laser-target experiments

  16. Multi-decadal Variability of the Wind Power Output

    Science.gov (United States)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  17. Carnot efficiency at divergent power output

    Science.gov (United States)

    Polettini, Matteo; Esposito, Massimiliano

    2017-05-01

    The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely slow processes overlooks the dual scenario of infinitely fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.

  18. 2.43 kW narrow linewidth linearly polarized all-fiber amplifier based on mode instability suppression

    Science.gov (United States)

    Su, Rongtao; Tao, Rumao; Wang, Xiaolin; Zhang, Hanwei; Ma, Pengfei; Zhou, Pu; Xu, Xiaojun

    2017-08-01

    We demonstrate an experimental study on scaling mode instability (MI) threshold in fiber amplifiers based on fiber coiling. The experimental results show that coiling the active fiber in the cylindrical spiral shape is superior to the coiling in the plane spiral shape. When the polarization maintained Yb-doped fiber (PM YDF: with a core/inner-cladding diameter of 20/400 µm) is coiled on an aluminous plate with a bend diameter of 9-16 cm, the MI threshold is ~1.55 kW. When such a PM YDF is coiled on an aluminous cylinder with diameter of 9 cm, no MI is observed at the output power of 2.43 kW, which is limited by the available pump power. The spectral width and polarization extinction ratio is 0.255 nm and 18.3 dB, respectively, at 2.43 kW. To the best of our knowledge, this is the highest output power from a linear polarized narrow linewidth all-fiberized amplifier. By using a theoretical model, the potential MI-free scaling capability in such an amplifier is estimated to be 3.5 kW.

  19. A new principle for a high-efficiency power audio amplifier for use with a digital preamplifier

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1987-01-01

    The use of class-B and class-D amplifiers for converting digital audio signals to analog signals is discussed. It is shown that the class-D amplifier is unsuitable due to distortion. Therefore a new principle involving a switch-mode power supply and a class-B amplifier is suggested. By regulating...... the supply voltage to the amplifier according to the amplitude of the audio signal, a higher efficiency than can be obtained by the usual principles is achieved. The regulation can be done very efficiently by generating the control signal to the power supply in advance of the audio signal, made possible...

  20. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2......A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  1. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  2. Efficiency Investigation of Switch Mode Power Amplifier Drving Low Impedance Transducers

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Schneider, Henrik; Knott, Arnold

    2015-01-01

    the amplifier rail voltage requirement as a function of the voice coil nominal resistance is presented. The method is based on a crest factor analysis of music signals and estimation of the electrical power requirement from a specific target of the sound pressure level. Experimental measurements confirms a huge...... performance leap in terms of efficiency compared to a conventional battery driven sound system. Future optimization of low voltage, high current amplifiers for low impedance loudspeaker drivers are discussed....

  3. Rf power systems for the national synchrotron light source

    International Nuclear Information System (INIS)

    Dickinson, T.; Rheaume, R.H.

    1981-01-01

    The booster synchrotron and the two storage rings at the NSLS are provided with rf power systems of 3 kW, 50 kW, and 500 kW nominal output power, all at 53 MHz. This power is supplied by grounded grid tetrode amplifiers designed for television broadcast service. These amplifiers and associated power supplies, control and interlock systems, rf controls, and computer interface are described

  4. Modeling the power output of piezoelectric energy harvesters

    KAUST Repository

    Al Ahmad, Mahmoud

    2011-04-30

    Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.

  5. Modeling the power output of piezoelectric energy harvesters

    KAUST Repository

    Al Ahmad, Mahmoud; Alshareef, Husam N.

    2011-01-01

    Design of experiments and multiphysics analyses were used to develop a parametric model for a d 33-based cantilever. The analysis revealed that the most significant parameters influencing the resonant frequency are the supporting layer thickness, piezoelectric layer thickness, and cantilever length. On the other hand, the most important factors affecting the charge output arethe piezoelectric thickness and the interdigitated electrode dimensions. The accuracy of the developed model was confirmed and showed less than 1% estimation error compared with a commercial simulation package. To estimate the power delivered to a load, the electric current output from the piezoelectric generator was calculated. A circuit model was built and used to estimate the power delivered to a load, which compared favorably to experimentally published power data on actual cantilevers of similar dimensions. © 2011 TMS.

  6. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  7. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  8. Power Scaling of Laser Oscillators and Amplifiers Based on Nd:YVO4

    OpenAIRE

    Yarrow, Michael James

    2006-01-01

    This thesis presents a strategy for power and brightness scaling in diode-end-pumped, master-oscillator-power-amplifier laser systems, based on Nd:YVOIssues relating to further power and brightness scaling are discussed as well as the potential applications of these laser sources as pump sources for frequency conversion in optical parametric devices.

  9. Demonstration of Multi-Gbps Data Rates at Ka-Band Using Software-Defined Modem and Broadband High Power Amplifier for Space Communications

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.

  10. Design of a Front– End Amplifier for the Maximum Power Delivery and Required Noise by HBMO with Support Vector Microstrip Model

    Directory of Open Access Journals (Sweden)

    F. Guneş

    2014-04-01

    Full Text Available Honey Bee Mating Optimization (HBMO is a recent swarm-based optimization algorithm to solve highly nonlinear problems, whose based approach combines the powers of simulated annealing, genetic algorithms, and an effective local search heuristic to search for the best possible solution to the problem under investigation within a reasonable computing time. In this work, the HBMO- based design is carried out for a front-end amplifier subject to be a subunit of a radar system in conjunction with a cost effective 3-D SONNET-based Support Vector Regression Machine (SVRM microstrip model. All the matching microstrip widths, lengths are obtained on a chosen substrate to satisfy the maximum power delivery and the required noise over the required bandwidth of a selected transistor. The proposed HBMO- based design is applied to the design of a typical ultra-wide-band low noise amplifier with NE3512S02 on a substrate of Rogers 4350 for the maximum output power and the noise figure F(f=1dB within the 5-12 GHz using the T- type of microstrip matching circuits. Furthermore, the effectiveness and efficiency of the proposed HBMO based design are manifested by comparing it with the Genetic Algorithm (GA, Particle Swarm Optimization (PSO and the simple HBMO based designs.

  11. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.

    2010-01-01

    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  12. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    International Nuclear Information System (INIS)

    Höppner, H; Hage, A; Tanikawa, T; Schulz, M; Faatz, B; Riedel, R; Prandolini, M J; Teubner, U; Tavella, F

    2015-01-01

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation. (paper)

  13. Power output of field-based downhill mountain biking.

    Science.gov (United States)

    Hurst, Howard Thomas; Atkins, Stephen

    2006-10-01

    The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.

  14. Medium Power 352 MHZ solid state pulsed RF amplifiers for the CERN LINAC4 Project

    CERN Document Server

    Broere, J; Gómez Martínez, Y; Rossi, M

    2011-01-01

    Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three buncher cavities in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse length and 50 Hz repetition rate. Furthermore a 60 kW unit is under construction to provide the required RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests

  15. A high PSRR Class-D audio amplifier IC based on a self-adjusting voltage reference

    OpenAIRE

    Huffenus , Alexandre; Pillonnet , Gaël; Abouchi , Nacer; Goutti , Frédéric; Rabary , Vincent; Cittadini , Robert

    2010-01-01

    International audience; In a wide range of applications, audio amplifiers require a large Power Supply Rejection Ratio (PSRR) that the current Class-D architecture cannot reach. This paper proposes a self-adjusting internal voltage reference scheme that sets the bias voltages of the amplifier without losing on output dynamics. This solution relaxes the constraints on gain and feedback resistors matching that were previously the limiting factor for the PSRR. Theory of operation, design and IC ...

  16. Linear CMOS RF power amplifiers a complete design workflow

    CERN Document Server

    Ruiz, Hector Solar

    2013-01-01

    The work establishes the design flow for the optimization of linear CMOS power amplifiers from the first steps of the design to the final IC implementation and tests. The authors also focuses on design guidelines of the inductor's geometrical characteristics for power applications and covers their measurement and characterization. Additionally, a model is proposed which would facilitate designs in terms of transistor sizing, required inductor quality factors or minimum supply voltage. The model considers limitations that CMOS processes can impose on implementation. The book also provides diffe

  17. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Lægsgaard, Jesper

    2014-01-01

    We present a coupled-mode model of transverse mode instability in high-power fiber amplifiers, which takes the effect of gain saturation into account. The model provides simple semi-analytical formulas for the mode instability threshold, which are valid also for highly saturated amplifiers...

  18. Determinants of mobile phone output power in a multinational study: implications for exposure assessment

    DEFF Research Database (Denmark)

    Vrijheid, M; Madsen, Stine Mann; di Vecchia, Paolo

    2009-01-01

    OBJECTIVES: The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemi......OBJECTIVES: The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure...... on the average output power and the percentage call time at maximum power for each call. RESULTS: Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators...

  19. A power-efficient audio amplifier combining switching and linear techniques

    NARCIS (Netherlands)

    van der Zee, Ronan A.R.; van Tuijl, Adrianus Johannes Maria

    1999-01-01

    Integrated class-D audio amplifiers are very power efficient but require an external LC reconstruction filter, which prevents further integration. Also due to this filter, large feedback factors are hard to realize, so that the load influences the distortion and transfer characteristics. The 30 W

  20. A Low-Power CMOS Trans-Impedance Amplifier for 2.5 Gb/S Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Mojgan Mohseni

    2013-01-01

    Full Text Available This Paper presents a new Trans-impedance amplifier for optical receiver circuits. The amplifier is based on parallel (R-C feedback topology which is optimized for power consumption and uses shunt-peaking technique to enhance the frequency bandwidth of the amplifier. However, the circuit is designed and simulated using 0.18µm CMOS technology parameters. As simulation results show, the amplifier has a gain of 67.5dBΩ, bandwidth of 3GHz while consumes only 12.16 mW power which shows a very good performance for using in a 2.5Gb/S (SONET OC-48 optical communication system. Finally, as the simulated Eye-Diagram shows, the circuit has a very good performance for a 2.5Gb/S system for a 10µA input current.

  1. Polarization-maintaining, double-clad fiber amplifier employing externally applied stress-induced birefringence

    International Nuclear Information System (INIS)

    Koplow, Jeffrey P.; Goldberg, Lew; Moeller, Robert P.; Kliner, Dahv A. V.

    2000-01-01

    We report a new approach to obtaining linear-polarization operation of a rare-earth-doped fiber amplifier in which the gain fiber is coiled under tension to induce birefringence. We demonstrated this method by constructing an Er/Yb-doped, double-clad, single-mode fiber amplifier with an output power of 530 mW and a polarization extinction ratio of >17 dB (when seeded with linearly polarized light) at a wavelength of ∼1.5 μm . The technique is achromatic, permits single- or multiple-pass operation of the amplifier, requires no additional components in the optical path, leaves the fiber ends unobstructed, and is inexpensive to implement. (c) 2000 Optical Society of America

  2. Compensation of parasitic elements of transistor in the class F amplifier with the tuning of impedances at harmonics

    Directory of Open Access Journals (Sweden)

    Yefymovych A. P.

    2014-02-01

    Full Text Available The authors present a new method of construction and calculation of the output load circuit (OLC for class F power amplifiers (PA with the addition of the third harmonic of the voltage. This method allows compensating the negative influences of parasitic elements of transistor (output capacitance — COUT, and inductance — LOUT on the drain efficiency of the amplifier. The circuit of the parasitic elements was considered as a part of the proposed OLC. To calculate the OLC a system of three algebraic equations was compiled. The system is solved numerically relative to the three parameters of the OLC, for which the impedance on a chip of the transistor (on COUT for odd and even harmonics corresponds to the theory of class F PAs. This method is applicable for the calculation of the OLC, which is realized in the frequency range of 300—500 MHz, where the use of elements with lumped parameters only is not always possible, while using elements with distributed parameters leads to a substantial increase in the size of the whole amplifier. In the developed OLC, the authors used elements with both lumped and distributed parameters, thus achieving a compromise between the geometric dimensions and physical realizability of the circuit elements. The proposed OLC, taking into account the parasitic elements of the transistor, allows setting impedances independently at the first and third harmonics while maintaining impedance at the second harmonic tending to zero. This makes it possible to optimize the drain efficiency at a given level of output power. The efficiency ?d = 72,5% was experimentally obtained at POUT = 1,045 W for the class F amplifier running at 400 MHz. The proposed methodology for constructing and calculating the OLC can be used to implement class F power amplifiers in the integrated-circuit form.

  3. Analysis of losses within SMES system for compensating output fluctuation of wind power farm

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. I.; Kim, J. H.; Le, T. D.; Lee, D. H.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of); Yoon, Y. S. [Dept. of Electrical Engineering, Shin Ansan University, Ansan (Korea, Republic of); Yoon, K. Y. [Dept. of lectrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2014-12-15

    Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

  4. Analysis of losses within SMES system for compensating output fluctuation of wind power farm

    International Nuclear Information System (INIS)

    Park, S. I.; Kim, J. H.; Le, T. D.; Lee, D. H.; Kim, H. M.; Yoon, Y. S.; Yoon, K. Y.

    2014-01-01

    Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.

  5. Basic study on dynamic reactive-power control method with PV output prediction for solar inverter

    Directory of Open Access Journals (Sweden)

    Ryunosuke Miyoshi

    2016-01-01

    Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.

  6. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  7. Linearization and efficiency enhancement of power amplifiers using digital predistortion

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Nima

    2008-07-01

    Today, demand of higher spectral efficiency forces wireless communication systems to employ non-constant envelope modulation schemes such as Quadrature Amplitude Modulations (QAM), Code Division Multiple Access (CDMA) and Orthogonal Frequency-Division Multiplexing (OFDM) schemes. These modulation techniques generate signals with wide range of envelope fluctuation. This property makes these schemes sensitive to nonlinear amplifications. Nonlinearities introduced by Power Amplifiers (PA) cause both a distortion of the signal and an increased out of band output spectrum, which leads to a rise in adjacent channel interference. Thus, in order to ensure a high spectral efficiency and to avoid spectral regrowth, a linearization technique is required. Among all the linearization techniques, basedband Digital Predistortion (DPD) is one of the commonly used linearization techniques, which is characterized by robust operation, low implementation cost and high accuracy. In the first chapter of this thesis, an introduction on the motivation and necessity of using PA linearization techniques is presented. Digital Predistortion as a popular linearization technique aims to improve the efficiency and linearity of RF power amplifiers. The scope of the thesis, the goals to be achieved and the contributions are also discussed in chapter one. Chapter two, mainly discusses sample-by-sample updating algorithm in Digital Predistorters to adaptively linearize the PA memoryless nonlinearities. Look-up Table (LUT) and polynomial approaches are studied and implemented in Hardware using a test-bed provided by Nera Research. The experimental results together with a discussion are then given. A new DPD algorithm based on block estimation is proposed in chapter three to avoid realtime signal processing, reduce the complexity and also avoid the bad performance during the slow adaptation of adaptive the Adjacent Channel Power Ratio (ACPR) and the Error Vector Magnitude (EVM) requirements. In

  8. Control strategies to optimise power output in heave buoy energy convertors

    International Nuclear Information System (INIS)

    Abu Zarim, M A U A; Sharip, R M

    2013-01-01

    Wave energy converter (WEC) designs are always discussed in order to obtain an optimum design to generate the power from the wave. Output power from wave energy converter can be improved by controlling the oscillation in order to acquire the interaction between the WEC and the incident wave.The purpose of this research is to study the heave buoys in the interest to generate an optimum power output by optimising the phase control and amplitude in order to maximise the active power. In line with the real aims of this study which investigate the theory and function and hence optimise the power generation of heave buoys as renewable energy sources, the condition that influence the heave buoy must be understand in which to propose the control strategies that can be use to control parameters to obtain optimum power output. However, this research is in an early stage, and further analysis and technical development is require

  9. High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.

    Science.gov (United States)

    Lin, Shih-Shian; Hwang, Sheng-Kwang; Liu, Jia-Ming

    2015-07-13

    We demonstrated an all-fiber, high-power noise-like pulse laser system at the 1.56-µm wavelength. A low-power noise-like pulse train generated by a ring oscillator was amplified using a two-stage amplifier, where the performance of the second-stage amplifier determined the final output power level. The optical intensity in the second-stage amplifier was managed well to avoid not only the excessive spectral broadening induced by nonlinearities but also any damage to the device. On the other hand, the power conversion efficiency of the amplifier was optimized through proper control of its pump wavelength. The pump wavelength determines the pump absorption and therefore the power conversion efficiency of the gain fiber. Through this approach, the average power of the noise-like pulse train was amplified considerably to an output of 13.1 W, resulting in a power conversion efficiency of 36.1% and a pulse energy of 0.85 µJ. To the best of our knowledge, these amplified pulses have the highest average power and pulse energy for noise-like pulses in the 1.56-µm wavelength region. As a result, the net gain in the cascaded amplifier reached 30 dB. With peak and pedestal widths of 168 fs and 61.3 ps, respectively, for the amplified pulses, the pedestal-to-peak intensity ratio of the autocorrelation trace remains at the value of 0.5 required for truly noise-like pulses.

  10. Numerical simulation of cross field amplifiers

    International Nuclear Information System (INIS)

    Eppley, K.

    1990-01-01

    Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. One feature distinguishing cross field amplifiers is that the operating current is produced by secondary emission from a cold cathode. This removes the need for a heater and enables the device to act as a switch tube, drawing no power until the rf drive is applied. However, this method of generating the current does complicate the simulation. We are developing a simulation model of cross field amplifiers using the PIC code CONDOR. We simulate an interaction region, one traveling wavelength long, with periodic boundary conditions. An electric field with the appropriate phase velocity is imposed on the upper boundary of the problem. Evaluation of the integral of E·J gives the power interchanged between the wave and the beam. Given the impedance of the structure, we then calculate the change in the traveling wave field. Thus we simulate the growth of the wave through the device. The main advance of our model over previous CFA simulations is the realistic tracking of absorption and secondary emission. The code uses experimental curves to calculate secondary production as a function of absorbed energy, with a theoretical expression for the angular dependence. We have used this code to model the 100 MW X-band CFA under construction at SLAC, as designed by Joseph Feinstein and Terry Lee. We are examining several questions of practical interest, such as the power and spectrum of absorbed electrons, the minimum traveling wave field needed to initiate spoke formation, and the variation of output power with dc voltage, anode-cathode gap, and magnetic field. 5 refs., 8 figs

  11. Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Aminmohammad Saberian

    2014-01-01

    Full Text Available This paper presents a solar power modelling method using artificial neural networks (ANNs. Two neural network structures, namely, general regression neural network (GRNN feedforward back propagation (FFBP, have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.

  12. Effects of entanglement in an ideal optical amplifier

    Science.gov (United States)

    Franson, J. D.; Brewster, R. A.

    2018-04-01

    In an ideal linear amplifier, the output signal is linearly related to the input signal with an additive noise that is independent of the input. The decoherence of a quantum-mechanical state as a result of optical amplification is usually assumed to be due to the addition of quantum noise. Here we show that entanglement between the input signal and the amplifying medium can produce an exponentially-large amount of decoherence in an ideal optical amplifier even when the gain is arbitrarily close to unity and the added noise is negligible. These effects occur for macroscopic superposition states, where even a small amount of gain can leave a significant amount of which-path information in the environment. Our results show that the usual input/output relation of a linear amplifier does not provide a complete description of the output state when post-selection is used.

  13. Output power PDF of a saturated semiconductor optical amplifier: Second-order noise contributions by path integral method

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper; Tromborg, Bjarne

    2007-01-01

    We have developed a second-order small-signal model for describing the nonlinear redistribution of noise in a saturated semiconductor optical amplifier. In this paper, the details of the model are presented. A numerical example is used to compare the model to statistical simulations. We show that...

  14. 1 GHz GaAs Buck Converter for High Power Amplifier Modulation Applications

    NARCIS (Netherlands)

    Busking, E.B.; Hek, A.P. de; Vliet, F.E. van

    2012-01-01

    A fully integrated 1 GHz buck converter output stage, including on-chip inductor and DC output filtering has been realized, in a standard high-voltage breakdown GaAs MMIC technology. This is a significant step forward in designing highspeed power control of supply-modulated HPAs (high power

  15. Thermo-optical effects in high-power Ytterbium-doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2011-01-01

    We investigate the effect of temperature gradients in high-power Yb-doped fiber amplifiers by a numerical beam propagation model, which takes thermal effects into account in a self-consistent way. The thermally induced change in the refractive index of the fiber leads to a thermal lensing effect...

  16. High Power Tm3+-Doped Fiber Lasers Tuned by a Variable Reflective Output Coupler

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2008-01-01

    Full Text Available Wide wavelength tuning by a variable reflective output coupler is demonstrated in high-power double-clad Tm3+-doped silica fiber lasers diode-pumped at ∼790  nm. Varying the output coupling from 96% to 5%, the laser wavelength is tuned over a range of 106  nm from 1949 to 2055  nm. The output power exceeds 20  W over 90-nm range and the maximum output power is 32  W at 1949  nm for 51-W launched pump power, corresponding to a slope efficiency of ∼70%. Assisted with different fiber lengths, the tuning range is expanded to 240  nm from 1866 to 2107  nm with the output power larger than 10  W.

  17. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2......A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...

  18. Towards a THz Backward Wave Amplifier in European FP7 OPTHER Project

    DEFF Research Database (Denmark)

    Dispenza, Massimiliano; Cojocaru, C.-S.; De Rossi, Alfredo

    2010-01-01

    -tube principles The main target specifications of the OPTHER amplifier are the following: - Operating frequency: in the band 0.3 to 2 THz - Output power: > 10 mW ( 10 dBm ) - Gain: 10 to 20 dB. The project is in the middle of its duration. Design and simulations have shown that these targets can be met...

  19. Initial tests of an 11.4 GHz magnicon amplifier

    International Nuclear Information System (INIS)

    Gold, S.H.; Sullivan, C.A.; Manheimer, W.M.; Hafizi, B.

    1994-01-01

    The magnicon, a scanning beam microwave amplifier related to the gyrocon, is a possible replacement for klystron amplifiers in future high-gradient linear accelerators. The magnicon circuit consists of a multicavity deflection system followed by an output cavity. The purpose of the deflection system is to spin up the electron beam phase-coherently to high transverse momentum. In order to do this, the deflection cavities employ rotating TM 11 modes, producing a gyrating electron beam whose centroid rotates about the cavity axis in synchronism with the advance in phase of the rf modes. The output cavity employs a cyclotron resonant mechanism to extract principally the transverse beam momentum. It employs an rf mode that rotates synchronously with the deflection cavity modes, and with the entry point of the electron beam into the output cavity, making possible a highly efficient interaction. The NRL magnicon uses a 100--200 A, 500 keV beam produced by a cold-cathode diode on the NRL Long-Pulse Accelerator Facility. The first cavity is externally driven at 5.7 GHz, while the output cavity is designed to produce megawatts of power at 11.4 GHz in the TM 210 mode. In this paper, the authors present a progress report on the NRL magnicon experiment. They will discuss the procedure used to cold test and calibrate the magnicon circuit, and present initial results from experimental operations

  20. Precoding Design of MIMO Amplify-and-Forward Communication System With an Energy Harvesting Relay and Possibly Imperfect CSI

    KAUST Repository

    Benkhelifa, Fatma; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we investigate the simultaneous wireless information and power transfer (SWIPT) in a Multiple-Input Multiple-Output (MIMO) Amplify-and-Forward (AF) relay communication system where the relay is an energy harvesting (EH) node

  1. User Context Aware Base Station Power Flow Model

    OpenAIRE

    Walsh, Barbara; Farrell, Ronan

    2005-01-01

    At present the testing of power amplifiers within base station transmitters is limited to testing at component level as opposed to testing at the system level. While the detection of catastrophic failure is possible, that of performance degradation is not. This paper proposes a base station model with respect to transmitter output power with the aim of introducing system level monitoring of the power amplifier behaviour within the base station. Our model reflects the expe...

  2. Realization of OFCC based Transimpedance Mode Instrumentation Amplifier

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2016-01-01

    Full Text Available The paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three Operational Floating Current Conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematicThe paper presents an instrumentation amplifier suitable for amplifying the current source transducer signals. It provides a voltage output. It has a high gain, common mode rejection ratio and gain independent bandwidth. It uses three operational floating current conveyors (OFCCs and four resistors. The effect of nonidealities of OFCC on performance of proposed transimpedance instrumentation amplifier (TIA is also analyzed. The proposal has been verified through SPICE simulations using CMOS based schematic.

  3. Remote Acquisition Amplifier For 50-Ohm Cable

    Science.gov (United States)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  4. Laser fiber cleaving techniques: effects on tip morphology and power output.

    Science.gov (United States)

    Vassantachart, Janna M; Lightfoot, Michelle; Yeo, Alexander; Maldonado, Jonathan; Li, Roger; Alsyouf, Muhannad; Martin, Jacob; Lee, Michael; Olgin, Gaudencio; Baldwin, D Duane

    2015-01-01

    Proper cleaving of reusable laser fibers is needed to maintain optimal functionality. This study quantifies the effect of different cleaving tools on power output of the holmium laser fiber and demonstrates morphologic changes using microscopy. The uncleaved tips of new 272 μm reusable laser fibers were used to obtain baseline power transmission values at 3 W (0.6 J, 5 Hz). Power output for each of four cleaving techniques-11-blade scalpel, scribe pen cleaving tool, diamond cleaving wheel, and suture scissors-was measured in a single-blinded fashion. Dispersion of light from the fibers was compared with manufacturer specifications and rated as "ideal," "acceptable," or "unacceptable" by blinded reviewers. The fiber tips were also imaged using confocal and scanning electron microscopy. Independent samples Kruskal-Wallis test and chi square were used for statistical analysis (αtrend that was highly significant (Ptrend as the power output results (P<0.001). Microscopy showed that the scribe pen produced small defects along the fiber cladding but maintained a smooth, flat core surface. The other cleaving techniques produced defects on both the core and cladding. Cleaving techniques produce a significant effect on the initial power transmitted by reusable laser fibers. The scribe pen cleaving tool produced the most consistent and highest average power output.

  5. A New Principle for a High Efficiency Power Audio Amplifier for Use with a Digital Preamplifier

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1986-01-01

    The use of class-B and class-D amlifiers for converting digital audio signals to analog signals is discussed. It is shown that the class-D amplifier is unsuitable due to distortion. Therefore, a new principle involving a switch-mode power supply and a class-B amplifier is suggested. By regulating...... the supply voltage to the amplifier according to the amplitude of the audio signal, a higher efficiency than can be obtained by the current principles is achieved. The regulation can be done very efficiently by generating the control signal to the power supply in advance of the audio signal, made possible...

  6. High energy, high average power solid state green or UV laser

    Science.gov (United States)

    Hackel, Lloyd A.; Norton, Mary; Dane, C. Brent

    2004-03-02

    A system for producing a green or UV output beam for illuminating a large area with relatively high beam fluence. A Nd:glass laser produces a near-infrared output by means of an oscillator that generates a high quality but low power output and then multi-pass through and amplification in a zig-zag slab amplifier and wavefront correction in a phase conjugator at the midway point of the multi-pass amplification. The green or UV output is generated by means of conversion crystals that follow final propagation through the zig-zag slab amplifier.

  7. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, M., E-mail: marcos.gaspar@psi.c [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Pedrozzi, M. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland); Ferreira, L.F.R. [Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Garvey, T. [Paul Scherrer Institute, CH 5232 Villigen PSI (Switzerland)

    2011-05-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  8. A compact 500 MHz 4 kW Solid-State Power Amplifier for accelerator applications

    International Nuclear Information System (INIS)

    Gaspar, M.; Pedrozzi, M.; Ferreira, L.F.R.; Garvey, T.

    2011-01-01

    We present the development of a compact narrow-band Solid-State Power Amplifier (SSPA). We foresee a promising application of solid-state amplifiers specifically in accelerators for new generation synchrotron light sources. Such a new technology has reached a competitive price/performance ratio and expected lifetime in comparison with klystron and IOT amplifiers. The increasing number of synchrotron light sources using 500 MHz as base frequency justifies the effort in the development of the proposed amplifier. Two different techniques are also proposed to improve the control and performance of these new distributed amplification systems which we call, respectively, complete distributed system and forced compression.

  9. Design procedure for millimeter-wave InP DHBT stacked power amplifiers

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Johansen, Tom Keinicke; Midili, Virginio

    2015-01-01

    The stacked-transistor concept for power amplifiers (PA) has been investigated in this work. Specifically, this architecture has been applied in the design of millimeter-wave monolithic microwave integrated circuits (MMICs) using indium phosphide (InP) double heterojunction bipolar transistors...

  10. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    Science.gov (United States)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  11. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  12. Development of a thermionic magnicon amplifier at 11.4 GHz. Final report for period May 16, 1995 - May 15, 2001

    International Nuclear Information System (INIS)

    Gold, Steven H.; Fliflet, Arne W.

    2001-01-01

    This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, a small operational frequency bandwidth and a spectrally pure, single-mode output

  13. Development of Compact Ozonizer with High Ozone Output by Pulsed Power

    Science.gov (United States)

    Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei

    Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.

  14. A study on electric power management for power producer-suppliers utilizing output of megawatt-solar power plants

    Directory of Open Access Journals (Sweden)

    Hirotaka Takano

    2016-01-01

    Full Text Available The growth in penetration of photovoltaic generation units (PVs has brought new power management ideas, which achieve more profitable operation, to Power Producer-Suppliers (PPSs. The expected profit for the PPSs will improve if they appropriately operate their controllable generators and sell the generated electricity to contracted customers and Power Exchanges together with the output of Megawatt-Solar Power Plants (MSPPs. Moreover, we can expect that the profitable cooperation between the PPSs and the MSPPs decreases difficulties in the supply-demand balancing operation for the main power grids. However, it is necessary that the PPSs treat the uncertainty in output prediction of PVs carefully. This is because there is a risk for them to pay a heavy imbalance penalty. This paper presents a problem framework and its solution to make the optimal power management plan for the PPSs in consideration with the electricity procurement from the MSPPs. The validity of the authors’ proposal is verified through numerical simulations and discussions of their results.

  15. Integrating amplifiers for PHENIX lead-glass and lead-scintillator calorimeters

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Simpson, M.L.; Britton, C.L. Jr.; Palmer, R.L.; Jackson, R.G.

    1995-01-01

    Two types of integrating amplifier systems have been developed for use with lead-glass and lead-scintillator calorimeters with photomultiplier tube readout. Requirements for the amplifier system include termination of the line from the photomultiplier, compact size and low power dissipation to allow multiple channels per chip, dual range outputs producing 10-bit accuracy over a 14-bit dynamic range, rms noise levels of one LSB or less, and compatibility with timing filter amplifiers, tower sum circuits for triggering and calibration circuits to be built on the same integrated circuit (IC). Advantages and disadvantages of an active integrator system are compared and contrasted to those of a passive integrator-based system. In addition, details of the designs and results from prototype devices including an 8-channel active integrator IC fabricated in 1.2 microm Orbit CMOS are presented

  16. Technique for enhancing the power output of an electrostatic generator employing parametric resonance

    Science.gov (United States)

    Post, Richard F.

    2016-02-23

    A circuit-based technique enhances the power output of electrostatic generators employing an array of axially oriented rods or tubes or azimuthal corrugated metal surfaces for their electrodes. During generator operation, the peak voltage across the electrodes occurs at an azimuthal position that is intermediate between the position of minimum gap and maximum gap. If this position is also close to the azimuthal angle where the rate of change of capacity is a maximum, then the highest rf power output possible for a given maximum allowable voltage at the minimum gap can be attained. This rf power output is then coupled to the generator load through a coupling condenser that prevents suppression of the dc charging potential by conduction through the load. Optimized circuit values produce phase shifts in the rf output voltage that allow higher power output to occur at the same voltage limit at the minimum gap position.

  17. A digital input class-D audio amplifier with sixth-order PWM

    International Nuclear Information System (INIS)

    Luo Shumeng; Li Dongmei

    2013-01-01

    A digital input class-D audio amplifier with a sixth-order pulse-width modulation (PWM) modulator is presented. This modulator moves the PWM generator into the closed sigma—delta modulator loop. The noise and distortions generated at the PWM generator module are suppressed by the high gain of the forward loop of the sigma—delta modulator. Therefore, at the output of the modulator, a very clean PWM signal is acquired for driving the power stage of the class-D amplifier. A sixth-order modulator is designed to balance the performance and the system clock speed. Fabricated in standard 0.18 μm CMOS technology, this class-D amplifier achieves 110 dB dynamic range, 100 dB signal-to-noise rate, and 0.0056% total harmonic distortion plus noise. (semiconductor integrated circuits)

  18. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  19. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input...... and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion...... figures in excess of 0.1–0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally...

  20. 2.45 GHz Class E Power Amplifier for a Transmitter Combining LINC and EER

    Directory of Open Access Journals (Sweden)

    M. Dirix

    2009-01-01

    Full Text Available A 10 W class-E RF power amplifier (PA is designed and fabricated using a Cree GaN HEMT. The proposed PA uses an innovative input circuit to optimize band with. At 2.45 GHz the PA achieves a PAE of 60 % at an outputpower of 40 dBm. The resulting amplifier is simulated and constructed using a transmissionline topology. Two of these amplifiers are fabricated on a single board for outphasing application. Their suitability for outphasing application and supply modulation is investigated. 

  1. Development of a high power millimeter wave free-electron laser amplifier

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Rodgers, J.; Freund, H.P.

    1992-01-01

    Progress on the development of a high-average-power millimeter wave free-electron laser amplifier is reported. Successful sheet electron beam propagation has been observed through a 54 cm long wiggler magnet. One hundred percent transport efficiency is reported with a 15 A, 0.1 cm x 2.0 cm, sheet electron beam through B w = 5.1 kG, λ w = 0.96 cm, planar electromagnet wiggler. Preliminary success with a novel, yet simple, method of side focusing using offset poles is reported. Status of development on a 94 GHz, 180 kW, pulsed amplifier is discussed with results from numerical simulation

  2. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...

  3. Ka-Band AlGaN/GaN HEMT high power and driver amplifier MMICs

    NARCIS (Netherlands)

    Heijningen, M. van; Vliet, F.E. van; Quay, R.; Raay, F. van; Kiefer, R.; Mueller, S.; Krausse, D.; Seelmann-Eggebert, M.; Mikulla, M.; Schlechtweg, M.

    2005-01-01

    In this paper the MMIC technology, design and characterization of a high power amplifier and driver amplifier MMIC at 30 GHz in AlGaN/GaN HEMT technology are presented. The MMICs are designed using CPW technology on a 390 μm thick SiC substrate. The measured small-signal gain of the driver is 14 dB

  4. Uncertainties in predicting solar panel power output

    Science.gov (United States)

    Anspaugh, B.

    1974-01-01

    The problem of calculating solar panel power output at launch and during a space mission is considered. The major sources of uncertainty and error in predicting the post launch electrical performance of the panel are considered. A general discussion of error analysis is given. Examples of uncertainty calculations are included. A general method of calculating the effect on the panel of various degrading environments is presented, with references supplied for specific methods. A technique for sizing a solar panel for a required mission power profile is developed.

  5. Investigation on the integral output power model of a large-scale wind farm

    Institute of Scientific and Technical Information of China (English)

    BAO Nengsheng; MA Xiuqian; NI Weidou

    2007-01-01

    The integral output power model of a large-scale wind farm is needed when estimating the wind farm's output over a period of time in the future.The actual wind speed power model and calculation method of a wind farm made up of many wind turbine units are discussed.After analyzing the incoming wind flow characteristics and their energy distributions,and after considering the multi-effects among the wind turbine units and certain assumptions,the incoming wind flow model of multi-units is built.The calculation algorithms and steps of the integral output power model of a large-scale wind farm are provided.Finally,an actual power output of the wind farm is calculated and analyzed by using the practical measurement wind speed data.The characteristics of a large-scale wind farm are also discussed.

  6. A compact broadband high efficient X-band 9-watt PHEMT MMIC high-power amplifier for phased array radar applications

    NARCIS (Netherlands)

    Hek, A.P. de; Hunneman, P.A.H.; Demmler, M.; Hulsmann, A.

    1999-01-01

    ln this paper the development and measurement results of a compact broadband 9-Watt high efficient X-band high-power amplifier are discussed. The described amplifier has the following state-of-the art performance: an average ouput power of 9 Watt, a gain of 20 dB and an average Power Added

  7. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu (China); Jia, Nan; Duan, Yaoyong [The Chinese People' s Armed Police Force Academy, Hebei (China); Li, Zheng-Hong [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, CAEP, Mianyang (China); Cheng, Hui [Microwave Department, Sichuan Jiuzhou Electric Appliance Group Co., Ltd., Mianyang (China); Yang, Xiao-Chuan [Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang (China)

    2016-07-15

    The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding to 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.

  8. A transimpedance CMOS multichannel amplifier with a 50 Ω-wide output range buffer for high counting rate applications

    International Nuclear Information System (INIS)

    Haralabidis, N.; Loukas, D.; Misiakos, K.; Katsafouros, S.

    1997-01-01

    A fast transimpedance multichannel amplifier has been designed, fabricated in CMOS 1.2-microm technology and tested. Each channel consists of a current sensitive preamplifier followed by a voltage amplification stage and an on-chip buffer able to drive 50 Ω loads with an output range of ±800 mV. Measured peaking time at the output is 40 ns and the circuit recovers to baseline in 90 ns. This results in a counting capability of more than 10 7 hits/s. Signals of both polarities can be handled. The first two stages consume a total of 2 mW per channel and the 50 Ω buffer consumes another 17 mW. The equivalent noise charge (ENC) is 1,100 e - rms with a slope of 40e - /pF. The IC is intended for use in gas and solid-state detectors with high particle rate and extensive charge release as in high energy calorimetry

  9. High Efficiency GPS Block III L1 band Envelope Tracking Power Amplifier

    Science.gov (United States)

    2016-03-31

    intermo asymmetric ri nction and is d 30.69MHz w measured with pe Amplifier e CGH40120F Sub-System: F e RFPA and E Fig. 7: Nati The switcher the...Paul T. The Efficiency W ack Power Am Dongsu Ki Bumman, "Hi lator for Enve ess Componen Hassan, M. ing power-sup z LTE Envelop ts Conference

  10. Behavioral modeling of microwave power amplifiers using a look up table method

    NARCIS (Netherlands)

    Shen, Y.; Gajadharsing, J.; Tauritz, J.L.

    2007-01-01

    The possibility of building a microwave power amplifier (PA) behavioral model based on the look-up table principle is investigated. The model so constructed avoids the difficulties in model structure selection and/or its parameter estimation.

  11. Theoretical analysis of mode instability in high-power fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2013-01-01

    We present a simple theoretical model of transverse mode instability in high-power rare-earth doped fiber amplifiers. The model shows that efficient power transfer between the fundamental and higher-order modes of the fiber can be induced by a nonlinear interaction mediated through the thermo......-optic effect, leading to transverse mode instability. The temporal and spectral characteristics of the instability dynamics are investigated, and it is shown that the instability can be seeded by both quantum noise and signal intensity noise, while pure phase noise of the signal does not induce instability...

  12. High Average Power, High Energy Short Pulse Fiber Laser System

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  13. A novel low-voltage operational amplifier for low-power pipelined ADCs

    International Nuclear Information System (INIS)

    Fan Mingjun; Ren Junyan; Guo Yao; Li Ning; Ye Fan; Li Lian

    2009-01-01

    A novel low-voltage two-stage operational amplifier employing class-AB architecture is presented. The structure utilizes level-shifters and current mirrors to create the class-AB behavior in the first and second stages. With this structure, the transconductances of the two stages are double compared with the normal configuration without class-AB behaviors with the same current consumption. Thus power can be saved and the operation frequency can be increased. The nested cascode miller compensation and symmetric common-mode feedback circuits are used for large unit-gain bandwidth, good phase margin and stability. Simulation results show that the sample-and-hold of the 12-bit 40-Ms/s pipelined ADC using the proposed amplifier consumes only 5.8 mW from 1.2 V power supply with signal-to-noise-and-distortion ratio 89.5 dB, spurious-free dynamic range 95.7 dB and total harmonic distortion -94.3 dB with Nyquist input signal frequency.

  14. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    Science.gov (United States)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-10-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM.

  15. EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy

    International Nuclear Information System (INIS)

    Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio

    2003-01-01

    We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM

  16. Linearizing of Low Noise Power Amplifier Using 5.8GHz Double Loop Feedforward Linearization Technique

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mokif Obais

    2017-05-01

    Full Text Available In this paper, a double loop feedforward linearization technique is analyzed and built with a MMIC low noise amplifier “HMC753” as main amplifier and a two-stage class-A power amplifier as error amplifier. The system is operated with 5V DC supply at a center frequency of 5.8GHz and a bandwidth of 500MHz. The proposed technique, increases the linearity of the MMIC amplifier from 18dBm at 1dB compression point to more than 26dBm. In addition, the proposed system is tested with OFDM signal and it reveals good response in maximizing the linearity region and eliminating distortions. The proposed system is designed and simulated onAdvanced Wave Research-Microwave Office (AWR-MWO.

  17. Maximum Power Output of Quantum Heat Engine with Energy Bath

    Directory of Open Access Journals (Sweden)

    Shengnan Liu

    2016-05-01

    Full Text Available The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed.

  18. Method for reducing snap in magnetic amplifiers

    Science.gov (United States)

    Fischer, R. L. E.; Word, J. L.

    1968-01-01

    Method of reducing snap in magnetic amplifiers uses a degenerative feedback circuit consisting of a resistor and a separate winding on a magnetic core. The feedback circuit extends amplifier range by allowing it to be used at lower values of output current.

  19. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Science.gov (United States)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  20. Extended Cann Model for Behavioral Modeling of Envelope Tracking Power Amplifiers

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Larsen, Torben

    2013-01-01

    This paper deals with behavioral modeling of power amplifiers (PAs) for envelope tracking (ET) applications. In such a scenario, the power supply modulation brings in several additional challenges for the system design and, similarly, it becomes more difficult to obtain an accurate and general PA...... by the ET operation. The model performance is tested modeling data-sets acquired from an ET test bench including a commercial RFMD PA and an envelope modulator designed using a commercial IC from TI....

  1. A high-power millimeter-wave sheet beam free-electron laser amplifier

    International Nuclear Information System (INIS)

    Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X.

    1996-01-01

    The results of experiments with a short period (9.6 mm) wiggler sheet electron beam (1.0 mm x 2.0 cm) millimeter-wave free electron laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for sheet beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the sheet beam FEL amplifier. The results of the studies will provide guidelines for the future development of sheet beam FEL's and/or other kinds of sheet beam devices. These devices have fusion application

  2. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Science.gov (United States)

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  3. Muscle trade-offs in a power-amplified prey capture system.

    Science.gov (United States)

    Blanco, M Mendoza; Patek, S N

    2014-05-01

    Should animals operating at great speeds and accelerations use fast or slow muscles? The answer hinges on a fundamental trade-off: muscles can be maximally fast or forceful, but not both. Direct lever systems offer a straightforward manifestation of this trade-off, yet the fastest organisms use power amplification, not direct lever action. Power-amplified systems typically use slow, forceful muscles to preload springs, which then rapidly release elastic potential energy to generate high speeds and accelerations. However, a fast response to a stimulus may necessitate fast spring-loading. Across 22 mantis shrimp species (Stomatopoda), this study examined how muscle anatomy correlates with spring mechanics and appendage type. We found that muscle force is maximized through physiological cross-sectional area, but not through sarcomere length. Sit-and-wait predators (spearers) had the shortest sarcomere lengths (fastest contractions) and the slowest strike speeds. The species that crush shells (smashers) had the fastest speeds, most forceful springs, and longest sarcomeres. The origin of the smasher clade yielded dazzlingly high accelerations, perhaps due to the release from fast spring-loading for evasive prey capture. This study offers a new window into the dynamics of force-speed trade-offs in muscles in the biomechanical, comparative evolutionary framework of power-amplified systems. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. High power rf amplifiers for accelerator applications: The large orbit gyrotron and the high current, space charge enhanced relativistic klystron

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Fazio, M.V.; Rickel, D.G.; Kwan, T.J.T.; Peratt, A.L.; Kinross-Wright, J.; Van Haaften, F.W.; Hoeberling, R.F.; Faehl, R.; Carlsten, B.; Destler, W.W.; Warner, L.B.

    1991-01-01

    Los Alamos is investigating a number of high power microwave (HPM) sources for their potential to power advanced accelerators. Included in this investigation are the large orbit gyrotron amplifier and oscillator (LOG) and the relativistic klystron amplifier (RKA). LOG amplifier development is newly underway. Electron beam power levels of 3 GW, 70 ns duration, are planned, with anticipated conversion efficiencies into RF on the order of 20 percent. Ongoing investigations on this device include experimental improvement of the electron beam optics (to allow injection of a suitable fraction of the electron beam born in the gun into the amplifier structure), and computational studies of resonator design and RF extraction. Recent RKA studies have operated at electron beam powers into the device of 1.35 GW in microsecond duration pulses. The device has yielded modulated electron beam power approaching 300 MW using 3-5 kW of RF input drive. RF powers extracted into waveguide have been up to 70 MW, suggesting that more power is available from the device than has been converted to-date in the extractor

  5. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    Science.gov (United States)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  6. Design and optimization of G-band extended interaction klystron with high output power

    Science.gov (United States)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  7. Research on High Efficient Single-Phase Multi-Stage Interleaved Bridgeless PFC Frontend for Class-D Amplifiers

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a 3.5kW single-phase high efficient interleaved Bridgeless PFC (IBPFC) is proposed for class-D amplifiers. This topology achieves a relatively higher efficiency in a wide output power range, which helps to reduce the energy consuming of the whole system. In addition, a detailed...

  8. Regulation of the output power at the resonant converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefanov, Goce G.; Sarac, Vasilija J. [University Goce Delecev-Stip, Faculty of Electrical Engineering, Radovis (Macedonia, The Former Yugoslav Republic of); Karadzinov, Ljupco V., E-mail: goce.stefanov@ugd.edu.mk [University Kiril and Methodyus-Skopje, FEIT Skopje(Macedonia, The Former Yugoslav Republic of)

    2011-07-01

    In this paper a method for regulating an alternating current voltage source with pair of IGBT transistor’s modules, in a full bridge configuration with series resonant converter is given. With the developed method a solution is obtained which can regulate the phase difference between output voltage and current through the inductor, in order to maintain maximum output power. Control electronic via feedback signals regulates the energy transfer to the tank by changing the pulse width of signals which are used as inputs to the gates of the IGBTs. By increasing or decreasing the pulse width transmitted to the various gates of the IGBT the energy transfer to the tank is increased or decreased . PowerSim simulations program is used for development of controlling methodology. Developed method is practically implemented in a prototype of the device for phase control of resonant converter with variable the resonant load. Key words: pulse width method, phase regulation , power converter.

  9. A 0.8V, 7μA, rail-to-rail input/output, constant Gm operational amplifier in standard digital 0.18μm CMOS

    DEFF Research Database (Denmark)

    Citakovic, J; Nielsen, I. Riis; Nielsen, Jannik Hammel

    2005-01-01

    A two-stage amplifier, operational at 0.8V and drawing 7μA, has been integrated in a standard digital 0.18μm CMOS process. Rail-to-rail operations at the input are enabled by complementary transistor pairs with gm control. The efficient rail-to-rail output stage is biased in class AB. The measured...

  10. Brushless power generating system having reduced conducted emissions in output power

    International Nuclear Information System (INIS)

    Walton, D.N.; Dolan, C.F.; Shah, M.J.

    1991-01-01

    This patent describes a brushless electrical power generating system. It comprises an exciter for producing alternating current from an exciter rotor; a rectifier mounted for rotation with the rotor for producing a rectified control current from the alternating current; a common mode inductor, coupled to the rectifier, for cancelling common mode noise components within the rectified control current; and a main generator, having a rotating field winding mounted on a main generator rotor excited by the control current and producing an alternating current power output from a stator

  11. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    International Nuclear Information System (INIS)

    Hanto, D; Ula, R K

    2017-01-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor. (paper)

  12. Characterization of transimpedance amplifier as optical to electrical converter on designing optical instrumentation

    Science.gov (United States)

    Hanto, D.; Ula, R. K.

    2017-05-01

    Optical to electrical converter is the main components for designing of the optical instrumentations. In addition, this component is also used as signal conditioning. This component usually consists of a photo detector and amplifier. In this paper, characteristics of commercial amplifiers from Thorlabs PDA50B-EC has been observed. The experiment was conducted by diode laser with power of -5 dBm and wavelength 1310 nm; the optical attenuator to vary optical power from 0 to 60 dB, optical to electrical converter from Thorlabs Amplifier PDA50B-EC; multimode optical fiber to guide the laser; and digital voltmeter to measure the output of converter. The results of the characterization indicate that each channel amplification has a non-linear correlation between optical and electrical parameter; optical conversion measurement range of 20-23 dB to full scale; and different measurement coverage area. If this converter will be used as a part component of optical instrumentation so it should be adjusted suitably with the optical power source. Then, because of the correlation equation is not linear so calculation to determine the interpretation also should be considered in addition to the transfer function of the optical sensor.

  13. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    Science.gov (United States)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  14. Development of high-power and high-energy 2 µm bulk solid-state lasers and amplifiers

    CSIR Research Space (South Africa)

    Koen, W

    2016-04-01

    Full Text Available 250 300 350 Pulse Repetition Frequency [Hz] P u l s e E n e r g y [ m J ] 0 1 2 3 4 5 6 7 8 9 10 A v e r a g e P o w e r [ W ] Osc Energy Amp Energy Osc average P Amp average P Figure 8: Output energy of the ring laser and amplifier...

  15. Frequency dependent loss analysis and minimization of system losses in switchmode audio power amplifiers

    DEFF Research Database (Denmark)

    Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2014-01-01

    In this paper, frequency dependent losses in switch-mode audio power amplifiers are analyzed and a loss model is improved by taking the voltage dependence of the parasitic capacitance of MOSFETs into account. The estimated power losses are compared to the measurement and great accuracy is achieved...

  16. Multi-Channel Amplifier-Discriminator for Highly Time-Resolved Detection

    CERN Document Server

    Despeisse, M; Lapington, J; Jarron, P

    2011-01-01

    A low-power multi-channel amplifier-discriminator was developed for application in highly time-resolved detection systems. The proposed circuit architecture, so-called Nino, is based on a time-over-threshold approach and shows a high potential for time-resolved readout of solid-state photo-detectors and of detectors based on vacuum technologies. The Irpics circuit was designed in a 250 nm CMOS technology, implementing 32 channels of a Nino version optimized to achieve high-time resolution on the output low-voltage differential signals (LVDS) while keeping a low power consumption of 10 mW per channel. Electrical characterizations of the circuit demonstrate a very low intrinsic time jitter on the output pulse leading edge, measured below 10 ps rms for each channel for high input signal charges (100 fC) and below 25 ps rms for low input signal charges (20-100 fC). The read-out architecture moreover permits to retrieve the input signal charge from the timing measurements, while a calibration procedure was develop...

  17. A High-Linearity Low-Noise Amplifier with Variable Bandwidth for Neural Recoding Systems

    Science.gov (United States)

    Yoshida, Takeshi; Sueishi, Katsuya; Iwata, Atsushi; Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi

    2011-04-01

    This paper describes a low-noise amplifier with multiple adjustable parameters for neural recording applications. An adjustable pseudo-resistor implemented by cascade metal-oxide-silicon field-effect transistors (MOSFETs) is proposed to achieve low-signal distortion and wide variable bandwidth range. The amplifier has been implemented in 0.18 µm standard complementary metal-oxide-semiconductor (CMOS) process and occupies 0.09 mm2 on chip. The amplifier achieved a selectable voltage gain of 28 and 40 dB, variable bandwidth from 0.04 to 2.6 Hz, total harmonic distortion (THD) of 0.2% with 200 mV output swing, input referred noise of 2.5 µVrms over 0.1-100 Hz and 18.7 µW power consumption at a supply voltage of 1.8 V.

  18. Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation

    Science.gov (United States)

    Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi

    2016-09-01

    We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

  19. Using machine learning to predict wind turbine power output

    International Nuclear Information System (INIS)

    Clifton, A; Kilcher, L; Lundquist, J K; Fleming, P

    2013-01-01

    Wind turbine power output is known to be a strong function of wind speed, but is also affected by turbulence and shear. In this work, new aerostructural simulations of a generic 1.5 MW turbine are used to rank atmospheric influences on power output. Most significant is the hub height wind speed, followed by hub height turbulence intensity and then wind speed shear across the rotor disk. These simulation data are used to train regression trees that predict the turbine response for any combination of wind speed, turbulence intensity, and wind shear that might be expected at a turbine site. For a randomly selected atmospheric condition, the accuracy of the regression tree power predictions is three times higher than that from the traditional power curve methodology. The regression tree method can also be applied to turbine test data and used to predict turbine performance at a new site. No new data are required in comparison to the data that are usually collected for a wind resource assessment. Implementing the method requires turbine manufacturers to create a turbine regression tree model from test site data. Such an approach could significantly reduce bias in power predictions that arise because of the different turbulence and shear at the new site, compared to the test site. (letter)

  20. Analysis of Lifetime Data for the Linac 201 MHz Power Amplifiers

    International Nuclear Information System (INIS)

    McCrory, Elliot; Webber, Robert C.

    2002-01-01

    This document analyzes data on the lifetime of the 201-MHz triode power amplifier (PA) vacuum tube, model number 7835, used in the low-energy half of the Linac. We observe that a 7835 power amplifier vacuum tube has historically provided about one and one-third years service in the Linac. The lifetime of recently re-manufactured tubes is somewhat less, but it is not clear if this is because the manufacturer is ''loosing their touch,'' or because tubes cannot be effectively rebuilt after a certain number of times. Taking into account the expected tube lifetimes, the statistical fluctuations on this number, and the amount of time it takes for the manufacturer to make good tubes, we require about 14 tubes either operating, ready as good spares or being manufactured, in order to have sufficient spares to run the Linac. As a hedge against supplier drop out, we need to increase our inventory of good spare tubes by about three tubes per year for the next few years

  1. Advanced Output Coupling for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Read, Michael [Calabazas Creek Research, Inc., San Mateo, CA (United States); Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Marsden, David [Calabazas Creek Research, Inc., San Mateo, CA (United States); Collins, George [Calabazas Creek Research, Inc., San Mateo, CA (United States); Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Guss, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lohr, John [General Atomics, La Jolla, CA (United States); Neilson, Jeffrey [Lexam Research, Redwood City, CA (United States); Bui, Thuc [Calabazas Creek Research, Inc., San Mateo, CA (United States)

    2016-11-28

    The Phase II program developed an internal RF coupler that transforms the whispering gallery RF mode produced in gyrotron cavities to an HE11 waveguide mode propagating in corrugated waveguide. This power is extracted from the vacuum using a broadband, chemical vapor deposited (CVD) diamond, Brewster angle window capable of transmitting more than 1.5 MW CW of RF power over a broad range of frequencies. This coupling system eliminates the Mirror Optical Units now required to externally couple Gaussian output power into corrugated waveguide, significantly reducing system cost and increasing efficiency. The program simulated the performance using a broad range of advanced computer codes to optimize the design. Both a direct coupler and Brewster angle window were built and tested at low and high power. Test results confirmed the performance of both devices and demonstrated they are capable of achieving the required performance for scientific, defense, industrial, and medical applications.

  2. A Reactance Compensated Three-Device Doherty Power Amplifier for Bandwidth and Back-Off Range Extension

    Directory of Open Access Journals (Sweden)

    Shichang Chen

    2018-01-01

    Full Text Available This paper proposes a new broadband Doherty power amplifier topology with extended back-off range. A shunted λ/4 short line or λ/2 open line working as compensating reactance is introduced to the conventional load modulation network, which greatly improves its bandwidth. Underlying bandwidth extension mechanism of the proposed configuration is comprehensively analyzed. A three-device Doherty power amplifier is implemented for demonstration based on Cree’s 10 W HEMTs. Measurements show that at least 41% drain efficiency is maintained from 2.0 GHz to 2.6 GHz at 8 dB back-off range. In the same operating band, saturation power is larger than 43.6 dBm and drain efficiency is higher than 53%.

  3. The interdependence of Ca2+ activation, sarcomere length, and power output in the heart.

    Science.gov (United States)

    McDonald, Kerry S

    2011-07-01

    Myocardium generates power to perform external work on the circulation; yet, many questions regarding intermolecular mechanisms regulating power output remain unresolved. Power output equals force × shortening velocity, and some interesting new observations regarding control of these two factors have arisen. While it is well established that sarcomere length tightly controls myocyte force, sarcomere length-tension relationships also appear to be markedly modulated by PKA-mediated phosphorylation of myofibrillar proteins. Concerning loaded shortening, historical models predict independent cross-bridge mechanics; however, it seems that the mechanical state of one population of cross-bridges affects the activity of other cross-bridges by, for example, recruitment of cross-bridges from the non-cycling pool to the cycling force-generating pool during submaximal Ca(2+) activation. This is supported by the findings that Ca(2+) activation levels, myofilament phosphorylation, and sarcomere length are all modulators of loaded shortening and power output independent of their effects on force. This fine tuning of power output probably helps optimize myocardial energetics and to match ventricular supply with peripheral demand; yet, the discernment of the chemo-mechanical signals that modulate loaded shortening needs further clarification since power output may be a key convergent point and feedback regulator of cytoskeleton and cellular signals that control myocyte growth and survival.

  4. Design of a low noise distributed amplifier with adjustable gain control in 0.15 μm GaAs PHEMT

    International Nuclear Information System (INIS)

    Zhang Ying; Wang Zhigong; Xu Jian; Luo Yin

    2012-01-01

    A low noise distributed amplifier consisting of 9 gain cells is presented. The chip is fabricated with 0.15-μm GaAs pseudomorphic high electron mobility transistor (PHEMT) technology from Win Semiconductor of Taiwan. A special optional gate bias technique is introduced to allow an adjustable gain control range of 10 dB. A novel cascode structure is adopted to extend the output voltage and bandwidth. The measurement results show that the amplifier gives an average gain of 15 dB with a gain flatness of ±1 dB in the 2–20 GHz band. The noise figure is between 2 and 4.1 dB during the band from 2 to 20 GHz. The amplifier also provides 13.8 dBm of output power at a 1 dB gain compression point and 10.5 dBm of input third order intercept point (IIP3), which demonstrates the excellent performance of linearity. The power consumption is 300 mW with a supply of 5 V, and the chip area is 2.36 × 1.01 mm 2 . (semiconductor integrated circuits)

  5. Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Directory of Open Access Journals (Sweden)

    M. Mileusnic

    2014-06-01

    Full Text Available In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature.

  6. Automatic Frequency Controller for Power Amplifiers Used in Bio-Implanted Applications: Issues and Challenges

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2014-12-01

    Full Text Available With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil’s mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning

  7. Automatic Frequency Controller for Power Amplifiers Used in Bio-Implanted Applications: Issues and Challenges

    Science.gov (United States)

    Hannan, Mahammad A.; Hussein, Hussein A.; Mutashar, Saad; Samad, Salina A.; Hussain, Aini

    2014-01-01

    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of

  8. High power X-band coaxial amplifier experiments

    International Nuclear Information System (INIS)

    Davis, T.J.; Nation, J.A.

    1991-01-01

    Studies are continuing on the development of X-band coaxial microwave amplifiers as a source for next generation linear colliders. Coaxial amplifiers employ an annular electron beam propagating between inner and outer drift tube conductors, a configuration which allows large increases in beam current over standard pencil beam amplifiers. Large average diameter systems may still be used without mode competition since TM mode cutoff frequencies are controlled by the separation between conductors. A number of amplifier configurations are being studied, all primed by a driven initial cavity which resonates around 9 GHz. Simple theory of coaxial systems and particle-in-cell simulations are presented, as well as initial experimental results using a 420 keV, 7-8 kA, 9 cm diameter annular beam

  9. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  10. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    Science.gov (United States)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  11. Design of planar electron gun for UHF range, CW power inductive output tube

    International Nuclear Information System (INIS)

    Kaushik, Meenu; Joshi, L.M.

    2015-01-01

    Inductive Output Tube (lOT) is an amplifier which is now-a-days in demand for scientific applications. For every vacuum tube, electron gun is an important part and in fact considered as the heart of the tube. Hence, designing of this component is very crucial for efficient operation of the device throughout its lifetime. This paper is all about the electromagnetic (EM) design of planar electron gun of 40 kV, 3.5 A beam voltage and beam current respectively, for a 100 kW CW power lOT operating in UHF range. The design considerations and basic equations involved in its design are included in the paper. The gun structure has been optimized for getting the desired beam characteristics. The simulation results including the beam profile along with the beam current are shown using two commercial codes namely TRAK and MAGIC code. Planar shape of electron beam reduces space charge forces in the beam itself and consequently beam energy spread for a given current. The magnetic focusing of planar beam is easier comparative to spherical beam hence, this structure has been adopted for this particular device design. (author)

  12. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  13. A fast large dynamic range shaping amplifier for particle detector front-end

    International Nuclear Information System (INIS)

    Rivetti, Angelo; Delaurenti, Paolo

    2007-01-01

    The paper describes a fast shaping amplifier with rail-to-rail output swing. The circuit is based on a CMOS operational amplifier with a class AB output stage. A baseline holder, incorporating a closed-loop unity gain buffer with slew rate limitation, performs the AC coupling with the preamplifier and guarantees a baseline shift smaller than 3 mV for unipolar output pulses of 3 V and 10 MHz rate

  14. Multi-pass amplifier architecture for high power laser systems

    Science.gov (United States)

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  15. Design of 22-way coaxial power combiner for 20 kW solid state amplifier and 6-1/8″ to N type adapter using CST microwave studio

    International Nuclear Information System (INIS)

    Sharma, Sonal; Mishra, J.K.; Ramarao, B.V.; Pande, Manjiri; Bhagwat, P.V.

    2015-01-01

    A 20 kW, 325 MHz solid state amplifier is being developed in BARC for Fermi Lab collaboration. It is proposed to combine 22 RF amplifiers to get output power of 20 kW. For this purpose a 22 way coaxial power combiner has been designed using CST microwave studio. This combiner is based on Wilkinson combining technology. The inner conductor of the combiner is split into 22 equal plates. Each plate has 1-5/8 flange at input port. These plates are connected to a common disc. The combined output is a 3-1/8 flanged port. The return loss obtained at the combined port is better than 28 dB indicating a very good match. The transmission from the combined port to each split port is about -13.5 dB representing a low insertion loss and equal split. The return loss each of the split port is obtained by simultaneous excitation of each port. The return loss at each port is better than 26 dB. Fabrication of the combiner is under process. The material used for inner conductor will be ETP copper and outer conductor will be made of aluminium. Along with the above design a separate design of 6-1/8″ to N type adapter has been completed in CST microwave studio. A number of these adapters will be used for high power waveguide load characterization which is being developed in BARC. The return loss at each port is better than 30 dB and insertion loss is less than 0.05 dB. Fabrication of these adapters is under process. (author)

  16. Improvement of out-of-band Behaviour in Switch-Mode Amplifiers and Power Supplies by their Modulation Topology

    DEFF Research Database (Denmark)

    Knott, Arnold

    2010-01-01

    Switch-mode power electronics is disturbing other electronic circuits by emission of electromagnetic waves and signals. To allow transmission of information, a set of regulatory rules (electromagnetic compatibility (EMC)) were created to limit this disturbance. To fulfill those rules in power...... electronics, shielding and filtering is required, which is limiting the size reduction. The motivation for this project was to find alternative ways to avoid trouble with interference of switch-mode power electronics and transmission and receiver circuits. An especial focus is given to audio power amplifiers....... After a historical overview and description of interaction between power electronics and electromagnetic compatibility (chapter 1), the thesis will first show the impact of the high frequency signals on the audio performance of switch-mode audio power amplifiers (chapter 2). Therefore the work of others...

  17. Output power characteristics of the neutral xenon long laser

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    Lasers which oscillate within inhomogeneously broadened gain media exhibit spectral hole burning and concomitant reduction in output power compared with equivalent homogeneously-broadened laser gain media. By increasing the cavity length, it may be possible to demonstrate at least a partial transition from an inhomogeneous laser cavity mode spectrum to a homogeneous spectrum. There are a number of high gain laser lines which are inhomogeneously-broadened transitions in electric discharges of neutral xenon. In neutral xenon lasers, as in the cases of many other gas lasers, the inhomogeneous spectral broadening mechanism arises from Doppler shifts, {Delta}{nu}{sub D}, of individual atoms in thermal motion within the electric discharge comprising the laser gain medium. Optical transitions corresponding to these noble gas atoms have natural linewidths, {Delta}{nu}{sub n}{lt}{Delta}{nu}{sub D}. Simulations of the output power characteristics of the xenon laser were carried out as a function of laser cavity parameters, including the cavity length, L. These calculations showed that when the intracavity mode spacing frequency, c/2L{lt}{Delta}{nu}{sub n}, the inhomogeneously broadened xenon mode spectrum converted to a homogeneously broadened oscillation spectrum with an increase in output power. These simulations are compared with experimental results obtained for the long laser oscillation characteristics of the (5d[5/2]{degree}{sub 2}{r_arrow}6p[3/2]{sub 1}) transition corresponding to the strong, high-gain 3.508 {mu} line in xenon.

  18. A Free-Piston Linear Generator Control Strategy for Improving Output Power

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-01-01

    Full Text Available This paper presents a control strategy to improve the output power for a single-cylinder two-stroke free-piston linear generator (FPLG. The comprehensive simulation model of this FPLG is established and the operation principle is introduced. The factors that affect the output power are analyzed theoretically. The characteristics of the piston motion are studied. Considering the different features of the piston motion respectively in acceleration and deceleration phases, a ladder-like electromagnetic force control strategy is proposed. According to the status of the linear electric machine, the reference profile of the electromagnetic force is divided into four ladder-like stages during one motion cycle. The piston motions, especially the dead center errors, are controlled by regulating the profile of the electromagnetic force. The feasibility and advantage of the proposed control strategy are verified through comparison analyses with two conventional control strategies via MatLab/Simulink. The results state that the proposed control strategy can improve the output power by around 7–10% with the same fuel cycle mass.

  19. A low-power wide range transimpedance amplifier for biochemical sensing.

    Science.gov (United States)

    Rodriguez-Villegas, Esther

    2007-01-01

    This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.

  20. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    Science.gov (United States)

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  1. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    International Nuclear Information System (INIS)

    Faatz, B.; Fateev, A.A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa

  2. Wavefront improvement in an end-pumped high-power Nd:YAG zigzag slab laser.

    Science.gov (United States)

    Shin, Jae Sung; Cha, Yong-Ho; Lim, Gwon; Kim, Yonghee; Kwon, Seong-Ouk; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Sangin; Koh, Kwang Uoong; Kim, Hyun Tae

    2017-08-07

    Techniques for wavefront improvement in an end-pumped Nd:YAG zigzag slab laser amplifier were proposed and demonstrated experimentally. First, a study on the contact materials was conducted to improve the heat transfer between the slab and cooling blocks and to increase the cooling uniformity. Among many attempts, only the use of silicon oil showed an improvement in the wavefront. Thus, the appropriate silicone oil was applied to the amplifier as a contact material. In addition, the wavefront compensation method using a glass rod array was also applied to the amplifier. A very low wavefront distortion was obtained through the use of a silicone-oil contact and glass rod array. The variance of the optical path difference for the entire beam height was 3.87 μm at a pump power of 10.6 kW, and that for the 80% section was 1.69 μm. The output power from the oscillator was 3.88 kW, which means the maximum output extracted from the amplifier at a pump power of 10.6 kW.

  3. High-Efficiency, Ka-band Solid-State Power Amplifier Utilizing GaN Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop an efficient, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  4. A modular positive feedback-based gene amplifier

    Directory of Open Access Journals (Sweden)

    Bhalerao Kaustubh D

    2010-02-01

    Full Text Available Abstract Background Positive feedback is a common mechanism used in the regulation of many gene circuits as it can amplify the response to inducers and also generate binary outputs and hysteresis. In the context of electrical circuit design, positive feedback is often considered in the design of amplifiers. Similar approaches, therefore, may be used for the design of amplifiers in synthetic gene circuits with applications, for example, in cell-based sensors. Results We developed a modular positive feedback circuit that can function as a genetic signal amplifier, heightening the sensitivity to inducer signals as well as increasing maximum expression levels without the need for an external cofactor. The design utilizes a constitutively active, autoinducer-independent variant of the quorum-sensing regulator LuxR. We experimentally tested the ability of the positive feedback module to separately amplify the output of a one-component tetracycline sensor and a two-component aspartate sensor. In each case, the positive feedback module amplified the response to the respective inducers, both with regards to the dynamic range and sensitivity. Conclusions The advantage of our design is that the actual feedback mechanism depends only on a single gene and does not require any other modulation. Furthermore, this circuit can amplify any transcriptional signal, not just one encoded within the circuit or tuned by an external inducer. As our design is modular, it can potentially be used as a component in the design of more complex synthetic gene circuits.

  5. Integrating wind output with bulk power operations and wholesale electricity markets

    International Nuclear Information System (INIS)

    Hirst, E.

    2002-01-01

    Wind farms have three characteristics that complicate their widespread application as an electricity resource: limited control, unpredictability and variability. Therefore the integration of wind output into bulk power electric systems is qualitatively different from that of other types of generators. The electric system operator must move other generators up or down to offset the time-varying wind fluctuations. Such movements raise the costs of fuel and maintenance for these other generators. Not only is wind power different, it is new. The operators of bulk power systems have limited experience in integrating wind output into the larger system. As a consequence, market rules that treat wind fairly - neither subsidizing nor penalizing its operation - have not yet been developed. The lack of data and analytical methods encourages wind advocates and sceptics to rely primarily on their biases and beliefs in suggesting how wind should be integrated into bulk power systems. This project helps fill this data and analysis gap. Specifically, it develops and applies a quantitative method for the integration of a wind resource into a large electric system. The method permits wind to bid its output into a short-term forward market (specifically, an hour-ahead energy market) or to appear in real time and accept only intrahour and hourly imbalance payments for the unscheduled energy it delivers to the system. Finally, the method analyses the short-term (minute-to-minute) variation in wind output to determine the regulation requirement the wind resource imposes on the electrical system. (author)

  6. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training.

    Directory of Open Access Journals (Sweden)

    J M Sarabia

    Full Text Available It has been suggested that strength training effects (i.e. neural or structural vary, depending on the total repetitions performed and velocity loss in each training set.The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training.Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]. The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM] and repetitions at maximum power (4 to 9 repetitions, or 'reps'. Volume (sets x repetitions was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%-66.6% of 1RM. The training programme ran over 11 weeks (2 sessions per week; 4-5 sets per session; 3-minute rests between sets, with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST and cortisol (SC concentrations. Rate of perceived exertion (RPE and power output were recorded in all sessions.Following the intermediate test, PPO was increased in the OP group for each load (10.9%-13.2%. Following the post-test, both experimental groups had increased 1RM (11.8%-13.8% and PPO for each load (14.1%-19.6%. Significant decreases in PPO were found for the TT group during all sets (4.9%-15.4%, along with significantly higher RPE (37%.OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE.

  7. Self-Oscillating Soft Switching Envelope Tracking Power Supply for Tetra2 Base Station

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Wendelboe; Andersen, Michael Andreas E.

    2007-01-01

    This paper presents a high-efficiency, high-bandwidth solution to implementing an envelope tracking power supply for the RF power amplifier (RFPA) in a Tetra2 base station. The solution is based on synchronous rectified buck topology, augmented with high-side switch zero-current switching (ZCS......) implemented with a series inductor and an external clamping power supply. Combined with advanced power stage components (die-size MOSFETs), a high-performance fixed-frequency self-oscillating (sliding mode) control strategy and a 4th-order output filter, this leads to a compact, effective and efficient...... overall solution switching at 1MHz with 88-95% efficiency. In a class-AB RFPA amplifying a 50kHz bandwidth QAM Tetra2 signal at 4.6W average output power, the use of tracking supply voltage reduced power dissipation by 25W....

  8. High-Efficiency, Ka-Band Solid-State Power Amplifier Utilizing GaN Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a high-efficiency, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  9. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s-1 directly modulated lasers and 40 Gb s-1 signal-regenerative amplifiers

    International Nuclear Information System (INIS)

    Sugawara, M; Hatori, N; Ishida, M; Ebe, H; Arakawa, Y; Akiyama, T; Otsubo, K; Yamamoto, T; Nakata, Y

    2005-01-01

    This paper presents recent progress in the field of semiconductor lasers and optical amplifiers with InAs-based self-assembled quantum dots in the active region for optical telecommunication. Based on our design in terms of the maximum bandwidth for high-speed modulation and p-type doping in quantum dots for high temperature stability, we realized temperature-insensitive 10 Gb s -1 laser diodes on a GaAs substrate at 1.3 μm. The output waveform at 10 Gb s -1 maintained a clear eye opening, average output power and extinction ratio without current adjustments from 20 deg. C to 70 deg. C. We developed ultrawide-band high-power amplifiers in the 1.5 μm wavelength region on an InP substrate. The amplifier showed ultrafast gain response under gain saturation, and enabled signal regeneration at 40 Gb s -1 by suppressing the '1'-level noise due to the beating between the signal and amplified spontaneous emission. We present our amplifier module with polarization diversity to enable a stable polarization-insensitive performance, and also, discuss prospects for polarization-insensitive quantum dots by the close stacking technique

  10. Development of copper bromide laser master oscillator power

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at 110 W average power is reported. The spectral distribution of power at green (510.6 nm) and yellow (578.2 nm) components in the output of a copper bromide laser is studied as a function of ...

  11. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    Science.gov (United States)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  12. An Improved Mathematical Model for Computing Power Output of Solar Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Abdul Qayoom Jakhrani

    2014-01-01

    Full Text Available It is difficult to determine the input parameters values for equivalent circuit models of photovoltaic modules through analytical methods. Thus, the previous researchers preferred to use numerical methods. Since, the numerical methods are time consuming and need long term time series data which is not available in most developing countries, an improved mathematical model was formulated by combination of analytical and numerical methods to overcome the limitations of existing methods. The values of required model input parameters were computed analytically. The expression for output current of photovoltaic module was determined explicitly by Lambert W function and voltage was determined numerically by Newton-Raphson method. Moreover, the algebraic equations were derived for the shape factor which involves the ideality factor and the series resistance of a single diode photovoltaic module power output model. The formulated model results were validated with rated power output of a photovoltaic module provided by manufacturers using local meteorological data, which gave ±2% error. It was found that the proposed model is more practical in terms of precise estimations of photovoltaic module power output for any required location and number of variables used.

  13. AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications

    OpenAIRE

    Kühn, J.

    2011-01-01

    This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs.

  14. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    OpenAIRE

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower contro...

  15. A low power bipolar amplifier integrated circuit for the ZEUS silicon strip system

    Energy Technology Data Exchange (ETDEWEB)

    Barberis, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Cartiglia, N. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Dorfan, D.E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States)); Spencer, E. (Inst. for Particle Physics, Univ. of California, Santa Cruz, CA (United States))

    1993-05-01

    A fast low power bipolar chip consisting of 64 amplifier-comparators has been developed for use with silicon strip detectors for systems where high radiation levels and high occupancy considerations are important. The design is described and test results are presented. (orig.)

  16. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  17. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration. (au)

  18. Call-related factors influencing output power from mobile phones.

    Science.gov (United States)

    Hillert, Lena; Ahlbom, Anders; Neasham, David; Feychting, Maria; Järup, Lars; Navin, Roshan; Elliott, Paul

    2006-11-01

    Mobile phone use is increasing but there is also concern for adverse health effects. Well-designed prospective studies to assess several health outcomes are required. In designing a study of mobile phone use, it is important to assess which factors need to be considered in classifying the exposure to radiofrequency fields (RF). A pilot study was performed in Sweden and in the UK 2002 to 2003 to test the feasibility of recruiting a cohort of mobile phone users from a random population sample and from mobile phone subscription lists for a prospective study. As one part of this pilot study, different factors were evaluated regarding possible influence on the output power of the phones. By local switch logging, information on calls made from predefined subscriptions or dedicated handsets were obtained and the output power of phones during calls made indoors and outdoors, in moving and stationary mode, and in rural as well in urban areas were compared. In this experiment, calls were either 1, 1.5 or 5 min long. The results showed that high mobile phone output power is more frequent in rural areas whereas the other factors (length of call, moving/stationary, indoor/outdoor) were of less importance. Urban and rural area should be considered in an exposure index for classification of the exposure to RF from mobile phones and may be assessed by first base station during mobile phone calls or, if this information is not available, possibly by using home address as a proxy.

  19. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D. [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)

    2013-09-15

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  20. Study of the Powerful Nd:YLF Laser Amplifiers for the CTF3 Photoinjectors

    CERN Document Server

    Petrarca, M; Luchinin, G; Divall, M

    2011-01-01

    A high-power neodymium-doped yttrium lithium fluoride (Nd:YLF) mode-locked 1.5-GHz laser currently used to drive the two photoinjectors of the Compact Linear Collider Test Facility project at the European Organization for Nuclear Research is described. A phenomenological characterization of the two powerful Nd:YLF amplifiers is presented and compared with the measurements. The laser system operates in a saturated steady-state mode. This mode provides good shot-to-shot stability with pulse train mean power in the 10 kW range.

  1. 915 MHz microwave ablation with high output power in in vivo porcine spleens

    International Nuclear Information System (INIS)

    Gao Yongyan; Wang Yang; Duan Yaqi; Li Chunling; Sun Yuanyuan; Zhang Dakun; Lu Tong; Liang Ping

    2010-01-01

    Objective: The purpose of this study was to evaluate the efficacy of 915 MHz microwave (MW) ablation with high output power in in vivo porcine spleens. Materials and methods: MW ablations were performed in 9 porcine spleens with an internally cooled 915 MHz antenna. Thermocouples were placed at 5, 10, 15, 20 mm away from the antenna to measure temperatures in real-time during MW emission. The energy was applied for 10 min at high output power of 60 W, 70 W or 80 W. Gross specimens were sectioned and measured to determine ablation size. Representative areas were examined by light microscopy and electron microscopy. Coagulation sizes and temperatures were compared among the three power groups. Results: Hematoxylin-eosin staining showed irreversible necrosis in the splenic coagulation area after MW ablation. As the power was increased, long-axis diameter enlarged significantly (p .05). The coagulation size of long-axis and short-axis diameter with 80 W in vivo spleen ablation was 6.43 ± 0.52 and 4.95 ± 0.30 cm, respectively. With the increase of output power, maximum temperatures at 5, 10, 15, 20 mm from the antenna were increased accordingly (p o C respectively. Conclusion: With internally cooled antenna and high output power, 915 MHz MW ablation in the spleen could produce irreversible tissue necrosis of clinical significance. MW ablation may be used as a promising minimally invasive method for the treatment of splenic diseases.

  2. Constant Switching Frequency Self-Oscillating Controlled Class-D Amplifiers

    DEFF Research Database (Denmark)

    Nguyen-Duy, Khiem; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    The self-oscillating control approach has been used extensively in class-D amplifiers. It has several advantages such as high bandwidth and high audio performance. However, one of the primary disadvantages in a self-oscillating controlled system is that the switching frequency of the amplifier...... varies with the ratio of the output voltage to the input rail voltage. In other words, the switching frequency varies with the duty cycle of the output. The drop in the frequency results in lower control bandwidth and higher output voltage ripple, which are undesirable. This paper proposes a new self-oscillating...... control scheme that maintains a constant switching frequency over the full range of output voltage. The frequency difference is processed by a compensator whose output adjusts the total loop gain of the control system. It has been proven by simulation that a con-stant switching frequency self-oscillating...

  3. Improving the Output Power Stability of a High Concentration Photovoltaic System with Supercapacitors: A Preliminary Evaluation

    Directory of Open Access Journals (Sweden)

    Yu-Pei Huang

    2015-01-01

    Full Text Available The output power of a high concentration photovoltaic (HCPV system is very sensitive to fluctuating tracking errors and weather patterns. To help compensate this shortcoming, supercapacitors have been successfully incorporated into photovoltaic systems to improve their output power stability. This study examined the output power stability improvement of an HCPV module with a supercapacitor integrated into its circuit. Furthermore, the equivalent model of the experimental circuit is presented and analyzed. Experimental results suggest that integrating a supercapacitor into an HCPV module could improve its output power stability and further extend its acceptance angle. This paper provides preliminary data of the improvement and its evaluation method, which could be utilized for further improvements to an HCPV system.

  4. A high-average power tapered FEL amplifier at submillimeter frequencies using sheet electron beams and short-period wigglers

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Radack, D.J.; Antonsen, T.M. Jr.; Booske, J.H.; Carmel, Y.; Destler, W.W.; Granatstein, V.L.; Levush, B.; Latham, P.E.; Zhang, Z.X.

    1990-01-01

    A high-average-power FEL amplifier operating at submillimeter frequencies is under development at the University of Maryland. Program goals are to produce a CW, ∼1 MW, FEL amplifier source at frequencies between 280 GHz and 560 GHz. To this end, a high-gain, high-efficiency, tapered FEL amplifier using a sheet electron beam and a short-period (superconducting) wiggler has been chosen. Development of this amplifier is progressing in three stages: (1) beam propagation through a long length (∼1 m) of short period (λ ω = 1 cm) wiggler, (2) demonstration of a proof-of-principle amplifier experiment at 98 GHz, and (3) designs of a superconducting tapered FEL amplifier meeting the ultimate design goal specifications. 17 refs., 1 fig., 1 tab

  5. Maximizing Output Power of a Solar Panel via Combination of Sun Tracking and Maximum Power Point Tracking by Fuzzy Controllers

    Directory of Open Access Journals (Sweden)

    Mohsen Taherbaneh

    2010-01-01

    Full Text Available In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panel I-V curves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.

  6. Advanced design and characterization methodologies for memory-aware CMOS power-amplifier implementation

    Directory of Open Access Journals (Sweden)

    M. Schleyer

    2017-09-01

    Full Text Available This paper reports on an effective root-cause analysis method of memory effects in power amplifiers, as well as introduces compensation techniques on a circuit design level. Despite conventional memory-effect approaches, the discussed method uses a two-tone scan over a wide operation and modulation range. This enables an in-depth study of physical causes and helps to implement compensation techniques at design stage. On the one hand, this circuit investigation is optimized using an automated SystemC model parametrized with real device and measurement values. Hence, computation time is widely reduced which shortens design cycles. On the other hand, the implementation of the derived circuit compensation means will reduce the complexity of digital pre-distortion due to a reduced memory-effect induced AM/AM and AM/PM hysteresis. The approach is demonstrated on a 65 nm CMOS power amplifier with an OIP1 of 27 dBm and a PAE of over 30 % using WCDMA and LTE signals. In fact, mismatch could be reduced by more than 8 %.

  7. Solar Power Station Output Inverter Control Design

    Directory of Open Access Journals (Sweden)

    J. Bauer

    2011-04-01

    Full Text Available The photovoltaic applications spreads in these days fast, therefore they also undergo great development. Because the amount of the energy obtained from the panel depends on the surrounding conditions, as intensity of the sun exposure or the temperature of the solar array, the converter must be connected to the panel output. The Solar system equipped with inverter can supply small loads like notebooks, mobile chargers etc. in the places where the supplying network is not present. Or the system can be used as a generator and it shall deliver energy to the supply network. Each type of the application has different requirements on the converter and its control algorithm. But for all of them the one thing is common – the maximal efficiency. The paper focuses on design and simulation of the low power inverter that acts as output part of the whole converter. In the paper the design of the control algorithm of the inverter for both types of inverter application – for islanding mode and for operation on the supply grid – is discussed. Attention is also paid to the design of the output filter that should reduce negative side effects of the converter on the supply network.

  8. Measuring power output intermittency and unsteady loading in a micro wind farm model

    OpenAIRE

    Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan

    2016-01-01

    In this study porous disc models are used as a turbine model for a wind-tunnel wind farm experiment, allowing the measurement of the power output, thrust force and spatially averaged incoming velocity for every turbine. The model's capabilities for studying the unsteady turbine loading, wind farm power output intermittency and spatio temporal correlations between wind turbines are demonstrated on an aligned wind farm, consisting of 100 wind turbine models.

  9. Thermal and dynamic range characterization of a photonics-based RF amplifier

    Science.gov (United States)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  10. Transient analysis of the output short-circuit fault of high power and high voltage DC power supply

    International Nuclear Information System (INIS)

    Yang Zhigang; Zhang Jian; Huang Yiyun; Hao Xu; Sun Haozhang; Guo Fei

    2014-01-01

    The transient conditions of output short-circuit fault of high voltage DC power supply was introduced, and the energy of power supply injecting into klystron during the protection process of three-electrode gas switch were analyzed and calculated in detail when klystron load happening electrode arc faults. The results of calculation and simulation are consistent with the results of the experiment. When the output short-circuit fault of high voltage power supply occurs, switch can be shut off in the microsecond, and the short circuit current can be controlled in 200 A. It has verified the rapidity and reliability of the three-electrode gas switch protection, and it has engineering application value. (authors)

  11. Methodological concerns for determining power output in the jump squat.

    Science.gov (United States)

    Cormie, Prue; Deane, Russell; McBride, Jeffrey M

    2007-05-01

    The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p squat varies according to the measurement technique utilized. The 1-LPT methodology is not a valid means of determining power output in the jump squat. Furthermore, the 1-LPT + FP method may not accurately represent power output in free weight movements that involve a significant amount of horizontal motion.

  12. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Olama, Mohammed M. [ORNL; Dong, Jin [ORNL; Djouadi, Seddik M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-09-01

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed to estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.

  13. Robust Power Allocation for Multi-Carrier Amplify-and-Forward Relaying Systems

    KAUST Repository

    Rao, Anlei

    2012-09-08

    It has been shown that adaptive power allocation can provide a substantial performance gain in wireless communication systems when perfect channel state information (CSI) is available at the transmitter. However when only imperfect CSI is available, the performance may degrade significantly, and as such robust power allocation schemes have been developed to minimize the effects of this degradation. In this paper, we investigate power allocation strategies for multicarrier systems, in which each subcarrier employs single amplify-and-forward (AF) relaying scheme. Optimal power allocation schemes are proposed by maximizing the approximated channel capacity under aggregate power constraint (APC) and separate power constraint (SPC). By comparison with the uniform power allocation scheme and the best channel power allocation scheme, we confirm that both the APC and SPC schemes achieve a performance gain over benchmark schemes. In addition, the impact of channel uncertainty is also considered in this paper by modeling the uncertainty regions as bounded sets, and results show that the uncertainty can degrade the worst-case performance significantly.

  14. Somatotype variables related to strength and power output in male basketball players.

    Science.gov (United States)

    Buśko, Krzysztof; Pastuszak, Anna; Lipińska, Monika; Lipińska, Marta; Gryko, Karol

    2017-01-01

    The purpose of this study was to investigate the relationship between somatotype, muscular strength, power output measured in maximal cycle ergometer exercise bouts, and maximal power output and height of rise of the body mass centre (jump height) measured in akimbo counter movement jump (ACMJ), counter movement jump (CMJ) and spike jump (SPJ), in male basketball players. Thirteen male basketball players (second division, age 19.4 ± 0.8 years, body height 192.9 ± 5.6 cm, body mass 88.8 ± 8.6 kg, training experience 9.3 ± 0.8 years) participated in the study. Somatotype was determined using the Heath-Carter method. Maximal joint torques were measured under static conditions. Power output was measured in 2 maximal cycle ergometer exercise bouts, 10 seconds each, with increasing external loads equal to 7.5 and 10.0% of the body weight (BW). All jump trials (ACMJ, CMJ and SPJ) were performed on a force plate. The mean somatotype of basketball players amounted to: 2.8-4.2-3.2. The sum of the joint torques for left and right lower extremities (0.613), trunk (0.631) and all six measured muscle groups (0.647) were significantly correlated (p jump during ACMJ, CMJ and SPJ trials. The power output measured in maximal cycle ergometer exercise bouts with increasing external loads was significantly correlated (p basketball players' anthropometric characteristics can influence their level of performance but it is not a decisive factor.

  15. Modulating wind power plant output using different frequency modulation components for damping grid oscillations

    DEFF Research Database (Denmark)

    2017-01-01

    A method, controller, wind power plant, and computer program product are disclosed for operating a wind power plant comprising a plurality of wind turbines, the wind power plant producing a plant power output. The method comprises receiving a modulation request signal indicating a requested...... modulation of the plant power output, the requested modulation specifying a modulation frequency. The method further comprises generating a respective power reference signal for each of at least two wind turbines of the plurality of wind turbines selected to fulfill the requested modulation, Each generated...... power reference signal includes a respective modulation component corresponding to a portion of the requested modulation and having a frequency different than the modulation frequency....

  16. Performance of RF power and phase control on JT-60 LHRF heating system

    International Nuclear Information System (INIS)

    Fujii, T.; Ikeda, Y.; Imai, T.; Honda, M.; Kiyono, K.; Maebara, S.; Saigusa, M.; Sakamoto, K.; Sawahata, M.; Seki, M.

    1987-01-01

    The performance of RF power and phase control on the JT-60 LHRFD heating system are presented. The JT-60 LHRF heating system has three units of huge RF source with a total output of 24 MW, each unit consisting of eight amplifier chains. A high power klystron generating 1 MW for 10 s at 2 GHz is used in each chain. Automatic gain control is employed to regulate the output power not only against gain fluctuations in the chain but also against the unstable plasma load without any output circulator for the klystron

  17. An ultra-low-power pulse oximeter implemented with an energy-efficient transimpedance amplifier.

    Science.gov (United States)

    Tavakoli, M; Turicchia, L; Sarpeshkar, R

    2010-02-01

    Pulse oximeters are ubiquitous in modern medicine to noninvasively measure the percentage of oxygenated hemoglobin in a patient's blood by comparing the transmission characteristics of red and infrared light-emitting diode light through the patient's finger with a photoreceptor. We present an analog single-chip pulse oximeter with 4.8-mW total power dissipation, which is an order of magnitude below our measurements on commercial implementations. The majority of this power reduction is due to the use of a novel logarithmic transimpedance amplifier with inherent contrast sensitivity, distributed amplification, unilateralization, and automatic loop gain control. The transimpedance amplifier, together with a photodiode current source, form a high-performance photoreceptor with characteristics similar to those found in nature, which allows LED power to be reduced. Therefore, our oximeter is well suited for portable medical applications, such as continuous home-care monitoring for elderly or chronic patients, emergency patient transport, remote soldier monitoring, and wireless medical sensing. Furthermore, our design obviates the need for an A-to-D and digital signal processor and leads to a small single-chip solution. We outline how extensions of our work could lead to submilliwatt oximeters.

  18. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  19. Design of a high power cross field amplifier at X band with an internally coupled waveguide

    International Nuclear Information System (INIS)

    Eppley, K.; Ko, Kwok.

    1991-01-01

    Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. We have developed a simulation model for CFAs using the PIC code CONDOR. Our simulations indicate that there are limits to the maximum RF field strength that a CEA can sustain. When the fields become too high, efficiency becomes very poor, and the currents drawn may become so large that secondary emission cannot be maintained. It is therefore desirable to reduce the circuit impedance of a very high power tube. One method for doing this, proposed by Feinstein, involves periodically coupling a standard CFA circuit to an internal waveguide. Most of the power flows in the waveguide, so the overall impedance is much reduced. By adjusting the guide dimensions one can vary the impedance. Thus one can retain high impedance at the low power end but low impedance at the high power end. In principle one can maintain constant RF voltage throughout the tube. CONDOR simulations have identified a good operating point at X band, with power generation of over 5 MW per cm and total efficiency of over 60 percent. ARGUS simulations have modelled the cold test properties of the coupled structure. The nominal design specifications are 300 MW output, 17 db gain, frequency 11.4 GHz, dc voltage 142 kV, magnetic field 5 kG, anode cathode gap 3.6 mm, total interaction length about 60 cm. We will discuss the results of code simulations and report on the status of the experimental effort

  20. The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training

    Science.gov (United States)

    Moya-Ramón, M.; Hernández-Davó, J. L.; Fernandez-Fernandez, J.; Sabido, R.

    2017-01-01

    Background It has been suggested that strength training effects (i.e. neural or structural) vary, depending on the total repetitions performed and velocity loss in each training set. Purpose The aim of this study is to compare the effects of two training programmes (i.e. one with loads that maximise power output and individualised repetitions, and the other following traditional power training). Methods Twenty-five males were divided into three groups (optimum power [OP = 10], traditional training [TT = 9] and control group [CG = 6]). The training load used for OP was individualised using loads that maximised power output (41.7% ± 5.8 of one repetition maximum [1RM]) and repetitions at maximum power (4 to 9 repetitions, or ‘reps’). Volume (sets x repetitions) was the same for both experimental groups, while intensity for TT was that needed to perform only 50% of the maximum number of possible repetitions (i.e. 61.1%–66.6% of 1RM). The training programme ran over 11 weeks (2 sessions per week; 4–5 sets per session; 3-minute rests between sets), with pre-, intermediate and post-tests which included: anthropometry, 1RM, peak power output (PPO) with 30%, 40% and 50% of 1RM in the bench press throw, and salivary testosterone (ST) and cortisol (SC) concentrations. Rate of perceived exertion (RPE) and power output were recorded in all sessions. Results Following the intermediate test, PPO was increased in the OP group for each load (10.9%–13.2%). Following the post-test, both experimental groups had increased 1RM (11.8%–13.8%) and PPO for each load (14.1%–19.6%). Significant decreases in PPO were found for the TT group during all sets (4.9%–15.4%), along with significantly higher RPE (37%). Conclusion OP appears to be a more efficient method of training, with less neuromuscular fatigue and lower RPE. PMID:29053725

  1. A combined compensation method for the output voltage of an insulated core transformer power supply

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.

  2. Reset charge sensitive amplifier for NaI(Tl) gamma-ray spectrometer

    International Nuclear Information System (INIS)

    Zeng, Guoqiang; Tan, Chengjun; Li, Qiang; Ge, Liangquan; Liu, Xiyao; Luo, Qun

    2015-01-01

    The time constant of the output signal of the front-end readout circuit of a traditional gamma-ray spectrometer with a NaI(Tl)+PMT structure is affected by temperature, measurement environment and the signal transmission cable, so it is difficult to get a good resolution spectrum, especially at higher counting rates. In this paper, a reset charge sensitive amplifier (RCSA) is designed for the gamma-ray spectrometer with a NaI(Tl)+PMT structure. The designed RCSA outputs a step signal, thus enabling the acquisition of double-exponential signals with a stable time constant by using the next stage of a CR differentiating circuit. The designed RCSA is mainly composed of a basic amplifying circuit, a reset circuit and a dark current compensation circuit. It provides the output step signal through the integration of the PMT output charge signal. When the amplitude of the step signal exceeds a preset voltage threshold, it triggers the reset circuit to generate a reset pulse (about 5 µs pulse width) to reset the output signal. Experimental results demonstrated that the designed RCSA achieves a charge sensitivity of 4.26×10 10 V/C, with a zero capacitance noise of 51.09 fC and a noise slope of 1.98 fC/pF. Supported by the digital shaping algorithm of the digital multi-channel analyzer (DMCA), it can maintain good energy resolution with high counting rates up to 150 kcps and with a temperature range from −19 °C to 50 °C. - Highlights: • A new reset type charge sensitive amplifier for gamma-ray spectrometer based on a photomultiplier tube is proposed. • Reset circuit formed by constant current source output a fixed width pulse to reset charge sensitive amplifier. • Photomultiplier tube dark current compensation circuit could increase the pulse through rate by decreasing reset frequency. • This amplifier outputs a step function signal that could match next stage circuit easily

  3. Energy-Efficient Power Allocation for Fixed-Gain Amplify-and-Forward Relay Networks with Partial Channel State Information

    KAUST Repository

    Zafar, Ammar; Alouini, Mohamed-Slim; Chen, Yunfei; Radaydeh, Redha M.

    2012-01-01

    In this letter, energy-efficient transmission and power allocation for fixed-gain amplify-and-forward relay networks with partial channel state information (CSI) are studied. In the energy-efficiency problem, the total power consumed is minimized

  4. Efficient power allocation for fixed-gain amplify-and-forward relaying in rayleigh fading

    KAUST Repository

    Zafar, Ammar

    2013-06-01

    In this paper, we study power allocation strategies for a fixed-gain amplify-and-forward relay network employing multiple relays. We consider two optimization problems for the relay network: 1) optimal power allocation to maximize the end-to-end signal-to-noise ratio (SNR) and 2) minimizing the total consumed power while maintaining the end-to-end SNR over a threshold value. We assume that the relays have knowledge of only the channel statistics of all the links. We show that the SNR maximization problem is concave and the power minimization problem is convex. Hence, we solve the problems through convex programming. Numerical results show the benefit of allocating power optimally rather than uniformly. © 2013 IEEE.

  5. Development of laser material processing and laser metrology techniques. Development of the power supply of high power CO{sub 2} laser for material processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon Ju; Lee, Yong Hak; Jang, Do Hyun; Kim, Su Hun [Cheju National University, Cheju (Korea, Republic of)

    1994-08-01

    The 2 Kw solid state RF power supply has been designed and fabricated The power supply was composed of oscillator, driver amplifier and power amplifier. Each part of the power supply was developed and tested. The impedance matching circuit to apply this RF power supply for laser discharge excitation was fabricated also. The RF discharge experiment for the excitation of CO{sub 2} laser was performed. The radiofrequency power supply which has the output power of 2 Kw has been developed. The subsystems of the power supply have been fabricated and their performances were reliable. The RF discharge experiment to generate the laser plasma has been performed and input power density of 6 W/cm{sub 3} has been achieved. (author). 5 refs., 28 figs., 8 tabs.

  6. A high-gain and high-efficiency X-band triaxial klystron amplifier with two-stage cascaded bunching cavities

    Science.gov (United States)

    Zhang, Wei; Ju, Jinchuan; Zhang, Jun; Zhong, Huihuang

    2017-12-01

    To achieve GW-level amplification output radiation at the X-band, a relativistic triaxial klystron amplifier with two-stage cascaded double-gap bunching cavities is investigated. The input cavity is optimized to obtain a high absorption rate of the external injection microwave. The cascaded bunching cavities are optimized to achieve a high depth of the fundamental harmonic current. A double-gap standing wave extractor is designed to improve the beam wave conversion efficiency. Two reflectors with high reflection coefficients both to the asymmetric mode and the TEM mode are employed to suppress the asymmetric mode competition and TEM mode microwave leakage. Particle-in-cell simulation results show that a high power microwave with a power of 2.53 GW and a frequency of 8.4 GHz is generated with a 690 kV, 9.3 kA electron beam excitation and a 25 kW seed microwave injection. Particularly, the achieved power conversion efficiency is about 40%, and the gain is as high as 50 dB. Meanwhile, there is insignificant self-excitation of the parasitic mode in the proposed structure by adopting the reflectors. The relative phase difference between the injected signals and the output microwaves keeps locked after the amplifier becomes saturated.

  7. Pulse propagation in a two-pass optical amplifier with arbitrary laser beams overlap

    Directory of Open Access Journals (Sweden)

    AH Farahbod

    2011-09-01

    Full Text Available An analytical model for two-pass optical amplifier with arbitrary beams overlap has been developed which generalized the classical theory of Frantz-Nodvik for single pass amplifier. The effect of counterpropagating beams on gain and output energy fluence included in the model. Moreover, the appropriate limiting relations for two special cases of weak input signal and saturation state of the amplifier gain have been derived. The results indicate that for complete beams overlap, the gain and output energy have the least values. The model predictions are consistent with experimental observations and exact analytical model for two-pass amplifier when beam propagation paths are coincided.

  8. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  9. Wind Farm Active Power Dispatch for Output Power Maximizing Based on a Wind Turbine Control Strategy for Load Minimizing

    DEFF Research Database (Denmark)

    Zhang, Baohua; Hu, Weihao; Hou, Peng

    2015-01-01

    Inclusion of the wake effect in the wind farm control design (WF) can increase the total captured power by wind turbines (WTs), which is usually implemented by derating upwind WTs. However, derating the WT without a proper control strategy will increase the structural loads, caused by operation...... in stall mode. Therefore, the WT control strategy for derating operation should be considered in the attempt at maximizing the total captured power while reducing structural loads. Moreover, electrical power loss on the transmission system inside a WF is also not negligible for maximizing the total output...... power of the WF. In this paper, an optimal active power dispatch strategy based on a WT derating strategy and considering the transmission loss is proposed for maximizing the total output power. The active power reference of each WT is chosen as the optimization variable. A partial swarm optimizing...

  10. A parallel input composite transimpedance amplifier

    Science.gov (United States)

    Kim, D. J.; Kim, C.

    2018-01-01

    A new approach to high performance current to voltage preamplifier design is presented. The design using multiple operational amplifiers (op-amps) has a parasitic capacitance compensation network and a composite amplifier topology for fast, precision, and low noise performance. The input stage consisting of a parallel linked JFET op-amps and a high-speed bipolar junction transistor (BJT) gain stage driving the output in the composite amplifier topology, cooperating with the capacitance compensation feedback network, ensures wide bandwidth stability in the presence of input capacitance above 40 nF. The design is ideal for any two-probe measurement, including high impedance transport and scanning tunneling microscopy measurements.

  11. Development of high power CW and pulsed RF test facility based on 1 MW, 352.2 MHz klystron amplifier

    International Nuclear Information System (INIS)

    Badapanda, M.K.; Tripathi, Akhilesh; Upadhyay, Rinki; Rao, J.N.; Tiwari, Ashish; Jain, Akhilesh; Lad, M.R.; Hannurkar, P.R.

    2013-01-01

    A high power 1 MW, 352.2 MHz RF Test facility having CW and Pulse capability is being developed at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore for performance evaluation of various RF components, accelerating structures and related subsystems. Thales make 1 MW, 352.2 MHz klystron amplifier (TH 2089) will be employed in this high power test facility, which is thoroughly tested for its performance parameters at rated operating conditions. Auxiliary power supplies like filament, electromagnet, ion pump and mod anode power supply as well as 200 W solid state driver amplifier necessary for this high power test facility have been developed. A high voltage floating platform is created for floating filament and mod anode power supplies. Interconnection of various power supplies and other subsystems of this test facility are being carried out. A high voltage 100 kV, 25 Amp DC crowbar less power supply and low conductivity water (LCW) plant required for this klystron amplifier are in advanced stage of development. NI make cRIO 9081 real time (RT) controller based control and interlock system has been developed to realize proper sequence of operation of various power supplies and to monitor the status of crucial parameters in this test facility. This RF test facility will provide confidence for development of RF System of future accelerators like SNS and ADSS. (author)

  12. Linearised model for PV panel power output variation with changes ...

    Indian Academy of Sciences (India)

    PALLAVI BHARADWAJ

    2017-10-26

    Oct 26, 2017 ... change in system input, namely: irradiance and temperature, with its output, namely: array current and power. ... of a solar cell as shown in figure 1, with appropriate scaling according to ... measurement-based methods [8–13].

  13. Operational amplifiers theory and design

    CERN Document Server

    Huijsing, Johan

    2017-01-01

    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  14. Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Directory of Open Access Journals (Sweden)

    R. Kopru

    2013-09-01

    Full Text Available In this work, we propose a novel approach called as “Normalized Gain Function (NGF method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique based design example supported by simulations in MWO (MicroWave Office from AWR Corporation is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor.

  15. Manhattan equation for the operational amplifier

    OpenAIRE

    Mishonov, Todor M.; Danchev, Victor I.; Petkov, Emil G.; Gourev, Vassil N.; Dimitrova, Iglika M.; Varonov, Albert M.

    2018-01-01

    A differential equation relating the voltage at the output of an operational amplifier $U_0$ and the difference between the input voltages ($U_{+}$ and $U_{-}$) has been derived. The crossover frequency $f_0$ is a parameter in this operational amplifier master equation. The formulas derived as a consequence of this equation find applications in thousands of specifications for electronic devices but as far as we know, the equation has never been published. Actually, the master equation of oper...

  16. First operation of a wiggler-focused, sheet beam free electron laser amplifier

    International Nuclear Information System (INIS)

    Destler, W.W.; Cheng, S.; Zhang, Z.X.; Antonsen, T.M. Jr.; Granatstein, V.L.; Levush, B.; Rodgers, J.

    1994-01-01

    A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100--200 GHz with an output power of 1--10 MW CW. Electron beam energy would be in the range 500--1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mmx2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500--570 keV, 4--18 A sheet beam is propagated through a 56 period uniform wiggler (λ w =9.6 mm) with a peak wiggler amplitude of 2--5 kG. Linear amplification of a 5--10 W, 94 GHz signal injected in the TE 01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler

  17. A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory

    Science.gov (United States)

    Guo, Jiarong

    2017-04-01

    A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).

  18. Millimeter wave free electron laser amplifiers: Experiments and designs

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Zhang, Z.X.; Antonsen, T.M. Jr.; Bensen, D.M.; Destler, W.W.; Granatstein, V.L.; Lantham, P.E.; Levush, B.; Rodgers, J.

    1991-01-01

    Free electron laser amplifies are investigated as sources of high- average-power (1 MW) millimeter to submillimeter wave radiation (200 GHz - 600 GHz) for application to electron cyclotron resonance heating of magnetically confined fusion plasmas. As a stepping-stone to higher frequencies and cw operation a pulsed amplifier (τ pulse ≅ 80 ns) at 98 GHz is being developed. Status is reported on this experiment which investigates linear gain amplification with use of sheet electron beam (transverse cross section = 0.1 cm x 2.0 cm, V beam = 440 keV, I beam ≅ 10 A) and short-period wiggler (ell w = 0.96 cm) and with expected output of 140 W. Predictions of gain and efficiency from a 1-D universal formulation are presented. Beam propagation results, with wiggler focusing as a means of sheet beam confinement in both transverse dimensions, through the 54 cm (56 period) pulsed electromagnet wiggler are discussed. Peak wiggler fields of 5.1 kG on-axis have been achieved

  19. Efficiency Enhancement of an Envelope Tracking Power Amplifier Combining Supply Shaping and Dynamic Biasing

    DEFF Research Database (Denmark)

    Tafuri, Felice Francesco; Sira, Daniel; Jensen, Ole Kiel

    2013-01-01

    This paper presents a new method to improve the performance of envelope tracking (ET) power amplifiers (PAs). The method consists of combining the supply modulation that characterizes the envelope tracking architecture with supply shaping and dynamic biasing. The inclusion of dynamic biasing allo...

  20. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...