WorldWideScience

Sample records for amplified spontaneous emission

  1. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik;

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact on ac...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  2. Temporal and transverse coherence of self-amplified spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J.

    1997-06-01

    The authors review the coherence properties of the self-amplified spontaneous emission (SASE). Temporally, SASE is similar to the spontaneous undulator radiation except that the spectral bandwidth is about ten times narrower compared with typical undulator radiation. The situation is quite different in the transverse dimension, where SASE is fully coherent.

  3. Temporal and transverse coherence of self-amplified spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. [Lawrence Berkeley National Laboratory, University of California, Berkeley, California94720 (United States)

    1997-06-01

    We review the coherence properties of the self-amplified spontaneous emission (SASE). Temporally, SASE is similar to the spontaneous undulator radiation except that the spectral bandwidth is about ten times narrower compared with typical undulator radiation. The situation is quite different in the transverse dimension, where SASE is fully coherent. {copyright} {ital 1997 American Institute of Physics.}

  4. Temporal and transverse coherence of self-amplified spontaneous emission

    International Nuclear Information System (INIS)

    The authors review the coherence properties of the self-amplified spontaneous emission (SASE). Temporally, SASE is similar to the spontaneous undulator radiation except that the spectral bandwidth is about ten times narrower compared with typical undulator radiation. The situation is quite different in the transverse dimension, where SASE is fully coherent

  5. Amplified spontaneous emission and its restraint in a terawatt Ti:sapphire amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Amplified spontaneous emission (ASE) and its restraint in a femtosecond Ti: sapphire chirped_pulse amplifier were investigated. The noises arising from ASE were effectively filtered out in the spatial, temporal and spectral domain. Pulses as short as 38 fs were amplified to peak power of 1.4 TW. The power ratio between the amplified femtosecond pulse and the ASE was higher than 106:1.

  6. Self-amplified spontaneous emission for short wavelength coherent radiation

    International Nuclear Information System (INIS)

    We review the recent progress in our understanding of the self-amplified spontaneous emission (SASE), emphasizing the application to short wavelength generation. Simple formulae are given for the start-up, exponential gain and the saturation of SASE. Accelerator technologies producing high brightness electron beams required for short wavelength SASE are discussed. An example utilizing electron beams from a photocathode-linac system to produce 4nm SASE in the multigigawatt range is presented

  7. 2-.mu.m fiber amplified spontaneous emission (ASE) source

    Science.gov (United States)

    Jiang, Shibin (Inventor); Wu, Jianfeng (Inventor); Geng, Jihong (Inventor)

    2007-01-01

    A 2-.mu.m fiber Amplified Spontaneous Emission (ASE) source provides a wide emission bandwidth and improved spectral stability/purity for a given output power. The fiber ASE source is formed from a heavy metal oxide multicomponent glass selected from germanate, tellurite and bismuth oxides and doped with high concentrations, 0.5-15 wt. %, thulium oxides (Tm.sub.2O.sub.3) or 0.1-5 wt% holmium oxides (Ho.sub.2O.sub.3) or mixtures thereof. The high concentration of thulium dopants provide highly efficient pump absorption and high quantum efficiency. Co-doping of Tm and Ho can broaden the ASE spectrum.

  8. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier*

    Institute of Scientific and Technical Information of China (English)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influenced by the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled.

  9. Optical steganography based on amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Tian, Yue; Fok, Mable P; Shastri, Bhavin J; Kanoff, Daniel R; Prucnal, Paul R

    2013-01-28

    We propose and experimentally demonstrate an optical steganography method in which a data signal is transmitted using amplified spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier for the private signal has an identical frequency spectrum to the existing noise generated by the Erbium doped fiber amplifiers (EDFAs) in the transmission system. The system also carries a conventional data channel that is not private. The so-called "stealth" or private channel is well-hidden within the noise of the system. Phase modulation is used for both the stealth channel and the public channel. Using homodyne detection, the short coherence length of the ASE ensures that the stealth signal can only be recovered if the receiver closely matches the delay-length difference, which is deliberately changed in a dynamic fashion that is only known to the transmitter and its intended receiver.

  10. Amplified Spontaneous Emission of Organic Pyridinium Dye doped Polymeric Waveguide

    Institute of Scientific and Technical Information of China (English)

    XI Zun; YE Li-Hua; WANG Qiong; XU Deng; LU Chang-Gui; HU Guo-Hua; CUI Yi-Ping

    2009-01-01

    An organic dye salt trans-4-[p-(N-hydroxyethy1-N-methylamino)styryl]-N-methylpyridinium iodide (ASPI) is doped with an electron transport organic molecule tris(8-hydroxyquinoline) aluminium (Alq3) in a host matrix of poly(methylmethacrylate) (PMMA), and the amplified spontaneous emission (ASE) is studied. By efficient Forster energy transfer from Alq3 to ASPI, it is demonstrated that the ASE threshold of ASPI:Alq3:PMMA waveguide (about 11 μJ/pulse) is much lower than that of ASPI:PMMA system (about 38μJ/pulse). Meanwhile, the peak position of ASE can be controlled by the effect of film thickness on waveguide modes. We show that the ASE peak position can be tuned over 37nm. These characteristics indicate the ASPI:AIq3 system as a promising gain medium for optical amplifiers and organic semiconductor lasers.

  11. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    Directory of Open Access Journals (Sweden)

    Eva M. Calzado

    2010-06-01

    Full Text Available This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N´-bis(3-methylphenyl-N,N´-diphenylbenzidine (TPD, several perilenediimide derivatives (PDIs, as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  12. Amplified spontaneous emission properties of semiconducting organic materials.

    Science.gov (United States)

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  13. A coupling model for amplified spontaneous emission in laser resonators

    International Nuclear Information System (INIS)

    The competition between amplified spontaneous emission (ASE) and main laser in solid-state laser resonators is investigated both theoretically and experimentally. A coupled model using the spatial volume integral instead of the Monte Carlo type raytrace technique is proposed to depict ASE in the laser resonators. This model is able to evaluate all possible reflections at both the polishing surface and the diffusive side, to calculate ASE for an inhomogeneous gain distribution, and to include the spectral correction. An experiment is carefully designed to verify the theoretical model and to investigate the distinct physical properties caused by the coupling between ASE and the laser oscillations. The experimental data exhibit an excellent agreement with the theoretical predictions. According to that model, we confirm that ASE in thin-disk lasers can be characterized approximately by the product of the threshold gain of the resonator and the diameter of the disks, as laser modes are highly overlapped with the pumping beam. Theoretical evaluation shows that the scattering characteristic of the disk side impacts on ASE significantly. Furthermore, we point out that ASE decreases output laser power by affecting threshold pumping power, while slope efficiency is not changed by ASE. This observation provides us with a simple way to estimate the decrease of the optical efficiency by ASE. (paper)

  14. Numerical Modelling of Spontaneous Emission in Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Andersen, Ulrik Lund; Rottwitt, Karsten

    2013-01-01

    . However, it is well accepted that one contribution to the noise performance originates from vacuum fluctuations. In this work we show a novel approach to predict the spontaneous radiation from a parametric amplifier. In the approach the propagating fields are treated as a sum of a classical mean field......Fiber optical parametric processes offer a wide range of applications including phase sensitive as well as phase insensitive amplification, wavelength conversion and signal regeneration. One of the difficult challenges is any of these applications is to predict their associated noise performance...

  15. Amplified spontaneous emission spectrum at the output of a diode amplifier saturated by an input monochromatic wave

    Science.gov (United States)

    Bogatov, A. P.; Drakin, A. E.; D'yachkov, N. V.; Gushchik, T. I.

    2016-08-01

    Expressions for the amplitudes of amplified spontaneous emission waves in a diode amplifier near the frequency ω0 of a 'strong' input monochromatic wave have been derived in terms of a random function of a stationary Gaussian process. We have found expressions for the spectral density of the amplitudes and shown that, on the red side of the spectrum with respect to frequency ω0, spontaneous emission waves obtain additional nonlinear gain, induced by the strong wave, whereas on the blue side of the spectrum an additional loss is induced. Such behaviour of the amplitudes of amplified waves agrees with previous results.

  16. Broadband amplified spontaneous emission from Er3+-doped single-mode tellurite fibre

    Institute of Scientific and Technical Information of China (English)

    Chen Dong-Dan; Zhang Qin-Yuan; Liu Yue-Hui; Xu Shan-Hui; Yang Zhong-Min; Deng Zai-De; Jiang Zhong-Hong

    2006-01-01

    This paper reports on the fabrication and characterization of a newly erbium-doped single-mode tellurite glass-fibre applicable for 1.5-μm optical amplifiers. A very broad erbium amplified spontaneous emission in the range 1450-1650 nm from erbium-doped single-mode tclluritc glass-fibre is obtained upon excitation of a 980-nm laser diode. The effects of the length of glass-fibre and the pumping power of laser diode on the amplified spontaneous emission are discussed.The result indicates that the tellurite glass-fibre is a promising candidate for designing fibre-optic amplifiers and lasers.

  17. Thermal radiation and amplified spontaneous emission from a random medium

    OpenAIRE

    Beenakker, C. W. J.

    1998-01-01

    We compute the statistics of thermal emission from systems in which the radiation is scattered chaotically, by relating the photocount distribution to the scattering matrix - whose statistical properties are known from random-matrix theory. We find that the super-Poissonian noise is that of a black body with a reduced number of degrees of freedom. The general theory is applied to a disordered slab and to a chaotic cavity, and is extended to include amplifying as well as absorbing systems. We ...

  18. Amplified spontaneous emission pulses for high-power supercontinuum generation

    Directory of Open Access Journals (Sweden)

    Huan Huan Liu

    2016-03-01

    Full Text Available The authors demonstrate an incoherent light source based on a reflective semiconductor optical amplifier as pump for high-power supercontinuum generation for the first time. The obtained power level is about 160 mW and 20 dB spectral bandwidth is around 170 nm.

  19. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  20. Amplified spontaneous emission in an organic semiconductor multilayer waveguide structure including a highly conductive transparent electrode

    Science.gov (United States)

    Reufer, M.; Feldmann, J.; Rudati, P.; Ruhl, A.; Müller, D.; Meerholz, K.; Karnutsch, C.; Gerken, M.; Lemmer, U.

    2005-05-01

    We demonstrate that the amplified spontaneous emission (ASE) threshold in multilayer waveguide structures suitable for the use in future organic injection lasers can be drastically reduced by inserting a crosslinked hole transport layer (HTL) between a highly conductive indium tin oxide (ITO) electrode and the polymer emission layer. While no ASE is observed when the active layer material is directly spincoated onto the ITO electrode, it can be completely restored upon insertion of a 300-nm-thick HTL. This observation is attributed to reduced attenuation of the waveguided mode enabling the ASE process and is theoretically confirmed by calculations of the mode intensity fraction propagating in the absorptive ITO electrode.

  1. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    Science.gov (United States)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  2. Linac-based, intense, coherent x-ray source using self-amplified spontaneous emission

    International Nuclear Information System (INIS)

    In this article, the author discusses the principles of self-amplified spontaneous emission (SASE), how the SASE could be the basis of next generation light sources exceeding the current performance -- by many orders of magnitude in spectral brightness, and by a factor of a hundred in time resolution. He also discusses how the SLAC linac, due to its high energy and its precision control, is ideally suited for the x-ray SASE. Therefore, using the SLAC linac for generation of x-ray SASE for the frontier of the photon sciences will ensure that the SLAC linac remain scientifically vigorous for a long time

  3. Amplified spontaneous emission from the exciplex state of a conjugated polymer "PFO" in oleic acid

    Science.gov (United States)

    Idriss, Hajo; Taha, Kamal K.; Aldaghri, O.; Alhathlool, R.; AlSalhi, M. S.; Ibnaouf, K. H.

    2016-09-01

    The amplified spontaneous emission (ASE) characteristics of a conjugated polymer poly (9, 9-dioctylfluorenyl-2, 7-diyl) (PFO) in oleic acid have been studied under different concentrations and temperatures. Here, the ASE spectra of PFO in oleic acid have been obtained using a transverse cavity configuration where the conjugated PFO was pumped by laser pulses from the third harmonic of Nd: YAG laser (355 nm). The PFO in oleic acid produces ASE from an exciplex state - a new molecular species. The obtained results were compared with the PFO in benzene. Such ASE spectra from the exciplex state have not been observed for the PFO in benzene.

  4. Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.

    Science.gov (United States)

    Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R

    2014-01-13

    A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase.

  5. Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal

    Science.gov (United States)

    Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan

    2016-07-01

    Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm‑2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm‑2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.

  6. Flexible all-polymer waveguide for low threshold amplified spontaneous emission

    Science.gov (United States)

    Smirnov, José R. Castro; Zhang, Qi; Wannemacher, Reinhold; Wu, Longfei; Casado, Santiago; Xia, Ruidong; Rodriguez, Isabel; Cabanillas-González, Juan

    2016-01-01

    The fabrication of all polymer optical waveguides, based on a highly fluorescent conjugated polymer (CP) poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and a mechanically flexible and biodegradable polymer, cellulose acetate (CA), is reported. The replication by hot embossing of patterned surfaces in CA substrates, onto which high quality F8BT films can be easily processed by spin coating, is exploited to produce an entirely plastic device that exhibits low optical loss and low threshold for amplified spontaneous emission (ASE). As a result, highly transparent and flexible waveguides are obtained, with excellent optical properties that remain unaltered after bending, allowing them to be adapted in various flexible photonic devices. PMID:27686745

  7. Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides.

    Science.gov (United States)

    Calzado, Eva M; Ramírez, Manuel G; Boj, Pedro G; Díaz García, María A

    2012-06-01

    The effect of varying film thickness (h) on the amplified spontaneous emission (ASE) properties of 0.5  wt.% perylenediimide-doped polystyrene waveguides is reported. The threshold dependence on h, not previously investigated in detail, is analyzed in terms of the film absorption and photoluminescence, the confinement of the fundamental waveguide mode (TE0), and the presence of high-order modes. For h<400  nm and down to 150 nm, the ASE wavelength blueshifts, while the linewidth and threshold increase. The detrimental ASE operation in very thin films is due to the low absorption as well as to the poor confinement of the TE0 mode.

  8. Amplified spontaneous emission in polymer films doped with a perylenediimide derivative.

    Science.gov (United States)

    Calzado, Eva M; Villalvilla, José M; Boj, Pedro G; Quintana, José A; Gómez, Rafael; Segura, José L; Díaz García, María A

    2007-06-20

    The presence of amplified spontaneous emission (ASE) by optical pump in polystyrene films doped with N,N'-di(10-nonadecyl)perylene-3,4:9,10-tetracarboxylic diimide (PDI-N) in a range of PDI-N concentrations between 0.25 and 5 wt. % is reported. Gain coefficients up to 10 cm(-1), at a pump intensity of 74 kW/cm2, were obtained. The lowest thresholds (approximately 15 kW/cm2) and largest photostabilities measured at 50% (approximately 50 min, i.e., 30,000 pump pulses) were obtained for concentrations up to 1 wt. %. The observation of an increase in the ASE threshold and a decrease in the photostability for larger concentrations is attributed to the presence of aggregated species.

  9. Effect of different metal-backed waveguides on amplified spontaneous emission

    Institute of Scientific and Technical Information of China (English)

    Zhang Bo; Hou Yan-Bing; Lou Zhi-Dong; Teng Feng; Liu Xiao-Jun; Hu Bing; Meng Ling-Chuan; Wu Wen-Bin

    2012-01-01

    We investigate the effect of a metallic electrode on the ability for poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene](MEH-PPV) film to undergo amplified spontaneous emission (ASE).The threshold of the device with Ag cladding is about 10 times greater than that of a metal-free device,but metal such as A1 completely shuts off ASE.The ASE recurs when a thin spacer layer,such as a few nanometers of SiO2,is introduced between the MEH-PPV film and the Al cladding.Compared with the Cu or Al electrode,the Ag cladding is most suited to serve as an electrode with its low optical loss due to its high work-function and reflectivity.

  10. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    CERN Document Server

    Arnold, N D; Banks, G; Bechtold, R; Beczek, K; Benson, C; Berg, S; Berg, W; Biedron, S G; Biggs, J A; Boerste, K; Borland, M; Bosek, M; Brzowski, W R; Budz, J; Carwardine, J A; Castro, P; Chae, Y C; Christensen, S; Clark, C; Conde, M; Crosbie, E A; Decker, G A; Dejus, Roger J; Deleon, H; Den Hartog, P K; Deriy, B N; Dohan, D; Dombrowski, P; Donkers, D; Doose, C L; Dortwegt, R J; Edwards, G A; Eidelman, Y; Erdmann, M J; Error, J J; Ferry, R; Flood, R; Forrestal, J; Freund, H; Friedsam, H; Gagliano, J; Gai, W; Galayda, J N; Gerig, R; Gilmore, R L; Gluskin, E; Goeppner, G A; Goetzen, J; Gold, C; Grelick, A E; Hahne, M W; Hanuska, S; Harkay, K C; Harris, G; Hillman, A L; Hogrefe, R; Hoyt, J; Huang, Z; Jagger, J M; Jansma, W G; Jaski, M; Jones, S J; Keane, R T; Kelly, A L; Keyser, C; Kim, K J; Kim, S H; Kirshenbaum, M; Klick, J H; Knoerzer, K; Knott, M; Koldenhoven, R J; Labuda, S; Laird, R; Lang, J; Lenkszus, F R; Lessner, E S; Lewellen, J W; Li, Y; Lill, R M; Lumpkin, Alex H; Makarov, O A; Markovich, G M; McDowell, M; McDowell, W P; McNamara, P E; Meier, T; Meyer, D; Michalek, W; Milton, S V; Moe, H; Moog, E; Morrison, L; Nassiri, A; Noonan, J R; Otto, R; Pace, J; Pasky, S J; Penicka, J M; Pietryla, A F; Pile, G; Pitts, C; Power, J; Powers, T; Putnam, C C; Puttkammer, A J; Reigle, D; Reigle, L; Ronzhin, D; Rotela, E R; Russell, E F; Sajaev, Vadim; Sarkar, S; Scapino, J C; Schröder, K; Seglem, R A; Sereno, N S; Sharma, S K; Sidarous, J F; Singh, O; Smith, T L; Soliday, R; Sprau, G A; Stein, S J; Stejskal, B; Svirtun, V; Teng, L C; Theres, E; Thompson, K; Tieman, B J; Torres, J A; Trakhtenberg, E; Travish, G; Trento, G F; Vacca, J; Vasserman, I B; Vinokurov, N A; Walters, D R; Wang, J; Wang, X J; Warren, J; Wesling, S; Weyer, D L; Wiemerslage, G; Wilhelmi, K; Wright, R; Wyncott, D; Xu, S; Yang, B X; Yoder, W; Zabel, R B

    2001-01-01

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  11. Observation and analysis of self-amplified spontaneous emission at the APS low-energy undulator test line

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.D.; Attig, J.; Banks, G.; Bechtold, R.; Beczek, K.; Benson, C.; Berg, S.; Berg, W.; Biedron, S.G.; Biggs, J.A.; Borland, M.; Boerste, K.; Bosek, M.; Brzowski, W.R.; Budz, J.; Carwardine, J.A.; Castro, P.; Chae, Y.-C.; Christensen, S.; Clark, C.; Conde, M.; Crosbie, E.A.; Decker, G.A.; Dejus, R.J.; DeLeon, H.; Den Hartog, P.K.; Deriy, B.N.; Dohan, D.; Dombrowski, P.; Donkers, D.; Doose, C.L.; Dortwegt, R.J.; Edwards, G.A.; Eidelman, Y.; Erdmann, M.J.; Error, J.; Ferry, R.; Flood, R.; Forrestal, J.; Freund, H.; Friedsam, H.; Gagliano, J.; Gai, W.; Galayda, J.N.; Gerig, R.; Gilmore, R.L.; Gluskin, E.; Goeppner, G.A.; Goetzen, J.; Gold, C.; Gorski, A.J.; Grelick, A.E.; Hahne, M.W.; Hanuska, S.; Harkay, K.C.; Harris, G.; Hillman, A.L.; Hogrefe, R.; Hoyt, J.; Huang, Z.; Jagger, J.M.; Jansma, W.G.; Jaski, M.; Jones, S.J.; Keane, R.T.; Kelly, A.L.; Keyser, C.; Kim, K.-J.K.-J.; Kim, S.H.; Kirshenbaum, M.; Klick, J.H.; Knoerzer, K.; Koldenhoven, R.J.; Knott, M.; Labuda, S.; Laird, R.; Lang, J.; Lenkszus, F.; Lessner, E.S.; Lewellen, J.W.; Li, Y.; Lill, R.M.; Lumpkin, A.H.; Makarov, O.A.; Markovich, G.M.; McDowell, M.; McDowell, W.P.; McNamara, P.E.; Meier, T.; Meyer, D.; Michalek, W.; Milton, S.V. E-mail: milton@aps.anl.gov; Moe, H.; Moog, E.R.; Morrison, L.; Nassiri, A.; Noonan, J.R.; Otto, R.; Pace, J.; Pasky, S.J.; Penicka, J.M.; Pietryla, A.F.; Pile, G.; Pitts, C.; Power, J.; Powers, T.; Putnam, C.C.; Puttkammer, A.J.; Reigle, D.; Reigle, L.; Ronzhin, D.; Rotela, E.R.; Russell, E.F.; Sajaev, V.; Sarkar, S.; Scapino, J.C.; Schroeder, K.; Seglem, R.A.; Sereno, N.S.; Sharma, S.K.; Sidarous, J.F.; Singh, O.; Smith, T.L.; Soliday, R.; Sprau, G.A.; Stein, S.J.; Stejskal, B.; Svirtun, V.; Teng, L.C.; Theres, E.; Thompson, K.; Tieman, B.J.; Torres, J.A.; Trakhtenberg, E.M.; Travish, G.; Trento, G.F.; Vacca, J.; Vasserman, I.B.; Vinokurov, N.A.; Walters, D.R.; Wang, J.; Wang, X.J.; Warren, J.; Wesling, S.; Weyer, D.L.; Wiemerslage, G.; Wilhelmi, K.; Wright, R.

    2001-12-21

    Exponential growth of self-amplified spontaneous emission at 530 nm was first experimentally observed at the Advanced Photon Source low-energy undulator test line in December 1999. Since then, further detailed measurements and analysis of the results have been made. Here, we present the measurements and compare these with calculations based on measured electron beam properties and theoretical expectations.

  12. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media

    Science.gov (United States)

    AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.

    2015-09-01

    The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ∼56% of the initial ASE after continuously pumping with 400 mW for 132 min.

  13. Amplified spontaneous emission from DCJTB encapsulated in mesostructured composite silica SBA-15.

    Science.gov (United States)

    Zhang, Dingke; Duan, Zhuojun; Wang, Yu; Zhang, Peng; Chen, Shijian

    2016-06-10

    Amplified spontaneous emission (ASE) characteristics of a red dye 4-(Dicyanomethylene)-2-t-butyl-6-(1,1,7,7- etramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) encapsulated in a highly ordered mesoporous SBA-15 were studied. The mesoporous composite silica film loaded with organic dye has been successfully synthesized by a solgel reaction process and a simple postgrafting method at room temperature. The spectrum narrowing phenomena has been observed when the composite film is pumped at λp=532  nm by a Nd:YAG ed laser. There is a substantial reduction in the full width at half-maximum of the emitting light, which is one of the signatures of the presence of ASE. The ASE threshold and net gain, respectively, reached 0.03  mJ pulse-1 and 34.7  cm-1 for the DCJTB encapsulated in mesoporous SBA-15 film. The optimized ASE properties owe much to the effects of the better spatial confinement of the molecules in the ordered mesoporous structure of the host SBA-15. PMID:27409033

  14. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    Science.gov (United States)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  15. Two-Photon Pumped Amplified Spontaneous Emission from Cyano-Substituted Oligo(p-phenylenevinylene) Crystals with Aggregation-Induced Emission Enhancement

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Yang, Jie; Xia, Hong; Gao, Bing-Rong; Feng, Jing; Ma, Yu-Guang; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    We report the effective two-photon absorption-induced upconversion amplified spontaneous emission (ASE) in the cyano-substituted oligo(p-phenylenevinylene) 1,4-bis[1-cyano-2-(4-(diphenylamino)phenyl)vinyl]benzene (TPCNDSB) organic crystals. The material shows enhanced emission in the solid state (31

  16. First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    CERN Document Server

    Andruszków, J; Ayvazyan, V T; Baboi, N I; Bakker, R; Balakin, V; Barni, D; Bazhan, A; Bernard, M; Bosotti, A; Bourdon, J C; Brefeld, W; Brinkmann, R; Bühler, S; Carneiro, J P; Castellano, M G; Castro, P; Catani, L; Chel, S; Cho, Y; Choroba, S; Colby, E R; Decking, W; Den Hartog, P; Desmons, M; Dohlus, M; Edwards, D; Edwards, H T; Faatz, B; Feldhaus, J; Ferrario, M; Fitch, M J; Flöttmann, K; Fouaidy, M; Gamp, A; Garvey, Terence; Geitz, M A; Gluskin, E S; Gretchko, V; Hahn, U; Hartung, W H; Hubert, D; Hüning, M; Ischebek, R; Jablonka, M; Joly, J M; Juillard, M; Junquera, T; Jurkiewicz, P; Kabel, A C; Kahl, J; Kaiser, H; Kamps, T; Katelev, V V; Kirchgessner, J L; Körfer, M; Kravchuk, L V; Kreps, G; Krzywinski, J; Lokajczyk, T; Lange, R; Leblond, B; Leenen, M; Lesrel, J; Liepe, M; Liero, A; Limberg, T; Lorenz, R; Lu, H H; Lu, F H; Magne, C; Maslov, M A; Materlik, G; Matheisen, A; Menzel, J; Michelato, P; Möller, W D; Mosnier, A; Müller, U C; Napoly, O; Novokhatskii, A V; Omeich, M; Padamsee, H; Pagani, C; Peters, F; Petersen, B; Pierini, P; Pflüger, J; Piot, P; Phung Ngoc, B; Plucinski, L; Proch, D; Rehlich, K; Reiche, S; Reschke, D; Reyzl, I; Rosenzweig, J; Rossbach, J; Roth, S; Saldin, E L; Sandner, W; Sanok, Z; Schlarb, H; Schmidt, G; Schmüser, P; Schneider, J R; Schneidmiller, E A; Schreiber, H J; Schreiber, S; Schütt, P; Sekutowicz, J; Serafini, L; Sertore, D; Setzer, S; Simrock, S; Sonntag, B F; Sparr, B; Stephan, F; Sytchev, V V; Tazzari, S; Tazzioli, F; Tigner, Maury; Timm, M; Tonutti, M; Trakhtenberg, E; Treusch, R; Trines, D; Verzilov, V A; Vielitz, T; Vogel, V; Von Walter, G; Wanzenberg, R; Weiland, T; Weise, H; Weisend, J G; Wendt, M; Werner, M; White, M M; Will, I; Wolff, S; Yurkov, M V; Zapfe, K; Zhogolev, P; Zhou, F

    2000-01-01

    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.

  17. Full characterization of the amplified spontaneous emission from a diode-pumped high-power laser system.

    Science.gov (United States)

    Keppler, S; Hornung, M; Bödefeld, R; Sävert, A; Liebetrau, H; Hein, J; Kaluza, M C

    2014-05-01

    We present the first complete temporal and spatial characterization of the amplified spontaneous emission (ASE) of laser radiation generated by a diode-pumped high-power laser system. The ASE of the different amplifiers was measured independently from the main pulse and was characterized within a time window of -10ms ≤ t ≤ 10ms and an accuracy of up to 15fs around the main pulse. Furthermore, the focusability and the energy of the ASE from each amplifier was measured after recompression. Using our analysis method, the laser components, which need to be optimized for a further improvement of the laser contrast, can be identified. This will be essential for laser-matter interaction experiments requiring a minimized ASE intensity or fluence.

  18. Amplified spontaneous emission lifetime based on the different phase matching modes in BaAlBO3F2 crystal

    International Nuclear Information System (INIS)

    Amplified spontaneous emission lifetime (ASEL) distribution characteristics of the new BaAlBO3F2 (BABF) crystal have been calculated via the equations of emitted light intensity and amplified signal intensity gain. The ASEL distribution was calculated and discussed for three types of injection into the BABF crystal based on an optical parametric amplifier. We found ASEL was first distributed mainly in an ellipsoid and then in a torus with the increase of the pump phase matching angle when a monochromatic signal is injected. For the polychromatic signal pulse injection, ASEL is changed from a scattered distribution to a concentrated distribution. For the broadband pump, the ASEL distribution range is greatly expanded because of the increasing phase matching range

  19. General theory for spontaneous emission in active dielectric microstructures: Example of a fiber amplifier

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    A model for spontaneous emission in active dielectric microstructures is given in terms of the classical electric field Green's tensor and the quantum-mechanical operators for the generating currents. A formalism is given for calculating the Green's tensor, which does not rely on the existence......, transition frequency, and vector orientation of a spatially localized current source. Radiation patterns are studied using a Poynting vector approach taking into account amplification or absorption from an active medium in the fiber....

  20. Amplified spontaneous emission of a molecular nitrogen laser excited by an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Report of a study of the shape and length of the output pulse of a molecular nitrogen laser, excited by an intense relativistic electron beam, is described. The rate equations are computer solved, at first ignoring the spontaneous emission during the excitation process. Afterwards the rate equations are solved taking into account excitation functions of various shapes and lengths, related to electron-beam pulses of a few kA and a few nsec. Laser power output, energy, and peak-time, i.e., the time at which the gain reaches its saturated value, are given and discussed as functions of the intensity and rise time of the excitation functions

  1. Superradiance driven by coherent spontaneous emission in a Cherenkov free-electron maser amplifier

    CERN Document Server

    Jaroszynski, D A; McNeil, B W J; Robb, G R M; Aitken, P; Phelps, A D R; Cross, A W; Ronald, K; Shpak, V G; Yalandin, M I; Ginzburg, N S

    2000-01-01

    Superradiance (SR) initiated by coherent spontaneous emission (CSE) has been studied in a 35 GHz high gain free-electron Cherenkov maser. We present experimental results that show the development of ultra-short pulses of radiation in the non-linear superradiant regime which are characterised by a quadratic dependence of the intensity on the current. The self-similar pulses that develop have a duration that scales inversely with the fourth root of the intensity leading to three cycle long pulses at the highest intensity (few MW). The non-linear SR regime is preceded by a stage of linear exponential growth of the microwave pulses with a gain length of 1 cm. The superradiant pulse is shown to evolve from a CSE seed by extrapolating the growth curve. Further confirmation of CSE has been obtained by varying the current pulse shape. By varying the slope of the leading edge, and thus the Fourier components of the longitudinal spectral density, we are able to vary the strength of the CSE source. We compare the experi...

  2. A Selective C and L-Band Amplified Spontaneous Emission Source Using a 1 × 2 Optical Switch

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-Cai; MING Hai; CAI Zhi-Ping; XU Hui-Ying; YE Chen-Chun

    2005-01-01

    @@ We report on a band selective amplified spontaneous emission (ASE) source of an erbium-doped fibre (EDF),which can operate in either the C- or L-band region.The band selective ASE source is realized using a pump conversion technique by a 1 × 2 optical switch, which makes the ASE source design convert between a backward and a forward pumped configuration alternately.A heavily doped erbium fibre and a 1480nm laser ()ode are adopted for this design synchronously to enhance the power of L-band ASE.A power of 16.2mW for C-band ASE and 11.8mW for L-band ASE are obtained with a total pump power of 100 mW.

  3. The Recombination Mechanism and True Green Amplified Spontaneous Emission in CH3NH3PbBr3 Perovskite

    KAUST Repository

    Priante, Davide

    2015-08-01

    True-green wavelength emitters at 555 nm are currently dominated by III-V semiconductor-based inorganic materials. Nevertheless, due to high lattice- and thermal-mismatch, the overall power efficiency in this range tends to decline for high current density showing the so-called efficiency droop in the green region (“green gap”). In order to fill the research green gap, this thesis examines the low cost solution-processability of organometal halide perovskites, which presents a unique opportunity for light-emitting devices in the green-yellow region owing to their superior photophysic properties such as high photoluminescence quantum efficiency, small capture cross section of defect states as well as optical bandgap tunability across the visible light regime. Specifically, the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material were investigated using low-temperature, power-dependent (77 K), temperature-dependent photoluminescence (PL) measurements. We noted three recombination peaks at 77K, one of which originated from bulk defect states, and other two from surface defect states. The latter were identified as bound-excitonic (BE) radiative transitions related to particle size inhomogeneity or grain size induced surface state in the sample. Both transitions led to PL spectra broadening as a result of concurrent blue- and red-shifts of these excitonic peaks. The blue-shift is most likely due to the Burstein-Moss (band filling) effect. Interestingly, the red-shift of the second excitonic peak becomes pronounced with increasing temperature leading to a true-green wavelength of 553 nm for CH3NH3PbBr3. On the other hand, red-shifted peak originates from the strong absorption in the second excitonic peak owed to the high density of surface states and carrier filling of these states due to the excitation from the first excitonic recombination. We also achieved amplified spontaneous emission around excitation threshold energy of 350 μJ/cm2

  4. Amplified and directional spontaneous emission from arbitrary composite bodies: A self-consistent treatment of Purcell effect below threshold

    Science.gov (United States)

    Jin, Weiliang; Khandekar, Chinmay; Pick, Adi; Polimeridis, Athanasios G.; Rodriguez, Alejandro W.

    2016-03-01

    We study amplified spontaneous emission (ASE) from wavelength-scale composite bodies—complicated arrangements of active and passive media—demonstrating highly directional and tunable radiation patterns, depending strongly on pump conditions, materials, and object shapes. For instance, we show that under large enough gain, PT symmetric dielectric spheres radiate mostly along either active or passive regions, depending on the gain distribution. Our predictions are based on a recently proposed fluctuating-volume-current formulation of electromagnetic radiation that can handle inhomogeneities in the dielectric and fluctuation statistics of active media, e.g., arising from the presence of nonuniform pump or material properties, which we exploit to demonstrate an approach to modeling ASE in regimes where Purcell effect (PE) has a significant impact on the gain, leading to spatial dispersion and/or changes in power requirements. The nonlinear feedback of PE on the active medium, captured by the Maxwell-Bloch equations but often ignored in linear formulations of ASE, is introduced into our linear framework by a self-consistent renormalization of the (dressed) gain parameters, requiring the solution of a large system of nonlinear equations involving many linear scattering calculations.

  5. Reduced amplified spontaneous emission threshold in organic semiconductor laser structure with relaxed roll-off characteristics under high current densities

    International Nuclear Information System (INIS)

    We reduced the amplified spontaneous emission (ASE) threshold in an organic semiconductor laser structure by the introduction of an exciton blocking layer adjacent to the cathode layer. A phenyl-dipyrenylphosphine oxide (POPy2) layer with the function of an electron transport layer and the exciton blocking layer were inserted between an active layer of 4,4-bis[N-(carbazole)styrylbiphenyl] (BSB-Cz) and a metal cathode layer. The electron injection barrier from POPy2 to BSB-Cz is downward, indicating no net energy barrier, and the hole injection barrier from the BSB-Cz layer into the POPy2 layer is also small because of the similarity between the highest occupied molecular orbital levels of the materials. Therefore, the proposed device structure can avoid extra carrier accumulations at the heterointerface, leading to compatibility in terms of both relaxation of the exciton-polaron annihilation and blocking of the energy transfer from the BSB-Cz layer into the cathode layer. -- Highlights: • An exciton blocking layer (EBL) was introduced between an emitting layer (EML) and a cathode. • The carrier injection barriers between EBL and EML was significantly small. • The ASE threshold was reduced by the exciton confinement in EML. • The electrically pumped device showed relaxation of the roll-off by avoiding carrier accumulation

  6. Intrinsic spontaneous emission-induced fluctuations of the output optical beam power and phase in a diode amplifier

    Science.gov (United States)

    Bogatov, A. P.; Drakin, A. E.; D'yachkov, N. V.; Gushchik, T. I.

    2016-08-01

    Output optical beam intensity and phase fluctuations are analysed in a classical approach to describing the propagation and amplification of spontaneous emission in the active region of a laser diode with a gain saturated by input monochromatic light. We find their spectral densities and dispersion and the correlation coefficient of the two-dimensional probability distribution function of the fluctuations.

  7. HASEonGPU-An adaptive, load-balanced MPI/GPU-code for calculating the amplified spontaneous emission in high power laser media

    Science.gov (United States)

    Eckert, C. H. J.; Zenker, E.; Bussmann, M.; Albach, D.

    2016-10-01

    We present an adaptive Monte Carlo algorithm for computing the amplified spontaneous emission (ASE) flux in laser gain media pumped by pulsed lasers. With the design of high power lasers in mind, which require large size gain media, we have developed the open source code HASEonGPU that is capable of utilizing multiple graphic processing units (GPUs). With HASEonGPU, time to solution is reduced to minutes on a medium size GPU cluster of 64 NVIDIA Tesla K20m GPUs and excellent speedup is achieved when scaling to multiple GPUs. Comparison of simulation results to measurements of ASE in Y b 3 + : Y AG ceramics show perfect agreement.

  8. Wavefront analysis of nonlinear self-amplified spontaneous-emission free-electron laser harmonics in the single-shot regime.

    Science.gov (United States)

    Bachelard, R; Mercère, P; Idir, M; Couprie, M-E; Labat, M; Chubar, O; Lambert, G; Zeitoun, Ph; Kimura, H; Ohashi, H; Higashiya, A; Yabashi, M; Nagasono, M; Hara, T; Ishikawa, T

    2011-06-10

    The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.

  9. Wavefront Analysis of Nonlinear Self-Amplified Spontaneous-Emission Free-Electron Laser Harmonics in the Single-Shot Regime

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R.; Chubar, O.; Mercere, P.; Idir, M.; Couprie, M.E.; Lambert, G.; Zeitoun, Ph.; Kimura, H.; Ohashi, H.; Higashiya, A.; Yabashi, M.; Nagasono, M.; Hara, T. and Ishikawa, T.

    2011-06-08

    The single-shot spatial characteristics of the vacuum ultraviolet self-amplified spontaneous emission of a free electron laser (FEL) is measured at different stages of amplification up to saturation with a Hartmann wavefront sensor. We show that the fundamental radiation at 61.5 nm tends towards a single-mode behavior as getting closer to saturation. The measurements are found in good agreement with simulations and theory. A near diffraction limited wavefront was measured. The analysis of Fresnel diffraction through the Hartmann wavefront sensor hole array also provides some further insight for the evaluation of the FEL transverse coherence, of high importance for various applications.

  10. Spectroscopic studies, fluorescence quenching by molecular oxygen and amplified spontaneous emission of 1,4-bis [2-(2-pyridyl) vinyl] benzene (P2VB) diolefinic laser dye

    Science.gov (United States)

    El-Daly, Samy A.; Ebeid, E. M.

    2014-04-01

    The UV-visible electronic absorption spectra, molar absorptivity, fluorescence spectra, fluorescence quantum yield and excited state lifetime of 1,4-bis [2-(2-pyridyl) vinyl] benzene P2VB were measured in different solvents. The fluorescence quenching of P2VB by molecular oxygen was also studied using lifetime measurements. A 2 × 10-4 mol dm-3 solution of P2VB in dimethyl formamide (DMF) gave amplified spontaneous emission (ASE) in blue spectral region with emission maximum at 420 nm upon pumping by 337.1 nitrogen laser pulse. The photochemical quantum yields (ϕc) of trans-cis photoisomerization of P2VB were calculated in different organic solvents. The photoreactivity of P2VB are also studied PMMA matrix.

  11. Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission

    Science.gov (United States)

    Kotb, Amer

    2015-05-01

    The performance of an all-optical NOR gate is numerically simulated and investigated. The NOR Boolean function is realized by using a semiconductor optical amplifier (SOA) incorporated in Mach-Zehnder interferometer (MZI) arms and exploiting the nonlinear effect of two-photon absorption (TPA). If the input pulse intensities is adjusting to be high enough, the TPA-induced phase change can be larger than the regular gain-induced phase change and hence support ultrafast operation in the dual rail switching mode. The numerical study is carried out by taking into account the effect of the amplified spontaneous emission (ASE). The dependence of the output quality factor ( Q-factor) on critical data signals and SOAs parameters is examined and assessed. The obtained results confirm that the NOR gate implemented with the proposed scheme is capable of operating at a data rate of 250 Gb/s with logical correctness and high output Q-factor.

  12. Solvent-vapour treatment induced performance enhancement of amplified spontaneous emission based on poly[2-methoxy-5-(2/-ethyl-hexyloxy)-l,4-phenylene vinylene

    Institute of Scientific and Technical Information of China (English)

    Zhang Bo; Hou Yan-Bing; Teng Feng; Lou Zhi-Dong; Liu Xiao-Jun; Hu Bing; Wu Wen-Bin

    2011-01-01

    In this work, performance enhancements of amplified spontaneous emission (ASE) from poly[2-methoxy-5-(2'- ethyl-hexylaxy)-1,4-phenylene vinylene] (MEH-PPV) have been achieved via solvent vapour treatment. Correlations between the morphology of the film and the optical performance of polymer-based ASE are investigated. The active layers are characterised by atomic force microscopy and optical absorption. The results show that the solvent-vapour treatment can induce the MEH-PPV self-organisation into an ordered structure with a smooth surface, leading to enhanced optical gain. Thus the solvent-vapour treatment is a good method for improving the optical properties of the MEH-PPV.

  13. The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites

    KAUST Repository

    Priante, D.

    2015-02-23

    We investigated the mechanisms of radiative recombination in a CH3NH3PbBr3 hybrid perovskite material using low-temperature, power-dependent (77K), and temperature-dependent photoluminescence (PL) measurements. Two bound-excitonic radiative transitions related to grain size inhomogeneity were identified. Both transitions led to PL spectra broadening as a result of concurrent blue and red shifts of these excitonic peaks. The red-shifted bound-excitonic peak dominated at high PL excitation led to a true-green wavelength of 553nm for CH3NH3PbBr3 powders that are encapsulated in polydimethylsiloxane. Amplified spontaneous emission was eventually achieved for an excitation threshold energy of approximately 350μJ/cm2. Our results provide a platform for potential extension towards a true-green light-emitting device for solid-state lighting and display applications.

  14. Quantum Maxwell-Bloch equations for spontaneous emission in optical semiconductor devices

    OpenAIRE

    Hess, Ortwin; Hofmann, Holger F.

    1998-01-01

    We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous optical semiconductor devices taking into account the quantum noise effects which cause spontaneous emission and amplified spontaneous emission. Analytical expressions derived from the QMBE are presented for the spontaneous emission factor beta and the far field pattern of amplified spontaneous emission in broad area quantum well lasers.

  15. Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors

    Science.gov (United States)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2016-09-01

    We show that density-dependent velocity saturation in a GaN high electron mobility transistor (HEMT) can be related to the stimulated emission of longitudinal optical (LO) phonons. As the drift velocity of electrons increases, the drift of the Fermi distribution in reciprocal space results in population inversion and gain for the LO phonons. Once this gain reaches a threshold value, the avalanche-like increase in LO phonon emission causes a rapid loss of electron energy and momentum and leads to drift velocity saturation. Our simple model correctly predicts both the general trend of decreasing saturation velocity with increasing electron density, and the measured experimental values of saturation.

  16. Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

    KAUST Repository

    Pan, Jun

    2015-12-01

    We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic–organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 108 laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.

  17. Amplified spontaneous emission and thermal management on a high average-power diode-pumped solid-state laser - the Lucia laser system

    International Nuclear Information System (INIS)

    The development of the laser triggered the birth of numerous fields in both scientific and industrial domains. High intensity laser pulses are a unique tool for light/matter interaction studies and applications. However, current flash-pumped glass-based systems are inherently limited in repetition-rate and efficiency. Development within recent years in the field of semiconductor lasers and gain media drew special attention to a new class of lasers, the so-called Diode Pumped Solid State Laser (DPSSL). DPSSLs are highly efficient lasers and are candidates of choice for compact, high average-power systems required for industrial applications but also as high-power pump sources for ultra-high intense lasers. The work described in this thesis takes place in the context of the 1 kilowatt average-power DPSSL program Lucia, currently under construction at the 'Laboratoire d'Utilisation des Laser Intenses' (LULI) at the Ecole Polytechnique, France. Generation of sub-10 nanosecond long pulses with energies of up to 100 joules at repetition rates of 10 hertz are mainly limited by Amplified Spontaneous Emission (ASE) and thermal effects. These limitations are the central themes of this work. Their impact is discussed within the context of a first Lucia milestone, set around 10 joules. The developed laser system is shown in detail from the oscillator level to the end of the amplification line. A comprehensive discussion of the impact of ASE and thermal effects is completed by related experimental benchmarks. The validated models are used to predict the performances of the laser system, finally resulting in a first activation of the laser system at an energy level of 7 joules in a single-shot regime and 6.6 joules at repetition rates up to 2 hertz. Limitations and further scaling approaches are discussed, followed by an outlook for the further development. (author)

  18. Molecular host-guest energy-transfer system with an ultralow amplified spontaneous emission threshold employing an ambipolar semiconducting host matrix.

    Science.gov (United States)

    Toffanin, Stefano; Capelli, Raffaella; Hwu, Tsyr-Yuan; Wong, Ken-Tsung; Plötzing, Tobias; Först, Michael; Muccini, Michele

    2010-01-14

    We report on the characteristics of a host-guest lasing system obtained by coevaporation of an oligo(9,9-diarylfluorene) derivative named T3 with the red-emitter 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (DCM). We demonstrate that the ambipolar semiconductor T3 can be implemented as an active matrix in the realization of a host-guest system in which an efficient energy transfer takes place from the T3 matrix to the lasing DCM molecules. We performed a detailed spectroscopic study on the system by systematically varying the DCM concentration in the T3 matrix. Measurements of steady-state photoluminescence (PL), PL quantum yield (PLQY), time-resolved picosecond PL, and amplified spontaneous emission (ASE) threshold are used to optimize the acceptor concentration at which the ASE from DCM molecules takes place with the lowest threshold. The sample with a DCM relative deposition ratio of 2% shows an ASE threshold as low as 0.6 kW/cm(2) and a net optical gain measured by femtosecond time-resolved pump-and-probe spectroscopy as high as 77 cm(-1). The reference model system Alq(3):DCM sample measured in exactly the same experimental conditions presents an one-order-of-magnitude higher ASE threshold. The ASE threshold of T3:DCM is the lowest reported to date for a molecular host-guest energy-transfer system, which makes the investigated blend an appealing system for use as an active layer in lasing devices. In particular, the ambipolar charge transport properties of the T3 matrix and its field-effect characteristics make the host-guest system presented here an ideal candidate for the realization of electrically pumped organic lasers.

  19. Controlling spontaneous emission

    DEFF Research Database (Denmark)

    Lodahl, Peter

    dots (QDs) embedded in 3D photonic crystals consisting of air spheres in titanium dioxide. Performing time-resolved experiments, we show that the photonic crystals control the emission decay rate of excitons confined in the QDs1,2. By varying the lattice parameter of the photonic crystals, we...

  20. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter;

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  1. Controlled spontaneous emission in erbium-doped microphotonic materials

    NARCIS (Netherlands)

    Kalkman, Jeroen

    2005-01-01

    Erbium is a rare-earth metal that, when incorporated in a solid, can emit light at a wavelength of 1.5 μm. It plays a key role in current day telecommunication technology as the principle ingredient of optical fiber amplifiers. In this thesis the control of the Er spontaneous emission in three diffe

  2. Cooperative spontaneous emission in nonuniform media

    OpenAIRE

    Rudziński, Adam

    2010-01-01

    The subject of this paper is modification of cooperative spontaneous emission by a nonuniform medium, with nonuniform distributions of electromagnetic field. A brief analyzis is presented and it is postulated, that if spontaneous emission from an atom is strongly suppressed, cooperative emission with another atom may be a preferred emission channel and counteract the suppression.

  3. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  4. Spontaneous Emission in Nonlocal Materials

    CERN Document Server

    Ginzburg, Pavel; Nasir, Mazhar E; Olvera, Paulina Segovia; Krasavin, Alexey V; Levitt, James; Hirvonen, Liisa M; Wells, Brian; Suhling, Klaus; Richards, David; Podolskiy, Viktor A; Zayats, Anatoly V

    2016-01-01

    Light-matter interactions can be dramatically modified by the surrounding environment. Here we report on the first experimental observation of molecular spontaneous emission inside a highly nonlocal metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the nonlocal response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a nonlocal medium. An engineered material nonlocality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photo-chemistry, imaging, and sensing.

  5. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    Science.gov (United States)

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer. PMID:19420563

  6. Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO(2) composite/p-AlGaN heterojunction light-emitting diodes.

    Science.gov (United States)

    Shih, Ying Tsang; Wu, Mong Kai; Li, Wei Chih; Kuan, Hon; Yang, Jer Ren; Shiojiri, Makoto; Chen, Miin Jang

    2009-04-22

    This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

  7. Spontaneous emission of molecules in open resonators

    CERN Document Server

    Datsyuk, V V

    2002-01-01

    The formulas for the molecule and atoms spontaneous emission rate in the arbitrary open resonator in the weak bond approximation with an account of the emission absorption or increase through the resonator substance is obtained within the frames of the classical electrodynamics. The proposed formulas agrees well with the data on the microdrops luminescence. The effect of the spontaneous resonance emission rate suppression through the laser active medium is forecasted

  8. Dynamics of spontaneous otoacoustic emissions

    Science.gov (United States)

    Bergevin, Christopher; Salerno, Anthony

    2015-12-01

    Spontaneous otoacoustic emissions (SOAEs) have become a hallmark feature in modern theories of an `active' inner ear, given their numerous correlations to auditory function (e.g., threshold microstructure, neurophysiological tuning curves), near universality across tetrapod classes, and physiological correlates at the single hair cell level. However, while several different classes of nonlinear models exist that describe the mechanisms underlying SOAE generation (e.g., coupled limit-cycle oscillators, global standing waves), there is still disagreement as to precisely which biophysical concepts are at work. Such is further compounded by the idiosyncratic nature of SOAEs: Not all ears emit, and when present, SOAE activity can occur at seemingly arbitrary frequencies (though always within the most sensitive range of the audiogram) and in several forms (e.g., peaks, broad `baseline' plateaus). The goal of the present study was to develop new signal processing and stimulation techniques that would allow for novel features of SOAE activity to be revealed. To this end, we analyzed data from a variety of different species: human, lizard, and owl. First, we explored several strategies for examining SOAE waveforms in the absence of external stimuli to further ascertain what constitutes `self-sustained sinusoids' versus `filtered noise'. We found that seemingly similar peaks in the spectral domain could exhibit key differences in the time domain, which we interpret as providing critical information about the underlying oscillators and their coupling. Second, we introduced dynamic stimuli (swept-tones, tone bursts) at a range of levels, whose interaction with SOAEs could be visualized in the time-frequency domain. Aside from offering a readily accessible way to visualize many previously reported effects (e.g., entrainment, facilitation), we observed several new features such as subharmonic distortion generation and competing pulling/pushing effects when multiple tones were

  9. Spontaneous emission from active dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Tromborg, Bjarne

    2001-01-01

    and engineered due to the dependence of the emission rate on the location and polarisation of the emitters in the structure. This paper addresses the methods of quantum electrodynamics of dielectric media which enable calculation of the local rate of spontaneous emission in active microstructures....

  10. Ultrafast spontaneous emission source using plasmonic nanoantennas

    Science.gov (United States)

    Hoang, Thang B.; Akselrod, Gleb M.; Argyropoulos, Christos; Huang, Jiani; Smith, David R.; Mikkelsen, Maiken H.

    2015-07-01

    Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (quantum dots. The antennas consist of silver nanocubes coupled to a gold film separated by a thin polymer spacer layer and colloidal core-shell quantum dots, a stable and technologically relevant emitter. We show an increase in the spontaneous emission rate of a factor of 880 and simultaneously a 2,300-fold enhancement in the total fluorescence intensity, which indicates a high radiative quantum efficiency of ~50%. The nanopatch antenna geometry can be tuned from the visible to the near infrared, providing a promising approach for nanophotonics based on ultrafast spontaneous emission.

  11. Enhanced spontaneous emission factor for microcavity lasers

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhang; Wei Pan

    2008-01-01

    The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output prop- erties and structural parameters of multi-quantum wells (MQWs) is obtained. One of the most important consequences of the incrcased spontaneous emission factor is the reduction of laser threshold. It is found that the characteristic curve of a "thresholdless" laser is strongly nonradiative depopulation-dependent. The light output is increased by the enhanced well number and the reduced width. In particular, there is an optimal well number corresponding to the lowest threshold current density for MQW structure in the microcavity lasers.

  12. Silicon photonic crystals and spontaneous emission

    NARCIS (Netherlands)

    Dood, Michiel Jacob Andries de

    2002-01-01

    Photonic crystals, i.e. materials that have a periodic variation in refractive index, form an interesting new class of materials that can be used to modify spontaneous emission and manipulate optical modes in ways that were impossible so far. This thesis is divided in three parts. Part I discusses

  13. Photonic Crystals-Inhibited Spontaneous Emission: Optical Antennas-Enhanced Spontaneous Emission

    Science.gov (United States)

    Yablonovitch, Eli

    Photonic crystals are also part of everyday technological life in opto-electronic telecommunication devices that provide us with internet, cloud storage, and email. But photonic crystals have also been identified in nature, in the coloration of peacocks, parrots, chameleons, butterflies and many other species.In spite of its broad applicability, the original motivation of photonic crystals was to create a ``bandgap'' in which the spontaneous emission of light would be inhibited. Conversely, the opposite is now possible. The ``optical antenna'' can accelerate spontaneous emission. Over 100 years after the radio antenna, we finally have tiny ``optical antennas'' which can act on molecules and quantum dots. Employing optical antennas, spontaneous light emission can become faster than stimulated emission.

  14. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta;

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...... results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  15. Mapping quantum state dynamics in spontaneous emission

    Science.gov (United States)

    Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.

    2016-05-01

    The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.

  16. Spontaneous emission in the ellipsoidal nanocrystals

    Institute of Scientific and Technical Information of China (English)

    K.K.Pukhov

    2009-01-01

    The equation was presented for the spontaneous emission rate Anano of the two-level optical centers in the subwavelength ellipsoidal nanocrystals embedded in a dielectric medium.An important result was that the ratio Anano/Abulk could be estimated without recourse to a particular local-field model.On the ground of this equation the expression was derived for linestrength of electric-dipole transition in trivalent rare-earth ions.The applicability of the Judd-Ofelt equation for nanoparticles was discussed.

  17. Spontaneous light emission from fibers in MINOS

    International Nuclear Information System (INIS)

    We report on the observation and measurements of unexpected background rates in the MINOS Far Detector. The noise level at the Far Detector is significantly greater than that expected from natural radioactivity and intrinsic photomultiplier dark current. We have conducted a series of additional tests which demonstrate that the excess rate is caused by spontaneous light emission in the wavelength-shifting fibers, which are used to read out signals from scintillator strips. This noise due to fibers exhibits an exponential fall off with time with a decay time constant of the order of 100 days

  18. Mapping quantum state dynamics in spontaneous emission

    CERN Document Server

    Naghiloo, M; Tan, D; Jadbabaie, A; Murch, K W

    2015-01-01

    The evolution of a quantum state undergoing radiative decay depends on how the emission is detected. We employ phase-sensitive amplification to perform homodyne detection of the spontaneous emission from a superconducting artificial atom. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution that is associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.

  19. Spontaneous emission of polaritons from a Bose-Einstein condensate

    OpenAIRE

    Marzlin, Karl-Peter; Zhang, Weiping

    1999-01-01

    We study the spontaneous emission of a partially excited Bose-Einstein condensate composed of two-level atoms. The formation of polaritons induced by the ground-state part of the condensate leads to an avoided crossing in the photon spectrum. This avoided crossing acts similarly to a photonic band gap and modifies the spontaneous emission rate.

  20. Spontaneous emission of two interacting atoms near an interface

    Institute of Scientific and Technical Information of China (English)

    Dehua Wang

    2009-01-01

    The spontaneous emission rate of two interacting excited atoms near a dielectric interface is studied using the photon closed-orbit theory and the dipole image method.The total emission rate of one atom during the emission process is calculated as a function of the distance between the atom and the interface.The results suggest that the spontaneous emission rate depends not only on the atomic-interface distances,but also on the orientation of the two atomic dipoles and the initial distance between the two atoms.The oscillation in the spontaneous emission rate is caused by the interference between the outgoing electromagnetic wave emitted from one atom and other waves arriving at this atom after traveling along various classical orbits.Each peak in the Fourier transformed spontaneous emission rate corresponds with one action of photon classical orbit.

  1. Spontaneous Otoacoustic Emissions in Tinnitus Patients

    Institute of Scientific and Technical Information of China (English)

    SHI Yongbing; William Martin

    2006-01-01

    Otoacoustic emissions (OAEs) are believed to be the products of active cochlear mechanics. They are generally associated with relatively intact outer hair cell function. OAEs usually decrease or become undetectable when hearing loss of cochlear origin exceeds 40-50 dB HL. Subjective tinnitus is a perception of sound without detectable corresponding source. It is most often seen in patients with hearing loss. It is also frequently seen in patients with head injuries. Studies have suggested that the prevalence of spontaneous otoacoustic emissions(SOAEs) is lower in patients with hearing loss and tinnitus than in normal population. There have also been reports on association between tinnitus and SOAEs of unusually high amplitudes, which can be controlled by aspirin administration. The current paper is a preliminary review of clinical data collected from a group oftinnitus patients in an attempt to elucidate on the relationship between SOAEs and tinnitus from a clinical point of view. Audiometric, tinnitus and SOAE data from 59 patients seen at the Oregon Health & Science University Tinnitus Clinic were retrospectively studied. Fifty-four of these 59 patients showed sensorineural hearing loss of various degrees at the time of evaluation, mostly affecting high frequencies. SOAEs were detected in 26 ears (22%) of 1 8 patients(30.5%). There was no difference in SOAE prevalence between male and female patients. SOAEs were recorded in four of the five patients whose pure tone thresholds were within normal limits up to 8000 Hz. SOAEs appeared to be recorded at a higher rate in patients whose tinnitus started following motor vehicle accidents or head injuries(5/10) than in other patients.Time course of tinnitus did not appear to affect SOAE detection rate. There were no correlations between SOAE frequency and matched tinnitus pitch or frequency of maximum hearing loss. Significance of these findings is discussed.

  2. Transformation quantum optics: designing spontaneous emission using coordinate transformations

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Wubs, Martijn; Ginzburg, Pavel;

    2016-01-01

    Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a material environment via modification of the local density of optical states (LDOS). Here we use transformation optics methods in order to design required density of states and thus spontaneous emission (SE...

  3. Optical analogue of spontaneous symmetry breaking induced by tachyon condensation in amplifying plasmonic arrays

    CERN Document Server

    Marini, A; Roy, S; Longhi, S; Biancalana, F

    2013-01-01

    We study analytically and numerically an optical analogue of tachyon condensation in amplifying plasmonic arrays. Optical propagation is modeled through coupled-mode equations, which in the continuous limit can be converted into a nonlinear one-dimensional Dirac-like equation for fermionic particles with imaginary mass, i.e. fermionic tachyons. We demonstrate that the vacuum state is unstable and acquires an expectation value with broken chiral symmetry, corresponding to the homogeneous nonlinear stationary solution of the system. The quantum field theory analogue of this process is the condensation of unstable fermionic tachyons into massive particles. This paves the way for using amplifying plasmonic arrays as a classical laboratory for spontaneous symmetry breaking effects in quantum field theory.

  4. Amplified radio emission from cosmic ray air showers in thunderstorms

    CERN Document Server

    Buitink, S; Asch, T; Badea, F; Bähren, L; Bekk, K; Bercuci, A; Bertaina, M; Biermann, P L; Blumer, J; Bozdog, H; Brancus, I M; Bruggemann, M; Buchholz, P; Butcher, H; Chiavassa, A; Cossavella, F; Daumiller, K; Di Pierro, F; Doll, P; Engel, R; Falcke, H; Gemmeke, H; Ghia, P L; Glasstetter, R; Grupen, C; Haungs, A; Heck, D; Hörandel, J R; Horneffer, A; Huege, T; Kampert, K H; Kolotaev, Y; Krömer, O; Kuijpers, J; Lafebre, S; Mathes, H J; Mayer, H J; Meurer, C; Milke, J; Mitrica, B; Morello, C; Navarra, G; Nehls, S; Nigl, A; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Petrovic, J; Pierog, T; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Sima, O; Singh, K; Stumpert, M; Toma, G; Trinchero, G C; Ulrich, H; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zensus, J A; Zimmermann, D; Buitink, Stijn

    2007-01-01

    Cosmic ray air showers produce radio emission, consisting in large part of geosynchrotron emission. Since the radiation mechanism is based on particle acceleration, the atmospheric electric field can play an important role. Especially inside thunderclouds large electric fields can be present. We examine the contribution of an electric field to the emission mechanism theoretically and experimentally. Two mechanisms of amplification of radio emission are considered: the acceleration radiation of the shower particles and the radiation from the current that is produced by ionization electrons moving in the electric field. We selected and evaluated LOPES data recorded during thunderstorms, periods of heavy cloudiness and periods of cloudless weather. We find that during thunderstorms the radio emission can be strongly enhanced. No amplified pulses were found during periods of cloudless sky or heavy cloudiness, suggesting that the electric field effect for radio air shower measurements can be safely ignored during ...

  5. Highly Efficient Spontaneous Emission from Self-Assembled Quantum Dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lund-Hansen, Toke; Hvam, Jørn Märcher;

    2006-01-01

    We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency.......We present time resolved measurements of spontaneous emission (SE) from InAs/GaAs quantum dots (QDs). The measurements are interpreted using Fermi's Golden Rule and from this analysis we establish the parameters for high quantum efficiency....

  6. Spontaneous Emission Control in a Tunable Hybrid Photonic System

    OpenAIRE

    Frimmer, M.; Koenderink, A. F.

    2012-01-01

    We experimentally demonstrate control of the rate of spontaneous emission in a tunable hybrid photonic system that consists of two canonical building blocks for spontaneous emission control, an optical antenna and a mirror, each providing a modification of the local density of optical states (LDOS). We couple fluorophores to a plasmonic antenna to create a superemitter with an enhanced decay rate. In a superemitter analog of the seminal Drexhage experiment we probe the LDOS of a nanomechanica...

  7. Controlling spontaneous emission with plasmonic optical patch antennas

    OpenAIRE

    Belacel, C.; Habert, B.; Bigourdan, F.; Marquier, F.; Hugonin, J.-P.; Michaelis de Vasconcellos, S.; Lafosse, X.; Coolen, L; Schwob, C.; Javaux, C; Dubertret, B.; Greffet, J. -J.; Senellart, P.; Maitre, A.

    2012-01-01

    We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk 30 nm above a thick gold layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending of the antenna size. Considering the double...

  8. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Directory of Open Access Journals (Sweden)

    Michael Gelfand

    Full Text Available BACKGROUND: The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. METHODOLOGY AND PRINCIPAL FINDINGS: We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. CONCLUSIONS AND SIGNIFICANCE: A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  9. Surface plasmon enhancement of spontaneous emission in graphene waveguides

    CERN Document Server

    Cuevas, Mauro

    2016-01-01

    This work analyzes the spontaneous emission of a single emitter placed near the graphene waveguide formed by two parallel graphene monolayers, with an insulator spacer layer. In this case, the eigenmodes supported by the structure, such as surface plasmon and wave guided modes, provide decay channels for the electric dipole placed close to the waveguide. We calculated the contribution to the decay rate of symmetric and antisymmetric eigenmodes as a function of frequency and the orientation of the emitter. Our results show that the modi?cation of the spontaneous emission due to excitation of guided modes is much lower than the corresponding decays through the excitation of symmetric and antisymmetric surface plasmons, for which, the spontaneous emission is dramatically enhanced. As a consequence of the high con?nement of surface plasmons in the graphene waveguide, we found that the decay rate of the emitter with vertical orientation (with respect to graphene sheets) is twice the corresponding decay of the same...

  10. An analysis of dynamical suppression of spontaneous emission

    CERN Document Server

    Berman, P R

    1998-01-01

    It has been shown recently [see, for example, S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. {\\bf 76}, 388 (1996)] that a dynamical suppression of spontaneous emission can occur in a three-level system when an external field drives transitions between a metastable state and {\\em two} decaying states. What is unusual in the decay scheme is that the decaying states are coupled directly by the vacuum radiation field. It is shown that decay dynamics required for total suppression of spontaneous emission necessarily implies that the level scheme is isomorphic to a three-level lambda system, in which the lower two levels are {\\em both} metastable, and each is coupled to the decaying state. As such, the total suppression of spontaneous emission can be explained in terms of conventional dark states and coherent population trapping.

  11. Controlling spontaneous emission with plasmonic optical patch antennas

    CERN Document Server

    Belacel, C; Bigourdan, F; Marquier, F; Hugonin, J -P; de Vasconcellos, S Michaelis; Lafosse, X; Coolen, L; Schwob, C; Javaux, C; Dubertret, B; Greffet, J -J; Senellart, P; Maitre, A

    2012-01-01

    We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk 30 nm above a thick gold layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending of the antenna size. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.

  12. Spontaneous Emission Enhancement at Finite-length Metal

    DEFF Research Database (Denmark)

    Filonenko, K.; Willatzen, Morten; Bordo, V.

    2013-01-01

    We study spontaneous emission enhancement of a two-level atomic emitter placed in a dielectric medium near a finite-length cylindrical metal nanowire. We calculate the dependence of the Purcell factor and the normalized decay rate to a continuous spectrum on the nanowire radius for several emitter...... transition wavelengths and different orientations of the transition dipole moment. For a particular transition wavelength we calculate the dependence of these quantities as well as the β-factor on the emitter distance from the nanowire and the nanowire radius. The obtained results demonstrate that the...... spontaneous emission characteristics exhibit significant differences as compared to the case of an infinite wire....

  13. Raman and loss induced quantum noise in a depleted phase-sensitive parametric amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten

    We study the quantum noise properties of phase-sensitive fiber optical parametric amplifiers in deep pump depletion using a semiclassical approach. Amplified spontaneous emission and spontaneous Raman scattering are included in the analysis.......We study the quantum noise properties of phase-sensitive fiber optical parametric amplifiers in deep pump depletion using a semiclassical approach. Amplified spontaneous emission and spontaneous Raman scattering are included in the analysis....

  14. Spontaneous Emission of Charged Bosons from Supercritical Point Charges

    CERN Document Server

    Kim, Sang Pyo

    2013-01-01

    We study the spontaneous emission of charged bosons from supercritical Coulomb potentials and charged black holes. We find the exact emission rate from the Bogoliubov transformation by applying the tunneling boundary condition on the Jost functions at the asymptotic boundaries. The emission rate for charged bosons in the supercritical Coulomb potential increases as the charge $Z\\alpha > 1/2$ of the superatom and the energy of the bosons increase but is suppressed for large angular momenta. We discuss physical implications of the emission of charged bosons from superatoms and charged black holes.

  15. Demonstration of Weak Measurement Based on Atomic Spontaneous Emission

    OpenAIRE

    Shomroni, Itay; Bechler, Orel; Rosenblum, Serge; Dayan, Barak

    2013-01-01

    We demonstrate a new type of weak measurement based on the dynamics of spontaneous emission. The pointer in our scheme is given by the Lorentzian distribution characterizing atomic exponential decay via emission of a single photon. We thus introduce weak measurement, so far demonstrated nearly exclusively with laser beams and Gaussian statistics, into the quantum regime of single emitters and single quanta, enabling the exploitation of a wide class of sources that are abundant in nature. We d...

  16. Spontaneous emission of non-dispersive Rydberg wave packets

    OpenAIRE

    Delande, Dominique; Zakrzewski, Jakub

    1998-01-01

    Non dispersive electronic Rydberg wave packets may be created in atoms illuminated by a microwave field of circular polarization. We discuss the spontaneous emission from such states and show that the elastic incoherent component (occuring at the frequency of the driving field) dominates the spectrum in the semiclassical limit, contrary to earlier predictions. We calculate the frequencies of single photon emissions and the associated rates in the "harmonic approximation", i.e. when the wave p...

  17. Effects of spontaneous otoacoustic emissions on frequency discrimination

    DEFF Research Database (Denmark)

    Hansen, Rói; Santurette, Sébastien; Verhulst, Sarah

    2013-01-01

    When an external tone is presented in proximity to the frequency of a spontaneous otoacoustic emission (SOAE), the SOAE typically synchronizes to the external tone, a phenomenon known as "entrainment". As the tone moves further away from the SOAE frequency, beating patterns between the SOAE and t...

  18. Spontaneous emission of quantum dots in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren;

    2010-01-01

    We report on the enhancement of the spontaneous emission rate of single semiconductor quantum dots embedded in a photonic crystal waveguide with engineered disorder. Random high-Q cavities, that are signature of Anderson localization, are measured in photoluminescence experiments and appear...

  19. Spontaneous emission effects in optically pumped x-ray FEL

    Energy Technology Data Exchange (ETDEWEB)

    Smetanin, I.V.; Grigor`ev, S.V. [P.N. Lebedev Physics Institute, Moscow (Russian Federation)

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  20. Surface plasmon enhancement of spontaneous emission in graphene waveguides

    Science.gov (United States)

    Cuevas, Mauro

    2016-10-01

    This work analyzes the spontaneous emission of a single emitter placed near the graphene waveguide formed by two parallel graphene monolayers, with an insulator spacer layer. In this case, the eigenmodes supported by the structure, such as surface plasmon and wave guided modes, provide decay channels for the electric dipole placed close to the waveguide. We calculated the contribution to the decay rate of symmetric and antisymmetric eigenmodes as a function of frequency and the orientation of the emitter. Our results show that the modification of the spontaneous emission due to excitation of guided modes is much lower than the corresponding decays through the excitation of symmetric and antisymmetric surface plasmons, for which, the spontaneous emission is dramatically enhanced. As a consequence of the high confinement of surface plasmons in the graphene waveguide, we found that the decay rate of the emitter with vertical orientation (with respect to graphene sheets) is twice the corresponding decay of the same emitter with parallel orientation in the whole frequency range where surface plasmon modes exist. Differently from metallo-dielectric structures, where structural parameters determine the range and magnitude of this emission, our work shows that, by dynamically tuning the chemical potential of graphene, the spectral region where the decay rate is enhanced can be chosen over a wide range.

  1. Emissivity of condensed phases from the spontaneous emission spectrum

    International Nuclear Information System (INIS)

    The method of determining the temperature and spectral emissivity of substances unavailable for direct contact is described. Potentialities of the method were demonstrated using incandescent lamps with emitting filaments made of tungsten, rhenium and tantalum. Accuracy of determination of the temperature and spectral emissivity (in the range of spectrum 0.9-2.1 μm) made up 1 and 10% respectively

  2. "OPERA superluminal neutrinos explained by spontaneous emission and stimulated absorption"

    CERN Document Server

    Torrealba, Rafael

    2011-01-01

    In this work it is shown, that for short 3ns neutrino pulses reported by OPERA, a relativistic shape deforming effect of the neutrino distribution function due to spontaneous emission, produces an earlier arrival of 65.8ns in agreement with the reported 62.1ns\\pm 3.7ns, with a RMS of 16.4ns explaining the apparent superluminal effect. It is also shown, that early arrival of long 10500ns neutrinos pulse to Gran Sasso, by 57.8ns with respect to the speed of light, could be explained by a shape deforming effect due to a combination of stimulated absorption and spontaneous emission, while traveling by the decay tunnel that acts as a LASER tube.

  3. Transformation quantum optics: designing spontaneous emission using coordinate transformations

    International Nuclear Information System (INIS)

    Spontaneous decay is a fundamental quantum property of emitters that can be controlled in a material environment via modification of the local density of optical states (LDOS). Here we use transformation optics methods in order to design required density of states and thus spontaneous emission (SE) rate. Specifically, we show that the SE rate can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of SE. We also discuss how the practical issues, such as dispersion and losses, affect the LDOS in complex materials. Tailoring SE properties using transformation optics approach provides an innovative way for designing emission properties in a complex material environment needed for the development of active nanophotonic devices. (paper)

  4. Are Einstein's transition probabilities for spontaneous emission constant in plasmas?

    Science.gov (United States)

    Griem, H. R.; Huang, Y. W.; Wang, J.-S.; Moreno, J. C.

    1991-01-01

    An investigation is conducted with a ruby laser to experimentally confirm the quenching of spontaneous emission coefficients and propose a mechanism for the phenomenon. Results of previous experiments are examined to determine the consistency and validity of interpretations of the spontaneous emissions. For the C IV 3s-3p and 2s-3p transitions, the line-intensity ratios are found to be dependent on the separation of the laser from the target. Density gradients and Stark broadening are proposed to interpret the results in a way that does not invalidate the Einstein A values. The interpretation is extended to C III and N V, both of which demonstrate similar changes in A values in previous experiments. The apparent quenching of Ar II by photon collisions is explained by Rabi oscillations and power broadening in the argon-ion laser cavity. It is concluded that the changes in A values cannot result from dense plasma effects.

  5. Spontaneous emission enhancement in metal-dielectric metamaterials

    CERN Document Server

    Iorsh, Ivan; Orlov, Alexey; Belov, Pavel; Kivshar, Yuri

    2011-01-01

    We study the spontaneous emission of a dipole emitter imbedded into a layered metal-dielectric metamaterial. We demonstrate ultra-high values of the Purcell factor in such structures due to a high density of states with hyperbolic isofrequency surfaces. We reveal that the traditional effective-medium approach greatly underestimates the value of the Purcell factor due to the presence of an effective nonlocality, and we present an analytical model which agrees well with numerical calculations.

  6. Spectrum in spontaneous emission: Beyond the Weisskopf-Wigner approximation

    International Nuclear Information System (INIS)

    The theory of spontaneous emission presented by Weisskopf and Wigner [V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930)] provides an excellent approximation of the actual decay that atoms undergo on optically allowed transitions. However, the theory cannot be rigorously correct since it leads to a Lorentzian spectrum that extends to negative frequencies. Within the rotating-wave approximation, we derive a closed-form expression for the spectrum that is valid for all frequencies.

  7. General Theory of Spontaneous Emission Near Exceptional Points

    CERN Document Server

    Pick, Adi; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljacic, Marin; Johnson, Steven G

    2016-01-01

    Exceptional points (EPs)---non-Hermitian degeneracies where both the eigenvalues and the eigenvectors coalesce---have recently been realized in various optical systems. Here we present a general theory of spontaneous emission near such degeneracies, where standard mode-expansion methods lead to erroneous divergent results. We show that significant (and finite) enhancements for light-matter interaction can occur in systems with gain, whereas in passive systems the enhancement is at most four-fold. Under special conditions, the emission spectral lineshape near the EP becomes a squared Lorentzian, and the enhancement scales quadratically with the resonance lifetime.

  8. Directive and enhanced spontaneous emission using shifted cubes nanoantenna

    Science.gov (United States)

    Bahari, B.; Tellez-Limon, R.; Kante, B.

    2016-09-01

    Recent studies have demonstrated that nano-patch antennas formed by metallic nanocubes placed on top of a metallic film largely enhance the spontaneous emission rate of quantum emitters due to the confinement of the electromagnetic field in the small nanogap cavity. The popularity of this architecture is, in part, due to the ease in fabrication. In this contribution, we theoretically demonstrate that a dimer formed by two metallic nanocubes embedded in a dielectric medium exhibits enhanced emission rate compared to the nano-patch antenna. Furthermore, we compare the directivity and radiation efficiency of both nanoantennas. From these characteristics, we obtained information about the "material efficiency" and the coupling mismatch efficiency between a dipole emitter and the nanoantenna. These quantities provide a more intuitive insight than the Purcell factor or localized density of states, opening new perspectives in nanoantenna design for ultra-directive light emission.

  9. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  10. Correlated spontaneous emission of fluorescent emitters mediated by single plasmons

    CERN Document Server

    Bouchet, Dorian; Ithurria, Sandrine; Gulinatti, Angelo; Rech, Ivan; Carminati, Rémi; De Wilde, Yannick; Krachmalnicoff, Valentina

    2016-01-01

    Manipulating the spontaneous emission of a fluorescent emitter can be achieved by placing the emitter in a nanostructured environment. A privileged spot is occupied by plasmonic structures that provide a strong confinement of the electromagnetic field, which results in an enhancement of the emitter-environment interaction. While plasmonic nanostructures have been widely exploited to control the emission properties of single photon emitters, performing the coupling between quantum emitters with plasmons poses a huge challenge. In this Letter we report on a first crucial step towards this goal by the observation of correlated emission between a single CdSe/CdS/ZnS quantum dot exhibiting single photon statistics and a fluorescent nanobead located micrometers apart. This is accomplished by coupling both emitters to a silver nanowire. Single-plasmons are created on the latter from the quantum dot, and transfer energy to excite in turn the fluorescent nanobead.

  11. Spontaneous emission spectra from a staggered-array undulator

    International Nuclear Information System (INIS)

    A staggered-array undulator set inside the superconducting solenoid coils is shown to be able to provide high undulator fields larger than the longitudinal magnetic fields, a small undulator period, easy tunability through the solenoid coil current, and compact and easy fabrication. The overall performance characteristics of this undulator were studied mainly with respect to iron and aluminum disk widths, and spontaneous emission spectra through the numerical calculations. The maximum undulator field is found to be obtained for the ratio of the aluminum disk width to the undulator period of 0.45. The line widths (FWHM) of the spontaneous emission spectra, however, do not show Nw-1 dependence on the number of the undulator period Nw for practical beams with a Gaussian distribution, compared with for a single electron. The energy spread among various parameters is seen to play an important role in reducing the FWHM with increase of Nw. The large tunability of the wavelength is proved to cover 6-10 mm by changing the solenoid magnetic field from 0.4 T to 1.6 T. (author)

  12. Spontaneous emission enhancement of colloidal CdSe nanoplatelets

    Science.gov (United States)

    Yang, Zhili; Pelton, Matthew; Waks, Edo

    Colloidal CdS /CdSe/CdS nanoplatelets synthesized recently are high efficient nano-emitters and gain media for nanoscale lasers and other nonlinear optical devices. They are characterized as quantum well structure due to energy gap difference between core CdSe and shell CdS, of which the luminescent wavelength could be tuned precisely by their thickness of growth. However, the influence of environment on the material's optical properties and further enhancement of the emission to implement nanoscale systems remains to be investigated. Here we demonstrate spontaneous emission rate enhancement of these CdSe nanoplatelets coupled to a photonic crystal cavity. We show clearly the photoluminescent spectrum modification of the nanoplatelets emission and an averaged Purcell enhancement factor of 3.1 is achieved when they are coupled to carefully-designed nanobeam photonic crystal cavities compared to the ones on unpatterned surface in our experiment of lifetime measurement. Also the phenomenon of cavity quality factor increasing is observed when increasing intensity of pumping, which attributes to saturable absorption of the nanoplatelets. Our success in enhancement of emission from these nanoplatelets here paves the road to realize actual nanoscale integrated systems such as ultra-low threshold micro-cavity lasers.

  13. Temperature quenching of spontaneous emission in tunnel-injection nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Talalaev, V. G., E-mail: vadimtalalaev@yandex.com; Novikov, B. V. [St. Petersburg State University, Fock Institute of Physics (Russian Federation); Cirlin, G. E. [Russian Academy of Sciences, Academic University, Nanotechnology Center (Russian Federation); Leipner, H. S. [Martin Luther University Halle-Wittenberg, ICMS (Germany)

    2015-11-15

    The spontaneous-emission spectra in the near-IR range (0.8–1.3 μm) from inverted tunnel-injection nanostructures are measured. These structures contain an InAs quantum-dot layer and an InGaAs quantum-well layer, separated by GaAs barrier spacer whose thickness varies in the range 3–9 nm. The temperature dependence of this emission in the range 5–295 K is investigated, both for optical excitation (photoluminescence) and for current injection in p–n junction (electroluminescence). At room temperature, current pumping proves more effective for inverted tunnel-injection nanostructures with a thin barrier (<6 nm), when the apexes of the quantum dots connect with the quantum well by narrow InGaAs straps (nanobridges). In that case, the quenching of the electroluminescence by heating from 5 to 295 K is slight. The quenching factor S{sub T} of the integrated intensity I is S{sub T} = I{sub 5}/I{sub 295} ≈ 3. The temperature stability of the emission from inverted tunnel-injection nanostructures is discussed on the basis of extended Arrhenius analysis.

  14. Cooperative spontaneous emission from volume sources in layered media

    International Nuclear Information System (INIS)

    The classical theory of radiation from a dipole located inside a microcavity is extended to the case of a volume source placed inside a layered medium. Cooperation phenomena that can take place in the spontaneous emission process are taken into account with an approach based on the theory of spatial coherence. Three cases are considered: noncooperation, long-range cooperation, and short-range cooperation. In all these cases, the expressions found for the out coupled power are analytical. As an application of the theory, an Alq3-based organic light emitting diode is analyzed. The optical properties of the device are evaluated and compared for two different types of cathode, one consisting of an Al layer, the other one consisting of an Al/LiF bi-layer. The results found show that the ultra-thin LiF layer significantly improves extraction efficiency

  15. Spontaneous emission enhancement in micropatterned GaN

    Science.gov (United States)

    Niehus, M.; Sanguino, P.; Monteiro, T.; Soares, M. J.; Schwarz, R.

    2004-10-01

    With two interfering pulses from the fourth harmonic of a Nd-YAG laser we burnt a periodic lattice structure into the surface of GaN thin films. The lattice period of this permanent grating could be controlled between less than one and several tens of microns. Above the decomposition threshold, nitrogen evades from the sample surface, and the residual metallic gallium accumulates in the form of tiny droplets at the surfaces. The patterned structure shows structural similarities with microcavities. The question arises if the residual metallic gallium may act as a partially reflecting mirror. To test this hypothesis, we studied the steady-state and transient photoluminescence through the modulation of light emerging from the ubiquitous broad "yellow" photoluminescence band. The microlattice is evidenced by energy-equidistant spontaneous emission enhancement peaks in the steady-state photoluminescence spectra. We suggest that the partial reflection due to the residual metallic gallium leads to the observed enhancement effect.

  16. DC field induced enhancement and inhibition of spontaneous emission in a cavity

    OpenAIRE

    Agarwal, G. S.; Pathak, P. K.

    2003-01-01

    We demonstrate how spontaneous emission in a cavity can be controlled by the application of a dc field. The method is specially suitable for Rydberg atoms. We present a simple argument for the control of emission.

  17. Spontaneous emission and the operation of invisibility cloaks

    Science.gov (United States)

    Morshed Behbahani, Mina; Amooghorban, Ehsan; Mahdifar, Ali

    2016-07-01

    As a probe to explore the ability of invisibility cloaks to conceal objects in the quantum mechanics domain, we study the spontaneous emission rate of an excited two-level atom in the vicinity of an ideal invisibility cloaking. On this base, first, a canonical quantization scheme is presented for the electromagnetic field interacting with atomic systems in an anisotropic, inhomogeneous, and absorbing magnetodielectric medium which can suitably be used for studying the influence of arbitrary invisibility cloak on the atomic radiative properties. The time dependence of the atomic subsystem is obtained in the Schrodinger picture. By introducing a modified set of the spherical wave-vector functions, the Green tensor of the system is calculated via exact and discrete methods. In this formalism, the decay rate and as well the emission pattern of the aforementioned atom are computed analytically for both weak and strong coupling interaction, and then numerically calculations are done to demonstrate the performances of cloaking in the quantum mechanics domain. Special attention is paid to different possible orientations and locations of the atomic system near the spherical invisibility cloaking. Results in the presence and the absence of the invisibility cloak are compared. We find that the cloak works very well far from its resonance frequency to conceal a macroscopic object, whereas at near the resonance frequency the object is more visible than the situation where the object is not covered by the cloak.

  18. Broadband enhancement of spontaneous emission in a photonic-plasmonic structure

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xie, Fengxian; Shi, Lei;

    2012-01-01

    We demonstrate that a broadband enhancement of spontaneous emission can be achieved within a photonic-plasmonic structure. The structure can strongly modify the spontaneous emission by exciting plasmonic modes. Because of the excited plasmonic modes, an enhancement up to 30 times is observed, lea...

  19. Suppression of spontaneous emission for two-dimensional GaAs photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Summary form only given. Spontaneous emission represents a loss mechanism that fundamentally limits the performance of semiconductor lasers. The rate of spontaneous emission may, however, be controlled by a new class of periodic dielectric structures known as photonic crystals. Although a three...

  20. Spontaneous emission noise in long-range surface plasmon polariton waveguide based optical gyroscope.

    Science.gov (United States)

    Wang, Yang-Yang; Zhang, Tong

    2014-01-01

    Spontaneous emission noise is an important limit to the performance of active plasmonic devices. Here, we investigate the spontaneous emission noise in the long-range surface plasmon-polariton waveguide based optical gyroscope. A theoretical model of the sensitivity is established to study the incoherent multi-beam interference of spontaneous emission in the gyroscope. Numerical results show that spontaneous emission produces a drift in the transmittance spectra and lowers the signal-to-noise-ratio of the gyroscope. It also strengthens the shot noise to be the main limit to the sensitivity of the gyroscope for high propagation loss. To reduce the negative effects of the spontaneous emission noise on the gyroscope, an external feedback loop is suggested to estimate the drift in the transmittance spectra and therefor enhance the sensitivity. Our work lays a foundation for the improvement of long-range surface plasmon-polariton gyroscope and paves the way to its practical application.

  1. Efficient computation of spontaneous emission dynamics in arbitrary photonic structures

    Science.gov (United States)

    Teimourpour, M. H.; El-Ganainy, R.

    2015-12-01

    Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second quantization. Consequently, spontaneous emission (SE) in arbitrary photonic media is often described by Fock space Hamiltonians. Here, we present a real space formulation of the SE process that can capture the physics of the problem accurately under different coupling conditions. Starting from first principles, we map the unitary evolution of a dressed two-level quantum emitter onto the problem of electromagnetic radiation from a self-interacting complex harmonic oscillator. Our formalism naturally leads to an efficient computational scheme of SE dynamics using finite difference time domain method without the need for calculating the photonic eigenmodes of the surrounding environment. In contrast to earlier investigations, our computational framework provides a unified numerical treatment for both weak and strong coupling regimes alike. We illustrate the versatility of our scheme by considering several different examples.

  2. Efficient computation of spontaneous emission dynamics in arbitrary photonic structures

    International Nuclear Information System (INIS)

    Defining a quantum mechanical wavefunction for photons is one of the remaining open problems in quantum physics. Thus quantum states of light are usually treated within the realm of second quantization. Consequently, spontaneous emission (SE) in arbitrary photonic media is often described by Fock space Hamiltonians. Here, we present a real space formulation of the SE process that can capture the physics of the problem accurately under different coupling conditions. Starting from first principles, we map the unitary evolution of a dressed two-level quantum emitter onto the problem of electromagnetic radiation from a self-interacting complex harmonic oscillator. Our formalism naturally leads to an efficient computational scheme of SE dynamics using finite difference time domain method without the need for calculating the photonic eigenmodes of the surrounding environment. In contrast to earlier investigations, our computational framework provides a unified numerical treatment for both weak and strong coupling regimes alike. We illustrate the versatility of our scheme by considering several different examples. (paper)

  3. Single Photon Subradiance: Quantum control of spontaneous emission and ultrafast readout

    OpenAIRE

    Scully, Marlan O.

    2015-01-01

    Recent work has shown that collective single photon emission from an ensemble of resonate two-level atoms, i.e. single photon superradiance, is a rich field of study. The present paper addresses the flip side of superradiance, i.e. subradiance. Single photon subradiant states are potentially stable against collective spontaneous emission and can have ultrafast readout. In particular it is shown how many atom collective effects provide a new way to control spontaneous emission by preparing and...

  4. Nanopillar arrays on semiconductor membranes as electron emission amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Qin Hua; Kim, Hyun-Seok; Blick, Robert H [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 (United States)], E-mail: QIN1@WISC.EDU, E-mail: hqin2007@sinano.ac.cn

    2008-03-05

    A new transmission-type electron multiplier was fabricated from silicon-on-insulator (SOI) material by integrating an array of one-dimensional (1D) silicon nanopillars onto a two-dimensional (2D) silicon membrane. Primary electrons are injected into the nanopillar-membrane (NPM) system from the flat surface of the membrane, while electron emission from the nanopillars is probed by an anode. The secondary electron yield (SEY) from the nanopillars in the current device is found to be about 1.8 times that of the plain silicon membrane. This gain in electron number is slightly enhanced by the electric field applied from the anode. Further optimization of the dimensions of the NPM and an application of field emission promise an even higher gain for detector applications and allow for probing of electronic/mechanical excitations in an NPM system stimulated by incident particles or radiation.

  5. Nanopillar Arrays on Semiconductor Membranes as Electron Emission Amplifiers

    OpenAIRE

    Qin, Hua; Kim, Hyun-Seok; Blick, Robert H.

    2007-01-01

    A new transmission-type electron multiplier was fabricated from silicon-on-insulator (SOI) material by integrating an array of one dimensional (1D) silicon nanopillars onto a two dimensional (2D) silicon membrane. Primary electrons are injected into the nanopillar-membrane system from the flat surface of the membrane, while electron emission from the other side is probed by an anode. The secondary electron yield (SEY) from nanopillars is found to be about 1.8 times that of plane silicon membr...

  6. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity

    CERN Document Server

    Midolo, L; Hoang, T B; Xia, T; van Otten, F W M; Li, L H; Linfield, E; Lermer, M; Höfling, S; Fiore, A

    2012-01-01

    We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting the exciton energies. A spontaneous emission enhancement of 4.5 has been achieved with a coupling efficiency of the dot to the mode 92%.

  7. To decay or not to decay - or both ! quantum mechanics of spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper

    2008-01-01

    We discuss calculations of spontaneous emission from quantum dots in photonic crystals and show how the decay depends on the intrinsic properties of the emitter as well as the position. A number of fundamentally different types of spontaneous decay dynamics are shown to be possible, including...... counter intuitive situations in which the quantum dot decays only partially....

  8. Quantum control of population inversion in the presence of spontaneous emission

    OpenAIRE

    Schirmer, S. G.; Greentree, Andrew D.; Solomon, A. I.

    2001-01-01

    The detrimental effect of spontaneous emission on the performance of control schemes designed to achieve population inversion between the ground state and a highly excited atomic state are studied using computer simulations.

  9. Spontaneous Emission from a Driven Atom Embedded in a Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    XIE Shuang-Yuan; YANG Ya-Ping; CHENG Hong; ZHU Shi-Yao; WU Xiang

    2000-01-01

    The properties of the spontaneous emission from a three-level atom with an external driving field in a photonic crystal are studied. The population in the two upper levels displays complete decay or oscillatory behavior,depending on the initial atomic state and the relative position of the two upper levels from the forbidden gap.The intensity and the phase of the external field can also affect spontaneous emission from the atom.

  10. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris;

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  11. Spontaneous emission control of single quantum dots by electromechanical tuning of a photonic crystal cavity

    OpenAIRE

    Midolo, L.; Pagliano, F.; Hoang, T.B.; Xia, T; van Otten, F. W. M.; Li, L. H.; Linfield, E. H.; Lermer, M.; Höfling, S.; Fiore, A.

    2012-01-01

    We demonstrate the control of the spontaneous emission rate of single InAs quantum dots embedded in a double-membrane photonic crystal cavity by the electromechanical tuning of the cavity resonance. Controlling the separation between the two membranes with an electrostatic field we obtain the real-time spectral alignment of the cavity mode to the excitonic line and we observe an enhancement of the spontaneous emission rate at resonance. The cavity has been tuned over 13 nm without shifting th...

  12. Spontaneous emission control of single quantum dots in bottom-up nanowire waveguides

    OpenAIRE

    Bulgarini, Gabriele; Reimer, Michael E.; Zehender, Tilman; Hocevar, Moïra; Bakkers, Erik P. A. M.; Kouwenhoven, Leo P.; Zwiller, Valery

    2012-01-01

    Nanowire waveguides with controlled shape are promising for engineering the collection efficiency of quantum light sources. We investigate the exciton lifetime in individual InAsP quantum dots, perfectly positioned on-axis of InP nanowire waveguides. We demonstrate control over the quantum dot spontaneous emission by varying the nanowire diameter in e-beam patterned arrays, which modifies the coupling efficiency of the emitter to the fundamental waveguide mode. The spontaneous emission rate i...

  13. Modulation response of quantum dot nanolight-emitting-diodes exploiting purcell-enhanced spontaneous emission

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Gregersen, Niels; Lorke, Michael;

    2011-01-01

    The modulation bandwidth for a quantum dot light-emitting device is calculated using a detailed model for the spontaneous emission including the optical and electronic density-of-states. We show that the Purcell enhancement of the spontaneous emission rate depends critically on the degree of...... inhomogeneous broadening relative to the cavity linewidth and can improve the modulation speed only within certain parameter regimes....

  14. Scanning Emitter Lifetime Imaging Microscopy for Spontaneous Emission Control

    DEFF Research Database (Denmark)

    Frimmer, Martin; Chen, Yuntian; Koenderink, A. Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nanophotonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment whi...

  15. Effi›cient and broadband spontaneous emission control in fiber-like photonic nanowires

    DEFF Research Database (Denmark)

    Claudon, Julien; Munsch, Mathieu; Bleuse, Joël;

    Funneling a large fraction of the spontaneous emission (SE) of a quantum emitter into a single optical mode is a powerful strategy for improving the brightness of quantum light sources or developing an efficient spin-photon interface. In the solid state, preferential emission into a single...

  16. STUDY OF THE GAMMA EMISSION PROBABILITY ACCOMPANYING THE SPONTANEOUS FISSION OF CF-252

    NARCIS (Netherlands)

    VANDERPLOEG, H; LAURENS, CR; BACELAR, JCS; BUDA, A; GAARDHOJE, JJ; VANTHOF, G; KALANTARNAYESTANAKI, N; VANDERWOUDE, A; ZELAZNY, Z

    1994-01-01

    A study of the gamma emission accompanying the spontaneous fission process of Cf-252 has been performed. The photon emission probability between 3 and 70 MeV and its angular dependence with respect to the fission direction were measured. These measurements were performed as a function of the mass as

  17. Effects of spontaneous otoacoustic emissions on pure-tone frequency difference limens

    DEFF Research Database (Denmark)

    Hansen, Rói; Santurette, Sébastien; Verhulst, Sarah

    2014-01-01

    Pure-tone frequency difference limens (FDLs) have been shown to vary in the vicinity of spontaneous otoacoustic emissions (SOAEs). As lower FDLs have been observed near SOAEs when measured ipsi- and contralaterally to the emission ear, it has been proposed that prolonged ongoing stimulation of ne...

  18. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    International Nuclear Information System (INIS)

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism

  19. Modeling and Simulations of Electron Emission from Diamond-Amplified Cathodes

    International Nuclear Information System (INIS)

    Emission of electrons from a diamond-amplified cathode was recently demonstrated. This experiment was based on a promising new concept for generation of high-current, high-brightness, and low thermal emittance electron beams. The measurements from transmission and emission experiments have shown the potential to realize the diamond-amplified cathode concept. However, the results indicate that the involved physical properties should be understood in greater detail to build diamond cathodes with optical properties. We have already made progress in understanding the secondary electron generation and charge transport in diamond with the models we implemented in the VORPAL computational framework. We have been implementing models for electron emission from diamond and will present results from 3D VORPAL simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, propagation of the charge clouds, and then the emission of electrons into diamond. We will discuss simulation results on the dependence of the electron emission on diamond surface properties.

  20. Controlling spontaneous emission of a two-level atom by hyperbolic metamaterials

    CERN Document Server

    Liu, Zheng; Jiang, Xunya

    2012-01-01

    Within the frame of quantum optics we analyze the properties of spontaneous emission of two-level atom in media with indefinite permittivity tensor where the geometry of the dispersion relation is characterized by an ellipsoid or a hyperboloid(hyperbolic medium). The decay rate is explicitly given with the orientation of the dipole transition matrix element taken into account. It indicates that for the ellipsoid case the intensity of the photons coupled into different modes can be tuned by changing the direction of the matrix element and for the hyperboloid case it is found that spontaneous emission in hyperbolic medium can be dramatically enhanced compared to the dielectric background. Moreover, spontaneous emission exhibit the strong directivity and get the maximum in the asymptote direction.

  1. Scanning emitter lifetime imaging microscopy for spontaneous emission control

    CERN Document Server

    Frimmer, Martin; Koenderink, A Femius

    2011-01-01

    We report an experimental technique to map and exploit the local density of optical states of arbitrary planar nano-photonic structures. The method relies on positioning a spontaneous emitter attached to a scanning probe deterministically and reversibly with respect to its photonic environment while measuring its lifetime. We demonstrate the method by imaging the enhancement of the local density of optical states around metal nanowires. By nano-positioning, the decay rate of a pointlike source of fluorescence can be reversibly and repeatedly changed by a factor of two by coupling it to the guided plasmonic mode of the wire.

  2. Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers

    DEFF Research Database (Denmark)

    Lester, Christian; Bjarklev, Anders Overgaard; Rasmussen, Thomas;

    1995-01-01

    A model for Yb3+-sensitized Er3+-doped silica waveguide amplifiers is described and numerically investigated in the small-signal regime. The amplified spontaneous emission in the ytterbium-band and the quenching process between excited erbium ions are included in the model. For pump wavelengths...... between 860 and 995 nm, the amplified spontaneous emission in the ytterbium-band is found to reduce both the gain and the optimum length of the amplifier significantly. The achievable gain of the Yb3+-sensitized amplifier is found to be higher than in an Er3+-doped silica waveguide without Yb 3+ (18 d...

  3. Atomic spatial coherence with spontaneous emission in a strong coupling cavity

    CERN Document Server

    Fang, Zhen; Zhou, Xiaoji; Chen, Xuzong

    2010-01-01

    The role of spontaneous emission in the interaction between a two-level atom and a pumped micro-cavity in the strong coupling regime is discussed in this paper. Especially, using a quantum Monte-Carlo simulation, we investigate atomic spatial coherence. It is found that atomic spontaneous emission destroys the coherence between neighboring lattice sites, while the cavity decay does not. Furthermore, our computation of the spatial coherence function shows that the in-site locality is little affected by the cavity decay, but greatly depends on the cavity pump amplitude.

  4. Plasmonic phase-gradient metasurface for spontaneous emission control

    Science.gov (United States)

    Langguth, L.; Schokker, A. H.; Guo, K.; Koenderink, A. F.

    2015-11-01

    We combine the concept of phase-gradient metasurfaces with fluorescence directionality control of an ensemble of incoherent emitters. We design a periodic metasurface to control the scattering amplitude of the lattice in momentum space. The lattice is embedded in a waveguiding layer doped with organic fluorophores. In contrast to the usual symmetric directionality that plasmonic lattices impart on emission, we find that the phase gradient translates into asymmetric directional emission into the far field, determined by scattering on a subset of the reciprocal lattice vectors. The measured asymmetry is well explained by analytical modeling.

  5. Influence of local field on spontaneous light emission by nanoparticles

    DEFF Research Database (Denmark)

    Keller, Ole; Lozovski, V.; Iezhokin, I.

    2009-01-01

    A self-consistent approach based on the local-field concept has been proposed to calculate the direction patterns of light emission by nanoparticles with various shapes. The main idea of the method consists in constructing self-consistent equations for the electromagnetic field at any point of th...

  6. Controlling the Spontaneous Emission Rate of Monolayer MoS$_2$ in a Photonic Crystal Nanocavity

    CERN Document Server

    Gan, Xuetao; Mak, Kin Fai; Yao, Xinwen; Shiue, Ren-Jye; van der Zande, Arend; Trusheim, Matthew; Hatami, Fariba; Heinz, Tony F; Hone, James; Englund, Dirk

    2013-01-01

    We report on controlling the spontaneous emission (SE) rate of a molybdenum disulfide (MoS$_2$) monolayer coupled with a planar photonic crystal (PPC) nanocavity. Spatially resolved photoluminescence (PL) mapping shows strong variations of emission when the MoS$_2$ monolayer is on the PPC cavity, on the PPC lattice, on the air gap, and on the unpatterned gallium phosphide substrate. Polarization dependences of the cavity-coupled MoS$_2$ emission show a more than 5 times stronger extracted PL intensity than the un-coupled emission, which indicates an underlying cavity mode Purcell enhancement of MoS$_2$ SE rate exceeding a factor of 70.

  7. Do perceptual consequences of spontaneous otoacoustic emissions reflect a central plasticity effect?

    DEFF Research Database (Denmark)

    Hansen, Rói; Santurette, Sébastien; Verhulst, Sarah

    Frequency difference limens (FDLs) have been found to improve in the vicinity of spontaneous otoacoustic emissions (SOAEs). This effect has been observed ipsilaterally and contralaterally to the emission ear, suggesting that prolonged ongoing stimulation of nerve cells tuned to the SOAE frequency...... by continuous ipsilateral presentation of a pure tone aimed at emulating an SOAE. These findings suggest a peripheral rather than central plasticity origin for perceptual consequences of SOAEs....

  8. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures

    CERN Document Server

    Filter, Robert; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-01-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.

  9. Optical instabilities and spontaneous light emission in moving media

    Science.gov (United States)

    Silveirinha, Mario

    2015-03-01

    We show that when an uncharged plasmonic material is set in relative motion with respect to another uncharged polarizable body the system may be electromagnetically unstable. Particularly, when the relative velocity of the two bodies is enforced to remain constant the system may support natural oscillations that grow exponentially with time, even in presence of realistic material loss and dispersion. It is proven that a friction-type force acts on the moving bodies to oppose their relative motion. Hence, the optical instabilities result from the conversion of kinetic energy into electromagnetic energy. This new purely classical phenomenon is analogous to the Cherenkov and Smith-Purcell effects but for uncharged polarizable matter. We link the optical instabilities to a spontaneous parity-time symmetry breaking of the system, and demonstrate the possibility of optical amplification of a light pulse in the broken parity-time symmetry regime. This work is supported in part by Fundação para a Ciência e a Tecnologia Grant Number PTDC/EEI-TEL/2764/2012.

  10. Linearly Polarized, Single-Mode Spontaneous Emission in a Photonic Nanowire

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Claudon, Julien; Bleuse, Joël;

    2012-01-01

    We introduce dielectric elliptical photonic nanowires to funnel efficiently the spontaneous emission of an embedded emitter into a single optical mode. Inside a wire with a moderate lateral aspect ratio, the electromagnetic environment is largely dominated by a single guided mode, with a linear...

  11. Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission

    DEFF Research Database (Denmark)

    Skovgård, Troels Suhr; Gregersen, Niels; Yvind, Kresten;

    2010-01-01

    The modulation bandwidth of quantum well nanoLED and nanolaser devices is calculated from the laser rate equations using a detailed model for the Purcell enhanced spontaneous emission. It is found that the Purcell enhancement saturates when the cavity quality-factor is increased, which limits...

  12. Large spontaneous-emission enhancements in metallic nanostructures: towards LEDs faster than lasers.

    Science.gov (United States)

    Tsakmakidis, Kosmas L; Boyd, Robert W; Yablonovitch, Eli; Zhang, Xiang

    2016-08-01

    Recent progress in the design and realization of optical antennas enclosing fluorescent materials has demonstrated large spontaneous-emission enhancements and, simultaneously, high radiation efficiencies. We discuss here that an important objective of such work is to increase spontaneous-emission rates to such a degree that light-emitting diodes (LEDs) can possess modulation speeds exceeding those of typical semiconductor lasers, which are usually in the range ~20-50 GHz. We outline the underlying physics that enable large spontaneous-emission enhancements in metallic nanostructures, and we then discuss recent theoretical and experimentally promising results, where enhancements larger than a factor of ~300 have been reported, with radiation efficiencies exceeding 50%. We provide key comparative advantages of these structures in comparison to conventional dielectric microcavity designs, namely the fact that the enhancement of spontaneous emission can be relatively nonresonant (i.e., broadband) and that the antenna nanostructures can be spectrally and structurally compatible for integration with a wide class of emitters, including organic dyes, diamond nanocrystals and colloidal quantum dots. Finally, we point out that physical insight into the underlying effects can be gained by analyzing these metallic nanostructures in their equivalent-circuit (or nano-antenna) model, showing that all main effects (including the Purcell factor) can adequately be described in that approach. PMID:27505759

  13. Global change could amplify fire effects on soil greenhouse gas emissions.

    Directory of Open Access Journals (Sweden)

    Audrey Niboyet

    Full Text Available BACKGROUND: Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. METHODOLOGY/PRINCIPAL FINDINGS: We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2 concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2O emissions in a grassland ecosystem. We examined the responses of soil N(2O emissions, as well as the responses of the two main microbial processes contributing to soil N(2O production--nitrification and denitrification--and of their main drivers. We show that the fire disturbance greatly increased soil N(2O emissions over a three-year period, and that elevated CO(2 and enhanced nitrogen supply amplified fire effects on soil N(2O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2 and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence.

  14. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu,Q.

    2008-10-01

    The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent

  15. Spontaneous Muon Emission during Fission, a New Nuclear Radioactivity

    OpenAIRE

    Ion, D. B.; Ion, M. L. D.; Ion-Mihai, Reveica

    2011-01-01

    In this paper the essential theoretical predictions for the nuclear muonic radioactivity are presented by using a special fission-like model similar with that used in description of the pionic emission during fission. Hence, a fission-like model for the muonic radioactivity takes into account the essential degree of freedom of the system: muon-fissility, muon-fission barrier height, etc. Using this model it was shown that most of the SHE-nuclei lie in the region where the muonic fissility par...

  16. X-ray spontaneous emission control by 1-dimensional photonic bandgap structure

    OpenAIRE

    André, Jean-Michel; Jonnard, Philippe

    2010-01-01

    Paper available at http://epjd.edpsciences.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/epjd/abs/2010/06/d09549/d09549.html International audience The possibility of controlling the X-ray spontaneous emission of atoms embedded in a 1-dimensional photonic bandgap structure by the so-called Purcell effect, is studied. Calculations of the spontaneously emitted power are presented from Fermi's golden rule in the framework of the Wigner-time approach extended to ...

  17. Gain media edge treatment to suppress amplified spontaneous emission in a high power laser

    Science.gov (United States)

    Hackel, Lloyd A.; Soules, Thomas F.; Fochs, Scott N.; Rotter, Mark D.; Letts, Stephan A.

    2008-12-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. By roughening one or more peripheral edges of a solid-state crystal or ceramic laser gain media and by bonding such edges using a substantially high index bonding elastomer or epoxy to a predetermined electromagnetic absorbing arranged adjacent to the entire outer surface of the peripheral edges of the roughened laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  18. Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): spectral details and temperature dependence.

    Science.gov (United States)

    van Dijk, P; Wit, H P; Segenhout, J M

    1989-11-01

    Spontaneous otoacoustic emissions were recorded in 41 ears of 29 European edible frogs (Rana esculenta). Emission frequencies ranged from 450 to 1350 Hz. The distribution of frequencies shows two distinct populations: one above and one below 1 kHz. With one exception, a maximum number of two emissions were recorded per ear, each in a different population. An amplitude distribution of a frog emission was sampled, from which it was concluded that the emission is generated by an active oscillator. The spectral width of an emission ranged from 1 to 200 Hz (average 38 Hz). There was negative correlation between sound pressure level of an emission and spectral width. In 4 frogs the dependence of emission power and frequency on temperature was investigated. An emission could be 'switched on and off' within a few degrees centigrade. At temperatures below the switching interval no emission was recorded; for higher temperatures emission power showed no dependence on temperature. Frequency increased with temperature (Q10 = 1.1 to 1.3). This yields a mismatch with temperature dependence of best frequencies of auditory fibers. The consequences of this mismatch are discussed. PMID:2691473

  19. Controlling spontaneous emission rates of quantum dots with plasmonic nanopatch antennas

    Science.gov (United States)

    Hoang, Thang; Akselrod, Gleb; Argyropoulos, Christos; Huang, Jiani; Smith, David; Mikkelsen, Maiken

    2015-03-01

    The radiative processes associated with quantum emitters can be strongly enhanced due to intense electromagnetic fields created by plasmonic nanostructures. Here, we experimentally demonstrate large enhancements of the spontaneous emission rate of colloidal quantum dots coupled to single plasmonic nanopatch antennas. The antennas consist of silver nanocubes (75 nm) coupled to a gold film separated by a thin polyelectrolyte spacer layer (~1 nm) and core-shell CdSe/ZnS quantum dots (~6 nm). By optimizing the size of the nanopatch antenna, the plasmonic mode is tuned to be on resonance with the quantum dot emission. We show an increase in the spontaneous emission rate by a factor of 880 (Purcell factor) and a 2300-fold enhancement in the total fluorescence while maintaining a high radiative quantum efficiency of ~50 %. The nanopatch antenna, as demonstrated here, offers highly directional and broadband radiation that can be tailored for emitters from the visible to the near infrared, providing a promising approach for the spontaneous emission control of single quantum emitters.

  20. Amplified Emission and Field-Effect Transistor Characteristics of One-Dimensionally Structured 2,5-Bis(4-biphenylyl)thiophene Crystals.

    Science.gov (United States)

    Hashimoto, Kazumasa; Sasaki, Fumio; Hotta, Shu; Yanagi, Hisao

    2016-04-01

    One-dimensional (1D) structures of 2,5-bis(4-biphenylyl)thiophene (BP1T) crystals are fabricated for light amplification and field-effect transistor (FET) measurements. A strip-shaped 1D structure (10 µm width) made by photolitography of a vapor-deposited polycrystalline film shows amplified spontaneous emission and lasing oscillations under optical pumping. An FET fabricated with this 1D structure exhibits hole-conduction with a mobility of µh = 8.0 x 10(-3) cm2/Vs. Another 1 D-structured FET is fabricated with epitaxially grown needle-like crystals of BP1T. This needle-crystal FET exhibits higher mobility of µh = 0.34 cm2/Vs. This improved hole mobility is attributed to the single-crystal channel of epitaxial needles while the grain boudaries in the polycrystalline 1 D-structure decrease the carrier transport. PMID:27451604

  1. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials.

    Science.gov (United States)

    Schulz, K Marvin; Vu, Hoan; Schwaiger, Stephan; Rottler, Andreas; Korn, Tobias; Sonnenberg, David; Kipp, Tobias; Mendach, Stefan

    2016-08-19

    We experimentally demonstrate the enhancement of the spontaneous emission rate of GaAs quantum wells embedded in rolled-up metamaterials. We fabricate microtubes whose walls consist of alternating Ag and (In)(Al)GaAs layers with incorporated active GaAs quantum-well structures. By variation of the layer thickness ratio of the Ag and (In)(Al)GaAs layers we control the effective permittivity tensor of the metamaterial according to an effective medium approach. Thereby, we can design samples with elliptic or hyperbolic dispersion. Time-resolved low temperature photoluminescence spectroscopy supported by finite-difference time-domain simulations reveal a decrease of the quantum well's spontaneous emission lifetime in our metamaterials as a signature of the crossover from elliptic to hyperbolic dispersion.

  2. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    Science.gov (United States)

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  3. Controlling the Spontaneous Emission Rate of Quantum Wells in Rolled-Up Hyperbolic Metamaterials

    Science.gov (United States)

    Schulz, K. Marvin; Vu, Hoan; Schwaiger, Stephan; Rottler, Andreas; Korn, Tobias; Sonnenberg, David; Kipp, Tobias; Mendach, Stefan

    2016-08-01

    We experimentally demonstrate the enhancement of the spontaneous emission rate of GaAs quantum wells embedded in rolled-up metamaterials. We fabricate microtubes whose walls consist of alternating Ag and (In)(Al)GaAs layers with incorporated active GaAs quantum-well structures. By variation of the layer thickness ratio of the Ag and (In)(Al)GaAs layers we control the effective permittivity tensor of the metamaterial according to an effective medium approach. Thereby, we can design samples with elliptic or hyperbolic dispersion. Time-resolved low temperature photoluminescence spectroscopy supported by finite-difference time-domain simulations reveal a decrease of the quantum well's spontaneous emission lifetime in our metamaterials as a signature of the crossover from elliptic to hyperbolic dispersion.

  4. Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; HU Xiang-Ming; SHI Wen-Xing

    2009-01-01

    It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime.Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement.It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime,while is washed out in the deep saturation regime.

  5. Spatially adjusted spontaneous emissions from photonic crystals embedded light-emitting diodes

    Science.gov (United States)

    Yin, Yu-Feng; Lin, Yen-Chen; Liu, Yi-Chen; Chiang, Hai-Pang; Huang, JianJang

    2014-09-01

    In this work, the angular light output enhancements of LEDs were investigated from the spontaneous emission and light scattering of devices with different photonic crystal (PhC) geometries. The emitted photon coupled into a leaky mode is differentiated by the manipulation of the quality factor in various spatial frequencies. Therefore, light extraction in this light-emitting device is determined by the modal extraction lengths and the quality factor obtained from the measured photonic bands. Furthermore, the higher- and lower-order mode spontaneous emissions are affected by the nonradiative process in the PhC structures with different periods. In our cases, the photonic crystal device with the largest period of 500 nm exhibits the highest lower-order mode extraction and quality factor. As a result, a self-collimation behavior toward the surface-normal is demonstrated in the 3D far-field pattern of such a device. We conclude that, with the coherent light scattering from the PhC region, the spontaneous emission of the material and spatial behavior of the extracted mode can be both managed by the proper design of the device.

  6. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  7. Spontaneous otoacoustic emissions in an active nonlinear cochlear model in the time domain

    Science.gov (United States)

    Fruth, Florian; Jülicher, Frank; Lindner, Benjamin

    2015-12-01

    A large fraction of human cochleas emits sounds even in the absence of external stimulation. These so-called spontaneous otoacoustic emissions (SOAEs) are a hallmark of the active nonlinear amplification process taking place in the cochlea. Here, we extend a previously proposed frequency domain model and put forward an active nonlinear one-dimensional model of the cochlea in the time domain describing human SOAEs [5]. In our model, oscillatory elements are close to an instability (Hopf bifurcation), they are subject to dynamical noise and coupled by hydrodynamic, elastic and dissipative interactions. Furthermore, oscillators are subject to a weak spatial irregularity in their activity (normally distributed and exponentially correlated in space) that gives rise to the individuality of each simulated cochlea. Our model captures main statistical features of the distribution of emission frequencies, the distribution of the numbers of emissions per cochlea, and the distribution of the distances between neighboring emissions as were previously measured in experiment [14].

  8. Observation of modulated spontaneous emission of Rhodamine 6G in low refractive index contrast 1D-periodic gelatin film

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The modulation of the spontaneous emission of Rhodamine 6G has been observed in one-dimensional periodic dielectric structure of dichromated gelatin film with refractive index contrast as low as 0.01. The spontaneous emission is enhanced at the band edges and inhibits in the band gap, which agree well with the theoretical analysis on the redistribution of the fractional local density of optical states.

  9. Spontaneous emission spectrum of a three-level atom embedded in photonic crystal

    Institute of Scientific and Technical Information of China (English)

    刘国强; 王健; 张汉壮

    2005-01-01

    The two models of three-level (one upper level and two lower levels, or two upper levels and one lower level) atom embedded in a double-band photonic crystal are adopted. The atomic transitions from the upper levels to the lower levels are assumed to be coupled by the same reservoir which are respectively the isotropic photonic band gap (PBG)modes, the anisotropic PBG modes and the free vacuum modes. The effects of the fine structure of the atomic ground state levels in the model with one upper level and two lower levels, and the quantum interferences in the model with two upper levels and one lower level on the spontaneous emission spectrum of an atom are investigated in detail. Most interestingly, it is shown that new spontaneous emission lines are produced from the fine splitting of atomic ground state levels in the isotropic PBG case. The quantum interferences induce additional narrow spontaneous lines near the transition from the empty upper level to the lower level.

  10. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  11. Electrical control of spontaneous emission and strong coupling for a single quantum dot

    DEFF Research Database (Denmark)

    Laucht, A.; Hofbauer, F.; Hauke, N.;

    2009-01-01

    from individual dots can be tuned by4 meV relative to the nanocavity mode before the emission quenches due to carrier tunneling escape. This range is much larger than the typical linewidth of the high-Q cavity modes (100μeV) allowing us to explore and contrast regimes where the dots couple to the...... cavity or decay by spontaneous emission into the two-dimensional photonic bandgap. In the weak-coupling regime, we show that the dot spontaneous emission rate can be tuned using a gate voltage, with Purcell factors>7. New information is obtained on the nature of the dot–cavity coupling in the weak...... coupling regime, and electrical control of zerodimensional polaritons is demonstrated for the highest-Q cavities (Q > 12 000). Vacuum Rabi splittings up to 120μeV are observed, larger than the linewidths of either the decoupled exciton ( 6 40μeV) or cavity mode. These observations represent a voltage...

  12. Teleporting the one-qubit state via two-level atoms with spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-05-14

    We study quantum teleportation via two two-level atoms coupled collectively to a multimode vacuum field and prepared initially in different atomic states. We concentrated on the influence of the spontaneous emission, collective damping and dipole-dipole interaction of the atoms on fidelity dynamics of quantum teleportation and obtained the region of spatial distance between the two atoms over which the state can be teleported nonclassically. Moreover, we showed through concrete examples that entanglement of the channel state is the prerequisite but not the only essential quantity for predicting the teleportation fidelity.

  13. Studies on a one-dimensional model for the spontaneous emission in the semiclassical approximation

    International Nuclear Information System (INIS)

    Some generalization are made on the spontaneous emission by a plane of excited atoms, described by two level atom-model, in the Δ1=1, Δm=1, transition and using the semiclassical radiation approximation -both discussed in the text. Initially, the radiation rate of an infinite plane of excited atoms is investigated, using Δ1=0, Δm=0, transition. It is shown that we can observe a limit solution depending on the coupling between field and matter. (author)

  14. Using a squeezed field to protect two-atom entanglement against spontaneous emissions

    International Nuclear Information System (INIS)

    Tunable interaction between two atoms in a cavity is realized by interacting the two atoms with an extra controllable single-mode squeezed field. Such a controllable interaction can be further used to control entanglement between the two atoms against amplitude damping decoherence caused by spontaneous emissions. For the independent amplitude damping decoherence channel, entanglement will be lost completely without controls, while it can be partially preserved by the proposed strategy. For the collective amplitude damping decoherence channel, our strategy can enhance the entanglement compared with the uncontrolled case when the entanglement of the uncontrolled stationary state is not too large

  15. Extracting Oscillation Frequencies in Spontaneous Emission Rate of an Atom Between Two Mirrors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-Jun; DU Meng-Li

    2007-01-01

    For an atom in a medium with refractive index n sandwiched between two parallel mirrors, we derive an analytical formula for the spontaneous emission rate based on Fermi's golden rule. The oscillations are not transparent in this formula. By performing Fourier transform on scaling variable measuring system size while holding system configuration fixed, we extracted the frequencies of many oscillations in this system. We show that these oscillations correspond to emitted photon closed-orbits going away from and returning to the emitting atom.

  16. Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bronn, Nicholas T., E-mail: ntbronn@us.ibm.com; Hertzberg, Jared B.; Córcoles, Antonio D.; Gambetta, Jay M.; Chow, Jerry M. [IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Liu, Yanbing; Houck, Andrew A. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-26

    The ability to perform fast, high-fidelity readout of quantum bits (qubits) is essential to the goal of building a quantum computer. However, coupling a fast measurement channel to a superconducting qubit typically also speeds up its relaxation via spontaneous emission. Here, we use impedance engineering to design a filter by which photons may easily leave the resonator at the cavity frequency but not at the qubit frequency. We implement this broadband filter in both an on-chip and off-chip configuration.

  17. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    Science.gov (United States)

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  18. Experimental studies on the impact of ASE noise of single-channel optical amplifiers in central office applications

    Institute of Scientific and Technical Information of China (English)

    zheng zheng(郑铮)

    2004-01-01

    We identified the amplified spontaneous emission-amplified spontaneous emission (ASE-ASE) beat noise from the semiconductor optical amplifier, which has been overlooked in previous studies, as a cause of severe system penalties when it was used to provide single-channel amplification in a dynamic central office environment through experimental studies. Our results pointed out that the ASE-ASE beat noise of the optical amplifier, other than its gain and noise figure, has to be considered to correctly predict its performance in these new applications.

  19. Detailed theoretical and experimental investigation of high-gain erbium-doped fiber amplifier

    DEFF Research Database (Denmark)

    Pedersen, Bo; Dybdal, Kristen; Dam-Hansen, Carsten;

    1990-01-01

    A full-scale numerical model for the erbium-doped fiber amplifier has been developed that incorporates realistic index and erbium-concentration profiles as well as the spectral distribution of amplified spontaneous emission (ASE). The high accuracy of the model is demonstrated by comparison with a...

  20. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated.

  1. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    Science.gov (United States)

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated. PMID:19714043

  2. Study of a high and low pressure plasma produced in a He-N2 mixture: application to spontaneous emissions by radiative collisions

    International Nuclear Information System (INIS)

    This thesis is centered on the study of the energy transfer from helium metastable atoms to ground state nitrogen molecules by the process of radiative collisions. Experimental techniques employed include the analysis of spontaneous emission from the reaction: He(23S)+N2(X,v=0) → He(11S)+(N2sup(R)(B,v'=4,5) → N2sup(R)(X,v'')+hω), where R indicates highly excited nitrogen Rydberg states. As the lower level Rydberg states are autoionizing, the net effect of the radiative collision is identical that of Penning ionization where the Rydberg to states are intermediates. The results of this study lend support to the validity of a radiative collision based laser amplifier model proposed in the thesis

  3. On the spontaneous emission of electromagnetic radiation in the CSL model

    International Nuclear Information System (INIS)

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded

  4. On the spontaneous emission of electromagnetic radiation in the CSL model

    Energy Technology Data Exchange (ETDEWEB)

    Donadi, Sandro, E-mail: sandro.donadi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste (Italy); Deckert, Dirk-André, E-mail: deckert@math.ucdavis.edu [Department of Mathematics, University of California, One Shields Ave, 95616 Davis (United States); Bassi, Angelo, E-mail: bassi@ts.infn.it [Department of Physics, University of Trieste, Strada Costiera 11, 34151 Trieste (Italy); Istituto Nazionale di Fisica Nucleare, Trieste Section, Via Valerio 2, 34127 Trieste (Italy)

    2014-01-15

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle’s state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013). -- Highlights: •We compute the electromagnetic radiation emission in collapse models. •Under only the dipole approximation, the equations of motion are solved exactly. •The electromagnetic interaction must be treated exactly. •In order to obtain the correct emission rate the particle must be bounded.

  5. On the spontaneous emission of electromagnetic radiation in the CSL model

    Science.gov (United States)

    Donadi, Sandro; Deckert, Dirk-André; Bassi, Angelo

    2014-01-01

    Spontaneous photon emission in the Continuous Spontaneous Localization (CSL) model is studied one more time. In the CSL model each particle interacts with a noise field that induces the collapse of its wave function. As a consequence of this interaction, when the particle is electrically charged, it radiates. As discussed in Adler (2013) the formula for the emission rate, to first perturbative order, contains two terms: one is proportional to the Fourier component of the noise field at the same frequency as that of the emitted photon and one is proportional to the zero Fourier component of the noise field. As discussed in previous works, this second term seems unphysical. In Adler (2013) it was shown that the unphysical term disappears when the noise is confined to a bounded region and the final particle's state is a wave packet. Here we investigate the origin of this unphysical term and why it vanishes according to the previous prescription. We will see that perturbation theory is formally not valid in the large time limit since the effect of the noise accumulates continuously in time. Therefore either one performs an exact calculation (or at least in some way includes higher order terms) as we do here, or one finds a way to make a perturbative calculation meaningful, e.g., by confining the system as in Adler (2013).

  6. Temperature enhancement of Xe(L) x-ray amplifier (λ ∼ 2.9 A) emission

    International Nuclear Information System (INIS)

    Cooling of the xenon nozzle flow to T = 230 K produces three leading effects. They are (1) a ∼2.5-fold enhancement of the Xe(L) hollow atom emission on the single-vacancy 3d → 2p charge state arrays (2) the production of amplifying self-trapped plasma channels with significantly enhanced lengths and (3) very sharply augmented emission on (2s-bar2p-bar) Xe(L) double-vacancy transitions in the λ ≅ 2.80 A region. (fast track communication)

  7. Frequency-dependent spontaneous emission rate from CdSe and CdTe nanocrystals: Influence of dark states

    DEFF Research Database (Denmark)

    van Driel, A. F.; Allan, G.; Delerue, C.;

    2005-01-01

    We studied the rate of spontaneous emission from colloidal CdSe and CdTe nanocrystals at room temperature. The decay rate, obtained from luminescence decay curves, increases with the emission frequency in a supralinear way. This dependence is explained by the thermal occupation of dark exciton...... states at room temperature, giving rise to a strong attenuation of the rate of emission. The supralinear dependence is in agreement with the results of tight-binding calculations....

  8. Epitaxy, phase separation and band-edge emission of spontaneously formed InGaN nanorods

    Science.gov (United States)

    De, Arpan; Shivaprasad, S. M.

    2016-09-01

    An In-flux dependent study of the nature of epitaxy, compositional phase separation and band-edge emission of spontaneously formed c-oriented InGaN nanorods on c-sapphire is performed. At higher In flux-rates, m-faceted thick nanorods (≈700 nm) form with two in-plane epitaxial orientations, and display compositional phases with In composition varying from 14 to 63%. In these rods, photo-luminescent (PL) emission is seen to originate only from the localized high-In phase (63%) that is embedded in the low-In (14%) InGaN matrix. As the In flux-rate is reduced, nanorods of smaller diameter (≈60 nm) and a coalesced nanorod network are formed, with In incorporation of 15% and 9%, respectively. These faceted, c-aligned thinner nanorods are of a single compositional phase and epitaxy and display room-temperature PL emission. Optical absorption and emission properties of these nanostructures follow Vegard’s law of band-gaps, and the observed bowing parameter and Stokes shifts correlate to the observed compositional inhomogeneity and carrier localization.

  9. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  10. Cooling molecular vibrations with shaped laser pulses: Optimal control theory exploiting the timescale separation between coherent excitation and spontaneous emission

    CERN Document Server

    Reich, Daniel M

    2013-01-01

    Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck-Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative deexcitation steps whose timescales are separated.

  11. Decay of stimulated and spontaneous emission in highly excited homoepitaxial GaN

    Energy Technology Data Exchange (ETDEWEB)

    Jursenas, S.; Kurilcik, N.; Kurilcik, G.; Zukauskas, A.; Prystawko, P.; Leszcynski, M.; Suski, T.; Perlin, P.; Grzegory, I.; Porowski, S.

    2001-06-11

    The high-density effects in the recombination of electron{endash}hole plasma in photoexcited homoepitaxial GaN epilayers were studied by means of transient photoluminescence at room temperature. Owing to the {open_quotes}backward{close_quotes} and {open_quotes}lateral{close_quotes} photoluminescence measurement geometries employed, the influence of stimulated transitions on the decay of degenerate nonthermalized plasma was revealed. The lateral stimulated emission was demonstrated to cause a remarkable increase in the recombination rate on the early stage of the luminescence transient. A delayed enhancement of the stimulated emission due to the cooling of plasma from the initial temperature of 1100 K was observed. After completion of the thermalization process and exhaustion of the stimulated emission, the spontaneous-luminescence decay exhibited an exponential slope that relates to the nonradiative recombination of the carriers. The homoepitaxially grown GaN layer featured a luminescence decay time of 445 ps that implies a room-temperature free-carrier lifetime of 890 ps (considered to be extremely high for undoped hexagonal GaN). {copyright} 2001 American Institute of Physics.

  12. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    Science.gov (United States)

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  13. New nuclear decay modes by spontaneous and beta-enhanced emission of heavy ions

    International Nuclear Information System (INIS)

    The analytical variant of the superasymmetric fussion model (ASAFM) is improved to include shell effects in the zero point vibration energy. In this way better agreement with experimental half-lives for 380 β emitters, 14C radioactivity of 222Ra and the spontaneous fission of uranium isotopes is obtained. The lifetimes of trans-lead nuclides in the range 1010-1030s are estimated for more than 150 emitted heavy ions with atomic numbers smaller than 25. The shell structure and the oddeven effects are cleary manifested in these new decay modes. One way to enhance the emission rates for these processes is to use α-decaying precursors populating excited levels from which quantum mechanical tunneling goes faster. (authors)

  14. Modal theory of modified spontaneous emission for a hybrid plasmonic photonic-crystal cavity system

    CERN Document Server

    Dezfouli, Mohsen Kamandar; Hughes, Stephen

    2016-01-01

    We present an analytical modal description of the rich physics involved in hybrid plasmonic-photonic devices that is confirmed by full dipole solutions of Maxwell's equations. Strong frequency-dependence for the spontaneous emission decay rate of a quantum dipole emitter coupled to these hybrid structures is predicted. In particular, it is shown that the Fano-type resonances reported experimentally in hybrid plasmonic systems, arise from a very large interference between dominant quasinormal modes of the systems in the frequency range of interest. The presented model forms an efficient basis for modelling quantum light-matter interactions in these complex hybrid systems and also enables the quantitativ prediction and understanding of non-radiative coupling losses.

  15. Spontaneous hot-electron light emission from electron-fed optical antennas

    CERN Document Server

    Buret, Mickael; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-01-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanos...

  16. Three-body entanglement induced by spontaneous emission in a three two-level atoms system

    Institute of Scientific and Technical Information of China (English)

    Liao Xiang-Ping; Fang Mao-Fa; Zheng Xiao-Juan; Cai Jian-Wu

    2006-01-01

    We study three-body entanglement induced by spontaneous emission in a three two-level atoms system by using the entanglement tensor approach. The results show that the amount of entanglement is strongly dependent on the initial state of the system and the species of atoms. The three-body entanglement is the result of the coherent superposition of the two-body entanglements. The larger the two-body entanglement is, the stronger the three-body entanglement is. On the other hand, if there exists a great difference in three two-body entanglement measures, the three-body entanglement is very weak. We also find that the maximum of the two-body entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms via adjusting the difference in atomic frequency.

  17. Emission from quantum-dot high- microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    CERN Document Server

    Kreinberg, S; Wolters, J; Schneider, C; Gies, C; Jahnke, F; Höfling, S; Kamp, M; Reitzenstein, S

    2016-01-01

    Measured and calculated results are presented on the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots and distinguishing feature of having substantial fraction of spontaneous emission channeled into one cavity mode (high-beta factor). This paper shows that the usual criterion for lasing with a conventional (low-beta factor) cavity, a sharp nonlinearity in an input-output curve accompanied by noticeable linewidth narrowing, has to be reinforced by the equal-time second-order photon autocorrelation function for confirming lasing. It will also show that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high- microcavities operating with quantum dots. In terms of consolidating the collected data and identifying the physi...

  18. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes

    Science.gov (United States)

    Sarpkaya, Ibrahim; Zhang, Zhengyi; Walden-Newman, William; Wang, Xuesi; Hone, James; Wong, Chee W.; Strauf, Stefan

    2013-07-01

    The bright exciton emission of carbon nanotubes is appealing for optoelectronic devices and fundamental studies of light-matter interaction in one-dimensional nanostructures. However, to date, the photophysics of excitons in carbon nanotubes is largely affected by extrinsic effects. Here we perform time-resolved photoluminescence measurements over 14 orders of magnitude for ultra-clean carbon nanotubes bridging an air gap over pillar posts. Our measurements demonstrate a new regime of intrinsic exciton photophysics with prolonged spontaneous emission times up to T1=18 ns, about two orders of magnitude better than prior measurements and in agreement with values hypothesized by theorists about a decade ago. Furthermore, we establish for the first time exciton decoherence times of individual nanotubes in the time domain and find fourfold prolonged values up to T2=2.1 ps compared with ensemble measurements. These first observations motivate new discussions about the magnitude of the intrinsic dephasing mechanism while the prolonged exciton dynamics is promising for applications.

  19. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates

    CERN Document Server

    Birowosuto, M D; Yokoo, A; Takiguchi, M; Notomi, M

    2014-01-01

    We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO2), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive index materials of Si. Experimentally, the inhibition factor $\\zeta$ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO2 and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

  20. Analysis of optical amplifier noise in coherent optical communication systems with optical image rejection receivers

    DEFF Research Database (Denmark)

    Jørgensen, Bo Foged; Mikkelsen, Benny; Mahon, Cathal J.

    1992-01-01

    performance. Two types of optical image rejection receivers are investigated: a novel, all-optical configuration and the conventional, microwave-based configuration. The analysis shows that local oscillator-spontaneous emission beat noise (LO-SP), signal-spontaneous emission beat noise (S-SP), and spontaneous......-spontaneous beat noise (SP-SP) can all be reduced by 3 dB, thereby doubling the dynamic range of the optical amplifier. A 2.5-dB improvement in dynamic range has been demonstrated experimentally with the all-optical image rejection configuration. The implications of the increased dynamic range thus obtained...

  1. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories.

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang

    2016-02-01

    A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories.

  2. Spontaneous emission dynamics in an omnidirectional waveguide made of photonic crystals

    Science.gov (United States)

    Huang, Chih-Hsien; Cheng, Szu-Cheng; Wu, Jing-Nuo; Hsieh, Wen-Feng

    2011-06-01

    The spontaneous emission dynamics of atoms embedded in an omnidirectional waveguide (ODWG), a novel optical waveguide, is studied on the basis of the complete reflection of one-dimensional photonic crystals. With the dispersion curve of the single waveguide mode within the photonic band gap and various extents of background dissipation, we characterize the photon-atom interaction in the ODWG. The photon emitter of the system is a two-level atom embedded in the low-index medium of the multilayer-film ODWG or the atom-ODWG system. Fractional calculus, an innovative mathematical method in optical systems, is applied to solve the equation of motion for this atom-ODWG system. Two kinds of states with different group velocities exhibit totally distinctive dynamical behavior. The high frequency waveguide mode with a fast group velocity shows fast exponential decay in propagation while the band-edge mode with a slow group velocity displays non-Markovian dynamics with non-exponential oscillating time evolution. We therefore suggest different functions of this atom-ODWG system for these two kinds of states. The richness of the physical content of the system is also revealed through investigating the dynamical behavior of the band-edge mode. These results aid in further application and fundamental understanding of the atom-ODWG system.

  3. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement

    Science.gov (United States)

    Hoffmann, Björn; Vassant, Simon; Chen, Xue-Wen; Götzinger, Stephan; Sandoghdar, Vahid; Christiansen, Silke

    2015-10-01

    Plasmonic antennas are attractive nanostructures for a large variety of studies ranging from fundamental aspects of light-matter interactions at the nanoscale to industry-relevant applications such as ultrasensitive sensing, enhanced absorption in solar cells or solar fuel generation. A particularly interesting feature of these antennas is that they can enhance the fluorescence properties of emitters. Theoretical calculations have shown that nanocone antennas provide ideal results, but a high degree of manufacturing precision and control is needed to reach optimal performance. In this study, we report on the fabrication of nanocones with base diameters and heights in the range of 100 nm with variable aspect ratios using focused ion beam milling of sputtered nano-crystalline gold layers. The controlled fabrication process allows us to obtain cones with tailored plasmon resonances. The measured plasmon spectra show very good agreement with finite-difference time-domain calculations. Theoretical investigations predict that these nanocones can enhance the spontaneous emission rate of a quantum emitter by several hundred times while keeping its quantum efficiency above 60%.

  4. Gain and noise properties of small-signal erbium-doped fiber amplifiers pumped in the 980-nm band

    DEFF Research Database (Denmark)

    Pedersen, B.; Chirravuri, J.; Miniscalco, W. J.

    1992-01-01

    The authors have experimentally and theoretically investigated the effects of detuning the pump wavelength on the gain and noise properties of small-signal, erbium-doped fiber amplifiers codirectionally pumped in the 980-nm band. While the pump wavelength can be varied over a wide range with little...... impact on the gain, a noise penalty is incurred. For amplifiers saturated by amplified spontaneous emission, it is possible to increase the gain by detuning the pump wavelength...

  5. Modification of spontaneous emission rate of micrometer-sized light sources using hollow-core photonic crystal fibers

    Institute of Scientific and Technical Information of China (English)

    Lu Jiao-Hua; Meng Zi-Ming; Liu Hai-Ying; Feng Tian-Hua; Dai Qiao-Feng; Wu Li-Jun; Gun Qi; Hu Wei; Lan Sheng

    2009-01-01

    We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometer. sized light sources embedded in a hollow-core photonic crystal fiber(HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by canillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.

  6. Calculation of spontaneous emission from a V-type three-level atom in photonic crystals using fractional calculus

    International Nuclear Information System (INIS)

    Fractional time derivative, an abstract mathematical operator of fractional calculus, is used to describe the real optical system of a V-type three-level atom embedded in a photonic crystal. A fractional kinetic equation governing the dynamics of the spontaneous emission from this optical system is obtained as a fractional Langevin equation. Solving this fractional kinetic equation by fractional calculus leads to the analytical solutions expressed in terms of fractional exponential functions. The accuracy of the obtained solutions is verified through reducing the system into the special cases whose results are consistent with the experimental observation. With accurate physical results and avoiding the complex integration for solving this optical system, we propose fractional calculus with fractional time derivative as a better mathematical method to study spontaneous emission dynamics from the optical system with non-Markovian dynamics.

  7. Detailed Study of the Angular Correlations in the Prompt Neutron Emission in Spontaneous Fission of 252Cf

    Science.gov (United States)

    Kopatch, Yu.; Chietera, A.; Stuttgé, L.; Gönnenwein, F.; Mutterer, M.; Gagarski, A.; Guseva, I.; Chernysheva, E.; Dorvaux, O.; Hambsch, F.-J.; Hanappe, F.; Mezentseva, Z.; Telezhnikov, S.

    An experiment has been performed at IPHC Strasbourg, aimed at the detailed investigation of angular correlations in the neutron emission from spontaneous fission of 252Cf. Fission fragments were measured by the angle-sensitive double ionization chamber CODIS while neutrons were detected by a set of 60 DEMON scintillator counters. The main aim of the experiment is the observation of the correlation between the fragment spins and neutron emission anisotropy. Preliminary results, based on the Monte-Carlo simulations, as well as the preliminary analysis of the experimental data are shown.

  8. Correspondence Between Oscillations and Emitted Photon Closed-Orbits in Spontaneous Emission Rate of an Atom Near a Dielectric Slab

    Institute of Scientific and Technical Information of China (English)

    YUN Su-Jun; WANG Fu-He; ZHOU Yun-Song; DU Meng-Li

    2007-01-01

    We study the oscillations in the spontaneous emission rate of an atom near a dielectric slab. The emission rate is calculated as a function of system size using quantum electrodynamics. It exhibits multi-periodic oscillations.Four frequencies of the oscillations are extracted by Fourier transforms. They agree with actions of photon closed-orbits going away and returning to the atom. These oscillations are explained as manifestations of quantum interference effects between the emitted photon wave near the atom and the returning photon waves travelling along various closed-orbits.

  9. Spontaneous Emission Enhancement from polymer-embedded colloidal PbS Nanocrystals into Si-based photonics at telecom wavelengths

    CERN Document Server

    Humer, Markus; Jantsch, Wolfgang; Fromherz, Thomas

    2013-01-01

    We experimentally demonstrate the coupling of optically excited PbS nanocrystal (NC) photoluminescence (PL) into Si-based ring resonators and waveguides at 300K. The PbS NCs are dissolved into Novolak polymer at various concentrations and applied by drop-casting. The coupling mechanism and the spontaneous emission enhancement are experimentally investigated and compared to theoretical predictions. Quality (Q) factors of 2500 were obtained in emission and transmission for wavelengths centered around 1.45{\\mu}m. PL intensity shows a linear dependence on the excitation power and no degradation of the Q factors. Devices with stable optical properties are obtained by this versatile technique.

  10. Amplification of supercontinuum by semiconductor and Er-doped fiber optical amplifiers

    International Nuclear Information System (INIS)

    We demonstrated selective amplification of supercontinuum ultrashort optical pulses around 1300-nm and 1550-nm bands by injecting a supercontinuum source into a semiconductor optical amplifier (SOA) and an erbium-doped fiber amplifier (EDFA), respectively. The broadband supercontinuum source was obtained by coupling femtosecond Ti:Sapphire laser pulses into a dual zero-dispersion wavelengths nonlinear photonic crystal fiber. The amplified supercontinuum has fully utilized the gain bandwidth of SOA and EDFA. However, the CW background amplified spontaneous emission increases as a result of the reflection at fiber ends to cause noisy pulse train

  11. Spontaneous emission intensity and anisotropy of quantum dot films in proximity to nanoscale photonic–plasmonic templates

    Science.gov (United States)

    Indukuri, Chaitanya; Basu, J. K.

    2016-07-01

    We discuss results on spontaneous emission intensity and lifetime anisotropy of cadmium selenide quantum dot monolayer films placed in close proximity to a porous block copolymer based photonic–plasmonic two dimensional array. The porous block copolymer cylinders can be filled with metal nanoparticles and the concentration of these nanoparticles is varied to control both the photoluminescence intensity and lifetime of a layer of quantum dots placed above the template. Significant emission enhancement is achieved even for the quantum dot layer whose core lies about 1 nm above the template surface. Interestingly, polarised decay lifetime analysis indicates considerable emission anisotropy, as well for these quantum dots. Our results thus demonstrates how such hybrid optical materials can be created with controlled optical properties and suggests extension of this method to other novel two dimensional materials in combination with the photonic–plasmonic template.

  12. Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm

    OpenAIRE

    Palma, Giuseppe; Bia, Pietro; Mescia, Luciano; Yano, Tetsuji; Nazabal, Virginie; Taguchi, Jun; Moréac, Alain; Prudenzano, Francesco

    2013-01-01

    A mid-IR amplifier consisting of a tapered chalcogenide fiber coupled to an Er3+-doped chalcogenide microsphere has been optimized via a particle swarm optimization (PSO) approach. More precisely, a dedicated three-dimensional numerical model, based on the coupled mode theory and solving the rate equations, has been integrated with the PSO procedure. The rate equations have included the main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important...

  13. Modeling of Mid-IR Amplifier Based on an Erbium-Doped Chalcogenide Microsphere

    OpenAIRE

    P. Bia; Di Tommaso, A; De Sario, M.

    2012-01-01

    An optical amplifier based on a tapered fiber and an Er3+-doped chalcogenide microsphere is designed and optimized. A dedicated 3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable...

  14. Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides

    DEFF Research Database (Denmark)

    Chen, Yuntian; Nielsen, Torben Roland; Gregersen, Niels;

    2010-01-01

    We develop a self-consistent finite-element method to quantitatively study spontaneous emission from emitters in nanoscale proximity of plasmonic waveguides. In the model, it is assumed that only one guided mode is dominatingly excited by the quantum emitter, while the cross section...... of the plasmonic waveguide can be arbitrary. The fraction of the energy coupled to the plasmonic mode can be calculated exactly, which can be used to determine the efficiency with which single optical plasmons are generated. We apply our numerical method to calculate the coupling of a quantum emitter...

  15. Effect of Quantum Interference from Incoherent Pumping Field and Spontaneous Emission on Controlling the Optical Bistability and Multi-Stability

    Institute of Scientific and Technical Information of China (English)

    H.R.Hamedi; Ali Sari; M.Sahrai; S.H.Asadpour

    2013-01-01

    Optical bistability (OB) and optical multi-stability (OM) of a four-level A-type atomic system with two fold lower levels inside a unidirectional ring cavity is investigated.The effect of quantum interference arising from spontaneous emission and incoherent pumping on OB and OM is discussed.It is found that the threshold of OB and OM can be controlled by quantum interference mechanisms.In addition intensity of coupling field and the rate of an incoherent pumping field on behavior of OB and OM are then discussed.

  16. Time-resolved measurement of a self-amplified free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuelin E-mail: ylli@aps.anl.gov; Lewellen, John; Huang Zhirong; Sajaev, Vadim; Milton, S.V

    2003-07-11

    We report on a time-resolved measurement of self-amplified spontaneous emission free-electron laser (FEL) pulses. We observed that the spikes in such FEL pulses have an intrinsic positive chirp and the energy chirp in the electron bunch mapped directly into the FEL output. The measurement also provides rich information on the statistics of the FEL pulses.

  17. 30W, 1178nm Yb-doped photonic bandgap fiber amplifier

    DEFF Research Database (Denmark)

    Shirakawa, Akira; Maruyama, Hiroki; Ueda, Ken-ichi;

    2009-01-01

    High-power, high-efficiency ytterbium-doped solid-core photonic-bandgap fiber amplification at the long-wavelength edge of the Yb gain band is reported. Amplified-spontaneous-emission-free, 30W nonpolarized and 25W linearly-polarized 1178nm outputs have been achieved with

  18. Quantum limited noise figure operation of high gain erbium doped fiber amplifiers

    DEFF Research Database (Denmark)

    Lumholt, Ole; Povlsen, Jørn Hedegaard; Schüsler, Kim;

    1993-01-01

    Performance improvements obtained by using an isolator as an amplified-spontaneous-emission-suppressing component within erbium-doped fibers are evaluated. Simultaneous high-gain and near-quantum-limited noise figures can be obtained by such a scheme. The noise figure improves for input signal...

  19. Spontaneous and light-induced photon emission from intact brains of chick embryos

    Institute of Scientific and Technical Information of China (English)

    张锦珠; 于文斗; 孙彤

    1997-01-01

    Photon emission (PE) and light-induced photon emission(LPE) of intact brains isolated from chick embryos have been measured by using the single photon counting device. Experimental results showed that the intensi-ty level of photon emission was detected to be higher from intact brain than from the medium in which the brain was immerged during measuring, and the emission intensity was related to the developmental stages, the healthy situation of the measured embryos, and the freshness of isolated brains as well. After white light illumination, a short-life de-layed emission from intact brains was observed, and its relaxation behavior followed a hyperbolic rather than an expo-nential law. According to the hypothesis of biophoton emission originating from a delocalized coherent electromagnetic field and Frohlich’s idea of coherent long-range interactions in biological systems, discussions were made on the signifi-cance of photon emission in studying cell communication, biological regulation, living system’

  20. Spontaneous emission and the operation of invisibility cloaks: Can the invisibility cloaks render objects invisible in quantum mechanic domain?

    CERN Document Server

    Behbahani, Mina Morshed; Mahdifar, Ali

    2016-01-01

    As a probe to explore the ability of invisibility cloaks to conceal objects in the quantum mechanics domain, we study the spontaneous emission rate of an excited two-level atom in the vicinity of an ideal invisibility cloaking. On this base, first, a canonical quantization scheme is presented for the electromagnetic field interacting with atomic systems in an anisotropic, inhomogeneous and absorbing magnetodielectric medium which can suitably be used for studying the influence of arbitrary invisibility cloak on the atomic radiative properties. The time dependence of the atomic subsystem is obtained in the Schrodinger picture. By introducing a modified set of the spherical wave vector functions, the Green tensor of the system is calculated via the continuous and discrete methods. In this formalism, the decay rate and as well the emission pattern of the aforementioned atom are computed analytically for both weak and strong coupling interaction, and then numerically calculations are done to demonstrate the perfo...

  1. Optically amplified free-space optical communication systems

    OpenAIRE

    Aladeloba, Abisayo Olufemi

    2013-01-01

    This thesis investigates terrestrial atmospheric FSO communication systems operating under the influence of turbulence-induced scintillation, beam spreading, optical interchannel crosstalk, amplified spontaneous emission noise and pointing errors. On-off keying-non–return-to-zero (OOK-NRZ) and digital pulse position (DPPM) are the modulation schemes used for the calculations. The possibility of using sophisticated performance evaluation techniques such as moment generating function (MGF)-...

  2. High power, continuous-wave, single frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    OpenAIRE

    Stappel, M.; Steinborn, R.; Kolbe, D.; Walz, J

    2012-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52 %. Two different approaches of frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 and up...

  3. Finite-time deviations from exponential decay in the Weisskopf-Wigner model of spontaneous emission

    International Nuclear Information System (INIS)

    For the first time to the authors' knowledge, a mathematically rigorous method is used for treating finite-time deviations from the exponential decay in the case of spontaneous Lyman-α transition in a two-level hydrogenic atom. In the so-called Weisskopf-Wigner model (where the rotating-wave approximation is implied), finite-time deviations with a rigorous validity range, based on accurate error estimations, are derived. (orig.)

  4. Coherence optimization of vertical-cavity semiconductor optical amplifiers

    Science.gov (United States)

    Sanchez, Michael; Wen, Pengyue; Gross, Matthias; Kibar, Osman; Esener, Sadik C.

    2002-06-01

    Vertical cavity semiconductor optical amplifiers (VCSOAs) are attractive devices for use in coherent optical amplification, especially where 2-D amplifier arrays are required. However, the coherence preservation quality of a VCSOA depends strongly on the bias condition, resonant wavelength mismatch, and the optical input power level. We characterize the coherence degree of a VCSOA as a function of these parameters by measuring interference fringe visibility with an interferometer. The dominant factors influencing the contrast of the fringes are the ratio of coherent, stimulated emission photons to amplified spontaneous emission (ASE) photons, and the spectral distortion of the amplified signal. Mostly, the overall gain and the saturation characteristic of the amplifier determine the ratio of stimulated emission to ASE. The spectral distortion of the signal is due to the narrow gain window of the VCSOA, but the effect significantly degrades the visibility only for relatively large wavelength mismatch from the gain peak. Analytic expressions may be used to identify the optimal bias current and optical input power to maximize the amplifier gain and visibility of the interference.

  5. Spontaneous Ultra-Weak Photon Emission from Human Hands Is Time Dependent

    Directory of Open Access Journals (Sweden)

    R. V. Wijk

    2007-06-01

    Full Text Available Ultra-weak photon emission in the visible range was measured on palm and dorsal side of left and right hand by means of a low noise photomultiplier system. To study the dynamics of this photon emission in a 24 h period photon emission was recorded in 2 h intervals in 5 experiments, utilizing strict protocols for dark adaptation and recording of subjects. Fluctuations in photon emission in the course of 24 h period were demonstrated for each anatomic location. Mean photon emission over the 24 h period differed both between subjects and hand locations. To detect a pattern in the fluctuations the mean value for each location of each subject in each experiment was utilized to calculate fluctuations during the course of 24 h for each anatomical location. The fluctuations in photon emission in the course of 24 h were more at dorsal sides than palm sides. The correlation between fluctuations in palm and dorsal side was not apparent. During the 24 h period a change in left-right symmetry occurred for the dorsal side but not for the palm of the hands. Photon emission at the left dorsal location was high at night, while the right dorsal side emitted most during the day. It is concluded that a daily rhythm in photon emission can be recorded from both the dorsal and palm sides of the hands.

  6. Using Spontaneous Emission of a Qubit as a Resource for Feedback Control

    Science.gov (United States)

    Campagne-Ibarcq, P.; Jezouin, S.; Cottet, N.; Six, P.; Bretheau, L.; Mallet, F.; Sarlette, A.; Rouchon, P.; Huard, B.

    2016-08-01

    Persistent control of a transmon qubit is performed by a feedback protocol based on continuous heterodyne measurement of its fluorescence. By driving the qubit and cavity with microwave signals whose amplitudes depend linearly on the instantaneous values of the quadratures of the measured fluorescence field, we show that it is possible to stabilize permanently the qubit in any targeted state. Using a Josephson mixer as a phase-preserving amplifier, it was possible to reach a total measurement efficiency η =35 %, leading to a maximum of 59% of excitation and 44% of coherence for the stabilized states. The experiment demonstrates multiple-input multiple-output analog Markovian feedback in the quantum regime.

  7. Influence of dielectric microcavity on the spontaneous emission rate of atom: a perspective on the closed-orbit theory of photons

    Institute of Scientific and Technical Information of China (English)

    Shubao Wang; Xueyou Xu; Hongyun Li; Zhengmao Jia; Shenglu Lin

    2008-01-01

    The formulas of the quantum electrodynamics have been applied to calculate the spontaneous emission rate of excited atom in dielectric microcavity.The results exhibit damping oscillating Patterns which depend sensitively on the scaling parameter and geometrical structure.Compared with the case that the emitting atom is immersed in dielectric,the spontaneous emission rate is depressed obviously and the center or the mean value of the oscillations is intimately related to the real refractive index of the local position where the atom is.In order to explain this phenomenon,we utilize the closed-orbit theory to deal with the classical trajectories of the emitted photon.and extract the corresponding frequencies of the oscillations by Fourier transform.It is found that the oscillations can be represented in terms of the closed-orbits of the photon motion constrained in dielectric microcavity,thus providing another perspective on the spontaneous emission of atom sandwiched by dielectric slabs.

  8. Neutron emission as a function of fragment energy in the spontaneous fission of 260Md

    International Nuclear Information System (INIS)

    The authors have made the first measurement of the number of neutrons emitted in the spontaneous fission of a nuclide in which very high fragment energies dominate the fission process. In bombardments of 254Es, they produced 28-d 260Md, which was neutron-counted in a 1-m-diam spherical tank containing a Gd-doped scintillator solution. The average number of neutrons emitted per fission is only 2.58 ± 0.11, substantially less than for other actinides. A direct correlation of neutron multiplicity with fragment excitation energy is clearly demonstrated

  9. Pulsed pumped Yb-doped fiber amplifier at low repetition rate

    Institute of Scientific and Technical Information of China (English)

    Changgeng Ye; Ping Yan; Mali Gong; Ming Lei

    2005-01-01

    A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.

  10. Off-axis multipass amplifier as a large aperture driver stage for fusion lasers.

    Science.gov (United States)

    Murray, J E; Downs, D C; Hunt, J T; Hermes, G L; Warren, W E

    1981-03-01

    A multipass amplifier configuration is described which has potential as a large aperture, high gain driver stage for fusion laser systems. We avoid the present limitations of large aperture switches by using an off-angle geometry that does not require an optical switch. The saturated gain characteristics of this multipass amplifier are optimized numerically. Three potential problems are investigated experimentally, self-lasing, output beam quality, and amplified spontaneous emission output. The results indicate comparable cost for comparable performance to a linear chain, with some operational advantage for the multipass driver stage. PMID:20309212

  11. Noise Gain Features of Fiber Raman Amplifier

    Directory of Open Access Journals (Sweden)

    Georgii S. Felinskyi

    2016-01-01

    Full Text Available The formation dynamics of the optical noise in a silica single mode fiber (SMF as function of the pump power variation in the counter pumped fiber Raman amplifier (FRA is experimentally studied. The ratio between the power of amplified spontaneous emission and the power of incoherent optical noise is quantitatively determined by detailed analysis of experimental data in the pump powers range of 100–300 mW within the full band of Stokes frequencies, including FRA working wavelengths over the C + L transparency windows. It is found out the maximum of Raman gain coefficient for optical noise does not exceed ~60% of corresponding peak at the gain profile maximum of coherent signal. It is shown that the real FRA noise figure may be considerably less than 3 dB over a wide wavelength range (100 nm at a pump power of several hundreds of mW.

  12. Broadband 1.5-μm emission of erbium-doped TeO2-WO3-Nb2O5 glass for potential WDM amplifier

    Institute of Scientific and Technical Information of China (English)

    Shiqing Xu(徐时清); Shixun Dai(戴世勋); Junjie Zhang(张军杰); Lili Hu(胡丽丽); Zhonghong Jiang(姜中宏)

    2004-01-01

    @@ Erbium-doped glass showing the wider 1.5-/μm emission band is reported in a novel oxide system TeO2-WO3-Nb2O5 and their thermal stability and optical properties such as absorption,emission spectra,cross-sections and fluorescence lifetime were investigated.Compared with other glass hosts,the gain bandwidthproperties of Er3+ in TWN glass is close to that of bismuth glasses,and larger than those of tellurite,germanatc,silicate and phosphate glasses.The broad and flat 4I13/2 → 4I15/2 emission and the largestimulated emission cross-section of Er3+ ions around 1.5 μm can be used as host material for potentialbroadband optical amplifier in the wavelength-division-multiplexing(WDM)network system.

  13. Terahertz-range spontaneous emission under the optical excitation of donors in uniaxially stressed bulk silicon and SiGe/Si heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhukavin, R. Kh., E-mail: zhur@ipmras.ru; Kovalevsky, K. A.; Orlov, M. L.; Tsyplenkov, V. V.; Bekin, N. A.; Yablonskiy, A. N.; Yunin, P. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, S. G. [German Aerospace Center (DLR), Institute of Planetary Research (Germany); Abrosimov, N. V. [Leibniz Institute for Crystal Growth (Germany); Hübers, H.-W. [German Aerospace Center (DLR), Institute of Planetary Research (Germany); Radamson, H. H. [Royal Institute of Technology (KTH) (Sweden); Shastin, V. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-01-15

    The results of measurements of the total terahertz-range photoluminescence of Group-V donors (phosphorus, antimony, bismuth, arsenic) in bulk silicon and SiGe/Si heterostructures depending on the excitation intensity are presented. The signal of bulk silicon was also measured as a function of uniaxial stress. The results of measurement of the dependence of the spontaneous emission intensity on the uniaxial stress is in rather good agreement with theoretical calculations of the relaxation times of excited states of donors in bulk silicon. Comparative measurements of the spontaneous emission from various strained heterostructures showed that the photoluminescence signal is caused by donor-doped silicon regions.

  14. DETERMINATION OF THE SPONTANEOUS EMISSION PROBABILITIES AND THE COLLISION SELF-BROADENING COEFFICIENTS OF THE СО2 SPECTRAL LINES

    Directory of Open Access Journals (Sweden)

    K. I. Arshinov

    2013-01-01

    Full Text Available The technique of simultaneous determination of the spontaneous emission probabilities Аmn and the collision self-broadening coefficients γmn of the СО2 spectral lines is presented. The dependence of the absorption coefficient on the gas pressure, obtained for the СО210R22 line at temperature 300 K was measured. Using the data, the spontaneous emission probability Аmn and the collision self-broadening coefficient γmn were calculated.

  15. Measurement of the stimulated carrier lifetime in semiconductor optical amplifiers by four-wave mixing of polarized ASE noise

    OpenAIRE

    Hunziker, Guido; Paiella, Roberto; Vahala, Kerry J.; Koren, Uzi

    1997-01-01

    We present a simple experiment aimed at measuring the stimulated carrier lifetime in semiconductor optical amplifiers (SOA's). The technique relies on polarization-resolved nearly degenerate four-wave mixing (FWM) of a laser source with an amplified spontaneous emission (ASE) noise source. The method can quickly characterize the bandwidth performance of active layers for application in a cross-gain or cross-phase wavelength converter.

  16. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    Science.gov (United States)

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited.

  17. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    Science.gov (United States)

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited. PMID:20802565

  18. Electron-Beam Noise and spontaneous emission Suppression and the Fundamental Coherence Limits of Free Electron Radiators

    Science.gov (United States)

    Gover, Avraham

    2010-02-01

    It is shown that the electron beam current noise can be reduced at optical frequencies below the classical shot-noise limit. This self-ordering phenomenon takes place due to longitudinal collective Coulomb interaction when the beam parameters are set to excite Langmuir plasma-wave single mode oscillation [1]. Full 3-D particle dynamics simulations confirm the theoretical model. Based on this result, it is shown that it is possible to obtain sub-radiance (in the sense of Dicke [2]) of spontaneous emission from electron-beam radiators. This results in fundamental limit expressions for the coherence of FELs and other e-beam radiators, analogously to the Schawlow-Towns limit [3]. Surpassing the shot-noise limit, the coherence of free electron laser radiation is limited by the e-beam energy spread at frequencies below the IR, and fundamentally limited by quantum noise at higher frequencies. )

  19. Spontaneous Emission and Light Extraction Enhancement of Light Emitting Diode Using Partially-Reflecting Metasurface Cavity (PRMC)

    CERN Document Server

    Chen, Luzhou; Kallos, Themos; Caloz, Christophe

    2016-01-01

    The enhancement of the power conversion efficiency (PCE), and subsequent reduction of cost, of light emitting diodes (LEDs) is of crucial importance in the current lightening market. For this reason, we propose here a PCE-enhanced LED architecture, based on a partially-reflecting metasurface cavity (PRMC) structure. This structure simultaneously enhances the light extraction efficiency (LEE) and the spontaneous emission rate (SER) of the LED by enforcing the emitted light to radiate perpendicularly to the device, so as to suppress wave trapping and enhance lateral field confinement, while ensuring cavity resonance matching and maximal constructive field interference. The PRMC structure is designed using a recent surface susceptibility metasurface synthesis technique. A PRMC blue LED design is presented and demonstrated by full-wave simulation to provide LEE and SER enhancements by factors 4.0 and 1.9, respectively, corresponding to a PCE enhancement factor of 7.6, suggesting that the PRMC concept has a promis...

  20. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    Science.gov (United States)

    Zhu, Z.; Bi, J.; Wang, X.; Zhu, W.

    2014-02-01

    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data.

  1. Quantum Interference in Spontaneous Emission from a V-Type Three-Level Atom in a Two-Band Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    YANG Ya-Ping; Chen Hong; ZHU Shi-Yao

    2000-01-01

    The spontaneous emission from a V-type three-level atom embedded in a two-band photonic crystal is studied.Due to the quantum interference between the two transitions and existence of two bands, the populations in the upper levels display some novel behavior: anti-trapping, population oscillation, and population inversion.

  2. The research and implementation of coalfield spontaneous combustion of carbon emission WebGIS based on Silverlight and ArcGIS server

    International Nuclear Information System (INIS)

    As an important sub-topic of the natural process of carbon emission data public information platform construction, coalfield spontaneous combustion of carbon emission WebGIS system has become an important study object. In connection with data features of coalfield spontaneous combustion carbon emissions (i.e. a wide range of data, which is rich and complex) and the geospatial characteristics, data is divided into attribute data and spatial data. Based on full analysis of the data, completed the detailed design of the Oracle database and stored on the Oracle database. Through Silverlight rich client technology and the expansion of WCF services, achieved the attribute data of web dynamic query, retrieval, statistical, analysis and other functions. For spatial data, we take advantage of ArcGIS Server and Silverlight-based API to invoke GIS server background published map services, GP services, Image services and other services, implemented coalfield spontaneous combustion of remote sensing image data and web map data display, data analysis, thematic map production. The study found that the Silverlight technology, based on rich client and object-oriented framework for WCF service, can efficiently constructed a WebGIS system. And then, combined with ArcGIS Silverlight API to achieve interactive query attribute data and spatial data of coalfield spontaneous emmission, can greatly improve the performance of WebGIS system. At the same time, it provided a strong guarantee for the construction of public information on China's carbon emission data

  3. Spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity enhancement and inhomogeneous interface degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V. N. [Department of Theoretical Physics, Institute for Semiconductor Physics, NASU, Pr. Nauki 41, Kiev 03028 (Ukraine); Iafrate, G. J. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-8617 (United States)

    2014-02-07

    A theory for the spontaneous emission (SE) of terahertz radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity, while undergoing elastic scattering is presented. The Bloch electron is accelerated under the influence of a superimposed external constant electric field and an internal inhomogeneous electric field, while radiating into a microcavity. The analysis of the SE accounts for both the spectral structure of nonharmonic miniband components and the Bloch oscillation degradation effects arising from elastic scattering due to SL interface roughness. The interface roughness effects are decomposed into contributions arising from independent planar and cross-correlated neighboring planar interfaces; parametric numerical estimates show that the cross-correlated contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate. It is shown that the degradation effects from SL interface roughness can be more than compensated for by the enhancements derived from microcavity-based tuning of the emission frequency to the cavity density of states peak. The theoretical approach developed herein has general applicability beyond its use for elastic scattering due to interface roughness. As well, the results obtained in this analysis can be useful in the development of SL-based Bloch-oscillator terahertz devices.

  4. Enhancement and Inhibition of Spontaneous Photon Emission by Resonant Silicon Nanoantennas

    CERN Document Server

    Bouchet, Dorian; Proust, Julien; Gallas, Bruno; Ozerov, Igor; Garcia-Parajo, Maria F; Gulinatti, Angelo; Rech, Ivan; De Wilde, Yannick; Bonod, Nicolas; Krachmalnicoff, Valentina; Bidault, Sébastien

    2016-01-01

    We demonstrate that subwavelength silicon resonators can increase and decrease the emission decay rates of fluorescent molecules at room temperature. Using scanning probe microscopy, we analyze the near-field interaction between a fluorescent nanosphere and silicon nanodisks in three dimensions, highlighting the ability of dielectric antennas to increase the far-field collection of emitted photons, in excellent agreement with numerical simulations. Our study demonstrates the potential of silicon-based resonators for the low-loss manipulation of solid-state emitters at the nanoscale.

  5. Characterization of the Spontaneous Light Emission of the PMTs used in the Double Chooz Experiment

    CERN Document Server

    Abe, Y; Almazan, H; Alt, C; Appel, S; Baussan, E; Bekman, I; Bergevin, M; Bezerra, T J C; Bezrukov, L; Blucher, E; Brugière, T; Buck, C; Busenitz, J; Cabrera, A; Calvo, E; Camilleri, L; Carr, R; Cerrada, M; Chauveau, E; Chimenti, P; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A S; Damon, E; Dawson, J V; de Kerret, H; Dhooghe, J; Dietrich, D; Djurcic, Z; Anjos, J C dos; Dracos, M; Etenko, A; Fallot, M; Felde, J; Fernandes, S M; Fischer, V; Franco, D; Franke, M; Furuta, H; Gil-Botella, I; Giot, L; Göger-Neff, M; Gomez, H; Gonzalez, L F G; Goodenough, L; Goodman, M C; Haag, N; Hara, T; Haser, J; Hellwig, D; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jiménez, S; Jochum, J; Jollet, C; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaneda, M; Kaplan, D M; Kawasaki, T; Kemp, E; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castaño, J M; LoSecco, J M; Lubsandorzhiev, B; Lucht, S; Maeda, J; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Miletic, T; Milincic, R; Minotti, A; Nagasaka, Y; Navas-Nicolás, D; Novella, P; Nunokawa, H; Oberauer, L; Obolensky, M; Onillon, A; Osborn, A; Palomares, C; Pepe, I M; Perasso, S; Porta, A; Pronost, G; Reichenbacher, J; Reinhold, B; Röhling, M; Roncin, R; Rybolt, B; Sakamoto, Y; Santorelli, R; Schilithz, A C; Schönert, S; Schoppmann, S; Shaevitz, M H; Sharankova, R; Shrestha, D; Sibille, V; Sinev, V; Skorokhvatov, M; Smith, E; Soiron, M; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Thi, H H Trinh; Valdiviesso, G; Vassilopoulos, N; Veyssiere, C; Vivier, M; von Feilitzsch, F; Wagner, S; Walsh, N; Watanabe, H; Wiebusch, C; Wurm, M; Yang, G; Yermia, F; Zimmer, V

    2016-01-01

    During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called "Light Noise" has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signa...

  6. Temperature dependent emission and absorption cross section of Yb3+ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier.

    Science.gov (United States)

    Banerjee, Saumyabrata; Koerner, Joerg; Siebold, Mathias; Yang, Qiuhong; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; Loeser, Markus; Zhang, Haojia; Lu, Shenzhou; Hein, Joachim; Schramm, Ulrich; Kaluza, Malte C; Collier, John L

    2013-07-01

    Temperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup. The amplification bandwidth at room temperature confirms the potential of Yb:YLO ceramic for broad bandwidth amplification at cryogenic temperatures.

  7. The Grism Lens-Amplified Survey from Space (GLASS). III. A census of Ly\\alpha\\ Emission at $z\\gtrsim$7 from HST Spectroscopy

    CERN Document Server

    Schmidt, K B; Bradač, M; Vulcani, B; Huang, K -H; Hoag, A; Maseda, M; Guaita, L; Pentericci, L; Brammer, G B; Dijkstra, M; Dressler, A; Fontana, A; Henry, A L; Jones, T A; Mason, C; Trenti, M; Wang, X

    2015-01-01

    [abbreviated] We present a census of Ly\\alpha\\ emission at $z\\gtrsim7$ utilizing deep near infrared HST grism spectroscopy from the first six completed clusters of the Grism Lens-Amplified Survey from Space (GLASS). In 24/159 photometrically selected galaxies we detect emission lines consistent with Ly\\alpha\\ in the GLASS spectra. Based on the distribution of signal-to-noise ratios and on simulations we expect the completeness and the purity of the sample to be 40-100% and 60-90%, respectively. For the objects without detected emission lines we show that the observed (not corrected for lensing magnification) 1$\\sigma$ flux limits reaches $5\\times10^{-18}$erg/s/cm$^{2}$ per position angle over the full wavelength range of GLASS (0.8-1.7$\\mu$m). Based on the conditional probability of Ly\\alpha\\ emission measured from the ground at $z\\sim7$ we would have expected 12-18 Ly\\alpha\\ emitters. This is consistent with the number of detections, within the uncertainties, confirming the drop in Ly\\alpha\\ emission with re...

  8. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  9. Even–odd effects in prompt emission of spontaneously fissioning even–even Pu isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tudora, A., E-mail: anabellatudora@hotmail.com [University of Bucharest, Faculty of Physics, Bucharest Magurele, POB MG-11, R-76900 (Romania); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440, Geel (Belgium); Giubega, G.; Visan, I. [University of Bucharest, Faculty of Physics, Bucharest Magurele, POB MG-11, R-76900 (Romania)

    2015-01-15

    The available experimental Y(A,TKE) data for {sup 236,238,240,242,244}Pu(SF) together with the Zp model prescription with appropriate parameters allows the investigation of even–odd effects in fragment distributions. The size of the global even–odd effect in Y(Z) is decreasing from {sup 244}Pu(SF) to {sup 236}Pu(SF) confirming the general observation of a decrease of the even–odd effect with the fissility parameter. Charge polarizations (ΔZ) and root-mean squares (rms) as a function of A of {sup 236–244}Pu(SF) were obtained for the first time. In the asymmetric fission region both ΔZ(A) and rms(A) exhibit oscillations with a periodicity of about 5 mass units due to the even–odd effects. The total average charge deviations 〈ΔZ〉 (obtained by averaging ΔZ(A) over the experimental Y(A) distribution) are of about |0.5| for all studied Pu(SF) systems. The comparison of the calculated ΔZ(A) and rms(A) of {sup 240}Pu(SF) with those of {sup 239}Pu(n{sub th},f) reported by Wahl shows an in-phase oscillation with a higher amplitude in the case of {sup 240}Pu(SF), confirming the higher even–odd effect in the case of SF. As in the previously studied cases ({sup 233,235}U(n{sub th},f), {sup 239}Pu(n{sub th},f), {sup 252}Cf(SF)) the even–odd effects in the prompt emission of {sup 236–244}Pu(SF) are mainly due to the Z even–odd effects in fragment distributions and charge polarizations and the N even–odd effects in the average neutron separation energies from fragments 〈Sn〉. The size of the global N even–odd effect in 〈Sn〉 is decreasing with the fissility parameter, being higher for the Pu(SF) systems compared to the previously studied systems. The prompt neutron multiplicities as a function of Z, ν(Z), exhibit sawtooth shapes with a visible staggering for asymmetric fragmentations. The size of the global Z even–odd effect in ν(Z) exhibits a decreasing trend with increasing fissility. The average prompt neutron multiplicities as a

  10. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  11. Light emission from thulium silicates and oxides for optical amplifiers on silicon in the extended optical communications band

    Directory of Open Access Journals (Sweden)

    Hiroo Omi

    2013-07-01

    Full Text Available Films composed of Tm2Si2O7 and Tm2O3 grains formed on SiO2/Si substrates by radio magnetic sputtering and subsequent thermal annealing up to 1250 °C were characterized by synchrotron grazing incidence X-ray diffraction, cross-sectional transmission microscopy, and micro photoluminescence (PL measurements. The films composed of triclinic (type-B and monoclinic (type-C Tm2Si2O7 grains on SiO2/Si and Tm2O3 grains on Si exhibit photoluminescence at the wavelength of about 1620 nm for the silicates and 1630 nm for the oxide, which indicates that they have good potential as light amplifiers on Si in the L and U bands at telecommunications wavelengths.

  12. Terahertz Emission from Resonant Tunneling Diodes without Satisfying Oscillation Condition

    Science.gov (United States)

    Asada, Masahiro; Kanaya, Hidetoshi; Suzuki, Safumi

    2013-10-01

    Terahertz (THz) emission from resonant tunneling diodes (RTDs) is normally obtained under the oscillation condition in which the negative differential conductance (NDC) exceeds the circuit loss. In this study, we show that a relatively broad band THz emission was observed even for RTDs with an NDC smaller than the circuit loss. The observed output power was on the order of 1-10 nW at 1.2-1.9 THz with spectral widths of 50-100 GHz. The observation was reasonably explained by the theoretical calculation based on the shot noise amplified by the NDC. This emission corresponds to the amplified spontaneous emission in optical devices.

  13. High power pulse amplification of ytterbium-doped double-clad fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    Liping Chang; Wei Fan; Jialin Chen; Li Wang; Bai Chen; Zunqi Lin

    2007-01-01

    By solving a set of time-dependent equations, the characteristics of the ytterbium-doped double-clad fiber amplifier are presented. Besides the steady state in the fiber of the upper-state population, pump power and amplified spontaneous emission without the input signal, the dynamic characteristics of the high power Gaussian pulse amplification like the evolution of pulse waveform distortion, upper-state population distribution and stored energy and pulse energy of the amplifier under the forward and backward pump,are simulated. The relations between the output pulse energy of the amplifier and the different input pulse peak power or pump power are also discussed. The models and results can provide important guide for the design and optimization of the high power pulse amplification.

  14. Characteristics measurement of gain and refractive index of traveling-wave semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    MIAO Qing-yuan; Huang De-xiu; WANG Tao; KONG Xiao-jian; KE Chang-jian

    2005-01-01

    A novel method to measure the gain and refractive index characteristics of traveling-wave semiconductor optical amplifier(TMA) is presented.In-out fiber ends of TWA are used to construct an external cavity resonator to produce big ripple on amplified spontaneous emission(ASE) spectrum.By this means,Hakki-Paoli method is adopted to obtain the gain spectra of TWA over a wide spectral range.From measured longitudinal mode spacing and peak wavelength shift due to increased bias current,we further calculate the effective refractive index and the refractive index change.Special feature of refractive index change above lasing threshold is revealed and explained.

  15. A broadly tunable fiber ring laser employing a gain-clamped semiconductor optical amplifier

    International Nuclear Information System (INIS)

    A widely tunable fiber ring laser is demonstrated experimentally using a specially designed gain-clamped semiconductor optical amplifier (GC-SOA). The 3 dB bandwidth of the generated amplified spontaneous emission is increased by 10 nm using the GC-SOA. The lasing wavelength is continuously tunable in a range from 1522 nm to almost 1600 nm using a thin-film Fabry–Pérot tunable filter. A side-mode-suppression ratio of greater than 55 dB is achieved over the entire tuning range. (paper)

  16. A Partial Double-Pass S-Band Erbium-Doped Fibre Amplifier

    Institute of Scientific and Technical Information of China (English)

    Sulaiman Wadi Harun; Nor Kamilah Saat; Harith Ahmad

    2005-01-01

    @@ An efficient and low noise short wavelength band erbium-doped fibre amplifier (S-band EDFA) is proposed and demonstrated using double-pass configuration. This amplifier provides a gain of 1500 nm signal as high as 26.9 dB,which is 9.6 dB higher than the two-stage single-pass amplifier. The corresponding noise figure obtained is 7.5 dB,which is of the same level as in the single-pass amplifier and more than 2dB lower than the previously reported double-pass amplifier [IEICE Electron. Express 2 (2005) 182]. The gain enhancement is due to the double pass-propagation of the test signal in the second stage, which increases the effective erbium-doped fibre (EDF)length. The low noise is attributed to the optical circulator between EDFs, which prevents the backward amplified spontaneous emission from propagating into the input part of the amplifier. The proposed amplifier is expected to play an important role in the development of a practical S-band EDFA.

  17. Characterization of spontaneous otoacoustic emissions in 2-4 day old neonates with respect to gender and ear

    Institute of Scientific and Technical Information of China (English)

    Jinfeng Liu; Baoyu Shi; Ningyu Wang; Jinlan Li

    2009-01-01

    BACKGROUND: Spontaneous otoacoustic emissions (SOAEs) are regarded as a valuable audiometric parameter that objectively reflects the function of outer hair cells (OHCs). Many studies have reported that the incidence of SOAEs in adults is less than 50%. Therefore, measurement of SOAEs may be of little value to clinical examinations. However, the incidence of SOAEs in infants and neonates is higher than in adults.OBJECTIVE: To analyze the basic characteristics of SOAEs in 2-4 day old neonates, and to demonstrate the difference in OHC function between sexes and ears.DESIGN, TIME AND SETTING: Neurophysiological contrast study, performed in the Department of Neonates, Beijing Chaoyang Hospital, Capital Medical University, between December 2007 and August 2008.PARTICIPANTS: A total of 112 newborns (224 ears) consisting of 59 females and 53 males were included in this study.METHODS: The probe was adapted and embedded in the neonate external auditory canal with a foam rubber earplug after checking and clearing up the outer ear canal. The presence of SOAEs was determined when the signal amplitude had a clear peak exceeding -30 dB, or was 3 dB above the noise floor.MAIN OUTCOME MEASURES: The incidence of SOAEs, the number of SOAE signal peaks, and the maximal tension of SOAEs.RESULTS: The incidence in females (79.7%) was higher than males (76.4%) (P> 0.05), and the incidence in right ears (86.6%) was higher than in left ears (69.6%) (P 0.05). The mean maximum SOAE level per ear in females (-3.29 ± 9.28) dB sound pressure level (SPL) was slightly higher than that in males (-3.91 ±9.14) dB SPL(P>0.05). Also, the mean maximum SOAE level in right ears (-2.03 ±9.11) dB SPL was higher than in left ears (-5.50 ± 9.65) dB SPL (P < 0.05). The maximum SOAE level showed a positive correlation with maximum SOAE number in emitting ears (r= 0.55, P< 0.01).CONCLUSION: The incidence of SOAEs in neonates is high (78.1%) within 4 days of birth. The incidence of SOAEs and the maximum SOAE

  18. Rare Earth Doped Fiber Amplifiers for the First Telecommunication Window

    Science.gov (United States)

    Sridhar, Balakrishnan

    A complete experimental and theoretical study of rare earth doped fiber-optic amplifiers for the first tele-communication window has been made. The thulium doped fluoride fiber amplifier is shown to provide amplification in the 800nm-820nm signal region. A complete steady state theoretical model has been presented and the model has been experimentally verified. The model predicts the gain, noise figure and the amplified spontaneous emission in the 800nm, 1470nm, 1900nm and 2300nm bands. The effect of population trapping at the ^3F_4 energy level of thulium ion is also shown with the help of the model. It has been shown that about 5 -15%o of the population is trapped at the ^3F _4 energy level. We have also shown theoretically, the expected gain and noise performance of Thulium doped fluoride fiber amplifiers pumped in the 680nm absorption band. The maximum gain at 806nm is slightly lower than with comparable 780 nm pumping. The gain bandwidth is however found to increase with 680nm pumping. The higher ASE at shorter wavelengths (flouride fiber amplifier in the 850nm signal band for the first time. The amplification is through an up-conversion process. The erbium doped flouride fiber amplifier was pumped with an estimated pump power of 35mW at 792nm. We have also considered a theoretical model for a single mode erbium doped fluoride fiber amplifier. Efficient amplification occurs because of the strong excited state absorption at the pump wavelength from the ^4I_{13/2} energy level.

  19. Brain glucose metabolic changes associated with chronic spontaneous Pain due to brachial plexus avulsion:a preliminary positron emission tomography study

    Institute of Scientific and Technical Information of China (English)

    CHEN Fu-yong; TAO Wei; CHENG Xin; WANG Hong-yan; HU Yong-sheng; ZHANG Xiao-hua; LI Yong-jie

    2008-01-01

    Background Previous brain imaging studies suggested that the brain activity underlying the perception of chronic pain maV differ from that underlying acute pain.To investigate the brain regions involved in chronic spontaneous pain due to brachial plexus avulsion(BPA),fluorine-18fluorodeoxygIucose (19F-FDG) positron emission tomography (PET) scanning was applied to determine the glucose metabolic changes in patients with pain due to BPA.Methods Six right-handed patients with chronic spontaneous pain due to left-BPA and twelve right-handed age-and sex-matched healthy control subjects participated in the 18F-FDG PET study.The patients were rated by visual analog scale (VAS) during scanning and Hamilton depression scale and Hamilton anxiety scale after scanning.Statistical parametric mapping 2 (SPM2) was applied for data analysis.Results Compared with healthy subjects,the patients had significant glucose metabolism decreases in the right thalamus and S I(P<0.001,uncorrected),and significant glucose metabolism increases in the right orbitofrontaI cortex (OFC) (BA11),left rostral insula cortex and left dorsolateral prefrontal codex (DLPFC) (BA10/46) (P<0.001,uncorrected).Conclusion These findings suggest that the brain areas involved in emotion.aRention and internal modulation of pain may be related to the chronic spontaneous pain due to BPA.

  20. Modification and control of coherence effects in the spontaneous emission spectrum of a three-level atom at weak field regime

    Science.gov (United States)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2016-09-01

    It has been shown that coherence effects have a marked influence in the spontaneous emission spectrum of a three-level Λ -type atom driven by weak coherent and incoherent fields. Phase dependent evolution of interference effects leading to spectral narrowing, generation of spectral hole and dark line are exhibited in the present scheme when the atom does not interact with the incoherent fields. The basic mechanism underlying this scheme seems to be appropriate for a phaseonium. Apart from phase-coherence introduced in the system the phenomenon of line narrowing, in the presence of weak incoherent pumping, can be achieved in a different way as a consequence of two competitive resonant effects: sharp non-Lorentzian and symmetric Fano-like-resonance contributions to the line shape. In both the situations, the evolution of narrow structures in the line shape can be achieved even when the emission is influenced by the dephasing of Raman coherence.

  1. Annual Change Detection by ASTER TIR Data and an Estimation of the Annual Coal Loss and CO2 Emission from Coal Seams Spontaneous Combustion

    Directory of Open Access Journals (Sweden)

    Xiaomin Du

    2014-12-01

    Full Text Available Coal fires, including both underground and coal waste pile fires, result in large losses of coal resources and emit considerable amounts of greenhouse gases. To estimate the annual intensity of greenhouse gas emissions and the loss of coal resources, estimating the annual loss from fire-influenced coal seams is a feasible approach. This study assumes that the primary cause of coal volume loss is subsurface coal seam fires. The main calculation process is divided into three modules: (1 Coal fire quantity calculations, which use change detection to determine the areas of the different coal fire stages (increase/growth, maintenance/stability and decrease/shrinkage. During every change detections, the amount of coal influenced by fires for these three stages was calculated by multiplying the coal mining residual rate, combustion efficiency, average thickness and average coal intensity. (2 The life cycle estimate is based on remote sensing long-term coal fires monitoring. The life cycles for the three coal fire stages and the corresponding life cycle proportions were calculated; (3 The diurnal burnt rates for different coal fire stages were calculated using the CO2 emission rates from spontaneous combustion experiments, the coal fire life cycle, life cycle proportions. Then, using the fire-influenced quantity aggregated across the different stages, the diurnal burn rates for the different stages and the time spans between the multi-temporal image pairs used for change detection, we estimated the annual coal loss to be 44.3 × 103 tons. After correction using a CH4 emission factor, the CO2 equivalent emissions resulting from these fires was on the order of 92.7 × 103 tons. We also discovered that the centers of these coal fires migrated from deeper to shallower parts of the coal seams or traveled in the direction of the coal seam strike. This trend also agrees with the cause of the majority coal fires: spontaneous combustion of coalmine goafs.

  2. The Quantum Vacuum of Complex Media. A Unified Approach to the Dielectric Constant, the Spontaneous Emission and the Zero-Temperature Electromagnetic Pressure

    CERN Document Server

    Donaire, M

    2009-01-01

    We study from a critical perspective several quantum-electrodynamic phenomena commonly related to vacuum electromagnetic (EM) fluctuations in complex media. We compute the resonance-shift, the spontaneous emission rate, the local density of states and the van-der-Waals-Casimir pressure in a dielectric medium using a microscopic diagrammatic approach. We find, in agreement with some recent works, that these effects cannot be attributed to variations on the energy of the EM vacuum but to variations of the dielectric self-energy. This energy is the result of the interaction of the bare polarizability of the dielectric constituents with the EM fluctuations of an actually polarized vacuum. We have found an exact expression for the spectrum of these fluctuations in a statistically homogeneous dielectric. Those fluctuations turn out to be different to the ones of normal radiative modes. It is the latter that carry the zero-point-energy (ZPE). Concerning spontaneous emission, we clarify the nature of the radiation an...

  3. Effect of Zn-Cd interdiffusion on the band structure and spontaneous emission of ZnO/Zn1-xCdxO/ZnO quantum wells

    Science.gov (United States)

    Shtepliuk, I.; Khranovskyy, V.; Yakimova, R.

    2015-09-01

    Needs in more-efficient visible light sources based on quantum wells (QWs) requires the diversification of traditional optoelectronics' materials as well as development of the cost-effective approaches for reliable quantum confinement engineering. Interdiffusion approach has a great potential to become a simple method for controlling the optical properties of QWs and diminishing the quantum confined Stark effect (QCSE). In this work we theoretically study the effect of Zn-Cd interdiffusion in ZnCdO/ZnO QWs on their band structure, optical matrix elements and spontaneous emission properties. The QW intermixing leads to improving both the transverse electric (TE) and transverse magnetic (TM) optical matrix elements due to enhancement of the overlap integral between electron and hole wave functions and modification of the confinement potential from triangle-shaped to parabolic-like. The optimized diffusion length 4 Å provided by the annealing at 700 K during 60 s was determined for 2 nm-thick Zn0.85Cd0.15O QW, which offers higher spontaneous emission rate in comparison to conventional QW. The reasonable interpretation of the interdiffusion effect on the optical properties of QWs is proposed in terms of low diffusion length and high diffusion length regimes. Thus, suitable combination of annealing duration and annealing temperature with the geometrical/compositional parameters of QWs can be the efficient way for improving the optical performance of ZnO-based QWs.

  4. Emission of OAM entangled photon pairs in a nonlinear ring fiber utilizing spontaneous parametric down-conversion

    CERN Document Server

    Javůrek, D; Peřina, J

    2014-01-01

    We suggest the generation of photon pairs in a thermally induced nonlinear periodically-poled silica fiber by spontaneous parametric down-conversion. Photons are generated directly in eigenstates of optical angular momentum. Photons in a pair can be entangled in these states as well as in frequencies. We identify suitable spatial and polarization modes giving an efficient nonlinear interaction. By changing the pump field properties both narrow- and broad-band down-converted fields can be obtained.

  5. Characterization of a high-power tapered semiconductor amplifier system

    CERN Document Server

    Voigt, D; Spreeuw, R J C; Van Linden van den Heuvell, H B

    2001-01-01

    We have characterized a semiconductor amplifier laser system which provides up to 200mW output after a single-mode optical fiber at 780nm wavelength. The system is based on a tapered semiconductor gain element, which amplifies the output of a narrow-linewidth diode laser. Gain and saturation are discussed as a function of operating temperature and injection current. The spectral properties of the amplifier are investigated with a grating spectrometer. Amplified spontaneous emission (ASE) causes a spectral background with a width of 4nm FWHM. The ASE background was suppressed to below our detection limit by a proper choice of operating current and temperature, and by sending the light through a single-mode optical fiber. The final ASE spectral density was less than 0.1nW/MHz, i.e. less than 0.2 % of the optical power. Related to an optical transition linewidth of $\\Gamma/2\\pi=6$ MHz for rubidium, this gives a background suppression of better than -82dB. An indication of the beam quality is provided by the fibe...

  6. High power, continuous-wave, single frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    CERN Document Server

    Stappel, M; Kolbe, D; Walz, J

    2012-01-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52 %. Two different approaches of frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate (LBO) crystal in an external enhancement cavity.

  7. Modeling of high-quality factor XNOR gate using quantum-dot semiconductor optical amplifiers at 1 Tb/s

    Energy Technology Data Exchange (ETDEWEB)

    Kotd, Amer, E-mail: amer_22003@yahoo.com, E-mail: kotb@phys.uconn.edu [Department of Physics, Faculty of Science, Fayoum University, Fayoum, (Egypt)

    2015-06-15

    The modeling of all-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is simulated by using Mach-Zehnder interferometers (MZIs) utilizing quantum-dots semiconductor optical amplifiers (QDs-SOAs). The study is carried out when the effect of amplified spontaneous emission (ASE) is included. The dependence of the output quality factor (Q-factor) on signals and QDs-SOAs' parameters is also investigated and discussed. The simulation is conducted under a repetition rate of ∼1 Tb/s. (author)

  8. Fully Coherent X-ray Pulses from a Regenerative Amplifier Free Electron Laser

    International Nuclear Information System (INIS)

    We propose and analyze a novel regenerative amplifier free electron laser (FEL) to produce fully coherent x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches not only amplifies the radiation intensity but also broadens its spectrum, allowing for effective transmission of the x-rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about two to three orders of magnitude higher than that from a single-pass SASE FEL

  9. Fully Coherent X-Ray Pulses from a Regenerative-Amplifier Free-Electron Laser

    International Nuclear Information System (INIS)

    We propose and analyze a regenerative-amplifier free-electron laser (FEL) to produce fully coherent, hard x-ray pulses. The method makes use of narrow-bandwidth Bragg crystals to form an x-ray feedback loop around a relatively short undulator. Self-amplified spontaneous emission (SASE) from the leading electron bunch in a bunch train is spectrally filtered by the Bragg reflectors and is brought back to the beginning of the undulator to interact repeatedly with subsequent bunches in the bunch train. The FEL interaction with these short bunches regeneratively amplifies the radiation intensity and broadens its spectrum, allowing for effective transmission of the x rays outside the crystal bandwidth. The spectral brightness of these x-ray pulses is about 2 to 3 orders of magnitude higher than that from a single-pass SASE FEL

  10. Modeling of Mid-IR Amplifier Based on an Erbium-Doped Chalcogenide Microsphere

    Directory of Open Access Journals (Sweden)

    P. Bia

    2012-01-01

    Full Text Available An optical amplifier based on a tapered fiber and an Er3+-doped chalcogenide microsphere is designed and optimized. A dedicated 3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable design of the taper angle and the fiber-microsphere gap. Moreover, a good overlapping between the optical signals and the rare-earth-doped region is also obtained. In order to evaluate the amplifier performance in reduced computational time, the doped area is partitioned in sectors. The obtained simulation results highlight that a high-efficiency midinfrared amplification can be obtained by using a quite small microsphere.

  11. Double-pass ytterbium-doped fiber amplifier with high gain coefficient and low noise figure

    Institute of Scientific and Technical Information of China (English)

    Anting Wang(王安廷); Meishu Xing(邢美术); Guanghui Chen(陈光辉); Wenkui Yang(杨文奎); Hai Ming(明海); Jianping Xie(谢建平); Yunxia Wu(吴云霞)

    2003-01-01

    We have proposed and demonstrated a double-pass ytterbium-doped fiber amplifier using an optical circulator and a fiber Bragg grating as reflector. When the signal has passed through the ytterbium-doped fiber once, it reflects off a 0.2-nm passive fiber Bragg grating filter. This reduces amplified spontaneous emission (ASE) noise from the first pass. The input signal light is amplified both forward and backward through ytterbium-doped fiber. With this double-pass configuration, 1053.15-nm unsaturated signal gain of 28 dB, gain coefficient of 1.1 dB/mW, and noise figure of less than 4 dB are achieved at 977-nm pump power of 68 mW. It is also found that this double-pass configure provides enhancing gain coefficient and improving noise figure by comparison with single-pass configuration.

  12. Spontaneous Breaking of Spatial and Spin Symmetry in Spinor Condensates

    DEFF Research Database (Denmark)

    Scherer, M.; Lücke, B.; Gebreyesus, G.;

    2010-01-01

    Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified...

  13. Kilowatt high-efficiency narrow-linewidth monolithic fiber amplifier operating at 1034 nm

    Science.gov (United States)

    Naderi, Nader A.; Flores, Angel; Anderson, Brian M.; Rowland, Ken; Dajani, Iyad

    2016-03-01

    Power scaling investigation of a narrow-linewidth, Ytterbium-doped all-fiber amplifier operating at 1034 nm is presented. Nonlinear stimulated Brillouin scattering (SBS) effects were suppressed through the utilization of an external phase modulation technique. Here, the power amplifier was seeded with a spectrally broadened master oscillator and the results were compared using both pseudo-random bit sequence (PRBS) and white noise source (WNS) phase modulation formats. By utilizing an optical band pass filter as well as optimizing the length of fiber used in the pre-amplifier stages, we were able to appreciably suppress unwanted amplified spontaneous emission (ASE). Notably, through PRBS phase modulation, greater than two-fold enhancement in threshold power was achieved when compared to the WNS modulated case. Consequently, by further optimizing both the power amplifier length and PRBS pattern at a clock rate of 3.5 GHz, we demonstrated 1 kilowatt of power with a slope efficiency of 81% and an overall ASE content of less than 1%. Beam quality measurements at 1 kilowatt provided near diffraction-limited operation (M2 knowledge, the power scaling results achieved in this work represent the highest power reported for a spectrally narrow all-fiber amplifier operating at < 1040 nm in Yb-doped silica-based fiber.

  14. DIAMOND AMPLIFIED PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  15. The Stark interaction of identical particles with vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    CERN Document Server

    Basharov, A M

    2011-01-01

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for the second-order terms over the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of the first-order coupling constant are represented as the quantum Wiener process, whereas the second-order terms are expressed by the quantum Poisson process. In the course of investigation it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. New fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppre...

  16. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takahiko, E-mail: masuda@okayama-u.ac.jp; Hara, Hideaki; Miyamoto, Yuki [Okayama University, Research Core for Extreme Quantum World (Japan); Kuma, Susumu [Atomic, Molecular and Optical Physics Laboratory, RIKEN (Japan); Nakano, Itsuo [Okayama University, Research Core for Extreme Quantum World (Japan); Ohae, Chiaki [University of Electro-Communications, Department of Engineering Science (Japan); Sasao, Noboru [Okayama University, Research Core for Extreme Quantum World (Japan); Tanaka, Minoru [Osaka University, Department of Physics (Japan); Uetake, Satoshi [Okayama University, Research Center of Quantum Universe (Japan); Yoshimi, Akihiro; Yoshimura, Koji [Okayama University, Research Core for Extreme Quantum World (Japan); Yoshimura, Motohiko [Okayama University, Research Center of Quantum Universe (Japan)

    2015-11-15

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10{sup 15} from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect.

  17. Spontaneous organisation of ZnS nanoparticles into monocrystalline nanorods with highly enhanced dopant-related emission

    Science.gov (United States)

    Manzoor, K.; Aditya, V.; Vadera, S. R.; Kumar, N.; Kutty, T. R. N.

    2005-07-01

    A natural self-assembly process of semiconductor nanoparticles leading to the formation of doped, monocrystalline nanorods with highly enhanced dopant-related luminescence properties is reported. ˜4 nm sized, polycrystalline ZnS nanoparticles of zinc-blende (cubic) structure, doped with Cu+-Al3+ or Mn2+ have been aggregated in the aqueous solution and grown into nanorods of length ˜400 nm and aspect ratio ˜12. Transmission electron microscopic (TEM) images indicate crystal growth mechanisms involving both Ostwald-ripening and particle-to-particle oriented-attachment. Sulphur sulphur catenation is proposed for the covalent-linkage between the attached particles. The nanorods exhibit self-assembly mediated quenching of the lattice defect-related emission accompanied by multifold enhancement in the dopant-related emission. This study demonstrates that the collective behavior of an ensemble of bare nanoparticles, under natural conditions, can lead to the formation of functionalized (doped) nanorods with enhanced luminescence properties.

  18. Detecção de emissão espontânea de luz em ensaios de colimetria aplicados ao monitoramento de efluentes sanitários Spontaneous light emission in coliforms test applied to wastewater monitoring

    Directory of Open Access Journals (Sweden)

    Samuel Ricardo dos Santos

    2011-03-01

    Full Text Available No presente trabalho avaliou-se o potencial do emprego da técnica biofotônica ao monitoramento da qualidade microbiológica de efluentes sanitários, por meio da detecção de emissão ultrafraca de luz em testes envolvendo bactéria do grupo coliforme. Foram acompanhados os padrões de emissão de luz em câmara escura com o uso de efluente doméstico, antes e após tratamento, incubados em meio nutritivo à base de lactose e lauril triptose. O controle foi efetuado com o uso de cepa de Escherichia coli (ATCC 25.922, tendo seu crescimento sido monitorado por emissão de luz em câmara escura com fotomultiplicador acoplado. Os dados demonstraram que o monitoramento microbiológico pode ser efetuado por meio técnica biofotônica, podendo ser aplicado, com respostas rápidas, ao monitoramento microbiológico de efluentes, por meio de testes envolvendo coliformes.The spontaneous light emission of living systems emerge as a promising methodology that applied to microbiological in monitoring water can lead to short-term analysis. The present study evaluated the potential of biophoton measurements applied to wastewater monitoring by using ultraweak light emission in coliform tests. The procedure is based on photon-counting measurements inside a dark-chamber, of wastewater samples, before and after treatment, inoculated in nutrient presence/absence medium (lactose and lauryl triptose broth. Strain of Escherichia coli (ATCC 25,922 was used in control tests by monitoring the light emission inside a dark-chamber with an acoplade photomultiplier. The data showed that microbiological monitoring can be done by photon-counting in real-time applied to microbiological wastewater monitoring using coliform test.

  19. Fast and Efficient Dynamic WDM Semiconductor Optical Amplifier Model

    Science.gov (United States)

    Mathlouthi, Walid; Lemieux, Pascal; Salsi, Massimiliano; Vannucci, Armando; Bononi, Alberto; Rusch, Leslie A.

    2006-11-01

    A novel state-variable model for semiconductor optical amplifiers (SOAs) that is amenable to block diagram implementation of wavelength division multiplexed (WDM) signals and fast execution times is presented. The novel model is called the reservoir model, in analogy with similar block-oriented models for Raman and erbium-doped fiber amplifiers (EDFAs). A procedure is proposed to extract the needed reservoir model parameters from the parameters of a detailed and accurate space-resolved SOA model due to Connelly, which was extended to cope with the time-resolved gain transient analysis. Several variations of the reservoir model are considered with increasing complexity, which allow the accurate inclusion of scattering losses and gain saturation induced by amplified spontaneous emission. It is shown that at comparable accuracy, the reservoir model can be 20 times faster than the Connelly model in single-channel operation; much more significant time savings are expected for WDM operation. The model neglects intraband SOA phenomena and is thus limited to modulation rates per channel not exceeding 10 Gb/s. The SOA reservoir model provides a unique tool with reasonably short computation times for a reliable analysis of gain transients in WDM optical networks with complex topologies.

  20. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  1. The closed orbit theoretical calculation of the spontaneous emission rate of atom near the interface%原子在界面附近自发辐射率的闭合轨道理论计算

    Institute of Scientific and Technical Information of China (English)

    王丽林; 徐强; 隗莲

    2013-01-01

    利用闭合轨道理论,对原子在界面附近的自发辐射率的计算公式进行了推导,并对界面附近原子自发辐射率的多周期振荡现象进行了系统的研究。首先,根据光子的闭合轨道理论,把原子的自发辐射用经典的偶极天线辐射来模拟,推导出原子在一个金属界面旁的自发辐射率的计算公式,然后再推广到两个金属界面旁的原子自发辐射情况,并对原子自发辐射率的多周期振荡进行了分析。%We derived the formula of the spontaneous emission rate of atoms near the interfaces and discussed the multi-periodic oscillating phenomenon of the atoms near the interfaces .First of all ,according to the photon closed-orbit theory ,we simulated the spontaneous emission of atom near interface as the radiation of the classic dipole antenna ,then we derived the calculation for-mula of the spontaneous emission of atom near a metal surface .Next ,we developed this case to the spontaneous emission of atom near two metal surfaces ,and analyzed the multi-periodic oscil-lating phenomenon appeared in the spontaneous emission rate of atom near two metal surfaces .

  2. Spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Davari R

    1996-07-01

    Full Text Available A case with bilateral spontaneous pneumothorax was presented. Etiology, mechanism, and treatment were discussed on the review of literature. Spontaneous Pneumothorax is a clinical entity resulting from a sudden non traumatic rupture of the lung. Biach reported in 1880 that 78% of 916 patients with spontaneous pneumothorax had tuberculosis. Kjergaard emphasized 1932 the primary importance of subpleural bleb disease. Currently the clinical spectrum of spontaneous pneumothorax seems to have entered a third era with the recognition of the interstitial lung disease and AIDS as a significant etiology. Standard treatment is including: observation, thoracocentesis, tube thoracostomy. Chemical pleurodesis, bullectomy or wedge resection of lung with pleural abrasion and occasionally pleurectomy. Little information has been reported regarding the efficacy of such treatment in spontaneous pneumothorax secondary to non bleb disease

  3. Analysis of strain effects on the dynamic spectra of a quantum well semiconductor optical amplifier using quantum well transmission line modelling method

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H.

    2016-04-01

    This paper studies the strain (i.e. compressive (CS) and tensile (TS)) effects on the dynamic spectra of an amplified femtosecond pulse in a quantum well semiconductor optical amplifier (QW-SOA) using quantum well transmission line modelling (QW-TLM) method. Based on the analysis of band structure, the gain spectrum as well as the spontaneous spectrum of quantum well (QW) in the CS, unstrained (US) and TS are investigated using QW-TLM and it was found that in the CS QW, the magnitude ratio of the gain spectrum and the spontaneous emission spectrum is the largest. Furthermore, QW-TLM is adopted to investigate the dynamic spectral evolution of femtosecond pulse amplification in QW-SOAs and it was found that as the femtosecond pulse approaches the amplifier output, the centre frequency of the amplified femtosecond pulse spectra decreases and its bandwidth decreases. The output spectra of the amplified femtosecond pulse in QW amplifiers under the CS, US and TS cases are compared and the simulation results show that in a CS QW-SOA the spectral shape exhibits the largest magnitude and the smallest fluctuation due to the largest gain and the largest ratio between the gain and noise.

  4. Amplifier Noise Based Optical Steganography with Coherent Detection

    Science.gov (United States)

    Wu, Ben; Chang, Matthew P.; Caldwell, Naomi R.; Caldwell, Myles E.; Prucnal, Paul R.

    2014-12-01

    We summarize the principle and experimental setup of optical steganography based on amplified spontaneous emission (ASE) noise. Using ASE noise as the signal carrier, optical steganography effectively hides a stealth channel in both the time domain and the frequency domain. Coherent detection is used at the receiver of the stealth channel. Because ASE noise has short coherence length and random phase, it only interferes with itself within a very short range. Coherent detection requires the stealth transmitter and stealth receiver to precisely match the optical delay,which generates a large key space for the stealth channel. Several methods to further improve optical steganography, signal to noise ratio, compatibility with the public channel, and applications of the stealth channel are also summarized in this review paper.

  5. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.

    Science.gov (United States)

    Estrin, Y; Rich, D H; Rozenfeld, N; Arad-Vosk, N; Ron, A; Sa'ar, A

    2015-10-30

    The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

  6. Spontaneous fission

    International Nuclear Information System (INIS)

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  7. Gain ranging amplifier

    International Nuclear Information System (INIS)

    A gain ranging amplifier system is provided for use in the acquisition of data. Voltage offset compensation is utilized to correct errors in the gain ranging amplifier system caused by thermal drift and temperature dependent voltage offsets, both of which are associated with amplifiers in the gain ranging amplifier system

  8. 10W ASE-free single-mode high-power double-cladding Er 3+-Yb 3+ amplifier

    Science.gov (United States)

    Morasse, Bertrand; Agger, Søren; Hovington, Carl; Chatigny, Stéphane; Gagnon, Éric; de Sandro, Jean-Philippe; Poulsen, Christian

    2007-02-01

    We designed a high output power double cladding erbium-ytterbium fibre amplifier that showed no amplified spontaneous emission (ASE) at 1.0 μm using a quasi singlemode fibre. The reduction of the amplified stimulated emission (ASE) at 1.0 μm was found to be the combination of fibre design and temperature effect in the core. A 10W output double cladding Er-Yb amplifier with a core/cladding fibre diameter of 10/125 μm was realized with a seed signal of 1.4 W at 1563 nm and with counter-propagating pump power of 35 W at 976 nm without any significant ASE generation at 1.0 μm. The fibre also exhibits singlemode behaviour with M2 3+ and Er 3+ ions. By incorporating into our model the core temperature increase coming from the quantum defect of the Er-Yb system, we can also predict a raise in the absorption cross-section of the ytterbium ions around 1060 nm yielding to an increase of the 1 μm ASE threshold from 14 W to 35 W pump power, which allowed us to reach a 10 W output power at 1563 nm instead of 5 W normally predicted by the theory. These results show potential power scaling of the output power or double cladding erbium ytterbium amplifier using quasi singlemode core erbium ytterbium fibre avoiding the need of large core dimension that degrades the beam quality.

  9. The Dynamics of Semiconductor Optical Amplifiers – Modeling and Applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Mads Lønstrup; Berg, Tommy Winther

    2003-01-01

    The importance of semiconductor optical amplifiers is discussed. A semiconductor optical amplifier (SOA) is a semiconductor laser with anti-reflection coated facets that amplifies an injected light signal by means of stimulated emission. SOAs have a number of unique properties that open up...

  10. Spontaneous pneumothorax

    OpenAIRE

    Wakai, Abel P

    2008-01-01

    Spontaneous pneumothorax is defined as air entering the pleural space without any provoking factor, such as trauma, surgery, or diagnostic intervention. Incidence is 24/100,000 a year in men, and 10/100,000 in women in England and Wales, and the major contributing factor is smoking, which increases the likelihood by 22 times in men and by 8 times in women.While death from spontaneous pneumothorax is rare, rates of recurrence are high, with one study of men in the US finding a total recurre...

  11. Spontaneous pneumothorax

    OpenAIRE

    Wakai, Abel P

    2011-01-01

    Spontaneous pneumothorax is defined as air entering the pleural space without any provoking factor, such as trauma, surgery, or diagnostic intervention. Incidence is 24/100,000 a year in men, and 10/100,000 a year in women in England and Wales, and the major contributing factor is smoking, which increases the likelihood by 22 times in men and by 8 times in women.While death from spontaneous pneumothorax is rare, rates of recurrence are high, with one study of men in the US finding a total ...

  12. Blue laser emission by intracavity second harmonic generation in Nd:ASL pumped by a tapered amplifier laser diode stabilized by a volume Bragg grating

    OpenAIRE

    Pabœuf, David; Lucas-Leclin, Gaëlle; Georges, Patrick; Sumpf, Bernd; Ebert, Götz; Varona, Cyrille; Loiseau, Pascal; Aka, Gérard; Ferrand, Bernard

    2008-01-01

    International audience We present the diode pumping of a Nd:ASL (Sr1-xLax-yNdyMgxAl12-x O19) crystal for second harmonic generation at 453 nm. We have developed a high-brightness pump source based on a tapered amplifier in an extended cavity with a volume Bragg grating for wavelength stabilization. A pump brightness of 110 MW.cm-2sr-1 is obtained with a linewidth lower than 80 pm at 798 nm. This laser source is used to pump a Nd:ASL crystal to obtain 300 mW at 906 nm and 53 mW at 453 nm by...

  13. Spontaneous Recovery

    Science.gov (United States)

    Rescorla, Robert A.

    2004-01-01

    Spontaneous recovery from extinction is one of the most basic phenomena of Pavlovian conditioning. Although it can be studied by using a variety of designs, some procedures are better than others for identifying the involvement of underlying learning processes. A wide range of different learning mechanisms has been suggested as being engaged by…

  14. Portable musical instrument amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Christian, David E. (Danbury, CT)

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  15. High voltage distributed amplifier

    Science.gov (United States)

    Willems, D.; Bahl, I.; Wirsing, K.

    1991-12-01

    A high-voltage distributed amplifier implemented in GaAs MMIC technology has demonstrated good circuit performance over at least two octave bandwidth. This technique allows for very broadband amplifier operation with good efficiency in satellite, active-aperture radar, and battery-powered systems. Also, by increasing the number of FETs, the amplifier can be designed to match different voltage rails. The circuit does require a small amount of additional chip size over conventional distributed amplifiers but does not require power dividers or additional matching networks. This circuit configuration should find great use in broadband power amplifier design.

  16. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...... of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed....

  17. Optimal design of a high-power picosecond laser system using a dual-stage ytterbium-doped fibre amplifier

    International Nuclear Information System (INIS)

    An average power as high as 60 W with 73 W of pumping was achieved for an ytterbium-doped fibre-based dual-stage amplifier (MOFA) system seeded by a diode-pumped solid-state (DPSS) laser. The corresponding optical conversion efficiency is 80%. The laser system generates a steady pulse train with a pulse width of 11 ps at a repetition rate of 250 MHz or a peak power of 21.8 kW. Moreover, the output beam quality M2 ≈ 1.6. The length and pumping power for the Yb-doped fibres were optimized to suppress stimulated Raman scattering (SRS) and amplified spontaneous emission (ASE) while maintaining desirable output characteristics. (paper)

  18. Spontaneous fission properties and lifetime systematics

    International Nuclear Information System (INIS)

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs

  19. Spontaneous periodic hypothermia.

    Science.gov (United States)

    Kloos, R T

    1995-09-01

    Spontaneous periodic hypothermia is a rare syndrome of recurrent, centrally mediated hypothermia without an identifiable systemic cause or brain lesion. Most patients defend a temporarily lowered temperature "set point" during episodes of hypothermia, despite manifesting many well-known systemic consequences of core temperature hypothermia. No case of death directly attributable to an episode of spontaneous periodic hypothermia has been reported, although many of the serious systemic effects of hypothermia have been documented in these cases, so it is not unlikely that death may occur. The syndrome's cause, and that of Shapiro syndrome, remains unknown. Pharmacologic trials to date have been only modestly successful. Anticonvulsant agents, clonidine, and cyproheptadine appear the most likely to succeed, with cyproheptadine being a reasonable first choice. Given that the term "spontaneous periodic hypothermia" describes a syndrome, and not a pathophysiologic mechanism, it is likely to encompass a common eventuality, arrived at via several different pathways. One can postulate mechanisms such as structural abnormalities, trauma, infection, irritation, and degeneration involving strategic locations which create a focus for epileptic or other periodic dysfunction whose scope involves the centers for thermoregulation. The existence of 2 distinct, oppositional thermoregulatory centers would allow for speculation of similar mechanisms accounting for cases of both periodic hypo- and hyperthermia (61). Postmortem data regarding the hypothalamic and surrounding areas from future cases of Shapiro syndrome and spontaneous periodic hypothermia would be of great interest. Further, more sensitive in vivo testing methods are clearly needed. The role of PET or single photon emission computed tomography (SPECT) with technetium 99m-labeled hexamethylpropylene amine oxime (Tc 99m HMPAO) performed acutely during an episode remains to be characterized (64, 103, 105). The term

  20. Quantum and Raman Noise in a Depleted Fiber Optical Parametric Amplifier

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, Colin J.

    2013-01-01

    The noise properties of both phase-sensitive and phase-insensitive saturated parametric amplifiers are studied using a semi-classical approach. Vacuum fluctuations as well as spontaneous Raman scattering are included in the analysis....

  1. Amplification of picosecond pulse by electron-beam pumped KrF laser amplifiers. Denshi beam reiki KrF laser zofukuki ni yoru piko byo pulse no zofuku

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, I.; Tomie, T.; Owadano, Y.; Yano, M. (Electrotechnical Laboratory, Tsukuba (Japan))

    1991-08-20

    Experiments on the amplification of a picosecond pulse by electron-beam pumped KrF laser amplifiers were carried out for the purpose of its application to the field such as excitation light source for soft X-ray laser which requires large energy besides peak power. The picosecond pulse was amplified by a discharge pumped KrF amplifier and two electron-beam pumped KrF amplifiers(at the middle stage and the final stage). The energy of 4J, which was the largest energy for short pulse excimer laser so far, was obtained by these devices. About 90% of the window area of the final amplifier with 29cm diameter was filled by the input beam, and energy density of the picosecond beam reached 3.9 times saturation energy density. Measured energy of amplified spontaneous emission(ASE) showed good agreement with the theoretically estimated value. Most of ASE was derived from the discharge pumped laser as the first amplifier. As for the focused power density, the power density ratio of the picosecond pulse to ASE was estimated to be as large as 10{sup 5}. 11 refs., 4 figs.

  2. Theoretical and experimental research on cryogenic Yb:YAG regenerative amplifier

    Institute of Scientific and Technical Information of China (English)

    Xinghua Lu; Jiangfeng Wang; Xiang Li; Youen Jiang; Wei Fan; Xuechun Li

    2011-01-01

    Based on the theory of quasi-three-level rate equations modified by amplified spontaneous emission, the stored energy density and the small signal gain of the cryogenic Yb:YAG regenerative amplifier for a given geometry for pulsed pumping in three dimensions are theoretically studied using the Monte Carlo simulation. The present model provides a straightforward procedure to design the Yb:YAG parameters and the optical coupling system for optimization when running at cryogenic temperature. A fiber-coupled laser diode end-pumped cryogenic Yb:YAG regenerative amplifier running at 1 030 nm is demonstrated with a maximum output energy 10.2 mJ at a repetition rate of 10 Hz. A very good agreement between the experiments and the theoretical model is achieved.%With the development of high power laser diodes (LDs),rare earth ion-doped materials have attracted great interest in the application of high-efficiency and high-power diode pumped laser systems[1,2].Among these laser ions,trivalent ytterbium (Yb) seems to be the most appealing because of its simple electronic structure[3].Its electronic level diagram consists of only two electronic levels,avoiding the excited state absorption,up conversion processes,and concentration quenching.

  3. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    Science.gov (United States)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  4. Electrospun Amplified Fiber Optics

    OpenAIRE

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-01-01

    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, ...

  5. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  6. Intensity noise reduction of a high-power nonlinear femtosecond fiber amplifier based on spectral-breathing self-similar parabolic pulse evolution

    Science.gov (United States)

    Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie

    2016-04-01

    We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.

  7. A micropower electrocardiogram amplifier.

    Science.gov (United States)

    Fay, L; Misra, V; Sarpeshkar, R

    2009-10-01

    We introduce an electrocardiogram (EKG) preamplifier with a power consumption of 2.8 muW, 8.1 muVrms input-referred noise, and a common-mode rejection ratio of 90 dB. Compared to previously reported work, this amplifier represents a significant reduction in power with little compromise in signal quality. The improvement in performance may be attributed to many optimizations throughout the design including the use of subthreshold transistor operation to improve noise efficiency, gain-setting capacitors versus resistors, half-rail operation wherever possible, optimal power allocations among amplifier blocks, and the sizing of devices to improve matching and reduce noise. We envision that the micropower amplifier can be used as part of a wireless EKG monitoring system powered by rectified radio-frequency energy or other forms of energy harvesting like body vibration and body heat. PMID:23853270

  8. A vircator amplifier

    International Nuclear Information System (INIS)

    A cavity vircator has demonstrated that formation of a virtual cathode in a cavity can improve microwave production efficiency and narrow the radiation bandwidth. When the virtual cathode radiates the microwave fields grow from noise. For each cavity, there is only one or a limited number of allowable modes for a given frequency. In this paper, a novel device - a vircator amplifier is described. The device consists of a relativistic magnetron and a cavity vircator with both devices powered by a 1 MeV, 3 Ω, 65 ns FWHM pulser. The idea is to inject a signal from the magnetron before and during virtual cathode formation in a cavity. The injected signal should lock the frequency and enhance electron bunching and therefore improve efficiency further. Experiments underway to evaluate the amplifier operating characteristics are discussed. The applicability of vircator amplifiers to the next generation of high-power microwave devices are addressed

  9. FEL gain optimisation and spontaneous radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bali, L.M.; Srivastava, A.; Pandya, T.P. [Lucknow Univ. (India)] [and others

    1995-12-31

    Colson have evaluated FEL gains for small deviations from perfect electron beam injection, with radiation of the same polarisation as that of the wiggler fields. We find that for optimum gain the polarisation of the optical field should be the same as that of the spontaneous emission under these conditions. With a helical wiggler the axial oscillations resulting from small departures from perfect electron beam injection lead to injection dependent unequal amplitudes and phases of the spontaneous radiation in the two transverse directions. Viewed along the axis therefore the spontaneous emission is elliptically polarised. The azimuth of the ellipse varies with the difference of phase of the two transverse components of spontaneous emission but the eccentricity remains the same. With planar wigglers the spontaneous emission viewed in the axial direction is linearly polarised, again with an injection dependent azimuth. For optimum coherent gain of a radiation field its polarisation characteristics must be the same as those of the spontaneous radiation with both types of wiggler. Thus, with a helical wiggler and the data reported earlier, an increase of 10% in the FEL gain at the fundamental frequency and of 11% at the fifth harmonic has been calculated in the small gain per pass limit. Larger enhancements in gain may result from more favourable values of input parameters.

  10. Effect of pulsed electric field on spontaneous photon emission of corn seedlings under osmotic stress%脉冲电场对渗透胁迫下玉米幼苗自发光子辐射的影响

    Institute of Scientific and Technical Information of China (English)

    习岗; 贺瑞瑞; 刘锴; 赵燕燕

    2015-01-01

    . Therefore, the effect of 1 Hz pulsed electric field on crop drought resistance could be greater than the electrostatic field. However, the reports about the effect of the ELF-PEF on crop drought resistance and its mechanism have been very little, and hence the corresponding researches need to be strengthened. Spontaneous photon emission is an important life information. Numerous studies have determined that the spontaneous photon emission from living cells is closely related to some important life processes such as cell metabolism, DNA synthesis, respiration and photosynthesis. The analysis of spontaneous photon emission from living cells could provide a non-invasive optical technology for the study of changes in the cell metabolism and the function of the state, and it has been widely used in the studies of plant reaction to pathogens, flooding, drought, salt stress, herbicides, UV radiation and so on. For the above reasons, after the germinating corn seeds were treated by 1 Hz ELF-PEF and the PEG-6000 solution was used to form physiological drought to corn seedlings, the growth of corn seedlings and spontaneous photon emission under osmotic stress were studied in this paper. The results showed that the promoting effects of 1 Hz ELF-PEF on the growth of corn seedlings were obvious: the fresh qualities of roots and leaves of corn seedling treated by 1 Hz ELF-PEF were higher than the controls under osmotic stress, and the spontaneous photon emissions of embryo, roots and leaves of corn seedlings have been strengthened. According to the changes of spontaneous photon emission from the cell and its biological significance, it has been speculated that the treatment of 1 Hz ELF-PEF on corn seedlings can promote the DNA synthesis reactions and respiratory metabolism in embryo cells of germinating corn under osmotic stress, increase the respiratory metabolism and reactive oxygen in root cells of corn seedlings, and accelerate the photosynthetic electron transport activity and

  11. A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    强则煊; 何赛灵; 张徐亮; 沈林放

    2004-01-01

    The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward ASE from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts (with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.

  12. A novel 3-stage structure for a low-noise, high-gain and gain-flattened L-band erbium doped fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    强则煊; 何赛灵; 张徐亮; 沈林放

    2004-01-01

    The configuration of the novel three-stage L-band erbium-doped fiber amplifier with very large and flat gain and very low noise figure presented in this paper uses the forward ASE (amplified spontaneous emission) from the first section of the EDF (erbium-doped fiber) and the backward AS E from the third section of the EDF (both serve as the secondary pump sources of energy) to pump the second EDF. To improve the pump efficiency, the power of the pump is split into two parts(with a ratio of e.g. 2:7). The characteristics of this L-band EDFA are studied on the basis of the Giles Model with ASE.

  13. Modelling of Output Statistics of Single and ℳ-Mode Straight and Curved Er+:Ti:LiNbO Waveguide Amplifiers

    Directory of Open Access Journals (Sweden)

    Niculae N. Puscas

    2011-01-01

    Full Text Available A theoretical analysis of some statistical parameters which characterize the Er3+-doped Ti:LiNbO3 single and ℳ-mode straight and curved waveguides is presented in this paper. In the derivation and the evaluation of the spectral optical quality factor, the power spectral density, the Fano factor, the statistical fluctuation, and the spontaneous emission factor we used the small gain approximation, and the photon statistics master equation of the linear amplifier (considering that the photon number distribution is determined by the normalized mode intensity profiles which are not uniform in the transversal section of the waveguide, transposed to the case of straight and curved amplifiers. The simulation results show the evolution of the above-mentioned parameters under various pump regimes and waveguide lengths.

  14. Characterization of a High-SpeedHigh-Power Semiconductor Master-Oscillator Power-Amplifier (MOPA) Laser as a Free-Space Transmitter

    Science.gov (United States)

    Wright, M. W.

    2000-04-01

    Semiconductor lasers offer promise as high-speed transmitters for free-space optical communication systems. This article examines the performance of a semiconductor laser system in a master-oscillator power-amplifier (MOPA) geometry developed through a Small Business Innovation Research (SBIR) contract with SDL, Inc. The compact thermo-electric cooler (TEC) packaged device is capable of 1-W output optical power at greater than 2-Gb/s data rates and a wavelength of 960 nm. In particular, we have investigated the effects of amplified spontaneous emission on the modulation extinction ratio and bit-error rate (BER) performance. BERs of up to 10^(-9) were possible at 1.4 Gb/s; however, the modulation extinction ratio was limited to 6 dB. Other key parameters for a free-space optical transmitter, such as the electrical-optical efficiency (24 percent) and beam quality, also were measured.

  15. Emission spectra and stimulated emission characteristics of [N2]2--N2 molecular dimer

    Institute of Scientific and Technical Information of China (English)

    SHEN; Zuochun(申作春); LU; Jianye(鲁建业); Ajmal; H.; Hamdani; GAO; Huide(高惠德); MA; Zuguang(马祖光)

    2003-01-01

    It has been proved by ab initio calculation and theoretical analysis that there exist [N2]2--N2 molecular dimers with D2h symmetry group, and there also exists an electric dipole excimer-like transition a1B2g→a1B3u. The theoretical spectra accord with the experimental results for transition a1B2g→a1B3u. The stimulated emission characteristic of N2 molecular dimer was researched through the microwave excited highly pure nitrogen and the method of amplified spontaneous emission. The experimental results show that N2 molecular dimer has stimulated emission characteristics when the microwave power is more than 100 W and the N2 pressure is in the range from 260 Pa to 2200 Pa.

  16. Fourier plane image amplifier

    Science.gov (United States)

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  17. Annual Change Detection by ASTER TIR Data and an Estimation of the Annual Coal Loss and CO2 Emission from Coal Seams Spontaneous Combustion

    OpenAIRE

    Xiaomin Du; Suping Peng; Haiyan Wang; Sergio Bernardes; Guang Yang; Zhipeng Li

    2014-01-01

    Coal fires, including both underground and coal waste pile fires, result in large losses of coal resources and emit considerable amounts of greenhouse gases. To estimate the annual intensity of greenhouse gas emissions and the loss of coal resources, estimating the annual loss from fire-influenced coal seams is a feasible approach. This study assumes that the primary cause of coal volume loss is subsurface coal seam fires. The main calculation process is divided into three modules: (1) Coal f...

  18. Measurement of excited oxygen (O2:[sup 1][Delta]g) concentration by spontaneous emission. Hakko kyodo ni yoru reiki sanso ([sup 1][Delta]g) nodo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S.; Hasegawa, Y.; Yamashita, I. (Mechanical Engineering Laboratory, Tsukuba (Japan))

    1993-11-25

    The concentration of excited oxygen ([sup 1][Delta]g), which was generated by microwave discharge in a pure oxygen flow, was measured from the intensity of spontaneous emission. The conversion factor to density was determined by spectroscopic analysis of the rotational structure and calibration of the emission intensity using a black-body furnace as light source. Consequently, a good agreement was found between the observed profiles and those calculated from spectroscopic data, and it was illustrated that the absolute concentration can be obtained by coupling band analysis and the calibration method. In addition, even when the concentration was low, it was shown that the excited oxygen concentration can be measured by considering the reflection at the cell wall. The excited oxygen concentration at the microwave discharge cavity was estimated to be around 1% under the pressure ranging from 0.5 torr to 2 torr. Furthermore, the comparison of the profiles calculated at different temperature provided that the band profile can be a good indicator of gas temperature when the signal-to-noise ratio is high. 9 refs., 10 figs., 2 tabs.

  19. Determination of the Primary Nuclear Charge of Fission Fragments from their Characteristic K-X-Ray Emission in Spontaneous Fission of Cf252

    International Nuclear Information System (INIS)

    The distribution of nuclear charge in the spontaneous fission of Cf252 has been determined directly by simultaneous measurement of the masses and characteristic K-X-ray energies associated with the primary fission products. The X-rays were detected by a thin Nal (Tl) crystal (or by an argon-filled proportional counter) in coincidence with a pair of solid-state detectors for the complementary fission fragments. Preliminary to the three-parameter study of the charge-mass distribution the gross characteristics of the K-X-rays were examined in some detail. The average yield of K-X-rays is 0.55 ± 0.1 pet fission (the heavy group accounting fot 70% of the total). From delayed-coincidence and fragment time-of-flight experiments it was.found that about 30% of the X-rays are emitted within 0.1 ns after fission, another 30% between 0.1 and 1 ns, 25% between 1 and 10 ns, the remainder appearing as two delayed components of equal intensity with half-lives of ∼30 ns and ∼100 ns. These characteristics indicate that the X-rays arise from internal conversion during de-excitation of the primary fission fragments, an interpretation supported by the observed yield 1 per fission) of 50 - 300 - keV electrons emitted within 2 ps of fission. In the three-parameter experiments the yield and energy of K-X-rays emitted in the first centimeter (ns) of fragment flight were determined as a function of fragment mass. The yield of K-X-rays per fragment is a pronounced saw-tooth function of mass, rising from p) function in better agreement with the empirical rule of equal charge displacement (ECD) than with other postulates for charge division in nuclear fission. (author)

  20. Helical Fiber Amplifier

    Science.gov (United States)

    Koplow, Jeffrey P.; Kliner, Dahy; Goldberg, Lew

    2002-12-17

    A multi-mode gain fiber is provided which affords substantial improvements in the maximum pulse energy, peak power handling capabilities, average output power, and/or pumping efficiency of fiber amplifier and laser sources while maintaining good beam quality (comparable to that of a conventional single-mode fiber source). These benefits are realized by coiling the multimode gain fiber to induce significant bend loss for all but the lowest-order mode(s).

  1. Spontaneous and stimulated emission in Sm{sup 3+}-doped YAl{sub 3}(BO{sub 3}){sub 4} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ryba-Romanowski, Witold [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Lisiecki, Radosław, E-mail: R.Lisiecki@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław (Poland); Beregi, Elena [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary); Martín, I.R. [Departamento de Física, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna, 38206 S/C de Tenerife, Laguna (Spain)

    2015-11-15

    Single crystals of YAl{sub 3}(BO{sub 3}){sub 4} doped with trivalent samarium were grown by the top-seeded high temperature solution method and their absorption and emission spectra were investigated. Optical pumping into prominent absorption band around 405 nm feeds the {sup 4}G{sub 5/2} metastable level giving rise to intense visible luminescence distributed in several spectral lines with the most intense line around 600 nm characterized by a branching ratio of 0.42 and peak emission cross section of 0.25×10{sup −20} cm{sup 2}. Optical amplification at 600 nm with a gain coefficient of 2.9 cm{sup −1} was achieved during a pump-and-probe experiment. - Highlights: • YAB:Sm crystal grown by the top-seeded high temperature solution method. • Spectroscopic qualities relevant for visible laser operation. • YAB:Sm single crystal used in a pump-and-probe experiment. • Optical amplification properties of samarium doped YAl{sub 3}(BO{sub 3}){sub 4}.

  2. Design and evaluation of laser diodes with distributed bragg reflectors and diffracted waves amplifiers bound to their association into a powerful coherent source; Conception et Evaluation de Diodes Laser a Reflecteurs de Bragg Distribues et d`amplificateurs a onde Diffractee et vue de leur Association en une Source Coherente de Puissance

    Energy Technology Data Exchange (ETDEWEB)

    Dagens, B.

    1995-09-29

    This work is concerned with the evaluation of AlGaAs/GaAs MOPAs (Master Oscillator Power Amplifier) based on the association of a distributed Bragg reflector (DBR) quantum well laser diode with an optical power amplifier. For any given structure and incident wave, the software SIMLAS allows to describe the behaviour of a travelling wave amplifier and to obtain its working characteristics including the output power, the amplified spontaneous emission and the quality of the output beam. This model takes into account the nonlinear interaction between the wave, the injected carriers distribution and the complex index of the structure. The application of the software to a flared non-guided amplified shows that the output power associated with a good beam quality is limited to a range less than one watt. Then a new design is proposed to greatly improve this performance. The modelling software of the DBR laser takes into account wave propagation in a second-order grating structure and the gain and absorption properties in the quantum well. Thus, the output optical power, efficiency, threshold current and model discrimination of the device can be predicted. The model has been used to establish the definition of design criteria in order to promote edge emission relative to surface emission. Finally the fabrication of each device is established. Special attention is paid to the design of the grating region. The fabrication process is validated by the prototypes performance. (author) refs.

  3. High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier.

    Science.gov (United States)

    Wang, Xiong; Jin, Xiaoxi; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2015-02-01

    We present a widely tunable narrowband superfluorescent source near 2 μm employing a monolithic Tm-doped fiber amplifier (TDFA), and the output power exceeds 250 W. A broadband superfluorescent source with a narrowband tunable band pass filter was used as the seed source. The spectra of the seed source can be tuned in a range of ~1930-2030 nm with full width at half maximum (FWHM) of ~1.7 nm. The Tm-doped fiber amplifier scales up the power of the seed source to a level of more than 250 W with a tuning range of ~35 nm (1966-2001 nm) and a FWHM of ~1.5-2.0 nm, and the slope efficiency is about 0.50. The output power is limited by the available pump power, and the tuning range is limited by the amplifier spontaneous emission at other wavelengths. Higher output power can be achieved if launching more pump power into the amplifier, and the tuning range can be further improved by optimizing the parameters of the TDFA. To the best of our knowledge, this is the first demonstration on a widely tunable narrowband superfluorescent source at 2 μm with average output power exceeding 250 W. PMID:25836195

  4. Study of Astragali Complanati Semen on Tonifying Kidney for Arresting Spontaneous Emission%沙苑子补肾固精的作用研究

    Institute of Scientific and Technical Information of China (English)

    黄崇刚; 李恒华; 梅小利; 杨雪

    2011-01-01

    Objective: To observe the effects of Astragali Complanati Semen (ACS) on model animals with spermatogenic disturbance and deficiency of kidney yang. Method: The models of spermatogenic disturbance were established by feeding gossypol acetic acid (GAA) in rats and intraperitoneal injection of cyclophosphamide in mice, sperm quantities of animals in various groups were counted, sperm activities were observed, and the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T) were determined by radio immunoassay. The models of deficiency of kidney yang were established by feeding cortisone acetate. Rectal temperature, swimming time, spontaneous activity, testis weight, and seminal vesicle weight were measured.Result: SAC extract 0. 2,0.4 g· kg-1 markedly improved sperm quantity, sperm activity and the level of T in serum, decreased aberration rate of sperm and the level of LH and FSH in serum. It could markedly improve rectal temperature, swimming time, locomotor activity, testis index, and seminal vesicle index. Conclusion: ACS extract can markedly promote the generation of sperm in spermatogenie disturbance animals, ameliorate serum sex hormone levels, increase the level of quality of sperm, and has remarkable therapeutic effect on deficiency of kidney yang in mice.%目的:观察沙苑子对生精障碍动物的促牛精作用及其对肾阳虚动物模型的影响.方法:通过建立生精障碍大鼠、小鼠模型及肾阳虚小鼠模型,计数生精障碍模型各组动物精子数量,观察各组精子的活力,测定血清性激素水平.测定肾阳虚模型各组小鼠肛温、游泳时间、自主活动、睾丸和精囊腺指数.结果:沙苑子提取物0.2,0.4 g·kg-1能明显增加生精障碍模型大鼠、小鼠的精子数、精子活动率及前列腺和精囊腺指数,能明显降低精子畸形数;能明显增加血清睾酮(T)含量,降低促黄体生成素(LH)、促卵泡生成素(FSH)水平;能明显增加肾

  5. Electronic amplifiers for automatic compensators

    CERN Document Server

    Polonnikov, D Ye

    1965-01-01

    Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as

  6. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  7. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  8. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  9. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael

    2013-08-15

    effect of amplified spontaneous emission (ASE) in the gain material as well as the operation of the pump laser in a burst-mode. Burst-mode operation requires a relatively long pre-pumping phase, which increases ASE related problems. A very important parameter for a large-scale OPCPA system is the timing between pump and OPCPA seed pulses. A drift would cause a loss in the temporal overlap within the crystal. Therefore, a method for the synchronization of pump and seed laser pulses in the OPCPA system by means of a two-crystal balanced optical cross-correlator has been developed and tested.

  10. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    International Nuclear Information System (INIS)

    effect of amplified spontaneous emission (ASE) in the gain material as well as the operation of the pump laser in a burst-mode. Burst-mode operation requires a relatively long pre-pumping phase, which increases ASE related problems. A very important parameter for a large-scale OPCPA system is the timing between pump and OPCPA seed pulses. A drift would cause a loss in the temporal overlap within the crystal. Therefore, a method for the synchronization of pump and seed laser pulses in the OPCPA system by means of a two-crystal balanced optical cross-correlator has been developed and tested.

  11. Universal Signal Conditioning Amplifier

    Science.gov (United States)

    Kinney, Frank

    1997-01-01

    The Technological Research and Development Authority (TRDA) and NASA-KSC entered into a cooperative agreement in March of 1994 to achieve the utilization and commercialization of a technology development for benefiting both the Space Program and U.S. industry on a "dual-use basis". The technology involved in this transfer is a new, unique Universal Conditioning Amplifier (USCA) used in connection with various types of transducers. The project was initiated in partnership with I-Net Corporation, Lockheed Martin Telemetry & Instrumentation (formerly Loral Test and Information Systems) and Brevard Community College. The project consists of designing, miniaturizing, manufacturing, and testing an existing prototype of USCA that was developed for NASA-KSC by the I-Net Corporation. The USCA is a rugged and field-installable self (or remotely)- programmable amplifier that works in combination with a tag random access memory (RAM) attached to various types of transducers. This summary report comprises performance evaluations, TRDA partnership tasks, a project summary, project milestones and results.

  12. Detecção de emissão espontânea de luz em ensaios de colimetria aplicados ao monitoramento de efluentes sanitários Spontaneous light emission in coliforms test applied to wastewater monitoring

    OpenAIRE

    Samuel Ricardo dos Santos; José Euclides Stipp Paterniani; Cristiano de Mello Gallep

    2011-01-01

    No presente trabalho avaliou-se o potencial do emprego da técnica biofotônica ao monitoramento da qualidade microbiológica de efluentes sanitários, por meio da detecção de emissão ultrafraca de luz em testes envolvendo bactéria do grupo coliforme. Foram acompanhados os padrões de emissão de luz em câmara escura com o uso de efluente doméstico, antes e após tratamento, incubados em meio nutritivo à base de lactose e lauril triptose. O controle foi efetuado com o uso de cepa de Escherichia coli...

  13. 氧化锌纳米棒中自发辐射的回音壁模腔增强%Enhancement for Spontaneous Emission from ZnO Hexagonal Microrods Based on Whispering Gallery Mode Resonators

    Institute of Scientific and Technical Information of China (English)

    王马华; 朱光平; 朱汉清; 赵正敏

    2012-01-01

    The samples of zinc oxide nano-wires and hexagonal micro-rods are fabricated by using vapor phase transport method under the almost same conditions. Their morphology and the same crystal structures are examined and characterized by scanning electron microscopy and X-ray diffraction. The photoluminescence C PL) spectra of hexagonal samples, excited by 355 nm laser pulse with excitation power density (260 W/cm2), is measured and compared with those from nano-wires with the same exciting condition at room temperature. There are a more intensive broaden violet emission peaking at 393 nm, frequency spectrum broatening, the red shift of center wavelength and an almost disappearing green band emission in the PL of hexagonal rods while an emission peaking at 382 nm, flat green emission for wires samples. The difference of PL spectra between the two kinds of samples may be attributed to the enhancement of spontaneous emission in whispering gallery modes resonators (WGMRs) by theoretical analysis based on the theory of energy bands for semiconductors, emission from excitons, and Fermi golden rules. PL spectrum measuring experiments with higher excitation power density for the same samples are arranged to verify the theoretical analysis results, which fit with experimental results well.%应用气相传输法制备了氧化锌纳米线和具有六方对称截面的纳米棒,利用电子扫瞄显微镜,X-射线衍射仪等进行形貌与结构表征.室温下,用355nm激光脉冲,以260W/cm2相同光强激励条件,分别测量其光致发光(PL)谱,在棒状样品中发现393nm有发光峰,而线状样品是在382nm处.二者相比,棒状样品的紫光波段自发辐射光强增加、频谱展宽、中心波长红移和绿光波段辐射被显著抑制.基于半导体材料的能带理论、激子复合发光理论和费米黄金定则等,对样品PL谱差异原因进行理论分析,结果表明上述现象源于棒状样品中回音壁模谐振腔(WGMRs)的自发辐射增

  14. Nanoscale electromechanical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  15. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther;

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  16. Spontaneous intracranial hypotension.

    LENUS (Irish Health Repository)

    Fullam, L

    2012-01-31

    INTRODUCTION: Spontaneous\\/primary intracranial hypotension is characterised by orthostatic headache and is associated with characteristic magnetic resonance imaging findings. CASE REPORT: We present a case report of a patient with typical symptoms and classical radiological images. DISCUSSION: Spontaneous intracranial hypotension is an under-recognised cause of headache and can be diagnosed by history of typical orthostatic headache and findings on MRI brain.

  17. Spontaneous Resolution of Massive Spontaneous Tubercular Pneumothorax

    OpenAIRE

    Surya Kant; Saheer, S.; Hassan, G; Jabeed Parengal

    2012-01-01

    A 29-year-old female presented with complaints of fever and productive cough of three weeks duration. Pulmonary tuberculosis was diagnosed bacteriologically and she was prescribed antituberculosis drugs. During follow-up she developed massive pneumothorax, for which patient refused surgical management and was managed conservatively. After six months there was complete spontaneous resolution of pneumothorax. The unusual presentation and unexpected outcome prompted us to report this case.

  18. Spontaneous pneumomediastinum in adolescents

    Institute of Scientific and Technical Information of China (English)

    SHEN Gang; CHAI Ying

    2007-01-01

    @@ Spontaneous pneumomediastinum (SPM),reported firstly by Hamman in 1939,is an uncommon,and usually benign,and self-limiting clinical disorder found in young people often without apparent precipitating factors or diseases.

  19. Spontaneous Pair Creation Revisited

    CERN Document Server

    Pickl, P

    2006-01-01

    Recently the so called Spontaneous Pair Creation of electron positron pairs in a strong external field has been rigorously established. We give here the heuristic core of the proof, since the results differ from those given in earlier works.

  20. Nonlinear carrier dynamics in a quantum dash optical amplifier

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Ek, Sara; Yvind, Kresten;

    2012-01-01

    Results of experimental pump-probe spectroscopy of a quantum dash optical amplifier biased at transparency are presented. Using strong pump pulses we observe a competition between free carrier absorption and two-photon induced stimulated emission that can have drastic effects on the transmission...

  1. Spontaneous cholecystocutaneous abscess.

    Science.gov (United States)

    Metsemakers, W J; Quanten, I; Vanhoenacker, F; Spiessens, T

    2010-01-01

    Spontaneous cholecystocutaneous abscesses or fistulae are rare complications of neglected biliary calculous disease which have become extremely rare during the last decades. We report a case of spontaneous cholecystocutaneous abscess in a 69-year-old male who presented with a mass in the right subcostal region.The diagnosis was made by CT scan with multiplanar reformating. Treatment consisted of incision and drainage of the abdominal wall abscess followed by cholecystectomy in a one-stage protocol.

  2. Spontaneous Rupture of Pyometra

    OpenAIRE

    Fatemeh Mallah; Tahere Eftekhar; Mohammad Naghavi-Behzad

    2013-01-01

    Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated he...

  3. Er–Yb codoped phosphate glasses with improved gain characteristics for an efficient 1.55 µm broadband optical amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Langar, Aroua; Bouzidi, Chaker [Laboratoire des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cedria - B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cedria - B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis-ElManar, ElManar 2092 (Tunisia); Férid, Mokhtar [Laboratoire des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, Technopole de Borj-Cedria - B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2014-04-15

    We have investigated the optical properties of phosphate glasses codoped with Er{sup 3+}–Yb{sup 3+} as a function of Yb{sup 3+}concentration in order to evaluate their potential as both glass laser systems and amplifier materials. The results of differential scanning calorimetry (DSC) measurements indicate a good thermal stability of phosphate glasses. The Judd–Ofelt (JO) model has been applied to absorption intensities of Er{sup 3+} (4f{sup 11}) transitions to establish the so-called Judd–Ofelt intensity parameters: Ω{sub 2}, Ω{sub 4,}Ω{sub 6}. With the weak spectroscopic quality factors Ω{sub 4}/Ω{sub 6} (0.38), we expect a relatively prominent Infrared laser emission. The intensity parameters are used to determine the spontaneous emission probabilities of some relevant transitions, the branching ratio and the radiative lifetimes of several excited states of Er{sup 3+} and compared to the equivalent parameters for other host glasses. Both the IR photoluminescence (PL) intensity and the PL decay time were found to largely increase with Yb{sup 3+}concentration and the maximum quantum efficiency for the 1.55 µm emission was found to be in the order of 91%. We show that the Yb{sup 3+} acts as sensitizer for Er{sup 3+} and contributes largely to the improvement of the spectroscopic properties of phosphate glasses codoped with Er{sup 3+}–Yb{sup 3+}. Using McCumber method, absorption cross-section and calculated emission cross-section, for the {sup 4}I{sub 13/2}→ {sup 4}I{sub 15/2} transition, were determined and compared for the doped and codoped glasses. The phosphate glasses are promising gain media for developing the solid-state 1.55 µm optical amplifiers. -- Highlights: • We study the effect of Yb{sup 3+} adding on the local environment of Er{sup 3+} ions in phosphate glass. • Radiative properties have been determined using Judd–Ofelt theory. • Long lifetimes of excited levels of Er{sup 3+} ions due to the high content of Yb{sup 3+} ions.

  4. International Standardization Activities for Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  5. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  6. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  7. A Transformer Class E Amplifier

    Directory of Open Access Journals (Sweden)

    Mikolajewski Miroslaw

    2014-12-01

    Full Text Available In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.

  8. Raman and loss induced quantum noise in depleted fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Friis, Søren Michael Mørk; Rottwitt, Karsten; McKinstrie, C. J.

    2013-01-01

    We present a semi-classical approach for predicting the quantum noise properties of fiber optical parametric amplifiers. The unavoidable contributors of noise, vacuum fluctuations, loss-induced noise, and spontaneous Raman scattering, are included in the analysis of both phase-insensitive and phase...

  9. Spontaneous pneumomediastinum in adult dermatomyositis.

    OpenAIRE

    Bradley, J D

    1986-01-01

    Spontaneous pneumomediastinum has not been reported in adult polymyositis or dermatomyositis, either in conjunction with spontaneous pneumothorax or in isolation. Spontaneous pneumothorax has been rarely reported as a complication of rheumatoid arthritis, systemic lupus erythematosus, scleroderma, and childhood dermatomyositis. It is associated with active, progressive pulmonary involvement and a poor prognosis. We describe an adult with dermatomyositis and spontaneous pneumomediastinum with ...

  10. A KIND OF NEW AMPLIFIER

    Institute of Scientific and Technical Information of China (English)

    YIN XUN-HE; FENG RU-PENG; REN YONG

    2000-01-01

    Chaotic characteristics in the iteration of logistic map (one-dimensional discrete dynamic system) are simulatedand analyzed. The circuit implementation of a kind of chaotic amplifier model is based on the chaotic characteristicsthat chaos is sensitively dependent on its initial conditions, and the circuit simulation result is given using simulationprogram with integrated circuit emphasis for personal computer (PSPICE), and is compared with linear amplifier.Advantages and disadvantages of such a model are indicated.

  11. Case of spontaneous ventriculocisternostomy

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Kanji; Yoshimoto, Hisanori; Harada, Kiyoshi; Uozumi, Tohru (Hiroshima Univ. (Japan). School of Medicine); Kuwabara, Satoshi

    1983-05-01

    The authors experienced a case of spontaneous ventriculocisternostomy diagnosed by CT scan with metrizamide and Conray. Patient was 23-year-old male who had been in good health until one month before admission, when he began to have headache and tinnitus. He noticed bilateral visual acuity was decreased about one week before admission and vomiting appeared two days before admission. He was admitted to our hospital because of bilateral papilledema and remarkable hydrocephalus diagnosed by CT scan. On admission, no abnormal neurological signs except for bilateral papilledema were noted. Immediately, right ventricular drainage was performed. Pressure of the ventricle was over 300mmH/sub 2/O and CSF was clear. PVG and PEG disclosed an another cavity behind the third ventricle, which was communicated with the third ventricle, and occlusion of aqueduct of Sylvius. Metrizamide CT scan and Conray CT scan showed a communication between this cavity and quadrigeminal and supracerebellar cisterns. On these neuroradiological findings, the diagnosis of obstructive hydrocephalus due to benign aqueduct stenosis accompanied with spontaneous ventriculocisternostomy was obtained. Spontaneous ventriculocisternostomy was noticed to produce arrest of hydrocephalus, but with our case, spontaneous regression of such symptoms did not appeared. By surgical ventriculocisternostomy (method by Torkildsen, Dandy, or Scarff), arrest of hydrocephalus was seen in about 50 to 70 per cent, which was the same results as those of spontaneous ventriculocisternostomy. It is concluded that VP shunt or VA shunt is thought to be better treatment of obstructive hydrocephalus than the various kinds of surgical ventriculocisternostomy.

  12. Residential Exposure to Traffic and Spontaneous Abortion

    OpenAIRE

    Green, Rochelle S; Malig, Brian; Windham, Gayle C.; Fenster, Laura; Ostro, Bart; Swan, Shanna

    2009-01-01

    Background Studies have shown associations between air pollution or traffic exposure and adverse birth outcomes, such as low birth weight. However, very few studies have examined the effect of traffic emissions on spontaneous abortion (SAB). Objective The goal of this study was to determine whether residential exposure to vehicular traffic was associated with SAB. Methods Pregnant women from a prepaid health plan in California were recruited into a prospective cohort study in 1990–1991. Three...

  13. Tapered amplifier laser with frequency-shifted feedback

    CERN Document Server

    Bayerle, A; Vlaar, P; Pasquiou, B; Schreck, F

    2016-01-01

    We present a frequency-shifted feedback (FSF) laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.

  14. Statistics of multiphoton events in spontaneous parametric down-conversion

    OpenAIRE

    Wasilewski, Wojciech; Radzewicz, Czeslaw; Frankowski, Robert; Banaszek, Konrad

    2008-01-01

    We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These pa...

  15. Spontaneous Perforation of Pyometra

    Directory of Open Access Journals (Sweden)

    Begüm Yildizhan

    2006-01-01

    Full Text Available Pyometra is the accumulation of purulent material in the uterine cavity. Its reported incidence is 0.01–0.5% in gynecologic patients; however, as far as elderly patients are concerned, its incidence is 13.6% [3]. The most common cause of pyometra is malignant diseases of genital tract and the consequences of their treatment (radiotherapy. Other causes are benign tumors like leiomyoma, endometrial polyps, senile cervicitis, cervical occlusion after surgery, puerperal infections, and congenital cervical anomalies. Spontaneous rupture of the uterus is an extremely rare complication of pyometra. To our knowledge, only 21 cases of spontaneous perforation of pyometra have been reported in English literature since 1980. This paper reports an additional case of spontaneous uterine rupture.

  16. [Spontaneous mediastinal emphysema].

    Science.gov (United States)

    Svedbrand, Charlotte; Lange, Peter; Nielsen, Klaus

    2016-01-01

    Spontaneous mediastinal emphysema, also known as spontaneous pneumomediastinum, is defined as radiologically detected free air in the mediastinum, without preceding trauma. It is a rare condition, mainly affecting young adults. It can be caused by coughing, strenuous sports or cocaine inhalation, however, 40% are idiopatic. Common symptoms are chest pain and dyspnoea. 75-90% can be diagnosed with a chest X-ray, and 100% with a computed tomography. Treatment is symptomatic and complications are rare, however, pneumothorax and pneumorrachis have been reported. PMID:26750190

  17. Spontaneous Atraumatic Mediastinal Hemorrhage

    Directory of Open Access Journals (Sweden)

    Morkos Iskander BSc, BMBS, MRCS, PGCertMedEd

    2013-04-01

    Full Text Available Spontaneous atraumatic mediastinal hematomas are rare. We present a case of a previously fit and well middle-aged lady who presented with acute breathlessness and an increasing neck swelling and spontaneous neck bruising. On plain chest radiograph, widening of the mediastinum was noted. The bruising was later confirmed to be secondary to mediastinal hematoma. This life-threatening diagnostic conundrum was managed conservatively with a multidisciplinary team approach involving upper gastrointestinal and thoracic surgeons, gastroenterologists, radiologists, intensivists, and hematologists along with a variety of diagnostic modalities. A review of literature is also presented to help surgeons manage such challenging and complicated cases.

  18. Dynamic modeling of slow-light in a semiconductor optical amplifier including the effects of forced coherent population oscillations by bias current modulation

    Science.gov (United States)

    Connelly, M. J.

    2014-05-01

    The slow light effect in SOAs has many applications in microwave photonics such as phase shifting and filtering. Models are needed to predict slow light in SOAs and its dependence on the bias current, optical power and modulation index. In this paper we predict the slow light characteristics of a tensile-strained SOA by using a detailed time-domain model. The model includes full band-structure based calculations of the material gain, bimolecular recombination and spontaneous emission, a carrier density rate equation and travelling wave equations for the input signal and amplified spontaneous emission. The slow light effect is caused by coherent population oscillations, whereby beating between the spectral components of an amplitude modulated lightwave causes carrier density oscillations at the beat frequency, leading to changes in the group velocity. The resulting beat signal at the SOA output after photodetection, is phase shifted relative to the SOA input beat signal. The phase shift can be adjusted by controlling the optical power and bias current. However the beat signal gain is low at low frequencies, leading to a poor beat signal output signal-to-noise ratio. If the optical input and SOA drive current are simultaneously modulated, this leads to forced population oscillations that greatly enhance the low frequency beat signal gain. The model is used to determine the improvement in gain and phase response and its dependency on the optical power, bias current and modulation index. Model predictions show good agreement with experimental trends reported in the literature.

  19. EMI-resilient amplifier circuits

    CERN Document Server

    van der Horst, Marcel J; Linnenbank, André C

    2014-01-01

    This book enables circuit designers to reduce the errors introduced by the fundamental limitations and electromagnetic interference (EMI) in negative-feedback amplifiers.  The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER).  This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in  application specific amplifiers in order to meet the SER requirements.   ·         Describes design methods that incorporate electromagnetic interference (EMI) in the design of application specific negative-feedback amplifiers; ·         Provides designers with a structured methodology to avoid the use of trial and error in meeting signal-to-error ratio (SER) requirements; ·         Equips designers to increase EMI immunity of the amplifier itself, thus avoiding filtering at the input, reducing the number of components and avoiding detr...

  20. Low-Noise Band-Pass Amplifier

    Science.gov (United States)

    Kleinberg, L.

    1982-01-01

    Circuit uses standard components to overcome common limitation of JFET amplifiers. Low-noise band-pass amplifier employs JFET and operational amplifier. High gain and band-pass characteristics are achieved with suitable choice of resistances and capacitances. Circuit should find use as low-noise amplifier, for example as first stage instrumentation systems.

  1. Spontaneous otogenic pneumocephalus.

    Science.gov (United States)

    Mohammed, El Romyssa; Profant, Milan

    2011-06-01

    The diagnosis and management of spontaneous otogenic pneumocephalus with literature review is described. A young sportsman experienced headache and fluctuating mass in his occiput during increased physical activity. A large extradural intracranial pneumocephalus with corresponding emphysema was imaged on a CT scan. Transmastoid identification and plugging of temporal bone defect solved the problem with complete pneumocephalus and emphysema resorption. PMID:21254960

  2. Gaussian amplifier for nuclear spectrometry

    International Nuclear Information System (INIS)

    One of the major goals of nuclear spectrometry is the determination of the energy spectrum of a radioactive source. To measure this spectrum with electronic instrumentation one need to use a nuclear spectrometry chain of which the amplifier is part of, and whose filter shaping considerably influences the final energy resolution achieved. The amplifier released accomplishes a 7th order Gaussian filter shape with Taylor series approximation synthesized by the Shifted Companion Form and mounted using only electronic components availablein Brazil. The final version has been tested and the results showed a very good performance and the energy resolution achieved was equivalent to the imported models. (Author)

  3. Spontaneous pneumothorax complicating Legionnaires' disease

    OpenAIRE

    Bali, A; Pierry, A. A.; Bernstein, A.

    1981-01-01

    Spontaneous pneumothorax is a known but rare complication of pneumonia in adults. A case is described of Legionnaires' disease complicated by spontaneous hydropneumothorax. So far as is known such an association has not been reported previously.

  4. Spontaneous shrinkage of vestibular schwannoma

    Directory of Open Access Journals (Sweden)

    Rossana Romani

    2016-01-01

    Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS.

  5. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, M.

    2014-01-01

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length o

  6. Thermal recovery of NIF amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Marshall, C.; Petty, C.; Smith, L.; van Wonterghem, B.; Mills, S.

    1997-02-01

    The issue of thermal recovery of the NIF amplifiers has taken on increased emphasis as program goals move toward increasing the shot rate to once every four hours. This paper addresses the technical issues associated with achieving thermal recovery in the NIF amplifiers. We identify two temperature related thermal recovery quantities: (1) the difference between the average slab temperature and the temperature of other surfaces in the amplifier cavity, and (2) the temperature difference in the slab over the aperture. The first quantity relates to optical disturbances in the gas column in the system, while the second quantity is associated with optical aberrations in the laser media itself. Calculations and experiments are used to quantify recovery criteria, and develop cooling approaches. The cooling approaches discussed are (1) active cooling of the flashlamps with ambient gas and chilled gas, and (2) active cooling of the slab edge cladding. Calculations indicate that the NIF baseline cooling approach of 20 cfm per lamp ambient temperature gas flow in both the central and side flashlamp cassettes is capable of meeting thermal recovery requirements for an 8 hour shot period, while to achieve a 4 hour shot period requires use of chilled gas and edge cladding cooling. In addition, the effect of changing the amplifier cavity and beamtube fill gas from nitrogen to helium is addressed, showing that a factor of 8 reduction in the sensitivity to thermal disturbances is possible. 6 refs., 9 figs., 1 tab.

  7. A wideband dc-coupled amplifier

    International Nuclear Information System (INIS)

    A method is described whereby an ac-coupled high-frequency amplifier and a dc-coupled low-frequency amplifier are connected in parallel in order to obtain a dc-coupled wideband amplifier. By using an operational amplifier which compares the output voltage with the input voltage, the low-frequency amplifier contributes to the overall gain only when the gain of the ac-coupled amplifier droops at low frequencies. Thus, no frequency splitting networks are necessary and the excellent low-frequency features of an operational amplifier are added to those of the ac-coupled wideband amplifier. As an example, a low noise amplifier is described which exhibits a hundredfold gain, a bandwidth from dc to 550 MHz, an input bias current of less than 1 nA, and an output voltage range of ±1 V

  8. Spontaneous Quantum Hall Liquids

    Science.gov (United States)

    Zhang, Fan

    2012-02-01

    Driven by electron-electron interactions, bilayer graphene and its thicker cousins, chirally (ABC) stacked multilayers, exhibit a variety of distinct broken symmetry states in which each spin-valley flavor spontaneously transfers charge between layers, because of their flat touching bands and large pseudospin chiralities. These gapped states are accompanied by large momentum space Berry curvatures and different types of topological orders. These competing ground states are distinguished by their flavor Hall conductivities, orbital magnetizations, edge state properties, and response to external fields. These spontaneous quantum Hall (SQH) states at zero field smoothly evolve into quantum Hall ferromagnet states at finite field. Various phase transitions occur by tuning carrier densities, temperature, and external fields. Recently, SQH states have started to be observed and explored in transport and Hall experiments on suspended devices with dual gates.

  9. Spontaneous Perforation of Pyometra.

    Science.gov (United States)

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-04-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perforation was performed. Although spontaneously perforated pyometra is rare, the condition must be borne in mind with regard to elderly women with acute abdominal pain. Preoperative diagnosis of perforated pyometra is absolutely essential. Computed tomography (CT) and MRI are diagnostic tools. In selected cases conservative approach at surgery can be opted. PMID:27152313

  10. Spontaneous Rupture of Pyometra

    Directory of Open Access Journals (Sweden)

    Fatemeh Mallah

    2013-01-01

    Full Text Available Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated hernia. The second case is a 61-year-old woman with abdominal pain for which laparotomy was performed because of symptoms of peritonitis. At laparotomy of both cases, 1 liter of pus with the source of uterine was found in the abdominal cavity. The ruptured uterine is also detected. More investigations revealed no malignancy as the reason of the pyometra.

  11. Amplify Errors to Minimize Them

    Science.gov (United States)

    Stewart, Maria Shine

    2009-01-01

    In this article, the author offers her experience of modeling mistakes and writing spontaneously in the computer classroom to get students' attention and elicit their editorial response. She describes how she taught her class about major sentence errors--comma splices, run-ons, and fragments--through her Sentence Meditation exercise, a rendition…

  12. Komplikation bei spontaner Liquorfistel

    OpenAIRE

    Cuevas, M.; Berberich, A; Zahnert, T.

    2015-01-01

    Hintergrund: Liquorfisteln im Bereich der Rhinobasis enstehen meist nach Schädelbasisfraktur mit Zerreißung der Dura. Selten treten sie spontan ohne erkennbare Ursache auf. Aufgrund von möglichen Komplikationen wie Pneumozephalus, Meningitis und Hirnabszess sollte eine operative Versorgung erfolgen. Anhand des vorliegenden Fallberichtes soll die Notwendigkeit dieser untermalt werden.Fall: Eine 59-jährige Patientin wurde uns bei Z.n. einer komplizierten Pneumokokkenmeningitis mit Beatmungspf...

  13. Spontaneous Perforation of Pyometra

    OpenAIRE

    Sharma, Nalini; Singh, Ahanthem Santa; Bhaphiralyne, Wankhar

    2016-01-01

    Pyometra is collection of purulent material which occurs when there is interference with its normal drainage. It is an uncommon condition with incidence of 0.1 to 0.5% of all gynecological patients. Spontaneous rupture of uterus is an extremely rare complication of pyometra. A 65-year-old lady presented with pain abdomen and purulent vaginal discharge. Preoperative diagnosis of pyometra was made by magnetic resonance imaging (MRI). Laparotomy followed by peritoneal lavage and repair of perfor...

  14. [Spontaneous bilateral Petit hernia].

    Science.gov (United States)

    Fontoura, Rodrigo Dias; Araújo, Emerson Silveira de; Oliveira, Gustavo Alves de; Sarmenghi Filho, Deolindo; Kalil, Mitre

    2011-01-01

    Petit's lumbar hernia is an uncommon defect of the posterior abdominal wall that represents less than 1% of all abdominal wall hernias. It is more often unilateral and founded in young females, rarely containing a real herniated sac. There are two different approaches to repair: laparoscopy and open surgery. The goal of this article is to report one case of spontaneous bilateral lumbar Petit's hernia treated with open surgery.

  15. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  16. Angular dependent light emission from planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaison.peter@gmail.com [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India); CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Prabhu, Radhakrishna [CRE" +E, IDEAS Research Institute, Robert Gordon University, Aberdeen AB10 7GJ (United Kingdom); Radhakrishnan, P.; Vallabhan, C. P. G.; Nampoori, V. P. N.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 682022 (India)

    2015-01-07

    We have investigated the angular dependence of amplified spontaneous emission (ASE) and laser emission from an asymmetric and free-standing polymer thin films doped with rhodamine 6G, which is transversely pumped by a pulsed Nd:YAG laser. A semi-leaky waveguide or quasi-waveguide structure has been developed by spin coating technique. In these waveguides, the light was confined by the film/air-film/glass substrate interfaces. At the film/substrate interface, a portion of light will reflect back into the film (guided mode) and the remaining refracted to the substrate resulting in cutoff modes. A blue-shift in ASE has been observed when the pump power was increased from 8 to 20 mW allowing a limited range of tuning of emission wavelength. To study the directionality of the ASE from the waveguide, we have measured the output intensity and FWHM of emission spectra as a function of viewing angle (θ) from the plane parallel to film. From the detailed examination of the output emission spectra, as +θ increases from 0° there has been an initial decrease in output intensity, but at a particular angle ≈10° an increase in output intensity was observed. This additional peak in output intensity as +θ is a clear indication of coexistence of the cutoff mode. We also present a compact solid-state laser based on leaky mode propagation from the dye-doped polymer free-standing film (∼50 μm thickness) waveguide. The partial reflections from the broad lateral surfaces of the free-standing films provided the optical feedback for the laser emission with high directionality. For a pump power of 22 mW, an intense line with FWHM <0.2 nm was observed at 578 nm.

  17. Einstein's coefficients and the nature of thermal radio emission

    OpenAIRE

    Prigara, F. V.

    2001-01-01

    The relations between Einstein's coefficients for spontaneous and induced emission of radiation with account for the natural linewidth are obtained . It is shown that thermal radio emission is stimulated one . Thermal radio emission of non-uniform gas is considered .

  18. [Spontaneous abortion. Etiologic survey. Results].

    Science.gov (United States)

    Baaklini, N; Anguenot, J L; Boulanger, J C; Vitse, M

    1990-12-01

    The definition of repeated spontaneous abortions is subject to caution. For some, it corresponds to at least three repeated spontaneous abortions with no normal previous pregnancy; for others, it comprises the repeated spontaneous abortions occurring after a normal pregnancy. It is a frequent problem, especially if one tries to give a wider definition. The authors studied the frequency of repeated spontaneous abortions in a continuous series of 14,857 pregnancies which took place between January 1982 and December 1988. In the study of the aetiology of the repeated spontaneous abortions in the various groups of women defined according to the number of previous pregnancies and abortions, they find the classical causes of repeated spontaneous abortions in all the categories: therefore, it seems legitimate to them that a wider definition be given for repeated spontaneous abortions. PMID:2291048

  19. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  20. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.;

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  1. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  2. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk;

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  3. Quantum Theory of Laser Amplifiers.

    Science.gov (United States)

    Mander, Gillian Linda

    Available from UMI in association with The British Library. Requires signed TDF. We calculate the input-output characteristics of a below threshold laser amplifier. Expressions are derived for the output second- and fourth-order spectral and temporal correlation functions in terms of the corresponding input quantities, and for the photocount first and second factorial moments for both homodyne and direct detection. The general results are applied to several cases of practical interest, including specific non-classical input states. We show that a maximum of twofold amplification is permitted if squeezing in the input is to survive at the output. Similarly, for preservation of photon antibunching in amplification we show that only very small gains are allowed. The model treated here provides a detailed example of the amplifier noise limitations imposed by quantum mechanics. In particular, we show that minimum noise occurs in a cavity that is asymmetric with respect to the mirror reflectivities. The latter part of this work treats the above threshold laser amplifier. The laser output is back-scattered from a moving target to provide a weak Doppler-shifted signal which re-enters the laser cavity and is amplified. We show that the three-level atomic lasing medium is equivalent to a two-level medium pumped by an inverted bath. We use the methods of quantum statistical analysis to obtain time -evolution equations for the c-number amplitudes of the laser and signal fields. We show that the results may be applied to the below threshold regime for appropriate values of the pump parameter. By considering the amplitude differential gain we show explicitly that the behaviour of the laser around threshold is characteristic of a second -order phase transition. We calculate the output intensity gain appropriate to a heterodyne detection process, and find good agreement between the predicted gain profiles and measured data for both carbon dioxide and argon-ion lasers.

  4. 338-GHz Semiconductor Amplifier Module

    Science.gov (United States)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  5. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  6. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  7. Improved charge amplifier using hybrid hysteresis compensation

    Science.gov (United States)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  8. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.;

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...

  9. A High-performance Small Signal Amplifier

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance.

  10. Radio frequency amplifier with effective decoupling

    NARCIS (Netherlands)

    Besling, W.F.A.; Bakker, T.W.; Lamy, Y.; Kochupurackal, J.; Roozeboom, F.

    2011-01-01

    A variety of circuits, methods and devices are implemented for radiofrequency amplifiers. According to one such implementation, a radiofrequency amplifier circuit is implemented in a SMD package. The circuit amplifies a radiofrequency signal having a base-band portion and a plurality of carrier sign

  11. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  12. Kahal as Spontaneous Order

    OpenAIRE

    Joseph Isaac Lifshitz

    2009-01-01

    One description of the people of Israel is Kahal, a category that the Talmud is also concerned with. This category was further employed later in the middle ages, and was given to the Jewish community, although some times with a little twist, the Kehila. This paper will focus mainly on the question of the formation of the Kahal as a large political body in the Bible and in the Talmud, and explore the political implications that can be derived from it. The Kahal as a spontaneously-defined, non-...

  13. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier

    Science.gov (United States)

    Li, Ping-Xue; Yao, Yi-Fei; Chi, Jun-Jie; Hu, Hao-Wei; Zhang, Guang-Ju; Liang, Bo-Xing; Zhang, Meng-Meng; Ma, Chun-Mei; Su, Ning

    2016-08-01

    A 980-nm semiconductor saturable absorber mirror (SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 mW and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-mW maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission (ASE) nor harmful oscillation around 1030 nm is observed. Moreover, through a two-stage all-fiber-integrated amplifier, an output power of 740 mW is generated with a pulse width of 200 ps. Project supported by the National Natural Science Foundation of China (Grant No. 61205047).

  14. Quantum Spontaneous Stochasticity

    CERN Document Server

    Eyink, Gregory L

    2015-01-01

    The quantum wave-function of a massive particle with small initial uncertainties (consistent with the uncertainty relation) is believed to spread very slowly, so that the dynamics is deterministic. This assumes that the classical motions for given initial data are unique. In fluid turbulence non-uniqueness due to "roughness" of the advecting velocity field is known to lead to stochastic motion of classical particles. Vanishingly small random perturbations are magnified by Richardson diffusion in a "nearly rough" velocity field so that motion remains stochastic as the noise disappears, or classical spontaneous stochasticity, . Analogies between stochastic particle motion in turbulence and quantum evolution suggest that there should be quantum spontaneous stochasticity (QSS). We show this for 1D models of a particle in a repulsive potential that is "nearly rough" with $V(x) \\sim C|x|^{1+\\alpha}$ at distances $|x|\\gg \\ell$ , for some UV cut-off $\\ell$, and for initial Gaussian wave-packet centered at 0. We consi...

  15. Log amplifier with pole-zero compensation

    Science.gov (United States)

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  16. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.;

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  17. High temperature charge amplifier for geothermal applications

    Science.gov (United States)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  18. Audio power amplifier design handbook

    CERN Document Server

    Self, Douglas

    2013-01-01

    This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  19. Cathode-follower power amplifier

    International Nuclear Information System (INIS)

    In circular accelerators and particularly in storage rings it is essential that the total impedance, as seen by the beam, be kept below some critical value. A model of the accelerating system was built using a single-ended cathode-follower amplifier driving a ferrite-loaded cavity. The system operated at 234.5 kHz with a peak output voltage of +-10 kV on the gap. The dynamic output impedance, as measured on the gap, was < 15 ohms

  20. Dicke superradiance, Bose-Einstein condensation of photons and spontaneous symmetry breaking

    CERN Document Server

    Vyas, Vivek M; Srinivasan, V

    2016-01-01

    It is shown that the phenomenon of Dicke superradiance essentially occurs due to spontaneous symmetry breaking. Two generalised versions of the Dicke model are studied, and compared with a model that describes photonic Bose-Einstein condensate, which was experimentally realised. In all the models, it is seen that, the occurrence of spontaneous symmetry breaking is responsible for coherent radiation emission.

  1. Thermal Radio Emission as Incoherent Induced Radiation

    OpenAIRE

    Prigara, Fedor V.

    2001-01-01

    The synchrotron interpretation of radio emission from various astrophysical objects encounters the essential difficulties . These difficulties may be overcome in a new theory of thermal radio emission of non-uniform gas which is based on a stimulated character of thermal radio emission following from the relations between Einstein?s coefficients for spontaneous and induced emission of radiation .

  2. Spontaneous Coronary Artery Dissection.

    Science.gov (United States)

    Tweet, Marysia S; Gulati, Rajiv; Hayes, Sharonne N

    2016-07-01

    Spontaneous coronary artery dissection is an important etiology of nonatherosclerotic acute coronary syndrome, myocardial infarction, and sudden death. Innovations in the catheterization laboratory including optical coherence tomography and intravascular ultrasound have enhanced the ability to visualize intimal disruption and intramural hematoma associated with SCAD. Formerly considered "rare," these technological advances and heightened awareness suggest that SCAD is more prevalent than prior estimates. SCAD is associated with female sex, young age, extreme emotional stress, or extreme exertion, pregnancy, and fibromuscular dysplasia. The clinical characteristics and management strategies of SCAD patients are different than for atherosclerotic heart disease and deserve specific consideration. This review will highlight recent discoveries about SCAD as well as describe current efforts to elucidate remaining gaps in knowledge.

  3. Spontaneous aortocaval fistula.

    Directory of Open Access Journals (Sweden)

    Rajmohan B

    2002-07-01

    Full Text Available Spontaneous aortocaval fistula is rare, occurring only in 4% of all ruptured abdominal aortic aneurysms. The physical signs can be missed but the presence of low back pain, palpable abdominal aortic aneurysm, machinery abdominal murmur and high-output cardiac failure unresponsive to medical treatment should raise the suspicion. Pre-operative diagnosis is crucial, as adequate preparation has to be made for the massive bleeding expected at operation. Successful treatment depends on management of perioperative haemodynamics, control of bleeding from the fistula and prevention of deep vein thrombosis and pulmonary embolism. Surgical repair of an aortocaval fistula is now standardised--repair of the fistula from within the aneurysm (endoaneurysmorraphy followed by prosthetic graft replacement of the aneurysm. A case report of a 77-year-old woman, initially suspected to have unstable angina but subsequently diagnosed to have an aortocaval fistula and surgically treated successfully, is presented along with a review of literature.

  4. Spontaneous soft tissue hematomas.

    Science.gov (United States)

    Dohan, A; Darnige, L; Sapoval, M; Pellerin, O

    2015-01-01

    Spontaneous muscle hematomas are a common and serious complication of anticoagulant treatment. The incidence of this event has increased along with the rise in the number of patients receiving anticoagulants. Radiological management is both diagnostic and interventional. Computed tomography angiography (CTA) is the main tool for the detection of hemorrhage to obtain a positive, topographic diagnosis and determine the severity. Detection of an active leak of contrast material during the arterial or venous phase is an indication for the use of arterial embolization. In addition, the interventional radiological procedure can be planned with CTA. Arterial embolization of the pedicles that are the source of the bleeding is an effective technique. The rate of technical and clinical success is 90% and 86%, respectively. PMID:26066549

  5. Spontaneous Coronary Artery Dissection.

    Science.gov (United States)

    Tweet, Marysia S; Gulati, Rajiv; Hayes, Sharonne N

    2016-07-01

    Spontaneous coronary artery dissection is an important etiology of nonatherosclerotic acute coronary syndrome, myocardial infarction, and sudden death. Innovations in the catheterization laboratory including optical coherence tomography and intravascular ultrasound have enhanced the ability to visualize intimal disruption and intramural hematoma associated with SCAD. Formerly considered "rare," these technological advances and heightened awareness suggest that SCAD is more prevalent than prior estimates. SCAD is associated with female sex, young age, extreme emotional stress, or extreme exertion, pregnancy, and fibromuscular dysplasia. The clinical characteristics and management strategies of SCAD patients are different than for atherosclerotic heart disease and deserve specific consideration. This review will highlight recent discoveries about SCAD as well as describe current efforts to elucidate remaining gaps in knowledge. PMID:27216840

  6. Self-amplifying Hawking radiation and its background: a numerical study

    CERN Document Server

    Steinhauer, Jeff

    2016-01-01

    We numerically study an analogue black hole with two horizons with similar parameters to a recent experiment. We find that the Hawking radiation exists on a background which contains a density oscillation, a zero-frequency ripple. The Hawking radiation evolves from spontaneous to self-amplifying, while the background ripple grows steadily with no qualitative change. It is seen that the self-amplifying Hawking radiation has a non-zero frequency. The background ripple appears even before the inner horizon is created, in contrast to predictions. This work is in agreement with the recent observation of self-amplifying Hawking radiation, and explains some of the features seen. In contrast to recent works, our study differentiates between the Hawking radiation observed, and the evolution of the background.

  7. Screening for spontaneous preterm birth

    NARCIS (Netherlands)

    M.A. van Os; A.J.E.M. van Dam

    2015-01-01

    Preterm birth is the most important cause of perinatal morbidity and mortality worldwide. In this thesis studies on spontaneous preterm birth are presented. The main objective was to investigate the predictive capacity of mid-trimester cervical length measurement for spontaneous preterm birth in a l

  8. Pregnancy outcome following spontaneous abortions

    Directory of Open Access Journals (Sweden)

    Swati Agrawal

    2015-12-01

    Conclusions: Previous history of spontaneous abortion is associated with adverse pregnancy outcome. There is increased risk of abortion, preterm delivery, need for caesarean sections and fetal loss in cases of previous spontaneous abortions. These complications and fetal loss can be reduced by booking the patients and giving due antenatal care. [Int J Reprod Contracept Obstet Gynecol 2015; 4(6.000: 1891-1893

  9. Emergency Surgery for Spontaneous Hemopneumothorax

    International Nuclear Information System (INIS)

    Emergency management of spontaneous hemopneumothorax patients was retrospectively analysed in this study. From November 2009 to August 2012, 221 patients with spontaneous pneumothorax were treated in the thoracic surgery clinic. Among them, 9 (4.07%) were diagnosed with spontaneous hemopneumothorax. Chest X-ray and computed tomography were the diagnostic tools. Emergency thoracotomy was performed for 7 of 9 patients because of massive hemothorax and continuous bleeding from the chest tube. Massive hematoma was documented in 2 of 7 patients at tomography. Bridging veins and torn pleural adhesion between parietal and visceral pleura were the source of bleeding determined at thoracotomy. Hematoma evacuation, resection of bullae, ligation of pleural adhesions and apical pleurectomy were performed. Spontaneous hemopneumothorax is an emergency due to massive hemorrhage and hematoma formation. Early surgical treatment is recommended for patients with spontaneous hemopneumothorax. (author)

  10. YANG-MILLS FIELD AMPLIFIER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-09-01

    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  11. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  12. Locoregional MYCN-amplified neuroblastoma.

    Science.gov (United States)

    Morales La Madrid, Andres; Volchenboum, Samuel; Gastier-Foster, Julie M; Pyatt, Robert; Liu, Don; Pytel, Peter; Lavarino, Cinzia; Rodriguez, Eva; Cohn, Susan L

    2012-10-01

    MYCN-amplification is strongly associated with other high-risk prognostic factors and poor outcome in neuroblastoma. Infrequently, amplification of MYCN has been identified in localized tumors with favorable biologic features. Outcome for these children is difficult to predict and optimal treatment strategies remain unclear. We report a 5-month-old who presented with an MYCN-amplified INSS stage 3, pelvic neuroblastoma. The tumor had favorable histology, hyperdiploidy, and lacked 1p36 and 11q23 aberrations. Although the patient met the criteria for high-risk neuroblastoma, because of the discordant prognostic markers we elected to treat her according to an intermediate-risk protocol. She remains event-free more than 18 months.

  13. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... of linearisation systems with focus on polar modulation feedback, and a chip oriented part focusing on integrating of separate building blocks of the system on a chip. The system oriented part of this thesis deals with analog feedback linearisation systems. The Polar modulation feedback system is compared...... that utilize properties of the polar loop are presented. Analysis of the envelope feedback loop shows some fundamental limitations of the loop gain and the loop bandwidth due to the varying PA gain. Based on these observation a set of design guidelines for an envelope feedback loop is given. The guidelines...

  14. Optical latches using optical amplifiers

    Science.gov (United States)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2013-05-01

    Optical latches are important for a wide range of applications including communication systems, optical logic systems, optical random access memory (RAM) and encryption. All optical logic operations using quantum dot (QD) based semiconductor optical amplifier (SOA) and Mach-Zehnder interferometer (MZI) have been studied. The building block of an optical latch such as NAND gate has been fabricated and their operation experimentally demonstrated at ~ 80 GHz. A rate equation model has been developed for the QD-SOA-MZI and it has been used to analyze the Boolean logic operation. The model has been used to analyze the Set-Reset (S-R) latch and the D-Flip-Flop (DFF) devices. The DFF is the basic device for building larger logic circuits. The results show that the latches would work to speeds of ~ 250 Gb/s.

  15. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2001-01-01

    on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0.5 μm CMOS single poly, n-well process. The prototype amplifier features a gain of 80 dB over a 3.6 kHz bandwidth, a CMRR of more than 87 dB and a PSRR...

  16. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth. These...... results are promising for short and efficient semiconductor optical amplifiers. This effect will also benefit other devices, such as mode locked lasers....

  17. Reflection amplifiers in self-regulated learning

    NARCIS (Netherlands)

    Verpoorten, Dominique

    2012-01-01

    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  18. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... performance of the amplifier is also investigated for both configurations. Our results show an on/off gain exceeding 20 dB at 1810 nm for which the obtained effective noise figure is below 3 dB....

  19. Dynamics of Soliton Cascades in Fiber Amplifiers

    CERN Document Server

    Arteaga-Sierra, F R; Agrawal, Govind P

    2016-01-01

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  20. Spontaneous subgaleal aerocele.

    Science.gov (United States)

    Ibe, M O N; Onu, D O; Igwe, N N

    2014-01-01

    Apart from reporting about a case of spontaneous subgaleal aerocele this paper looks at the possible causes and management also. A 35-year-old Igbo-Nigerian female, about 4 weeks post-natal, with a 10-month old steadily and gradually enlarging mass around the back of her head, including both temporal regions was referred to us. Plain skull radiographs showed air in this mass. Needle puncture produced air leading to immediate and complete flattening of the lesion. A few hours after this procedure while still in the hospital premises, she had generalized convulsions, for which she was hospitalized and treated. With no further attacks, her request for discharge the following day was granted. At the next visit, 7 days later, there was a re-accumulation, which was treated the same way as previously and with the same result. She has not reported back since then, though she was advised to visit us again in 7 day-time. This lesion should be considered when masses on the head are presented. Our health institutions should have adequate investigative facilities.

  1. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  2. Spontaneous subgaleal aerocele.

    Science.gov (United States)

    Ibe, M O N; Onu, D O; Igwe, N N

    2014-01-01

    Apart from reporting about a case of spontaneous subgaleal aerocele this paper looks at the possible causes and management also. A 35-year-old Igbo-Nigerian female, about 4 weeks post-natal, with a 10-month old steadily and gradually enlarging mass around the back of her head, including both temporal regions was referred to us. Plain skull radiographs showed air in this mass. Needle puncture produced air leading to immediate and complete flattening of the lesion. A few hours after this procedure while still in the hospital premises, she had generalized convulsions, for which she was hospitalized and treated. With no further attacks, her request for discharge the following day was granted. At the next visit, 7 days later, there was a re-accumulation, which was treated the same way as previously and with the same result. She has not reported back since then, though she was advised to visit us again in 7 day-time. This lesion should be considered when masses on the head are presented. Our health institutions should have adequate investigative facilities. PMID:24553041

  3. Regime for a Self-ionizing Raman Laser Amplifier

    International Nuclear Information System (INIS)

    Backward Raman amplification and compression at high power might occur if a long pumping laser pulse is passed through a plasma to interact resonantly with a counter-propagating short seed pulse [V.M. Malkin, et al., Phys. Rev. Lett. 82 (1999) 4448-4451]. One critical issue, however, is that the pump may be unacceptably depleted due to spontaneous Raman backscatter from intrinsic fluctuations in the amplifying plasma medium prior to its useful interaction with the seed. Premature backscatter may be avoided, however, by employing a gaseous medium with pump intensities too low to ionize the medium, and using the intense seed to produce the plasma by rapid photoionization as it is being amplified [V.M. Malkin, et al., Phys. Plasmas (2001)]. In addition to allowing that only rather low power pumps be used, photoionization introduces a damping of the short pulse which must be overcome by the Raman growth rate for net amplification to occur. The parameter space of gas densities, laser wavelengths, and laser intensities is surveyed to identify favorable regimes for this effect. Output laser intensities of 10(superscript ''17'') W/cm(superscript ''2'') for 0.5 mm radiation are found to be feasible for such a scheme using a pump of 10(superscript ''13'') W/cm(superscript ''2'') and an initial seed of 5 x 10(superscript ''14'') W/cm(superscript ''2'') over an amplification length of 5.6 cm in hydrogen gas

  4. Regime for a self-ionizing Raman laser amplifier

    International Nuclear Information System (INIS)

    Backward Raman amplification and compression at high power might occur if a long pumping laser pulse is passed through a plasma to interact resonantly with a counter-propagating short seed pulse [V. M. Malkin et al., Phys. Rev. Lett. 82, 4448-4451 (1999)]. One critical issue, however, is that the pump may be unacceptably depleted due to spontaneous Raman backscatter from intrinsic fluctuations in the amplifying plasma medium prior to its useful interaction with the seed. Premature backscatter may be avoided, however, by employing a gaseous medium with pump intensities too low to ionize the medium and using the intense seed to produce the plasma by rapid photoionization as it is being amplified [V. M. Malkin et al., Phys. Plasmas 8, 4698-4699 (2001)]. In addition to allowing that only rather low power pumps be used, photoionization introduces a damping of the short pulse which must be overcome by the Raman growth rate for net amplification to occur. The parameter space of gas densities, laser wavelengths, and laser intensities is surveyed to identify favorable regimes for this effect. Output laser intensities of 2x1017 W/cm2 for 0.5 μm radiation are found to be feasible for such a scheme using a pump of 1x1013 W/cm2 and an initial seed of 5x1014 W/cm2 over an amplification length of 5.6 cm in hydrogen gas

  5. Spontaneous Baryogenesis without Baryon Isocurvature

    CERN Document Server

    De Simone, Andrea

    2016-01-01

    We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.

  6. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny;

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  7. 2 μm emission properties and hydroxy groups quenching of Tm3+ in germanate-tellurite glass

    Science.gov (United States)

    Cai, Muzhi; Lu, Yu; Cao, Ruijie; Tian, Ying; Xu, Shiqing; Zhang, Junjie

    2016-07-01

    Tm3+ activated germanate-tellurite glasses with good thermal stability and anti-crystallization ability were prepared. Efficient 2 μm fluorescence was observed in the optimal concentration Tm3+ doped glass and the corresponding radiative properties were investigated. For Tm3+: 3F4 → 3H6 transition, high spontaneous radiative transition probability (260.75 s-1) and large emission cross section (7.66 × 10-21 cm2) were obtained from the prepared glass. According to Dexter's and Forster's theory, energy transfer microscopic parameters were computed to elucidate the observed 2 μm emissions in detail. Besides, the effect of hydroxy groups quenching was also quantificationally investigated based on simplified rate equations. Results demonstrate that the optimal concentration Tm3+ doped germanate-tellurite glass possessing excellent spectroscopic properties might be an attractive candidate for 2 μm laser or amplifier.

  8. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    . A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  9. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  10. Waveguide optical amplifier for telecom applications

    OpenAIRE

    Taccheo, Stefano; Zannin, Marcelo; Ennser, Karin; Careglio, Davide; Solé Pareta, Josep; Aracil Rico, Javier

    2009-01-01

    In this paper we review progress in optical gain clamped waveguide amplifiers for applications to optical communications. We demonstrate that compact waveguide devices may offer advantages compared to standard fiber amplifiers. In particular we focus on the application of gain clamping and optical burst switching networks where physical impairments may occur due to variation of the input power. Peer Reviewed

  11. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  12. Spontaneous ischaemic stroke in dogs

    DEFF Research Database (Denmark)

    Gredal, Hanne Birgit; Skerritt, G. C.; Gideon, P.;

    2013-01-01

    Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms.......Translation of experimental stroke research into the clinical setting is often unsuccessful. Novel approaches are therefore desirable. As humans, pet dogs suffer from spontaneous ischaemic stroke and may hence offer new ways of studying genuine stroke injury mechanisms....

  13. Design and performance of the beamlet amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  14. Qubit readout with a directional parametric amplifier

    Science.gov (United States)

    Sliwa, K. M.; Abdo, B.; Narla, A.; Shankar, S.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-03-01

    Josephson junction based quantum limited parametric amplifiers play an essential role in superconducting qubit measurements. These measurements necessitate circulators and isolators between the amplifier and qubit to add directionality and/or isolation. Unfortunately, this extra hardware limits both quantum measurement efficiency and experimental scalability. Here we present a quantum-limited Josephson-junction-based directional amplifier (JDA) based on a novel coupling between two nominally identical Josephson parametric converters (JPCs). The device achieves a forward gain of 11 dB with a 15 MHz dynamical bandwidth, but higher gains are possible at the expense of bandwidth. We also present measurements of a transmon qubit made with the JDA, and show minimal measurement back-action despite the absence of any isolator or circulator before the amplifier. These results provide a first step toward realizing on-chip integration of qubits and parametric amplifiers. Work supported by: IARPA, ARO, and NSF.

  15. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...

  16. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  17. [Inducible urticaria and chronic spontaneous urticaria].

    Science.gov (United States)

    Du Thanh, A

    2014-11-01

    In the recently published 2013 revision of the guidelines of urticaria, chronic urticaria (CU) gathers chronic spontaneous urticaria (CSU) and inducible urticaria (IU), and excludes pseudourticarial rashes with more than 24h-lasting rash or more than 72h-lasting angiœdema. Activity and psychosocial impact of the disease must be measured with validated scores such as Urticaria and Angioedema Activity Scores, Urticaria Control Test, CU-Q2OL, AE-QOL. Although an allergic cause is generaly absent in CU, pathomecanisms remain elusive even since the well-known role of mast cell degranulation and the presence of autoantibodies anti-FcRεI or anti-IgE. Coagulation pathways may be involved, at least as an amplifying phenomenon. Mean duration of CU is 1 to 4 years, but many patients still have symptoms after 10 years, some predictive factors being known as severity, angioedema, a positive autologous serum test, inducible urticaria. Recommended routine diagnosic tests are validated provocation tests for IU (and cryoproteins for cold urticaria), blood cell count and CRP for CSU, since a thorough history and a normal detailed physical examination should avoid unnecessary tests. Management of CU has been improved by the off-label use of increased dosages of second generation anti- H1 antihistamines, but a subsequent therapeutic intensification may be necessary in some cases. Educational program may prevent this intensification. Independent studies evaluating available molecules are needed, along with more fundamental research studies.

  18. Effect of Soliton Propagation in Fiber Amplifiers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.

  19. Quantum electronics maser amplifiers and oscillators

    CERN Document Server

    Fain, V M; Sanders, J H

    2013-01-01

    Quantum Electronics, Volume 2: Maser Amplifiers and Oscillators deals with the experimental and theoretical aspects of maser amplifiers and oscillators which are based on the principles of quantum electronics. It shows how the concepts and equations used in quantum electronics follow from the basic principles of theoretical physics.Comprised of three chapters, this volume begins with a discussion on the elements of the theory of quantum oscillators and amplifiers working in the microwave region, along with the practical achievements in this field. Attention is paid to two-level paramagnetic ma

  20. Laser Cooled High-Power Fiber Amplifier

    OpenAIRE

    Nemova, Galina

    2009-01-01

    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  1. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  2. Assessment and utilization of spontaneous sport mutant of grape

    International Nuclear Information System (INIS)

    The spontaneous sport mutant of Fujiminori was discovered in grape garden of Xiaying county at Ningbo city in 1993. The biological, botanical characteristics and fruit quality trait (such as total soluble solid, titratable acid, total water soluble sugar, reducing sugar, free Vc, organic acid and aroma etc.) of the mutant were continuously investigated from 1994 to 1999. The results showed that the sport mutant grew more vigorously, having multiple-bearing capacity in the year cycle. Fruit quality determination demonstrated that total soluble sugar, reducing sugar, soluble solids content and aroma contents of the mutant were higher than those of maternal plant in different degree, while titratable acid content of mutant was deceased. Meanwhile, it was also found that the berries of mutant are firmer and have longer storage life. The RAPD analysis of the genomic DNAs extracted from the young leaves of the spontaneous sport mutant indicated that there were some differential bands in the PCR amplified products using the arbitrary primers, which indicated the genotype diversity happened in the spontaneous mutation of grape.The mutant had been successfully developed the new grape variety named as 'Yongyou No. 1' via selection breeding method. The variety was approved by Ningbo Science and Technology Bureau in 1999 and was rapidly planted at other regions, such as Fenghua County, Yuyao County, Cixi County, Ninghai County, Shaoxing City, Jiaxing City and Hangzhou City, etc. Due to its high quality and productivity, it exhibits the extensive application potential in the future. (author)

  3. [Three cases of spontaneous pneumomediastinum].

    Science.gov (United States)

    Kobayashi, Kashin; Tachikawa, Soichi; Horiguchi, Takahiko; Kondo, Rieko; Shiga, Mamoru; Hirose, Masahiro; Sasaki, Yasushi; Torigoe, Hiroshi

    2006-04-01

    We encountered 3 male patients with spontaneous pneumomediastinum. The patients were a 16-year old and a 17-year old and a 24-year old. Predisposing episodes for the development of spontaneous pneumomediastinum could be identified in all 3 patients: throwing a ball during a baseball game in 1, lifting a heavy load during work in 2. However, they were healthy and suddenly developed symptoms in the absence of any underlying disease. The presenting complaint was chest pain in all 3 patients. Chest X-ray films and chest CT images revealed pneumomediastinum. A diagnosis of spontaneous pneumomediastinum was made based on chest X-ray films and chest CT images. After conservative treatment, all 3 patients recovered. PMID:16681254

  4. Children spontaneously police adults' transgressions.

    Science.gov (United States)

    Heyman, Gail D; Chiu Loke, Ivy; Lee, Kang

    2016-10-01

    Maintaining social order requires the policing of transgressions. Prior research suggests that policing emerges early in life, but little is known about children's engagement in such behavior in live interactions where there is uncertainty about the consequences. In this study, 4- to 11-year-old children (N=158) witnessed an unfamiliar adult confederate intentionally destroy another adult's property. Of interest was whether children would engage in policing behavior by protesting to the transgressor or by spontaneously reporting the transgression to a third party. Some children engaged in these behaviors spontaneously; nearly half (42%) protested the transgression, and 27% reported it without being prompted. Even when children did not spontaneously report the transgression, they almost always reported it when asked directly. The findings show that children commonly engage in policing even in the face of potentially negative consequences. PMID:27295206

  5. Sensor/amplifier for weak light sources

    Science.gov (United States)

    Desmet, D. J.; Jason, A. J.; Parr, A. C.

    1980-01-01

    Light sensor/amplifier circuit detects weak light converts it into strong electrical signal in electrically noisy environment. Circuit is relatively simple and uses inexpensive, readily available components. Device is useful in such applications as fire detection and photographic processing.

  6. High Energy Single Frequency Resonant Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  7. Large-mode-area hybrid photonic crystal fiber amplifier at 1178 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Chen, Mingchen; Shirakawa, Akira;

    2015-01-01

    Amplification of 1178 nm light is demonstrated in a large-mode-area single-mode ytterbium-doped hybrid photonic crystal fiber, relying on distributed spectral filtering of spontaneous emission at shorter wavelengths. An output power of 53 W is achieved with 29 dB suppression of parasitic lasing...

  8. Spontaneous rupture of the ureter.

    Science.gov (United States)

    Eken, Alper; Akbas, Tugana; Arpaci, Taner

    2015-02-01

    Spontaneous rupture of the ureter is a very rare condition and usually results from ureteral obstruction by a calculus. Only theoretical mechanisms have been proposed and no possible explanation has yet been reported in the literature. Intravenous contrast-enhanced computed tomography is the most informative study with high sensitivity. Treatment should be individualised, and depends on the state of the patient. Minimally invasive endourological procedures with double-J catheter placement and percutaneous drainage offer excellent results. Conservative management with analgesics and antibiotic coverage may be an alternative to surgery. Herein, we present a case of spontaneous rupture of the proximal ureter with no evidence of an underlying pathological condition.

  9. Spontaneous baryogenesis from asymmetric inflaton

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Fuminobu [Tohoku Univ., Sendai (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Yamada, Masaki [Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Tokyo Univ., Chiba (Japan). Inst. for Cosmic Ray Research; DESY Hamburg (Germany)

    2015-10-15

    We propose a variant scenario of spontaneous baryogenesis from asymmetric inflaton based on current-current interactions between the inflaton and matter fields with a non-zero B-L charge. When the inflaton starts to oscillate around the minimum after inflation, it may lead to excitation of a CP-odd component, which induces an effective chemical potential for the B-L number through the current-current interactions. We study concrete inflation models and show that the spontaneous baryogenesis scenario can be naturally implemented in the chaotic inflation in supergravity.

  10. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  11. Spontaneous waves in muscle fibres

    CERN Document Server

    Gunther, Stefan; 10.1088/1367-2630/9/11/417

    2009-01-01

    Mechanical oscillations are important for many cellular processes, e.g. the beating of cilia and flagella or the sensation of sound by hair cells. These dynamic states originate from spontaneous oscillations of molecular motors. A particularly clear example of such oscillations has been observed in muscle fibers under non-physiological conditions. In that case, motor oscillations lead to contraction waves along the fiber. By a macroscopic analysis of muscle fiber dynamics we find that the spontaneous waves involve non-hydrodynamic modes. A simple microscopic model of sarcomere dynamics highlights mechanical aspects of the motor dynamics and fits with the experimental observations.

  12. Multiple excitation regenerative amplifier inertial confinement system

    International Nuclear Information System (INIS)

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation

  13. Proposal of Switching Power Amplifier Using Small Capacity Linear Amplifier and LC Filter

    Science.gov (United States)

    Kamada, Jo; Funato, Hirohito; Ogasawara, Satoshi

    The higher efficiency and the low noise in output voltage and current has been required in some applications, i.e. audio-video equipment, medical equipment and so on. This paper proposes a power amplifier in which a PWM inverter is used as a main circuit. In the proposed power amplifier, a hybrid filter composed of a simple and general LC filter and a small capacity linear amplifier is connected to the output of the inverter. The linear amplifier is inserted in series to the filter capacitor to improve the filtering effect of the LC filter. Switching ripples and LC resonances are considerably suppressed by controlling the amplifier using the proposed method and a low distortion switching power amplifier is realized. The effects of the proposal circuit are verified by simulations and experiments. As a result, the proposed circuit achieves low noise about THD=0.68% in simulation and THD=1.7% in experiment.

  14. Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    We report on the quantitative evidence of simultaneous amplified spontaneous emission from the AlGaInAs/InAs/ InP-based quantum-well (Qwell) and quantum-dashes (Qdash) in a multistack dash-in-an-asymmetric-well superluminescent diode heterostructure. As a result, an emission bandwidth (full width at half-maximum) of 700 nm is achieved, covering entire O-E-S-C-L-U communication bands, and a maximum continuous wave output power of 1.3 mW, from this device structure. This demonstration paves a way to bridge entire telecommunication bands through proper optimization of device gain region, bringing significant advances and impact to a variety of cross-disciplinary field applications. © 2013 Optical Society of America.

  15. Ultra-Broad-Band Optical Parametric Amplifier or Oscillator

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute

    2009-01-01

    A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter

  16. Spontaneously disappearing lumbar disc protrusion

    OpenAIRE

    Ushewokunze, Shungu; Abbas, Naeem; Dardis, Ronan; Killeen, Ian

    2008-01-01

    Spontaneous disappearance of a herniated lumbar disc is known to occur. This case study describes a 45-year-old patient whose symptoms of lumbar radiculopathy resolved and follow-up imaging showed complete disappearance of the disc prolapse. This phenomenon strengthens the role of conservative treatment in the management of lumbar disc protrusions.

  17. Spontaneous bilateral quadriceps tendon rupture.

    Science.gov (United States)

    Vigneswaran, N; Lee, K; Yegappan, M

    2007-11-01

    Spontaneous bilateral quadriceps tendon ruptures are uncommon. We present a 30-year-old man with end-stage renal failure, who sustained this injury, and subsequently had surgical repair of both tendons on separate occasions. He has since regained full range of movement of both knees.

  18. Silicosis with bilateral spontaneous pneumothorax

    OpenAIRE

    Fotedar Sanjay; Chaudhary Dhruva; Singhla Vikas; Narang Rajat

    2010-01-01

    Presentation with simultaneous bilateral pneumothorax is uncommon and usually in the context of secondary spontaneous pneumothorax. The association of pneumothorax and silicosis is infrequent and most cases are unilateral. Bilateral pneumothorax in silicosis is very rare with just a few reports in medical literature.

  19. Chemical pleurodesis for spontaneous pneumothorax.

    Science.gov (United States)

    How, Cheng-Hung; Hsu, Hsao-Hsun; Chen, Jin-Shing

    2013-12-01

    Pneumothorax is defined as the presence of air in the pleural cavity. Spontaneous pneumothorax, occurring without antecedent traumatic or iatrogenic cause, is sub-divided into primary and secondary. The severity of pneumothorax could be varied from asymptomatic to hemodynamically compromised. Optimal management of this benign disease has been a matter of debate. In addition to evacuating air from the pleural space by simple aspiration or chest tube drainage, the management of spontaneous pneumothorax also focused on ceasing air leakage and preventing recurrences by surgical intervention or chemical pleurodesis. Chemical pleurodesis is a procedure to achieve symphysis between the two layers of pleura by sclerosing agents. In the current practice guidelines, chemical pleurodesis is reserved for patients unable or unwilling to receive surgery. Recent researches have found that chemical pleurodesis is also safe and effective in preventing pneumothorax recurrence in patients with the first episode of spontaneous pneumothorax or after thoracoscopic surgery and treating persistent air leakage after thoracoscopic surgery. In this article we aimed at exploring the role of chemical pleurodesis for spontaneous pneumothorax, including ceasing air leakage and preventing recurrence. The indications, choice of sclerosants, safety, effects, and possible side effects or complications of chemical pleurodesis are also reviewed here.

  20. Silicosis with bilateral spontaneous pneumothorax

    Directory of Open Access Journals (Sweden)

    Fotedar Sanjay

    2010-01-01

    Full Text Available Presentation with simultaneous bilateral pneumothorax is uncommon and usually in the context of secondary spontaneous pneumothorax.The association of pneumothorax and silicosis is infrequent and most cases are unilateral. Bilateral pneumothorax in silicosis is very rare with just a few reports in medical literature.

  1. Prediction of Spontaneous Preterm Birth

    NARCIS (Netherlands)

    Dijkstra, Karolien

    2002-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. It is a major goal in obstetrics to lower the incidence of spontaneous preterm birth (SPB) and related neonatal morbidity and mortality. One of the principal objectives is to discover early markers that would allow us to identify

  2. Self-amplified gamma-ray laser on positronium atoms from a Bose-Einstein condensate.

    Science.gov (United States)

    Avetissian, H K; Avetissian, A K; Mkrtchian, G F

    2014-07-11

    A scheme of an intense coherent gamma-ray source based on the spontaneous radiation of positronium atoms in a Bose-Einstein condensate (BEC) due to two-photon collective annihilation decay is investigated analytically arising from the second quantized formalism. It is shown that because of the intrinsic instability of annihilation decay of BEC, the spontaneously emitted entangled photon pairs are amplified, leading to an exponential buildup of a macroscopic population into end-fire modes at a certain shape of the elongated condensate. The considered scheme may also be applied to a BEC of atoms or quasiparticles as a laser mechanism with double coherence to create entangled photonic beams with a macroscopic number of photons. PMID:25062185

  3. Quantum properties of a single-mode dissipative amplifier against Schroedinger-cat states

    International Nuclear Information System (INIS)

    In this paper we investigate the single-mode properties (Wigner function, photon-number distribution and quadrature squeezing) of a dissipative parametric amplifier when the signal and idler modes are initially prepared in the Schroedinger-cat states. We show that there are two sources producing decoherence in the system, which are spontaneous pump photon decay and interaction with the environment. For the latter case, the system collapses to both statistical mixture states as well as thermal states governed by the interaction parameters

  4. Wiener kernel analysis of a noise-evoked otoacoustic emission

    NARCIS (Netherlands)

    van Dijk, P; Maat, A; Wit, H P

    1997-01-01

    In one specimen of the frog species, Rana esculenta, the following were measured: (1) a spontaneous otoacoustic emission; (2) a click-evoked otoacoustic emissions; and (3) a noise evoked otoacoustic emission. From the noise evoked emission response, a first-and a second-order Wiener kernel and the f

  5. Gain optimization method of a DQW superluminescent diode with broad multi-state emission

    KAUST Repository

    Dimas, Clara E.

    2010-01-01

    Optimizing gain through systematic methods of varying current injection schemes analytically is significant to maximize experimentally device yield and evaluation. Various techniques are used to calculate the amplified spontaneous emission (ASE) gain for light emitting devices consisting of single-section and multiple-sections of even length. Recently double quantum well (DQW) superluminescent diodes (SLD) have shown a broad multi-state emission due to mutlielectrodes of non-equal lengths and at high non-equal current densities. In this study, we adopt an improved method utilizing an ASE intensity ratio to calibrate a gain curve based on the sum of the measured ASE spectra to efficiently estimate the gain. Although the laser gain for GaAs/AlGaAs material is well studied, the ASE gain of SLD devices has not been systematically studied particular to further explain the multiple-state emission observed in fabricated devices. In addition a unique gain estimate was achieved where the excited state gain clamps prior to the ground state due to approaching saturation levels. In our results, high current densities in long sectioned active regions achieved sufficient un-truncated gain that show evidence of excited state emission has been observed.

  6. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  7. A Case of Spontaneously Resolved Bilateral Primary Spontaneous Pneumothorax

    Directory of Open Access Journals (Sweden)

    Hasan Kahraman

    2014-03-01

    Full Text Available A condition of intrapleural air-space accumulation in individuals without any history of trauma or lung disease is called as primary spontaneous pneumothorax (PSP. Sixteen-years-old male patient admitted with complains of chest pain and dyspnea beginning 3 day ago. On physical examination, severity of breath sounds decreased on right side. Chest radiograph was taken and right-sided pneumothorax was detected and tube thoracostomy was inserted. Two months ago the patient referred to a doctor with similar complaints and physical examination and chest radiograph were reported as normal. The radiograph was retrospectively examined and bilateral PSP was detected. We presented the case duo to spontaneous recovery of bilateral PSP is seen very rarely and so contributes data to the literature. In patients admitted to the clinic with chest pain and shortness of breath, pneumothorax should be considered at differential diagnosis.

  8. Spontaneous pneumothorax: epidemiology, pathophysiology and cause

    Directory of Open Access Journals (Sweden)

    M. Noppen

    2010-09-01

    Full Text Available Spontaneous pneumothorax represents a common clinical problem. An overview of relevant and updated information on epidemiology, pathophysiology and cause(s of spontaneous (primary and secondary pneumothorax is described.

  9. Spontaneous pneumothorax: epidemiology, pathophysiology and cause

    OpenAIRE

    Noppen, M

    2010-01-01

    Spontaneous pneumothorax represents a common clinical problem. An overview of relevant and updated information on epidemiology, pathophysiology and cause(s) of spontaneous (primary and secondary) pneumothorax is described.

  10. The OPTHER Project: Progress toward the THz Amplifier

    DEFF Research Database (Denmark)

    Paoloni, C; Brunetti, F; Di Carlo, A;

    2011-01-01

    This paper describes the status of the OPTHER (OPtically driven TeraHertz AmplifiERs) project and progress toward the THz amplifier realization. This project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within th...

  11. Spontaneous Breaking of the Quantum Superposition

    OpenAIRE

    Pankovic, Vladan; Predojevic, Milan

    2007-01-01

    In this work spontaneous (non-dynamical) breaking (effective hiding) of the unitary quantum mechanical dynamical symmetry (superposition) is considered. It represents an especial but very interesting case of the general formalism of the spontaneous symmetry breaking (effective hiding). Conceptual analogies with spontaneous breaking of the gauge symmetry in Weinberg-Sallam's electro-weak interaction are pointed out. Also, consequences of the spontaneous superposition breaking in the measuremen...

  12. The moral significance of spontaneous abortion.

    OpenAIRE

    Murphy, T F

    1985-01-01

    Spontaneous abortion is rarely addressed in moral evaluations of abortion. Indeed, 'abortion' is virtually always taken to mean only induced abortion. After a brief review of medical aspects of spontaneous abortion, I attempt to articulate the moral implications of spontaneous abortion for the two poles of the abortion debate, the strong pro-abortion and the strong anti-abortion positions. I claim that spontaneous abortion has no moral relevance for strict pro-abortion positions but that the ...

  13. Design Of A Doherty Power Amplifier For GSM Systems

    Directory of Open Access Journals (Sweden)

    Saad Wasmi Osman

    2013-04-01

    Full Text Available This paper presents the design and analysis of Doherty power amplifier. The Doherty amplifier is used in  a base station for mobile system because of its high efficiency. The class AB power amplifier used in the configuration of the main and auxiliary amplifier. The result obtained shows that the Doherty power amplifier can be used on a wide band spectrum, the amplifier works at 900MHz and has very good power added efficiency (PAE and gain. The amplifier can also work at 1800MHz at input power greater than 20dBm. 

  14. The BTFEL, an infrared free-electron laser amplifier based on a new-design short-period superconducting tape undulator

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, M., E-mail: moohyun@postech.edu [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, Postech, Hyoja-dong, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Filippetto, D.; Papadopoulos, C.F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Pellegrini, C. [Department of Physics, University of California, Los Angeles, CA 90095 (United States); Penn, G.; Prestemon, S. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Sannibale, F., E-mail: fsannibale@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2011-12-21

    The development of undulator technologies capable of generating sub-cm undulator periods is assuming an increasing importance in X-ray free electron laser (FEL) applications. Indeed, such devices jointly with the high brightness electron beams already demonstrated at operating facilities would allow for lower energy, more compact electron linacs with a beneficial impact on the size and cost of X-ray FEL facilities. A novel design super-conducting undulator is being developed at the Lawrence Berkeley National Laboratory (LBNL) with the potential of sub-cm periods with reasonably large undulator parameter and gap. The potential and capability of such undulator technology need to be experimentally demonstrated. In this paper, the possibility of constructing an infrared FEL by combining the new undulator with the high brightness beam from the APEX injector facility at LBNL is investigated. Calculations show that the resulting FEL, when operated in self-amplified-spontaneous-emission mode, is expected to deliver a saturated power of almost a MW within a {approx}4m undulator length, in a single-spike of coherent radiation at {approx}2{mu}m wavelength. It will be also shown that the small-period of the undulator associated with the relatively low energy of the APEX beam, forces the FEL to operate in a regime with unusual and interesting characteristics. The alternative option of laser seeding the FEL is also briefly examined, showing the potential to reduce the saturation length even further.

  15. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  16. The Electron Beam Semiconductor (EBS) amplifier

    Science.gov (United States)

    True, R. M.; Baxendale, J. F.

    1980-07-01

    The Electron Beam Semiconductor (EBS) concept has existed for three decades; but only within the last decade has an active, well-defined program been underway to develop devices that can operate as high-power radio frequency(RF) amplifiers, fast risetime switches, and current and voltage pulse amplifiers. This report discusses the test procedures, data and results of reliability testing of RF and video pulse EBS amplifiers at Electronics Research and Development Command (ERADCOM), Fort Monmouth, New Jersey. Also, the experimental analysis of the series connected diode EBS device is described in detail. Finally, the report concludes with a discussion of the state-of-the-art of EBS and future trends of the technology.

  17. Wideband pulse amplifiers for the NECTAr chip

    Energy Technology Data Exchange (ETDEWEB)

    Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others

    2012-12-11

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  18. An automated test facility for neutronic amplifiers

    International Nuclear Information System (INIS)

    Neutronic amplifiers are used at the Chalk River Laboratory in applications such as neutron flux monitoring and reactor control systems. Routine preventive maintenance of control and safety systems included annual calibration and characterization of the neutronic amplifiers. An investigation into the traditional methods of annual routine maintenance of amplifiers concluded that frequency and phase response measurements in particular were labour intensive and subject to non-repeatable errors. A decision was made to upgrade testing methods and facilities by using programmable test equipment under the control of a computer. In order to verify the results of the routine measurements, expressions for the transfer functions were derived from the circuit diagrams. Frequency and phase responses were then calculated and plotted thus providing a bench-mark to which the test results can be compared. (author)

  19. Thermal electron-tunneling devices as coolers and amplifiers

    Science.gov (United States)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-02-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs’ chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  20. Thermal electron-tunneling devices as coolers and amplifiers.

    Science.gov (United States)

    Su, Shanhe; Zhang, Yanchao; Chen, Jincan; Shih, Tien-Mo

    2016-01-01

    Nanoscale thermal systems that are associated with a pair of electron reservoirs have been previously studied. In particular, devices that adjust electron tunnels relatively to reservoirs' chemical potentials enjoy the novelty and the potential. Since only two reservoirs and one tunnel exist, however, designers need external aids to complete a cycle, rendering their models non-spontaneous. Here we design thermal conversion devices that are operated among three electron reservoirs connected by energy-filtering tunnels and also referred to as thermal electron-tunneling devices. They are driven by one of electron reservoirs rather than the external power input, and are equivalent to those coupling systems consisting of forward and reverse Carnot cycles with energy selective electron functions. These previously-unreported electronic devices can be used as coolers and thermal amplifiers and may be called as thermal transistors. The electron and energy fluxes of devices are capable of being manipulated in the same or oppsite directions at our disposal. The proposed model can open a new field in the application of nano-devices.

  1. Linear Amplifier Model for Optomechanical Systems

    CERN Document Server

    Botter, Thierry; Brahms, Nathan; Schreppler, Sydney; Stamper-Kurn, Dan M

    2011-01-01

    We model optomechanical systems as linear optical amplifiers. This provides a unified treatment of diverse optomechanical phenomena. We emphasize, in particular, the relationship between ponderomotive squeezing and optomechanically induced transparency, two foci of current research. We characterize the amplifier response to quantum and deliberately applied fluctuations, both optical and mechanical. Further, we apply these results to establish quantum limits on external force sensing both on and off cavity resonance. We find that the maximum sensitivity attained on resonance constitutes an absolute upper limit, not surpassed when detuning off cavity resonance. The theory can be extended to a two-sided cavity with losses and limited detection efficiency.

  2. Operational amplifier circuits analysis and design

    CERN Document Server

    Nelson, J C C

    1995-01-01

    This book, a revised and updated version of the author's Basic Operational Amplifiers (Butterworths 1986), enables the non-specialist to make effective use of readily available integrated circuit operational amplifiers for a range of applications, including instrumentation, signal generation and processing.It is assumed the reader has a background in the basic techniques of circuit analysis, particularly the use of j notation for reactive circuits, with a corresponding level of mathematical ability. The underlying theory is explained with sufficient but not excessive, detail. A range of compu

  3. Predistortion of a Bidirectional Cuk Audio Amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold;

    2014-01-01

    Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....

  4. Beyond nonlinear saturation of backward Raman amplifiers

    Science.gov (United States)

    Barth, Ido; Toroker, Zeev; Balakin, Alexey A.; Fisch, Nathaniel J.

    2016-06-01

    Backward Raman amplification is limited by relativistic nonlinear dephasing resulting in saturation of the leading spike of the amplified pulse. Pump detuning is employed to mitigate the relativistic phase mismatch and to overcome the associated saturation. The amplified pulse can then be reshaped into a monospike pulse with little precursory power ahead of it, with the maximum intensity increasing by a factor of two. This detuning can be employed advantageously both in regimes where the group velocity dispersion is unimportant and where the dispersion is important but small.

  5. Optimization of Pr3+:ZBLAN fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, B.; Miniscalco, J. W.; Quimby, R. S.

    1992-01-01

    Experimental parameters have been measured and used in a quantitative model of Pr3+-doped fluorozirconate fiber amplifiers. The optimum cutoff wavelength was determined to be 800 nm and the gain for 400 mW of pump was found to increase from 12 to 34 dB if the NA was increased from 0.15 to 0.......25. Lengthening the metastable state lifetime from 110 to 300 μs would significantly improve amplifier performance while concentration quenching can appreciably degrade it...

  6. Spontaneous internal carotid artery dissection.

    Science.gov (United States)

    Khimenko, L P; Esham, H R; Ahmed, W

    2000-10-01

    Once considered uncommon, spontaneous dissection of the carotid artery is an increasingly recognized cause of stroke, headache, cranial nerve palsy, or ophthalmologic events, especially in young adults. Even in the presence of existing signs and symptoms, the diagnosis can be missed by experienced physicians of all specialties. We report a case of spontaneous internal carotid artery dissection in a 38-year-old woman with a cortical stroke and visual disturbances as initial symptoms. The diagnosis was confirmed by magnetic resonance imaging/angiography and by angiography. Prompt anticoagulation was instituted, and the patient had complete resolution of symptoms. Cervicocephalic arterial dissection should be included in the differential diagnosis of the causes of cerebrovascular events.

  7. Spontaneous Rotational Inversion in Phycomyces

    KAUST Repository

    Goriely, Alain

    2011-03-01

    The filamentary fungus Phycomyces blakesleeanus undergoes a series of remarkable transitions during aerial growth. During what is known as the stagea IV growth phase, the fungus extends while rotating in a counterclockwise manner when viewed from above (stagea IVa) and then, while continuing to grow, spontaneously reverses to a clockwise rotation (stagea IVb). This phase lasts for 24-48Ah and is sometimes followed by yet another reversal (stageAIVc) before the overall growth ends. Here, we propose a continuum mechanical model of this entire process using nonlinear, anisotropic, elasticity and show how helical anisotropy associated with the cell wall structure can induce spontaneous rotation and, under appropriate circumstances, the observed reversal of rotational handedness. © 2011 American Physical Society.

  8. CSIR helps prevent spontaneous combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vuuren, M. van (CSIR Energy Technology (South Africa))

    1992-03-01

    Heaps of stockpiled coal could present a fire hazard due to the risk of spontaneous combustion. Regular monitoring of stockpiles and bunker testing of coals help to prevent stockpile fires. This brief article describes the recent upgrading of the CSIR's bunker test facility that enables coal producers, users and exporters to test their products under simulated conditions that duplicate the actual conditions under which coal is stored. 2 photos.

  9. Spontaneous Emotional Facial Expression Detection

    OpenAIRE

    Zhihong Zeng; Yun Fu; Roisman, Glenn I.; Zhen Wen; Yuxiao Hu; Thomas S. Huang

    2006-01-01

    Change in a speaker’s emotion is a fundamental component in human communication. Automatic recognition of spontaneous emotion would significantly impact human-computer interaction and emotion-related studies in education, psychology and psychiatry. In this paper, we explore methods for detecting emotional facial expressions occurring in a realistic human conversation setting—the Adult Attachment Interview (AAI). Because non-emotional facial expressions have no distinct description and are exp...

  10. Kvinners reaksjoner etter spontan abort

    OpenAIRE

    2012-01-01

    Background: Approximately 15 percent of all verified pregnancies end in miscarriage. It is known that spontaneous abortion often cause psychological distress. The women are at risk of suffering from grief, anxiety, depression and other psychological symptoms. Psychological symptoms could persist for years after the miscarriage and there is frequently no routine to identify psychiatric morbidity among the women. Research has been conducted to identify the consequences of abortion, but the stud...

  11. Spontaneous polaron transport in biopolymers.

    OpenAIRE

    Chakrabarti, B.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2012-01-01

    Polarons, introduced by Davydov to explain energy transport in $\\alpha$-helices, correspond to electrons localised on a few lattice sites because of their interaction with phonons. While the static polaron field configurations have been extensively studied, their displacement is more difficult to explain. In this paper we show that, when the next to nearest neighbour interactions are included, for physical values of the parameters, polarons can spontaneously move, at T=0, on bent chains that ...

  12. Etiology of primary spontaneous pneumothorax.

    Science.gov (United States)

    Lyra, Roberto de Menezes

    2016-01-01

    With the advent of HRCT, primary spontaneous pneumothorax has come to be better understood and managed, because its etiology can now be identified in most cases. Primary spontaneous pneumothorax is mainly caused by the rupture of a small subpleural emphysematous vesicle (designated a bleb) or of a subpleural paraseptal emphysematous lesion (designated a bulla). The aim of this pictorial essay was to improve the understanding of primary spontaneous pneumothorax and to propose a description of the major anatomical lesions found during surgery. RESUMO Com o advento da TCAR, o pneumotórax espontâneo primário passou a ser mais bem entendido e conduzido, pois sua etiologia pode ser atualmente identificada na maioria dos casos. O pneumotórax espontâneo primário tem como principal causa a rotura de uma pequena vesícula enfisematosa subpleural, denominada bleb ou de uma lesão enfisematosa parasseptal subpleural, denominada bulla. O objetivo deste ensaio pictórico foi melhorar o entendimento do pneumotórax espontâneo primário e propor uma descrição das principais lesões anatômicas encontradas durante a cirurgia. PMID:27383937

  13. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohang, E-mail: xiaohang.li@kaust.edu.sa, E-mail: dupuis@gatech.edu [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955 (Saudi Arabia); Xie, Hongen; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Ryou, Jae-Hyun [Department of Mechanical Engineering, Materials Science and Engineering Program, and Texas Center for Superconductivity at the University of Houston (TcSUH), University of Houston, Houston, Texas 77204 (United States); Detchprohm, Theeradetch; Dupuis, Russell D., E-mail: xiaohang.li@kaust.edu.sa, E-mail: dupuis@gatech.edu [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm{sup 2}. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  14. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    KAUST Repository

    Li, Xiaohang

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaNmultiple-quantum well(MQW)heterostructuresgrown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm2. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQWheterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaNheterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaNheterostructuresgrown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers(VCSELs).

  15. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    International Nuclear Information System (INIS)

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm2. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  16. Observation of cold fission in 242Pu spontaneous fission

    International Nuclear Information System (INIS)

    Coincidence γ-ray data from the spontaneous fission of 242Pu were collected at the Lawrence Berkeley Laboratory high purity Ge (HPGe) array, GAMMASPHERE. Data from several cold-fission (0 neutron emission) isotopic pairs were observed and are presented. An interesting trend in the fractional population of cold-fission events was observed and is discussed. Relative yields of Zr-Xe, Sr-Ba, and Mo-Te pairs were measured. The Zr-Xe system has the most complete data set. Some speculations on the trend in the number of neutrons emitted as a function of the mass of the Xe isotope populated are presented. Comparisons between the yields from the spontaneous fission of 242Pu and the yields from thermal-neutron-induced fission of 241Pu are also presented. copyright 1996 The American Physical Society

  17. Feedback analysis of transimpedance operational amplifier circuits

    DEFF Research Database (Denmark)

    Bruun, Erik

    1993-01-01

    The transimpedance or current feedback operational amplifier (CFB op-amp) is reviewed and compared to a conventional voltage mode op-amp using an analysis emphasizing the basic feedback characteristics of the circuit. With this approach the paradox of the constant bandwidth obtained from CFB op...

  18. Ultra-low Voltage CMOS Cascode Amplifier

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Cassia, Marco

    2000-01-01

    In this paper, we design a folded cascode operational transconductance amplifier in a standard CMOS process, which has a measured 69 dB DC gain, a 2 MHz bandwidth and compatible input- and output voltage levels at a 1 V power supply. This is done by a novel Current Driven Bulk (CDB) technique, wh...

  19. Stereoscopy Amplifies Emotions Elicited by Facial Expressions.

    Science.gov (United States)

    Hakala, Jussi; Kätsyri, Jari; Häkkinen, Jukka

    2015-12-01

    Mediated facial expressions do not elicit emotions as strongly as real-life facial expressions, possibly due to the low fidelity of pictorial presentations in typical mediation technologies. In the present study, we investigated the extent to which stereoscopy amplifies emotions elicited by images of neutral, angry, and happy facial expressions. The emotional self-reports of positive and negative valence (which were evaluated separately) and arousal of 40 participants were recorded. The magnitude of perceived depth in the stereoscopic images was manipulated by varying the camera base at 15, 40, 65, 90, and 115 mm. The analyses controlled for participants' gender, gender match, emotional empathy, and trait alexithymia. The results indicated that stereoscopy significantly amplified the negative valence and arousal elicited by angry expressions at the most natural (65 mm) camera base, whereas stereoscopy amplified the positive valence elicited by happy expressions in both the narrowed and most natural (15-65 mm) base conditions. Overall, the results indicate that stereoscopy amplifies the emotions elicited by mediated emotional facial expressions when the depth geometry is close to natural. The findings highlight the sensitivity of the visual system to depth and its effect on emotions. PMID:27551358

  20. Gold nanorods and nanospheroids for enhancing spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, A [Department of Physics, Persian Gulf University, 75196 Bushehr (Iran, Islamic Republic of); Sandoghdar, V; Agio, M [Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: mario.agio@phys.chem.ethz.ch

    2008-10-15

    We compute the radiative decay rate and the quantum efficiency for an emitter coupled to gold nanorods and nanospheroids using the body-of-revolution finite-difference time-domain method. We study these quantities as a function of the nanoparticle aspect ratio and volume, showing that large enhancements can be achieved with realistic parameters. Moreover, we find that nanospheroids exhibit better performances than nanorods for applications in the visible and near-infrared spectral range.