WorldWideScience

Sample records for amplification targeting invasive

  1. Strand Invasion Based Amplification (SIBA®): a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Science.gov (United States)

    Hoser, Mark J; Mansukoski, Hannu K; Morrical, Scott W; Eboigbodin, Kevin E

    2014-01-01

    Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR) in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA). SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO) into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  2. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Directory of Open Access Journals (Sweden)

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  3. Added Value of HER-2 Amplification Testing by Multiplex Ligation-Dependent Probe Amplification in Invasive Breast Cancer

    Science.gov (United States)

    Kuijpers, Chantal C. H. J.; Moelans, Cathy B.; van Slooten, Henk-Jan; Horstman, Anja; Hinrichs, John W. J.; Al-Janabi, Shaimaa; van Diest, Paul J.; Jiwa, Mehdi

    2013-01-01

    Background HER-2 is a prognostic and predictive marker, but as yet no technique is perfectly able to identify patients likely to benefit from HER-2 targeted therapies. We aimed to prospectively assess the added value of first-line co-testing by IHC, and multiplex ligation-dependent probe amplification (MLPA) and chromogenic in situ hybridization (CISH). Methods As local validation, HER-2 MLPA and CISH were compared in 99 breast cancers. Next, we reviewed 937 invasive breast cancers, from 4 Dutch pathology laboratories, that were prospectively assessed for HER-2 by IHC and MLPA (and CISH in selected cases). Results The validation study demonstrated 100% concordance between CISH and MLPA, if both methods were assessable and conclusive (81.8% of cases). Significant variation regarding percentages IHC 0/1+ and 2+ cases was observed between the laboratories (pCISH was 98.1% (575/586) (Kappa = 0.94). Of the IHC 3+ cases, 6.7% failed to reveal gene amplification, whereas 0.8% of the IHC 0/1+ cases demonstrated gene amplification. Results remained discordant after retrospective review in 3/11 discordant cases. In the remaining 8 cases the original IHC score was incorrect or adapted after repeated IHC staining. Conclusions MLPA is a low-cost and quantitative high-throughput technique with near perfect concordance with CISH. The use of MLPA in routinely co-testing all breast cancers may reduce HER-2 testing variation between laboratories, may serve as quality control for IHC, will reveal IHC 0/1+ patients with gene amplification, likely responsive to trastuzumab, and identify IHC 3+ cases without gene amplification that may respond less well. PMID:24324739

  4. Added value of HER-2 amplification testing by multiplex ligation-dependent probe amplification in invasive breast cancer.

    Directory of Open Access Journals (Sweden)

    Chantal C H J Kuijpers

    Full Text Available BACKGROUND: HER-2 is a prognostic and predictive marker, but as yet no technique is perfectly able to identify patients likely to benefit from HER-2 targeted therapies. We aimed to prospectively assess the added value of first-line co-testing by IHC, and multiplex ligation-dependent probe amplification (MLPA and chromogenic in situ hybridization (CISH. METHODS: As local validation, HER-2 MLPA and CISH were compared in 99 breast cancers. Next, we reviewed 937 invasive breast cancers, from 4 Dutch pathology laboratories, that were prospectively assessed for HER-2 by IHC and MLPA (and CISH in selected cases. RESULTS: The validation study demonstrated 100% concordance between CISH and MLPA, if both methods were assessable and conclusive (81.8% of cases. Significant variation regarding percentages IHC 0/1+ and 2+ cases was observed between the laboratories (p<0.0001. Overall concordance between IHC and MLPA/CISH was 98.1% (575/586 (Kappa = 0.94. Of the IHC 3+ cases, 6.7% failed to reveal gene amplification, whereas 0.8% of the IHC 0/1+ cases demonstrated gene amplification. Results remained discordant after retrospective review in 3/11 discordant cases. In the remaining 8 cases the original IHC score was incorrect or adapted after repeated IHC staining. CONCLUSIONS: MLPA is a low-cost and quantitative high-throughput technique with near perfect concordance with CISH. The use of MLPA in routinely co-testing all breast cancers may reduce HER-2 testing variation between laboratories, may serve as quality control for IHC, will reveal IHC 0/1+ patients with gene amplification, likely responsive to trastuzumab, and identify IHC 3+ cases without gene amplification that may respond less well.

  5. Targeting MET Amplification as a New Oncogenic Driver

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  6. Targeting MET Amplification as a New Oncogenic Driver

    International Nuclear Information System (INIS)

    Kawakami, Hisato; Okamoto, Isamu; Okamoto, Wataru; Tanizaki, Junko; Nakagawa, Kazuhiko; Nishio, Kazuto

    2014-01-01

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  7. Tumor target amplification: Implications for nano drug delivery systems.

    Science.gov (United States)

    Seidi, Khaled; Neubauer, Heidi A; Moriggl, Richard; Jahanban-Esfahlan, Rana; Javaheri, Tahereh

    2018-04-10

    Tumor cells overexpress surface markers which are absent from normal cells. These tumor-restricted antigenic signatures are a fundamental basis for distinguishing on-target from off-target cells for ligand-directed targeting of cancer cells. Unfortunately, tumor heterogeneity impedes the establishment of a solid expression pattern for a given target marker, leading to drastic changes in quality (availability) and quantity (number) of the target. Consequently, a subset of cancer cells remains untargeted during the course of treatment, which subsequently promotes drug-resistance and cancer relapse. Since target inefficiency is only problematic for cancer treatment and not for treatment of other pathological conditions such as viral/bacterial infections, target amplification or the generation of novel targets is key to providing eligible antigenic markers for effective targeted therapy. This review summarizes the limitations of current ligand-directed targeting strategies and provides a comprehensive overview of tumor target amplification strategies, including self-amplifying systems, dual targeting, artificial markers and peptide modification. We also discuss the therapeutic and diagnostic potential of these approaches, the underlying mechanism(s) and established methodologies, mostly in the context of different nanodelivery systems, to facilitate more effective ligand-directed cancer cell monitoring and targeting. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Prognostic significance of cyclin D1 protein expression and gene amplification in invasive breast carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela B Ortiz

    Full Text Available The oncogenic capacity of cyclin D1 has long been established in breast cancer. CCND1 amplification has been identified in a subset of patients with poor prognosis, but there are conflicting data regarding the predictive value of cyclin D1 protein overexpression. This study was designed to analyze the expression of cyclin D1 and its correlation with CCND1 amplification and their prognostic implications in invasive breast cancer. By using the tissue microarray technique, we performed an immunohistochemical study of ER, PR, HER2, p53, cyclin D1, Ki67 and p16 in 179 invasive breast carcinoma cases. The FISH method was performed to detect HER2/Neu and CCND1 amplification. High cyclin D1 expression was identified in 94/179 (52% of invasive breast cancers. Cyclin D1 overexpression and CCND1 amplification were significantly associated (p = 0.010. Overexpression of cyclin D1 correlated with ER expression, PR expression and Luminal subtypes (p<0.001, with a favorable impact on overall survival in the whole series. However, in the Luminal A group, high expression of cyclin D1 correlated with shorter disease-free survival, suggesting that the prognostic role of cyclin D1 depends on the molecular subtype. CCND1 gene amplification was detected in 17 cases (9% and correlated significantly with high tumor grade (p = 0.038, high Ki-67 protein expression (p = 0.002, and the Luminal B subtype (p = 0.002. Patients with tumors with high amplification of CCND1 had an increased risk of recurrence (HR = 2.5; 95% CI, 1.2-4.9, p = 0.01. These findings suggest that CCND1 amplification could be useful for predicting recurrence in invasive breast cancer.

  9. A PCA3 gene-based transcriptional amplification system targeting primary prostate cancer

    OpenAIRE

    Neveu, Bertrand; Jain, Pallavi; T?tu, Bernard; Wu, Lily; Fradet, Yves; Pouliot, Fr?d?ric

    2015-01-01

    Targeting specifically primary prostate cancer (PCa) cells for immune therapy, gene therapy or molecular imaging is of high importance. The PCA3 long non-coding RNA is a unique PCa biomarker and oncogene that has been widely studied. This gene has been mainly exploited as an accurate diagnostic urine biomarker for PCa detection. In this study, the PCA3 promoter was introduced into a new transcriptional amplification system named the 3-Step Transcriptional Amplification System (PCA3-3STA) and ...

  10. Correlation of HER2 overexpression with gene amplification and its relation to chromosome 17 aneuploidy: a 5-year experience with invasive ductal and lobular carcinomas.

    Science.gov (United States)

    Nassar, Aziza; Khoor, Andras; Radhakrishnan, Reshmitha; Radhakrishnan, Anu; Cohen, Cynthia

    2014-01-01

    The HER2 oncogene shows expression or amplification, or both, in approximately 15% to 20% of breast cancers and has been associated with poor prognosis and a response to trastuzumab therapy. HER2 gene status determines the eligibility of breast cancer patients for trastuzumab therapy and a large fraction (41-56%) of these patients respond to targeted therapy. Several studies have related the increased expression of HER2 to an increased copy number of chromosome 17, rather than amplification of the HER2 gene. We compared the results of immunohistochemistry and fluorescence in situ hybridization in both invasive ductal and invasive lobular carcinomas, to determine the frequency of chromosome 17 aneuploidy associated with discordant results. In total, 390 invasive ductal carcinomas and 180 invasive lobular carcinomas diagnosed from January 2000 to December 2005 were included in the study only if results were available for immunohistochemistry (HercepTest; DAKO, Carpinteria, California) and fluorescence in situ hybridization (PathVysion HER2 DNA Probe Kit; Abbott Laboratories, Des Plaines, Illinois). Tumors classified as invasive ductal carcinomas were graded according to the Bloom-Richardson grading system. Correlation between the results of immunohistochemistry and fluorescence in situ hybridization was performed for all categories. Among invasive ductal carcinomas, 29% (115/390) showed chromosome 17 aneuploidy, mostly associated with grade 3/HER2 2+ (45%) or grade 2/HER2 3+ (55%) that were not amplified. Also, 34% (12/35) of invasive lobular carcinomas showed chromosome 17 aneuploidy; approximately one-third of these cases were HER2 2+ (33%) and HER2 3+ (37%) that were not amplified. Discordance between the results of immunohistochemistry and fluorescence in situ hybridization in both ductal and lobular carcinomas is largely associated with chromosome 17 aneuploidy.

  11. NAIMA: target amplification strategy allowing quantitative on-chip detection of GMOs.

    Science.gov (United States)

    Morisset, Dany; Dobnik, David; Hamels, Sandrine; Zel, Jana; Gruden, Kristina

    2008-10-01

    We have developed a novel multiplex quantitative DNA-based target amplification method suitable for sensitive, specific and quantitative detection on microarray. This new method named NASBA Implemented Microarray Analysis (NAIMA) was applied to GMO detection in food and feed, but its application can be extended to all fields of biology requiring simultaneous detection of low copy number DNA targets. In a first step, the use of tailed primers allows the multiplex synthesis of template DNAs in a primer extension reaction. A second step of the procedure consists of transcription-based amplification using universal primers. The cRNA product is further on directly ligated to fluorescent dyes labelled 3DNA dendrimers allowing signal amplification and hybridized without further purification on an oligonucleotide probe-based microarray for multiplex detection. Two triplex systems have been applied to test maize samples containing several transgenic lines, and NAIMA has shown to be sensitive down to two target copies and to provide quantitative data on the transgenic contents in a range of 0.1-25%. Performances of NAIMA are comparable to singleplex quantitative real-time PCR. In addition, NAIMA amplification is faster since 20 min are sufficient to achieve full amplification.

  12. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling.

    Science.gov (United States)

    Liu, Shufeng; Wang, Ying; Zhang, Chengxin; Lin, Ying; Li, Feng

    2013-03-21

    A novel and homogeneous electrochemical aptamer-based adenosine triphosphate (ATP) assay was demonstrated with signal amplification by exonuclease III-assisted target recycling. A superior detection limit of 1 nM toward ATP with an excellent selectivity could be achieved.

  13. Conflict adaptation in emotional task underlies the amplification of target.

    Science.gov (United States)

    Chechko, Natalia; Kellermann, Thilo; Schneider, Frank; Habel, Ute

    2014-04-01

    A primary function of cognitive control is to adjust the cognitive system according to situational demands. The so-called "conflict adaptation effect" elicited in laboratory experiments is supposed to reflect the above function. Neuroimaging studies suggest that adaptation of nonemotional conflict is mediated by the dorsolateral prefrontal cortex through a top-down enhancement of task-relevant (target), relative to task-irrelevant (distractor), stimulus representation in the sensory cortices. The adaptation of emotional conflict, on the other hand, is suggested to be related to the rostral anterior cingulate inhibiting the processing of emotional distractors through a top-down modulation of amygdala responsivity. In the present study, we manipulated, on a trial-by-trial basis, the levels of semantic interference conflict triggered by the incompatibility between emotional faces (targets) and emotional words (distractors) in a modified version of the emotional Stroop task. Similar to previous observations involving nonemotional interference effects, the behavioral adaptation of emotional conflict was found to be paralleled by a stronger recruitment of the fusiform face area. Additional areas related to the conflict adaptation effect were the bilateral insula, the bilateral frontal operculum (fO), the right amygdala, the left precentral and postcentral gyri, and the parietal cortex. These findings suggest that augmentation of cortical responses to task-relevant information in emotional conflict may be related to conflict adaptation processes in a way that has been observed in nonemotional conflict, challenging the view that brain circuitries underlying the conflict adaptation effect depend only on the nature of conflict.

  14. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    Science.gov (United States)

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  15. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    Science.gov (United States)

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  16. Amplification of biological targets via on-chip culture for biosensing

    Science.gov (United States)

    Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan; Finley, Melissa; Arndt, William

    2018-01-02

    The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.

  17. Evaluation of bias associated with high-multiplex, target-specific pre-amplification

    Directory of Open Access Journals (Sweden)

    Steven T. Okino

    2016-01-01

    Full Text Available We developed a novel PCR-based pre-amplification (PreAmp technology that can increase the abundance of over 350 target genes one million-fold. To assess potential bias introduced by PreAmp we utilized ERCC RNA reference standards, a model system that quantifies measurement error in RNA analysis. We assessed three types of bias: amplification bias, dynamic range bias and fold-change bias. We show that our PreAmp workflow introduces only minimal amplification and fold-change bias under stringent conditions. We do detect dynamic range bias if a target gene is highly abundant and PreAmp occurred for 16 or more PCR cycles; however, this type of bias is easily correctable. To assess PreAmp bias in a gene expression profiling experiment, we analyzed a panel of genes that are regulated during differentiation using the NTera2 stem cell model system. We find that results generated using PreAmp are similar to results obtained using standard qPCR (without the pre-amplification step. Importantly, PreAmp maintains patterns of gene expression changes across samples; the same biological insights would be derived from a PreAmp experiment as with a standard gene expression profiling experiment. We conclude that our PreAmp technology can facilitate analysis of extremely limited samples in gene expression quantification experiments.

  18. Detection of genetically modified organisms (GMOs using isothermal amplification of target DNA sequences

    Directory of Open Access Journals (Sweden)

    La Mura Maurizio

    2009-02-01

    Full Text Available Abstract Background The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR. Here we have applied the loop-mediated isothermal amplification (LAMP method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene junctions. Results We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. Conclusion This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  19. Gefitinib inhibits invasive phenotype and epithelial-mesenchymal transition in drug-resistant NSCLC cells with MET amplification.

    Directory of Open Access Journals (Sweden)

    Silvia La Monica

    Full Text Available Despite the initial response, all patients with epidermal growth factor receptor (EGFR-mutant non-small cell lung cancer (NSCLC eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs. The EGFR-T790M secondary mutation is responsible for half of acquired resistance cases, while MET amplification has been associated with acquired resistance in about 5-15% of NSCLCs. Clinical findings indicate the retained addiction of resistant tumors on EGFR signaling. Therefore, we evaluated the molecular mechanisms supporting the therapeutic potential of gefitinib maintenance in the HCC827 GR5 NSCLC cell line harbouring MET amplification as acquired resistance mechanism. We demonstrated that resistant cells can proliferate and survive regardless of the presence of gefitinib, whereas the absence of the drug significantly enhanced cell migration and invasion. Moreover, the continuous exposure to gefitinib prevented the epithelial-mesenchymal transition (EMT with increased E-cadherin expression and down-regulation of vimentin and N-cadherin. Importantly, the inhibition of cellular migration was correlated with the suppression of EGFR-dependent Src, STAT5 and p38 signaling as assessed by a specific kinase array, western blot analysis and silencing functional studies. On the contrary, the lack of effect of gefitinib on EGFR phosphorylation in the H1975 cells (EGFR-T790M correlated with the absence of effects on cell migration and invasion. In conclusion, our findings suggest that certain EGFR-mutated patients may still benefit from a second-line therapy including gefitinib based on the specific mechanism underlying tumor cell resistance.

  20. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor.

    Science.gov (United States)

    Jenison, Robert; Jaeckel, Heidi; Klonoski, Joshua; Latorra, David; Wiens, Jacinta

    2014-08-07

    Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).

  1. Recurrent Amplification at 13q34 Targets at CUL4A, IRS2, and TFDP1 As an Independent Adverse Prognosticator in Intrahepatic Cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    Full Text Available Amplification of genes at 13q34 has been reported to be associated with tumor proliferation and progression in diverse types of cancers. However, its role in intrahepatic cholangiocarcinoma (iCCA has yet to be explored. We examined two iCCA cell lines and 86 cases of intrahepatic cholangiocarcinoma to analyze copy number of three target genes, including cullin 4A (CUL4A, insulin receptor substrate 2 (IRS2, and transcription factor Dp-1 (TFDP1 at 13q34 by quantitative real-time polymerase chain reaction. The cell lines and all tumor samples were used to test the relationship between copy number (CN alterations and protein expression by western blotting and immunohistochemical assays, respectively. IRS2 was introduced, and each target gene was silenced in cell lines. The mobility potential of cells was compared in the basal condition and after manipulation using cell migration and invasion assays. CN alterations correlated with protein expression levels. The SNU1079 cell line containing deletions of the target genes demonstrated decreased protein expression levels and significantly lower numbers of migratory and invasive cells, as opposed to the RBE cell line, which does not contain CN alterations. Overexpression of IRS2 by introducing IRS2 in SUN1079 cells increased the mobility potential. In contrast, silencing each target gene showed a trend or statistical significance toward inhibition of migratory and invasive capacities in RBE cells. In tumor samples, the amplification of each of these genes was associated with poor disease-free survival. Twelve cases (13.9% demonstrated copy numbers > 4 for all three genes tested (CUL4A, IRS2, and TFDP1, and showed a significant difference in disease-free survival by both univariate and multivariate survival analyses (hazard ratio, 2.69; 95% confidence interval, 1.23 to 5.88; P = 0.013. Our data demonstrate that amplification of genes at 13q34 plays an oncogenic role in iCCA featuring adverse disease

  2. Using habitat suitability models to target invasive plant species surveys.

    Science.gov (United States)

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P guiding invasive species monitoring, and we support the use of an iterative sampling design for

  3. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification.

    Science.gov (United States)

    Chen, Zongbao; Lu, Minghua

    2016-11-01

    A novel electrochemical sensing platform based on manganese dioxide (MnO2) nanosheets was developed for sensitive screening of target cocaine with the signal amplification. Ferrocene-labeled cocaine aptamers were initially immobilized onto MnO2 nanosheets-modified screen-printed carbon electrode because of π-stacking interaction between nucleobases and nanosheets. The immobilized ferrocene-aptamer activated the electrical contact with the electrode, thereby resulting in the sensor circuit to switch on. Upon target cocaine introduction, the analyte reacted with the aptamer and caused the dissociation of ferrocene-aptamer from the electrode, thus giving rise to the detection circuit to switch off. The released aptamer was cleaved by DNase I with target recycling. Under optimal conditions, the decreasing percentage of the electronic signal relative to background current increased with the increasing cocaine concentration in the dynamic range of 0.1-20nM, and the detection limit was 32pM. The reproducibility, selectivity and method accuracy were acceptable. Importantly, this concept offers promise for rapid, simple, and cost-effective analysis of cocaine biological samples without the needs of sample separation and multiple washing steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Loop-Mediated Isothermal Amplification Targeting Actin DNA of Trichomonas vaginalis.

    Science.gov (United States)

    Goo, Youn-Kyoung; Shin, Won-Sik; Yang, Hye-Won; Joo, So-Young; Song, Su-Min; Ryu, Jae-Sook; Kong, Hyun-Hee; Lee, Won-Ki; Chung, Dong-Il; Hong, Yeonchul

    2016-06-01

    Trichomoniasis caused by Trichomonas vaginalis is a common sexually transmitted disease. Its association with several health problems, including preterm birth, pelvic inflammatory disease, cervical cancer, and transmission of human immunodeficiency virus, emphasizes the importance of improved access to early and accurate detection of T. vaginalis. In this study, a rapid and efficient loop-mediated isothermal amplification-based method for the detection of T. vaginalis was developed and validated, using vaginal swab specimens from subjects suspected to have trichomoniasis. The LAMP assay targeting the actin gene was highly sensitive with detection limits of 1 trichomonad and 1 pg of T. vaginalis DNA per reaction, and specifically amplified the target gene only from T. vaginalis. Validation of this assay showed that it had the highest sensitivity and better agreement with PCR (used as the gold standard) compared to microscopy and multiplex PCR. This study showed that the LAMP assay, targeting the actin gene, could be used to diagnose early infections of T. vaginalis. Thus, we have provided an alternative molecular diagnostic tool and a point-of-care test that may help to prevent trichomoniasis transmission and associated complications.

  5. Twin target self-amplification-based DNA machine for highly sensitive detection of cancer-related gene.

    Science.gov (United States)

    Xu, Huo; Jiang, Yifan; Liu, Dengyou; Liu, Kai; Zhang, Yafeng; Yu, Suhong; Shen, Zhifa; Wu, Zai-Sheng

    2018-06-29

    The sensitive detection of cancer-related genes is of great significance for early diagnosis and treatment of human cancers, and previous isothermal amplification sensing systems were often based on the reuse of target DNA, the amplification of enzymatic products and the accumulation of reporting probes. However, no reporting probes are able to be transformed into target species and in turn initiate the signal of other probes. Herein we reported a simple, isothermal and highly sensitive homogeneous assay system for tumor suppressor p53 gene detection based on a new autonomous DNA machine, where the signaling probe, molecular beacon (MB), was able to execute the function similar to target DNA besides providing the common signal. In the presence of target p53 gene, the operation of DNA machine can be initiated, and cyclical nucleic acid strand-displacement polymerization (CNDP) and nicking/polymerization cyclical amplification (NPCA) occur, during which the MB was opened by target species and cleaved by restriction endonuclease. In turn, the cleaved fragments could activate the next signaling process as target DNA did. According to the functional similarity, the cleaved fragment was called twin target, and the corresponding fashion to amplify the signal was named twin target self-amplification. Utilizing this newly-proposed DNA machine, the target DNA could be detected down to 0.1 pM with a wide dynamic range (6 orders of magnitude) and single-base mismatched targets were discriminated, indicating a very high assay sensitivity and good specificity. In addition, the DNA machine was not only used to screen the p53 gene in complex biological matrix but also was capable of practically detecting genomic DNA p53 extracted from A549 cell line. This indicates that the proposed DNA machine holds the potential application in biomedical research and early clinical diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species.

    Science.gov (United States)

    Feng, Shangguo; He, Refeng; Yang, Sai; Chen, Zhe; Jiang, Mengying; Lu, Jiangjie; Wang, Huizhong

    2015-08-10

    Two molecular marker systems, start codon targeted (SCoT) and target region amplification polymorphism (TRAP), were used for genetic relationship analysis of 36 Dendrobium species collected from China. Twenty-two selected SCoT primers produced 337 loci, of which 324 (96%) were polymorphic, whereas 13 TRAP primer combinations produced a total of 510 loci, with 500 (97.8%) of them being polymorphic. An average polymorphism information content of 0.953 and 0.983 was detected using the SCoT and TRAP primers, respectively, showing that a high degree of genetic diversity exists among Chinese Dendrobium species. The partition of clusters in the unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis plot based on the SCoT and TRAP markers was similar and clustered the 36 Dendrobium species into four main groups. Our results will provide useful information for resource protection and will also be useful to improve the current Dendrobium breeding programs. Our results also demonstrate that SCoT and TRAP markers are informative and can be used to evaluate genetic relationships between Dendrobium species. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Expert risk perceptions and the social amplification of risk: A case study in invasive tree pests and diseases.

    Science.gov (United States)

    Urquhart, Julie; Potter, Clive; Barnett, Julie; Fellenor, John; Mumford, John; Quine, Christopher P

    2017-11-01

    The Social Amplification of Risk Framework (SARF) is often used as a conceptual tool for studying diverse risk perceptions associated with environmental hazards. While widely applied, it has been criticised for implying that it is possible to define a benchmark 'real' risk that is determined by experts and around which public risk perceptions can subsequently become amplified. It has been argued that this objectification of risk is particularly problematic when there are high levels of scientific uncertainty and a lack of expert consensus about the nature of a risk and its impacts. In order to explore this further, this paper examines how 'experts' - defined in this case as scientists, policy makers, outbreak managers and key stakeholders - construct and assemble their understanding of the risks associated with two invasive tree pest and disease outbreaks in the UK, ash dieback and oak processionary moth. Through semi-structured interviews with experts in each of the case study outbreaks, the paper aims to better understand the nature of information sources drawn on to construct perceptions of tree health risks, especially when uncertainty is prevalent. A key conclusion is that risk assessment is a socially-mediated, relational and incremental process with experts drawing on a range of official, anecdotal and experiential sources of information, as well as reference to past events in order to assemble the risk case. Aligned with this, experts make attributions about public concern, especially when the evidence base is incomplete and there is a need to justify policy and management actions and safeguard reputation.

  8. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Science.gov (United States)

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  9. Competitive reporter monitored amplification (CMA--quantification of molecular targets by real time monitoring of competitive reporter hybridization.

    Directory of Open Access Journals (Sweden)

    Thomas Ullrich

    Full Text Available BACKGROUND: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. METHODOLOGY AND PRINCIPAL FINDINGS: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. CONCLUSIONS AND SIGNIFICANCE: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2, we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls

  10. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor

    Directory of Open Access Journals (Sweden)

    Ge Y

    2017-04-01

    Full Text Available Yiyue Ge,1 Qiang Zhou,2 Kangchen Zhao,1 Ying Chi,1 Bin Liu,3 Xiaoyan Min,4 Zhiyang Shi,1 Bingjie Zou,2 Lunbiao Cui1 1Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, 2Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, 3Department of Biomedical Engineering, Nanjing Medical University, 4Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China Abstract: Influenza virus infections represent a worldwide public health and economic problem due to the significant morbidity and mortality caused by seasonal epidemics and pandemics. Sensitive and convenient methodologies for detection of influenza viruses are essential for further disease control. Loop-mediated isothermal amplification (LAMP is the most commonly used method of nucleic acid isothermal amplification. However, with regard to multiplex LAMP, differentiating the ladder-like LAMP products derived from multiple targets is still challenging today. The requirement of specialized instruments has further hindered the on-site application of multiplex LAMP. We have developed an integrated assay coupling multiplex reverse transcription LAMP with cascade invasive reaction using nanoparticles (mRT-LAMP-CIRN as a sensor for the detection of three subtypes of influenza viruses: A/H1N1pdm09, A/H3 and influenza B. The analytic sensitivities of the mRT-LAMP-CIRN assay were 101 copies of RNA for both A/H1N1pdm09 and A/H3, and 102 copies of RNA for influenza B. This assay demonstrated highly specific detection of target viruses and could differentiate them from other genetically or clinically related viruses. Clinical specimen analysis showed the mRT-LAMP-CIRN assay had an overall sensitivity and specificity of 98.3% and 100%, respectively. In summary, the mRT-LAMP-CIRN assay is

  11. Structured oligonucleotides for target indexing to allow single-vessel PCR amplification and solid support microarray hybridization.

    Science.gov (United States)

    Girard, Laurie D; Boissinot, Karel; Peytavi, Régis; Boissinot, Maurice; Bergeron, Michel G

    2015-02-07

    The combination of molecular diagnostic technologies is increasingly used to overcome limitations on sensitivity, specificity or multiplexing capabilities, and provide efficient lab-on-chip devices. Two such techniques, PCR amplification and microarray hybridization are used serially to take advantage of the high sensitivity and specificity of the former combined with high multiplexing capacities of the latter. These methods are usually performed in different buffers and reaction chambers. However, these elaborate methods have high complexity and cost related to reagent requirements, liquid storage and the number of reaction chambers to integrate into automated devices. Furthermore, microarray hybridizations have a sequence dependent efficiency not always predictable. In this work, we have developed the concept of a structured oligonucleotide probe which is activated by cleavage from polymerase exonuclease activity. This technology is called SCISSOHR for Structured Cleavage Induced Single-Stranded Oligonucleotide Hybridization Reaction. The SCISSOHR probes enable indexing the target sequence to a tag sequence. The SCISSOHR technology also allows the combination of nucleic acid amplification and microarray hybridization in a single vessel in presence of the PCR buffer only. The SCISSOHR technology uses an amplification probe that is irreversibly modified in presence of the target, releasing a single-stranded DNA tag for microarray hybridization. Each tag is composed of a 3-nucleotide sequence-dependent segment and a unique "target sequence-independent" 14-nucleotide segment allowing for optimal hybridization with minimal cross-hybridization. We evaluated the performance of five (5) PCR buffers to support microarray hybridization, compared to a conventional hybridization buffer. Finally, as a proof of concept, we developed a multiplexed assay for the amplification, detection, and identification of three (3) DNA targets. This new technology will facilitate the design

  12. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms.

    Science.gov (United States)

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús

    2015-08-18

    Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas.

  13. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    Science.gov (United States)

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  14. Design of a sensitive aptasensor based on magnetic microbeads-assisted strand displacement amplification and target recycling.

    Science.gov (United States)

    Li, Ying; Ji, Xiaoting; Song, Weiling; Guo, Yingshu

    2013-04-03

    A cross-circular amplification system for sensitive detection of adenosine triphosphate (ATP) in cancer cells was developed based on aptamer-target interaction, magnetic microbeads (MBs)-assisted strand displacement amplification and target recycling. Here we described a new recognition probe possessing two parts, the ATP aptamer and the extension part. The recognition probe was firstly immobilized on the surface of MBs and hybridized with its complementary sequence to form a duplex. When combined with ATP, the probe changed its conformation, revealing the extension part in single-strand form, which further served as a toehold for subsequent target recycling. The released complementary sequence of the probe acted as the catalyst of the MB-assisted strand displacement reaction. Incorporated with target recycling, a large amount of biotin-tagged MB complexes were formed to stimulate the generation of chemiluminescence (CL) signal in the presence of luminol and H2O2 by incorporating with streptavidin-HRP, reaching a detection limit of ATP as low as 6.1×10(-10)M. Moreover, sample assays of ATP in Ramos Burkitt's lymphoma B cells were performed, which confirmed the reliability and practicality of the protocol. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. [HER-2 oncogene amplification assessment in invasive breast cancer by dual-color in situ hybridization (dc-CISH): a comparative study with fluorescent in situ hybridization (FISH)].

    Science.gov (United States)

    Akhdar, Abbas; Bronsard, Marc; Lemieux, Renald; Geha, Sameh

    2011-12-01

    The amplification of the gene encoding for the human epidermal growth factor receptor 2 (HER-2 oncogene), located on chromosome 17 (17q21-q22), or the overexpression of this receptor have prognostic and therapeutic implications in invasive breast cancer. An evaluation of the HER-2 status by immunohistochemistry (IHC) is performed on all invasive breast cancer cases. Fluorescent in situ hybridization (FISH) is considered as the gold standard for the detection of HER-2 gene amplification for IHC equivocal cases (score 2+). A more recent in situ hybridization technique, the dual-color chromogenic in situ hybridization (dc-CISH), has been proposed as an alternative to FISH. The aim of this study was to measure the correlation between dc-CISH and FISH for HER-2 oncogene amplification assessment in invasive breast cancer. We built four tissue micro-array (TMA) blocs with 100 breast invasive cancer cases that had been previously tested by IHC for HER-2 detection: 10 score 0 cases, 10 score 3+cases, 39 score 1+and 41 score 2+cases. Both FISH and dc-CISH techniques were applied on all TMA cases as well as on two additional slides serving as controls. Interpretation of dc-CISH was carried out by a pathologist using an optical microscope. For FISH, the interpretation was done by a professional from the medical genetics department using a fluorescent microscope linked to a computer system for image capturing and analysis. The interpretation of the HER-2/CEN-17 ratio for both tests was in accordance with the values of the updated recommendations from the Canadian National Consensus Meeting on HER-2/neu testing in breast cancer and from the ASCO/CAP. Among the 100 cases initially included in the study, eight were excluded from the analysis due to sampling or technical flaws. From the 92 remaining cases, we obtained a concordance of 97.8% (90/92 cases) between the two techniques (Kappa coefficient 0.97, 95% confidence interval). The correlation coefficient (rho) between ratios

  16. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification.

    Science.gov (United States)

    Qiang, Weibing; Wang, Xi; Li, Wei; Chen, Xiang; Li, Hui; Xu, Danke

    2015-09-15

    Rapid, cost-effective, sensitive and specific analysis of biomolecules is important in the modern healthcare system. Here, a fluorescent biosensing platform based on the polydopamine nanospheres (PDANS) intergrating with Exonuclease III (Exo III) was developed. Due to the interaction between the ssDNA and the PDANS, the fluorescence of 6-carboxyfluorescein (FAM) labelled in the probe would been quenched by PDANS through FRET. While, in the present of the target DNA, the probe DNA would hybridize with the target DNA to form the double-strand DNA complex. Thus, Exo III could catalyze the stepwise removal of mononucleotides from 3'-terminus in the probe DNA, releasing the target DNA. As the FAM was released from the probe DNA, the fluorescence would no longer been quenched, led to the signal on. As one target DNA molecule could undergo a number of cycles to trigger the degradation of abundant probe DNA, Exo III-assisted target recycling would led to the amplification of the signal. The detection limit for DNA was 5 pM, which was 20 times lower than that without Exo III. And the assay time was largely shortened due to the faster signal recovery kinetics. What is more, this target recycling strategy was also applied to conduct an aptamer-based biosensing platform. The fluorescence intensity was also enhanced for the assay of adenosine triphosphate (ATP). For the Exo III-assisted target recycling amplification, DNA and ATP were fast detected with high sensitivity and selectivity. This work provides opportunities to develop simple, rapid, economical, and sensitive biosensing platforms for biomedical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. HER2 overexpression and amplification is present in a subset of ovarian mucinous carcinomas and can be targeted with trastuzumab therapy

    International Nuclear Information System (INIS)

    McAlpine, Jessica N; Gilks, C Blake; Miller, Dianne M; Wiegand, Kimberly C; Vang, Russell; Ronnett, Bridgett M; Adamiak, Anna; Köbel, Martin; Kalloger, Steve E; Swenerton, Kenneth D; Huntsman, David G

    2009-01-01

    The response rate of ovarian mucinous carcinomas to paclitaxel/carboplatin is low, prompting interest in targeted molecular therapies. We investigated HER2 expression and amplification, and the potential for trastuzumab therapy in this histologic subtype of ovarian cancer. HER2 status was tested in 33 mucinous carcinomas and 16 mucinous borderline ovarian tumors (BOT)). Five cases with documented recurrence and with tissue from the recurrence available for testing were analyzed to determine whether HER2 amplification status changed over time. Three prospectively identified recurrent mucinous ovarian carcinomas were assessed for HER2 amplification and patients received trastuzumab therapy with conventional chemotherapy. Amplification of HER2 was observed in 6/33 (18.2%) mucinous carcinomas and 3/16 (18.8%) BOT. HER2 amplification in primary mucinous carcinomas was not associated with an increased likelihood of recurrence. The prospectively identified recurrent mucinous carcinomas showed overexpression and amplification of HER2; one patient's tumor responded dramatically to trastuzumab in combination with conventional chemotherapy, while another patient experienced an isolated central nervous system recurrence after trastuzumab therapy. HER2 amplification is relatively common in ovarian mucinous carcinomas (6/33, 18.2%), although not of prognostic significance. Trastuzumab therapy is a treatment option for patients with mucinous carcinoma when the tumor has HER2 amplification and overexpression

  18. Need for optimisation of immuniastion strategeis targeting Invasive Meningococcal Disease in the netherlands

    NARCIS (Netherlands)

    Bousema, J.C.M.; Ruitenberg, E.J.

    2015-01-01

    Invasive meningococcal disease (IMD) is a severe bacterial infectious disease with high mortality and morbidity rates worldwide. In recent years, industrialised countries have implemented vaccines targeting IMD in their National Immunisation Programmes (NIPs). In 2002, the Netherlands successfully

  19. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification.

    Science.gov (United States)

    Ge, Jia; Bai, Dong-Mei; -Geng, Xin; Hu, Ya-Lei; Cai, Qi-Yong; Xing, Ke; Zhang, Lin; Li, Zhao-Hui

    2018-01-10

    The authors describe a fluorometric method for the quantitation of nucleic acids by combining (a) cycled strand displacement amplification, (b) the unique features of the DNA probe SYBR Green, and (c) polydopamine nanotubes. SYBR Green undergoes strong fluorescence enhancement upon intercalation into double-stranded DNA (dsDNA). The polydopamine nanotubes selectively adsorb single-stranded DNA (ssDNA) and molecular beacons. In the absence of target DNA, the molecular beacon, primer and SYBR Green are adsorbed on the surface of polydopamine nanotubes. This results in quenching of the fluorescence of SYBR Green, typically measured at excitation/emission wavelengths of 488/518 nm. Upon addition of analyte (target DNA) and polymerase, the stem of the molecular beacon is opened so that it can bind to the primer. This triggers target strand displacement polymerization, during which dsDNA is synthesized. The hybridized target is then displaced due to the strand displacement activity of the polymerase. The displaced target hybridizes with another molecular beacon. This triggers the next round of polymerization. Consequently, a large amount of dsDNA is formed which is detected by addition of SYBR Green. Thus, sensitive and selective fluorometric detection is realized. The fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 0.05 to 25 nM with a low limit of detection of 20 pM. Graphical abstract Schematic of a fluorometric strategy for highly sensitive and selective determination of nucleic acids by combining strand displacement amplification and the unique features of SYBR Green I (SG) and polydopamine nanotubes.

  20. Establishment and antitumor effects of dasatinib and PKI-587 in BD-138T, a patient-derived muscle invasive bladder cancer preclinical platform with concomitant EGFR amplification and PTEN deletion.

    Science.gov (United States)

    Chang, Nakho; Lee, Hye Won; Lim, Joung Eun; Jeong, Da Eun; Song, Hye Jin; Kim, Sudong; Nam, Do-Hyun; Sung, Hyun Hwan; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Choi, Han-Yong; Jeon, Hwang Gyun

    2016-08-09

    Muscle-invasive bladder cancer (MIBC) consists of a heterogeneous group of tumors with a high rate of metastasis and mortality. To facilitate the in-depth investigation and validation of tailored strategies for MIBC treatment, we have developed an integrated approach using advanced high-throughput drug screening and a clinically relevant patient-derived preclinical platform. We isolated patient-derived tumor cells (PDCs) from a rare MIBC case (BD-138T) that harbors concomitant epidermal growth factor receptor (EGFR) amplification and phosphatase and tensin homolog (PTEN) deletion. High-throughput in vitro drug screening demonstrated that dasatinib, a SRC inhibitor, and PKI-587, a dual PI3K/mTOR inhibitor, exhibited targeted anti-proliferative and pro-apoptotic effects against BD-138T PDCs. Using established patient-derived xenograft models that successfully retain the genomic and molecular characteristics of the parental tumor, we confirmed that these anti-tumor responses occurred through the inhibition of SRC and PI3K/AKT/mTOR signaling pathways. Taken together, these experimental results demonstrate that dasatinib and PKI-587 might serve as promising anticancer drug candidates for treating MIBC with combined EGFR gene amplification and PTEN deletion.

  1. Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline.

    OpenAIRE

    Chalvet, F; Teysset, L; Terzian, C; Prud'homme, N; Santamaria, P; Bucheton, A; Pélisson, A

    1999-01-01

    Gypsy is an infectious endogenous retrovirus of Drosophila melanogaster. The gypsy proviruses replicate very efficiently in the genome of the progeny of females homozygous for permissive alleles of the flamenco gene. This replicative transposition is correlated with derepression of gypsy expression, specifically in the somatic cells of the ovaries of the permissive mothers. The determinism of this amplification was studied further by making chimeric mothers containing different permissive/res...

  2. Simultaneous fitting of real-time PCR data with efficiency of amplification modeled as Gaussian function of target fluorescence

    Directory of Open Access Journals (Sweden)

    Lazar Andreas

    2008-02-01

    Full Text Available Abstract Background In real-time PCR, it is necessary to consider the efficiency of amplification (EA of amplicons in order to determine initial target levels properly. EAs can be deduced from standard curves, but these involve extra effort and cost and may yield invalid EAs. Alternatively, EA can be extracted from individual fluorescence curves. Unfortunately, this is not reliable enough. Results Here we introduce simultaneous non-linear fitting to determine – without standard curves – an optimal common EA for all samples of a group. In order to adjust EA as a function of target fluorescence, and still to describe fluorescence as a function of cycle number, we use an iterative algorithm that increases fluorescence cycle by cycle and thus simulates the PCR process. A Gauss peak function is used to model the decrease of EA with increasing amplicon accumulation. Our approach was validated experimentally with hydrolysis probe or SYBR green detection with dilution series of 5 different targets. It performed distinctly better in terms of accuracy than standard curve, DART-PCR, and LinRegPCR approaches. Based on reliable EAs, it was possible to detect that for some amplicons, extraordinary fluorescence (EA > 2.00 was generated with locked nucleic acid hydrolysis probes, but not with SYBR green. Conclusion In comparison to previously reported approaches that are based on the separate analysis of each curve and on modelling EA as a function of cycle number, our approach yields more accurate and precise estimates of relative initial target levels.

  3. Evaluation of HER2 gene amplification in invasive breast cancer using a dual-color chromogenic in situ hybridization (dual CISH).

    Science.gov (United States)

    Kato, Nobuaki; Itoh, Hitoshi; Serizawa, Akihiko; Hatanaka, Yutaka; Umemura, Shinobu; Osamura, R Yoshiyuki

    2010-07-01

    Fluorescence in situ hybridization (FISH) assay is considered the 'gold standard' for evaluation of HER2/neu (HER2) gene status, however, it is difficult to recognize morphologic features of tumors using fluorescence microscopy. Thus, chromogenic in situ hybridization (CISH) has been proposed as an alternative method to evaluate HER2 gene amplification. Here, we examined the dual color CISH (dual CISH) method which provides information regarding the copy number of the HER2 gene and chromosome 17 centromere from a single slide. We examined 40 cases of invasive ductal carcinomas of the breast that were resected surgically. HER2 gene status was assessed with FISH (Abbott) and dual CISH (Dako). HER2 gene amplification status was classified according to the guidelines of the American Society of Clinical Oncology and College of American Pathologists (ASCO/CAP). Comparison of the cut-off values for HER2/chromosome 17 centromere copy number ratio obtained by dual CISH and FISH showed that there was almost perfect agreement between two methods (Kappa coefficient 0.96). The results of the two commercial products were almost consistent for evaluation of HER2 gene counts on the sections. The current study proved that dual CISH is comparable with FISH for evaluating HER2 gene status.

  4. Expert risk perceptions and the social amplification of risk: A case study in invasive tree pests and diseases

    OpenAIRE

    Urquhart, Julie; Potter, Clive; Barnett, Julie; Fellenor, John; Mumford, John; Quine, Christopher P.

    2017-01-01

    The Social Amplification of Risk Framework (SARF) is often used as a conceptual tool for studying diverse risk\\ud perceptions associated with environmental hazards. While widely applied, it has been criticised for implying that\\ud it is possible to define a benchmark ‘real’ risk that is determined by experts and around which public risk\\ud perceptions can subsequently become amplified. It has been argued that this objectification of risk is particularly\\ud problematic when there are high leve...

  5. Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets

    Directory of Open Access Journals (Sweden)

    Alexei Bogdanov

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity (R1/Gd. The observed relaxivity changes are largely due to an increase in the rotational correlation time τr of the lanthanide. Three applications of the developed system are demonstrated: (1 imaging of nanomolar amounts of an oxidoreductase (peroxidase; (2 detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3 imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.

  6. Non-Invasive Radiofrequency-Induced Targeted Hyperthermia for the Treatment of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Mustafa Raoof

    2011-01-01

    Full Text Available Targeted biological therapies for hepatocellular cancer have shown minimal improvements in median survival. Multiple pathways to oncogenesis leading to rapid development of resistance to such therapies is a concern. Non-invasive radiofrequency field-induced targeted hyperthermia using nanoparticles is a radical departure from conventional modalities. In this paper we underscore the need for innovative strategies for the treatment of hepatocellular cancer, describe the central paradigm of targeted hyperthermia using non-invasive electromagnetic energy, review the process of characterization and modification of nanoparticles for the task, and summarize data from cell-based and animal-based models of hepatocellular cancer treated with non-invasive RF energy. Finally, future strategies and challenges in bringing this modality from bench to clinic are discussed.

  7. Tumor microenvironment in invasive lobular carcinoma: possible therapeutic targets.

    Science.gov (United States)

    Nakagawa, Saki; Miki, Yasuhiro; Miyashita, Minoru; Hata, Shuko; Takahashi, Yayoi; Rai, Yoshiaki; Sagara, Yasuaki; Ohi, Yasuyo; Hirakawa, Hisashi; Tamaki, Kentaro; Ishida, Takanori; Watanabe, Mika; Suzuki, Takashi; Ohuchi, Noriaki; Sasano, Hironobu

    2016-01-01

    Invasive ductal and lobular carcinomas (IDC and ILC) are the two most common histological types of breast cancer, and have been considered to develop from terminal duct lobular unit but their molecular, pathological, and clinical features are markedly different between them. These differences could be due to different mechanisms of carcinogenesis and tumor microenvironment, especially cancer-associated fibroblasts (CAFs) but little has been explored in this aspect. Therefore, in this study, we evaluated the status of angiogenesis, maturation of intratumoral microvessels, and proliferation of CAFs using immunohistochemistry and PCR array analysis to explore the differences of tumor microenvironment between ILC and IDC. We studied grade- and age-matched, luminal-like ILC and IDC. We immunolocalized CD34 and αSMA for an evaluation of CAFs and CD31, Vasohibin-1, a specific marker of proliferative endothelial cells and nestin, a marker of pericytes for studying the status of proliferation and maturation of intratumoral microvessel. We also performed PCR array analysis to evaluate angiogenic factors in tumor stromal components. The number of CAFs, microvessel density, and vasohibin-1/CD31 positive ratio were all significantly higher in ILC than IDC but nestin immunoreactivity in intratumoral microvessel was significantly lower in ILC. These results did indicate that proliferation of CAFs and endothelial cells was more pronounced in ILC than IDC but newly formed microvessels were less mature than those in IDC. PCR array analysis also revealed that IGF-1 expression was higher in ILC than IDC. This is the first study to demonstrate the differences of tumor microenvironment including CAFs and proliferation and maturation of intratumoral vessels between ILC and IDC.

  8. MicroRNA-181b promotes ovarian cancer cell growth and invasion by targeting LATS2

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Ying; Gao, Yan, E-mail: gaoyanhdhos@126.com

    2014-05-09

    Highlights: • miR-181b is upregulated in human ovarian cancer tissues. • miR-181b promotes ovarian cancer cell proliferation and invasion. • LATS2 is a direct target of miR-181b. • LATS2 is involved in miR-181b-induced ovarian cancer cell growth and invasion. - Abstract: MicroRNAs (miRNAs) are strongly implicated in tumorigenesis and metastasis. In this study, we showed significant upregulation of miR-181b in ovarian cancer tissues, compared with the normal ovarian counterparts. Forced expression of miR-181b led to remarkably enhanced proliferation and invasion of ovarian cancer cells while its knockdown induced significant suppression of these cellular events. The tumor suppressor gene, LATS2 (large tumor suppressor 2), was further identified as a novel direct target of miR-181b. Specifically, miR-181b bound directly to the 3′-untranslated region (UTR) of LATS2 and suppressed its expression. Restoration of LATS2 expression partially reversed the oncogenic effects of miR-181b. Our results indicate that miR-181b promotes proliferation and invasion by targeting LATS2 in ovarian cancer cells. These findings support the utility of miR-181b as a potential diagnostic and therapeutic target for ovarian cancer.

  9. miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    International Nuclear Information System (INIS)

    Chen, Yating; Zhang, Hongwei; Ma, Duan; Zhang, Jin; Wang, Huijun; Zhao, Jiayi; Xu, Cheng; Du, Yingying; Luo, Xin; Zheng, Fengyun; Liu, Rui

    2012-01-01

    miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. HOXA10 however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because HOXA10 is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type. Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including HOXA10. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student's t-test. Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. HOXA10, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of HOXA10 both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of HOXA10. In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. HOXA10 is a target gene for mi

  10. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region

    KAUST Repository

    Hume, Benjamin C.C.; Ziegler, Maren; Poulain, Julie; Pochon, Xavier; Romac, Sarah; Boissin, Emilie; de Vargas, Colomban; Planes, Serge; Wincker, Patrick; Voolstra, Christian R.

    2018-01-01

    The Internal Transcribed Spacer 2 (ITS2) rRNA gene is a commonly targeted genetic marker to assess diversity of Symbiodinium, a dinoflagellate genus of algal endosymbionts that is pervasively associated with marine invertebrates, and notably reef-building corals. Here we tested three commonly used ITS2 primer pairs (SYM_VAR_5.8S2/SYM_VAR_REV, ITSintfor2/ITSReverse, and ITS-DINO/ITS2Rev2) with regard to amplification specificity and sensitivity towards Symbiodinium, as well as sub-genera taxonomic bias. We tested these primers over a range of sample types including three coral species, coral surrounding water, reef surface water, and open ocean water to assess their suitability for use in large-scale next generation sequencing projects and to develop a standardised PCR protocol. We found the SYM_VAR_5.8S2/SYM_VAR_REV primers to perform superior to the other tested ITS2 primers. We therefore used this primer pair to develop a standardised PCR protocol. To do this, we tested the effect of PCR-to-PCR variation, annealing temperature, cycle number, and different polymerase systems on the PCR efficacy. The Symbiodinium ITS2 PCR protocol developed here delivers improved specificity and sensitivity towards Symbiodinium with apparent minimal sub-genera taxonomic bias across all sample types. In particular, the protocol’s ability to amplify Symbiodinium from a range of environmental sources will facilitate the study of Symbiodinium populations across biomes.

  11. An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region

    KAUST Repository

    Hume, Benjamin C.C.

    2018-05-23

    The Internal Transcribed Spacer 2 (ITS2) rRNA gene is a commonly targeted genetic marker to assess diversity of Symbiodinium, a dinoflagellate genus of algal endosymbionts that is pervasively associated with marine invertebrates, and notably reef-building corals. Here we tested three commonly used ITS2 primer pairs (SYM_VAR_5.8S2/SYM_VAR_REV, ITSintfor2/ITSReverse, and ITS-DINO/ITS2Rev2) with regard to amplification specificity and sensitivity towards Symbiodinium, as well as sub-genera taxonomic bias. We tested these primers over a range of sample types including three coral species, coral surrounding water, reef surface water, and open ocean water to assess their suitability for use in large-scale next generation sequencing projects and to develop a standardised PCR protocol. We found the SYM_VAR_5.8S2/SYM_VAR_REV primers to perform superior to the other tested ITS2 primers. We therefore used this primer pair to develop a standardised PCR protocol. To do this, we tested the effect of PCR-to-PCR variation, annealing temperature, cycle number, and different polymerase systems on the PCR efficacy. The Symbiodinium ITS2 PCR protocol developed here delivers improved specificity and sensitivity towards Symbiodinium with apparent minimal sub-genera taxonomic bias across all sample types. In particular, the protocol’s ability to amplify Symbiodinium from a range of environmental sources will facilitate the study of Symbiodinium populations across biomes.

  12. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  13. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  14. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes.

    Science.gov (United States)

    Gong, Xue; Li, Jinfu; Zhou, Wenjiao; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-05-30

    Based on target recycling amplification, the development of a new label-free, simple and sensitive colorimetric detection method for ATP by using un-modified aptamers and DNAzymes is described. The association of the model target molecules (ATP) with the corresponding aptamers of the dsDNA probes leads to the release of the G-quadruplex sequences. The ATP-bound aptamers can be further degraded by Exonuclease III to release ATP, which can again bind the aptamers of the dsDNA probes to initiate the target recycling amplification process. Due to this target recycling amplification, the amount of the released G-quadruplex sequences is significantly enhanced. Subsequently, these G-quadruplex sequences bind hemin to form numerous peroxidase mimicking DNAzymes, which cause substantially intensified color change of the probe solution for highly sensitive colorimetric detection of ATP down to the sub-nanomolar (0.33nM) level. Our method is highly selective toward ATP against other control molecules and can be performed in one single homogeneous solution, which makes our sensing approach hold great potential for sensitive colorimetric detection of other small molecules and proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.

    Science.gov (United States)

    Xu, Yunying; Xu, Jin; Xiang, Yun; Yuan, Ruo; Chai, Yaqin

    2014-01-15

    In this work, we described the development of a new label-free, simple and sensitive fluorescent ATP sensing platform based on exonuclease III (Exo III)-catalyzed target recycling (ECTR) amplification and SYBR Green I indicator. The hairpin aptamer probes underwent conformational structure switching and re-configuration in the presence of ATP, which led to catalytic cleavage of the re-configured aptamers by Exo III to release ATP and to initiate the ECTR process. Such ECTR process resulted in the digestion of a significant number of the hairpin aptamer probes, leading to much less intercalation of SYBR Green I to the hairpin stems and drastic suppression of the fluorescence emission for sensitive ATP detection down to the low nanomolar level. Due to the highly specific affinity bindings between aptamers and ATP, the developed method exhibited excellent selectivity toward ATP against other analogous molecules. Besides, our ATP sensing approach used un-modified aptamer probes and could be performed in a "mix-and-detect" fashion in homogenous solutions. All these distinct advantages of the developed method thus made it hold great potential for the development of simple and robust sensing strategies for the detection of other small molecules. © 2013 Elsevier B.V. All rights reserved.

  16. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Jianjun Shen

    Full Text Available Gastric cancer is one of the most frequent malignancies in tumors in the East Asian countries. Identifying precise prognostic markers and effective therapeutic targets is important in the treatment of gastric cancer. microRNAs (miRNAs play important roles in tumorigenesis. However, the mechanisms by which miRNAs regulate gastric cancer metastasis remain poorly understood. In this study, we found that the levels of miR-410 in gastric cancer and cell lines were much lower than that in the normal control, respectively, and the lower level of miR-410 was significantly associated with lymph-node metastasis. Transfection of miR-410 mimics could significantly inhibit the cell proliferation, migration and invasion in the HGC-27 gastric cancer cell lines. In contrast, knockdown of miR-410 had the opposite effect on the cell proliferation, migration and invasion. Moreover, we also found that MDM2 was negatively regulated by miR-410 at the post-transcriptional level, via a specific target site with the 3'UTR by luciferase reporter assay. The expression of MDM2 was inversely correlated with miR-410 expression in gastric cancer tissues, and overexpression of MDM2 in miR-410-transfected gastric cancer cells effectively rescued the inhibition of cell proliferation and invasion caused by miR-410. Thus, our findings suggested that miR-410 acted as a new tumor suppressor by targeting the MDM2 gene and inhibiting gastric cancer cells proliferation, migration and invasion. The findings of this study contributed to the current understanding of these functions of miR-410 in gastric cancer.

  17. Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis.

    Science.gov (United States)

    Jiang, Guosong; Wu, Amy D; Huang, Chao; Gu, Jiayan; Zhang, Liping; Huang, Haishan; Liao, Xin; Li, Jingxia; Zhang, Dongyun; Zeng, Xingruo; Jin, Honglei; Huang, Haojie; Huang, Chuanshu

    2016-07-01

    Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR. ©2016 American

  18. Real-time monitoring of mycobacterium genomic DNA with target-primed rolling circle amplification by a Au nanoparticle-embedded SPR biosensor.

    Science.gov (United States)

    Xiang, Yang; Zhu, Xiaoyan; Huang, Qing; Zheng, Junsong; Fu, Weiling

    2015-04-15

    In this study, we developed a surface plasmon resonance (SPR) DNA biosensor array based on target-primed rolling circle amplification (RCA) for isothermal and rapid detection of two pathogenic mycobacteria, Mycobacterium tuberculosis complex (MTBC) and Mycobacterium avium complex (MAC).The species-specific padlock probe (PLP) was designed to target the sequence in 16S-23S rRNA gene internal transcribed spacer (ITS). After ligation, the circularized PLP could be primed by the target sequence to initial RCA. The RCA performed simultaneously with the cleavage reaction to produce small fragments of single strand DNA which immediately hybridized with the probe immobilized on the sensor chip without denaturation. This process caused SPR angle changes on the chip surface, which made the detection for analysis from the solution achievable, and dynamic real-time RCA monitoring of mycobacterium possible. Besides, Au nanoparticles (AuNPs) were directly assembled onto the surface of the sensor chip via hexanedithiol (HDT) for the enhancement of sensitivity as a label-free detection system. Experimental results show that the signal enhancement by the target-primed RCA together with AuNPs-embedded surface caused at least10-fold increased sensitivity as compared with conventional RCA on bare SPR chip method. Within 40min amplification duration as low as 20amol of synthetic targets and 10(4)CFUmL(-1) of genomic DNA from clinical samples can be detected. The proposed method not only provides a simple design idea for liquid-phase amplification monitoring, but also apply it in clinical pathogen detection, which holds great promise in ultrasensitive bioassay in the future. Copyright © 2014. Published by Elsevier B.V.

  19. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Wei [Medical College of Xi' an Jiao Tong University, Xi' an 710061 (China); Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Li, Chan [Department of Ophthalmology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng [Department of Urology, Shaanxi Provincial People' s Hospital, The Third Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710068 (China); Xing, Junping, E-mail: junpingxing@163.com [Department of Urology, The First Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710061 (China)

    2016-01-15

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  20. MicroRNA-613 represses prostate cancer cell proliferation and invasion through targeting Frizzled7

    International Nuclear Information System (INIS)

    Ren, Wei; Li, Chan; Duan, Wanli; Du, Shuangkuan; Yang, Fan; Zhou, Jiancheng; Xing, Junping

    2016-01-01

    A growing number of studies have indicated that microRNAs (miRNAs) are critical regulators of carcinogenesis and cancer progression and may serve as potential therapeutic tools for cancer therapy. Frizzled7 (Fzd7), the most important receptor of the Wnt signaling pathway, is extensively involved in cancer development and progression. However, the role of Fzd7 in prostate cancer remains unclear. In this study, we aimed to explore the expression of Fzd7 in prostate cancer and test whether modulating Fzd7 expression by miR-613 would have an impact on prostate cancer cell proliferation and invasion. We found that Fzd7 was highly expressed in prostate cancer cell lines. Through bioinformatics analysis, Fzd7 was predicted as a target gene of miR-613, which was validated by dual-luciferase reporter assays, real-time quantitative polymerase chain reaction and Western blot analysis. By gain of function experiments, we showed that overexpression of miR-613 significantly suppressed prostate cancer cell proliferation and invasion. Furthermore, miR-613 overexpression markedly downregulated the Wnt signaling pathway. Through a rescue experiment, we showed that overexpression of Fzd7 could abrogate the inhibitory effect of miR-613 on cell proliferation and invasion as well as Wnt signaling. Additionally, these results were further strengthened by data showing that miR-613 was significantly downregulated in prostate cancer tissues, exhibiting an inverse correlation with Fzd7 expression. In conclusion, our study suggests that miR-613 functions as a tumor suppressor, partially through targeting Fzd7, and is a potential therapeutic target for prostate cancer. - Highlights: • Fzd7 was highly expressed in prostate cancer. • Fzd7 was predicted as a target gene of miR-613. • MiR-613 negatively regulated prostate cancer by Fzd7. • MiR-613 inversely correlated with Fzd7 in prostate cancer.

  1. MicroRNA-133a Inhibits Osteosarcoma Cells Proliferation and Invasion via Targeting IGF-1R

    Directory of Open Access Journals (Sweden)

    Guangnan Chen

    2016-02-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs are a class of small noncoding RNAs that regulate gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. Downregulated microRNAs and their roles in cancer development have attracted much attention. A growing body of evidence showed that microRNA-133a (miR-133a has inhibitory effects on cell proliferation, migration, invasion, and metastasis of osteosarcoma. Methods: MiR-133a expression in human osteosarcoma cell lines and human normal osteoblastic cell line hFOB was investigated by real-time PCR (RT-PCR. The role of miR-133a in human osteosarcoma growth and invasion was assessed in cell lines in vitro and in vivo. Then, luciferase reporter assay validated IGF-1R as a downstream and functional target of miR-133a, and functional studies revealed that the anti-tumor effect of miR-133a was probably due to targeting and repressing of IGF-1R expression. Results: MiR-133a was lower expressed in human osteosarcoma cell lines than human normal osteoblastic cell line hFOB and its effect on inhibiting proliferation, invasion and metastasis is mediated by its direct interaction with the IGF-1R. Furthermore, the tumour-suppressive function of miR-133a probably contributed to inhibiting the activation AKT and ERK signaling pathway. Conclusion: MiR-133a suppresses osteosarcoma progression and metastasis by targeting IGF-1R in human osteosarcoma cells, providing a novel candidate prognostic factor and a potential anti-metastasis therapeutic target in osteosarcoma.

  2. Enhanced DNA Profiling of the Semen Donor in Late Reported Sexual Assaults: Use of Y-Chromosome-Targeted Pre-amplification and Next Generation Y-STR Amplification Systems.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2016-01-01

    In some cases of sexual assault the victim may not report the assault for several days after the incident due to various factors. The ability to obtain an autosomal STR profile of the semen donor from a living victim rapidly diminishes as the post-coital interval is extended due to the presence of only a small amount of male DNA amidst an overwhelming amount of female DNA. Previously, we have utilized various technological tools to overcome the limitations of male DNA profiling in extended interval post-coital samples including the use of Y-chromosome STR profiling, cervical sample, and post-PCR purification permitting the recovery of Y-STR profiles of the male DNA from samples collected 5-6 days after intercourse. Despite this success, the reproductive biology literature reports the presence of spermatozoa in the human cervix up to 7-10 days post-coitus. Therefore, novel and improved methods for recovery of male profiles in extended interval post-coital samples were required. Here, we describe enhanced strategies, including Y-chromosome-targeted pre-amplification and next generation Y-STR amplification kits, that have resulted in the ability to obtain probative male profiles from samples collected 6-9 days after intercourse.

  3. Targeted research to improve invasive species management: yellow crazy ant Anoplolepis gracilipes in Samoa.

    Science.gov (United States)

    Hoffmann, Benjamin D; Auina, Saronna; Stanley, Margaret C

    2014-01-01

    Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu'utele island, Samoa. First, we assessed the ant's impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine

  4. Development and application of loop-mediated isothermal amplification methods targeting the seM gene for detection of Streptococcus equi subsp. equi.

    Science.gov (United States)

    Hobo, Seiji; Niwa, Hidekazu; Oku, Kazuomi

    2012-03-01

    Loop-mediated isothermal amplification (LAMP) constitutes a potentially valuable diagnostic tool for rapid diagnosis of contagious diseases. In this study, we developed a novel LAMP method (seM-LAMP) to detect the seM gene of Streptococcus equi subsp. equi (S. equi), the causative agent of strangles in equids. The seM-LAMP successfully amplified the target sequence of the seM gene at 63°C within 60 min. The sensitivity of the seM-LAMP was slightly lower than the 2nd reaction of the seM semi-nested PCR. To evaluate the species specificity of the seM-LAMP, we tested 100 S. equi and 189 non-S. equi strains. Significant amplification of the DNA originating from S. equi was observed within 60 min incubation, but no amplification of non-S. equi DNA occurred. The results were identical to those of seM semi-nested PCR. To investigate the clinical usefulness of the methods, the seM-LAMP and the seM semi-nested PCR were used to screen 590 nasal swabs obtained during an outbreak of strangles. Both methods showed that 79 and 511 swabs were S. equi positive and negative, respectively, and the results were identical to those of the culture examination. These results indicate that the seM-LAMP is potentially useful for the reliable routine diagnosis of Streptococcus equi subsp. equi infections.

  5. Colorimetric detection of genetically modified organisms based on exonuclease III-assisted target recycling and hemin/G-quadruplex DNAzyme amplification.

    Science.gov (United States)

    Zhang, Decai; Wang, Weijia; Dong, Qian; Huang, Yunxiu; Wen, Dongmei; Mu, Yuejing; Yuan, Yong

    2017-12-21

    An isothermal colorimetric method is described for amplified detection of the CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on (a) target DNA-triggered unlabeled molecular beacon (UMB) termini binding, and (b) exonuclease III (Exo III)-assisted target recycling, and (c) hemin/G-quadruplex (DNAzyme) based signal amplification. The specific binding of target to the G-quadruplex sequence-locked UMB triggers the digestion of Exo III. This, in turn, releases an active G-quadruplex segment and target DNA for successive hybridization and cleavage. The Exo III impellent recycling of targets produces numerous G-quadruplex sequences. These further associate with hemin to form DNAzymes and hence will catalyze H 2 O 2 -mediated oxidation of the chromogenic enzyme substrate ABTS 2- causing the formation of a green colored product. This finding enables a sensitive colorimetric determination of GMO DNA (at an analytical wavelength of 420 nm) at concentrations as low as 0.23 nM. By taking advantage of isothermal incubation, this method does not require sophisticated equipment or complicated syntheses. Analyses can be performed within 90 min. The method also discriminates single base mismatches. In our perception, it has a wide scope in that it may be applied to the detection of many other GMOs. Graphical abstract An isothermal and sensitive colorimetric method is described for amplified detection of CaMV 35S promoter sequence in genetically modified organism (GMO). It is based on target DNA-triggered molecular beacon (UMB) termini-binding and exonuclease III assisted target recycling, and on hemin/G-quadruplex (DNAzyme) signal amplification.

  6. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy.

    Science.gov (United States)

    Zhao, Yang; Tan, Lu; Gao, Xiaoshan; Jie, Guifen; Huang, Tingyu

    2018-07-01

    Herein, we successfully devised a novel photoelectrochemical (PEC) platform for ultrasensitive detection of adenosine by target-triggering cascade multiple cycle amplification based on the silver nanoparticles-assisted ion-exchange reaction with CdTe quantum dots (QDs). In the presence of target adenosine, DNA s1 is released from the aptamer and then hybridizes with hairpin DNA (HP1), which could initiate the cycling cleavage process under the reaction of nicking endonuclease. Then the product (DNA b) of cycle I could act as the "DNA trigger" of cycle II to further generate a large number of DNA s1, which again go back to cycle I, thus a cascade multiple DNA cycle amplification was carried out to produce abundant DNA c. These DNA c fragments with the cytosine (C)-rich loop were captured by magnetic beads, and numerous silver nanoclusters (Ag NCs) were synthesized by AgNO 3 and sodium borohydride. The dissolved AgNCs released numerous silver ions which could induce ion exchange reaction with the CdTe QDs, thus resulting in greatly amplified change of photocurrent for target detection. The detection linear range for adenosine was 1.0 fM ~10 nM with the detection limit of 0.5 fM. The present PEC strategy combining cascade multiple DNA cycle amplification and AgNCs-induced ion-exchange reaction with QDs provides new insight into rapid, and ultrasensitive PEC detection of different biomolecules, which showed great potential for detecting trace amounts in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cascaded strand displacement for non-enzymatic target recycling amplification and label-free electronic detection of microRNA from tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Kai; Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun, E-mail: yunatswu@swu.edu.cn

    2016-04-15

    The monitoring of microRNA (miRNA) expression levels is of great importance in cancer diagnosis. In the present work, based on two cascaded toehold-mediated strand displacement reactions (TSDRs), we have developed a label- and enzyme-free target recycling signal amplification approach for sensitive electronic detection of miRNA-21 from human breast cancer cells. The junction probes containing the locked G-quadruplex forming sequences are self-assembled on the senor surface. The presence of the target miRNA-21 initiates the first TSDR and results in the disassembly of the junction probes and the release of the active G-quadruplex forming sequences. Subsequently, the DNA fuel strand triggers the second TSDR and leads to cyclic reuse of the target miRNA-21. The cascaded TSDRs thus generate many active G-quadruplex forming sequences on the sensor surface, which associate with hemin to produce significantly amplified current response for sensitive detection of miRNA-21 at 1.15 fM. The sensor is also selective and can be employed to monitor miRNA-21 from human breast cancer cells. - Highlights: • Amplified and sensitive detection of microRNA from tumor cells is achieved. • Signal amplification is realized by two cascaded strand displacement reactions. • The developed sensor is selective and label-free without involving any enzymes.

  8. NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES

    Science.gov (United States)

    Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.

    2008-01-01

    Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617

  9. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer.

    Science.gov (United States)

    Yang, Fei; Gao, Jun-Yi; Chen, Hua; Du, Zhen-Hua; Zhang, Xue-Qun; Gao, Wei

    2017-01-01

    Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim) were also detected. We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 μM) and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer.

  10. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices.

    Science.gov (United States)

    Gualeni, B; Coulman, S A; Shah, D; Eng, P F; Ashraf, H; Vescovo, P; Blayney, G J; Piveteau, L-D; Guy, O J; Birchall, J C

    2018-03-01

    Translation of cell therapies to the clinic is accompanied by numerous challenges, including controlled and targeted delivery of the cells to their site of action, without compromising cell viability and functionality. To explore the use of hollow microneedle devices (to date only used for the delivery of drugs and vaccines into the skin and for the extraction of biological fluids) to deliver cells into skin in a minimally invasive, user-friendly and targeted fashion. Melanocyte, keratinocyte and mixed epidermal cell suspensions were passed through various types of microneedles and subsequently delivered into the skin. Cell viability and functionality are maintained after injection through hollow microneedles with a bore size ≥ 75 μm. Healthy cells are delivered into the skin at clinically relevant depths. Hollow microneedles provide an innovative and minimally invasive method for delivering functional cells into the skin. Microneedle cell delivery represents a potential new treatment option for cell therapy approaches including skin repigmentation, wound repair, scar and burn remodelling, immune therapies and cancer vaccines. © 2017 British Association of Dermatologists.

  11. Internal Light Source-Driven Photoelectrochemical 3D-rGO/Cellulose Device Based on Cascade DNA Amplification Strategy Integrating Target Analog Chain and DNA Mimic Enzyme.

    Science.gov (United States)

    Lan, Feifei; Liang, Linlin; Zhang, Yan; Li, Li; Ren, Na; Yan, Mei; Ge, Shenguang; Yu, Jinghua

    2017-11-01

    In this work, a chemiluminescence-driven collapsible greeting card-like photoelectrochemical lab-on-paper device (GPECD) with hollow channel was demonstrated, in which target-triggering cascade DNA amplification strategy was ingeniously introduced. The GPECD had the functions of reagents storage and signal collection, and the change of configuration could control fluidic path, reaction time and alterations in electrical connectivity. In addition, three-dimentional reduced graphene oxide affixed Au flower was in situ grown on paper cellulose fiber for achieving excellent conductivity and biocompatibility. The cascade DNA amplification strategy referred to the cyclic formation of target analog chain and its trigger action to hybridization chain reaction (HCR), leading to the formation of numerous hemin/G-quadruplex DNA mimic enzyme with the presence of hemin. Subjected to the catalysis of hemin/G-quadruplex, the strong chemiluminiscence of luminol-H 2 O 2 system was obtained, which then was used as internal light source to excite photoactive materials realizing the simplification of instrument. In this analyzing process, thrombin served as proof-of-concept, and the concentration of target was converted into the DNA signal output by the specific recognition of aptamer-protein and target analog chain recycling. The target analog chain was produced in quantity with the presence of target, which further triggered abundant HCR and introduced hemin/G-quadruplex into the system. The photocurrent signal was obtained after the nitrogen-doped carbon dots sensitized ZnO was stimulated by chemiluminescence. The proposed GPECD exhibited excellent specificity and sensitivity toward thrombin with a detection limit of 16.7 fM. This judiciously engineered GPECD paved a luciferous way for detecting other protein with trace amounts in bioanalysis and clinical biomedicine.

  12. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-01

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg 2+ ), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg 2+ by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T (25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg 2+ ion was intercalated into the DNA polyion complex membrane based on T–Hg 2+ –T coordination chemistry. The chelated Hg 2+ ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH 4 and Ru(NH 3 ) 6 3+ for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg 2+ level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg 2+ . The strategy afforded exquisite selectivity for Hg 2+ against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg 2+ in spiked tap-water samples, and the recovery was 87.9–113.8%

  13. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •We report a new electrochemical sensing protocol for the detection of mercury ion. •Gold amalgamation on DNA-based sensing platform was used as nanocatalyst. •The signal was amplified by cycling signal amplification strategy. -- Abstract: Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg{sup 2+}), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg{sup 2+} by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T{sub (25)} oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg{sup 2+} ion was intercalated into the DNA polyion complex membrane based on T–Hg{sup 2+}–T coordination chemistry. The chelated Hg{sup 2+} ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH{sub 4} and Ru(NH{sub 3}){sub 6}{sup 3+} for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg{sup 2+} level in the sample, and has a detection limit of 0.02 nM with a dynamic range of up to 1000 nM Hg{sup 2+}. The strategy afforded exquisite selectivity for Hg{sup 2+} against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg{sup 2+} in spiked tap-water samples, and the recovery was 87.9–113.8%.

  14. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Katharine A Dunlop

    2016-02-01

    Full Text Available The term eating disorders (ED encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS. NIBS, including repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related rewards and punishment cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and their underlying behavioral and neurobiological targets associated with ED as potential candidates for NIBS and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  15. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.

    Science.gov (United States)

    Richman, Susan D; Southward, Katie; Chambers, Philip; Cross, Debra; Barrett, Jennifer; Hemmings, Gemma; Taylor, Morag; Wood, Henry; Hutchins, Gordon; Foster, Joseph M; Oumie, Assa; Spink, Karen G; Brown, Sarah R; Jones, Marc; Kerr, David; Handley, Kelly; Gray, Richard; Seymour, Matthew; Quirke, Philip

    2016-03-01

    HER2 overexpression/amplification is linked to trastuzumab response in breast/gastric cancers. One suggested anti-EGFR resistance mechanism in colorectal cancer (CRC) is aberrant MEK-AKT pathway activation through HER2 up-regulation. We assessed HER2-amplification/overexpression in stage II-III and IV CRC patients, assessing relationships to KRAS/BRAF and outcome. Pathological material was obtained from 1914 patients in the QUASAR stage II-III trial and 1342 patients in stage IV trials (FOCUS and PICCOLO). Tissue microarrays were created for HER2 immunohistochemistry. HER2-amplification was assessed using FISH and copy number variation. KRAS/BRAF mutation status was assessed by pyrosequencing. Progression-free survival (PFS) and overall survival (OS) data were obtained for FOCUS/PICCOLO and recurrence and mortality for QUASAR; 29/1342 (2.2%) stage IV and 25/1914 (1.3%) stage II-III tumours showed HER2 protein overexpression. Of the HER2-overexpressing cases, 27/28 (96.4%) stage IV tumours and 20/24 (83.3%) stage II-III tumours demonstrated HER2 amplification by FISH; 41/47 (87.2%) also showed copy number gains. HER2-overexpression was associated with KRAS/BRAF wild-type (WT) status at all stages: in 5.2% WT versus 1.0% mutated tumours (p < 0.0001) in stage IV and 2.1% versus 0.2% in stage II-III tumours (p = 0.01), respectively. HER2 was not associated with OS or PFS. At stage II-III, there was no significant correlation between HER2 overexpression and 5FU/FA response. A higher proportion of HER2-overexpressing cases experienced recurrence, but the difference was not significant. HER2-amplification/overexpression is identifiable by immunohistochemistry, occurring infrequently in stage II-III CRC, rising in stage IV and further in KRAS/BRAF WT tumours. The value of HER2-targeted therapy in patients with HER2-amplified CRC must be tested in a clinical trial. © 2015 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society

  16. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  17. Parallel solid-phase isothermal amplification and detection of multiple DNA targets in microliter-sized wells of a digital versatile disc

    International Nuclear Information System (INIS)

    Santiago-Felipe, Sara; Tortajada-Genaro, Luis Antonio; Puchades, Rosa; Maquieira, Ángel

    2016-01-01

    An integrated method for the parallelized detection of multiple DNA target sequences is presented by using microstructures in a digital versatile disc (DVD). Samples and reagents were managed by using both the capillary and centrifugal forces induced by disc rotation. Recombinase polymerase amplification (RPA), in a bridge solid phase format, took place in separate wells, which thereby modified their optical properties. Then the DVD drive reader recorded the modifications of the transmitted laser beam. The strategy allowed tens of genetic determinations to be made simultaneously within <2 h, with small sample volumes (3 μL), low manipulation and at low cost. The method was applied to high-throughput screening of relevant safety threats (allergens, GMOs and pathogenic bacteria) in food samples. Satisfactory results were obtained in terms of sensitivity (48.7 fg of DNA) and reproducibility (below 18 %). This scheme warrants cost-effective multiplex amplification and detection and is perceived to represent a viable tool for screening of nucleic acid targets. (author)

  18. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma—A Review

    Science.gov (United States)

    Siriwardena, Samadarani B. S. M.; Tsunematsu, Takaaki; Qi, Guangying; Ishimaru, Naozumi; Kudo, Yasusei

    2018-01-01

    It is well recognized that the presence of cervical lymph node metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC). In solid epithelial cancer, the first step during the process of metastasis is the invasion of cancer cells into the underlying stroma, breaching the basement membrane (BM)—the natural barrier between epithelium and the underlying extracellular matrix (ECM). The ability to invade and metastasize is a key hallmark of cancer progression, and the most complicated and least understood. These topics continue to be very active fields of cancer research. A number of processes, factors, and signaling pathways are involved in regulating invasion and metastasis. However, appropriate clinical trials for anti-cancer drugs targeting the invasion of OSCC are incomplete. In this review, we summarize the recent progress on invasion-related factors and emerging molecular determinants which can be used as potential for diagnostic and therapeutic targets in OSCC. PMID:29758011

  19. Targets and probes for non-invasive imaging of β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Jodal, Andreas; Behe, Martin [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Schibli, Roger [Paul Scherrer Institut, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2017-04-15

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  20. Targets and probes for non-invasive imaging of β-cells

    International Nuclear Information System (INIS)

    Jodal, Andreas; Behe, Martin; Schibli, Roger

    2017-01-01

    β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications. (orig.)

  1. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.

    Science.gov (United States)

    Yan, Genping; Wang, Yonghong; He, Xiaoxiao; Wang, Kemin; Liu, Jinquan; Du, Yudan

    2013-06-15

    We report here a highly sensitive and label-free electrochemical aptasensing technology for detection of interferon-gamma (IFN-γ) based on graphene controlled assembly and enzyme cleavage-assisted target recycling amplification strategy. In this work, in the absence of IFN-γ, the graphene could not be assembled onto the 16-mercaptohexadecanoic acid (MHA) modified gold electrode because the IFN-γ binding aptamer was strongly adsorbed on the graphene due to the strong π-π interaction. Thus the electronic transmission was blocked (eT OFF). However, the presence of target IFN-γ and DNase I led to desorption of aptamer from the graphene surface and further cleavage of the aptamer, thereby releasing the IFN-γ. The released IFN-γ could then re-attack other aptamers on the graphene, resulting in the successive release of the aptamers from the graphene. At the same time, the "naked" graphene could be assembled onto the MHA modified gold electrode with hydrophobic interaction and π-conjunction, mediating the electron transfer between the electrode and the electroactive indicator. Then, measurable electrochemical signals were generated (eT ON), which was related to the concentration of the IFN-γ. By taking advantages of graphene and enzyme cleavage-assisted target recycling amplification, the developed label-free electrochemical aptasensing technology showed a linear response to concentration of IFN-γ range from 0.1 to 0.7 pM. The detection limit of IFN-γ was determined to be 0.065 pM. Moreover, this aptasensor shows good selectivity toward the target in the presence of other relevant proteins. Our strategy thus opens new opportunities for label-free and amplified detection of other kinds of proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A label-free fluorescent adenosine triphosphate biosensor via overhanging aptamer-triggered enzyme protection and target recycling amplification.

    Science.gov (United States)

    Wang, Zhaoyin; Zhao, Jian; Dai, Zhihui

    2016-06-20

    Herein, a label-free fluorescent adenosine triphosphate (ATP) aptasensor is fabricated with a DNA hairpin and an overhanging aptamer. In the presence of ATP, the overhanging sequences of the aptamer may form preferred substrates of exo III, and thus trigger the enzyme-assisted amplification, which results in the release of G-rich sequences. Free G-rich sequences subsequently generate an enhanced flourescent signal by binding with thioflavin T. However, if ATP is absent, the overhanging sequence can induce steric hindrance and protect the DNA hairpin against the digestion of exo III, significantly reducing the noise of this biosensor. Accordingly, the signal-to-noise ratio of the sensing system is greatly improved, which ensures the desirable analytical performance of the proposed aptasensor both in pure samples and real samples.

  3. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  4. Targeted inhibition of the phosphoinositide 3-kinase impairs cell proliferation, survival, and invasion in colon cancer

    Directory of Open Access Journals (Sweden)

    Yang F

    2017-09-01

    Full Text Available Fei Yang,1,* Jun-Yi Gao,2,* Hua Chen,1 Zhen-Hua Du,1 Xue-Qun Zhang,3 Wei Gao4 1Department of Pathology, Jinan Central Hospital Affiliated to Shandong University, Jinan, 2Department of Clinical Medicine, Weifang Medical College, Weifang, 3Graduate School, Taishan Medical University, Xintai, 4Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, People’s Republic of China *These authors contributed equally to this work Background: Colon cancer is the third most common cancer in the world, and its metastasis and drug resistance are challenging for its effective treatment. The PI3K/Akt/mTOR pathway plays a crucial role in the pathogenesis of colon cancer. The aim of this study was to investigate the targeting of PI3K in colon cancer cells HT-29 and HCT-116 in vitro. Methods: In HT-29 and HCT-116 cells, BEZ235, a dual inhibitor of PI3K/mTOR, and shRNAtarget to PI3KCA were used to inhibit PI3K/Akt/mTOR pathway. The inhibition efficiency of PI3K/Akt/mTOR pathway was detected by RT-PCR and Western blot. Cell proliferation, migration, invasion, and apoptosis were evaluated by Cell Counting Kit-8, Transwell, and flow cytometry assays. The expression of apoptosis-related proteins (cleavage caspase 3, Bcl-2, Bax, and Bim were also detected. Results: We found that in HT-29 and HCT-116 cells, the treatment of BEZ235 (1 µM and PI3KCA knockdown inhibited the activation of PI3K/Akt/mTOR pathway and significantly suppressed cell proliferation, migration, and invasion of HT-29 and HCT-116 cells. In addition, we confirmed that knockdown of BEZ235 and PI3KCA induced cell apoptosis through the upregulated levels of cleavage caspase 3 and Bax and downregulated expression of Bcl-2 and Bim. Conclusion: Our results indicated that targeted inhibition of the PI3K/Akt/mTOR pathway impaired cell proliferation, survival, and invasion in human colon cancer. Keywords: human colon cancer, PI3K/Akt/mTOR pathway, BEZ235, PI3KCA knockdown

  5. Kempopeptin C, a Novel Marine-Derived Serine Protease Inhibitor Targeting Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatma H. Al-Awadhi

    2017-09-01

    Full Text Available Kempopeptin C, a novel chlorinated analogue of kempopeptin B, was discovered from a marine cyanobacterium collected from Kemp Channel in Florida. The structure was elucidated using NMR spectroscopy and mass spectrometry (MS. The presence of the basic Lys residue adjacent to the N-terminus of the 3-amino-6-hydroxy-2-piperidone (Ahp moiety contributed to its selectivity towards trypsin and related proteases. The antiproteolytic activity of kempopeptin C was evaluated against trypsin, plasmin and matriptase and found to inhibit these enzymes with IC50 values of 0.19, 0.36 and 0.28 μM, respectively. Due to the significance of these proteases in cancer progression and metastasis, as well as their functional redundancy with respect to targeting overlapping substrates, we examined the effect of kempopeptin C on the downstream cellular substrates of matriptase: CDCP1 and desmoglein-2 (Dsg-2. Kempopeptin C was shown to inhibit the cleavage of both substrates in vitro. Additionally, kempopeptin C reduced the cleavage of CDCP1 in MDA-MB-231 cells up to 10 µM. The functional relevance of targeting matriptase and related proteases was investigated by assessing the effect of kempopeptin C on the migration of breast cancer cells. Kempopeptin C inhibited the migration of the invasive MDA-MB-231 cells by 37 and 60% at 10 and 20 µM, respectively.

  6. Magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway

    International Nuclear Information System (INIS)

    Lee, Cheol-Jung; Lee, Mee-Hyun; Yoo, Sun-Mi; Choi, Kyung-Il; Song, Ji-Hong; Jang, Jeong-Hoon; Oh, Sei-Ryang; Ryu, Hyung-Won; Lee, Hye-Suk; Surh, Young-Joon; Cho, Yong-Yeon

    2015-01-01

    Magnolin is a natural compound abundantly found in Magnolia flos, which has been traditionally used in oriental medicine to treat headaches, nasal congestion and anti-inflammatory reactions. Our recent results have demonstrated that magnolin targets the active pockets of ERK1 and ERK2, which are important signaling molecules in cancer cell metastasis. The aim of this study is to evaluate the effects of magnolin on cell migration and to further explore the molecular mechanisms involved. Magnolin-mediated signaling inhibition was confirmed by Western blotting using RSK2 +/+ and RSK2 −/− MEFs, A549 and NCI-H1975 lung cancer cells, and by NF-κB and Cox-2 promoter luciferase reporter assays. Inhibition of cell migration by magnolin was examined by wound healing and/or Boyden Chamber assays using JB6 Cl41 and A549 human lung cancer cells. The molecular mechanisms involved in cell migration and epithelial-to-mesenchymal transition were determined by zymography, Western blotting, real-time PCR and immunocytofluorescence. Magnolin inhibited NF-κB transactivation activity by suppressing the ERKs/RSK2 signaling pathway. Moreover, magnolin abrogated the increase in EGF-induced COX-2 protein levels and wound healing. In human lung cancer cells such as A549 and NCI-H1975, which harbor constitutive active Ras and EGFR mutants, respectively, magnolin suppressed wound healing and cell invasion as seen by a Boyden chamber assay. In addition, it was observed that magnolin inhibited MMP-2 and −9 gene expression and activity. The knockdown or knockout of RSK2 in A549 lung cancer cells or MEFs revealed that magnolin targeting ERKs/RSK2 signaling suppressed epithelial-to-mesenchymal transition by modulating EMT marker proteins such as N-cadherin, E-cadherin, Snail, Vimentin and MMPs. These results demonstrate that magnolin inhibits cell migration and invasion by targeting the ERKs/RSK2 signaling pathway. The online version of this article (doi:10.1186/s12885-015-1580-7) contains

  7. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    International Nuclear Information System (INIS)

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-01-01

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). γH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  8. A titratable two-step transcriptional amplification strategy for targeted gene therapy based on ligand-induced intramolecular folding of a mutant human estrogen receptor

    DEFF Research Database (Denmark)

    Chen, Ian Y; Paulmurugan, Ramasamy; Nielsen, Carsten Haagen

    2014-01-01

    PURPOSE: The efficacy and safety of cardiac gene therapy depend critically on the level and the distribution of therapeutic gene expression following vector administration. We aimed to develop a titratable two-step transcriptional amplification (tTSTA) vector strategy, which allows modulation...... of transcriptionally targeted gene expression in the myocardium. PROCEDURES: We constructed a tTSTA plasmid vector (pcTnT-tTSTA-fluc), which uses the cardiac troponin T (cTnT) promoter to drive the expression of the recombinant transcriptional activator GAL4-mER(LBD)-VP2, whose ability to transactivate the downstream...... induction of myocardial fluc expression. HTV injection of pcTnT-tTSTA-fluc led to negligible long-term hepatic fluc expression, regardless of the raloxifene dose given. CONCLUSIONS: The tTSTA vector strategy can effectively modulate transgene expression in a tissue-specific manner. Further refinement...

  9. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA.

    Science.gov (United States)

    Zhang, Pu; Wu, Xiaoyan; Yuan, Ruo; Chai, Yaqin

    2015-03-17

    In this study, an off-on switching of a dual amplified electrochemiluminescence (ECL) biosensor based on Pb(2+)-induced DNAzyme-assisted target recycling and rolling circle amplification (RCA) was constructed for microRNA (miRNA) detection. First, the primer probe with assistant probe and miRNA formed Y junction which was cleaved with the addition of Pb(2+) to release miRNA. Subsequently, the released miRNA could initiate the next recycling process, leading to the generation of numerous intermediate DNA sequences (S2). Afterward, bare glassy carbon electrode (GCE) was immersed into HAuCl4 solution to electrodeposit a Au nanoparticle layer (depAu), followed by the assembly of a hairpin probe (HP). Then, dopamine (DA)-modified DNA sequence (S1) was employed to hybridize with HP, which switching off the sensing system. This is the first work that employs DA to quench luminol ECL signal, possessing the biosensor ultralow background signal. Afterward, S2 produced by the target recycling process was loaded onto the prepared electrode to displace S1 and served as an initiator for RCA. With rational design, numerous repeated DNA sequences coupling with hemin to form hemin/G-quadruplex were generated, which could exhibit strongly catalytic toward H2O2, thus amplified the ECL signal and switched the ON state of the sensing system. The liner range for miRNA detection was from 1.0 fM to 100 pM with a low detection limit down to 0.3 fM. Moreover, with the high sensitivity and specificity induced by the dual signal amplification, the proposed miRNA biosensor holds great potential for analysis of other interesting tumor markers.

  10. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    Science.gov (United States)

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Gene amplification in carcinogenesis

    Directory of Open Access Journals (Sweden)

    Lucimari Bizari

    2006-01-01

    Full Text Available Gene amplification increases the number of genes in a genome and can give rise to karyotype abnormalities called double minutes (DM and homogeneously staining regions (HSR, both of which have been widely observed in human tumors but are also known to play a major role during embryonic development due to the fact that they are responsible for the programmed increase of gene expression. The etiology of gene amplification during carcinogenesis is not yet completely understood but can be considered a result of genetic instability. Gene amplification leads to an increase in protein expression and provides a selective advantage during cell growth. Oncogenes such as CCND1, c-MET, c-MYC, ERBB2, EGFR and MDM2 are amplified in human tumors and can be associated with increased expression of their respective proteins or not. In general, gene amplification is associated with more aggressive tumors, metastases, resistance to chemotherapy and a decrease in the period during which the patient stays free of the disease. This review discusses the major role of gene amplification in the progression of carcinomas, formation of genetic markers and as possible therapeutic targets for the development of drugs for the treatment of some types of tumors.

  12. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion.

    Directory of Open Access Journals (Sweden)

    Deborah Huveldt

    Full Text Available Anti-VEGF antibody therapy with bevacizumab provides significant clinical benefit in patients with recurrent glioblastoma multiforme (GBM. Unfortunately, progression on bevacizumab therapy is often associated with a diffuse disease recurrence pattern, which limits subsequent therapeutic options. Therefore, there is an urgent need to understand bevacizumab's influence on glioma biology and block it's actions towards cell invasion. To explore the mechanism(s of GBM cell invasion we have examined a panel of serially transplanted human GBM lines grown either in short-term culture, as xenografts in mouse flank, or injected orthotopically in mouse brain. Using an orthotopic xenograft model that exhibits increased invasiveness upon bevacizumab treatment, we also tested the effect of dasatinib, a broad spectrum SFK inhibitor, on bevacizumab-induced invasion.We show that 1 activation of Src family kinases (SFKs is common in GBM, 2 the relative invasiveness of 17 serially transplanted GBM xenografts correlates strongly with p120 catenin phosphorylation at Y228, a Src kinase site, and 3 SFK activation assessed immunohistochemically in orthotopic xenografts, as well as the phosphorylation of downstream substrates occurs specifically at the invasive tumor edge. Further, we show that SFK signaling is markedly elevated at the invasive tumor front upon bevacizumab administration, and that dasatinib treatment effectively blocked the increased invasion induced by bevacizumab.Our data are consistent with the hypothesis that the increased invasiveness associated with anti-VEGF therapy is due to increased SFK signaling, and support testing the combination of dasatinib with bevacizumab in the clinic.

  13. Diagnostic performance of a novel loop-mediated isothermal amplification (LAMP) assay targeting the apicoplast genome for malaria diagnosis in a field setting in sub-Saharan Africa.

    Science.gov (United States)

    Oriero, Eniyou C; Okebe, Joseph; Jacobs, Jan; Van Geertruyden, Jean-Pierre; Nwakanma, Davis; D'Alessandro, Umberto

    2015-10-09

    New diagnostic tools to detect reliably and rapidly asymptomatic and low-density malaria infections are needed as their treatment could interrupt transmission. Isothermal amplification techniques are being explored for field diagnosis of malaria. In this study, a novel molecular tool (loop-mediated isothermal amplification-LAMP) targeting the apicoplast genome of Plasmodium falciparum was evaluated for the detection of asymptomatic malaria-infected individuals in a rural setting in The Gambia. A blood was collected from 341 subjects (median age 9 years, range 1-68 years) screened for malaria. On site, a rapid diagnostic test (RDT, SD Bioline Malaria Antigen P.f) was performed, thick blood films (TBF) slides for microscopy were prepared and dry blood spots (DBS) were collected on Whatman(®) 903 Specimen collection paper. The TBF and DBS were transported to the field laboratory where microscopy and LAMP testing were performed. The latter was done on DNA extracted from the DBS using a crude (methanol/heating) extraction method. A laboratory-based PCR amplification was done on all the samples using DNA extracted with the Qiagen kit and its results were taken as reference for all the other tests. Plasmodium falciparum malaria prevalence was 37 % (127/341) as detected by LAMP, 30 % (104/341) by microscopy and 37 % (126/341) by RDT. Compared to the reference PCR method, sensitivity was 92 % for LAMP, 78 % for microscopy, and 76 % for RDT; specificity was 97 % for LAMP, 99 % for microscopy, and 88 % for RDT. Area under the receiver operating characteristic (ROC) curve in comparison with the reference standard was 0.94 for LAMP, 0.88 for microscopy and 0.81 for RDT. Turn-around time for the entire LAMP assay was approximately 3 h and 30 min for an average of 27 ± 9.5 samples collected per day, compared to a minimum of 10 samples an hour per operator by RDT and over 8 h by microscopy. The LAMP assay could produce reliable results the same day of the screening. It could

  14. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    International Nuclear Information System (INIS)

    Tian, Yuan; Hao, Shaobo; Ye, Minhua; Zhang, Anling; Nan, Yang; Wang, Guangxiu; Jia, Zhifan; Yu, Kai; Guo, Lianmei; Pu, Peiyu; Huang, Qiang; Zhong, Yue

    2015-01-01

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE

  15. MicroRNAs let-7b/i suppress human glioma cell invasion and migration by targeting IKBKE directly

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Hao, Shaobo [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Ye, Minhua [Department of Neurosurgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006 (China); Zhang, Anling [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Nan, Yang [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Wang, Guangxiu; Jia, Zhifan [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Yu, Kai; Guo, Lianmei [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Pu, Peiyu [Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 (China); Key Laboratory of Neurotrauma, Variation and Regeneration, Ministry of Education and Tianjin Municipal Government (China); Huang, Qiang, E-mail: huangqiang209@163.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China); Zhong, Yue, E-mail: zhongyue2457@sina.com [Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052 (China)

    2015-03-06

    We demonstrated that IKBKE is overexpressed in human gliomas and that the downregulation of IKBKE markedly inhibits the proliferative and invasive abilities of glioma cells, which is consistent with the results reported by several different research groups. Therefore, IKBKE represents a promising therapeutic target for the treatment of glioma. In the present study, we verified that the microRNAs let-7b and let-7i target IKBKE through luciferase assays and found that let-7b/i mimics can knock down IKBKE and upregulate E-cadherin through western blot analysis. Moreover, the expression levels of let-7b/i were significantly lower in glioma cell lines than that in normal brain tissues, as determined by quantitative real-time PCR. Furthermore, let-7b/i inhibit the invasion and migration of glioma cells, as determined through wound healing and Transwell assays. The above-mentioned data suggest that let-7b/i inhibit the invasive ability of glioma cells by directly downregulating IKBKE and indirectly upregulating E-cadherin. - Highlights: • Let-7b and let-7i are downregulated in glioma cell lines. • IKBKE is a target gene of let-7b/i. • Let-7b/i inhibit the invasion and migration of glioma cells. • Let-7b/i upregulate E-cadherin by downregulating IKBKE.

  16. Application of a loop-mediated isothermal amplification (LAMP) assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    Science.gov (United States)

    Rahman, S M Mazidur; Song, Hyun Beom; Jin, Yan; Oh, Jin-Kyoung; Lim, Min Kyung; Hong, Sung-Tae; Choi, Min-Ho

    2017-10-01

    Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited. The loop-mediated isothermal amplification (LAMP) assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2) of sensitivity and 100% (95% CI, 92.9-100) of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%. To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  17. Application of a loop-mediated isothermal amplification (LAMP assay targeting cox1 gene for the detection of Clonorchis sinensis in human fecal samples.

    Directory of Open Access Journals (Sweden)

    S M Mazidur Rahman

    2017-10-01

    Full Text Available Clonorchiasis is prevalent in the Far East, and a major health problem in endemic areas. Infected persons may experience, if not treated, serious complications such as bile stone formation, pyogenic cholangitis, and even cholangiocarcinoma. Early diagnosis and treatment are important to prevent serious complications and, therefore, the simple and reliable diagnostic method is necessary to control clonorchiasis in endemic areas, where resources for the diagnosis are limited.The loop-mediated isothermal amplification (LAMP assay has been applied for the detection of Clonorchis sinensis DNA. Six primers targeting eight locations on the cytochrome c oxidase subunit 1 gene of C. sinensis were designed for species-specific amplification using the LAMP assay. The LAMP assay was sensitive enough to detect as little as 100 fg of C. sinensis genomic DNA and the detection limit in 100 mg of stool was as low as one egg. The assay was highly specific because no cross-reactivity was observed with the DNA of other helminths, protozoa or Escherichia coli. Then, LAMP assay was applied to human fecal samples collected from an endemic area of clonorchiasis in Korea. Using samples showing consistent results by both Kato-Katz method and real-time PCR as reference standards, the LAMP assay showed 97.1% (95% CI, 90.1-99.2 of sensitivity and 100% (95% CI, 92.9-100 of specificity. In stool samples with more than 100 eggs per gram of feces, the sensitivity achieved 100%.To detect C. sinensis in human fecal samples, the LAMP assay was applied and achieved high sensitivity and specificity. The LAMP assay can be utilized in field laboratories as a powerful tool for diagnosis and epidemiological survey of clonorchiasis.

  18. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jian [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Shuping [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Li, Xiaowei; Zhong, Jiaming; Chen, Xiaoxia [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Qu, Zengqiang, E-mail: drquzengqiang@163.com [Department II of Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China); Wu, Dong, E-mail: wudongstc@126.com [Department II of Special Medical Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438 (China)

    2015-08-14

    Emerging evidence suggests that microRNAs (miRNAs) play important roles in regulating HCC development and progression; however, the mechanisms by which their specific functions and mechanisms remained to be further explored. miR-129 has been reported in gastric cancers, lung cancer and colon cancer. In this study, we disclosed a new tumor suppresser function of miR-129 in HCC. We also found the downregulation of miR-129 occurred in nearly 3/4 of the tumors examined (56/76) compared with adjacent nontumorous tissues, which was more importantly, correlated to the advanced stage and vascular invasion. We then demonstrated that miR-129 overexpression attenuated HCC cells proliferation and invasion, inducing apoptosis in vitro. Moreover, we used miR-129 antagonist and found that anti-miR-129 promoted HCC cells malignant phenotypes. Mechanistically, our further investigations revealed that miR-129 suppressed cell proliferation and invasion by targeting the 3’-untranslated region of PAK5, as well as miR-129 silencing up-regulated PAK5 expression. Moreover, miR-129 expression was inversely correlated with PAK5 expression in 76 cases of HCC samples. RNA interference of PAK5 attenuated anti-miR-129 mediated cell proliferation and invasion in HCC cells. Taken together, these results demonstrated that miR-129 suppressed tumorigenesis and progression by directly targeting PAK5, defining miR-129 as a potential treatment target for HCC. - Highlights: • Decreased of miR-129 is found in HCC and associated with advanced stage and metastasis. • miR-129 suppresses proliferation and invasion of HCC cells. • miR-129 directly targets the 3′ UTR of PAK5 and diminishes PAK5 expression. • PAK5 is involved in miR-129 mediated suppression functions.

  19. Host-Guest Recognition-Assisted Electrochemical Release: Its Reusable Sensing Application Based on DNA Cross Configuration-Fueled Target Cycling and Strand Displacement Reaction Amplification.

    Science.gov (United States)

    Chang, Yuanyuan; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2017-08-15

    In this work, an elegantly designed host-guest recognition-assisted electrochemical release was established and applied in a reusable electrochemical biosensor for the detection of microRNA-182-5p (miRNA-182-5p), a prostate cancer biomarker in prostate cancer, based on the DNA cross configuration-fueled target cycling and strand displacement reaction (SDR) amplification. With such a design, the single target miRNA input could be converted to large numbers of single-stranded DNA (S1-Trp and S2-Trp) output, which could be trapped by cucurbit[8]uril methyl viologen (CB-8-MV 2+ ) based on the host-guest recognition, significantly enhancing the sensitivity for miRNA detection. Moreover, the nucleic acids products obtained from the process of cycling amplification could be utilized sufficiently, avoiding the waste and saving the experiment cost. Impressively, by resetting a settled voltage, the proposed biosensor could release S1-Trp and S2-Trp from the electrode surface, attributing that the guest ion methyl viologen (MV 2+ ) was reduced to MV +· under this settled voltage and formed a more-stable CB-8-MV +· -MV +· complex. Once O 2 was introduced in this system, MV +· could be oxidized to MV 2+ , generating the complex of CB-8-MV 2+ for capturing S1-Trp and S2-Trp again in only 5 min. As a result, the simple and fast regeneration of biosensor for target detection was realized on the base of electrochemical redox-driven assembly and release, overcoming the challenges of time-consuming, burdensome operations and expensive experimental cost in traditional reusable biosensors and updating the construction method for a reusable bisensor. Furthermore, the biosensor could be reused for more than 10 times with a regeneration rate of 93.20%-102.24%. After all, the conception of this work provides a novel thought for the construction of effective reusable biosensor to detect miRNA and other biomarkers and has great potential application in the area requiring the release of

  20. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  1. Improved amplification efficiency on stool samples by addition of spermidine and its use for non-invasive detection of colorectal cancer

    KAUST Repository

    Roperch, Jean-Pierre

    2015-05-29

    Background Using quantitative methylation-specific PCR (QM-MSP) is a promising method for colorectal cancer (CRC) diagnosis from stool samples. Difficulty in eliminating PCR inhibitors of this body fluid has been extensively reported. Here, spermidine is presented as PCR facilitator for the detection of stool DNA methylation biomarkers using QM-MSP. We examined its effectiveness with NPY, PENK and WIF1, three biomarkers which we have previously shown to be of relevance to CRC. Results We determined an optimal window for the amplification of the albumin (Alb) gene (100 ng of bisulfite-treated stool DNA added of 1 mM spermidine) at which we report that spermidine acts as a PCR facilitator (AE = 1680%) for SG RT-PCR. We show that the amplification of methylated PENK, NPY and WIF1 is considerably facilitated by QM-MSP as measured by an increase of CMI (Cumulative Methylation Index, i.e. the sum of the three methylation values) by a factor of 1.5 to 23 fold in individual samples, and of 10 fold in a pool of five samples. Conclusions We contend that spermidine greatly reduces the problems of PCR inhibition in stool samples. This observed feature, after validation on a larger sampling, could be used in the development of stool-based CRC diagnosis tests.

  2. Ultrasensitive electrochemical biosensor for detection of DNA from Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification.

    Science.gov (United States)

    Hu, Yuhua; Xu, Xueqin; Liu, Qionghua; Wang, Ling; Lin, Zhenyu; Chen, Guonan

    2014-09-02

    A simple, ultrasensitive, and specific electrochemical biosensor was designed to determine the given DNA sequence of Bacillus subtilis by coupling target-induced strand displacement and nicking endonuclease signal amplification. The target DNA (TD, the DNA sequence from the hypervarient region of 16S rDNA of Bacillus subtilis) could be detected by the differential pulse voltammetry (DPV) in a range from 0.1 fM to 20 fM with the detection limit down to 0.08 fM at the 3s(blank) level. This electrochemical biosensor exhibits high distinction ability to single-base mismatch, double-bases mismatch, and noncomplementary DNA sequence, which may be expected to detect single-base mismatch and single nucleotide polymorphisms (SNPs). Moreover, the applicability of the designed biosensor for detecting the given DNA sequence from Bacillus subtilis was investigated. The result obtained by electrochemical method is approximately consistent with that by a real-time quantitative polymerase chain reaction detecting system (QPCR) with SYBR Green.

  3. MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells

    International Nuclear Information System (INIS)

    Zhang, Jun; Hou, Wengen; Chai, Mingxiang; Zhao, Hongxing; Jia, Jinling; Sun, Xiaohui; Zhao, Bin; Wang, Ran

    2016-01-01

    MicroRNAs (miRNAs) play an essential role in cancer development. Several studies have indicated that miRNAs mediate tumorigenesis processes, such as, inflammation, proliferation, apoptosis and invasion. In the present study, we focused on the influence of the miR-127-3p on the proliferation, migration and invasion of osteosarcoma (OS). MiR-127-3p was found at reduced levels in OS tissues and cell lines. Overexpression of miR-127-3p in the OS cell lines significantly inhibited the cell proliferation, migration and invasion; however, inhibition of miR-127-3p increased the proliferation, migration and invasion of OS in vitro. SETD8 was identified as a direct target of miR-127-3p, and SETD8 expression decreased post miR-127-3p overexpression, while SETD8 overexpression could reverse the potential influence of miR-127-3p on the migration and invasion of OS cells. MiR-127-3p is suggested to act mainly via the suppression of SETD8 expression. Overall, the results revealed that miR-127-3p acts as a tumor suppressor and that its down-regulation in cancer may contribute to OS progression and metastasis, suggesting that miR-127-3p could be a potential therapeutic target in the treatment of OS. - Highlights: • MiR-127-3p is decreased in osteosarcoma tissues and cell lines. • MiR-127-3p overexpression suppresses cell migration and invasion in MG63 and U2OS. • SETD8 overexpression abolishes the roles of miR-127-3p in osteosarcoma.

  4. MiR-519d-3p suppresses invasion and migration of trophoblast cells via targeting MMP-2.

    Directory of Open Access Journals (Sweden)

    Jie Ding

    Full Text Available Our study was approved by the Medical Ethics Committee of Tang Du Hospital, Fourth Military Medical University and complied strictly with national ethical guidelines. Preeclampsia (PE is a specific clinical disorder characterized by gestational hypertension and proteinuria and is a leading cause of maternal and perinatal mortality worldwide. The miR-519d-3p is upregulated in the maternal plasma of patients with PE which indicates a possible association between this microRNA and the pathogenesis of PE. No studies to date have addressed the effect of miR-519d-3p on the invasion and migration of trophoblast cells. In our study, we found that miR-519d-3p expression was elevated in placental samples from patients with PE. In vitro, overexpression of miR-519d-3p significantly inhibited trophoblast cell migration and invasion, whereas transfection of a miR-519d-3p inhibitor enhanced trophoblast cell migration and invasion. Luciferase assays confirmed that matrix metalloproteinase-2 (MMP-2 is a direct target of miR-519d-3p. Quantitative real-time PCR and western blot assays showed that overexpression of miR-519d-3p downregulated MMP-2 mRNA and protein expression. Knockdown of MMP-2 using a siRNA attenuated the increased trophoblast migration and invasion promoted by the miR-519d-3p inhibitor. In placentas from patients with PE or normal pregnancies, a negative correlation between the expression of MMP-2 and miR-519d-3p was observed using the Pearson correlation and linear regression analysis. Our present findings suggest that upregulation of miR-519d-3p may contribute to the development of PE by inhibiting trophoblast cell migration and invasion via targeting MMP-2; miR-519d-3p may represent a potential predictive and therapeutic target for PE.

  5. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells

    International Nuclear Information System (INIS)

    Li, Tao; Li, Dong; Sha, Jianjun; Sun, Peng; Huang, Yiran

    2009-01-01

    Prostate cancer is one of the most common malignant cancers in men. Recent studies have shown that microRNA-21 (miR-21) is overexpressed in various types of cancers including prostate cancer. Studies on glioma, colon cancer cells, hepatocellular cancer cells and breast cancer cells have indicated that miR-21 is involved in tumor growth, invasion and metastasis. However, the roles of miR-21 in prostate cancer are poorly understood. In this study, the effects of miR-21 on prostate cancer cell proliferation, apoptosis, and invasion were examined. In addition, the targets of miR-21 were identified by a reported RISC-coimmunoprecipitation-based biochemical method. Inactivation of miR-21 by antisense oligonucleotides in androgen-independent prostate cancer cell lines DU145 and PC-3 resulted in sensitivity to apoptosis and inhibition of cell motility and invasion, whereas cell proliferation were not affected. We identified myristoylated alanine-rich protein kinase c substrate (MARCKS), which plays key roles in cell motility, as a new target in prostate cancer cells. Our data suggested that miR-21 could promote apoptosis resistance, motility, and invasion in prostate cancer cells and these effects of miR-21 may be partly due to its regulation of PDCD4, TPM1, and MARCKS. Gene therapy using miR-21 inhibition strategy may therefore be useful as a prostate cancer therapy.

  6. microRNA-495 promotes bladder cancer cell growth and invasion by targeting phosphatase and tensin homolog

    International Nuclear Information System (INIS)

    Tan, Mingyue; Mu, Xingyu; Liu, Zhihong; Tao, Le; Wang, Jun; Ge, Jifu; Qiu, Jianxin

    2017-01-01

    Accumulating evidence has linked deregulation of microRNA-495 (miR-495) to tumorigenesis; however, its function in tumor progression is controversial. This work was undertaken to explore the expression and biological roles of miR-495 in bladder cancer. The expression of miR-495 was examined in 67 pairs of bladder cancer and adjacent normal bladder tissues. The roles of miR-495 in bladder cancer cell proliferation and invasion in vitro and tumorigenesis in vivo were determined. Direct target gene(s) mediating the activity of miR-495 in bladder cancer cells was identified. It was found that miR-495 was expressed at greater levels in bladder tissues and cell lines. High expression of miR-495 was significantly associated with larger tumor size, advanced TNM stage, and lymph node metastasis. Overexpression of miR-495 significantly promoted bladder cancer cell proliferation and invasion, whereas inhibition of miR-495 suppressed cell proliferation and invasion. PTEN, a well-defined tumor suppressor was identified to be a target gene of miR-495. A significant inverse correlation between miR-495 and PTEN expression was noted in bladder cancer tissues (r = −0.3094, P = 0.0125). Overexpression of miR-495 led to reduction of PTEN expression in bladder cancer cells. Rescue experiments showed that enforced expression of PTEN impaired miR-495-mediated bladder cancer proliferation and invasion. In vivo mouse studies demonstrated that overexpression of miR-495 accelerated the growth of subcutaneous bladder cancer xenografts, which was associated with downregulation of PTEN. Overall, these findings indicate that miR-495 upregulation contributes to bladder cancer cell growth, invasion, and tumorigenesis by targeting PTEN and offer a potential therapeutic target for bladder cancer. - Highlights: • miR-495 upregulation induces aggressive phenotype in bladder cancer. • miR-495 is inversely correlated with PTEN in bladder cancer. • miR-495 promotes bladder cancer cell

  7. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  8. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer.

    Science.gov (United States)

    Wang, Yingying; Tian, Yongjie

    2018-01-02

    miR-206 and bcl2-associated athanogene 3 (BAG3) have been suggested as important regulators in various cancer types. However, the biological role of miR-206 and BAG3 in cervical cancer (CC) remains unclear. Here, we investigated the expressions and mechanisms of miR-206 and BAG3 in cervical cancer using in vitro and in vivo assays. In the present study, miR-206 expression was expressed at a lower level in CC tissues and cells than adjacent normal tissues and NEEC cells. By contrast, BAG3 mRNA and protein were expressed at higher levels in CC tissues and cells. Furthermore, miR-206 overexpression repressed cell proliferation, migration and invasion in vitro, and the 3'-untranslated region (3'-UTR) of BAG3 was a direct target of miR-206. miR-206 overexpression also inhibited EGFR, Bcl-2 and MMP2/9 protein expression, but promoted Bax protein expression. Besides, BAG3 over-expression partially abrogated miR-206-inhibited cell proliferation and invasion, while BAG3 silencing enhanced miR206-mediated inhibition. In vivo assay revealed that miR-206 repressed tumor growth in nude mice xenograft model. In conclusion, miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Thus, miR-206-BAG3 can be used as a useful target for cervical cancer.

  9. Rac1/β-Catenin Signalling Pathway Contributes to Trophoblast Cell Invasion by Targeting Snail and MMP9

    Directory of Open Access Journals (Sweden)

    Minghua Fan

    2016-03-01

    Full Text Available Background/Aims: Preeclampsia is an idiopathic and serious complication during gestation in which placental trophoblast cells differentiate into several functional subtypes, including highly invasive extravillous trophoblasts (EVTs. Although the cause and pathogenesis of preeclampsia have remained unclear, numerous studies have suggested that the inadequacy of EVT invasion leads to imperfect uterine spiral artery remodelling, which plays a crucial role in the development of preeclampsia. Rac1, or Ras-related C3 botulinum toxin substrate 1, was found to be a key regulator of the migration, invasion uand apoptosis of various tumour cells. Because EVTs share similar invasive and migratory biological behaviours with malignant cells, this study aimed to determine whether the Rac1 signalling pathway affects trophoblast invasion and is thus involved in the pathogenesis of preeclampsia. Methods: We measured the activity of Rac1 and its downstream targets, β-catenin, Snail and MMP9 in placental tissues from patients experiencing a normal pregnancy and those with preeclampsia. Furthermore, we treated HTR-8/SVneo cells with a shRNA Rac1 vector and the β-catenin inhibitor IWP-2 and explored Rac1 signalling pathway activation as well as the effects of Snail and β-catenin on trophoblast invasion. Results: In placental samples from patients experiencing a normal pregnancy and those with preeclampsia, active Rac1 levels and MMP9 protein and mRNA levels were significantly decreased in term pregnancy samples compared to early pregnancy samples. Lower levels were found in preeclampsia samples than in normal term pregnancy samples, and these levels significantly declined in severe preeclampsia samples compared with mild preeclampsia samples. Further analyses demonstrated that both Rac1 shRNA and the β-catenin inhibitor significantly suppressed MMP9 and Snail activation in trophoblasts, thus impairing trophoblast invasion. Notably, silencing Rac1 down

  10. A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs.

    Science.gov (United States)

    Chen, Jun; Yu, Chao; Zhao, Yilin; Niu, Yazhen; Zhang, Lei; Yu, Yujie; Wu, Jing; He, Junlin

    2017-05-15

    The small amount of cell-free fetal DNA (cffDNA) can be a useful biomarker for early non-invasive prenatal diagnosis (NIPD) of achondroplasia. In this study, a novel non-invasive electrochemical DNA sensor for ultrasensitive detecting FGFR3 mutation gene, a pathogenic gene of achondroplasia, based on biocatalytic signal materials and the biotin-streptavidin system are presented. Notably encapsulation of hemin in metal-organic frameworks-based materials (hemin-MOFs) and platinum nanoparticles (PtNPs) were used to prepare hemin-MOFs/PtNPs composites via a one-beaker-one-step reduction. We utilized hemin-MOFs/PtNPs for signal amplification because the promising hemin-MOFs/PtNPs nanomaterial has remarkable ability of catalyze H 2 O 2 as well as excellent conductivity. To further amplify the electrochemical signal, reduced graphene oxide-tetraethylene pentamine (rGO-TEPA), gold nanoparticles and streptavidin were selected for modification of the electrode to enhance the conductivity and immobilize more biotin-modified capture probe (Bio-CP) through the high specificity and superior affinity between streptavidin and biotin. The electrochemical signal was primarily derived from the synergistic catalysis of H 2 O 2 by hemin and PtNPs and recorded by Chronoamperometry. Under the optimal conditions, this newly designed biosensor exhibited sensitive detection of FGFR3 from 0.1fM to 1nM with a low detection limit of 0.033fM (S/N=3). We proposed that this ultrasensitive biosensor is useful for the early non-invasive prenatal diagnosis of achondroplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Transcription factor HBP1 is a direct anti-cancer target of transcription factor FOXO1 in invasive oral cancer.

    Science.gov (United States)

    Chan, Chien-Yi; Huang, Shih-Yi; Sheu, Jim Jinn-Chyuan; Roth, Mendel M; Chou, I-Tai; Lien, Chia-Hsien; Lee, Ming-Fen; Huang, Chun-Yin

    2017-02-28

    Either FOXO1 or HBP1 transcription factor is a downstream effector of the PI3K/Akt pathway and associated with tumorigenesis. However, the relationship between FOXO1 and HBP1 in oral cancer remains unclear. Analysis of 30 oral tumor specimens revealed that mean mRNA levels of both FOXO1 and HBP1 in non-invasive and invasive oral tumors were found to be significantly lower than that of the control tissues, and the status of low FOXO1 and HBP1 (oral tumors. To investigate if HBP1 is a direct transcription target of FOXO1, we searched potential FOXO1 binding sites in the HBP1 promoter using the MAPPER Search Engine, and two putative FOXO1 binding sites located in the HBP1 promoter -132 to -125 bp and -343 to -336 bp were predicted. These binding sites were then confirmed by both reporter gene assays and the in cellulo ChIP assay. In addition, Akt activity manipulated by PI3K inhibitor LY294002 or Akt mutants was shown to negatively affect FOXO1-mediated HBP1 promoter activation and gene expression. Last, the biological significance of the FOXO1-HBP1 axis in oral cancer malignancy was evaluated in cell growth, colony formation, and invasiveness. The results indicated that HBP1 knockdown potently promoted malignant phenotypes of oral cancer and the suppressive effect of FOXO1 on cell growth, colony formation, and invasion was alleviated upon HBP1 knockdown in invasive oral cancer cells. Taken together, our data provide evidence for HBP1 as a direct downstream target of FOXO1 in oral cancer malignancy.

  12. MicroRNA‑10b suppresses the migration and invasion of chondrosarcoma cells by targeting brain‑derived neurotrophic factor.

    Science.gov (United States)

    Aili, Abudunaibi; Chen, Yong; Zhang, Hongqi

    2016-01-01

    MicroRNAs (miRs) can lead to mRNA degradation or inhibit protein translation through directly binding to the 3'‑untranslational region (UTR) of their target mRNAs. Deregulation of miR‑10b has been reported to be associated with chondrosarcoma. However, the role of miR‑10b in chondrosarcoma cell migration and invasion, as well as the underlying mechanisms, has not been investigated. In the present study, it was demonstrated that miR‑10b was notably downregulated in the JJ012 and SW1353 chondrosarcoma cell lines compared with the TC28a2 normal chondrocyte line. Treatment with DNA demethylating agent 5‑aza‑2'‑deoxycytidine and histone deacetylase inhibitor 4‑phenylbutyric acid, or transfection with miR‑10b mimics promoted the expression of miR‑10b, which further suppressed the migratory and invasive capacities of JJ012 chondrosarcoma cells. Moreover, brain‑derived neurotrophic factor (BDNF) was identified as a novel target of miR‑10b, and its protein expression level was negatively regulated by miR‑10b in JJ012 cells. Furthermore, overexpression of BDNF reversed the inhibitory effect of miR‑10b upregulation on the migration and invasion of JJ012 cells. In addition, the data suggest that matrix metalloproteinase 1 (MMP1) may be involved in the miR‑10b/BDNF‑mediated chondrosarcoma cell migration and invasion in JJ012 cells. In conclusion, these findings suggest that miR‑10b/BDNF may serve as a potential therapeutic target for chondrosarcoma.

  13. miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7

    International Nuclear Information System (INIS)

    Zhou, Chuanyi; Shen, Liangfang; Mao, Lei; Wang, Bing; Li, Yang; Yu, Huizhi

    2015-01-01

    MicroRNAs (miRNAs) are involved in the cervical carcinogenesis and progression. In this study, we investigated the role of miR-92a in progression and invasion of cervical cancer. MiR-92a was significantly upregulated in cervical cancer tissues and cell lines. Overexpression of miR-92a led to remarkably enhanced proliferation by promoting cell cycle transition from G1 to S phase and significantly enhanced invasion of cervical cancer cells, while its knockdown significantly reversed these cellular events. Bioinformatics analysis suggested F-box and WD repeat domain-containing 7 (FBXW7) as a novel target of miR-92a, and miR-92a suppressed the expression level of FBXW7 mRNA by direct binding to its 3′-untranslated region (3′UTR). Expression of miR-92a was negatively correlated with FBXW7 in cervical cancer tissues. Furthermore, Silencing of FBXW7 counteracted the effects of miR-92a suppression, while its overexpression reversed oncogenic effects of miR-92a. Together, these findings indicate that miR-92a acts as an onco-miRNA and may contribute to the progression and invasion of cervical cancer, suggesting miR-92a as a potential novel diagnostic and therapeutic target of cervical cancer. - Highlights: • miR-92a is elevated in cervical cancer tissues and cell lines. • miR-92a promotes cervical cancer cell proliferation, cell cycle transition from G1 to S phase and invasion. • FBXW7 is a direct target of miR-92a. • FBXW7 counteracts the oncogenic effects of miR-92a on cervical cancer cells

  14. Reducing the risk of invasive forest pests and pathogens: Combining legislation, targeted management and public awareness.

    Science.gov (United States)

    Klapwijk, Maartje J; Hopkins, Anna J M; Eriksson, Louise; Pettersson, Maria; Schroeder, Martin; Lindelöw, Åke; Rönnberg, Jonas; Keskitalo, E Carina H; Kenis, Marc

    2016-02-01

    Intensifying global trade will result in increased numbers of plant pest and pathogen species inadvertently being transported along with cargo. This paper examines current mechanisms for prevention and management of potential introductions of forest insect pests and pathogens in the European Union (EU). Current European legislation has not been found sufficient in preventing invasion, establishment and spread of pest and pathogen species within the EU. Costs associated with future invasions are difficult to estimate but past invasions have led to negative economic impacts in the invaded country. The challenge is combining free trade and free movement of products (within the EU) with protection against invasive pests and pathogens. Public awareness may mobilise the public for prevention and detection of potential invasions and, simultaneously, increase support for eradication and control measures. We recommend focus on commodities in addition to pathways, an approach within the EU using a centralised response unit and, critically, to engage the general public in the battle against establishment and spread of these harmful pests and pathogens.

  15. Miniaturized isothermal nucleic acid amplification, a review.

    Science.gov (United States)

    Asiello, Peter J; Baeumner, Antje J

    2011-04-21

    Micro-Total Analysis Systems (µTAS) for use in on-site rapid detection of DNA or RNA are increasingly being developed. Here, amplification of the target sequence is key to increasing sensitivity, enabling single-cell and few-copy nucleic acid detection. The several advantages to miniaturizing amplification reactions and coupling them with sample preparation and detection on the same chip are well known and include fewer manual steps, preventing contamination, and significantly reducing the volume of expensive reagents. To-date, the majority of miniaturized systems for nucleic acid analysis have used the polymerase chain reaction (PCR) for amplification and those systems are covered in previous reviews. This review provides a thorough overview of miniaturized analysis systems using alternatives to PCR, specifically isothermal amplification reactions. With no need for thermal cycling, isothermal microsystems can be designed to be simple and low-energy consuming and therefore may outperform PCR in portable, battery-operated detection systems in the future. The main isothermal methods as miniaturized systems reviewed here include nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP), helicase-dependent amplification (HDA), rolling circle amplification (RCA), and strand displacement amplification (SDA). Also, important design criteria for the miniaturized devices are discussed. Finally, the potential of miniaturization of some new isothermal methods such as the exponential amplification reaction (EXPAR), isothermal and chimeric primer-initiated amplification of nucleic acids (ICANs), signal-mediated amplification of RNA technology (SMART) and others is presented.

  16. Isothermal amplification of environmental DNA (eDNA for direct field-based monitoring and laboratory confirmation of Dreissena sp.

    Directory of Open Access Journals (Sweden)

    Maggie R Williams

    Full Text Available Loop-mediated isothermal amplification (LAMP of aquatic invasive species environmental DNA (AIS eDNA was used for rapid, sensitive, and specific detection of Dreissena sp. relevant to the Great Lakes (USA basin. The method was validated for two uses including i direct amplification of eDNA using a hand filtration system and ii confirmation of the results after DNA extraction using a conventional thermal cycler run at isothermal temperatures. Direct amplification eliminated the need for DNA extraction and purification and allowed detection of target invasive species in grab or concentrated surface water samples, containing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds. The direct amplification method validation was conducted using Dreissena polymorpha and Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g., greater than 10 veligers (larval mussels per L for Dreissena sp. or 20 L samples concentrated through 35 μm nylon screens for low target abundance, at less than 10 veligers per liter water. Surface water concentrate samples were collected over a period of three years, mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples collected from 318 surface water locations included i filtered concentrate for direct amplification validation and ii 1 L grab water sample for eDNA extraction and confirmation. Though the extraction-based protocol was more sensitive (resulting in more positive detections than direct amplification, direct amplification could be used for rapid screening, allowing for quicker action times. For samples collected between May and August, results of eDNA direct amplification were consistent with known presence/absence of selected invasive species. A cross-platform smartphone application was also developed to disseminate the analyzed results to volunteers. Field tests of the direct amplification protocol using a

  17. microRNA-188 is downregulated in oral squamous cell carcinoma and inhibits proliferation and invasion by targeting SIX1.

    Science.gov (United States)

    Wang, Lili; Liu, Hongchen

    2016-03-01

    microRNA-188 expression is downregulated in several tumors. However, its function and mechanism in human oral squamous cell carcinoma (OSCC) remains obscure. The present study aims to identify the expression pattern, biological roles, and potential mechanism by which miR-188 dysregulation is associated with oral squamous cell carcinoma. Significant downregulation of miR-188 was observed in OSCC tissues compared with paired normal tissues. In vitro, gain-of-function, loss-of-function experiments were performed to examine the impact of miR-188 on cancer cell proliferation, invasion, and cell cycle progression. Transfection of miR-188 mimics suppressed Detroit 562 cell proliferation, cell cycle progression and invasion, with downregulation of cyclin D1, MMP9, and p-ERK. Transfection of miR-188 inhibitor in FaDu cell line with high endogenous expression exhibited the opposite effects. Using fluorescence reporter assays, we confirmed that SIX1 was a direct target of miR-188 in OSCC cells. Transfection of miR-188 mimics downregulated SIX1 expression. SIX1 siRNA treatment abrogated miR-188 inhibitor-induced cyclin D1 and MMP9 upregulation. In addition, we found that SIX1 was overexpressed in 32 of 80 OSCC tissues. In conclusion, this study indicates that miR-188 downregulation might be associated with oral squamous cell carcinoma progression. miR-188 suppresses proliferation and invasion by targeting SIX1 in oral squamous cell carcinoma cells.

  18. miR-409-3p suppresses breast cancer cell growth and invasion by targeting Akt1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoqiang [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China); Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Liu, Zengyan [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Xu, Hao [Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Yang, Qifeng, E-mail: qifengy_sdu1@163.com [Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2016-01-08

    Altered levels and functions of microRNAs (miRNAs) are correlated with carcinogenesis. While miR-409-3p has been shown to play important roles in several cancer types, its function in the context of breast cancer (BC) remains unknown. In this study, miR-409-3p was significantly downregulated in BC tissues and cell lines, compared with the corresponding control counterparts. Overexpression of miR-409-3p inhibited BC cell proliferation, migration and invasion in vitro and suppressed tumor growth in vivo. Notably, miR-409-3p induced downregulation of Akt1 protein through binding to its 3′ untranslated region (UTR). Conversely, restoring Akt1 expression rescued the suppressive effects of miR-409-3p. Our data collectively indicate that miR-409-3p functions as a tumor suppressor in BC through downregulating Akt1, supporting the targeting of the novel miR-409-3p/Akt1 axis as a potentially effective therapeutic approach for BC. - Highlights: • miR-409-3p inhibits proliferation, migration and invasion of BC cells. • miR-409-3p suppresses tumor growth in nude mice. • Akt1 is a direct downstream target of miR-409-3p. • Ectopic expression of Akt1 reverses the effects of miR-409-3p on cell proliferation, migration and invasion.

  19. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    Science.gov (United States)

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  20. MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway

    International Nuclear Information System (INIS)

    Liang, Xuan; Li, Hecheng; Fu, Delai; Chong, Tie; Wang, Ziming; Li, Zhaolun

    2016-01-01

    MicroRNAs (miRNAs) have been known to be implicated in tumorigenic programs. miR-1297 has been reported to be dysregulated and involved in cancer progression in many types of human cancers. However, the expression level and the role of miR-1297 in prostate cancer remain unclear. Herein, we aimed to investigate the potential role and molecular mechanism of miR-1297 in prostate cancer progression. We found that miR-1297 was significantly downregulated in human prostate cancer specimens as well as in several prostate cancer cell lines. In addition, functional experiments demonstrated that overexpression of miR-1297 remarkably inhibited prostate cancer cell proliferation and invasion whereas miR-1297 suppression significantly promoted prostate cancer cell proliferation and invasion. Bioinformatics analysis showed that the Astrocyte elevated gene-1 (AEG-1), a well-known oncogene, is a predicted target of miR-1297. Dual-luciferase reporter assay showed that miR-1297 was able to directly target the 3’-untranslated region of AEG-1. In addition, RT-qPCR and Western blot analysis showed that miR-1297 regulated the mRNA and protein expression levels of AEG-1. We also showed that miR-1297 was able to regulate the Wnt signaling pathway. Moreover, rescue assays indicated that AEG-1 contributed to miR-1297-endowed effects on cell proliferation and invasion as well as Wnt signaling pathway. Taken together, these findings suggest that miR-1297 inhibits prostate cancer proliferation and invasion by targeting AEG-1, thereby providing novel insight into understanding the pathogenesis of prostate cancer. Thus, miR-1297 may be a novel potential therapeutic candidate to treat prostate cancer. - Highlights: • miR-1297 is decreased in prostate cancer. • miR-1297 inhibits prostate cancer cell proliferation and invasion. • miR-1297 targets and inhibits AEG-1. • miR-1297 regulates AEG-1/Wnt signaling pathway.

  1. MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRP1 expression.

    Directory of Open Access Journals (Sweden)

    Yang Peng

    Full Text Available NRP1 as multifunctional non-tyrosine-kinase receptors play critical roles in tumor progression. MicroRNAs (miRNAs are an important class of pervasive genes that are involved in a variety of biological functions, particularly cancer. It remains unclear whether miRNAs can regulate the expression of NRP1. The goal of this study was to identify miRNAs that could inhibit the growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. We found that miR-338 expression was reduced in gastric cancer cell lines and in gastric cancer tissues. Moreover, we found that miR-338 inhibited gastric cancer cell migration, invasion, proliferation and promoted apoptosis by targeting NRP1 expression. As an upstream regulator of NRP1, miR-338 directly targets NRP1. The forced expression of miR-338 inhibited the phosphorylation of Erk1/2, P38 MAPK and Akt; however, the expression of phosphorylated Erk1/2, P38 MAPK and Akt was restored by the overexpression of NRP1. In AGS cells infected with miR-338 or transfected with SiNRP1, the protein levels of fibronectin, vimentin, N-cadherin and SNAIL were decreased, but the expression of E-cadherin was increased. The expression of mesenchymal markers in miR-338-expressing cells was restored to normal levels by the restoration of NRP1 expression. In vivo, miR-338 also decreased tumor growth and suppressed D-MVA by targeting NRP1. Therefore, we conclude that miR-338 acts as a novel tumor suppressor gene in gastric cancer. miR-338 can decrease migratory, invasive, proliferative and apoptotic behaviors, as well as gastric cancer EMT, by attenuating the expression of NRP1.

  2. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, J. F.; van der Wall, Elsken; Mali, Willem P Th M; Derksen, Patrick W B; van Diest, Paul J; van Bergen En Henegouwen, Paul M P

    PURPOSE: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. PROCEDURES: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  3. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, Jeroen F.; van der Wall, Elsken; Mali, W.P.T.M.; Derksen, Patrick W B; van Diest, Paul J.; van Bergen En Henegouwen, Paul M P

    Purpose: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. Procedures: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  4. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M

    2015-01-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)

  5. Hitting the right target: taxonomic challenges for, and of, plant invasions

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Hulme, P. E.; Meyerson, L. A.; Smith, G. F.; Boatwright, J. S.; Crouch, N. R.; Figueiredo, E.; Foxcroft, L. C.; Jarošík, Vojtěch; Richardson, D. M.; Suda, Jan; Wilson, J. R. U.

    2013-01-01

    Roč. 5, September (2013), article no.-plt042 ISSN 2041-2851 R&D Projects: GA ČR(CZ) GAP504/11/1028 Institutional support: RVO:67985939 Keywords : biological invasions * taxonomy * species concepts Subject RIV: EF - Botanics Impact factor: 1.743, year: 2013

  6. Down-Regulation of Neuropathy Target Esterase in Preeclampsia Placenta Inhibits Human Trophoblast Cell Invasion via Modulating MMP-9 Levels

    Directory of Open Access Journals (Sweden)

    Ting Zhong

    2018-02-01

    Full Text Available Background/Aims: Neuropathy target esterase (NTE, also known as neurotoxic esterase is proven to deacylate phosphatidylcholine (PC to glycerophosphocholine as a phospholipase B. Recently; studies showed that artificial phosphatidylserine/PC microvesicles can induce preeclampsia (PE-like changes in pregnant mice. However, it is unclear whether NTE plays a key role in the pathology of PE, a pregnancy-related disease, which was characterized by deficient trophoblast invasion and reduced trophoblast-mediated remodeling of spiral arteries. The aim of this study was to investigate the expression pattern of NTE in the placenta from women with PE and normal pregnancy, and the molecular mechanism of NTE involved in the development of PE. Methods: NTE expression levels in placentas from 20 pregnant women with PE and 20 healthy pregnant women were detected using quantitative PCR and immunohistochemistry staining. The effect of NTE on trophoblast migration and invasion and the underlying mechanisms were examined in HTR-8/SVneo cell lines by transfection method. Results: NTE mRNA and protein expression levels were significantly decreased in preeclamptic placentas than normal control. Over-expression of NTE in HTR-8/SVneo cells significantly promoted trophoblast cells migration and invasion and was associated with increased MMP-9 levels. Conversely, shRNA-mediated down-regulation of NTE markedly inhibited the cell migration and invasion. In addition, silencing NTE reduced the MMP-9 activity and phosphorylated Erk1/2 and AKT levels. Conclusions: Our results suggest that the decreased NTE may contribute to the development of PE through impairing trophoblast invasion by down-regulating MMP-9 via the Erk1/2 and AKT signaling pathway.

  7. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Gagan [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Kumar, Rahul; Jain, Anil K. [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); Agarwal, Chapla [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States); Agarwal, Rajesh, E-mail: Rajesh.agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO (United States); University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO (United States)

    2014-10-15

    Highlights: • Silibinin inhibits fibronectin-induce motile morphology in PC3 cells. • Silibinin inhibits fibronectin-induced migration and invasion in PC3 cells. • Silibinin targets fibronectin-induced integrins and downstream signaling molecule. - Abstract: Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell–cell interaction with integrins-based cell–matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells’ interaction with extracellular matrix component fibronectin. Silibinin (50–200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and

  8. Silibinin inhibits fibronectin induced motility, invasiveness and survival in human prostate carcinoma PC3 cells via targeting integrin signaling

    International Nuclear Information System (INIS)

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Highlights: • Silibinin inhibits fibronectin-induce motile morphology in PC3 cells. • Silibinin inhibits fibronectin-induced migration and invasion in PC3 cells. • Silibinin targets fibronectin-induced integrins and downstream signaling molecule. - Abstract: Prostate cancer (PCA) is the 2nd leading cause of cancer-related deaths among men in the United States. Preventing or inhibiting metastasis-related events through non-toxic agents could be a useful approach for lowering high mortality among PCA patients. We have earlier reported that natural flavonoid silibinin possesses strong anti-metastatic efficacy against PCA however, mechanism/s of its action still remains largely unknown. One of the major events during metastasis is the replacement of cell–cell interaction with integrins-based cell–matrix interaction that controls motility, invasiveness and survival of cancer cells. Accordingly, here we examined silibinin effect on advanced human PCA PC3 cells’ interaction with extracellular matrix component fibronectin. Silibinin (50–200 μM) treatment significantly decreased the fibronectin (5 μg/ml)-induced motile morphology via targeting actin cytoskeleton organization in PC3 cells. Silibinin also decreased the fibronectin-induced cell proliferation and motility but significantly increased cell death in PC3 cells. Silibinin also inhibited the PC3 cells invasiveness in Transwell invasion assays with fibronectin or cancer associated fibroblasts (CAFs) serving as chemoattractant. Importantly, PC3-luc cells cultured on fibronectin showed rapid dissemination and localized in lungs following tail vein injection in athymic male nude mice; however, in silibinin-treated PC3-luc cells, dissemination and lung localization was largely compromised. Molecular analyses revealed that silibinin treatment modulated the fibronectin-induced expression of integrins (α5, αV, β1 and β3), actin-remodeling (FAK, Src, GTPases, ARP2 and cortactin), apoptosis (cPARP and

  9. Label-free colorimetric detection of Hg²⁺ based on Hg²⁺-triggered exonuclease III-assisted target recycling and DNAzyme amplification.

    Science.gov (United States)

    Ren, Wang; Zhang, Ying; Huang, Wei Tao; Li, Nian Bing; Luo, Hong Qun

    2015-06-15

    This work reported a label-free colorimetric assay for sensitive detection of Hg(2+) based on Hg(2+)-triggered hairpin DNA probe (H-DNA) termini-binding and exonuclease Ш (Exo Ш)-assisted target recycling, as well as hemin/G-quadruplex (DNAzyme) signal amplification. The specific binding of free Hg(2+) with the thymine-thymine (T-T) mismatches termini of H-DNA could immediately trigger the Exo Ш digestion, and then set free G-quadruplex segments and Hg(2+). The Exo Ш impellent recycling of ultratrace Hg(2+) produced numerous G-quadruplexes. The corresponding DNAzymes catalyzed efficiently the H2O2-mediated oxidation of the ABTS(2-) to the colored product in the presence of hemin. Using the color change as the output signal, and the Exo Ш-aided Hg(2+) recycling and DNAzyme as the signal amplifier, the ultrasensitive assay system successfully achieved visual detection of Hg(2+) as low as 1.0 nM by the naked eye, and was suitable for field monitoring. The calibration curve was linear in the range of 50.0 pM to 20.0 nM for Hg(2+) (R=0.9962) with a detection limit of 10.0 pM. Moreover, this proposed strategy showed excellent selectivity, portability and low-cost, and was successfully applied to colorimetric detection of Hg(2+) in laboratory tap water and Jialing river water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. miR-203 inhibits melanoma invasive and proliferative abilities by targeting the polycomb group gene BMI1

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiao [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Sun, Yong [Department of Burn and Plastic Surgery, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an 223300 (China); Han, Siqi [Department of Medical Oncology, Jinling Hospital, Nanjing 210002 (China); Zhu, Wei [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhang, Haiping, E-mail: zhanghaiping_2000@163.com [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Lian, Shi, E-mail: lianshi_2020@163.com [Department of Dermatology and Venereal Disease, Capital Medical University, Beijing 100069 (China)

    2015-01-02

    Highlights: • First reported deregulation of miR-203 and up-regulation of BMI1 in metastatic melanoma. • miR-203 decreased BMI1 expression by directly binding to 3′UTR. • Further found miR-203 overexpression suppressed cell invasion and stemness. • Re-expression of BMI1 rescued miR-203-mediated suppression. • miR-203-BMI1 axis may be potential therapeutic targets of melanoma metastasis. - Abstract: Metastasis is the major problem in malignant melanoma, posing a therapeutic challenge to clinicians. The investigation of the underlying mechanism driving this progress remains a large unmet need. In this study, we revealed a miR-203-BMI1 axis that regulated melanoma metastasis. We found significantly deregulation of miR-203 and up-regulation of BMI1 in melanoma, particularly in metastatic melanoma. An inverse correlation between the levels of miR-203 and BMI1 was further observed in melanoma tissues and cell lines. We also identified BMI1 as a downstream target gene of miR-203, which bound to the 3′UTR of BMI1. Overexpression of miR-203 was associated with decreased BMI1 expression and impaired cell invasion and tumor sphere formation activities. Re-expression of BMI1 markedly rescued miR-203-mediated suppression of these events. Taken together, our results demonstrated that miR-203 regulated melanoma invasive and proliferative abilities in part by targeting BMI1, providing new insights into potential mechanisms of melanoma metastasis.

  11. A novel small-molecule compound targeting CD147 inhibits the motility and invasion of hepatocellular carcinoma cells.

    Science.gov (United States)

    Fu, Zhi-guang; Wang, Li; Cui, Hong-yong; Peng, Jian-long; Wang, Shi-jie; Geng, Jie-jie; Liu, Ji-de; Feng, Fei; Song, Fei; Li, Ling; Zhu, Ping; Jiang, Jian-li; Chen, Zhi-nan

    2016-02-23

    CD147, a type I transmembrane glycoprotein, is highly expressed in various cancer types and plays important roles in tumor progression, especially by promoting the motility and invasion of hepatocellular carcinoma (HCC) cells. These crucial roles make CD147 an attractive target for therapeutic intervention in HCC, but no small-molecule inhibitors of CD147 have been developed to date. To identify a candidate inhibitor, we used a pharmacophore model derived from the structure of CD147 to virtually screen over 300,000 compounds. The 100 highest-ranked compounds were subjected to biological assays, and the most potent one, dubbed AC-73 (ID number: AN-465/42834501), was studied further. We confirmed that AC-73 targeted CD147 and further demonstrated it can specifically disrupt CD147 dimerization. Moreover, molecular docking and mutagenesis experiments showed that the possible binding sites of AC-73 on CD147 included Glu64 and Glu73 in the N-terminal IgC2 domain, which two residues are located in the dimer interface of CD147. Functional assays revealed that AC-73 inhibited the motility and invasion of typical HCC cells, but not HCC cells that lacked the CD147 gene, demonstrating on-target action. Further, AC-73 reduced HCC metastasis by suppressing matrix metalloproteinase (MMP)-2 via down-regulation of the CD147/ERK1/2/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Finally, AC-73 attenuated progression in an orthotopic nude mouse model of liver metastasis, suggesting that AC-73 or its derivatives have potential for use in HCC intervention. We conclude that the novel small-molecule inhibitor AC-73 inhibits HCC mobility and invasion, probably by disrupting CD147 dimerization and thereby mainly suppressing the CD147/ERK1/2/STAT3/MMP-2 pathways, which are crucial for cancer progression.

  12. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; McConnell, Erin M; Chang, Yangyang; Brennan, John D; Li, Yingfu

    2018-03-26

    Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14.

    Directory of Open Access Journals (Sweden)

    Tao Li

    Full Text Available Hepatocellular carcinoma (HCC is one of the leading causes of cancer-related mortality worldwide. Despite progress in diagnostics and treatment of HCC, its prognosis remains poor because the molecular mechanisms underlying hepatocarcinogenesis are not well understood. In the study, we focused on identifying the role of miRNAs in HCC progression. miRNA microarray was used to analyze the differentially expressed miRNAs, and the results were validated by qPCR. We found that the miR-150-5p expression is down-regulated in HCC tissues compared with pair non-tumor tissues. miR-150-5p expression is also decreased in metastatic cancer tissues compared with pair primary tissues, indicating that miR-150-5p may be involved in HCC metastasis. Functionally, miR-150-5p inhibition significantly promotes hepatoma cell migration and invasion, whereas miR-150-5p overexpression suppresses cancer cell migration and invasion in vitro. The matrix metalloproteinase 14 (MMP14 is identified as a new target gene of miR-150-5p. miR-150-5p markedly inhibits MMP14 expression in hepatoma cells, and miR-150-5p expression is negative correlation with MMP14 expression in vivo. More important, re-expression of MMP14 in hepatoma cells partially reverses the effect of miR-150-5p in inhibiting cell invasion.

  14. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    International Nuclear Information System (INIS)

    Malik, Afshan N.; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana; Laftah, Abas; Cunningham, Phil

    2011-01-01

    Highlights: → Mitochondrial dysfunction is central to many diseases of oxidative stress. → 95% of the mitochondrial genome is duplicated in the nuclear genome. → Dilution of untreated genomic DNA leads to dilution bias. → Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that the methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as β-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.

  15. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  16. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    Science.gov (United States)

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  17. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Chaim B Colen

    2011-07-01

    Full Text Available Glioblastoma multiforme (GBM are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs. We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA, a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion. Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  18. miR-148a suppresses cell invasion and migration in gastric cancer by targeting DNA methyltransferase 1.

    Science.gov (United States)

    Shi, Huaijie; Chen, Xiaojing; Jiang, Hao; Wang, Xujie; Yu, Hao; Sun, Pijiang; Sui, Xin

    2018-04-01

    Gastric cancer (GC) is the fourth most common malignant tumor globally. The highest incidence of GC is found in Eastern Asia, particularly in China. It is therefore imperative to further elucidate the molecular pathogenesis of GC in order to identify new biomarkers and targets for effective therapy. In the present study, we determined whether miR-148a was aberrantly downregulated in gastric cancer tissues and significantly correlated with aggressive clinicopathological characteristics in the MGC-803, HGC-27 and GES-1 cell lines using reverse transcription-quantitative PCR and western blot analysis. The cell lines were obtained from 60 patients who presented at our hospital between September 2010 and July 2015. The results showed that, miR-148a was aberrantly downregulated in GC tissues and its expression was relatively lower in the MGC-803 and HGC-27 GC cell lines than in the normal gastric epithelial cell line, GES-1. The clinicopathological analysis revealed that a decrease of miR-148a was significantly correlated with lymph-node metastasis (Pblot analysis. Furthermore, we found that the re-expression of DNMT1 reversed the inhibition of cell migration and invasion induced by miR-148a. Taken together, we demonstrated that miR-148a suppresses cell invasion and migration in gastric cancer by regulating DNMT1 expression. The miR-148a/DNMT1 axis may therefore be a new potential target for GC therapy.

  19. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2007-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ; SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and

  20. Amplification factor variable amplifier

    NARCIS (Netherlands)

    Akitsugu, Oshita; Nauta, Bram

    2010-01-01

    PROBLEM TO BE SOLVED: To provide an amplification factor variable amplifier capable of achieving temperature compensation of an amplification factor over a wide variable amplification factor range. ;SOLUTION: A Gilbert type amplification factor variable amplifier 11 amplifies an input signal and can

  1. MicroRNA-9 suppresses the growth, migration, and invasion of malignant melanoma cells via targeting NRP1

    Directory of Open Access Journals (Sweden)

    Xu D

    2016-11-01

    Full Text Available Dan Xu,1 Xiaofeng Chen,2 Quanyong He,1 Chengqun Luo1 1Department of Plastic Surgery, Third Xiangya Hospital of Central South University, 2Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan, People’s Republic of China Abstract: MicroRNAs (miRs are a class of small noncoding RNAs that negatively regulate the gene expression by directly binding to the 3' untranslated region of their target mRNA, thus resulting in mRNA degradation or translational repression. miR-9 has recently been demonstrated to play a role in the development and progression of malignant melanoma (MM, but the regulatory mechanism of miR-9 in the malignant phenotypes of MM still remains largely unknown. In this study, a total of 73 pairs of MM tissues and adjacent normal tissues were collected. Real-time reverse transcription polymerase chain reaction and Western blot were used to detect the mRNA and protein expression of miR-9. MTT assay, wound healing assay, and transwell assay were conducted to determine the cell proliferation, migration, and invasion. Luciferase reporter assay was used to determine the targeting relationship between miR-9 and NRP1. Our data demonstrated that miR-9 expression was significantly downregulated in MM tissues compared with that in adjacent normal tissues. The decreased miR-9 level was significantly associated with the tumor stage and metastasis of MM. We also found that the expression level of miR-9 was decreased in MM cell lines (G361, B16, A375, and HME1 compared with normal skin HACAT cells. Ectopic expression of miR-9 led to a significant decrease in the ability of proliferation, migration, and invasion in A375 cells. NRP1 was further identified as a direct target gene of miR-9, and the protein expression of NRP1 was negatively regulated by miR-9 in A375 cells. Furthermore, overexpression of NRP1 reversed the suppressive effects of miR-9 on the malignant phenotypes of A375 cells. In vivo study revealed that miR-9

  2. miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenyao, E-mail: wangwy117@163.com; Zhang, Hongfei; Wang, Lichao; Zhang, Shaojun; Tang, Miao

    2016-05-13

    microRNAs (miRNAs) play key regulatory roles in various biological processes. In this study, we aimed to determine the expression and biological roles of miR-613 in hepatocellular carcinoma (HCC). Compared with non-cancerous liver tissues, miR-613 was significantly downregulated in HCC tissues. Ectopic expression of miR-613 significantly suppressed the proliferation and invasion of Hep3B and SMMC-7721 HCC cells. Bioinformatic and luciferase reporter analysis identified doublecortin-like kinase 1 (DCLK1) as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of DCLK1 in HCC cells. There was a significant inverse correlation between miR-613 and DCLK1 protein expression in HCC samples. Small interfering RNA-mediated silencing of DCLK1 phenocopied the suppressive effects of miR-613 in HCC cells. Rescue experiments demonstrated that co-transfection of DCLK1 lacking the 3′-untranslated region partially prevented miR-613-induced suppression of HCC cell proliferation and invasion. In vivo studies confirmed that miR-613 overexpression retarded the growth of Hep3B xenograft tumors in nude mice, coupled with a reduction in the percentage of Ki67-positive tumor cells and DCLK1 protein expression. In conclusion, we provide first evidence for the suppressive activity of miR-613 in HCC, which is causally linked to targeting of DCLK1. Restoration of miR-613 may provide a potential therapeutic strategy for HCC. - Highlights: • miR-613 inhibits the aggressive phenotypes of HCC cells. • DCLK1 is a direct target of miR-613 in HCC. • miR-613 impairs HCC tumorigenesis in vivo.

  3. MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhan-Guo, E-mail: zhang_zhanguo@hotmail.com; Chen, Wei-Xun, E-mail: chenweixunclark@163.com; Wu, Yan-Hui, E-mail: wuyanhui84@126.com; Liang, Hui-Fang, E-mail: lianghuifang1997@126.com; Zhang, Bi-Xiang, E-mail: bixiangzhang@163.com

    2014-11-07

    Highlights: • MiR-132 is down-regulated in breast cancer tissues and cell lines. • MiR-132 directly regulates HN1 by binding its 3′ UTR. • MiR-132 shows regulatory role in proliferation, invasion, migration and metastasis. • HN1 is involved in miR-132-mediated cell behavior. • Aberrant HN1 is associated with worse overall survival of breast cancer patients. - Abstract: Accumulating evidence indicates that miRNAs play critical roles in tumorigenesis and cancer progression. This study aims to investigate the role and the underlying mechanism of miR-132 in breast cancer. Here, we report that miR-132 is significantly down-regulated in breast cancer tissues and cancer cell lines. Additional study identifies HN1 as a novel direct target of miR-132. MiR-132 down-regulates HN1 expression by binding to the 3′ UTR of HN1 transcript, thereby, suppressing multiple oncogenic traits such as cancer cell proliferation, invasion, migration and metastasis in vivo and in vitro. Overexpression of HN1 restores miR-132-suppressed malignancy. Importantly, higher HN1 expression is significantly associated with worse overall survival of breast cancer patients. Taken together, our data demonstrate a critical role of miR-132 in prohibiting cell proliferation, invasion, migration and metastasis in breast cancer through direct suppression of HN1, supporting the potential utility of miR-132 as a novel therapeutic strategy against breast cancer.

  4. Thermo-chemotherapy Induced miR-218 upregulation inhibits the invasion of gastric cancer via targeting Gli2 and E-cadherin.

    Science.gov (United States)

    Ruan, Qiang; Fang, Zhi-Yuan; Cui, Shu-Zhong; Zhang, Xiang-Liang; Wu, Yin-Bing; Tang, Hong-Sheng; Tu, Yi-Nuo; Ding, Yan

    2015-08-01

    Thermo-chemotherapy has been proven to reduce the invasion capability of cancer cells. However, the molecular mechanism underlying this anti-invasion effect is still unclear. In this study, the role of thermo-chemotherapy in the inhibition of tumor invasion was studied. The results demonstrated that expression of miR-218 was downregulated in gastric cancer tissues, which had a positive correlation with tumor invasion and metastasis. In vitro thermo-chemotherapy increased miR-218 expression in SGC7901 cells and inhibited both proliferation and invasion of cancer cells. Gli2 was identified as a downstream target of miR-218, and its expression was negatively regulated by miR-218. The thermo-chemotherapy induced miR-218 upregulation was also accompanied by increasing of E-cadherin expression. In conclusion, the present study indicates that thermo-chemotherapy can effectively decrease the invasion capability of cancer cells and increase cell-cell adhesion. miR-218 and its downstream target Gli2, as well as E-cadherin, participate in the anti-invasion process.

  5. Targeting of Survivin Pathways by YM155 Inhibits Cell Death and Invasion in Oral Squamous Cell Carcinoma Cells.

    Science.gov (United States)

    Zhang, Wei; Liu, Yuan; Li, Yu Feng; Yue, Yun; Yang, Xinghua; Peng, Lin

    2016-01-01

    Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer therapy. The small molecule compound YM155 has been described as the first "Survivin suppressant" but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. Survivin protein plays critical roles in oral squamous cell carcinoma (OSCC), suggesting that YM155 would be extremely valuable for OSCC. In this study, we tested our hypothesis whether YM155 could be an effective inhibitor of cell growth, invasion and angiogenesis in oral squamous cell carcinoma (OSCC) cells. SCC9 and SCC25 were treated with different concentration of YM155 for indicated time. Using MTT assay and flow cytometry analysis to detect cell growth and apoptosis; Using transwell and Wound healing assay to detect migration and invasion; Using reverse transcription-PCR, Western blotting and electrophoretic mobility shift assay for measuring gene and protein expression, and DNA binding activity of NF-x03BA;B. YM155 inhibited survivin-rich expressed SCC9 cell growth in a dose- and time dependent manner. This was accompanied by increased apoptosis and concomitant attenuation of NF-x03BA;B and downregulation of NF-x03BA;B downstream genes MMP-9, resulting in the inhibition of SCC9 cell migration and invasion in vitro and caused antitumor activity and anti metastasis in vivo. YM155 treatment did not affect cell growth, apoptosis and invasion of surviving-poor expressed SCC25 cells in vitro. YM155 is a potent inhibitor of progression of SCC9 cells, which could be due to attenuation of survivin signaling processes. Our findings provide evidence showing that YM155 could act as a small molecule survivin inhibitor on survivin-rich expressed SCC9 cells in culture as well as when grown as tumor in a xenograft model. We also suggest that survivin could be further developed as a potential therapeutic agent for the treatment of survivin-rich expressed

  6. Identification of nine genomic regions of amplification in urothelial carcinoma, correlation with stage, and potential prognostic and therapeutic value.

    Directory of Open Access Journals (Sweden)

    Yvonne Chekaluk

    Full Text Available We performed a genome wide analysis of 164 urothelial carcinoma samples and 27 bladder cancer cell lines to identify copy number changes associated with disease characteristics, and examined the association of amplification events with stage and grade of disease. Multiplex inversion probe (MIP analysis, a recently developed genomic technique, was used to study 80 urothelial carcinomas to identify mutations and copy number changes. Selected amplification events were then analyzed in a validation cohort of 84 bladder cancers by multiplex ligation-dependent probe assay (MLPA. In the MIP analysis, 44 regions of significant copy number change were identified using GISTIC. Nine gene-containing regions of amplification were selected for validation in the second cohort by MLPA. Amplification events at these 9 genomic regions were found to correlate strongly with stage, being seen in only 2 of 23 (9% Ta grade 1 or 1-2 cancers, in contrast to 31 of 61 (51% Ta grade 3 and T2 grade 2 cancers, p<0.001. These observations suggest that analysis of genomic amplification of these 9 regions might help distinguish non-invasive from invasive urothelial carcinoma, although further study is required. Both MIP and MLPA methods perform well on formalin-fixed paraffin-embedded DNA, enhancing their potential clinical use. Furthermore several of the amplified genes identified here (ERBB2, MDM2, CCND1 are potential therapeutic targets.

  7. HER-2 amplification in tubular carcinoma of the breast.

    Science.gov (United States)

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  8. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    Science.gov (United States)

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  9. Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces.

    Science.gov (United States)

    Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A

    2017-04-01

    The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.

  10. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics.

    Science.gov (United States)

    Selbo, Pål Kristian; Bostad, Monica; Olsen, Cathrine Elisabeth; Edwards, Victoria Tudor; Høgset, Anders; Weyergang, Anette; Berg, Kristian

    2015-08-01

    Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours. Cancer stem cells (CSCs) or tumour-initiating cells are intrinsically and notoriously resistant to conventional cancer therapies and are proposed to be responsible for the recurrence of tumours after therapy. According to the CSC hypothesis, it is imperative to develop novel anticancer agents or therapeutic strategies that take into account the biology and role of CSCs. The present review outlines our recent study on photochemical internalisation (PCI) using the clinically relevant photosensitiser TPCS2a/Amphinex® as a rational, non-invasive strategy for the light-controlled endosomal escape of CSC-targeting drugs. PCI is an intracellular drug delivery method based on light-induced ROS-generation and a subsequent membrane-disruption of endocytic vesicles, leading to cytosolic release of the entrapped drugs of interest. In different proof-of-concept studies we have demonstrated that PCI of CSC-directed immunotoxins targeting CD133, CD44, CSPG4 and EpCAM is a highly specific and effective strategy for killing cancer cells and CSCs. CSCs overexpressing CD133 are PDT-resistant; however, this is circumvented by PCI of CD133-targeting immunotoxins. In view of the fact that TPCS2a is not a substrate of the efflux pumps ABCG2 and P-glycoprotein (ABCB1), the PCI-method is a promising anti-CSC therapeutic strategy. Due to a laser-controlled exposure, PCI of CSC-targeting drugs will be confined exclusively to the tumour tissue, suggesting that this drug delivery method has the potential to spare distant normal stem cells.

  11. Recent developments in human biomonitoring: non-invasive assessment of target tissue dose and effects of pneumotoxic metals.

    Science.gov (United States)

    Mutti, A; Corradi, M

    2006-01-01

    Tobacco smoke and polluted environments substantially increase the lung burden of pneumotoxic chemicals, particularly pneumotoxic metallic elements. To achieve a better understanding of the early events between exposure to inhaled toxicants and the onset of adverse effects on the lung, the characterization of dose at the target organ would be extremely useful. Exhaled breath condensate (EBC), obtained by cooling exhaled air under conditions of spontaneous breathing, is a novel technique that could provide a non-invasive assessment of pulmonary pathobiology. Considering that EBC is water practically free of interfering solutes, it represents an ideal biological matrix for elemental characterization. Published data show that several toxic metals and trace elements are detectable in EBC, raising the possibility of using this medium to quantify the lung tissue dose of pneumotoxic substances. This novel approach may represent a significant advance over the analysis of alternative media (blood, serum, urine, hair), which are not as reliable (owing to interfering substances in the complex matrix) and reflect systemic rather than lung (target tissue) levels of both toxic metals and essential trace elements. Data obtained among workers occupationally exposed to either hard metals or chromium (VI) and in smokers with or without chronic obstructive pulmonary disease (COPD) are reviewed to show that--together with biomarkers of exposure--EBC also allows the simultaneous quantification of biomarkers of effect directly sampled from the epithelial lining fluid, thus providing novel insights on both kinetic and dynamic aspects of metal toxicology.

  12. Targeting Th17-IL-17 Pathway in Prevention of Micro-Invasive Prostate Cancer in a Mouse Model.

    Science.gov (United States)

    Zhang, Qiuyang; Liu, Sen; Ge, Dongxia; Cunningham, David M; Huang, Feng; Ma, Lin; Burris, Thomas P; You, Zongbing

    2017-06-01

    Chronic inflammation has been associated with the development and progression of human cancers including prostate cancer. The exact role of the inflammatory Th17-IL-17 pathway in prostate cancer remains unknown. In this study, we aimed to determine the importance of Th17 cells and IL-17 in a Pten-null prostate cancer mouse model. The Pten-null mice were treated by Th17 inhibitor SR1001 or anti-mouse IL-17 monoclonal antibody from 6 weeks of age up to 12 weeks of age. For SR1001 treatment, the mice were injected intraperitoneally (i.p.) twice a day with vehicle or SR1001, which was dissolved in a dimethylsulfoxide (DMSO) solution. All mice were euthanized for necropsy at 12 weeks of age. For IL-17 antibody treatment, the mice were injected intravenously (i.v.) once every two weeks with control IgG or rat anti-mouse IL-17 monoclonal antibody, which was dissolved in PBS. The injection time points were at 6, 8, and 10 weeks old. All mice were analyzed for the prostate phenotypes at 12 weeks of age. We found that either SR1001 or anti-IL-17 antibody treatment decreased the formation of micro-invasive prostate cancer in Pten-null mice. The SR1001 or anti-IL-17 antibody treated mouse prostates had reduced proliferation, increased apoptosis, and reduced angiogenesis, as well as reduced inflammatory cell infiltration. By assessing the epithelial-to-mesenchymal transition (EMT) markers, we found that SR1001 or anti-IL-17 antibody treated prostate tissues had weaker EMT phenotype compared to the control treated prostates. These results demonstrated that Th17-IL-17 pathway plays a key role in prostate cancer progression in Pten-null mice. Targeting Th17-IL-17 pathway could prevent micro-invasive prostate cancer formation in mice. Prostate 77:888-899, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Testing the discrimination and detection limits of WorldView-2 imagery on a challenging invasive plant target

    Science.gov (United States)

    Robinson, T. P.; Wardell-Johnson, G. W.; Pracilio, G.; Brown, C.; Corner, R.; van Klinken, R. D.

    2016-02-01

    Invasive plants pose significant threats to biodiversity and ecosystem function globally, leading to costly monitoring and management effort. While remote sensing promises cost-effective, robust and repeatable monitoring tools to support intervention, it has been largely restricted to airborne platforms that have higher spatial and spectral resolutions, but which lack the coverage and versatility of satellite-based platforms. This study tests the ability of the WorldView-2 (WV2) eight-band satellite sensor for detecting the invasive shrub mesquite (Prosopis spp.) in the north-west Pilbara region of Australia. Detectability was challenged by the target taxa being largely defoliated by a leaf-tying biological control agent (Gelechiidae: Evippe sp. #1) and the presence of other shrubs and trees. Variable importance in the projection (VIP) scores identified bands offering greatest capacity for discrimination were those covering the near-infrared, red, and red-edge wavelengths. Wavelengths between 400 nm and 630 nm (coastal blue, blue, green, yellow) were not useful for species level discrimination in this case. Classification accuracy was tested on three band sets (simulated standard multispectral, all bands, and bands with VIP scores ≥1). Overall accuracies were comparable amongst all band-sets (Kappa = 0.71-0.77). However, mesquite omission rates were unacceptably high (21.3%) when using all eight bands relative to the simulated standard multispectral band-set (9.5%) and the band-set informed by VIP scores (11.9%). An incremental cover evaluation on the latter identified most omissions to be for objects high mapping accuracy of objects >16 m2 allows application for mapping mesquite shrubs and coalesced stands, the former not previously possible, even with 3 m resolution hyperspectral imagery. WV2 imagery offers excellent portability potential for detecting other species where spectral/spatial resolution or coverage has been an impediment. New generation satellite

  14. MicroRNA-122 triggers mesenchymal-epithelial transition and suppresses hepatocellular carcinoma cell motility and invasion by targeting RhoA.

    Directory of Open Access Journals (Sweden)

    Sheng-Chun Wang

    Full Text Available The loss of microRNA-122 (miR-122 expression is strongly associated with increased invasion and metastasis, and poor prognosis of hepatocellular carcinoma (HCC, however, the underlying mechanisms remain poorly understood. In the present study, we observed that miR-122 over-expression in HCC cell lines Sk-hep-1 and Bel-7402 triggered the mesenchymal-epithelial transition (MET, as demonstrated by epithelial-like morphological changes, up-regulated epithelial proteins (E-cadherin, ZO-1, α-catenin, occludin, BVES, and MST4, and down-regulated mesenchymal proteins (vimentin and fibronectin. The over-expression of miRNA-122 also caused cytoskeleton disruption, RhoA/Rock pathway inactivation, enhanced cell adhesion, and suppression of migration and invasion of Sk-hep-1 and Bel-7402 cells, whereas, these effects could be reversed through miR-122 inhibition. Additional studies demonstrated that the inhibition of wild-type RhoA function induced MET and inhibited cell migration and invasion, while RhoA over-expression reversed miR-122-induced MET and inhibition of migration and invasion of HCC cells, suggesting that miR-122 induced MET and suppressed the migration and invasion of HCC cells by targeting RhoA. Moreover, our results demonstrated that HNF4α up-regulated its target gene miR-122 that subsequently induced MET and inhibited cell migration and invasion, whereas miR-122 inhibition reversed these HNF4α-induced phenotypes. These results revealed functional and mechanistic links among the tumor suppressors HNF4α, miR-122, and RhoA in EMT and invasive and metastatic phenotypes of HCC. Taken together, our study provides the first evidence that the HNF4α/miR-122/RhoA axis negatively regulates EMT and the migration and invasion of HCC cells.

  15. Dual-colour CISH is a reliable alternative to FISH for assessment of topoisomerase 2-alpha amplification in breast carcinomas.

    Science.gov (United States)

    García-Caballero, Tomás; Prieto, Olga; Vázquez-Boquete, Angel; Gude, Francisco; Viaño, Patricia; Otero, María; Curiel, Teresa; Fernández-Rodríguez, Beatriz; Parrado, Concepción; Fraga, Máximo; Antúnez, José R

    2014-01-01

    Anthracyclines are among the most powerful antineoplastic drugs available for breast cancer treatment. Although HER2 amplification has been postulated to predict anthracycline benefit, numerous reports have demonstrated that HER2/TOP2A co-amplification is the clinically useful predictive marker of response to anthracyclines. The standard technique to evaluate gene status for target therapy selection is fluorescence in situ hybridization (FISH), but this technique has some disadvantages. Dual-colour chromogenic in situ hybridization (CISH) is an extension of the FISH protocol that allows bright-field microscopy and thus represents a user-friendly alternative to FISH. In order to evaluate whether dual-colour CISH is a reliable alternative to FISH in determining TOP2A gene amplification and to determine the frequency with which TOP2A and HER2 were co-amplified, we analysed 100 invasive breast cancer specimens (70 consecutive and 30 HER2-amplified samples) using tissue microarrays. Thus, a 99 % agreement was found between TOP2A status determined by dual-colour CISH and FISH, as well as a high degree of correlation in TOP2A ratios using both techniques. TOP2A gene amplification was present in 8.6 % of the 70 consecutive samples studied, all of which were HER2-amplified. Co-amplification of TOP2A was observed in 46.5 % of the additional 30 HER2-amplified samples (no TOP2A amplification was seen in non-amplified HER2 samples). We conclude that dual-colour CISH represents an excellent alternative to FISH for determination of TOP2A gene status in invasive breast cancer. Our results showing TOP2A amplification only in HER2-amplified cases also add to the evidence that TOP2A determination should be restricted to those cases.

  16. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  17. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  18. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2-Dependent Bladder Cancer Cell Migration and Invasion.

    Science.gov (United States)

    Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E

    2016-05-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.

  19. MicroRNA-214-5p Inhibits the Invasion and Migration of Hepatocellular Carcinoma Cells by Targeting Wiskott-Aldrich Syndrome Like.

    Science.gov (United States)

    Li, Hongdan; Wang, Haoqi; Ren, Zhen

    2018-01-01

    This study aims to explore the effects of microRNA-214-5p (miR-214-5p) on the invasion and migration of Hepatocellular Carcinoma cells (HCC). Hepatocellular Carcinoma tissues and adjacent normal tissues from 44 hepatocellular carcinoma patients were prepared for this study. The HepG2 and BEL-7402 cells were transfected with miR-214-5p mimic and inhibitor. qRT-PCR was performed to detect the expressions of miR-214-5p. Transwell assays were used to detect the invasion and migration assays in HepG2 and BEL-7402 cells. A dual-luciferase reporter assay was conducted to examine the effect of miR-214-5p on Wiskott-Aldrich Syndrome Like (WASL/ N-WASP). Western blot and qRT-PCR were used to measure the expressions of the E-cadherin, N-cadherin and Vimentin proteins. Transwell chamber assays were performed to detect cell invasion and migration. Compared with normal tissues, HCC tissues demonstrated significantly lower expression of miR-214-5p. Overexpression of miR-214-5p significantly inhibited the migration and invasion of HCC cells and inhibition of miR-214-5p promoted the migration and invasion. Additionally, miR-214-5p suppressed the epithelial-mesenchymal transition (EMT). Further study showed WASL was a putative target gene of miR-214-5p. Up-regulating the expression of WASL could reverse the inhibition effect of miR-214-5p on invasion and migration. Our data suggested that miR-214-5p inhibited the invasion and migration of HepG2 and BEL-7402 by targeting WASL in Hepatocellular carcinoma. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Targeted capture massively parallel sequencing analysis of LCIS and invasive lobular cancer: Repertoire of somatic genetic alterations and clonal relationships.

    Science.gov (United States)

    Sakr, Rita A; Schizas, Michail; Carniello, Jose V Scarpa; Ng, Charlotte K Y; Piscuoglio, Salvatore; Giri, Dilip; Andrade, Victor P; De Brot, Marina; Lim, Raymond S; Towers, Russell; Weigelt, Britta; Reis-Filho, Jorge S; King, Tari A

    2016-02-01

    Lobular carcinoma in situ (LCIS) has been proposed as a non-obligate precursor of invasive lobular carcinoma (ILC). Here we sought to define the repertoire of somatic genetic alterations in pure LCIS and in synchronous LCIS and ILC using targeted massively parallel sequencing. DNA samples extracted from microdissected LCIS, ILC and matched normal breast tissue or peripheral blood from 30 patients were subjected to massively parallel sequencing targeting all exons of 273 genes, including the genes most frequently mutated in breast cancer and DNA repair-related genes. Single nucleotide variants and insertions and deletions were identified using state-of-the-art bioinformatics approaches. The constellation of somatic mutations found in LCIS (n = 34) and ILC (n = 21) were similar, with the most frequently mutated genes being CDH1 (56% and 66%, respectively), PIK3CA (41% and 52%, respectively) and CBFB (12% and 19%, respectively). Among 19 LCIS and ILC synchronous pairs, 14 (74%) had at least one identical mutation in common, including identical PIK3CA and CDH1 mutations. Paired analysis of independent foci of LCIS from 3 breasts revealed at least one common mutation in each of the 3 pairs (CDH1, PIK3CA, CBFB and PKHD1L1). LCIS and ILC have a similar repertoire of somatic mutations, with PIK3CA and CDH1 being the most frequently mutated genes. The presence of identical mutations between LCIS-LCIS and LCIS-ILC pairs demonstrates that LCIS is a clonal neoplastic lesion, and provides additional evidence that at least some LCIS are non-obligate precursors of ILC. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. The HLJ1-targeting drug screening identified Chinese herb andrographolide that can suppress tumour growth and invasion in non-small-cell lung cancer.

    Science.gov (United States)

    Lai, Yi-Hua; Yu, Sung-Liang; Chen, Hsuan-Yu; Wang, Chi-Chung; Chen, Huei-Wen; Chen, Jeremy J W

    2013-05-01

    HLJ1 is a novel tumour suppressor and is a potential druggable target for non-small-cell lung cancer (NSCLC). In this report, using a promoter-containing enhancer region as the HLJ1-targeting drug-screening platform, we identified several herbal compounds from a Chinese herbal bank with the capacity to enhance HLJ1 promoter activity and suppress tumour growth and invasion of NSCLC. Among the herbal drugs identified, the andrographolide (from Andrographis paniculata [Burm. f.] Nees.) most significantly induced HLJ1 expression and suppressed tumorigenesis both in vitro and in vivo. The andrographolide upregulates HLJ1 via JunB activation, which modulates AP-2α binding at the MMP-2 promoter and represses the expression of MMP-2. In addition, silencing of HLJ1 partially reverses the inhibition of cancer-cell invasion by andrographolide. Microarray transcriptomic analysis was performed to comprehensively depict the andrographolide-regulated signalling pathways. We showed that andrographolide can affect 939 genes (analysis of variance, false discovery rate andrographolide on anticancer invasion and proliferation. In conclusion, the HLJ1-targeting drug-screening platform is useful for screening of novel anticancer compounds. Using this platform, we identified andrographolide is a promising new anticancer agent that could suppress tumour growth and invasion in NSCLC.

  2. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia.

    Science.gov (United States)

    Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad; Pournia, Yadollah; Zebardast, Nozhat; Kazemi, Bahram

    2014-07-01

    Toxoplasmosis diagnosis constitutes an important measure for disease prevention and control. In this paper, a newly described DNA amplification technique, loop-mediated isothermal amplification (LAMP), and nested-PCR targeting the repeated element (RE) and B1 gene, were compared to each other for the detection of Toxoplasma gondii DNA in blood samples of children with leukaemia. One hundred ten blood samples from these patients were analyzed by LAMP and nested-PCR. Out of 50 seropositive samples (IgM+, IgG+), positive results were obtained with 92% and 86% on RE, B1-LAMP and 82% and 68% on RE, B1-nested PCR analyses, respectively. Of the 50 seronegative samples, three, two and one samples were detected positive by RE-LAMP, B1-LAMP and RE-nested PCR assays, respectively, while none were detected positive by B1-nested PCR. None of the 10 IgM-, IgG+ samples was detected positive after testing LAMP and nested-PCR assays in duplicate. This is the first report of a study in which the LAMP method was applied with high sensitivity and efficacy for the diagnosis of T. gonii in blood samples of children with leukaemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available Pancreatic cancer has an enrichment of stem-like cancer cells (CSCs that contribute to chemoresistant tumors prone to metastasis and recurrence. Drug screening assays based on cytotoxicity cannot identify specific CSC inhibitors, because CSCs comprise only a small portion of cancer cell population, and it is difficult to propagate stable CSC populations in vitro for high-throughput screening (HTS assays. Based on the important role of cancer cell epithelial-to-mesenchymal transition (EMT in promoting CSCs, we hypothesized that inhibition of EMT can be a useful strategy for inhibiting CSCs, and therefore a feasible approach for HTS can be built for identification of CSC inhibitors, based on assays detecting EMT inhibition.An immunofluorescent assay was established and optimized for HTS to identify compounds that enhance E-cadherin expression, as a hallmark of inhibition of EMT. Four chemical libraries containing 41,472 compounds were screened in PANC-1 pancreatic cancer cell line. Positive hits were validated for EMT and CSC inhibition in vitro using sphere formation assay, western blotting, immune fluorescence, and scratch assay.Initial hits were refined to 73 compounds with a secondary screening, among which 17 exhibited concentration dependent induction of E-cadherin expression. Six compounds were selected for further study which belonged to 2 different chemical structural clusters. A novel compound 1-(benzylsulfonyl indoline (BSI, Compound #38 significantly inhibited pancreatic cancer cell migration and invasion. BSI inhibited histone deacetylase, increased histone 4 acetylation preferably, resulting in E-cadherin up-regulation. BSI effectively inhibited tumor spheres formation. Six more analogues of BSI were tested for anti-migration and anti-CSC activities.This study demonstrated a feasible approach for discovery of agents targeting EMT and CSCs using HTS, and identified a class of novel chemicals that could be developed as anti-EMT and

  4. Dysregulated Expression of the MicroRNA miR-137 and Its Target YBX1 Contribute to the Invasive Characteristics of Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Johnson, Thomas G; Schelch, Karin; Cheng, Yuen Y; Williams, Marissa; Sarun, Kadir H; Kirschner, Michaela B; Kao, Steven; Linton, Anthony; Klebe, Sonja; McCaughan, Brian C; Lin, Ruby C Y; Pirker, Christine; Berger, Walter; Lasham, Annette; van Zandwijk, Nico; Reid, Glen

    2018-02-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignancy linked to asbestos exposure. On a genomic level, MPM is characterized by frequent chromosomal deletions of tumor suppressors, including microRNAs. MiR-137 plays a tumor suppressor role in other cancers, so the aim of this study was to characterize it and its target Y-box binding protein 1 (YBX1) in MPM. Expression, methylation, and copy number status of miR-137 and its host gene MIR137HG were assessed by polymerase chain reaction. Luciferase reporter assays confirmed a direct interaction between miR-137 and Y-box binding protein 1 gene (YBX1). Cells were transfected with a miR-137 inhibitor, miR-137 mimic, and/or YBX1 small interfering RNA, and growth, colony formation, migration and invasion assays were conducted. MiR-137 expression varied among MPM cell lines and tissue specimens, which was associated with copy number variation and promoter hypermethylation. High miR-137 expression was linked to poor patient survival. The miR-137 inhibitor did not affect target levels or growth, but interestingly, it increased miR-137 levels by means of mimic transfection suppressed growth, migration, and invasion, which was linked to direct YBX1 downregulation. YBX1 was overexpressed in MPM cell lines and inversely correlated with miR-137. RNA interference-mediated YBX1 knockdown significantly reduced cell growth, migration, and invasion. MiR-137 can exhibit a tumor-suppressive function in MPM by targeting YBX1. YBX1 knockdown significantly reduces tumor growth, migration, and invasion of MPM cells. Therefore, YBX1 represents a potential target for novel MPM treatment strategies. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  5. [Investigation of RNA viral genome amplification by multiple displacement amplification technique].

    Science.gov (United States)

    Pang, Zheng; Li, Jian-Dong; Li, Chuan; Liang, Mi-Fang; Li, De-Xin

    2013-06-01

    In order to facilitate the detection of newly emerging or rare viral infectious diseases, a negative-strand RNA virus-severe fever with thrombocytopenia syndrome bunyavirus, and a positive-strand RNA virus-dengue virus, were used to investigate RNA viral genome unspecific amplification by multiple displacement amplification technique from clinical samples. Series of 10-fold diluted purified viral RNA were utilized as analog samples with different pathogen loads, after a series of reactions were sequentially processed, single-strand cDNA, double-strand cDNA, double-strand cDNA treated with ligation without or with supplemental RNA were generated, then a Phi29 DNA polymerase depended isothermal amplification was employed, and finally the target gene copies were detected by real time PCR assays to evaluate the amplification efficiencies of various methods. The results showed that multiple displacement amplification effects of single-strand or double-strand cDNA templates were limited, while the fold increases of double-strand cDNA templates treated with ligation could be up to 6 X 10(3), even 2 X 10(5) when supplemental RNA existed, and better results were obtained when viral RNA loads were lower. A RNA viral genome amplification system using multiple displacement amplification technique was established in this study and effective amplification of RNA viral genome with low load was achieved, which could provide a tool to synthesize adequate viral genome for multiplex pathogens detection.

  6. miR-34a Inhibits Proliferation and Invasion of Bladder Cancer Cells by Targeting Orphan Nuclear Receptor HNF4G

    Directory of Open Access Journals (Sweden)

    Huaibin Sun

    2015-01-01

    Full Text Available miR-34a is a member of the miR-34 family and acts as a tumor suppressor in bladder cancer. This study explored the regulative role of miR-34a on an orphan nuclear receptor HNF4G, which has a well-confirmed role in bladder tumor growth and invasion. qRT-PCR analysis was applied to measure miR-34a expression in two tumorigenic bladder cancer cell lines 5637 and T24 and one normal human urothelial cell line SV-HUC-1. Luciferase assay was performed to verify the putative binding between miR-34a and HNF4G. The influence of miR-34a-HNF4G axis on cell viability, colony formation, and invasion was assessed with loss- and gain-of-function analysis. This study observed that the miR-34a expressions in 5637 and T24 cells were significantly lower than in SV-HUC-1, while the muscle invasive cell sublines 5637-M and T24-M had even lower miR-34a expression than in the nonmuscle invasive sublines. HNF4G has a 3′-UTR binding site with miR-34a and is a direct downstream target of miR-34a. miR-34a can directly downregulate the expression of HNF4G and thus inhibit tumor cell viability, colony formation, and invasion. Therefore, miR-34a-HNF4G axis is an important pathway modulating cell viability, proliferation, and invasion of bladder cancer cells.

  7. Strategy for Extracting DNA from Clay Soil and Detecting a Specific Target Sequence via Selective Enrichment and Real-Time (Quantitative) PCR Amplification

    Science.gov (United States)

    Yankson, Kweku K.; Steck, Todd R.

    2009-01-01

    We present a simple strategy for isolating and accurately enumerating target DNA from high-clay-content soils: desorption with buffers, an optional magnetic capture hybridization step, and quantitation via real-time PCR. With the developed technique, μg quantities of DNA were extracted from mg samples of pure kaolinite and a field clay soil. PMID:19633108

  8. Homogeneous and label-free electrochemiluminescence aptasensor based on the difference of electrostatic interaction and exonuclease-assisted target recycling amplification.

    Science.gov (United States)

    Ni, Jiancong; Yang, Weiqiang; Wang, Qingxiang; Luo, Fang; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Yang, Huanghao

    2018-05-15

    The difference of electrostatic interaction between free Ru(phen) 3 2+ and Ru(phen) 3 2+ embedded in double strand DNA (dsDNA) to the negatively charged indium tin oxide (ITO) electrode has been applied to develop a homogeneous and label-free electrochemiluminescence (ECL) aptasensor for the first time. Ochratoxin A (OTA) has been chosen as the model target. The OTA aptamer is first hybridized with its complementary single strand DNA (ssDNA) to form dsDNA and then interacted with Ru(phen) 3 2+ via the grooves binding mode to form dsDNA-Ru(phen) 3 2+ complex, which remains negatively charged feature as well as low diffusion capacity to the negatively charged ITO electrode surface owing to the electrostatic repulsion. Meanwhile, the intercalated Ru(phen) 3 2+ in the grooves of dsDNA works as an ECL signal reporter instead of the labor-intensive labeling steps and can generate much more ECL signal than that from the labeling probe. In the presence of target, the aptamer prefers to form an aptamer-target complex in lieu of dsDNA, which induces the releasing of Ru(phen) 3 2+ from the dsDNA-Ru(phen) 3 2+ complex into the solution. With the assistance of RecJ f exonuclease (a ssDNA specific exonuclease), the released ssDNA and the aptamer in the target-complex were digested into mononucleotides. In the meantime, the target can be also liberated from OTA-aptamer complex and induce target cycling and large amount of free Ru(phen) 3 2+ present in the solution. Since Ru(phen) 3 2+ contains positive charges, which can diffuses easily to the ITO electrode surface because of electrostatic attraction, causing an obviously enhanced ECL signal detected. Under the optimal conditions, the enhanced ECL of the system has a linear relationship with the OTA concentration in the range of 0.01-1.0 ng/mL with a detection limit of 2 pg/mL. This innovative system not only expands the immobilization-free sensors in the electrochemiluminescent fields, but also can be developed for the

  9. microRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer.

    Science.gov (United States)

    Yang, Aijun; Wang, Xuenan; Yu, Chunna; Jin, Zhenzhen; Wei, Lingxia; Cao, Jinghe; Wang, Qin; Zhang, Min; Zhang, Lin; Zhang, Lei; Hao, Cuifang

    2017-09-01

    Ovarian cancer is one of the most common types of gynecological malignancy worldwide, and is the fourth leading cause of cancer-associated mortality among women. Despite improvements in therapeutic treatments, the prognosis for epithelial ovarian cancer (EOC) remains poor, mainly due to the rapid growth and metastasis of ovarian cancer tumors. An increasing number of studies have indicated that microRNAs (miRNAs) are involved in the carcinogenesis and progression of human cancer, suggesting that miRNAs may be used in clinical prognosis and as a therapeutic target in EOC. The aim of the present study was to investigate the expression levels of miRNA-494 in EOC tissues and cell lines. The clinical significance of miRNA-494 in patients with EOC was also evaluated. The results demonstrated that miRNA-494 was significantly downregulated in EOC tissues and cell lines. Low expression levels of miRNA-494 were associated with poor prognostic features, including International Federation of Gynecology and Obstetrics stage, tumor size and lymph node metastasis. In vitro functional studies demonstrated that overexpression of miRNA-494 inhibited proliferation, migration and invasion in EOC cells. By contrast, knockdown of miRNA-494 enhanced cell growth, migration and invasion in EOC cells. Notably, sirtuin 1 (SIRT1) was identified as a direct target of miRNA-494 in EOC. Furthermore, MTT, cell migration and invasion assays verified that EOC cell proliferation, migration and invasion were completely restored with forced miRNA-494 expression and SIRT1 restoration. Together, these findings suggest that miRNA-494 is a potential prognostic marker, and may provide novel therapeutic regimens of targeted therapy for EOC.

  10. miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM.

    Science.gov (United States)

    Yue, Sihai; Wang, Lihua; Zhang, Hui; Min, Youhui; Lou, Yongli; Sun, Hongshan; Jiang, Yu; Zhang, Wenjin; Liang, Aming; Guo, Yongkun; Chen, Ping; Lv, Guowei; Wang, Liuxiang; Zong, Qinghua; Li, Yong

    2015-09-01

    Invasion and migration of glioblastoma multiforme (GBM) is a multistep process and an important phenotype that causes this disease to invade surrounding tissues in the brain. Recent studies have highlighted that miRNAs play a pivotal role in controlling GBM cell plasticity. In this report, we used wound healing and transwell assays to identify a novel role of miR-139-5p in inhibition of GBM cell migration and invasion. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-139-5p inhibited expression of ZEB1 and ZEB2, which are master regulators of tumor metastasis. MiR-139-5p specifically interacts with the 3'-UTR regions of ZEB1 and ZEB2, attenuating their expression in GBM cells. To corroborate this finding, we rescued ZEB1 and ZEB2 expression and found partial but significant increases in miR-139-5p-suppressed invasion of GBM cells. The biological relevance of our study was validated by analyzing levels of miR-139-5p in GBM tissue. We found that its expression significantly downregulated compared to normal tissue and shorter overall survival rates in patients with lower miR-139-5p expression. These results confirm that miR-139-5p suppresses GBM migration and invasion and highlight its potential as a biomarker and therapeutic target for treating GBM.

  11. Targeting Human Papillomavirus to Reduce the Burden of Cervical, Vulvar and Vaginal Cancer and Pre-Invasive Neoplasia

    DEFF Research Database (Denmark)

    Nygard, Mari; Hansen, Bo Terning; Dillner, Joakim

    2014-01-01

    BACKGROUND: Infection with high-risk human papillomavirus (HPV) is causally related to cervical, vulvar and vaginal pre-invasive neoplasias and cancers. Highly effective vaccines against HPV types 16/18 have been available since 2006, and are currently used in many countries in combination...... with cervical cancer screening to control the burden of cervical cancer. We estimated the overall and age-specific incidence rate (IR) of cervical, vulvar and vaginal cancer and pre-invasive neoplasia in Denmark, Iceland, Norway and Sweden in 2004-2006, prior to the availability of HPV vaccines, in order...... to establish a baseline for surveillance. We also estimated the population attributable fraction to determine roughly the expected effect of HPV16/18 vaccination on the incidence of these diseases. METHODS: Information on incident cervical, vulvar and vaginal cancers and high-grade pre-invasive neoplasias...

  12. ELK3 promotes the migration and invasion of liver cancer stem cells by targeting HIF-1α.

    Science.gov (United States)

    Lee, Joon Ho; Hur, Wonhee; Hong, Sung Woo; Kim, Jung-Hee; Kim, Sung Min; Lee, Eun Byul; Yoon, Seung Kew

    2017-02-01

    Hepatocellular carcinoma (HCC) is the fifth most common solid cancer and the third most common cause of cancer-related mortality. HCC develops via a multistep process associated with genetic aberrations that facilitate HCC invasion and migration and promote metastasis. A growing body of evidence indicates that cancer stem cells (CSCs) are responsible for tumorigenesis, cancer cell invasion and metastasis. Despite the extremely small proportion of cancer cells represented by this subpopulation of HCC cells, CSCs play a key role in cancer metastasis and poor prognosis. ELK3 (Net/SAP-2/Erp) is a transcription factor that is activated by the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. It plays several important roles in various physiological processes, including cell migration, invasion, wound healing, angiogenesis and tumorigenesis. In the present study, we investigated the role of ELK3 in cancer cell invasion and metastasis in CD133+/CD44+ liver cancer stem cells (LCSCs). We isolated LCSCs expressing CD133 and CD44 from Huh7 HCC cells and evaluated their metastatic potential using invasion and migration assays. We found that CD133+/CD44+ cells had increased metastatic potential compared with non-CD133+/CD44+ cells. We also demonstrated that ELK3 expression was upregulated in CD133+/CD44+ cells and that this aberration enhanced cell migration and invasion. In addition, we identified the molecular mechanism by which ELK3 promotes cancer cell migration and invasion. We found that silencing of ELK3 expression in CD133+/CD44+ LCSCs attenuated their metastatic potential by modulating the expression of heat shock-induced factor-1α (HIF-1α). Collectively, the results of the present study demonstrated that ELK3 overexpression promoted metastasis in CD133+/CD44+ cells by regulating HIF-1α expression and that silencing of ELK3 expression attenuated the metastatic potential of CD133+/CD44+ LCSCs. In conclusion, modulation of ELK3 expression may

  13. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9.

    Science.gov (United States)

    Li, Jingyuan; Wang, Lijuan; Liu, Zongzhi; Zu, Chao; Xing, Fanfan; Yang, Pei; Yang, Yongkang; Dang, Xiaoqian; Wang, Kunzheng

    2015-09-22

    Accumulating evidence indicates that dysregulation of miRNAs could contribute to tumor growth and metastasis of chondrosarcoma by infuencing cell proliferation and invasion. In the current study, we are interested to examine the role of miRNAs in the carcinogenesis and progression of chondrosarcoma. Here, using comparative miRNA profiling of tissues and cells of chondrosarcoma and cartilage, we identified miR-494 as a commonly downregulated miRNA in the tissues of patients with chondrosarcoma and chondrosarcoma cancer cell line, and upregulation of miR-494 could inhibit proliferation and invasion of chondrosarcoma cancer cells in vivo and in vitro. Moreover, our data demonstrated that SOX9, the essential regulator of the process of cartilage differentiation, was the direct target and functional mediator of miR-494 in chondrosarcoma cells. And downregulation of SOX9 could also inhibit migration and invasion of chondrosarcoma cells. In the last, we identified low expression of miR-494 was significantly correlated with poor overall survival and prognosis of chondrosarcoma patients. Thus, miR-494 may be a new common therapeutic target and prognosis biomarker for chondrosarcoma.

  14. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (Ptissues was than in normal adjacent esophageal tissues (Ptissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  15. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4

    Directory of Open Access Journals (Sweden)

    Hu H

    2017-05-01

    Full Text Available Haili Hu,1,* Guanghui Wang,1,* Congying Li2 1Department of Otorhinolaryngology, Huaihe Hospital of Henan University, 2Department of Otorhinolaryngology, School of Medicine, Kaifeng University, Kaifeng, People’s Republic of China *These authors contributed equally to this work Background: Recent studies have demonstrated that microRNA 124 (miR-124 acts as a tumor suppressor in nasopharyngeal carcinoma (NPC; however, the exact molecular mechanism by which miR-124 exerts tumor suppression has not been well elucidated.Materials and methods: We performed quantitative real-time PCR (qRT-PCR to measure the expression of metastasis associated lung adenocarcinoma transcript 1, miR-124, and calpain small subunit 1 (Capn4 mRNAs in NPC cell lines. We also performed western blot analysis to detect the levels of Capn4. Furthermore, we performed MTT assay and transwell invasion assay to determine the proliferation and invasion ability of two NPC cell lines, namely, HONE1 and CNE2 cells, respectively. The verification of targets of miR-124 was performed using prediction softwares and luciferase reporter analysis.Results: According to our results, the expression of Capn4 was found to be elevated, whereas the expression of miR-124 was lowered in NPC cell lines compared with normal nasopharyngeal cells. When we preformed overexpression of miR-124, it suppressed the proliferation and invasion of NPC cells. Moreover, miR-124 suppressed the expression of Capn4 by targeting Capn4 in HONE1 and CNE2 cells. When we preformed overexpression of Capn4, it reversed the inhibitory effect of miR-124 on the proliferation and invasion of NPC cells. Furthermore, miR-124–Capn4 axis decreased the levels of β-catenin, cyclin D1, and c-Myc, the components of the Wnt/β-catenin signaling pathway.Conclusion: The suppression of proliferation and invasion of NPC cells by miR-124 were achieved by the regulation of Wnt/β-catenin signaling pathway by targeting Capn4. The results of

  16. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Harish Chandra Pal

    Full Text Available Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059 or of NFκB (caffeic acid phenethyl ester also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers (E-cadherin and desmoglein. Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that

  17. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    Science.gov (United States)

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  18. Effects of MicroRNA-206 on Osteosarcoma Cell Proliferation, Apoptosis, Migration and Invasion by Targeting ANXA2 Through the AKT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bao-Long Pan

    2018-02-01

    Full Text Available Background/Aims: This study aimed to investigate the mechanism by which microRNA-206 (miR-206 affects the proliferation, apoptosis, migration and invasion of osteosarcoma (OS cells by targeting ANXA2 via the AKT signaling pathway. Methods: A total of 132 OS tissues and 120 osteochondroma tissues were examined in this study. The targeting relationship between miR-206 and ANXA2 was verified with a dual-luciferase reporter assay. The miR-206 expression and ANXA2, AKT, PARP, FASN, Survivin, Bax, Mcl-1 and Bcl-1 mRNA and protein expression in the above two groups were examined by qRT-PCR and western blotting. The cultured OS cells were divided into 6 groups: a blank group, negative control (NC group, miR-206 mimic group, miR-206 inhibitor group, si-ANXA2 group and miR-206 inhibitor + si-ANXA2 group. Cell cycle and apoptosis were assessed by flow cytometry, cell migration was examined with a wound-healing assay, and cell invasion was assessed with a Transwell assay. Pearson correlation analysis was used to determine the correlation between ANXA2 mRNA expression and miR-206 expression in OS. Results: OS tissues exhibited increased mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-2; decreased miR-206 expression; and decreased Bax mRNA and protein expression. ANXA2 mRNA expression was strongly negatively correlated with miR-206 expression in OS. ANXA2 was found to be a miR-206 target gene. In the miR-206 mimic group and the si-ANXA2 group, the mRNA and protein expression of ANXA2, AKT, PARP, FASN, Survivin, Mcl-1 and Bcl-1 decreased markedly, cell proliferation was inhibited, apoptosis was promoted, higher cell growth in G1 phase and decreased growth in S phase was detected, and decreased cell migration and invasion were observed compared with those in the blank group. Conclusion: The current results demonstrate that miR-206 overexpression inhibits OS cell proliferation, migration and invasion and promotes apoptosis through

  19. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

    International Nuclear Information System (INIS)

    Liu, Hongying; Bei, Xiaoqiong; Xia, Qiuting; Fu, Yan; Zhang, Shi; Liu, Maochuan; Fan, Kai; Zhang, Mingzhen; Yang, Yong

    2016-01-01

    We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO 3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity. (author)

  20. miR-125b-1-3p inhibits trophoblast cell invasion by targeting sphingosine-1-phosphate receptor 1 in preeclampsia.

    Science.gov (United States)

    Li, Qinghua; Pan, Zhifang; Wang, Xuejian; Gao, Zhiqin; Ren, Chune; Yang, Weiwei

    2014-10-10

    Preeclampsia (PE) is the leading cause of maternal and perinatal mortality and morbidity. Understanding the molecular mechanisms underlying placentation facilitates the development of better intervention of this disease. MicroRNAs are strongly implicated in the pathogenesis of this syndrome. In current study, we found that miR-125b-1-3p was elevated in placentas derived from preeclampsia patients. Transfection of miR-125b-1-3p mimics significantly inhibited the invasiveness of human trophoblast cells, whereas miR-125b-1-3p inhibitor enhanced trophoblast cell invasion. Luciferase assays identified that S1PR1 was a novel direct target of miR-125b-1-3p in the placenta. Overexpression of S1PR1 could reverse the inhibitory effect of miR-125b-1-3p on the invasion of trophoblast cells. These findings suggested that abnormal expression of miR-125b-1-3p might contribute to the pathogenesis of preeclampsia. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Social amplification of risk

    International Nuclear Information System (INIS)

    Kasperson, R.E.; Renn, O.; Slovic, P.; Kasperson, J.X.; Emani, S.

    1989-01-01

    The risks associated with radioactive and other hazardous waste disposal may be expected to interact with societal processes to enlarge or attenuate the consequences of risks and risk events. This article summarizes a conceptual framework that depicts the social amplification of risk. Using a data base of 128 hazard events that have occurred largely over the past ten years, the authors examine the role of physical consequences, media coverage, and public perceptions of risk in generating social and economic impacts. The analysis concludes that social amplification processes substantially shape the nature and magnitude of those impacts but also that such social amplification appears to be systematically related to characteristics of the risks and risk events

  2. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis

    Science.gov (United States)

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma. PMID:25755717

  3. Pilot study for supervised target detection applied to spatially registered multiparametric MRI in order to non-invasively score prostate cancer.

    Science.gov (United States)

    Mayer, Rulon; Simone, Charles B; Skinner, William; Turkbey, Baris; Choykey, Peter

    2018-03-01

    Gleason Score (GS) is a validated predictor of prostate cancer (PCa) disease progression and outcomes. GS from invasive needle biopsies suffers from significant inter-observer variability and possible sampling error, leading to underestimating disease severity ("underscoring") and can result in possible complications. A robust non-invasive image-based approach is, therefore, needed. Use spatially registered multi-parametric MRI (MP-MRI), signatures, and supervised target detection algorithms (STDA) to non-invasively GS PCa at the voxel level. This study retrospectively analyzed 26 MP-MRI from The Cancer Imaging Archive. The MP-MRI (T2, Diffusion Weighted, Dynamic Contrast Enhanced) were spatially registered to each other, combined into stacks, and stitched together to form hypercubes. Multi-parametric (or multi-spectral) signatures derived from a training set of registered MP-MRI were transformed using statistics-based Whitening-Dewhitening (WD). Transformed signatures were inserted into STDA (having conical decision surfaces) applied to registered MP-MRI determined the tumor GS. The MRI-derived GS was quantitatively compared to the pathologist's assessment of the histology of sectioned whole mount prostates from patients who underwent radical prostatectomy. In addition, a meta-analysis of 17 studies of needle biopsy determined GS with confusion matrices and was compared to the MRI-determined GS. STDA and histology determined GS are highly correlated (R = 0.86, p < 0.02). STDA more accurately determined GS and reduced GS underscoring of PCa relative to needle biopsy as summarized by meta-analysis (p < 0.05). This pilot study found registered MP-MRI, STDA, and WD transforms of signatures shows promise in non-invasively GS PCa and reducing underscoring with high spatial resolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Arsenic trioxide inhibits Ewing's sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase.

    Science.gov (United States)

    Zhang, Shuai; Guo, Wei; Ren, Ting-Ting; Lu, Xin-Chang; Tang, Guo-Qing; Zhao, Fu-Long

    2012-01-01

    Ewing's sarcoma is the second most frequent primary malignant bone tumor, mainly affecting children and young adults. The notorious metastatic capability of this tumor aggravates patient mortality and remains a problem to be overcome. We investigated the effect of arsenic trioxide (As₂O₃) on the metastasis capability of Ewing's sarcoma cells. We performed 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide assays to choose appropriate concentrations of As₂O₃ for the experiments. Migration, invasion, and adhesion assays were performed to assess the effect of As₂O₃ on the metastasis of Ewing's sarcoma. Immunofluorescent staining was used to observe cytoskeleton reorganization in Ewing's sarcoma cells treated with As₂O₃. Changes in matrix metalloproteinase-9 expression and the mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Inhibitors of p38(MAPK) (sb202190) and c-Jun NH₂-terminal kinase (JNK, sp600125) were used in invasion assays to determine the effect of p38(MAPK) and JNK. We found that As₂O₃ may markedly inhibit the migration and invasion capacity of Ewing's sarcoma cells with structural rearrangements of the actin cytoskeleton. The expressions of matrix metalloproteinase-9, phosphor-p38(MAPK), and phosphor-JNK were suppressed by As₂O₃ treatment in a dose-dependent manner. The inhibitors of p38(MAPK) (sb202190) and JNK (sp600125) enhanced the inhibition induced by As₂O₃, which was counteracted by anisomycin, an activating agent of p38(MAPK) and JNK. Taken together, our results demonstrate that As₂O₃ can inhibit the metastasis capability of RD-ES and A-673 cells and may have new therapeutic value for Ewing's sarcoma.

  5. MiR-142 modulates human pancreatic cancer proliferation and invasion by targeting hypoxia-inducible factor 1 (HIF-1α in the tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Yebin Lu

    2017-02-01

    Full Text Available MicroRNAs regulate most protein-coding genes, including genes important in cancer and other diseases. In this study, we demonstrated that the expression of miR-142 could be significantly suppressed in pancreatic cancer specimens and cell lines compared to their adjacent tissues and normal pancreatic cells. Growth and invasion of PANC-1 and SW1990 cells were attenuated by overexpression of miR-142 in vitro. With the help of bioinformatics analysis, hypoxia-inducible factor 1 (HIF-1α was identified to be a direct target of miR-142, and a luciferase reporter experiment confirmed this discovery. Overexpression of miR-142 decreases protein expression of HIF-1α. In the hypoxic microenvironment, HIF-1α was up-regulated while miR-142 was down-regulated. The invaded cells significantly increased in the hypoxic microenvironment compared to the normoxic microenvironment. The hypoxia treatment induced cells’ proliferation, and invasion could be inhibited by miR-142 overexpression or HIF-1α inhibition. Moreover, expression of epithelial-mesenchymal transition (EMT markers, Vimentin, VEGF-C and E-cad, was altered under hypoxia conditions and regulated by miR-142/HIF-1α. Above all, these findings provided insights on the functional mechanism of miR-142, suggesting that the miR-142/HIF-1α axis may interfere with the proliferative and invasive properties of pancreatic cancer cells, and indicated that miR-142 could be a potential therapeutic target for pancreatic cancer.

  6. Spontaneous bone metastases in a preclinical orthotopic model of invasive lobular carcinoma; the effect of pharmacological targeting TGFβ receptor I kinase.

    Science.gov (United States)

    Buijs, Jeroen T; Matula, Kasia M; Cheung, Henry; Kruithof-de Julio, Marianna; van der Mark, Maaike H; Snoeks, Thomas J; Cohen, Ron; Corver, Willem E; Mohammad, Khalid S; Jonkers, Jos; Guise, Theresa A; van der Pluijm, Gabri

    2015-04-01

    Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the most frequently occurring histological subtypes of breast cancer, accounting for 80-90% and 10-15% of the total cases, respectively. At the time of diagnosis and surgical resection of the primary tumour, most patients do not have clinical signs of metastases, but bone micrometastases may already be present. Our aim was to develop a novel preclinical ILC model of spontaneous bone micrometastasis. We used murine invasive lobular breast carcinoma cells (KEP) that were generated by targeted deletion of E-cadherin and p53 in a conditional K14cre;Cdh1((F/F));Trp53((F/F)) mouse model of de novo mammary tumour formation. After surgical resection of the growing orthotopically implanted KEP cells, distant metastases were formed. In contrast to other orthotopic breast cancer models, KEP cells readily formed skeletal metastases with minimal lung involvement. Continuous treatment with SD-208 (60 mg/kg per day), an orally available TGFβ receptor I kinase inhibitor, increased the tumour growth at the primary site and increased the number of distant metastases. Furthermore, when SD-208 treatment was started after surgical resection of the orthotopic tumour, increased bone colonisation was also observed (versus vehicle). Both our in vitro and in vivo data show that SD-208 treatment reduced TGFβ signalling, inhibited apoptosis, and increased proliferation. In conclusion, we have demonstrated that orthotopic implantation of murine ILC cells represent a new breast cancer model of minimal residual disease in vivo, which comprises key steps of the metastatic cascade. The cancer cells are sensitive to the anti-tumour effects of TGFβ. Our in vivo model is ideally suited for functional studies and evaluation of new pharmacological intervention strategies that may target one or more steps along the metastatic cascade of events. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on

  7. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR).

    Science.gov (United States)

    Xiong, Yaoyao; Wang, Long; Li, Yuan; Chen, Minfeng; He, Wei; Qi, Lin

    2017-01-01

    Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA's target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR) is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells' proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3'UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR

    Directory of Open Access Journals (Sweden)

    Yaoyao Xiong

    2017-08-01

    Full Text Available Backgrounds/Aims: Long non-coding RNA (lncRNA X-inactive specific transcript (XIST is involved in the progression of several tumors. The interaction between lncRNA and miRNA or miRNA’s target genes is reported to play crucial roles in malignancy. In addition, Androgen receptor (AR is considered to be involved in bladder cancer progression. In this study, we investigated the role of XIST in human bladder cancer and its interaction with miR-124 and AR. Methods: XIST and AR expression was detected in bladder tumor samples and cell lines. Effects of XIST and AR on bladder cancer cells growth, invasion and migration were analyzed. Bioinformatic analysis and luciferase assays were used to identify the interaction among XIST, AR and miR-124. The correlations of miR-124 with XIST and AR in bladder cancer samples were statistically analyzed. Results: XIST and AR were upregulated in bladder cancer tissues and positively correlated. Higher XIST and AR expression were related to poorer TNM stage of bladder cancer. XIST knockdown reduced bladder cancer cells’ proliferation, invasion and migration. While this inhibitory effect could be partially restored by AR overexpression. XIST inhibited miR-124 expression by directly targeting. Moreover, miR-124 could bind to the 3’UTR of AR to regulate its expression. MiR-124 inhibition partially restored the XIST knockdown-induced reduction of AR, c-myc, p27, MMP13 and MMP9 expression. In bladder cancer tissues, miR-124 level was inversely correlated with the expression of XIST and AR, respectively. Conclusion: These findings indicated that XIST might be an oncogenic lncRNA that promoted the bladder cancer growth, invasion and migration via miR-124 dependent AR regulation.

  9. Helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-10-11

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. Copyright © 2013 John Wiley & Sons, Inc.

  10. Biomaterials in light amplification

    Science.gov (United States)

    Mysliwiec, Jaroslaw; Cyprych, Konrad; Sznitko, Lech; Miniewicz, Andrzej

    2017-03-01

    Biologically produced or inspired materials can serve as optical gain media, i.e. they can exhibit the phenomenon of light amplification. Some of these materials, under suitable dye-doping and optical pumping conditions, show lasing phenomena. The emerging branch of research focused on obtaining lasing action in highly disordered and highly light scattering materials, i.e. research on random lasing, is perfectly suited for biological materials. The use of biomaterials in light amplification has been extensively reported in the literature. In this review we attempt to report on progress in the development of biologically derived systems able to show the phenomena of light amplification and random lasing together with the contribution of our group to this field. The rich world of biopolymers modified with molecular aggregates and nanocrystals, and self-organized at the nanoscale, offers a multitude of possibilities for tailoring luminescent and light scattering properties that are not easily replicated in conventional organic or inorganic materials. Of particular importance and interest are light amplification and lasing, or random lasing studies in biological cells and tissues. In this review we will describe nucleic acids and their complexes employed as gain media due to their favorable optical properties and ease of manipulation. We will report on research conducted on various biomaterials showing structural analogy to nucleic acids such as fluorescent proteins, gelatins in which the first distributed feedback laser was realized, and also amyloids or silks, which, due to their dye-doped fiber-like structure, allow for light amplification. Other materials that were investigated in that respect include polysaccharides, like starch exhibiting favorable photostability in comparison to other biomaterials, and chitosan, which forms photonic crystals or cellulose. Light amplification and random lasing was not only observed in processed biomaterials but also in living

  11. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  12. Multidisciplinary approach to the treatment of invasive fungal infections in adult patients. Prophylaxis, empirical, preemptive or targeted therapy, which is the best in the different hosts?

    Directory of Open Access Journals (Sweden)

    Rafael Zaragoza

    2008-11-01

    Full Text Available Rafael Zaragoza1, Javier Pemán2, Miguel Salavert3, Ángel Viudes2, Amparo Solé4, Isidro Jarque5, Emilio Monte6, Eva Romá6, Emilia Cantón71Servicio de Medicina Intensiva, Hospital Universitario Dr Peset, Valencia, Spain; 2Servicio de Microbiología; 3Unidad de Enfermedades Infecciosas; 4Unidad de Trasplante Pulmonar; 5Servicio de Hematología; 6Servicio de Farmacia; 7Unidad de Microbiología Experimental, Centro de Investigación, Hospital Universitario La Fe Valencia, SpainAbstract: The high morbidity, mortality, and health care costs associated with invasive fungal infections, especially in the critical care setting and immunocompromised host, have made it an excellent target for prophylactic, empiric, and preemptive therapy interventions principally based on early identification of risk factors. Early diagnosis and treatment are associated with a better prognosis. In the last years there have been important developments in antifungal pharmacotherapy. An approach to the new diagnosis tools in the clinical mycology laboratory and an analysis of the use new antifungal agents and its application in different clinical situations has been made. Furthermore, an attempt of developing a state of the art in each clinical scenario (critically ill, hematological, and solid organ transplant patients has been performed, trying to choose the best strategy for each clinical situation (prophylaxis, pre-emptive, empirical, or targeted therapy. The high mortality rates in these settings make mandatory the application of early de-escalation therapy in critically ill patients with fungal infection. In addition, the possibility of antifungal combination therapy might be considered in solid organ transplant and hematological patients.Keywords: invasive fungal infections, prophylaxis, empirical therapy, preemptive treatment, targeted therapy

  13. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chi-Tai [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Rao, Yerra Koteswara [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China); Ye, Min [Department of Natural Medicine, School of Pharmaceutical Sciences, Peking University, Beijing (China); Wu, Wen-Shi [Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan (China); Chang, Tung-Chen [Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wang, Liang-Shun [Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Wu, Chih-Hsiung [Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan (China); Department of Surgery, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan (China); Wu, Alexander T.H., E-mail: chaw1211@tmu.edu.tw [Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan (China); Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan (China); Tzeng, Yew-Min, E-mail: ymtzeng@cyut.edu.tw [Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung, Taiwan (China)

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  14. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness.

    Science.gov (United States)

    Götte, M; Mohr, C; Koo, C-Y; Stock, C; Vaske, A-K; Viola, M; Ibrahim, S A; Peddibhotla, S; Teng, Y H-F; Low, J-Y; Ebnet, K; Kiesel, L; Yip, G W

    2010-12-16

    Micro RNAs are small non-coding RNAs, which regulate fundamental cellular and developmental processes at the transcriptional and translational level. In breast cancer, miR-145 expression is downregulated compared with healthy control tissue. As several predicted targets of miR-145 potentially regulate cell motility, we aimed at investigating a potential role for miR-145 in breast cancer cell motility and invasiveness. Assisted by Affymetrix array technology, we demonstrate that overexpression of miR-145 in MDA-MB-231, MCF-7, MDA-MB-468 and SK-BR-3 breast cancer cells and in Ishikawa endometrial carcinoma cells leads to a downregulation of the cell-cell adhesion protein JAM-A and of the actin bundling protein fascin. Moreover, podocalyxin and Serpin E1 mRNA levels were downregulated, and gamma-actin, transgelin and MYL9 were upregulated upon miR-145 overexpression. These miR-145-dependent expression changes drastically decreased cancer cell motility, as revealed by time-lapse video microscopy, scratch wound closure assays and matrigel invasion assays. Immunofluorescence microscopy demonstrated restructuring of the actin cytoskeleton and a change in cell morphology by miR-145 overexpression, resulting in a more cortical actin distribution, and reduced actin stress fiber and filopodia formation. Nuclear rotation was observed in 10% of the pre-miR-145 transfected MDA-MB-231 cells, accompanied by a reduction of perinuclear actin. Luciferase activation assays confirmed direct miR-145-dependent regulation of the 3'UTR of JAM-A, whereas siRNA-mediated knockdown of JAM-A expression resulted in decreased motility and invasiveness of MDA-MB-231 and MCF-7 breast cancer cells. Our data identify JAM-A and fascin as novel targets of miR-145, firmly establishing a role for miR-145 in modulating breast cancer cell motility. Our data provide a rationale for future miR-145-targeted approaches of antimetastatic cancer therapy.

  15. Call for Action: Invasive Fungal Infections Associated With Ibrutinib and Other Small Molecule Kinase Inhibitors Targeting Immune Signaling Pathways.

    Science.gov (United States)

    Chamilos, Georgios; Lionakis, Michail S; Kontoyiannis, Dimitrios P

    2018-01-06

    Opportunistic infections caused by Pneumocystis jirovecii, Cryptococcus neoformans, and ubiquitous airborne filamentous fungi have been recently reported in patients with hematological cancers historically considered at low risk for invasive fungal infections (IFIs), after receipt of the Bruton tyrosine kinase inhibitor ibrutinib. The spectrum and severity of IFIs often observed in these patients implies the presence of a complex immunodeficiency that may not be solely attributed to mere inhibition of Bruton tyrosine kinase. In view of the surge in development of small molecule kinase inhibitors for treatment of malignant and autoimmune diseases, it is possible that there would be an emergence of IFIs associated with the effects of these molecules on the immune system. Preclinical assessment of the immunosuppressive effects of kinase inhibitors and human studies aimed at improving patient risk stratification for development of IFIs could lead to prevention, earlier diagnosis, and better outcomes in affected patients. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Xiu Juan Li

    2017-12-01

    Full Text Available Background/Aims: Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246 as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. Methods: The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. Results: In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2, indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Conclusions: Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics.

  17. MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met.

    Science.gov (United States)

    Korhan, Peyda; Erdal, Esra; Atabey, Neşe

    2014-08-08

    c-Met receptor tyrosine kinase has been regarded as a promising therapeutic target for hepatocellular carcinoma (HCC). Recently, microRNAs (miRNAs) have been shown as a novel mechanism to control c-Met expression in cancer. In this study, we investigate the potential contribution of miR-181a-5p dysregulation to the biology of c-Met overexpression in HCC. Herein, we found an inverse expression pattern between miR-181a-5p and c-Met expression in normal, cirrhotic and HCC liver tissues. Luciferase assay confirmed that miR-181a-5p binding to the 3'-UTR of c-Met downregulated the expression of c-Met in HCC cells. Overexpression of miR-181a-5p suppressed both HGF-independent and -dependent activation of c-Met and consequently diminished branching-morphogenesis and invasion. Combined treatment with miR-181a-5p and c-Met inhibitor led to a further inhibition of c-Met-driven cellular activities. Knockdown of miR-181a-5p promoted HGF-independent/-dependent signaling of c-Met and accelerated migration, invasion and branching-morphogenesis. In conclusion, our results demonstrated for the first time that c-Met is a functional target gene of miR-181a-5p and the loss of miR-181a-5p expression led to the activation of c-Met-mediated oncogenic signaling in hepatocarcinogenesis. These findings display a novel molecular mechanism of c-Met regulation in HCC and strategies to increase miR-181a5p level might be an alternative approach for the enhancement of the inhibitory effects of c-Met inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma.

    Science.gov (United States)

    Hirahata, Mio; Osaki, Mitsuhiko; Kanda, Yusuke; Sugimoto, Yui; Yoshioka, Yusuke; Kosaka, Nobuyoshi; Takeshita, Fumitaka; Fujiwara, Tomohiro; Kawai, Akira; Ito, Hisao; Ochiya, Takahiro; Okada, Futoshi

    2016-05-01

    Despite recent improvements in the therapy for osteosarcoma, 30-40% of osteosarcoma patients die of this disease, mainly due to its lung metastasis. We have previously reported that intravenous injection of miR-143 significantly suppresses lung metastasis of human osteosarcoma cells (143B) in a mouse model. In this study, we examined the biological role and mechanism of miR-143 in the metastasis of human osteosarcoma cells. We identified plasminogen activator inhibitor-1 (PAI-1) as a direct target gene of miR-143. To determine the role of PAI-1 in human osteosarcoma cells, siRNA was transfected into 143B cells for knockdown of PAI-1 expression. An in vitro study showed that downregulation of PAI-1 suppressed cell invasion activity, but not proliferation. Moreover, injection of PAI-1 siRNA into a primary lesion in the osteosarcoma mouse model inhibited lung metastasis compared to control siRNA-injected mice, without influencing the proliferative activity of the tumor cells. Subsequent examination using 143B cells revealed that knockdown of PAI-1 expression resulted in downregulation of the expression and secretion of matrix metalloproteinase-13 (MMP-13), which is also a target gene of miR-143 and a proteolytic enzyme that regulates tumor-induced osteolysis. Immunohistochemical analysis using clinical samples showed that higher miR-143 expressing cases showed poor expression of PAI-1 in the primary tumor cells. All such cases belonged to the lung metastasis-negative group. Moreover, the frequency of lung metastasis-positive cases was significantly higher in PAI-1 and MMP-13 double-positive cases than in PAI-1 or MMP-13 single-positive or double-negative cases (P target gene of miR-143, regulates invasion and lung metastasis via enhancement of MMP-13 expression and secretion in human osteosarcoma cells, suggesting that these molecules could be potential therapeutic target genes for preventing lung metastasis in osteosarcoma patients. © 2016 The Authors. Cancer

  19. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors.

    Science.gov (United States)

    Lobos-González, Lorena; Silva, Verónica; Araya, Mariela; Restovic, Franko; Echenique, Javiera; Oliveira-Cruz, Luciana; Fitzpatrick, Christopher; Briones, Macarena; Villegas, Jaime; Villota, Claudio; Vidaurre, Soledad; Borgna, Vincenzo; Socias, Miguel; Valenzuela, Sebastián; Lopez, Constanza; Socias, Teresa; Varas, Manuel; Díaz, Jorge; Burzio, Luis O; Burzio, Verónica A

    2016-09-06

    We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.

  20. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-05-01

    Full Text Available India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  1. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Science.gov (United States)

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  2. RNA amplification for successful gene profiling analysis

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2005-07-01

    -specific, unbiased transcriptome wide amplification accurately maintains proportionality among all RNA species within a given specimen. This allows the utilization of clinical material obtained with minimally invasive methods such as fine needle aspirates (FNA or cytological washings for high throughput functional genomics studies. This review provides a comprehensive and updated discussion of the literature in the subject and critically discusses the main approaches, the pitfalls and provides practical suggestions for successful unbiased amplification of the whole transcriptome in clinical samples.

  3. Decreased expression of miR‑490‑3p in colorectal cancer predicts poor prognosis and promotes cell proliferation and invasion by targeting RAB14.

    Science.gov (United States)

    Wang, Bo; Yin, Mujun; Cheng, Cheng; Jiang, Hongpeng; Jiang, Kewei; Shen, Zhanlong; Ye, Yingjiang; Wang, Shan

    2018-06-19

    Growing evidence indicates a potential role for miR‑490‑3p in tumorigenesis. However, its function in colorectal carcinoma (CRC) remains undefined. In this study, miR‑490‑3p was markedly downregulated in fifty colorectal cancer tissue samples compared with the corresponding adjacent non‑cancerous specimens, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of miR‑490‑3p were closely associated with tumor differentiation and distant metastasis. In addition, both Kaplan-Meier and multivariate analyses indicated CRC patients with elevated miR‑490‑3p amounts had prolonged overall survival. Overexpression of miR‑490‑3p markedly reduced proliferation, colony formation and invasion in CRC cells by enhancing apoptosis and promoting G2/M phase arrest. Furthermore, ectopic expression of miR‑490‑3p resulted in decreased expression of RAB14, which was directly targeted by miR‑490‑3p, as shown by the dual-luciferase reporter gene assay. Finally, in a nude mouse model, miR‑490‑3p overexpression significantly suppressed the growth of CRC cells. The above results indicated that miR‑490‑3p might constitute a prognostic indicator and a novel molecular target for miRNA-based CRC therapy.

  4. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  5. A mechanism of gene amplification driven by small DNA fragments.

    Directory of Open Access Journals (Sweden)

    Kuntal Mukherjee

    Full Text Available DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s. Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation

  6. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer.

    Science.gov (United States)

    Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao

    2017-01-01

    Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Liu, Huaize; Wang, Han; Liu, Xiaoxiao; Yu, Tingting

    2016-01-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  8. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huaize [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China); Wang, Han [The First Clinical Medical College of Nanjing Medical University, Nanjing 210029 (China); Liu, Xiaoxiao [Department of Biotechnology, Nanjing Medical University, Nanjing 210029 (China); Yu, Tingting, E-mail: tingting@njmu.edu.cn [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China)

    2016-04-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  9. MicroRNA-194 promotes the growth, migration, and invasion of ovarian carcinoma cells by targeting protein tyrosine phosphatase nonreceptor type 12

    Directory of Open Access Journals (Sweden)

    Liang T

    2016-07-01

    Full Text Available Tian Liang, Liru Li, Yan Cheng, Chengcheng Ren, Guangmei Zhang Department of Gynecology and Obstetrics, The first Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Hei Longjiang, People’s Republic of China Abstract: Ovarian carcinoma is the most lethal gynecologic malignancy among women. Ovarian cancer metastasis is the main reason for poor prognosis. MicroRNAs (miRNAs have been shown to play an important role in tumorigenesis and metastasis in various cancers by affecting the expression of their targets. In this study, we explored the role of miR-194 in ovarian cancer. Real-time polymerase chain reaction assays showed that miR-194 was significantly upregulated in ovarian cancer tissues. Overexpression of miR-194 in ovarian cancer cells promotes cell proliferation, migration, and invasion; in contrast, inhibition of the expression of miR-194 has the opposite effects. Meanwhile, bioinformatics tools were used to identify protein tyrosine phosphatase nonreceptor type 12 (PTPN12 as a potential target of miR-194. The luciferase assay showed that miR-194 directly binds to the 3'-untranslated region of PTPN12. Western blot analysis and quantitative real-time polymerase chain reaction assay revealed that PTPN12 expression was negatively associated with miR-194 expression in both ovarian cancer tissues and cells. Thus, we conclude that miR-194 targets PTPN12 and functions as an oncogene in ovarian cancer cells. This novel pathway may provide a new insight to explain ovarian cancer development and metastasis. Keywords: miR-194, ovarian cancer, PTPN12, metastasis

  10. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    Science.gov (United States)

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  11. Evidence of high-elevation amplification versus Arctic amplification.

    Science.gov (United States)

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-12

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world's high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  12. Exponential isothermal amplification of nucleic acids and amplified assays for proteins, cells, and enzyme activities.

    Science.gov (United States)

    Reid, Michael S; Le, X Chris; Zhang, Hongquan

    2018-04-27

    Isothermal exponential amplification techniques, such as strand-displacement amplification (SDA), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA), and recombinase polymerase amplification (RPA), have great potential for on-site, point-of-care, and in-situ assay applications. These amplification techniques eliminate the need for temperature cycling required for polymerase chain reaction (PCR) while achieving comparable amplification yield. We highlight here recent advances in exponential amplification reaction (EXPAR) for the detection of nucleic acids, proteins, enzyme activities, cells, and metal ions. We discuss design strategies, enzyme reactions, detection techniques, and key features. Incorporation of fluorescence, colorimetric, chemiluminescence, Raman, and electrochemical approaches enables highly sensitive detection of a variety of targets. Remaining issues, such as undesirable background amplification resulting from non-specific template interactions, must be addressed to further improve isothermal and exponential amplification techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  14. Efficient Audio Power Amplification - Challenges

    DEFF Research Database (Denmark)

    Andersen, Michael Andreas E.

    2005-01-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where...

  15. Efficient audio power amplification - challenges

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Michael A.E.

    2005-07-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where extensive research and development are needed is covered. (au)

  16. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    International Nuclear Information System (INIS)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob; Ploug, Michael; Kjaer, Andreas

    2012-01-01

    The proposition of uPAR as a potential target in cancer therapy is advanced by its predominant expression at the invasive front of colorectal cancer (CRC) and its value as prognostic biomarker for poor survival in this disease. In this study, we provide the first in vivo proof-of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. Methods: A DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64 Cu and 177 Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29 cells were inoculated in Nude mice and treated with 177 Lu-DOTA-AE105 once a visible tumor had formed. To evaluate the true effect of the targeted radiotherapy, two controls groups were included in this study, one receiving a 177 Lu-labeled non-binding control peptide and one receiving vehicle. All animals were treated day 0 and 7. A parallel 18 F-FLT PET/CT study was performed on day 0, 1, 3 and 6. Dosimetry calculations were based on a biodistribution study, where organs and tissue of interest were collected 0.5, 1.0, 2.0, 4.0 and 24 h post injection of 177 Lu-DOTA-AE105. Toxicity was assessed by recording mouse weight and by H and E staining of kidneys in each treatment group. Results: uPAR-positive HT-29 xenograft was clearly visualized by PET/CT imaging using 64 Cu-DOTA-AE105. Subsequently, these xenograft transplants were locally irradiated using 177 Lu-DOTA-AE105, where a significant effect on tumor size and the number of uPAR-positive cells in the tumor was found (p 18 F-FLT PET/CT imaging study revealed a significant correlation between 18 F-FLT tumor uptake and efficacy of the radionuclide therapy. A histological examination of the kidneys from one animal in each treatment group did not reveal any gross abnormalities and the general performance of all treated animals also showed no indications of radioactivity-induced toxicity. Conclusion: These findings

  17. GL-1196 Suppresses the Proliferation and Invasion of Gastric Cancer Cells via Targeting PAK4 and Inhibiting PAK4-Mediated Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-04-01

    Full Text Available Gastric cancer, which is the most common malignant gastrointestinal tumor, has jumped to the third leading cause of cancer-related mortality worldwide. It is of great importance to identify novel and potent drugs for gastric cancer treatment. P21-activated kinase 4 (PAK4 has emerged as an attractive target for the development of anticancer drugs in consideration of its vital functions in tumorigenesis and progression. In this paper, we reported that GL-1196, as a small molecular compound, effectively suppressed the proliferation of human gastric cancer cells through downregulation of PAK4/c-Src/EGFR/cyclinD1 pathway and CDK4/6 expression. Moreover, GL-1196 prominently inhibited the invasion of human gastric cancer cells in parallel with blockage of the PAK4/LIMK1/cofilin pathway. Interestingly, GL-1196 also inhibited the formation of filopodia and induced cell elongation in SGC7901 and BGC823 cells. Taken together, these results provided novel insights into the potential therapeutic strategy for gastric cancer.

  18. Skin Cancer of the Head and Neck With Perineural Invasion: Defining the Clinical Target Volumes Based on the Pattern of Failure

    International Nuclear Information System (INIS)

    Gluck, Iris; Ibrahim, Mohannad; Popovtzer, Aron; Teknos, Theodoros N.; Chepeha, Douglas B.; Prince, Mark E.; Moyer, Jeffrey S.; Bradford, Carol R.; Eisbruch, Avraham

    2009-01-01

    Purpose: To analyze patterns of failure in patients with head-and-neck cutaneous squamous cell carcinoma (HNCSCC) and clinical/radiologic evidence of perineural invasion (CPNI), in order to define neural clinical target volume (CTV) for treatment planning. Methods and Materials: Patients treated with three-dimensional (3D) conformal or intensity-modulated radiotherapy (IMRT) for HNCSCC with CPNI were included in the study. A retrospective review of the clinical charts, radiotherapy (RT) plans and radiologic studies has been conducted. Results: Eleven consecutive patients with HNCSCCs with CPNI were treated from 2000 through 2007. Most patients underwent multiple surgical procedures and RT courses. The most prevalent failure pattern was along cranial nerves (CNs), and multiple CNs were ultimately involved in the majority of cases. In all cases the involved CNs at recurrence were the main nerves innervating the primary tumor sites, as well as their major communicating nerves. We have found several distinct patterns of disease spread along specific CNs depending on the skin regions harboring the primary tumors, including multiple branches of CN V and VII. These patterns and the pertinent anatomy are detailed in the this article. Conclusions: Predictable disease spread patterns along cranial nerves supplying the primary tumor sites were found in this study. Awareness of these patterns, as well as knowledge of the relevant cranial nerve anatomy, should be the basis for CTV definition and delineation for RT treatment planning.

  19. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J; Biswal, S; Mourou, G [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  20. Invasive Candidiasis

    Science.gov (United States)

    ... Waterborne, and Environmental Diseases Mycotic Diseases Branch Invasive Candidiasis Recommend on Facebook Tweet Share Compartir Global Emergence ... antifungal drugs. Learn more about C. auris Invasive candidiasis is an infection caused by a yeast (a ...

  1. ErbB2 and NFκB overexpression as predictors of chemoradiation resistance and putative targets to overcome resistance in muscle-invasive bladder cancer.

    Directory of Open Access Journals (Sweden)

    Fumitaka Koga

    Full Text Available Radical cystectomy for muscle-invasive bladder cancer (MIBC patients frequently impairs their quality of life (QOL due to urinary diversion. To improve their QOL, a bladder-sparing alternative strategy using chemoradiation has been developed. In bladder-sparing protocols, complete response (CR to induction chemoradiation is a prerequisite for bladder preservation and favorable survival. Thus predicting chemoradiation resistance and overcoming it would increase individual MIBC patients' chances of bladder preservation. The aim of this study is to investigate putative molecular targets for treatment aimed at improving chemoradiation response. Expression levels of erbB2, NFκB, p53, and survivin were evaluated immunohistochemically in pretreatment biopsy samples from 35 MIBC patients in whom chemoradiation sensitivity had been pathologically evaluated in cystectomy specimens, and associations of these expression levels with chemoradiation sensitivity and cancer-specific survival (CSS were investigated. Of the 35 patients, 11 (31% achieved pathological CR, while tumors in the remaining 24 patients (69% were chemoradiation-resistant. Multivariate analysis identified erbB2 and NFκB overexpression and hydronephrosis as significant and independent risk factors for chemoradiation resistance with respective relative risks of 11.8 (P = 0.014, 15.4 (P = 0.024 and 14.3 (P = 0.038. The chemoradiation resistance rate was 88.5% for tumors overexpressing erbB2 and/or NFκB, but only 11.1% for those negative for both (P <0.0001. The 5-year CSS rate was 74% overall. Through multivariate analysis, overexpression of erbB2 and/or NFκB was identified as an independent risk factor for bladder cancer death with marginal significance (hazard ratio 21.5, P = 0.056 along with chemoradiation resistance (P = 0.003 and hydronephrosis (P = 0.018. The 5-year CSS rate for the 11 patients achieving pathological CR was 100%, while that for the 24 with

  2. Identification of SEC62 as a potential marker for 3q amplification and cellular migration in dysplastic cervical lesions

    International Nuclear Information System (INIS)

    Linxweiler, Maximilian; Bochen, Florian; Schick, Bernhard; Wemmert, Silke; Al Kadah, Basel; Greiner, Markus; Hasenfus, Andrea; Bohle, Rainer-Maria; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Takacs, Zoltan Ferenc

    2016-01-01

    Chromosome 3 amplification affecting the 3q26 region is a common genomic alteration in cervical cancer, typically marking the transition of precancerous intraepithelial lesions to an invasive phenotype. Though potential 3q encoded target genes of this amplification have been identified, a functional correlation of potential oncogenic function is still missing. In this study, we investigated copy number changes and the expression level of SEC62 encoded at 3q26.2 as a new potential 3q oncogene in dysplastic cervical lesions and analyzed its role in cervical cancer cell biology. Expression levels of Sec62 and vimentin were analyzed in liquid based cytology specimens from 107 women with varying grades of cervical dysplasia ranging from normal cases to cancer by immunofluorescence cytology. Additionally, a subset of 20 representative cases was used for FISH analyses targeting SEC62. To further explore the functional role of Sec62 in cervical cancer, HeLa cells were transfected with a SEC62 plasmid or SEC62 siRNA and analyzed for their proliferation and migration potential using real-time monitoring and trans-well systems as well as changes in the expression of EMT markers. FISH analyses of the swabbed cells showed a rising number of SEC62 gains and amplifications correlating to the grade of dysplasia with the highest incidence in high grade squamous intraepithelial lesions and squamous cell carcinomas. When analyzing the expression level of Sec62 and vimentin, we found a gradually increasing expression level of both proteins according to the severity of the dysplasia. In functional analyses, SEC62 silencing inhibited and SEC62 overexpression stimulated the migration of HeLa cells with only marginal effects on cell proliferation, the expression level of EMT markers and the cytoskeleton structure. Our study suggests SEC62 as a target gene of 3q26 amplification and a stimulator of cellular migration in dysplastic cervical lesions. Hence, SEC62 could serve as a potential

  3. An ultrasensitive colorimeter assay strategy for p53 mutation assisted by nicking endonuclease signal amplification.

    Science.gov (United States)

    Lin, Zhenyu; Yang, Weiqiang; Zhang, Guiyun; Liu, Qida; Qiu, Bin; Cai, Zongwei; Chen, Guonan

    2011-08-28

    A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.

  4. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples

    Directory of Open Access Journals (Sweden)

    Ravindra P Turankar

    2015-01-01

    Conclusion: Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes.

  5. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  6. Comparative evaluation of PCR amplification of RLEP, 16S rRNA, rpoT and Sod A gene targets for detection of M. leprae DNA from clinical and environmental samples.

    Science.gov (United States)

    Turankar, Ravindra P; Pandey, Shradha; Lavania, Mallika; Singh, Itu; Nigam, Astha; Darlong, Joydeepa; Darlong, Fam; Sengupta, Utpal

    2015-03-01

    PCR assay is a highly sensitive, specific and reliable diagnostic tool for the identification of pathogens in many infectious diseases. Genome sequencing Mycobacterium leprae revealed several gene targets that could be used for the detection of DNA from clinical and environmental samples. The PCR sensitivity of particular gene targets for specific clinical and environmental isolates has not yet been established. The present study was conducted to compare the sensitivity of RLEP, rpoT, Sod A and 16S rRNA gene targets in the detection of M. leprae in slit skin smear (SSS), blood, soil samples of leprosy patients and their surroundings. Leprosy patients were classified into Paucibacillary (PB) and Multibacillary (MB) types. Ziehl-Neelsen (ZN) staining method for all the SSS samples and Bacteriological Index (BI) was calculated for all patients. Standard laboratory protocol was used for DNA extraction from SSS, blood and soil samples. PCR technique was performed for the detection of M. leprae DNA from all the above-mentioned samples. RLEP gene target was able to detect the presence of M. leprae in 83% of SSS, 100% of blood samples and in 36% of soil samples and was noted to be the best out of all other gene targets (rpoT, Sod A and 16S rRNA). It was noted that the RLEP gene target was able to detect the highest number (53%) of BI-negative leprosy patients amongst all the gene targets used in this study. Amongst all the gene targets used in this study, PCR positivity using RLEP gene target was the highest in all the clinical and environmental samples. Further, the RLEP gene target was able to detect 53% of blood samples as positive in BI-negative leprosy cases indicating its future standardization and use for diagnostic purposes. Copyright © 2015 Asian African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  7. Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist

    DEFF Research Database (Denmark)

    Ploug, Michael

    2013-01-01

    Research performed during the last two decades has provided a wealth of information to highlight the role of the urokinase-type plasminogen activator receptor (uPAR) in the progression and dissemination of invasive and metastatic cancer. In parallel, our perception of the structure-function relat...

  8. Genome position and gene amplification

    Czech Academy of Sciences Publication Activity Database

    Jirsová, Pavla; Snijders, A.M.; Kwek, S.; Roydasgupta, R.; Fridlyand, J.; Tokuyasu, T.; Pinkel, D.; Albertson, D. G.

    2007-01-01

    Roč. 8, č. 6 (2007), r120 ISSN 1474-760X Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : gene amplification * array comparative genomic hybridization * oncogene Subject RIV: BO - Biophysics Impact factor: 6.589, year: 2007

  9. Minimally invasive autopsy employing post-mortem CT and targeted coronary angiography: evaluation of its application to a routine Coronial service.

    Science.gov (United States)

    Roberts, Ian S D; Traill, Zoe C

    2014-01-01

    Post-mortem imaging is a potential alternative to traditional medicolegal autopsy. We investigate the reduction in number of invasive autopsies required by use of post-mortem CT ± coronary angiography. A total of 120 adult deaths referred to the Coroner were investigated by CT, with coronary angiography employed only for the second series of 60 cases, in order to determine the added value of angiography. The confidence of imaging cause of death was classified as definite (no autopsy), probable, possible or unascertained. Invasive autopsy was not required in 38% of cases without coronary angiography and 70% of cases with angiography. Full autopsy, including brain dissection, was required in only 9% of cases. There was complete agreement between autopsy and radiological causes of death in the cases with a 'probable' imaging cause of death, indicating that cases for which imaging provides an accurate cause of death without autopsy were identified correctly. In two patients, CT demonstrated unsuspected fractures, not detected at subsequent autopsy. A two-thirds reduction in the number of invasive coronial autopsies can be achieved by use of post-mortem CT plus coronary angiography. At the same time, use of post-mortem CT may improve accuracy of diagnosis, particularly for traumatic deaths. © 2013 John Wiley & Sons Ltd.

  10. Cascade DNA nanomachine and exponential amplification biosensing.

    Science.gov (United States)

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  12. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Science.gov (United States)

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Measuring the amplification of attention

    OpenAIRE

    Blaser, Erik; Sperling, George; Lu, Zhong-Lin

    1999-01-01

    An ambiguous motion paradigm, in which the direction of apparent motion is determined by salience (i.e., the extent to which an area is perceived as figure versus ground), is used to assay the amplification of color by attention to color. In the red–green colored gratings used in these experiments, without attention instructions, salience depends on the chromaticity difference between colored stripes embedded in the motion sequence and the yellow background. Selective attention to red (or to ...

  14. Spheromak Impedance and Current Amplification

    International Nuclear Information System (INIS)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-01

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, τ REC , which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI TOR 2 /dt ∼ I 2 /τ REC - I TOR 2 /τ closed where I is the gun current, I TOR is the spheromak toroidal current and τ CLOSED is the ohmic decay time of the spheromak. Achieving high current amplification, I TOR >> I, requires τ REC CLOSED . For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that τ REC actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B ∝ I, or I TOR ∼ I. Program implications are discussed

  15. Typing of Candida isolates from patients with invasive infection and concomitant colonization

    DEFF Research Database (Denmark)

    Brillowska-Dabrowska, A.; Bergmann, O.; Jensen, Irene Møller

    2010-01-01

    We investigated the relationship between colonizing and invasive isolates from patients with candidaemia. Molecular typing was performed using random amplification of polymorphic DNA (RAPD) and multilocus sequence typing (MLST). We found MLST to be sufficient for typing Candida isolates, and that......We investigated the relationship between colonizing and invasive isolates from patients with candidaemia. Molecular typing was performed using random amplification of polymorphic DNA (RAPD) and multilocus sequence typing (MLST). We found MLST to be sufficient for typing Candida isolates...

  16. Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion.

    Science.gov (United States)

    Xue, Mei; Li, Xu; Li, Zhengkun; Chen, Wei

    2014-07-01

    Urothelial carcinoma associated 1 (UCA1) has been identified as an oncogenic long noncoding RNA (lncRNA) that is involved in bladder cancer progression and acts as a diagnostic biomarker for bladder carcinoma. Here, we studied the expression and function of lncRNA-UCA1 in the hypoxic microenvironment of bladder cancer. The expression and transcriptional activity of lncRNA-UCA1 were measured by quantitative real-time polymerase chain reaction and luciferase assays. Cell proliferation and apoptosis were evaluated by MTT assays and flow cytometry. Cell migration and invasion were detected by wound healing, migration, and invasion assays. The binding of hypoxia-inducible factor-1α (HIF-1α) to hypoxia response elements (HREs) in the lncRNA-UCA1 promoter was confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation. HRE mutations were generated by using a site-directed mutagenesis kit, and HIF-1α knockdown was mediated by small interfering RNA. The effect of HIF-1α inhibition by YC-1 on lncRNA-UCA1 expression was also examined. LncRNA-UCA1 was upregulated by hypoxia in bladder cancer cells. Under hypoxic conditions, lncRNA-UCA1 upregulation increased cell proliferation, migration, and invasion and inhibited apoptosis. The underlying mechanism of hypoxia-upregulated lncRNA-UCA1 expression was that HIF-1α specifically bound to HREs in the lncRNA-UCA1 promoter. Furthermore, HIF-1α knockdown or inhibition could prevent lncRNA-UCA1 upregulation under hypoxia. These findings revealed the mechanism of lncRNA-UCA1 upregulation in hypoxic bladder cancer cells and suggested that effective blocking of lncRNA-UCA1 expression in the hypoxic microenvironment of bladder cancer could be a novel therapeutic strategy.

  17. Clinical characteristics and outcome of patients with neuroblastoma presenting genomic amplification of loci other than MYCN.

    Directory of Open Access Journals (Sweden)

    Anne Guimier

    Full Text Available Somatically acquired genomic alterations with MYCN amplification (MNA are key features of neuroblastoma (NB, the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s distinct from MYCN.Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected.In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8 presented regional amplification(s without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases. This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26 had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22. Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05.NBs harbouring regional amplification(s without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.

  18. Clinical Characteristics and Outcome of Patients with Neuroblastoma Presenting Genomic Amplification of Loci Other than MYCN

    Science.gov (United States)

    Guimier, Anne; Ferrand, Sandrine; Pierron, Gaëlle; Couturier, Jérôme; Janoueix-Lerosey, Isabelle; Combaret, Valérie; Mosseri, Véronique; Thebaud, Estelle; Gambart, Marion; Plantaz, Dominique; Marabelle, Aurélien; Coze, Carole; Rialland, Xavier; Fasola, Sylvie; Lapouble, Eve; Fréneaux, Paul; Peuchmaur, Michel; Michon, Jean; Delattre, Olivier; Schleiermacher, Gudrun

    2014-01-01

    Background Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma (NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN. Methods Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. Results In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8) presented regional amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26) had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05). Conclusion NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy. PMID:25013904

  19. Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative py235 erythrocyte binding protein

    KAUST Repository

    Ogun, Solabomi A.

    2011-02-17

    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional

  20. Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative py235 erythrocyte binding protein

    KAUST Repository

    Ogun, Solabomi A.; Tewari, Rita; Otto, Thomas D.; Howell, Steven A.; Knuepfer, Ellen; Cunningham, Deirdre A.; Xu, Zhengyao; Pain, Arnab; Holder, Anthony A.

    2011-01-01

    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional

  1. Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein.

    Directory of Open Access Journals (Sweden)

    Solabomi A Ogun

    2011-02-01

    Full Text Available Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2 is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this

  2. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours.

    Science.gov (United States)

    Evans, James C; Malhotra, Meenakshi; Sweeney, Katrina; Darcy, Raphael; Nelson, Colleen C; Hollier, Brett G; O'Driscoll, Caitriona M

    2017-10-30

    The main barrier to the development of an effective RNA interference (RNAi) therapy is the lack of a suitable delivery vector. Modified cyclodextrins have emerged in recent years for the delivery of siRNA. In the present study, a folate-targeted amphiphilic cyclodextrin was formulated using DSPE-PEG 5000 -folate to target prostate cancer cells. The fusogenic peptide GALA was included in the formulation to aid in the endosomal release of siRNA. Targeted nanoparticles were less than 200nm in size with a neutral surface charge. The complexes were able to bind siRNA and protect it from serum nucleases. Incubation with excess free folate resulted in a significant decrease in the uptake of targeted nanoparticles in LNCaP and PC3 cells, both of which have been reported to have differing pathways of folate uptake. There was a significant reduction in the therapeutic targets, ZEB1 and NRP1 at mRNA and protein level following treatment with targeted complexes. In preliminary functional assays using 3D spheroids, treatment of PC3 tumours with targeted complexes with ZEB1 and NRP1 siRNA resulted in more compact colonies relative to the untargeted controls and inhibited infiltration into the Matrigel™ layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging

    International Nuclear Information System (INIS)

    Tai, Cheng-Jeng; Lee, Horng-Mo; Deng, Win-Ping; Wu, Alexander TH; Chiou, Jeng-Feng; Jan, Hsun-Jin; Wei, Hon-Jian; Hsu, Chung-Huei; Lin, Che-Tong; Chiu, Wen-Ta; Wu, Cheng-Wen

    2010-01-01

    of cell migration and invasion in vitro. Cells pre-treated with triptolide (a MKP-1 inhibitor), reversed rosiglitazone-mediated cell invasion and migration. The induction of MKP-1 could significantly suppress the proliferative and metastatic abilities of NSCLC both in vitro and in vivo. Therefore, MKP-1 could be considered as a potential therapeutic target in NSCLC therapy and PPARγ agonists could be explored for combined chemotherapy

  4. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  5. Helplessness/hopelessness, minimization and optimism predict survival in women with invasive ovarian cancer: a role for targeted support during initial treatment decision-making?

    Science.gov (United States)

    Price, Melanie A; Butow, Phyllis N; Bell, Melanie L; deFazio, Anna; Friedlander, Michael; Fardell, Joanna E; Protani, Melinda M; Webb, Penelope M

    2016-06-01

    Women with advanced ovarian cancer generally have a poor prognosis but there is significant variability in survival despite similar disease characteristics and treatment regimens. The aim of this study was to determine whether psychosocial factors predict survival in women with ovarian cancer, controlling for potential confounders. The sample comprised 798 women with invasive ovarian cancer recruited into the Australian Ovarian Cancer Study and a subsequent quality of life study. Validated measures of depression, optimism, minimization, helplessness/hopelessness, and social support were completed 3-6 monthly for up to 2 years. Four hundred nineteen women (52.5 %) died over the follow-up period. Associations between time-varying psychosocial variables and survival were tested using adjusted Cox proportional hazard models. There was a significant interaction of psychosocial variables measured prior to first progression and overall survival, with higher optimism (adjusted hazard ratio per 1 standard deviation (HR) = 0.80, 95 % confidence interval (CI) 0.65-0.97), higher minimization (HR = 0.79, CI 0.66-0.94), and lower helplessness/hopelessness (HR = 1.40, CI 1.15-1.71) associated with longer survival. After disease progression, these variables were not associated with survival (optimism HR = 1.10, CI 0.95-1.27; minimization HR = 1.12, CI 0.95-1.31; and helplessness/hopelessness HR = 0.86, CI 0.74-1.00). Depression and social support were not associated with survival. In women with invasive ovarian cancer, psychosocial variables prior to disease progression appear to impact on overall survival, suggesting a preventive rather than modifying role. Addressing psychosocial responses to cancer and their potential impact on treatment decision-making early in the disease trajectory may benefit survival and quality of life.

  6. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway.

    Science.gov (United States)

    Na, Hyun-Jin; Park, Joung-Sun; Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2015-07-01

    We delineated the mechanism regulating the inhibition of centrosome amplification by metformin in Drosophila intestinal stem cells (ISCs). Age-related changes in tissue-resident stem cells may be closely associated with tissue aging and age-related diseases, such as cancer. Centrosome amplification is a hallmark of cancers. Our recent work showed that Drosophila ISCs are an excellent model for stem cell studies evaluating age-related increase in centrosome amplification. Here, we showed that metformin, a recognized anti-cancer drug, inhibits age- and oxidative stress-induced centrosome amplification in ISCs. Furthermore, we revealed that this effect is mediated via down-regulation of AKT/target of rapamycin (TOR) activity, suggesting that metformin prevents centrosome amplification by inhibiting the TOR signaling pathway. Additionally, AKT/TOR signaling hyperactivation and metformin treatment indicated a strong correlation between DNA damage accumulation and centrosome amplification in ISCs, suggesting that DNA damage might mediate centrosome amplification. Our study reveals the beneficial and protective effects of metformin on centrosome amplification via AKT/TOR signaling modulation. We identified a new target for the inhibition of age- and oxidative stress-induced centrosome amplification. We propose that the Drosophila ISCs may be an excellent model system for in vivo studies evaluating the effects of anti-cancer drugs on tissue-resident stem cell aging. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Laser amplification in excited dielectrics

    DEFF Research Database (Denmark)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using...... these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400nm femtosecond laser pulse is coherently...

  8. Resonant primordial gravitational waves amplification

    Directory of Open Access Journals (Sweden)

    Chunshan Lin

    2016-01-01

    Full Text Available We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.

  9. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    OpenAIRE

    Yi Wang; Yan Wang; Ai-Jing Ma; Dong-Xun Li; Li-Juan Luo; Dong-Xin Liu; Dong Jin; Kai Liu; Chang-Yun Ye

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61?65??C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primer...

  10. New peptide receptor radionuclide therapy of invasive cancer cells: in vivo studies using 177Lu-DOTA-AE105 targeting uPAR in human colorectal cancer xenografts

    DEFF Research Database (Denmark)

    Persson, Morten; Rasmussen, Palle; Madsen, Jacob

    2012-01-01

    -of-concept for a theranostic approach as treatment modality in a human xenograft colorectal cancer model. MethodsA DOTA-conjugated 9-mer high affinity uPAR binding peptide (DOTA-AE105) was radiolabeled with 64Cu and 177Lu, for PET imaging and targeted radionuclide therapy study, respectively. Human uPAR-positive CRC HT-29...... for the first time the in vivo efficacy of an uPAR-targeted radionuclide therapeutic intervention on both tumor size and its content of uPAR expressing cells thus setting the stage for future translation into clinical use. © 2012 Elsevier Inc. All rights reserved....

  11. Development of a recombinase polymerase amplification assay for Vibrio parahaemolyticus detection with an internal amplification control.

    Science.gov (United States)

    Yang, Huan-Lan; Wei, Shuang; Gooneratne, Ravi; Mutukumira, Anthony N; Ma, Xue-Jun; Tang, Shu-Ze; Wu, Xi-Yang

    2018-04-01

    A novel RPA-IAC assay using recombinase polymerase and an internal amplification control (IAC) for Vibrio parahaemolyticus detection was developed. Specific primers were designed based on the coding sequence for the toxR gene in V. parahaemolyticus. The recombinase polymerase amplification (RPA) reaction was conducted at a constant low temperature of 37 °C for 20 min. Assay specificity was validated by using 63 Vibrio strains and 10 non-Vibrio bacterial species. In addition, a competitive IAC was employed to avoid false-negative results, which co-amplified simultaneously with the target sequence. The sensitivity of the assay was determined as 3 × 10 3 CFU/mL, which is decidedly more sensitive than the established PCR method. This method was then used to test seafood samples that were collected from local markets. Seven out of 53 different raw seafoods were detected as V. parahaemolyticus-positive, which were consistent with those obtained using traditional culturing method and biochemical assay. This novel RPA-IAC assay provides a rapid, specific, sensitive, and more convenient detection method for V. parahaemolyticus.

  12. Risk Perception and Social Amplification

    International Nuclear Information System (INIS)

    Smith, R.E.

    2001-01-01

    This paper seeks to consider social amplification as it applies to risk perception. Perceptions of the magnitude of a risk are conditioned by issues such as the degree of uncertainty in probability and consequences, the nature of the consequences and the relative weightings placed on probability and consequences. Risk perceptions are also influenced by factors such as confidence in the operator of an industrial process, trust in the regulator and the perceived fairness of regulatory decision-making. Different people may hold different views about these issues and there may also be difficulties in communication. The paper identifies and discusses self-reinforcing mechanisms, which will be labelled 'lock-in' here. They appear to apply in many situations where social amplification is observed. Historically, the term 'lock-in' has been applied mainly in the technological context but, in this paper, four types of lock-in are identified, namely scientific/technological, economic, social and institutional lock-in. One type of lock-in tends to lead to the next and all are buttressed by people's general acceptance of the familiar, fear of the unknown and resistance to change. The regulator seeks to make decisions which achieve the common good rather than supporting or perpetuating any set of vested interests. In this regard the locked-in positions of stakeholders, whether organisations, interest groups, or individual members of the public, are obstacles and challenges. Existing methods of consultation are unsatisfactory in terms of achieving a proper and productive level of dialogue with stakeholders

  13. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  14. Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Triggered Isothermal Amplification for Site-Specific Nucleic Acid Detection.

    Science.gov (United States)

    Huang, Mengqi; Zhou, Xiaoming; Wang, Huiying; Xing, Da

    2018-02-06

    A novel CRISPR/Cas9 triggered isothermal exponential amplification reaction (CAS-EXPAR) strategy based on CRISPR/Cas9 cleavage and nicking endonuclease (NEase) mediated nucleic acids amplification was developed for rapid and site-specific nucleic acid detection. CAS-EXPAR was primed by the target DNA fragment produced by cleavage of CRISPR/Cas9, and the amplification reaction performed cyclically to generate a large number of DNA replicates which were detected using a real-time fluorescence monitoring method. This strategy that combines the advantages of CRISPR/Cas9 and exponential amplification showed high specificity as well as rapid amplification kinetics. Unlike conventional nucleic acids amplification reactions, CAS-EXPAR does not require exogenous primers, which often cause target-independent amplification. Instead, primers are first generated by Cas9/sgRNA directed site-specific cleavage of target and accumulated during the reaction. It was demonstrated this strategy gave a detection limit of 0.82 amol and showed excellent specificity in discriminating single-base mismatch. Moreover, the applicability of this method to detect DNA methylation and L. monocytogenes total RNA was also verified. Therefore, CAS-EXPAR may provide a new paradigm for efficient nucleic acid amplification and hold the potential for molecular diagnostic applications.

  15. Targeting tumor cell invasion and dissemination in vivo by an aptamer that inhibits urokinase-type plasminogen activator through a novel multifunctional mechanism

    DEFF Research Database (Denmark)

    Botkjaer, Kenneth A; Deryugina, Elena I; Dupont, Daniel Miotto

    2012-01-01

    , because the topology of the proteases' active sites are highly similar. In an effort to generate highly specific uPA inhibitors with new inhibitory modalities, we isolated uPA-binding RNA aptamers by screening a library of 35 nucleotides long 2'-fluoro-pyrimidine RNA molecules using a version of human pro......-uPA lacking the epidermal growth factor-like and kringle domains as bait. One pro-uPA-binding aptamer sequence, referred to as upanap-126, proved to be highly specific for human uPA. Upanap-126 delayed the proteolytic conversion of human pro-uPA to active uPA, but did not inhibit plasminogen activation...... catalyzed by two-chain uPA. The aptamer also inhibited the binding of pro-uPA to uPAR and the binding of vitronectin to the preformed pro-uPA/uPAR complex, both in cell-free systems and on cell surfaces. Furthermore, upanap-126 inhibited human tumor cell invasion in vitro in the Matrigel assay and in vivo...

  16. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway.

    Science.gov (United States)

    Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng

    2013-04-01

    The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.

  17. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis - Could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis?

    DEFF Research Database (Denmark)

    Hatt, Lotte; Brinch, Marie; Singh, Ripudaman

    2014-01-01

    stem cell microarray analysis. Results: 39 genes were identified as candidates for unique fetal cell markers. More than half of these are genes known to be expressed in the placenta, especially in extravillous trophoblasts (EVTs). Immunohistochemical staining of placental tissue confirmed CD105......Introduction: Circulating fetal cells in maternal blood provide a tool for risk-free, non-invasive prenatal diagnosis. However, fetal cells in the maternal circulation are scarce, and to effectively isolate enough of them for reliable diagnostics, it is crucial to know which fetal cell type......(s) should be targeted. Materials and Methods: Fetal cells were enriched from maternal blood by magnetic-activated cell sorting using the endothelial cell marker CD105 and identified by XY fluorescence in situ hybridization. Expression pattern was compared between fetal cells and maternal blood cells using...

  18. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer

    OpenAIRE

    Xiu Juan Li; Zhao Jun Ren; Jin Hai Tang; Qiao Yu

    2017-01-01

    Background/Aims: Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. Methods: The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes a...

  19. Immunohistochemical her-2/ neu expression with gene amplification by fluorescence in situ hybridization for assessment in breast carcinomas

    International Nuclear Information System (INIS)

    Moatter, T.; Zahida, Z.U.D.; Kayani, N.; Pervez, S.

    2007-01-01

    To compare gene amplification of HER-2/neu gene by fluorescence in situ hybridization (FISH) in moderate to strong immunohistochemically (IHS) positive HER-2/neu cases of invasive breast carcinomas. Forty one (41) diagnosed cases of invasive breast carcinomas were included in this study in which already determined immunohistochemical HER-2/neu expression was scored as either 2+ or 3+, based on the intensity of membranous staining. These cases were further evaluated for gene amplification by FISH. For gene amplification, a ratio of HER-2/CEP z 2 was accepted as positive gene amplification. Out of a total 41 cases, which were scored as 2+ and 3+ by IHC, 14 cases (34.1%, 95% confidence interval: 19% - 49.3% ) showed gene amplification by FISH. Proportion of FISH positivity in IHC 2+ cases alone was found to be 25% (95% confidence interval: 10.5% - 41%). In contrast, a majority of IHC 3+ cases (5 of 6) were positive by FISH studies. IHC is appropriate for initial HER-2/neu assessment and patients with tumors scored as 3+ may be treated alone based on this information provided strict quality control and 95% concordance with FISH assays; however, patients with tumors interpreted as 2+, would benefit from gene amplification by FISH studies for more accurate assessment to avoid inaccurate prognostication and treatment. (author)

  20. Whole genome amplification - Review of applications and advances

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  1. Tools for assessing kinship, population structure, phylogeography, and interspecific hybridization in Asian carps invasive to the Mississippi River, USA: isolation and characterization of novel tetranucleotide microsatellite DNA loci in silver carp Hypophthalmichthys molitrix

    Science.gov (United States)

    King, T.L.; Eackles, M.S.; Chapman, D.C.

    2011-01-01

    We document the isolation and characterization of novel tetranucleotide microsatellite DNA markers for the invasive silver carp Hypophthalmichthys molitrix and provide the results of cross-species amplification for three additional invasive carp species: bighead (H. nobilis), grass (Ctenopharyngodon idella) and black (Mylopharyngodon piceus). In the target species these markers yielded levels of allelic diversity (average 4.4 alleles/locus) and heterozygosity (average 54.7%) sufficient to: (1) provide unique multilocus genotypes; (2) delineate kinship relationships; (3) differentiate populations/species; (4) estimate effective population sizes; and (5) provide unique demographic perspectives for control or eradication. Currently these markers are being utilized to determine the degree of introgressive hybridization between H. molitrix and H. nobilis, to quantify gene flow between different sub-basins established in the central United States, and to assess the demographic status of sub-basin groups. This information will be critically important in the management/control of these invasive species.

  2. Multiscale image contrast amplification (MUSICA)

    Science.gov (United States)

    Vuylsteke, Pieter; Schoeters, Emile P.

    1994-05-01

    This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.

  3. Measuring the amplification of attention.

    Science.gov (United States)

    Blaser, E; Sperling, G; Lu, Z L

    1999-09-28

    An ambiguous motion paradigm, in which the direction of apparent motion is determined by salience (i.e., the extent to which an area is perceived as figure versus ground), is used to assay the amplification of color by attention to color. In the red-green colored gratings used in these experiments, without attention instructions, salience depends on the chromaticity difference between colored stripes embedded in the motion sequence and the yellow background. Selective attention to red (or to green) alters the perceived direction of motion and is found to be equivalent to increasing the physical redness (or greenness) by 25-117%, depending on the observer and color. Whereas attention to a color drastically alters the salience of that color, it leaves color appearance unchanged. A computational model, which embodies separate, parallel pathways for object perception and for salience, accounts for 99% of the variance of the experimental data.

  4. Risk Perception and Social Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E. [Environment Agency (United Kingdom)

    2001-07-01

    This paper seeks to consider social amplification as it applies to risk perception. Perceptions of the magnitude of a risk are conditioned by issues such as the degree of uncertainty in probability and consequences, the nature of the consequences and the relative weightings placed on probability and consequences. Risk perceptions are also influenced by factors such as confidence in the operator of an industrial process, trust in the regulator and the perceived fairness of regulatory decision-making. Different people may hold different views about these issues and there may also be difficulties in communication. The paper identifies and discusses self-reinforcing mechanisms, which will be labelled 'lock-in' here. They appear to apply in many situations where social amplification is observed. Historically, the term 'lock-in' has been applied mainly in the technological context but, in this paper, four types of lock-in are identified, namely scientific/technological, economic, social and institutional lock-in. One type of lock-in tends to lead to the next and all are buttressed by people's general acceptance of the familiar, fear of the unknown and resistance to change. The regulator seeks to make decisions which achieve the common good rather than supporting or perpetuating any set of vested interests. In this regard the locked-in positions of stakeholders, whether organisations, interest groups, or individual members of the public, are obstacles and challenges. Existing methods of consultation are unsatisfactory in terms of achieving a proper and productive level of dialogue with stakeholders.

  5. HER2 gene amplification in patients with prostate cancer: Evaluating a CISH-based method.

    Science.gov (United States)

    Sharifi, Nazanin; Salmaninejad, Arash; Ferdosi, Samira; Bajestani, Abolfazl Nesaei; Khaleghiyan, Malihe; Estiar, Mehrdad Asghari; Jamali, Mansour; Nowroozi, Mohammad Reza; Shakoori, Abbas

    2016-12-01

    Prostate cancer (PCa) is one of the most widespread malignancies in the world. The role of the human epidermal growth factor receptor 2 (HER2) in the pathogenesis and progression of human PCa remains poorly understood. In contradiction with breast cancer, studies on HER2 overexpression and gene amplification in PCa have produced varying results, although the HER2 oncogene has been implicated in the biology of numerous tumor types, and serves as a prognostic marker and therapeutic target in breast cancer. Technical challenges are considered the main reasons for data discrepancies. Amplification of the HER2 gene has previously been reported in PCa, in which it was associated with tumor progression. The present study aimed to evaluate the prevalence and clinical significance of HER2 amplification in PCa. A total of 32 biopsy samples obtained from human prostate adenocarcinomas were evaluated by chromogenic in situ hybridization (CISH) to determine the frequency of patients with HER2 gene amplifications. High copy numbers of HER2 were detected in 19 of the prostate tumors analyzed. The results of the present study suggested that, in patients without amplification of HER2, high levels of prostate-specific antigen or a high Gleason score were not significantly correlated with a high pathologic stage. Furthermore, amplification levels of the HER2 gene were directly associated with pathologic stage in patients with PCa. Therefore, the potential use of HER2 as a prognostic factor or therapeutic target for PCa warrants further study.

  6. By-product formation in repetitive PCR amplification of DNA libraries during SELEX.

    Science.gov (United States)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.

  7. Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.

    Directory of Open Access Journals (Sweden)

    Radu O Minea

    2010-06-01

    Full Text Available Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., alphavbeta3, alphavbeta5, and alpha5beta1, VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis. Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN.

  8. Improved multiple displacement amplification (iMDA) and ultraclean reagents.

    Science.gov (United States)

    Motley, S Timothy; Picuri, John M; Crowder, Chris D; Minich, Jeremiah J; Hofstadler, Steven A; Eshoo, Mark W

    2014-06-06

    Next-generation sequencing sample preparation requires nanogram to microgram quantities of DNA; however, many relevant samples are comprised of only a few cells. Genomic analysis of these samples requires a whole genome amplification method that is unbiased and free of exogenous DNA contamination. To address these challenges we have developed protocols for the production of DNA-free consumables including reagents and have improved upon multiple displacement amplification (iMDA). A specialized ethylene oxide treatment was developed that renders free DNA and DNA present within Gram positive bacterial cells undetectable by qPCR. To reduce DNA contamination in amplification reagents, a combination of ion exchange chromatography, filtration, and lot testing protocols were developed. Our multiple displacement amplification protocol employs a second strand-displacing DNA polymerase, improved buffers, improved reaction conditions and DNA free reagents. The iMDA protocol, when used in combination with DNA-free laboratory consumables and reagents, significantly improved efficiency and accuracy of amplification and sequencing of specimens with moderate to low levels of DNA. The sensitivity and specificity of sequencing of amplified DNA prepared using iMDA was compared to that of DNA obtained with two commercial whole genome amplification kits using 10 fg (~1-2 bacterial cells worth) of bacterial genomic DNA as a template. Analysis showed >99% of the iMDA reads mapped to the template organism whereas only 0.02% of the reads from the commercial kits mapped to the template. To assess the ability of iMDA to achieve balanced genomic coverage, a non-stochastic amount of bacterial genomic DNA (1 pg) was amplified and sequenced, and data obtained were compared to sequencing data obtained directly from genomic DNA. The iMDA DNA and genomic DNA sequencing had comparable coverage 99.98% of the reference genome at ≥1X coverage and 99.9% at ≥5X coverage while maintaining both balance

  9. Development and Assessment of Loop-Mediated Isothermal Amplification (LAMP) Assay for the Diagnosis of Human Visceral Leishmaniasis in Iran.

    Science.gov (United States)

    Ghasemian, Mehrdad; Gharavi, Mohammad Javad; Akhlaghi, Lame; Mohebali, Mehdi; Meamar, Ahmad Reza; Aryan, Ehsan; Oormazdi, Hormozd

    2014-03-01

    Parasitological methods for the diagnosis of Visceral leishmaniasis (VL) require invasive procedures, so serological and molecular approaches have been developed but are not generally applicable in the field. We evaluated a loop mediated isothermal amplification (LAMP) assay using blood from VL patients and compared it to nested PCR. Forty-seven subjects with clinical features (fever, hepatosplenomegaly and anemia) were confirmed positive for VL by the direct agglutination test (DAT) at titers >3200. Forty DAT negative individuals from non-endemic areas with no clinical signs or symptoms of VL served as controls. A LAMP assay was performed using a set of six primers targeting Leishmania infantum kinetoplast DNA (kDNA) minicircle gene under isothermal (64 °C) conditions. For nested PCR we used primers targeting the kDNA minicircle gene. The LAMP assay provided a detection limit of 1 parasite in 1 ml of peripheral blood and detected L. infantum DNA in 44 of 47 DAT-confirmed VL cases, with diagnostic sensitivity of 93.6% (95% CI). No L. infantum DNA was amplified in controls, indicating a specificity of 100%. The nested PCR yielded sensitivity of 96% (95% CI) and a specificity of 100% (95% CI). The LAMP assay gave results similar to those of nested PCR but in a shorter time. The LAMP method is simple; requires no sophisticated equipment; has a short reaction time; and results, indicated by turbidity of the reaction mixture, are observable with the naked eye.

  10. Development and Assessment of Loop-Mediated Isothermal Amplification (LAMP Assay for the Diagnosis of Human Visceral Leishmaniasis in Iran.

    Directory of Open Access Journals (Sweden)

    Mehrdad Ghasemian

    2014-03-01

    Full Text Available Parasitological methods for the diagnosis of Visceral leishmaniasis (VL require invasive procedures, so serological and molecular approaches have been developed but are not generally applicable in the field. We evaluated a loop mediated isothermal amplification (LAMP assay using blood from VL patients and compared it to nested PCR.Forty-seven subjects with clinical features (fever, hepatosplenomegaly and anemia were confirmed positive for VL by the direct agglutination test (DAT at titers >3200. Forty DAT negative individuals from non-endemic areas with no clinical signs or symptoms of VL served as controls. A LAMP assay was performed using a set of six primers targeting Leishmania infantum kinetoplast DNA (kDNA minicircle gene under isothermal (64 °C conditions. For nested PCR we used primers targeting the kDNA minicircle gene.The LAMP assay provided a detection limit of 1 parasite in 1 ml of peripheral blood and detected L. infantum DNA in 44 of 47 DAT-confirmed VL cases, with diagnostic sensitivity of 93.6% (95% CI. No L. infantum DNA was amplified in controls, indicating a specificity of 100%. The nested PCR yielded sensitivity of 96% (95% CI and a specificity of 100% (95% CI.The LAMP assay gave results similar to those of nested PCR but in a shorter time. The LAMP method is simple; requires no sophisticated equipment; has a short reaction time; and results, indicated by turbidity of the reaction mixture, are observable with the naked eye.

  11. Diagnostic Devices for Isothermal Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Chia-Chen Chang

    2012-06-01

    Full Text Available Since the development of the polymerase chain reaction (PCR technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  12. Diagnostic devices for isothermal nucleic acid amplification.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chien-Cheng; Wei, Shih-Chung; Lu, Hui-Hsin; Liang, Yang-Hung; Lin, Chii-Wann

    2012-01-01

    Since the development of the polymerase chain reaction (PCR) technique, genomic information has been retrievable from lesser amounts of DNA than previously possible. PCR-based amplifications require high-precision instruments to perform temperature cycling reactions; further, they are cumbersome for routine clinical use. However, the use of isothermal approaches can eliminate many complications associated with thermocycling. The application of diagnostic devices for isothermal DNA amplification has recently been studied extensively. In this paper, we describe the basic concepts of several isothermal amplification approaches and review recent progress in diagnostic device development.

  13. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  14. Privacy amplification for quantum key distribution

    International Nuclear Information System (INIS)

    Watanabe, Yodai

    2007-01-01

    This paper examines classical privacy amplification using a universal family of hash functions. In quantum key distribution, the adversary's measurement can wait until the choice of hash functions is announced, and so the adversary's information may depend on the choice. Therefore the existing result on classical privacy amplification, which assumes the independence of the choice from the other random variables, is not applicable to this case. This paper provides a security proof of privacy amplification which is valid even when the adversary's information may depend on the choice of hash functions. The compression rate of the proposed privacy amplification can be taken to be the same as that of the existing one with an exponentially small loss in secrecy of a final key. (fast track communication)

  15. Signal amplification for impedimetric genosensing using gold-streptavidin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bonanni, A.; Esplandiu, M.J. [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain); Valle, M. del [Sensors and Biosensors Group, Department of Chemistry, Universitat Autonoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona (Spain)], E-mail: manel.delvalle@uab.es

    2008-04-20

    Streptavidin-coated gold nanoparticles (strept-AuNPs) were used in this work to amplify the impedimetric signal generated in a biosensor detecting the DNA hybridization event. Probe oligomer was adsorbed onto a graphite epoxy composite (GEC) electrode surface and the impedance measurement was performed in a solution containing the redox marker ferrocyanide/ferricyanide. The biotinylated complementary oligomer was used as target. The change of interfacial charge transfer resistance (R{sub ct}), experimented by the redox marker, was recorded to confirm the hybrid formation. The addition of strept-AuNPs, binding to the target due to the strong streptavidin-biotin interaction, led to a further increment of R{sub ct} thus obtaining significant signal amplification. Strept-AuNPs on the electrode surface were observed by scanning electron microscopy (SEM) after silver enhancement treatment. A competitive binding assay was also performed using unlabelled DNA target to demonstrate its applicability to real sample analysis.

  16. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  17. Rolling circle amplification of metazoan mitochondrialgenomes

    Energy Technology Data Exchange (ETDEWEB)

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  18. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids.

    Science.gov (United States)

    Kivlehan, Francine; Mavré, François; Talini, Luc; Limoges, Benoît; Marchal, Damien

    2011-09-21

    We described an electrochemical method to monitor in real-time the isothermal helicase-dependent amplification of nucleic acids. The principle of detection is simple and well-adapted to the development of portable, easy-to-use and inexpensive nucleic acids detection technologies. It consists of monitoring a decrease in the electrochemical current response of a reporter DNA intercalating redox probe during the isothermal DNA amplification. The method offers the possibility to quantitatively analyze target nucleic acids in less than one hour at a single constant temperature, and to perform at the end of the isothermal amplification a DNA melt curve analysis for differentiating between specific and non-specific amplifications. To illustrate the potentialities of this approach for the development of a simple, robust and low-cost instrument with high throughput capability, the method was validated with an electrochemical system capable of monitoring up to 48 real-time isothermal HDA reactions simultaneously in a disposable microplate consisting of 48-electrochemical microwells. Results obtained with this approach are comparable to that obtained with a well-established but more sophisticated and expensive fluorescence-based method. This makes for a promising alternative detection method not only for real-time isothermal helicase-dependent amplification of nucleic acid, but also for other isothermal DNA amplification strategies.

  19. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  20. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  1. Assessment of topoisomerase II-alpha gene status by dual color chromogenic in situ hybridization in a set of Iraqi patients with invasive breast carcinoma

    Directory of Open Access Journals (Sweden)

    Rasha Abd Alraouf Neama

    2017-01-01

    Full Text Available Background: The human epidermal growth factor receptor 2(HER2 proto-oncogene is overexpressed or amplified in approximately 15%–25% of invasive breast cancers. Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A gene encoding an enzyme that is a major target of anthracyclines. Hence, the determination of genetic alteration (amplification or deletion of both genes is considered as an important predictive factor that determines the response of breast cancer patients to treatment. The aims of this study are to determinate TOP2A status gene amplification in a set of Iraqi patients with breast cancer that have had an equivocal (2+ and positive HER2/neu by immunohistochemistry (IHC and to compare the results with estrogen receptor (ER and progesterone receptor (PR and HER2/neu status. Patients and Methods: A cross-sectional prospective study done on 53 patients with invasive breast carcinoma. Twenty-six out of total 53 cases were positive HER2/neu (3+, the remaining 27 equivocal HER2-IHC (2+ cases reanalyzed using dual-color chromogenic in situ hybridization (ZytoVision probe kit for further identification of HER2/neu gene amplification. Using chromogenic in situ hybridization (CISH, TOP2A gene status determination was done for all cases. Results: There is a direct significant correlation between TOP2A gene amplification and HER2/neu positivity, P < 0.05 in that 15 (39.4% out of 38 positive HER2/neu cases were associated with topoisomerase gene amplification. Regarding relation of topoisomerase gene to hormone receptor status (ER and PR, there was a significant negative relationship between the gene and ER receptor status. The higher level of gene amplification was noticed in ER and PR negative cases in about 13 (43.3% and 14 (48.2% for ER and PR, respectively. Conclusion: TOP2A gene status has a significantly positive correlation with HER2/neu status while it has a significantly negative

  2. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    DEFF Research Database (Denmark)

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recogniz......The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target......-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments....... Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation...

  3. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Svetlana Dolgilevich

    2011-03-01

    Full Text Available Porphyromonas gingivalis strains are shown to invade human cells in vitro with different invasion efficiencies, varying by up to three orders of magnitude.We tested the hypothesis that invasion-associated interstrain genomic polymorphisms are present in P. gingivalis and that putative invasion-associated genes can contribute to P. gingivalis invasion.Using an invasive (W83 and the only available non-invasive P. gingivalis strain (AJW4 and whole genome microarrays followed by two separate software tools, we carried out comparative genomic hybridization (CGH analysis.We identified 68 annotated and 51 hypothetical open reading frames (ORFs that are polymorphic between these strains. Among these are surface proteins, lipoproteins, capsular polysaccharide biosynthesis enzymes, regulatory and immunoreactive proteins, integrases, and transposases often with abnormal GC content and clustered on the chromosome. Amplification of selected ORFs was used to validate the approach and the selection. Eleven clinical strains were investigated for the presence of selected ORFs. The putative invasion-associated ORFs were present in 10 of the isolates. The invasion ability of three isogenic mutants, carrying deletions in PG0185, PG0186, and PG0982 was tested. The PG0185 (ragA and PG0186 (ragB mutants had 5.1×103-fold and 3.6×103-fold decreased in vitro invasion ability, respectively.The annotation of divergent ORFs suggests deficiency in multiple genes as a basis for P. gingivalis non-invasive phenotype. Access the supplementary material to this article: Supplement, table (see Supplementary files under Reading Tools online.

  4. Expression of FGFR3 Protein and Gene Amplification in Urinary Bladder Lesions in Relation to Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Olfat Hammam

    2017-04-01

    CONCLUSIONS: FGFR3 overexpression in malignant cases was significantly higher than in chronic cystitis. FGFR3 gene amplification was reported mainly in low grade and NNMBIC tumours. FGFR3 may be further studied as a subject for target therapy of bladder cancer.

  5. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

    NARCIS (Netherlands)

    Ziesemer, K.A.; Mann, A.E.; Sankaranarayanan, K.; Schroeder, H.; Ozga, A.T.; Brandt, B.W.; Zaura, E.; Waters-Rist, A.; Hoogland, M.; Salazar-García, D.C.; Aldenderfer, M.; Speller, C.; Hendy, J.; Weston, D.A.; MacDonald, S.J.; Thomas, G.H.; Collins, M.J.; Lewis, C.M.; Hofman, C.; Warinner, C.

    2015-01-01

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this

  6. Rapid detection of Streptococcus uberis in raw milk by loop-mediated isothermal amplification

    NARCIS (Netherlands)

    Cornelissen, J.B.W.J.; Greeff, De A.; Heuvelink, A.E.; Swarts, M.; Smith, H.E.; Wal, Van der F.J.

    2016-01-01

    A loop-mediated isothermal amplification (LAMP) method to detect Streptococcus uberis in raw milk was developed and evaluated. Three genes (sodA, pauA, cpn60) were assessed for their suitability as targets in LAMP. The analytical sensitivity was 120, 120, and 12 fg per assay for the sodA, pauA,

  7. Electrochemical DNA biosensor based on MNAzyme-mediated signal amplification

    International Nuclear Information System (INIS)

    Diao, Wei; Tang, Min; Ding, Xiaojuan; Zhang, Ye; Yang, Jianru; Cheng, Wenbin; Mo, Fei; Wen, Bo; Xu, Lulu; Yan, Yurong

    2016-01-01

    The authors describe an electrochemical sensing strategy for highly sensitive and specific detection of target (analyte) DNA based on an amplification scheme mediated by a multicomponent nucleic acid enzyme (MNAzyme). MNAzymes were formed by multicomponent complexes which produce amplified “output” signals in response to specific “input” signal. In the presence of target nucleic acid, multiple partial enzymes (partzymes) oligonucleotides are assembled to form active MNAzymes. These can cleave H0 substrate into two pieces, thereby releasing the activated MNAzyme to undergo an additional cycle of amplification. Here, the two pieces contain a biotin-tagged sequence and a byproduct. The biotin-tagged sequences are specifically captured by the detection probes immobilized on the gold electrode. By employing streptavidinylated alkaline phosphatase as an enzyme label, an electrochemical signal is obtained. The electrode, if operated at a working potential of 0.25 V (vs. Ag/AgCl) in solution of pH 7.5, covers the 100 pM to 0.25 μM DNA concentration range, with a 79 pM detection limit. In our perception, the strategy introduced here has a wider potential in that it may be applied to molecular diagnostics and pathogen detection. (author)

  8. ESTIMATION OF AMPLIFICATION FACTOR IN EARTHQUAKE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Nazarov Yuriy Pavlovich

    2015-03-01

    Full Text Available The authors are the developers of Odyssey Software (Eurosoft Co. for the analysis of seismological data and computing of seismic loads and their parameters. While communicating with the users of the software, the authors have revealed some uncertainty about both understanding of the term "amplification factor (AF" and calculation of the amplification factor using various methods. In this article, a simple example shows that the determination of the amplification factor as the ratio of the acceleration’s spectrum to the maximal acceleration is derived from the classical definition of AF in the form of the ratio of maximal dynamic displacement to the displacement by the action of static load. Deterministic and probabilistic ap-proaches for the calculating of the AF were discussed. There was an example of AFs calculation and their envelopes for translational and rotational components of seismic impact by using Odyssey Software.

  9. Amplification of hofmeister effect by alcohols.

    Science.gov (United States)

    Xu, Yun; Liu, Guangming

    2014-07-03

    We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.

  10. Lidar using the backscatter amplification effect

    Science.gov (United States)

    Razenkov, Igor A.; Banakh, Victor A.

    2018-04-01

    Experimental data proving the possibility of lidar measurement of the refractive turbulence strength based on the effect of backscatter amplification (BSA) are reported. It is shown that the values of the amplification factor correlate with the variance of random jitter of optical image of an incoherent light source depending on the value of the structure constant of the air refractive index turbulent fluctuations averaged over the probing path. This paper presents the results of measurements of the BSA factor in comparison with the simultaneous measurements of the BSA peak, which is very narrow and only occurs on the laser beam axis. It is constructed the range-time images of the derivative of the amplification factor gives a comprehensive picture of the location of turbulent zones and their temporal dynamics.

  11. Patterns of Primary Tumor Invasion and Regional Lymph Node Spread Based on Magnetic Resonance Imaging in Early-Stage Nasal NK/T-cell Lymphoma: Implications for Clinical Target Volume Definition and Prognostic Significance

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Run-Ye [Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Liu, Kang [Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Wang, Wei-Hu; Jin, Jing; Song, Yong-Wen; Wang, Shu-Lian; Liu, Yue-Ping; Ren, Hua; Fang, Hui; Liu, Qing-Feng; Yang, Yong; Chen, Bo; Qi, Shu-Nan; Lu, Ning-Ning; Tang, Yu; Tang, Yuan; Li, Ning [Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Ouyang, Han [Department of Imaging Diagnosis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China); Li, Ye-Xiong, E-mail: yexiong12@163.com [Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (China)

    2017-01-01

    Purpose: This study aimed to determine the pathways of primary tumor invasion (PTI) and regional lymph node (LN) spread based on magnetic resonance imaging (MRI) in early-stage nasal NK/T-cell lymphoma (NKTCL), to improve clinical target volume (CTV) delineation and evaluate the prognostic value of locoregional extension patterns. Methods and Materials: A total of 105 patients with newly diagnosed early-stage nasal NKTCL who underwent pretreatment MRI were retrospectively reviewed. All patients received radiation therapy with or without chemotherapy. Results: The incidences of PTI and regional LN involvement were 64.7% and 25.7%, respectively. Based on the incidence of PTI, involved sites surrounding the nasal cavity were classified into 3 risk subgroups: high-risk (>20%), intermediate-risk (5%-20%), and low-risk (<5%). The most frequently involved site was the nasopharynx (35.2%), followed by the maxillary (21.9%) and ethmoid (21.9%) sinuses. Local disease and regional LN spread followed an orderly pattern without LN skipping. The retropharyngeal nodes (RPNs) were most frequently involved (19.0%), followed by level II (11.4%). The 5-year overall survival (OS), progression-free survival (PFS), and locoregional control (LRC) rates for all patients were 72.8%, 65.2%, and 90.0%, respectively. The presence of PTI and regional LN involvement based on MRI significantly and negatively affected PFS and OS. Conclusions: Early-stage nasal NKTCL presents with a high incidence of PTI but a relatively low incidence of regional LN spread. Locoregional spread followed an orderly pattern, and PTI and regional LN spread are powerful prognostic factors for poorer survival outcomes. CTV reduction may be feasible for selected patients.

  12. Detection of Bartonella henselae DNA in clinical samples including peripheral blood of immune competent and immune compromised patients by three nested amplifications

    Directory of Open Access Journals (Sweden)

    Karina Hatamoto Kawasato

    2013-02-01

    Full Text Available Bacteria of the genus Bartonella are emerging pathogens detected in lymph node biopsies and aspirates probably caused by increased concentration of bacteria. Twenty-three samples of 18 patients with clinical, laboratory and/or epidemiological data suggesting bartonellosis were subjected to three nested amplifications targeting a fragment of the 60-kDa heat shock protein (HSP, the internal transcribed spacer 16S-23S rRNA (ITS and the cell division (FtsZ of Bartonella henselae, in order to improve detection in clinical samples. In the first amplification 01, 04 and 05 samples, were positive by HSP (4.3%, FtsZ (17.4% and ITS (21.7%, respectively. After the second round six positive samples were identified by nested-HSP (26%, eight by nested-ITS (34.8% and 18 by nested-FtsZ (78.2%, corresponding to 10 peripheral blood samples, five lymph node biopsies, two skin biopsies and one lymph node aspirate. The nested-FtsZ was more sensitive than nested-HSP and nested-ITS (p < 0.0001, enabling the detection of Bartonella henselae DNA in 15 of 18 patients (83.3%. In this study, three nested-PCR that should be specific for Bartonella henselae amplification were developed, but only the nested-FtsZ did not amplify DNA from Bartonella quintana. We conclude that nested amplifications increased detection of B. henselae DNA, and that the nested-FtsZ was the most sensitive and the only specific to B. henselae in different biological samples. As all samples detected by nested-HSP and nested-ITS, were also by nested-FtsZ, we infer that in our series infections were caused by Bartonella henselae. The high number of positive blood samples draws attention to the use of this biological material in the investigation of bartonellosis, regardless of the immune status of patients. This fact is important in the case of critically ill patients and young children to avoid more invasive procedures such as lymph nodes biopsies and aspirates.

  13. Detection and Characterization of Viral Species/Subspecies Using Isothermal Recombinase Polymerase Amplification (RPA) Assays.

    Science.gov (United States)

    Glais, Laurent; Jacquot, Emmanuel

    2015-01-01

    Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers. However, the time requested to amplify molecular targets and the cost of the thermocycler machines could impair the use of these methods in routine diagnostics. Recombinase polymerase amplification (RPA) technique allows rapid (short-term incubation of sample and primers in an enzymatic mixture) and simple (isothermal) amplification of molecular targets. RPA protocol requires only basic molecular steps such as extraction procedures and agarose gel electrophoresis. Thus, RPA can be considered as an interesting alternative to standard molecular-based diagnostic tools. In this paper, the complete procedures to set up an RPA assay, applied to detection of RNA (Potato virus Y, Potyvirus) and DNA (Wheat dwarf virus, Mastrevirus) viruses, are described. The proposed procedure allows developing species- or subspecies-specific detection assay.

  14. Internal amplification control of PCR for the Glu1-Dx5 allele in wheat.

    Science.gov (United States)

    Heim, H N; Vieira, E S N; Polo, L R T; Lima, N K; Silva, G J; Linde, G A; Colauto, N B; Schuster, I

    2017-08-17

    One of the limiting factors in using dominant markers is the unique amplification of the target fragment. Therefore, failures in polymerase chain reaction (PCR) or non-amplifications can be interpreted as an absence of the allele. The possibility of false negatives implies in reduced efficiency in the selection process in genetic breeding programs besides the loss of valuable genetic material. Thus, this study aimed to evaluate the viability of a microsatellite marker as an internal amplification control with a dominant marker for the wheat Glu1-Dx5 gene. A population of 77 wheat cultivars/breeding lines was analyzed. Fourteen microsatellite markers were analyzed in silico regarding the formation of dimers and clamps. The biplex reaction conditions were optimized, and the Xbarc117 marker was selected as the internal amplification control with a Glu1-Dx5 marker in wheat. It was concluded that the Xbarc117 microsatellite marker was effective in the simultaneous amplification with a dominant Glu1-Dx5 marker, making biplex PCR viable in wheat for the studied markers.

  15. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate.

    Science.gov (United States)

    Wang, Ping; Zhang, Tonghuan; Yang, Taoyi; Jin, Nan; Zhao, Yanjun; Fan, Aiping

    2014-08-07

    A highly sensitive and selective chemiluminescent (CL) biosensor for adenosine triphosphate (ATP) was developed by taking advantage of the ATP-dependent enzymatic reaction (ATP-DER), the powerful signal amplification capability of rolling circle amplification (RCA), and hydroxylamine-amplified gold nanoparticles (Au NPs). The strategy relies on the ability of ATP, a cofactor of T4 DNA ligase, to trigger the ligation-RCA reaction. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction between the two ends of the padlock probe, producing a closed circular DNA template that initiates the RCA reaction with phi29 DNA polymerase and dNTP. Therein, many complementary copies of the circular template can be generated. The ATP-DER is eventually converted into a detectable CL signal after a series of processes, including gold probe hybridization, hydroxylamine amplification, and oxidative gold metal dissolution coupled with a simple and sensitive luminol CL reaction. The CL signal is directly proportional to the ATP level. The results showed that the detection limit of the assay is 100 pM of ATP, which compares favorably with those of other ATP detection techniques. In addition, by taking advantage of ATP-DER, the proposed CL sensing system exhibits extraordinary specificity towards ATP and could distinguish the target molecule ATP from its analogues. The proposed method provides a new and versatile platform for the design of novel DNA ligation reaction-based CL sensing systems for other cofactors. This novel ATP-DER based CL sensing system may find wide applications in clinical diagnosis as well as in environmental and biomedical fields.

  16. Amplification in Technical Manuals: Theory and Practice.

    Science.gov (United States)

    Killingsworth, M. Jimmie; And Others

    1989-01-01

    Examines how amplification (rhetorical techniques by which discourse is extended to enhance its appeal and information value) tends to increase and improve the coverage, rationale, warnings, behavioral alternatives, examples, previews, and general emphasis of technical manuals. Shows how classical and modern rhetorical theories can be applied to…

  17. Intelligence amplification framework for enhancing scheduling processes

    NARCIS (Netherlands)

    Dobrkovic, Andrej; Liu, Luyao; Iacob, Maria Eugenia; van Hillegersberg, Jos

    2016-01-01

    The scheduling process in a typical business environment consists of predominantly repetitive tasks that have to be completed in limited time and often containing some form of uncertainty. The intelligence amplification is a symbiotic relationship between a human and an intelligent agent. This

  18. Social amplification of risk: a conceptual framework

    International Nuclear Information System (INIS)

    Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S.

    1988-01-01

    One of the most perplexing problems in risk analysis is why some relatively minor risks or risk events, as assessed by technical experts, often elicit strong public concerns and result in substantial impacts upon society and economy. This article sets forth a conceptual framework that seeks to link systematically the technical assessment of risk with psychological, sociological, and cultural perspectives of risk perception and risk-related behavior. The main thesis is that hazards interact with psychological, social, institutional, and cultural processes in ways that may amplify or attenuate public responses to the risk or risk event. A structural description of the social amplification of risk is now possible. Amplification occurs at two stages: in the transfer of information about the risk, and in the response mechanisms of society. Signals about risk are processed by individual and social amplification stations, including the scientist who communicates the risk assessment, the news media, cultural groups, interpersonal networks, and others. Key steps of amplifications can be identified at each stage. The amplified risk leads to behavioral responses, which, in turn, result in secondary impacts. Models are presented that portray the elements and linkages in the proposed conceptual framework

  19. MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Lu-Kai Wang

    Full Text Available Non-small cell lung cancers (NSCLCs cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R, TGF-beta receptor type-1 (TGFBR1, and epidermal growth factor receptor (EGFR, are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

  20. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  1. Immunohistochemical expression of EGFR in colorectal carcinoma correlates with high but not low level gene amplification, as demonstrated by CISH.

    Science.gov (United States)

    Hemmings, Chris; Broomfield, Amy; Bean, Elaine; Whitehead, Martin; Yip, Desmond

    2009-01-01

    To assess and compare immunohistochemical expression of epidermal growth factor receptor (EGFR) with gene amplification as demonstrated by chromogenic in situ hybridisation (CISH), in colorectal adenocarcinoma. Sections from 100 consecutive colorectal cancer resection specimens were stained for EGFR using immunohistochemistry and CISH. Immunohistochemical assessment was independently performed at two laboratories, using the same antibody and protocols. With immunohistochemistry, strong circumferential membrane staining (3+ staining) was demonstrated in only 5% of cases, and this was only focal in three of five cases. At one laboratory, weak or incomplete staining (1+ or 2+) was observed in five further cases (5%), which had been negative at the other laboratory. CISH demonstrated high level gene amplification (>10 copies/nucleus) in the same five cases which had demonstrated 3+ staining with immunohistochemistry, and in those cases where the staining was focal, the amplification was demonstrated in the same foci of the tumour. Five further cases (5%) had low level amplification (5-10 copies per nucleus); these cases did not exhibit significant positive staining with immunohistochemistry. All the cases which demonstrated gene amplification (high or low level) arose in the distal colon. There was no correlation between gene amplification status and a variety of other variables, including stage at diagnosis, mucinous differentiation, neuroendocrine differentiation, or loss of expression of mismatch repair proteins. Immunohistochemical expression of EGFR is variable between laboratories, even using standardised protocols. 3+ staining is predictive of high level gene amplification, but correlates very poorly with low level amplification, which may still be clinically significant. In some cases gene amplification was only focal, offering a potential explanation for poor response to targeted therapy in patients with EGFR positive tumours.

  2. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  3. Chromosomal Localization of DNA Amplifications in Neuroblastoma Tumors Using cDNA Microarray Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Ben Beheshti

    2003-01-01

    Full Text Available Conventional comparative genomic hybridization (CGH profiling of neuroblastomas has identified many genomic aberrations, although the limited resolution has precluded a precise localization of sequences of interest within amplicons. To map high copy number genomic gains in clinically matched stage IV neuroblastomas, CGH analysis using a 19,200-feature cDNA microarray was used. A dedicated (freely available algorithm was developed for rapid in silico determination of chromosomal localizations of microarray cDNA targets, and for generation of an ideogram-type profile of copy number changes. Using these methodologies, novel gene amplifications undetectable by chromosome CGH were identified, and larger MYCN amplicon sizes (in one tumor up to 6 Mb than those previously reported in neuroblastoma were identified. The genes HPCAL1, LPIN1/KIAA0188, NAG, and NSE1/LOC151354 were found to be coamplified with MYCN. To determine whether stage IV primary tumors could be further subclassified based on their genomic copy number profiles, hierarchical clustering was performed. Cluster analysis of microarray CGH data identified three groups: 1 no amplifications evident, 2 a small MYCN amplicon as the only detectable imbalance, and 3 a large MYCN amplicon with additional gene amplifications. Application of CGH to cDNA microarray targets will help to determine both the variation of amplicon size and help better define amplification-dependent and independent pathways of progression in neuroblastoma.

  4. Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification.

    Science.gov (United States)

    Ziesemer, Kirsten A; Mann, Allison E; Sankaranarayanan, Krithivasan; Schroeder, Hannes; Ozga, Andrew T; Brandt, Bernd W; Zaura, Egija; Waters-Rist, Andrea; Hoogland, Menno; Salazar-García, Domingo C; Aldenderfer, Mark; Speller, Camilla; Hendy, Jessica; Weston, Darlene A; MacDonald, Sandy J; Thomas, Gavin H; Collins, Matthew J; Lewis, Cecil M; Hofman, Corinne; Warinner, Christina

    2015-11-13

    To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341-534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

  5. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-07-08

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.

  6. FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma

    Directory of Open Access Journals (Sweden)

    Brunello Eleonora

    2012-12-01

    Full Text Available Abstract Background Lobular breast carcinoma usually shows poor responsiveness to chemotherapies and often lacks targeted therapies. Since FGFR1 expression has been shown to play pivotal roles in primary breast cancer tumorigenesis, we sought to analyze the status of FGFR1 gene in a metastatic setting of lobular breast carcinoma, since promising FGFR1 inhibitors has been recently developed. Methods Fifteen tissue metastases from lobular breast carcinomas with matched primary infiltrative lobular breast carcinoma were recruited. Eleven cases showed loco-regional lymph-nodal and four haematogenous metastases. FGFR-1 gene (8p12 amplification was evaluated by chromogenic in situ hybridization (CISH analysis. Her-2/neu and topoisomerase-IIα gene status was assessed. E-cadherin and Hercept Test were also performed. We distinguished amplification (>6 or cluster of signals versus gains (3–6 signals of the locus specific FGFR-1 gene. Results Three (20% primary lobular breast carcinomas showed >6 or cluster of FGFR1 signals (amplification, six cases (40% had a mean of three (range 3–6 chromogenic signals (gains whereas in 6 (40% was not observed any abnormality. Three of 15 metastasis (20% were amplified, 2/15 (13,4% did not. The ten remaining cases (66,6% showed three chromogenic signals. The three cases with FGFR-1 amplification matched with those primary breast carcinomas showing FGFR-1 amplification. The six cases showing FGFR-1 gains in the primary tumour again showed FGFR-1 gains in the metastases. Four cases showed gains of FGFR-1 gene signals in the metastases and not in the primary tumours. Her-2/neu gene amplification was not observed in all cases but one (6% case. Topoisomerase-IIα was not amplified in all cases. Conclusions 1 a subset of metastatic lobular breast carcinoma harbors FGFR-1 gene amplification or gains of chromogenic signals; 2 a minor heterogeneity has been observed after matching primary and metastatic carcinomas; 3 in the

  7. Comparison of the Soil Dynamic Amplification Factor and Soil Amplification by Using Microtremor and MASW Methods Respectively

    Science.gov (United States)

    Tuncel, Aykut; Cevdet Özdag, Özkan; Pamuk, Eren; Akgün, Mustafa

    2017-12-01

    Single Station Microtremor method, which is widely used nowadays, is an effective and easy applicable method. In this study, dynamic amplification factor distributions of the study area were obtained using scenario earthquake parameters with single station microtremor data gathered at 112 points. In addition, a surface wave active method, which is known as MASW (Multichannel Analysis of Surface Waves), was applied at 43 profiles to calculate the soil amplification values. Dynamic amplification factor (DAF), soil amplification, the predominant soil period (PSP), geology and topography data of the study area were analysed together. Dynamic amplification factor and soil amplification values were obtained 2 or higher at about sea level parts of the study area which are generally composed of alluvial units. Additionally, in high altitude regions that are composed of volcanic rocks, relatively lower dynamic amplification factor and soil amplification values were obtained. The minimum amplification value in the study area was 1.15, while the maximum amplification value was 3.05 according to the dynamic amplification results and the soil amplification values were between 1.16 and 3.85 in harmony. It is seen that the obtained DAF values and the soil amplification values calculated from the seismic velocities are very similar to each other numerically and regionally. Because of this, it is concluded that the values of the soil amplification obtained by the MASW method and the calculated DAF values in this study are in harmony with each other. Although the depths of research in these two calculation methods are different from each other, the similarity of the results allows us to arrive at the result of how effective the ground layer is on the amplification. It has a great importance to calculate the amplification values and other dynamic parameters by in situ measurements for a planned plot because geological units can vary even at very short distances in heterogeneously

  8. Restriction Cascade Exponential Amplification (RCEA) assay with an attomolar detection limit: a novel, highly specific, isothermal alternative to qPCR.

    Science.gov (United States)

    Ghindilis, Andrey L; Smith, Maria W; Simon, Holly M; Seoudi, Ihab A; Yazvenko, Nina S; Murray, Iain A; Fu, Xiaoqing; Smith, Kenneth; Jen-Jacobson, Linda; Xu, Shuang-Yong

    2015-01-13

    An alternative to qPCR was developed for nucleic acid assays, involving signal rather than target amplification. The new technology, Restriction Cascade Exponential Amplification (RCEA), relies on specific cleavage of probe-target hybrids by restriction endonucleases (REase). Two mutant REases for amplification (Ramp), S17C BamHI and K249C EcoRI, were conjugated to oligonucleotides, and immobilized on a solid surface. The signal generation was based on: (i) hybridization of a target DNA to a Ramp-oligonucleotide probe conjugate, followed by (ii) specific cleavage of the probe-target hybrid using a non-immobilized recognition REase. The amount of Ramp released into solution upon cleavage was proportionate to the DNA target amount. Signal amplification was achieved through catalysis, by the free Ramp, of a restriction cascade containing additional oligonucleotide-conjugated Ramp and horseradish peroxidase (HRP). Colorimetric quantification of free HRP indicated that the RCEA achieved a detection limit of 10 aM (10(-17) M) target concentration, or approximately 200 molecules, comparable to the sensitivity of qPCR-based assays. The RCEA assay had high specificity, it was insensitive to non-specific binding, and detected target sequences in the presence of foreign DNA. RCEA is an inexpensive isothermal assay that allows coupling of the restriction cascade signal amplification with any DNA target of interest.

  9. Digital Microfluidics for Nucleic Acid Amplification

    Directory of Open Access Journals (Sweden)

    Beatriz Coelho

    2017-06-01

    Full Text Available Digital Microfluidics (DMF has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

  10. Light amplification by seeded Kerr instability

    Science.gov (United States)

    Vampa, G.; Hammond, T. J.; Nesrallah, M.; Naumov, A. Yu.; Corkum, P. B.; Brabec, T.

    2018-02-01

    Amplification of femtosecond laser pulses typically requires a lasing medium or a nonlinear crystal. In either case, the chemical properties of the lasing medium or the momentum conservation in the nonlinear crystal constrain the frequency and the bandwidth of the amplified pulses. We demonstrate high gain amplification (greater than 1000) of widely tunable (0.5 to 2.2 micrometers) and short (less than 60 femtosecond) laser pulses, up to intensities of 1 terawatt per square centimeter, by seeding the modulation instability in an Y3Al5O12 crystal pumped by femtosecond near-infrared pulses. Our method avoids constraints related to doping and phase matching and therefore can occur in a wider pool of glasses and crystals even at far-infrared frequencies and for single-cycle pulses. Such amplified pulses are ideal to study strong-field processes in solids and highly excited states in gases.

  11. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  12. Vaccines against invasive Salmonella disease

    Science.gov (United States)

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  13. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    Science.gov (United States)

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.

  14. Hormonal Involvement in Breast Cancer Gene Amplification

    Science.gov (United States)

    2010-10-01

    been shown to induce DN A amplification in yeast (Gopalakrishnan et al., 2001; Nguy en et al., 2001; Green et al., 2006) an d increased Cdt1 results in...re-replication in human cells (Dorn et al., 2008). The N- terminus of Cdt1 is important for re-replication, perhaps through interactions with PCNA...evolution of a cancer genome. Genome Res. (Epub. Dec. 3, 2008). Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Bras lavsky I, Causey M

  15. Fast amplification system for gamma spectroscopy

    International Nuclear Information System (INIS)

    Jesus, E.F.O.; Lopes, R.T.

    1992-01-01

    An amplification system for gamma spectroscopy with high counting rates was developed. The system was constructed with operational amplifiers, and tested and compared with ORTEC conventional system, using Iridium-192 as source of 9,25 x 10 1 0 Bq of activity and NaI (Tl) detector. The constructed system showed a better performance in relation to efficiency and resolution parameters, tested before. (C.G.C.)

  16. Optimized thermal amplification in a radiative transistor

    Energy Technology Data Exchange (ETDEWEB)

    Prod' homme, Hugo; Ordonez-Miranda, Jose; Ezzahri, Younes, E-mail: younes.ezzahri@univ-poitiers.fr; Drevillon, Jeremie; Joulain, Karl [Institut Pprime, CNRS, Université de Poitiers, ISAE-ENSMA, F-86962 Futuroscope Chasseneuil (France)

    2016-05-21

    The thermal performance of a far-field radiative transistor made up of a VO{sub 2} base in between a blackbody collector and a blackbody emitter is theoretically studied and optimized. This is done by using the grey approximation on the emissivity of VO{sub 2} and deriving analytical expressions for the involved heat fluxes and transistor amplification factor. It is shown that this amplification factor can be maximized by tuning the base temperature close to its critical one, which is determined by the temperature derivative of the VO{sub 2} emissivity and the equilibrium temperatures of the collector and emitter. This maximization is the result of the presence of two bi-stable temperatures appearing during the heating and cooling processes of the VO{sub 2} base and enables a thermal switching (temperature jump) characterized by a sizeable variation of the collector-to-base and base-to-emitter heat fluxes associated with a slight change of the applied power to the base. This switching effect leads to the optimization of the amplification factor and therefore it could be used for thermal modulation purposes.

  17. Research Report Non-invasive DNA-based species and sex ...

    Indian Academy of Sciences (India)

    shrushti modi

    Non-invasive DNA-based species and sex identification of Asiatic wild dog (Cuon alpinus) .... We did not find any cross-gender amplification with any of the reference or field-collected samples. Success rate for sex discrimination for all field-.

  18. De novo amplification within a silent human cholinesterase gene in a family subjected to prolonged exposure to organophosphorus insecticides

    International Nuclear Information System (INIS)

    Prody, C.A.; Dreyfus, P.; Soreq, H.; Zamir, R.; Zakut, H.

    1989-01-01

    A 100-fold DNA amplification in the CHE gene, coding for serum butyrylcholinesterase (BtChoEase), was found in a farmer expressing silent CHE phenotype. Individuals homozygous for this gene display a defective serum BtChoEase and are particularly vulnerable to poisoning by agricultural organophosphorus insecticides, to which all members of this family had long been exposed. DNA blot hybridization with regional BtChoEase cDNA probes suggested that the amplification was most intense in regions encoding central sequences within BtChoEase cDNA, whereas distal sequences were amplified to a much lower extent. This is in agreement with the onion skin model, based on amplification of genes in cultured cells and primary tumors. The amplification was absent in the grandparents but present at the same extent in one of their sons and in a grandson, with similar DNA blot hybridization patterns. In situ hybridization experiments localized the amplified sequences to the long arm of chromosome 3, close to the site where the authors previously mapped the CHE gene. Altogether, these observations suggest that the initial amplification event occurred early in embryogenesis, spermatogenesis, or oogenesis, where the CHE gene is intensely active and where cholinergic functioning was indicated to be physiologically necessary. These findings demonstrate a de novo amplification in apparently healthy individuals within an autosomal gene producing a target protein to an inhibitor

  19. A large ungated TPC with GEM amplification

    Science.gov (United States)

    Berger, M.; Ball, M.; Fabbietti, L.; Ketzer, B.; Arora, R.; Beck, R.; Böhmer, F. V.; Chen, J.-C.; Cusanno, F.; Dørheim, S.; García, F.; Hehner, J.; Herrmann, N.; Höppner, C.; Kaiser, D.; Kis̆, M.; Kleipa, V.; Konorov, I.; Kunkel, J.; Kurz, N.; Leifels, Y.; Müllner, P.; Münzer, R.; Neubert, S.; Rauch, J.; Schmidt, C. J.; Schmitz, R.; Soyk, D.; Vandenbroucke, M.; Voss, B.; Walther, D.; Zmeskal, J.

    2017-10-01

    A Time Projection Chamber (TPC) is an ideal device for the detection of charged particle tracks in a large volume covering a solid angle of almost 4 π. The high density of hits on a given particle track facilitates the task of pattern recognition in a high-occupancy environment and in addition provides particle identification by measuring the specific energy loss for each track. For these reasons, TPCs with Multiwire Proportional Chamber (MWPC) amplification have been and are widely used in experiments recording heavy-ion collisions. A significant drawback, however, is the large dead time of the order of 1 ms per event generated by the use of a gating grid, which is mandatory to prevent ions created in the amplification region from drifting back into the drift volume, where they would severely distort the drift path of subsequent tracks. For experiments with higher event rates this concept of a conventional TPC operating with a triggered gating grid can therefore not be applied without a significant loss of data. A continuous readout of the signals is the more appropriate way of operation. This, however, constitutes a change of paradigm with considerable challenges to be met concerning the amplification region, the design and bandwidth of the readout electronics, and the data handling. A mandatory prerequisite for such an operation is a sufficiently good suppression of the ion backflow from the avalanche region, which otherwise limits the tracking and particle identification capabilities of such a detector. Gas Electron Multipliers (GEM) are a promising candidate to combine excellent spatial resolution with an intrinsic suppression of ions. In this paper we describe the design, construction and the commissioning of a large TPC with GEM amplification and without gating grid (GEM-TPC). The design requirements have driven innovations in the construction of a light-weight field-cage, a supporting media flange, the GEM amplification and the readout system, which are

  20. MYCN and HDAC5 transcriptionally repress CD9 to trigger invasion and metastasis in neuroblastoma.

    Science.gov (United States)

    Fabian, Johannes; Opitz, Desirée; Althoff, Kristina; Lodrini, Marco; Hero, Barbara; Volland, Ruth; Beckers, Anneleen; de Preter, Katleen; Decock, Anneleen; Patil, Nitin; Abba, Mohammed; Kopp-Schneider, Annette; Astrahantseff, Kathy; Wünschel, Jasmin; Pfeil, Sebastian; Ercu, Maria; Künkele, Annette; Hu, Jamie; Thole, Theresa; Schweizer, Leonille; Mechtersheimer, Gunhild; Carter, Daniel; Cheung, Belamy B; Popanda, Odilia; von Deimling, Andreas; Koster, Jan; Versteeg, Rogier; Schwab, Manfred; Marshall, Glenn M; Speleman, Frank; Erb, Ulrike; Zoeller, Margot; Allgayer, Heike; Simon, Thorsten; Fischer, Matthias; Kulozik, Andreas E; Eggert, Angelika; Witt, Olaf; Schulte, Johannes H; Deubzer, Hedwig E

    2016-10-11

    The systemic and resistant nature of metastatic neuroblastoma renders it largely incurable with current multimodal treatment. Clinical progression stems mainly from the increasing burden of metastatic colonization. Therapeutically inhibiting the migration-invasion-metastasis cascade would be of great benefit, but the mechanisms driving this cycle are as yet poorly understood. In-depth transcriptome analyses and ChIP-qPCR identified the cell surface glycoprotein, CD9, as a major downstream player and direct target of the recently described GRHL1 tumor suppressor. CD9 is known to block or facilitate cancer cell motility and metastasis dependent upon entity. High-level CD9 expression in primary neuroblastomas correlated with patient survival and established markers for favorable disease. Low-level CD9 expression was an independent risk factor for adverse outcome. MYCN and HDAC5 colocalized to the CD9 promoter and repressed transcription. CD9 expression diminished with progressive tumor development in the TH-MYCN transgenic mouse model for neuroblastoma, and CD9 expression in neuroblastic tumors was far below that in ganglia from wildtype mice. Primary neuroblastomas lacking MYCN amplifications displayed differential CD9 promoter methylation in methyl-CpG-binding domain sequencing analyses, and high-level methylation was associated with advanced stage disease, supporting epigenetic regulation. Inducing CD9 expression in a SH-EP cell model inhibited migration and invasion in Boyden chamber assays. Enforced CD9 expression in neuroblastoma cells transplanted onto chicken chorioallantoic membranes strongly reduced metastasis to embryonic bone marrow. Combined treatment of neuroblastoma cells with HDAC/DNA methyltransferase inhibitors synergistically induced CD9 expression despite hypoxic, metabolic or cytotoxic stress. Our results show CD9 is a critical and indirectly druggable suppressor of the invasion-metastasis cycle in neuroblastoma.

  1. Loop-mediated isothermal amplification (LAMP): Early detection of Toxoplasma gondii infection in mice

    OpenAIRE

    Kong, Qing-Ming; Lu, Shao-Hong; Tong, Qun-Bo; Lou, Di; Chen, Rui; Zheng, Bin; Kumagai, Takashi; Wen, Li-Yong; Ohta, Nobuo; Zhou, Xiao-Nong

    2012-01-01

    Abstract Background Toxoplasmosis is a widespread zoonotic parasitic disease that occurs in both animals and humans. Traditional molecular assays are often difficult to perform, especially for the early diagnosis of Toxoplasma gondii infections. Here, we established a novel loop-mediated isothermal amplification targeting the 529 bp repeat element (529 bp-LAMP) to detect T. gondii DNA in blood samples of experimental mice infected with tachyzoites of the RH strain. Findings The assay was perf...

  2. New Fpg probe chemistry for direct detection of recombinase polymerase amplification on lateral flow strips.

    Science.gov (United States)

    Powell, Michael L; Bowler, Frank R; Martinez, Aurore J; Greenwood, Catherine J; Armes, Niall; Piepenburg, Olaf

    2018-02-15

    Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings. Copyright © 2017. Published by Elsevier Inc.

  3. Polymerase-endonuclease amplification reaction (PEAR for large-scale enzymatic production of antisense oligonucleotides.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Antisense oligonucleotides targeting microRNAs or their mRNA targets prove to be powerful tools for molecular biology research and may eventually emerge as new therapeutic agents. Synthetic oligonucleotides are often contaminated with highly homologous failure sequences. Synthesis of a certain oligonucleotide is difficult to scale up because it requires expensive equipment, hazardous chemicals and a tedious purification process. Here we report a novel thermocyclic reaction, polymerase-endonuclease amplification reaction (PEAR, for the amplification of oligonucleotides. A target oligonucleotide and a tandem repeated antisense probe are subjected to repeated cycles of denaturing, annealing, elongation and cleaving, in which thermostable DNA polymerase elongation and strand slipping generate duplex tandem repeats, and thermostable endonuclease (PspGI cleavage releases monomeric duplex oligonucleotides. Each round of PEAR achieves over 100-fold amplification. The product can be used in one more round of PEAR directly, and the process can be further repeated. In addition to avoiding dangerous materials and improved product purity, this reaction is easy to scale up and amenable to full automation. PEAR has the potential to be a useful tool for large-scale production of antisense oligonucleotide drugs.

  4. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Bronstein, M.D. [Unidade de Neuroendocrinologia, Serviço de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Corrêa-Giannella, M.L.C.; Giorgi, R.R. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-07-13

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.

  5. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    International Nuclear Information System (INIS)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z.; Bronstein, M.D.; Corrêa-Giannella, M.L.C.; Giorgi, R.R.

    2012-01-01

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland

  6. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection.

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Wahed

    Full Text Available Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF. Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR are the standard method for molecular detection of the dengue virus (DENV. Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA assays were developed to detect DENV1-4.Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4 to 241 (DENV1-3 RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal and in Bangkok (Thailand. In Kedougou, the RT-RPA was operated at an ambient temperature of 38 °C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31 and 100% (n=23, respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90 and 100%(n=41, respectively.During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

  7. [Invasive pulmonary aspergillosis].

    Science.gov (United States)

    Blanchard, E; Gabriel, F; Jeanne-Leroyer, C; Servant, V; Dumas, P-Y

    2018-02-01

    Invasive pulmonary aspergillosis (IPA) is an important cause of morbidity and mortality in a wide range of patients. Early recognition and diagnosis have become a major focus in improving the management and outcomes of this life-threatening disease. IPA typically occurs during a period of severe and prolonged neutropenia. However, solid organ transplant recipients, patients under immunosuppressive therapy or hospitalized in intensive care units are also at risk. The diagnosis is suspected in the presence of a combination of clinical, biological and CT scan evidence. The microbiological diagnostic strategy should be adapted to the patient's profile. Conventional methods with culture and species identification remain the standard but early diagnosis has been improved by the use of biomarkers such as galactomannan antigen in serum or in bronchoalveolar lavage. The epidemiology of IPA should change with the increased use of antifungal prophylactic regimens and the arrival of targeted therapies. Other microbiological tools, such as PCR and other biomarkers, are currently being assessed. IPA must be considered in a wide range of patients. Its prognosis remains poor despite progress in the microbiological diagnosis and therapeutic management. Copyright © 2018 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  8. Social amplification of risk: An empirical study

    International Nuclear Information System (INIS)

    Burns, W.; Slovic, P.; Kasperson, R.; Kasperson, J.; Renn, O.; Emani, S.

    1990-09-01

    The social amplification of risk is a theoretical framework that addresses an important deficiency of formal risk assessment methods and procedures. Typically assessments of risk from technological mishaps have been based upon the expected number of people who could be killed or injured or the amount of property that might be damaged. The diverse and consequential impacts that followed in the aftermath of the Three Mile Island accident make it clear that risk assessments that exclude the role of public perceptions of risk will greatly underestimate the potential costs of certain types of hazards. The accident at Three Mile Island produced no direct fatalities and few, if any, expected deaths due to cancer, yet few other accidents in history have had such costly societal impacts. The experience of amplified impacts argues for the development of a broadened theoretical and methodological perspective capable of integrating technical assessment of risk with public perceptions. This report presents the results to date in an ongoing research effort to better understand the complex processes by which adverse events produce impacts. In particular this research attempts to construct a framework that can account for those events that have produced, or are capable of producing, greater societal impacts than would be forecast by traditional risk assessment methods. This study demonstrates that the social amplification of risk involves interactions between sophisticated technological hazards, public and private institutions, and subtle individual and public perceptions and behaviors. These factors, and the variables underlying the intricate processes of social amplification that occur in modern society, are not fully defined and clarified in this report. 19 refs., 9 figs., 10 tabs

  9. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma.

    NARCIS (Netherlands)

    Wang, X.; Niu, H.; Fan, Q.; Lu, P.; Ma, C.; Liu, W.; Liu, Y.; Li, W.; Hu, S.; Ling, Y.; Guo, L.; Ying, J.; Huang, J.

    2016-01-01

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients.Immunohistochemistry and fluorescence in situ

  10. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  11. Development of a novel set of EST-SSR markers and cross-species amplification in Tamarix africana (Tamaricaceae).

    Science.gov (United States)

    Terzoli, Serena; Beritognolo, Isacco; Sabatti, Maurizio; Kuzminsky, Elena

    2010-06-01

    Tamarix plants are resistant to abiotic stresses and have become invasive in North America. Their taxonomy is troublesome, and few molecular makers are available to enable species identification or to track the spread of specific invasive genotypes. Transcriptome sequencing projects offer a potential source for the development of new markers. • Thirteen polymorphic simple sequence repeats (SSRs) markers derived from Expressed Sequence Tags (ESTs) from Tamarix hispida, T. androssowii, T. ramosissima, and T. albiflonum were identified and screened on 24 samples of T. africana to detect polymorphism. The number of alleles per locus ranged from two to eight, with an average of 4.3 alleles per locus, and the mean expected heterozygosity was 0.453. • Amplification products of these 13 loci were also generated for T. gallica. These new EST-SSR markers will be useful in genetic characterization of Tamarix, as additional tools for taxonomic clarification, and for studying invasive populations where they are a threat.

  12. Gas amplification properties of GEM foils

    International Nuclear Information System (INIS)

    Beck, Jeannine

    2009-01-01

    In the framework of the detector concept International Linear Detector for the future accelerator project International Linear Collider, in which electrons and positrons at c. m. energies of 500 GeV are brought to collision, a time projection chamber shall be applied as central track detector. By the application of such a chamber as track detector a three-dimensional reconstruction of the track points is possible. If a particle passes the gas volume within the chamber it ionizises single gas atoms and the arising electrons move after the amplification in the GEM arrangement to the anode, so that a two-dimensional projection of the particle track is possible. The third dimension is calculated from the drift time of the electrons. The advances of this readout system consist therein that a better position resolution than by a multiwire proportional chamber is reached and the back-drifting ions can be strongly suppressed. Aim of this thesis are studies for a GEM module, which shall be used in a large TPC prototype. Concerning different requirements it is valid to compare different GEMs in order to can meet an optimal choice. In a small prototype present at DESY measurements for the acquisition of GEM-describing parameters were performed. The taking into operation of the test TPC was part of this thesis. Tracks were generated by a radioactive source, by means of which the gas amplification was determined. With the measurement arrangement gas-amplifier foils of different kind were compared in view of their amplification properties and their energy resolution power and systematically studied. Five different GEM performances were studied in the test TPC. These foils differ in their geometrical classification parameters, the fabrication process, or the materials. The GEMs produced at CERN possess in comparison with GEMs of the Japanese firm SciEnergy and a GEM of the US-American firm Tech-Etch the best amplification and resolution properties. Furthermore a new GEM framing

  13. Amplification Effects and Unconventional Monetary Policies

    Directory of Open Access Journals (Sweden)

    Cécile BASTIDON GILLES

    2012-02-01

    Full Text Available Global financial crises trigger off amplification effects, which allow relatively small shocks to propagate through the whole financial system. For this reason, the range of Central banks policies is now widening beyond conventional monetary policies and lending of last resort. The aim of this paper is to establish a rule for this practice. The model is based on the formalization of funding conditions in various types of markets. We conduct a comprehensive analysis of the “unconventional monetary policies”, and especially quantify government bonds purchases by the Central bank.

  14. Amplification of curvature perturbations in cyclic cosmology

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-01-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  15. Parametric Amplification of Gravitational Fluctuations during Reheating

    International Nuclear Information System (INIS)

    Finelli, F.; Brandenberger, R.; Finelli, F.

    1999-01-01

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  16. Evaluation of intratumoral HER-2 heterogeneity by fluorescence in situ hybridization in invasive breast cancer: a single institution study.

    Science.gov (United States)

    Lee, Sarah; Jung, Woohee; Hong, Soon-Won; Koo, Ja Seung

    2011-08-01

    This study aimed to determine the incidence and characteristics of HER-2 gene heterogeneity in invasive breast cancer in a single institution. Included were 971 cases of primary invasive breast cancer diagnosed between 2008 and 2010. Fluorescence in situ hybridization (FISH) image files were retrospectively reviewed and HER-2 gene heterogeneity was defined as more than 5% but less than 50% of analyzed invasive tumor cells with a HER-2/Chr17 ratio higher than 2.2, according to the College of American Pathologists guidelines. HER-2 gene heterogeneity was identified in 24 (2.5%) cases. The mean proportion of invasive tumor cells with a HER-2/chromosome 17 ratio higher than 2.2 was 11.6% (range: 5%-25%). Of 24 cases, HER-2 gene status was not amplified in 8, showed borderline amplification in 2, and amplification in 14. All HER-2 amplification cases were low-grade. In conclusion, HER-2 gene heterogeneity of invasive breast cancer is identified in routine FISH examination. This may affect the results of HER-2 gene amplification status in FISH studies.

  17. Applicability of Non-Invasive Sampling in Population Genetic Study of Taiwanese Macaques (Macaca cyclopis

    Directory of Open Access Journals (Sweden)

    Jui-Hua Chu

    2006-12-01

    Full Text Available This paper presents a pilot study conducted to test the applicability of non-invasive sampling approach in population genetic studies of Taiwanese macaques (Macaca cyclopis. Monkey feces were collected in the field and used as non-invasive DNA sources. PCR success rates of both microsatellite and mitochondrial DNA markers were examined. When compared with other studies by non-invasive genetic sampling of different mammal species, success rate of microsatellite PCR amplification is low (42.4%, N = 181 while that of mtDNA PCR amplification is acceptable (66.5%, N = 334. The low PCR success rate and poor PCR repeatability of microsatellite alleles due to allelic dropout and false alleles make it difficult to obtain a reliable microsatellite data set. However, the difficulties may be overcome by new techniques.

  18. An aptasensor for staphylococcus aureus based on nicking enzyme amplification reaction and rolling circle amplification.

    Science.gov (United States)

    Xu, Jingguo; Guo, Jia; Maina, Sarah Wanjiku; Yang, Yumeng; Hu, Yimin; Li, Xuanxuan; Qiu, Jiarong; Xin, Zhihong

    2018-05-15

    An ultra-sensitive aptamer-based biosensor for the detection of staphylococcus aureus was established by adopting the nicking enzyme amplification reaction (NEAR) and the rolling circle amplification (RCA) technologies. Aptamer-probe (AP), containing an aptamer and a probe sequence, was developed to act as the recognition unit of the biosensor, which was specifically bound to S. aureus. The probe was released from AP and initiated into the subsequent DNA amplification reactions where S. aureus was present, converting the detection of S. aureus to the investigation of probe oligonucleotide. The RCA amplification products contained a G-quadruplex motif and formed a three dimensional structure in presence of hemin. The G4/hemin complex showed horseradish peroxidase (HRP)-mimic activity and catalyzed the chemiluminescence reaction of luminol mediated by H 2 O 2 . The results showed that the established biosensor could detect S. aureus specifically with a good linear correlation at 5-10 4  CFU/mL. The signal values based on NEAR-RCA two-step cycle were boosted acutely, much higher than that relied on one-cycle magnification. The limit of detection (LoD) was determined to be as low as 5 CFU/mL. The established aptasensor exhibited a good discrimination of living against dead S. aureus, and can be applied to detect S. aureus in the food industry. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification.

    Science.gov (United States)

    Ebai, Tonge; Souza de Oliveira, Felipe Marques; Löf, Liza; Wik, Lotta; Schweiger, Caroline; Larsson, Anders; Keilholtz, Ulrich; Haybaeck, Johannes; Landegren, Ulf; Kamali-Moghaddam, Masood

    2017-09-01

    Detecting proteins at low concentrations in plasma is crucial for early diagnosis. Current techniques in clinical routine, such as sandwich ELISA, provide sensitive protein detection because of a dependence on target recognition by pairs of antibodies, but detection of still lower protein concentrations is often called for. Proximity ligation assay with rolling circle amplification (PLARCA) is a modified proximity ligation assay (PLA) for analytically specific and sensitive protein detection via binding of target proteins by 3 antibodies, and signal amplification via rolling circle amplification (RCA) in microtiter wells, easily adapted to instrumentation in use in hospitals. Proteins captured by immobilized antibodies were detected using a pair of oligonucleotide-conjugated antibodies. Upon target recognition these PLA probes guided oligonucleotide ligation, followed by amplification via RCA of circular DNA strands that formed in the reaction. The RCA products were detected by horseradish peroxidase-labeled oligonucleotides to generate colorimetric reaction products with readout in an absorbance microplate reader. We compared detection of interleukin (IL)-4, IL-6, IL-8, p53, and growth differentiation factor 15 (GDF-15) by PLARCA and conventional sandwich ELISA or immuno-RCA. PLARCA detected lower concentrations of proteins and exhibited a broader dynamic range compared to ELISA and iRCA using the same antibodies. IL-4 and IL-6 were detected in clinical samples at femtomolar concentrations, considerably lower than for ELISA. PLARCA offers detection of lower protein levels and increased dynamic ranges compared to ELISA. The PLARCA procedure may be adapted to routine instrumentation available in hospitals and research laboratories. © 2017 American Association for Clinical Chemistry.

  20. C-MET overexpression and amplification in gliomas.

    Science.gov (United States)

    Kwak, Yoonjin; Kim, Seong-Ik; Park, Chul-Kee; Paek, Sun Ha; Lee, Soon-Tae; Park, Sung-Hye

    2015-01-01

    We investigated c-Met overexpression and MET gene amplification in gliomas to determine their incidence and prognostic significance. c-Met immunohistochemistry and MET gene fluorescence in situ hybridization were carried out on tissue microarrays from 250 patients with gliomas (137 grade IV GBMs and 113 grade II and III diffuse gliomas). Clinicopathological features of these cases were reviewed. c-Met overexpression and MET gene amplification were detected in 13.1% and 5.1% of the GBMs, respectively. All the MET-amplified cases showed c-Met overexpression, but MET amplification was not always concordant with c-Met overexpression. None of grade II and III gliomas demonstrated c-Met overexpression or MET gene amplification. Mean survival of the GBM patients with MET amplification was not significantly different from patients without MET amplification (P=0.155). However, GBM patients with c-Met overexpression survived longer than patients without c-Met overexpression (P=0.035). Although MET amplification was not related to poor GBM prognosis, it is partially associated with the aggressiveness of gliomas, as MET amplification was found only in grade IV, not in grade II and III gliomas. We suggest that MET inhibitor therapy may be beneficial in about 5% GBMs, which was the incidence of MET gene amplification found in the patients included in this study.

  1. Earthquake acceleration amplification based on single microtremor test

    Science.gov (United States)

    Jaya Syahbana, Arifan; Kurniawan, Rahmat; Soebowo, Eko

    2018-02-01

    Understanding soil dynamics is needed to understand soil behaviour, including the parameters of earthquake acceleration amplification. Many researchers now conduct single microtremor tests to obtain amplification of velocity and natural periods of soil at test sites. However, these amplification parameters are rarely used, so a method is needed to convert the velocity amplification to acceleration amplification. This paper will discuss the proposed process of changing the value of amplification. The proposed method is to integrate the time histories of the synthetic earthquake acceleration of the soil surface under the deaggregation at that location so the time histories of the velocity earthquake will be obtained. Next is to conduct a “fitting curve” between amplification by a single microtremor test with amplification of the synthetic earthquake velocity time histories. After obtaining the fitting curve time histories of velocity, differentiation will be conducted to obtain fitting curve acceleration time histories. The final step after obtaining the fitting curve is to compare the acceleration of the “fitting curve” against the histories time of the acceleration of synthetic earthquake at bedrocks to obtain single microtremor acceleration amplification factor.

  2. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  3. Quantum tomography enhanced through parametric amplification

    Science.gov (United States)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.

  4. Electronic cyclotron radiation amplification in thermonuclear plasmas

    International Nuclear Information System (INIS)

    Ziebell, L.F.

    1983-01-01

    The amplified emission of electron cyclotron radiation near the fundamental frequency from an inhomogeneous, anisotropic plasma slab is investigated in a linear theory. Plasma polarization effects are consistently included. Expressions are developed in the WKB approximation for emission in the ordinary and the extraordinary modes, for propagation perpendicular to the magnetic field. Numerical results are given for the extraordinary mode, for which effects are strongest. For the case of a loss-cone-type electron momentum distribution, it is shown that the amplification is sensitively dependent on the ratio of parallel-to-perpendicular temperature and on inhomogeneities in the magnetic field. The dependence of the amplification on the distribution is further investigated by considering superpositions of loss-cone and Maxwellian components. It is show that the presence of a Maxwellian component in general reduces the emission relative to the pure loss-cone case, and situations occur in which a layer in the slab very effectively absorbs all the radiation amplified elsewhere. A peculiar behaviour of the refractive index, which occurs in the transition from the pure loss-cone to the pure Maxwellian case, is discussed. (author)

  5. Environmental whole-genome amplification to access microbial populations in contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, Carl B [Diversa Corporation; Wyborski, Denise L. [Diversa Corporation; Garcia, Joseph A. [Diversa Corporation; Podar, Mircea [ORNL; Chen, Wenqiong [Diversa Corporation; Chang, Sherman H. [Diversa Corporation; Chang, Hwai W. [Diversa Corporation; Watson, David B [ORNL; Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); Keller, Martin [ORNL

    2006-05-01

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using {phi}29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2% genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small-subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9% of the sequences had significant similarities to known proteins, and 'clusters of orthologous groups' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  6. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates.

    Science.gov (United States)

    Kalle, Elena; Gulevich, Alexander; Rensing, Christopher

    2013-11-01

    In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products. © 2013 Elsevier B.V. All rights reserved.

  7. Evaluating whole transcriptome amplification for gene profiling experiments using RNA-Seq.

    Science.gov (United States)

    Faherty, Sheena L; Campbell, C Ryan; Larsen, Peter A; Yoder, Anne D

    2015-07-30

    RNA-Seq has enabled high-throughput gene expression profiling to provide insight into the functional link between genotype and phenotype. Low quantities of starting RNA can be a severe hindrance for studies that aim to utilize RNA-Seq. To mitigate this bottleneck, whole transcriptome amplification (WTA) technologies have been developed to generate sufficient sequencing targets from minute amounts of RNA. Successful WTA requires accurate replication of transcript abundance without the loss or distortion of specific mRNAs. Here, we test the efficacy of NuGEN's Ovation RNA-Seq V2 system, which uses linear isothermal amplification with a unique chimeric primer for amplification, using white adipose tissue from standard laboratory rats (Rattus norvegicus). Our goal was to investigate potential biological artifacts introduced through WTA approaches by establishing comparisons between matched raw and amplified RNA libraries derived from biological replicates. We found that 93% of expressed genes were identical between all unamplified versus matched amplified comparisons, also finding that gene density is similar across all comparisons. Our sequencing experiment and downstream bioinformatic analyses using the Tuxedo analysis pipeline resulted in the assembly of 25,543 high-quality transcripts. Libraries constructed from raw RNA and WTA samples averaged 15,298 and 15,253 expressed genes, respectively. Although significant differentially expressed genes (P < 0.05) were identified in all matched samples, each of these represents less than 0.15% of all shared genes for each comparison. Transcriptome amplification is efficient at maintaining relative transcript frequencies with no significant bias when using this NuGEN linear isothermal amplification kit under ideal laboratory conditions as presented in this study. This methodology has broad applications, from clinical and diagnostic, to field-based studies when sample acquisition, or sample preservation, methods prove

  8. Environmental Whole-Genome Amplification to Access Microbial Diversity in Contaminated Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Abulencia, C.B.; Wyborski, D.L.; Garcia, J.; Podar, M.; Chen, W.; Chang, S.H.; Chang, H.W.; Watson, D.; Brodie,E.I.; Hazen, T.C.; Keller, M.

    2005-12-10

    Low-biomass samples from nitrate and heavy metal contaminated soils yield DNA amounts that have limited use for direct, native analysis and screening. Multiple displacement amplification (MDA) using ?29 DNA polymerase was used to amplify whole genomes from environmental, contaminated, subsurface sediments. By first amplifying the genomic DNA (gDNA), biodiversity analysis and gDNA library construction of microbes found in contaminated soils were made possible. The MDA method was validated by analyzing amplified genome coverage from approximately five Escherichia coli cells, resulting in 99.2 percent genome coverage. The method was further validated by confirming overall representative species coverage and also an amplification bias when amplifying from a mix of eight known bacterial strains. We extracted DNA from samples with extremely low cell densities from a U.S. Department of Energy contaminated site. After amplification, small subunit rRNA analysis revealed relatively even distribution of species across several major phyla. Clone libraries were constructed from the amplified gDNA, and a small subset of clones was used for shotgun sequencing. BLAST analysis of the library clone sequences showed that 64.9 percent of the sequences had significant similarities to known proteins, and ''clusters of orthologous groups'' (COG) analysis revealed that more than half of the sequences from each library contained sequence similarity to known proteins. The libraries can be readily screened for native genes or any target of interest. Whole-genome amplification of metagenomic DNA from very minute microbial sources, while introducing an amplification bias, will allow access to genomic information that was not previously accessible.

  9. Deeply invasive candidiasis.

    NARCIS (Netherlands)

    Ostrosky-Zeichner, L.; Rex, J.H.; Bennett, J.; Kullberg, B.J.

    2002-01-01

    The incidence of invasive candidiasis is on the rise because of increasing numbers of immunocompromised hosts and more invasive medical technology. Recovery of Candida spp from several body sites in a critically ill or immunocompromised patient should raise the question of disseminated disease.

  10. Cryptic invasions: a review

    Czech Academy of Sciences Publication Activity Database

    Morais, Pedro Miguel; Reichard, Martin

    613-614, February (2018), s. 1438-1448 ISSN 0048-9697 R&D Projects: GA ČR GA13-05872S Institutional support: RVO:68081766 Keywords : Conspecific invader * Biological invasions * Bibliometric * Invasiveness Subject RIV: EG - Zoology OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.900, year: 2016

  11. Factors influencing plant invasiveness

    Science.gov (United States)

    Yvette Ortega; Dean Pearson

    2009-01-01

    Invasiveness of spotted knapweed and biological control agents. Dean and Yvette are examining the influence of drought on the invasiveness of spotted knapweed (Centaurea maculosa) and its susceptibility to herbivory by biological control agents. In collaboration with the University of Montana and Forest Health Protection, researchers have constructed 150...

  12. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    Science.gov (United States)

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  13. Alien invasive birds.

    Science.gov (United States)

    Brochier, B; Vangeluwe, D; van den Berg, T

    2010-08-01

    A bird species is regarded as alien invasive if it has been introduced, intentionally or accidentally, to a location where it did not previously occur naturally, becomes capable of establishing a breeding population without further intervention by humans, spreads and becomes a pest affecting the environment, the local biodiversity, the economy and/or society, including human health. European Starling (Sturnus vulgaris), Common Myna (Acridotheres tristis) and Red-vented Bulbul (Pycnonotus cafer) have been included on the list of '100 of the World's Worst Invasive Alien Species', a subset of the Global Invasive Species Database. The 'Delivering Alien Invasive Species Inventories for Europe' project has selected Canada Goose (Branta canadensis), Ruddy Duck (Oxyura jamaicensis), Rose-ringed Parakeet (Psittacula krameri) and Sacred Ibis (Threskiornis aethiopicus) as among 100 of the worst invasive species in Europe. For each of these alien bird species, the geographic range (native and introduced range), the introduction pathway, the general impacts and the management methods are presented.

  14. Minimally invasive orthognathic surgery.

    Science.gov (United States)

    Resnick, Cory M; Kaban, Leonard B; Troulis, Maria J

    2009-02-01

    Minimally invasive surgery is defined as the discipline in which operative procedures are performed in novel ways to diminish the sequelae of standard surgical dissections. The goals of minimally invasive surgery are to reduce tissue trauma and to minimize bleeding, edema, and injury, thereby improving the rate and quality of healing. In orthognathic surgery, there are two minimally invasive techniques that can be used separately or in combination: (1) endoscopic exposure and (2) distraction osteogenesis. This article describes the historical developments of the fields of orthognathic surgery and minimally invasive surgery, as well as the integration of the two disciplines. Indications, techniques, and the most current outcome data for specific minimally invasive orthognathic surgical procedures are presented.

  15. Ridgefield Complex - Invasive Plant ED/RR Search 2015

    Data.gov (United States)

    Department of the Interior — The proposed project is a part of the Gorge NWRs’ invasives management program and will help achieve goals and improve targeted habitats identified in the Refuges’...

  16. Establishment of recombinase polymerase amplification assay for five hemorrhagic fever-related viruses

    Directory of Open Access Journals (Sweden)

    Xue-feng CAO

    2017-08-01

    Full Text Available Objective To establish a one-step recombinase polymerase amplification (RPA method for pathogen screening and rapid detection in the field targeting for five hemorrhagic fever related viruses (Zaire ebola virus, Sudan ebola virus, Marburg virus, Lassa virus and Yellow fever virus. Methods The specific nucleic acid (NA fragments of each virus were selected as target genes by genome sequence analysis, and the primers and probes for RPA assays were designed according to the sequence. A series of diluted template genes were used for RPA detection to determine the sensitivity. The hemorrhagic fever-related viral nucleic acids were used for RPA detection to determine the specificity. The amplification experiments were carried out at different temperature ranging from 37℃ to 42℃ to validate the reaction temperature range. Results The RPA reaction systems of the five hemorrhagic fever viruses could effectively amplify the target genes, the sensitivities were between 1.5×102 and 1.5×103 copies. No cross reactions existed with the other hemorrhagic fever-related viral genes. Meanwhile, RPA assay could effectively amplify the target genes at 37-42℃. Conclusion The isothermal RPA assays of five hemorrhagic fever viruses are established, which may amply target genes fast and react at a wide temperature range, and be potentially useful for in field pathogens detection. DOI: 10.11855/j.issn.0577-7402.2017.06.09

  17. The DEAD box helicase RDE-12 promotes amplification of RNAi in cytoplasmic foci in C. elegans.

    Science.gov (United States)

    Yang, Huan; Vallandingham, Jim; Shiu, Philip; Li, Hua; Hunter, Craig P; Mak, Ho Yi

    2014-04-14

    RNAi is a potent mechanism for downregulating gene expression. Conserved RNAi pathway components are found in animals, plants, fungi, and other eukaryotes. In C. elegans, the RNAi response is greatly amplified by the synthesis of abundant secondary small interfering RNAs (siRNAs). Exogenous double-stranded RNA is processed by Dicer and RDE-1/Argonaute into primary siRNA that guides target mRNA recognition. The RDE-10/RDE-11 complex and the RNA-dependent RNA polymerase RRF-1 then engage the target mRNA for secondary siRNA synthesis. However, the molecular link between primary siRNA production and secondary siRNA synthesis remains largely unknown. Furthermore, it is unclear whether the subcellular sites for target mRNA recognition and degradation coincide with sites where siRNA synthesis and amplification occur. In the C. elegans germline, cytoplasmic P granules at the nuclear pores and perinuclear Mutator foci contribute to target mRNA surveillance and siRNA amplification, respectively. We report that RDE-12, a conserved phenylalanine-glycine (FG) domain-containing DEAD box helicase, localizes in P granules and cytoplasmic foci that are enriched in RSD-6 but are excluded from the Mutator foci. Our results suggest that RDE-12 promotes secondary siRNA synthesis by orchestrating the recruitment of RDE-10 and RRF-1 to primary siRNA-targeted mRNA in distinct cytoplasmic compartments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A ribonuclease coordinates siRNA amplification and mRNA cleavage during RNAi.

    Science.gov (United States)

    Tsai, Hsin-Yue; Chen, Chun-Chieh G; Conte, Darryl; Moresco, James J; Chaves, Daniel A; Mitani, Shohei; Yates, John R; Tsai, Ming-Daw; Mello, Craig C

    2015-01-29

    Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    Science.gov (United States)

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  20. Rapid screening for human-pathogenic Mucorales using rolling circle amplification.

    Science.gov (United States)

    Dolatabadi, S; Najafzadeh, M J; de Hoog, G S

    2014-12-01

    Mucormycosis has emerged as a relatively common severe mycosis in patients with haematological and allogeneic stem cell transplantation. Source of transmission is from unidentified sources in the environment. Early diagnosis of infection and its source of contamination are paramount for rapid and appropriate therapy. In this study, rolling circle amplification (RCA) is introduced as a sensitive, specific and reproducible isothermal DNA amplification technique for rapid molecular identification of six of the most virulent species (Rhizopus microsporus, R. arrhizus var. arrhizus, R. arrhizus var. delemar, Mucor irregularis, Mucor circinelloides, Lichtheimia ramosa, Lichtheimia corymbifera). DNAs of target species were successfully amplified, with no cross reactivity between species. RCA can be considered as a rapid detection method with high specificity and sensitivity, suitable for large screening. © 2014 Blackwell Verlag GmbH.

  1. Linear and exponential TAIL-PCR: a method for efficient and quick amplification of flanking sequences adjacent to Tn5 transposon insertion sites.

    Science.gov (United States)

    Jia, Xianbo; Lin, Xinjian; Chen, Jichen

    2017-11-02

    Current genome walking methods are very time consuming, and many produce non-specific amplification products. To amplify the flanking sequences that are adjacent to Tn5 transposon insertion sites in Serratia marcescens FZSF02, we developed a genome walking method based on TAIL-PCR. This PCR method added a 20-cycle linear amplification step before the exponential amplification step to increase the concentration of the target sequences. Products of the linear amplification and the exponential amplification were diluted 100-fold to decrease the concentration of the templates that cause non-specific amplification. Fast DNA polymerase with a high extension speed was used in this method, and an amplification program was used to rapidly amplify long specific sequences. With this linear and exponential TAIL-PCR (LETAIL-PCR), we successfully obtained products larger than 2 kb from Tn5 transposon insertion mutant strains within 3 h. This method can be widely used in genome walking studies to amplify unknown sequences that are adjacent to known sequences.

  2. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa

    Directory of Open Access Journals (Sweden)

    He Ji

    2007-05-01

    Full Text Available Abstract Background The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. Results As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. Conclusion The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  3. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa.

    Science.gov (United States)

    Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M

    2007-05-24

    The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  4. Current research in perineural invasion of cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Deng Xi-Yun

    2010-03-01

    Full Text Available Abstract Background Perineural invasion is a common path for cholangiocarcinoma (CCA metastasis, and it is highly correlated with postoperative recurrence and poor prognosis. It is often an early event in a disease that is commonly diagnosed in advanced stages, and thus it could offer a timely therapeutic and diagnostic target if better understood. This article systematically reviews the progress of CCA neural invasion-related molecules. Methods Studies were identified by searching MEDLINE and PubMed databases for articles from January 1990 to December 2009, using the keywords "cholangiocarcinoma," "perineural invasion," "nerve growth factor"(NGF, "neural cell adhesion molecule" (NCAM, "matrix metalloproteinase"(MMP, "neurotransmitter," "acetylcholine" (Ach, and "transforming growth factor" (TGF." Additional papers and book chapters were identified by a manual search of references from the key articles. Results From above we found that the molecules NGF, NCAM, MMP, Ach and TGF may have prognostic significance in, and offer clues to the mechanism of CCA neural invasion. Conclusions Cholangiocarcinoma's increasing worldwide incidence is especially poignant in view of both the lacking effective therapies, and the fact that it is commonly diagnosed in advanced stages. As CCA neural invasion often appears early, more complete characterization of its molecular pathology could lead to the identification of targets for the diagnosis and therapy of this devastating malignancy.

  5. Molecular cloning and characterization of NcROP2Fam-1, a member of the ROP2 family of rhoptry proteins in Neospora caninum that is targeted by antibodies neutralizing host cell invasion in vitro.

    Science.gov (United States)

    Alaeddine, Ferial; Hemphill, Andrew; Debache, Karim; Guionaud, Christophe

    2013-07-01

    Recent publications demonstrated that a fragment of a Neospora caninum ROP2 family member antigen represents a promising vaccine candidate. We here report on the cloning of the cDNA encoding this protein, N. caninum ROP2 family member 1 (NcROP2Fam-1), its molecular characterization and localization. The protein possesses the hallmarks of ROP2 family members and is apparently devoid of catalytic activity. NcROP2Fam-1 is synthesized as a pre-pro-protein that is matured to 2 proteins of 49 and 55 kDa that localize to rhoptry bulbs. Upon invasion the protein is associated with the nascent parasitophorous vacuole membrane (PVM), evacuoles surrounding the host cell nucleus and, in some instances, the surface of intracellular parasites. Staining was also observed within the cyst wall of 'cysts' produced in vitro. Interestingly, NcROP2Fam-1 was also detected on the surface of extracellular parasites entering the host cells and antibodies directed against NcROP2Fam-1-specific peptides partially neutralized invasion in vitro. We conclude that, in spite of the general belief that ROP2 family proteins are intracellular antigens, NcROP2Fam-1 can also be considered as an extracellular antigen, a property that should be taken into account in further experiments employing ROP2 family proteins as vaccines.

  6. The rolling circle amplification and next generation sequencing ...

    African Journals Online (AJOL)

    Rolling circle amplification is a simple approach of enriching populations of single-stranded DNA plant begomovirus genomes (genus, Begomovirus; family, Geminiviridae). This is an innovative approach that utilizes the robustness of the bacteriophage phi29 DNA polymerase used in circle amplification, together with deep ...

  7. Amplification of Chirality in Hydrogen-Bonded Tetrarosette Helices

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Crego Calama, Mercedes; Reinhoudt, David

    2006-01-01

    The amplification of chirality in hydrogen-bonded tetrarosette assemblies under thermodynamic equilibrium is described. The extent of the chiral amplification obtained by means of “sergeants-and-soldiers” experiments depends only on the structure of the assembly and it is independent of the

  8. Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals

    NARCIS (Netherlands)

    Levine, Michelle S.; Bakker, Bjorn; Boeckx, Bram; Moyett, Julia; Lu, James; Vitre, Benjamin; Spierings, Diana C.; Lansdorp, Peter M.; Cleveland, Don W.; Lambrechts, Diether; Foijer, Floris; Holland, Andrew J.

    2017-01-01

    Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional

  9. Explanatory Model for Sound Amplification in a Stethoscope

    Science.gov (United States)

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…

  10. An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases

    DEFF Research Database (Denmark)

    Murphy, Leigh; Baumann, Martin Johannes; Borch, Kim

    2010-01-01

    amplification method has been developed to measure even slow hydrolytically active enzymes such as cellobiohydrolases. This method is explained in detail for the amplification of the heat signal by more than 130 times by using glucose oxidase and catalase. The kinetics of this complex coupled reaction system...

  11. Chirped pulse amplification: Present and future

    International Nuclear Information System (INIS)

    Maine, P.; Strickland, D.; Pessot, M.; Squier, J.; Bado, P.; Mourou, G.; Harter, D.

    1988-01-01

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm 2 . These pulses will be associated with electric fields in excess of 100 e/a/sub o/ 2 and blackbody energy densities equivalent to 3 /times/ 10 10 J/cm 3 . This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs

  12. Raman amplification in optical communication systems

    DEFF Research Database (Denmark)

    Kjær, Rasmus

    2008-01-01

    Fiber Raman amplifiers are investigated with the purpose of identifying new applications and limitations for their use in optical communication systems. Three main topics are investigated, namely: New applications of dispersion compensating Raman amplifiers, the use Raman amplification to increase...... fiberbaserede Raman-forstærkere med henblik på at identificere både deres begrænsninger og nye anvendelsesmuligheder i optiske kommunikationssystemer. En numerisk forstærkermodel er blevet udviklet for bedre at forstå forstærkerens dynamik, dens gain- og støjbegrænsninger. Modellen bruges til at forudsige...... forstærkerens statiske og dynamiske egenskaber, og det eftervises at dens resultater er i god overensstemmelse med eksperimentelle forstærkermålinger. Dispersions-kompenserende fiber er på grund af sin store udbredelse og fiberens høje Raman gain effektivitet et meget velegnet Raman gain-medium. Tre nye...

  13. Pain Amplification Syndrome: A Biopsychosocial Approach.

    Science.gov (United States)

    Namerow, Lisa B; Kutner, Emily C; Wakefield, Emily C; Rzepski, Barbara R; Sahl, Robert A

    2016-08-01

    Pediatric neurologists frequently encounter patients who present with significant musculoskeletal pain that cannot be attributed to a specific injury or illness, which can often be defined as pain amplification syndrome (PAS). PAS in children and adolescents is the result of a heightened pain sensitivity pathway, which is intensified by significant biological, psychological, and social contributors. Appropriate assessment and multimodal intervention of PAS are crucial to treatment success, including neurology and behavioral health collaborative treatment plans to restore patient function and reduce pain perception. Pediatric neurologists are imperative in the identification of patients with PAS, providing the family assurance in diagnosis and validation of pain, and directing patients to the appropriate multidisciplinary treatment pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Whole genome amplification in preimplantation genetic diagnosis*

    Science.gov (United States)

    Zheng, Ying-ming; Wang, Ning; Li, Lei; Jin, Fan

    2011-01-01

    Preimplantation genetic diagnosis (PGD) refers to a procedure for genetically analyzing embryos prior to implantation, improving the chance of conception for patients at high risk of transmitting specific inherited disorders. This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s. Polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) are the two main methods in PGD, but there are some inevitable shortcomings limiting the scope of genetic diagnosis. Fortunately, different whole genome amplification (WGA) techniques have been developed to overcome these problems. Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed. Moreover, WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis. In this review, we will focus on the currently available WGA techniques and their applications, as well as the new technical trends from WGA products. PMID:21194180

  15. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  16. Social and political amplification of technological hazards

    International Nuclear Information System (INIS)

    Ibitayo, Olurominiyi O.; Mushkatel, Alvin; Pijawka, K. David

    2004-01-01

    Using an industrial explosion in Henderson, Nevada, as a case study, this paper examines three main issues: the efficacy of a technological hazard event in amplifying otherwise latent issues, the extent to which the hazard event can serve as a focusing event for substantive local and state policy initiatives, and the effect of fragmentation of political authority in managing technological hazards. The findings indicate that the explosion amplified several public safety issues and galvanized the public into pressing for major policy initiatives. However, notwithstanding the amplification of several otherwise latent issues, and the flurry of activities by the state and local governments, the hazard event did not seem to be an effective focusing event or trigger mechanism for substantive state and local policy initiatives. In addition, the study provides evidence of the need for a stronger nexus between political authority, land-use planning and technological hazard management

  17. Resistive wall modes and error field amplification

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2003-01-01

    Resistive wall modes and the rapid damping of plasma rotation by the amplification of magnetic field errors are related physical phenomena that affect the performance of the advanced tokamak and spherical torus plasma confinement devices. Elements of our understanding of these phenomena and the code that is used to design the major experimental facilities are based on the electrical circuit representation of the response of the plasma to perturbations. Although the circuit representation of the plasma may seem heuristic, this representation can be rigorously obtained using Maxwell's equations and linearity for plasmas that evolve on a disparate time scale from that of external currents. These and related results are derived. In addition methods are given for finding the plasma information that the circuit representation requires using post-processors for codes that calculate perturbed plasma equilibria

  18. Scintillation light detectors with Neganov Luke amplification

    Science.gov (United States)

    Isaila, C.; Boslau, O.; Coppi, C.; Feilitzsch, F. v.; Goldstraß, P.; Jagemann, T.; Jochum, J.; Kemmer, J.; Lachenmaier, T.; Lanfranchi, J.-C.; Pahlke, A.; Potzel, W.; Rau, W.; Stark, M.; Wernicke, D.; Westphal, W.

    2006-04-01

    For an active suppression of the gamma and electron background in the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) dark matter experiment both phonons and scintillation light generated in a CaWO 4 crystal are detected simultaneously. The phonon signal is read out by a transition edge sensor (TES) on the CaWO 4 crystal. For light detection a silicon absorber equipped with a TES is employed. An efficient background discrimination requires very sensitive light detectors. The threshold can be improved by applying an electric field to the silicon crystal leading to an amplification of the thermal signal due to the Neganov-Luke effect. Measurements showing the improved sensitivity of the light detectors as well as future steps for reducing the observed extra noise will be presented.

  19. Raman Amplification with a Flying Focus

    Science.gov (United States)

    Turnbull, D.; Bucht, S.; Davies, A.; Haberberger, D.; Kessler, T.; Shaw, J. L.; Froula, D. H.

    2018-01-01

    We propose a new laser amplifier scheme utilizing stimulated Raman scattering in plasma in conjunction with a "flying focus"—a chromatic focusing system combined with a chirped pump beam that provides spatiotemporal control over the pump's focal spot. Pump intensity isosurfaces are made to propagate at v =-c so as to be in sync with the injected counterpropagating seed pulse. By setting the pump intensity in the interaction region to be just above the ionization threshold of the background gas, an ionization wave is produced that travels at a fixed distance ahead of the seed. Simulations show that this will make it possible to optimize the plasma temperature and mitigate many of the issues that are known to have impacted previous Raman amplification experiments, in particular, the growth of precursors.

  20. Protein Misfolding Cyclic Amplification of Infectious Prions.

    Science.gov (United States)

    Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies, or prion diseases, are a group of incurable disorders caused by the accumulation of an abnormally folded prion protein (PrP Sc ) in the brain. According to the "protein-only" hypothesis, PrP Sc is the infectious agent able to propagate the disease by acting as a template for the conversion of the correctly folded prion protein (PrP C ) into the pathological isoform. Recently, the mechanism of PrP C conversion has been mimicked in vitro using an innovative technique named protein misfolding cyclic amplification (PMCA). This technology represents a great tool for studying diverse aspects of prion biology in the field of basic research and diagnosis. Moreover, PMCA can be expanded for the study of the misfolding process associated to other neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal lobar degeneration. © 2017 Elsevier Inc. All rights reserved.

  1. Comparison of HER2 gene amplification and KRAS alteration in eyelid sebaceous carcinomas with that in other eyelid tumors.

    Science.gov (United States)

    Kwon, Mi Jung; Shin, Hyung Sik; Nam, Eun Sook; Cho, Seong Jin; Lee, Min Joung; Lee, Samuel; Park, Hye-Rim

    2015-05-01

    Eyelid sebaceous carcinoma (SC) represents a highly aggressive malignancy. Despite the poor prognosis, genetic alterations as potential molecular targets are not available. KRAS mutation and HER2 gene amplification may be candidates related to their genetic alterations. We examined the HER2 and KRAS alteration status in eyelid SCs and compared it with that in other eyelid tumors. The controversial topics of the human papillomavirus (HPV) and p16 expression were also investigated. HER2 amplification was determined by silver in situ hybridization, while immunohistochemistry was performed to study protein expressions in 14 SCs and controls, including 23 other eyelid malignancies and 14 benign tumors. Peptide nucleic acid-mediated PCR clamping and direct sequencing were used to detect KRAS mutations. HER2 protein overexpression was observed in 85.7% (12/14) of the SCs, of which two-thirds showed HER2 gene amplification. HER2 protein overexpression and HER2 amplification were found more frequently in eyelid SCs than in other eyelid tumors. All SCs harbored wild type KRAS genes. No HPV infections were identified in the SCs. Nevertheless, p16 overexpression was found in 71.4% (10/14) of SCs, irrespective of the status of HPV infection. Furthermore, p16 overexpression in eyelid SCs was also significantly higher than that in other eyelid tumors. HER2 protein overexpression, HER2 gene amplifications, and wild type KRAS genes are common in eyelid SCs. HER2 gene amplification may represent potential therapeutic targets for the treatment of eyelid SCs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Markovian Dynamics of Josephson Parametric Amplification

    Directory of Open Access Journals (Sweden)

    W. Kaiser

    2017-09-01

    Full Text Available In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA. The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  3. Markovian Dynamics of Josephson Parametric Amplification

    Science.gov (United States)

    Kaiser, Waldemar; Haider, Michael; Russer, Johannes A.; Russer, Peter; Jirauschek, Christian

    2017-09-01

    In this work, we derive the dynamics of the lossy DC pumped non-degenerate Josephson parametric amplifier (DCPJPA). The main element in a DCPJPA is the superconducting Josephson junction. The DC bias generates the AC Josephson current varying the nonlinear inductance of the junction. By this way the Josephson junction acts as the pump oscillator as well as the time varying reactance of the parametric amplifier. In quantum-limited amplification, losses and noise have an increased impact on the characteristics of an amplifier. We outline the classical model of the lossy DCPJPA and derive the available noise power spectral densities. A classical treatment is not capable of including properties like spontaneous emission which is mandatory in case of amplification at the quantum limit. Thus, we derive a quantum mechanical model of the lossy DCPJPA. Thermal losses are modeled by the quantum Langevin approach, by coupling the quantized system to a photon heat bath in thermodynamic equilibrium. The mode occupation in the bath follows the Bose-Einstein statistics. Based on the second quantization formalism, we derive the Heisenberg equations of motion of both resonator modes. We assume the dynamics of the system to follow the Markovian approximation, i.e. the system only depends on its actual state and is memory-free. We explicitly compute the time evolution of the contributions to the signal mode energy and give numeric examples based on different damping and coupling constants. Our analytic results show, that this model is capable of including thermal noise into the description of the DC pumped non-degenerate Josephson parametric amplifier.

  4. Parametric amplifications in the nonlinear transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, T; Sakai, J; Inoue, H [Toyama Univ., Takaoka (Japan). Faculty of Engineering

    1980-03-01

    The parametric amplification in a transmission line with nonlinear capacitors is analysed theoretically using the equations of three wave interactions. Since this line has two modes, high frequency and low frequency modes, there may occur some mode coupling phenomena through the resonant interactions. We consider three waves with wave number k sub(j) and frequency ..omega..sub(j) in resonance with each other, that is, ..omega../sub 1/ + ..omega../sub 2/ = ..omega../sub 3/ and k/sub 1/ + k/sub 2/ = k/sub 3/, where 0 <= ..omega../sub 1/ <= ..omega../sub 2/ <= ..omega../sub 3/ and k/sub 3/ >= 0. Such conditions are realized in our network and there exist two states: ''forward state'' (each group velocity is positive) and ''backward state'' (one of the group velocities is negative). The coupled equations of three waves has two constant pumps: high frequency (HF) pump and low frequency (LF) pump. Using linear approximations, we examine the possible types of parametric amplification and obtain the power gains depending on the frequency deviation. For only the case of HF pump we get the gain between signals with seme frequency and also get the gain from the low frequency signal to the high frequency signal (''up-conversion'') for the LF pump. The nonlinear analysis gives the exact relation between input and output signals. For the forward state the gain is absolutely suppressed by the ratio of pumping power to input power, while the gain of backward state has no finite maximum and there may appear an ''oscillating state'' if the pumping power is comparatively small.

  5. Ground amplification determined from borehole accelerograms

    International Nuclear Information System (INIS)

    Archuleta, R.J.; Seale, S.H.

    1991-01-01

    The Garner Valley downhole array (GVDA) consists of one surface accelerometer and four downhole accelerometers at depths of 6 m, 15 m, 22m, and 220 m. The five, three-component vertical array of dual-gain accelerometers are capable of measuring accelerations from 3 x 10 -6 g to 2.0 g over a frequency range from 0.0 Hz (0.025, high-gain) Hz to 100 Hz. The site (33 degree 41.60' N, 116 degree 40.20 degree W) is only seven kilometers off the trace of the San Jacinto fault, the most active strand of the San Andreas fault system in southern California and only about 35 km from the San Andreas fault itself. Analysis of individual spectra and spectral ratios for the various depths shows that the zone of weathered granite has a pronounced effect on the spectral amplitudes for frequencies greater than 40 Hz. The soil layer impedance may amplify the high frequencies more than it attenuates. This result must be checked more thoroughly with special consideration of the spectra of the P-wave coda on the horizontal components. Analysis of the P-wave spectra and the spectral ratios shows an increased amplification in the same frequency range (60-90 Hz) where the S-wave spectral ratios imply a change in the attenuation. Comparison of acceleration spectra from two earthquakes, M L 4.2 and M L 2.5 that have nearly the same hypocenter, shows that the near surface amplification and attenuation is nearly the same for both earthquakes. However, the earthquakes themselves are different if we can assume that the recording at 220 m reflects the source spectra with a slight attenuation. The M L 2.5 earthquake has significantly greater high frequency content if the spectra are normalized at the low frequency, i.e., normalization by seismic moment

  6. Study on high gain broadband optical parametric chirped pulse amplification

    International Nuclear Information System (INIS)

    Zhang, S.K.; Fujita, M.; Yamanaka, C.; Yoshida, H.; Kodama, R.; Fujita, H.; Nakatsuka, M.; Izawa, Y.

    2000-01-01

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  7. Ignition target and laser-plasma instabilities

    International Nuclear Information System (INIS)

    Laffite, S.; Loiseau, P.

    2010-01-01

    For the first time indirect drive ignition targets have been designed with the constraint of limiting laser-plasma instabilities. The amplification of these instabilities is directly proportional to the luminous flux density, it means to the sizes of the focal spots too. This study shows that increasing the sizes of the focal spots does not reduce linear amplification gains in a proportional way because the global optimization of the target implies changes in hydrodynamical conditions that in turn have an impact on the value of the amplification gain. The design of the target is a 2-step approach: the first step aims at assuring a uniform irradiation and compression of the target. The first step requires information concerning the laser focusing spots, the dimensions of the hohlraum, the inert gas contained in it, the materials of the wall. The second step is an optimization approach whose aim is to reduce the risk of laser-plasmas instabilities. This optimization is made through simulations of the amplification gains of stimulated Raman and Brillouin backscattering. This method has allowed us to design an optimized target for a rugby-shaped hohlraum. (A.C.)

  8. Effects of invasive plants on arthropods.

    Science.gov (United States)

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  9. HER2/neu (c-erbB-2) gene amplification and protein expression are rare in uterine cervical neoplasia: a tissue microarray study of 814 archival specimens

    DEFF Research Database (Denmark)

    Lesnikova, Iana; Lidang, Marianne; Hamilton-Dutoit, Stephen

    2009-01-01

    intraepithelial neoplasia (CIN)1 (n = 262), CIN2 (n = 230), CIN3 (n = 186) and invasive carcinoma (n = 136), for HER2/neu protein expression by immunohistochemistry (IHC) and for HER2/neu gene amplification by chromogenic in situ hybridization (CISH). We found moderate or strong immunohistochemical positivity...... and invasive cervical carcinoma specimens. When present, Her-2/neu positivity is more commonly seen in higher grades of cervical dysplasia and in carcinoma. However, this large TMA study shows that HER2/neu oncoprotein expression and HER2/neu gene amplification overall are uncommon events in cervical neoplasia....... This provides compelling evidence that HER2/neu plays no major role in the development and progression of cervical neoplasia....

  10. Clinical application of somatosensory amplification in psychosomatic medicine

    Directory of Open Access Journals (Sweden)

    Nakao Mutsuhiro

    2007-10-01

    Full Text Available Abstract Many patients with somatoform disorders are frequently encountered in psychosomatic clinics as well as in primary care clinics. To assess such patients objectively, the concept of somatosensory amplification may be useful. Somatosensory amplification refers to the tendency to experience a somatic sensation as intense, noxious, and disturbing. It may have a role in a variety of medical conditions characterized by somatic symptoms that are disproportionate to demonstrable organ pathology. It may also explain some of the variability in somatic symptomatology found among different patients with the same serious medical disorder. It has been assessed with a self-report questionnaire, the Somatosensory Amplification Scale. This instrument was developed in a clinical setting in the U.S., and the reliability and validity of the Japanese and Turkish versions have been confirmed as well. Many studies have attempted to clarify the specific role of somatosensory amplification as a pathogenic mechanism in somatization. It has been reported that somatosensory amplification does not correlate with heightened sensitivity to bodily sensations and that emotional reactivity exerts its influence on somatization via a negatively biased reporting style. According to our recent electroencephalographic study, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interoceptive sensitivity. The concept of somatosensory amplification can be useful as an indicator of somatization in the therapy of a broad range of disorders, from impaired self-awareness to various psychiatric disorders. It also provides useful information for choosing appropriate pharmacological or psychological therapy. While somatosensory amplification has a role in the presentation of somatic symptoms, it is closely associated with other factors, namely, anxiety, depression, and alexithymia that may also influence the same

  11. Current Technologies of Electrochemical Immunosensors: Perspective on Signal Amplification

    Directory of Open Access Journals (Sweden)

    Il-Hoon Cho

    2018-01-01

    Full Text Available An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT. Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.

  12. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  13. Evaluation of Nucleic Acid Isothermal Amplification Methods for Human Clinical Microbial Infection Detection

    Directory of Open Access Journals (Sweden)

    Brett E. Etchebarne

    2017-12-01

    Full Text Available Battling infection is a major healthcare objective. Untreated infections can rapidly evolve toward the condition of sepsis in which the body begins to fail and resuscitation becomes critical and tenuous. Identification of infection followed by rapid antimicrobial treatment are primary goals of medical care, but precise identification of offending organisms by current methods is slow and broad spectrum empirical therapy is employed to cover most potential pathogens. Current methods for identification of bacterial pathogens in a clinical setting typically require days of time, or a 4- to 8-h growth phase followed by DNA extraction, purification and PCR-based amplification. We demonstrate rapid (70–120 min genetic diagnostics methods utilizing loop-mediated isothermal amplification (LAMP to test for 15 common infection pathogen targets, called the Infection Diagnosis Panel (In-Dx. The method utilizes filtration to rapidly concentrate bacteria in sample matrices with lower bacterial loads and direct LAMP amplification without DNA purification from clinical blood, urine, wound, sputum and stool samples. The In-Dx panel was tested using two methods of detection: (1 real-time thermocycler fluorescent detection of LAMP amplification and (2 visual discrimination of color change in the presence of Eriochrome Black T (EBT dye following amplification. In total, 239 duplicate samples were collected (31 blood, 122 urine, 73 mucocutaneous wound/swab, 11 sputum and two stool from 229 prospectively enrolled hospital patients with suspected clinical infection and analyzed both at the hospital and by In-Dx. Sensitivity (Se of the In-Dx panel targets pathogens from urine samples by In-Dx was 91.1% and specificity (Sp was 97.3%, with a positive predictive value (PPV of 53.7% and a negative predictive value (NPV of 99.7% as compared to clinical microbial detection methods. Sensitivity of detection of the In-Dx panel from mucocutaneous swab samples was 65.5% with a

  14. Direct amplification of casework bloodstains using the Promega PowerPlex(®) 21 PCR amplification system.

    Science.gov (United States)

    Gray, Kerryn; Crowle, Damian; Scott, Pam

    2014-09-01

    A significant number of evidence items submitted to Forensic Science Service Tasmania (FSST) are blood swabs or bloodstained items. Samples from these items routinely undergo phenol:chloroform:isoamyl alcohol organic extraction and quantitative Polymerase Chain Reaction (qPCR) testing prior to PowerPlex(®) 21 amplification. This multi-step process has significant cost and timeframe implications in a fiscal climate of tightening government budgets, pressure towards improved operating efficiencies, and an increasing emphasis on rapid techniques better supporting intelligence-led policing. Direct amplification of blood and buccal cells on cloth and Whatman FTA™ card with PowerPlex(®) 21 has already been successfully implemented for reference samples, eliminating the requirement for sample pre-treatment. Scope for expanding this method to include less pristine casework blood swabs and samples from bloodstained items was explored in an endeavour to eliminate lengthy DNA extraction, purification and qPCR steps for a wider subset of samples. Blood was deposited onto a range of substrates including those historically found to inhibit STR amplification. Samples were collected with micro-punch, micro-swab, or both. The potential for further fiscal savings via reduced volume amplifications was assessed by amplifying all samples at full and reduced volume (25 and 13μL). Overall success rate data showed 80% of samples yielded a complete profile at reduced volume, compared to 78% at full volume. Particularly high success rates were observed for the blood on fabric/textile category with 100% of micro-punch samples yielding complete profiles at reduced volume and 85% at full volume. Following the success of this trial, direct amplification of suitable casework blood samples has been implemented at reduced volume. Significant benefits have been experienced, most noticeably where results from crucial items have been provided to police investigators prior to interview of

  15. Pneumococcal serotypes and serogroups causing invasive disease in Pakistan, 2005-2013.

    Directory of Open Access Journals (Sweden)

    Sadia Shakoor

    Full Text Available While pneumococcal conjugate vaccines have been implemented in most countries worldwide, use in Asia has lagged in part because of a lack of data on the amount of disease that is vaccine preventable in the region. We describe pneumococcal serotypes elicited from 111 episodes of invasive pneumococcal disease (IPD from 2005 to 2013 among children and adults in Pakistan. Seventy-three percent (n = 81 of 111 IPD episodes were cases of meningitis (n = 76 in children 0-15 years and n = 5 among adults. Serotypes were determined by target amplification of DNA extracted from pneumococcal isolates (n = 52 or CSF specimens (n = 59. Serogroup 18 was the most common serogroup causing meningitis in children <5 years, accounting for 21% of cases (n = 13. The 10-valent pneumococcal conjugate vaccine (PCV 10 or PCV10- related serotypes were found in 61% (n = 47 of childhood (age 0-15 years meningitis episodes. PCV-13 increased this coverage to 63% (one additional serotype 19A; n = 48. Our data indicate that use of PCVs would prevent a large proportion of serious pneumococcal disease.

  16. Automated brightfield dual-color in situ hybridization for detection of mouse double minute 2 gene amplification in sarcomas.

    Science.gov (United States)

    Zhang, Wenjun; McElhinny, Abigail; Nielsen, Alma; Wang, Maria; Miller, Melanie; Singh, Shalini; Rueger, Ruediger; Rubin, Brian P; Wang, Zhen; Tubbs, Raymond R; Nagle, Raymond B; Roche, Pat; Wu, Ping; Pestic-Dragovich, Lidija

    2011-01-01

    The human homolog of the mouse double minute 2 (MDM2) oncogene is amplified in about 20% of sarcomas. The measurement of the MDM2 amplification can aid in classification and may provide a predictive value for recently formulated therapies targeting MDM2. We have developed and validated an automated bright field dual-color in situ hybridization application to detect MDM2 gene amplification. A repeat-depleted MDM2 probe was constructed to target the MDM2 gene region at 12q15. A chromosome 12-specific probe (CHR12) was generated from a pα12H8 plasmid. The in situ hybridization assay was developed by using a dinitrophenyl-labeled MDM2 probe and a digoxigenin-labeled CHR12 probe on the Ventana Medical Systems' automated slide-staining platforms. The specificity of the MDM2 and CHR12 probes was shown on metaphase spreads and further validated against controls, including normal human tonsil and known MDM2-amplified samples. The assay performance was evaluated on a cohort of 100 formalin-fixed, paraffin-embedded specimens by using a conventional bright field microscope. Simultaneous hybridization and signal detection for MDM2 and CHR12 showed that both DNA targets were present in the same cells. One hundred soft tissue specimens were stained for MDM2 and CHR12. Although 26 of 29 lipomas were nonamplified and eusomic, MDM2 amplification was noted in 78% of atypical lipomatous tumors or well-differentiated liposarcomas. Five of 6 dedifferentiated liposarcoma cases were amplified for MDM2. MDM2 amplification was observed in 1 of 8 osteosarcomas; 3 showed CHR12 aneusomy. MDM2 amplification was present in 1 of 4 chondrosarcomas. Nine of 10 synovial sarcomas displayed no evidence of MDM2 amplification in most tumor cells. In pleomorphic sarcoma, not otherwise specified (pleomorphic malignant fibrous histiocytoma), MDM2 was amplified in 38% of cases, whereas 92% were aneusomic for CHR12. One alveolar rhabdomyosarcoma and 2 embryonal rhabdomyosarcomas displayed low-level aneusomy

  17. Role of ErbB receptors in cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Aline eAppert-Collin

    2015-11-01

    Full Text Available Growth factors mediate their diverse biologic responses (regulation of cellular proliferation, differentiation, migration and survival by binding to and activating cell-surface receptors with intrinsic protein kinase activity named Receptor Tyrosine Kinases (RTKs. About 60 RTKs have been identified and can be classified into more than 16 different receptor families. Their activity is normally tightly controlled and regulated. Overexpression of RTK proteins or functional alterations caused by mutations in the corresponding genes or abnormal stimulation by autocrine growth factor loops contribute to constitutive RTK signaling, resulting in alterations in the physiological activities of cells. The ErbB receptor family of RTKs comprises four distinct receptors: the EGFR (also known as ErbB1/HER1, ErbB2 (neu, HER2, ErbB3 (HER3 and ErbB4 (HER4. ErbB family members are often overexpressed, amplified, or mutated in many forms of cancer, making them important therapeutic targets. EGFR has been found to be amplified in gliomas and non-small-cell lung carcinoma while ErbB2 amplifications are seen in breast, ovarian, bladder, non-small-cell lung carcinoma, as well as several other tumor types. Several data have shown that ErbB receptor family and its downstream pathway regulate epithelial-mesenchymal transition, migration, and tumor invasion by modulating extracellular matrix components. Recent findings indicate that extracellular matrix components such as matrikines bind specifically to EGF receptor and promote cell invasion. In this review, we will present an in-depth overview of the structure, mechanisms, cell signaling, and functions of ErbB family receptors in cell adhesion and migration. Furthermore, we will describe in a last part the new strategies developed in anti-cancer therapy to inhibit ErbB family receptor activation.

  18. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    Science.gov (United States)

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  19. Detection of HIV-1 p24 Gag in plasma by a nanoparticle-based bio-barcode-amplification method.

    Science.gov (United States)

    Kim, Eun-Young; Stanton, Jennifer; Korber, Bette T M; Krebs, Kendall; Bogdan, Derek; Kunstman, Kevin; Wu, Samuel; Phair, John P; Mirkin, Chad A; Wolinsky, Steven M

    2008-06-01

    Detection of HIV-1 in patients is limited by the sensitivity and selectivity of available tests. The nanotechnology-based bio-barcode-amplification method offers an innovative approach to detect specific HIV-1 antigens from diverse HIV-1 subtypes. We evaluated the efficacy of this protein-detection method in detecting HIV-1 in men enrolled in the Chicago component of the Multicenter AIDS Cohort Study (MACS). The method relies on magnetic microparticles with antibodies that specifically bind the HIV-1 p24 Gag protein and nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the microparticle-bound antibodies. The aggregate sandwich structures are magnetically separated from solution, and treated to remove the conjugated barcode DNA. The DNA barcodes (hundreds per target) were identified by a nanoparticle-based detection method that does not rely on PCR. Of 112 plasma samples from HIV-1-infected subjects, 111 were positive for HIV-1 p24 Gag protein (range: 0.11-71.5 ng/ml of plasma) by the bio-barcode-amplification method. HIV-1 p24 Gag protein was detected in only 23 out of 112 men by the conventional ELISA. A total of 34 uninfected subjects were negative by both tests. Thus, the specificity of the bio-barcode-amplification method was 100% and the sensitivity 99%. The bio-barcode-amplification method detected HIV-1 p24 Gag protein in plasma from all study subjects with less than 200 CD4(+) T cells/microl of plasma (100%) and 19 out of 20 (95%) HIV-1-infected men who had less than 50 copies/ml of plasma of HIV-1 RNA. In a separate group of 60 diverse international isolates, representative of clades A, B, C and D and circulating recombinant forms CRF01_AE and CRF02_AG, the bio-barcode-amplification method identified the presence of virus correctly. The bio-barcode-amplification method was superior to the conventional ELISA assay for the detection of HIV-1 p24 Gag protein in plasma with a breadth of coverage for diverse

  20. Amplification of HER2 is a marker for global genomic instability

    Directory of Open Access Journals (Sweden)

    Love Brad

    2008-10-01

    Full Text Available Abstract Background Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. Methods HER2 status was determined using the PathVysion® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39 or HER2 negative (n = 142 tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. Results The frequency of AI was significantly higher (P P Conclusion The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2 amplification. These data not only improve our understanding of HER in breast pathogenesis but may allow more accurate risk profiles and better treatment options to be developed.

  1. Frequent amplification of CENPF, GMNN and CDK13 genes in hepatocellular carcinomas.

    Directory of Open Access Journals (Sweden)

    Hye-Eun Kim

    Full Text Available Genomic changes frequently occur in cancer cells during tumorigenesis from normal cells. Using the Illumina Human NS-12 single-nucleotide polymorphism (SNP chip to screen for gene copy number changes in primary hepatocellular carcinomas (HCCs, we initially detected amplification of 35 genes from four genomic regions (1q21-41, 6p21.2-24.1, 7p13 and 8q13-23. By integrated screening of these genes for both DNA copy number and gene expression in HCC and colorectal cancer, we selected CENPF (centromere protein F/mitosin, GMNN (geminin, DNA replication inhibitor, CDK13 (cyclin-dependent kinase 13, and FAM82B (family with sequence similarity 82, member B as common cancer genes. Each gene exhibited an amplification frequency of ~30% (range, 20-50% in primary HCC (n = 57 and colorectal cancer (n = 12, as well as in a panel of human cancer cell lines (n = 70. Clonogenic and invasion assays of NIH3T3 cells transfected with each of the four amplified genes showed that CENPF, GMNN, and CDK13 were highly oncogenic whereas FAM82B was not. Interestingly, the oncogenic activity of these genes (excluding FAM82B was highly correlated with gene-copy numbers in tumor samples (correlation coefficient, r>0.423, indicating that amplifications of CENPF, GMNN, and CDK13 genes are tightly linked and coincident in tumors. Furthermore, we confirmed that CDK13 gene copy number was significantly associated with clinical onset age in patients with HCC (P = 0.0037. Taken together, our results suggest that coincidently amplified CDK13, GMNN, and CENPF genes can play a role as common cancer-driver genes in human cancers.

  2. HER2 amplification, overexpression and score criteria in esophageal adenocarcinoma

    Science.gov (United States)

    Hu, Yingchuan; Bandla, Santhoshi; Godfrey, Tony E.; Tan, Dongfeng; Luketich, James D.; Pennathur, Arjun; Qiu, Xing; Hicks, David G.; Peters, Jeffrey; Zhou, Zhongren

    2011-01-01

    The HER2 oncogene was recently reported to be amplified and overexpressed in esophageal adenocarcinoma. However, the relationship of HER2 amplification in esophageal adenocarcinoma with prognosis has not been well defined. The scoring systems for clinically evaluating HER2 in esophageal adenocarcinoma are not established. The aims of the study were to establish a HER2 scoring system and comprehensively investigate HER2 amplification and overexpression in esophageal adenocarcinoma and its precursor lesion. Using a tissue microarray, containing 116 cases of esophageal adenocarcinoma, 34 cases of BE, 18 cases of low grade dysplasia and 15 cases of high grade dysplasia, HER2 amplification and overexpression were analyzed by HercepTest and CISH methods. The amplification frequency in an independent series of 116 esophageal adenocarcinoma samples was also analyzed using Affymetrix SNP 6.0 microarrays. In our studies, we have found that HER2 amplification does not associate with poor prognosis in total 232 esophageal adenocarcinoma patients by CISH and high density microarrays. We further confirm the similar frequency of HER2 amplification by CISH (18.10%; 21/116) and SNP 6.0 microarrays (16.4%, 19/116) in esophageal adenocarcinoma. HER2 protein overexpression was observed in 12.1 % (14/116) of esophageal adenocarcinoma and 6.67% (1/15) of HGD. No HER2 amplification or overexpression was identified in BE or LGD. All HER2 protein overexpression cases showed HER2 gene amplification. Gene amplification was found to be more frequent by CISH than protein overexpression in esophageal adenocarcinoma (18.10% vs 12.9%). A modified two-step model for esophageal adenocarcinoma HER-2 testing is recommend for clinical esophageal adenocarcinoma HER-2 trial. PMID:21460800

  3. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Directory of Open Access Journals (Sweden)

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  4. Rapid detection of Brucella spp. using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chen, Shouyi; Li, Xunde; Li, Juntao; Atwill, Edward R

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Livestock that are most vulnerable to brucellosis include cattle, goats, and pigs. Brucella spp. cause serious health problems to humans and animals and economic losses to the livestock industry. Traditional methods for detection of Brucella spp. take 48-72 h (Kumar et al., J Commun Dis 29:131-137, 1997; Barrouin-Melo et al., Res Vet Sci 83:340-346, 2007) that do not meet the food industry's need of rapid detection. Therefore, there is an urgent need of fast, specific, sensitive, and inexpensive method for diagnosing of Brucella spp. Loop-mediated isothermal amplification (LAMP) is a method to amplify nucleic acid at constant temperatures. Amplification can be detected by visual detection, fluorescent stain, turbidity, and electrophoresis. We targeted at the Brucella-specific gene omp25 and designed LAMP primers for detection of Brucella spp. Amplification of DNA with Bst DNA polymerase can be completed at 65 °C in 60 min. Amplified products can be detected by SYBR Green I stain and 2.0% agarose gel electrophoresis. The LAMP method is feasible for detection of Brucella spp. from blood and milk samples.

  5. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    International Nuclear Information System (INIS)

    Steele, P.E.; Martin, M.A.; Rabson, A.B.; Bryan, T.; O'Brien, S.J.

    1986-01-01

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked

  6. PCR amplification on microarrays of gel immobilized oligonucleotides

    Science.gov (United States)

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  7. Antarctic crabs: invasion or endurance?

    Directory of Open Access Journals (Sweden)

    Huw J Griffiths

    Full Text Available Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura, and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW. Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  8. Invasive species in phytocenosis of Sterlitamak town (Republic of Bashkortostan, Russia)

    Science.gov (United States)

    Golovanov, Ya M.; Abramova, L. M.; Petrov, S. S.

    2018-01-01

    There were 69 invasive and potentially invasive species in the flora of Sterlitamak in the Bashkortostan Republic (Russia). Eight are in the most dangerous types of invasive species. The greatest danger is represented by: Acer negundo, Ambrosia trifida, Elodea canadensis and Xanthium albinum. Within the boundaries of Sterlitamak, 21 syntaxa (13 associations and 8 derivated communities) are invasive species. This phytocenosis in an urban environment can be prime targets for plant quarantine actions.

  9. Small sample whole-genome amplification

    Science.gov (United States)

    Hara, Christine; Nguyen, Christine; Wheeler, Elizabeth; Sorensen, Karen; Arroyo, Erin; Vrankovich, Greg; Christian, Allen

    2005-11-01

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  10. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  11. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Kubo, Seiji; Tanaka, Jin; Adachi, Tatsushi

    2017-08-12

    Screening for male-derived biological material from collected samples plays an important role in criminal investigations, especially those involving sexual assaults. We have developed a loop-mediated isothermal amplification (LAMP) assay targeting multi-repeat sequences of the Y chromosome for detecting male DNA. Successful amplification occurred with 0.5 ng of male DNA under isothermal conditions of 61 to 67 °C, but no amplification occurred with up to 10 ng of female DNA. Under the optimized conditions, the LAMP reaction initiated amplification within 10 min and amplified for 20 min. The LAMP reaction was sensitive at levels as low as 1-pg male DNA, and a quantitative LAMP assay could be developed because of the strong correlation between the reaction time and the amount of template DNA in the range of 10 pg to 10 ng. Furthermore, to apply the LAMP assay to on-site screening for male-derived samples, we evaluated a protocol using a simple DNA extraction method and a colorimetric intercalating dye that allows detection of the LAMP reaction by evaluating the change in color of the solution. Using this protocol, samples of male-derived blood and saliva stains were processed in approximately 30 min from DNA extraction to detection. Because our protocol does not require much hands-on time or special equipment, this LAMP assay promises to become a rapid and simple screening method for male-derived samples in forensic investigations.

  12. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection

    Directory of Open Access Journals (Sweden)

    Lemieux Bertrand

    2011-05-01

    Full Text Available Abstract Background In the past decades the rapid growth of molecular diagnostics (based on either traditional PCR or isothermal amplification technologies meet the demand for fast and accurate testing. Although isothermal amplification technologies have the advantages of low cost requirements for instruments, the further improvement on sensitivity, speed and robustness is a prerequisite for the applications in rapid pathogen detection, especially at point-of-care diagnostics. Here, we describe and explore several strategies to improve one of the isothermal technologies, helicase-dependent amplification (HDA. Results Multiple strategies were approached to improve the overall performance of the isothermal amplification: the restriction endonuclease-mediated DNA helicase homing, macromolecular crowding agents, and the optimization of reaction enzyme mix. The effect of combing all strategies was compared with that of the individual strategy. With all of above methods, we are able to detect 50 copies of Neisseria gonorrhoeae DNA in just 20 minutes of amplification using a nearly instrument-free detection platform (BESt™ cassette. Conclusions The strategies addressed in this proof-of-concept study are independent of expensive equipments, and are not limited to particular primers, targets or detection format. However, they make a large difference in assay performance. Some of them can be adjusted and applied to other formats of nucleic acid amplification. Furthermore, the strategies to improve the in vitro assays by maximally simulating the nature conditions may be useful in the general field of developing molecular assays. A new fast molecular assay for Neisseria gonorrhoeae has also been developed which has great potential to be used at point-of-care diagnostics.

  13. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Directory of Open Access Journals (Sweden)

    Annika Brinkmann

    2017-11-01

    Full Text Available We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS-based identification of viral hemorrhagic fever (VHF agents and assess the feasibility of this approach in diagnostics.An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients.The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours.Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  14. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Science.gov (United States)

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  15. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant

    Directory of Open Access Journals (Sweden)

    Sho Hideshima

    2016-03-01

    Full Text Available Food allergens, especially buckwheat proteins, sometimes induce anaphylactic shock in patients after ingestion. Development of a simple and rapid screening method based on a field effect transistor (FET biosensor for food allergens in food facilities or products is in demand. In this study, we achieved the FET detection of a buckwheat allergenic protein (BWp16, which is not charged enough to be electrically detected by FET biosensors, by introducing additional negative charges from anionic surfactants to the target proteins. A change in the FET characteristics reflecting surface potential caused by the adsorption of target charged proteins was observed when the target sample was coupled with the anionic surfactant (sodium dodecyl sulfate; SDS, while no significant response was detected without any surfactant treatment. It was suggested that the surfactant conjugated with the protein could be useful for the charge amplification of the target proteins. The surface plasmon resonance analysis revealed that the SDS-coupled proteins were successfully captured by the receptors immobilized on the sensing surface. Additionally, we obtained the FET responses at various concentrations of BWp16 ranging from 1 ng/mL to 10 μg/mL. These results suggest that a signal amplification method for FET biosensing is useful for allergen detection in the food industry. Keywords: Field effect transistor biosensor, Food allergen, Signal amplification, Ionic surfactant, Intrinsic charge

  16. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    Science.gov (United States)

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  17. Sensor Systems with Magnetic and Optomagnetic Readout of Rolling Circle Amplification Products

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Donolato, Marco; Fock, Jeppe

    2016-01-01

    We are developing robust biosensors for homogeneous detection of rolling cirle amplification (RCA) products with magnetic and/or optomagnetic readouts based on surface-functionalized magnetic nanoparticles. Binding of RCA amplicons to nanoparticles modifies their ability to rotate in response...... to an applied oscillating magnetic field. As a result, magnetic or optical measurements of these changes in the rotational response of nanoparticles vs. frequency of the magnetic field can be used to quantitate the number of amplicons, and, hence, the concentration of target nucleic acid analytes. After...

  18. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    International Nuclear Information System (INIS)

    Masuda, Takahiko; Hara, Hideaki; Miyamoto, Yuki; Kuma, Susumu; Nakano, Itsuo; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2015-01-01

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10 15 from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect

  19. Rate amplification of the two photon emission from para-hydrogen toward the neutrino mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takahiko, E-mail: masuda@okayama-u.ac.jp; Hara, Hideaki; Miyamoto, Yuki [Okayama University, Research Core for Extreme Quantum World (Japan); Kuma, Susumu [Atomic, Molecular and Optical Physics Laboratory, RIKEN (Japan); Nakano, Itsuo [Okayama University, Research Core for Extreme Quantum World (Japan); Ohae, Chiaki [University of Electro-Communications, Department of Engineering Science (Japan); Sasao, Noboru [Okayama University, Research Core for Extreme Quantum World (Japan); Tanaka, Minoru [Osaka University, Department of Physics (Japan); Uetake, Satoshi [Okayama University, Research Center of Quantum Universe (Japan); Yoshimi, Akihiro; Yoshimura, Koji [Okayama University, Research Core for Extreme Quantum World (Japan); Yoshimura, Motohiko [Okayama University, Research Center of Quantum Universe (Japan)

    2015-11-15

    We recently reported an experiment which focused on demonstrating the macro-coherent amplification mechanism. This mechanism, which was proposed for neutrino mass measurements, indicates that a multi-particle emission rate should be amplified by coherence in a suitable medium. Using a para-hydrogen molecule gas target and the adiabatic Raman excitation method, we observed that the two photon emission rate was amplified by a factor of more than 10{sup 15} from the spontaneous emission rate. This paper briefly summarizes the previous experimental result and presents the current status and the future prospect.

  20. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers

    Directory of Open Access Journals (Sweden)

    Ghislain Vanessa

    2008-01-01

    Full Text Available Abstract Background The status of the EGFR and HER2-neu genes has not been fully defined in ovarian cancer. An integrated analysis of both genes could help define the proportion of patients that would potentially benefit from targeted therapies. Methods We determined the tumour mutation status of the entire tyrosine kinase (TK domain of the EGFR and HER2-neu genes in a cohort of 52 patients with invasive epithelial ovarian cancer as well as the gene copy number and protein expression of both genes in 31 of these patients by DGGE and direct sequecing, immunohistochemistry and Fluorescent in Situ Hybridisation (FISH. Results The EGFR was expressed in 59% of the cases, with a 2+/3+ staining intensity in 38%. HER2-neu expression was found in 35%, with a 2/3+ staining in 18%. No mutations were found in exons 18–24 of the TK domains of EGFR and HER2-neu. High polysomy of the EGFR gene was observed in 13% of the invasive epthelial cancers and amplification of the HER2-neu gene was found in 10% and correlated with a high expression level by immunohistochemistry. Mutations within the tyrosine kinase domain were not found in the entire TK domain of both genes, but have been found in very rare cases by others. Conclusion Genomic alteration of the HER2-neu and EGFR genes is frequent (25% in ovarian cancer. EGFR/HER2-neu targeted therapies should be investigated prospectively and specifically in that subset of patients.

  1. Static and Dynamic Amplification Using Strong Mechanical Coupling

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2016-01-01

    Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically

  2. Three-dimensional Simulation of Backward Raman Amplification

    International Nuclear Information System (INIS)

    Balakin, A.A.; Fraiman, G.M.; Fisch, N.J.

    2005-01-01

    Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization

  3. Period doubling induced by thermal noise amplification in genetic circuits

    KAUST Repository

    Ruocco, G.; Fratalocchi, Andrea

    2014-01-01

    . In the proposed system, nonlinearity naturally arises from the mechanism of cooperative stability, which regulates the concentration of a protein produced during a transcription process. In this elemental model, bistability results from the coherent amplification

  4. Cross-genus amplification and characterisation of microsatellite loci ...

    African Journals Online (AJOL)

    Cross-genus amplification and characterisation of microsatellite loci in the little free tailed bat, Chaerephon pumilus s. l. (Molossidae) from South Eastern Africa. Theshnie Naidoo, Angus Macdonald, Jennifer M Lamb ...

  5. Radiation-induced gene amplification in rodent and human cells

    International Nuclear Information System (INIS)

    Luecke-Huhle, C.; Gloss, B.; Herrlich, P.

    1990-01-01

    Ionizing and UV radiations induce amplification of SV40 DNA sequences integrated in the genome of Chinese hamster cells and increase amplification of the dihydrofolate reductase (DHFR) gene during methotrexate selection in human skin fibroblasts of a patient with ataxia telangiectasia. Various types of external (60-Co-γ-rays, 241-Am-α-particles, UV) or internal radiation (caused by the decay of 125 I incorporated into DNA in form of I-UdR) were applied. By cell fusion experiments it could be shown that SV40 gene amplification is mediated by one or several diffusible trans-acting factors induced or activated in a dose dependent manner by all types of radiation. One of these factors binds to a 10 bp sequence within the minimal origin of replication of SV40. In vivo competition with an excess of a synthetic oligonucleotide comprising this sequence blocks radiation-induced amplification. (author) 25 refs.; 8 figs

  6. DNA amplification is rare in normal human cells

    International Nuclear Information System (INIS)

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R.; Smith, H.S.; Hancock, M.C.

    1990-01-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10 8 cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency

  7. Detection of biological molecules using chemical amplification and optical sensors

    Science.gov (United States)

    Van Antwerp, William Peter; Mastrototaro, John Joseph

    2000-01-01

    Methods are provided for the determination of the concentration of biological levels of polyhydroxylated compounds, particularly glucose. The methods utilize an amplification system that is an analyte transducer immobilized in a polymeric matrix, where the system is implantable and biocompatible. Upon interrogation by an optical system, the amplification system produces a signal capable of detection external to the skin of the patient. Quantitation of the analyte of interest is achieved by measurement of the emitted signal.

  8. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  9. Current amplification models of sensorineurall and conductive hearing loss

    OpenAIRE

    Ostojić, Sanja; Mikić, Branka; Mirić, Danica

    2012-01-01

    The main function of a hearing aid is to improve auditory and language abilities of hearing impaired users. The amplification model has to be adapted according to age, degree and type of hearing loss. The goal of this paper is to analyze the current amplification models of sensorineural and conductive hearing loss which can provide a high quality of speech perception and sounds at any degree of hearing loss. The BAHA is a surgically implantable system for treatment of conductive hearing loss ...

  10. A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing.

    Science.gov (United States)

    Chen, Zhiqiang; Liu, Ying; Xin, Chen; Zhao, Jikuan; Liu, Shufeng

    2018-04-23

    Herein, an autocatalytic strand displacement amplification (ASDA) strategy was proposed for the first time, which was further ingeniously coupled with hybridization chain reaction (HCR) event for the isothermal, label-free and multiple amplification toward nucleic acid detection. During the ASDA module, the target recognition opens the immobilized hairpin probe (IP) and initiates the annealing of the auxiliary DNA strand (AS) with the opened IP for the successive polymerization and nicking reaction in the presence of DNA polymerase and nicking endonuclease. This induces the target recycling and generation of a large amount of intermediate DNA sequences, which can be used as target analogy to execute the autocatalytic strand displacement amplification. Simultaneously, the introduced AS strand can propagate the HCR between two hairpins (H1 and H2) to form a linear DNA concatamer with cytosine (C)-rich loop region, which can facilitate the in-situ synthesis of silver nanoclusters (AgNCs) as electrochemical tags for further amplification toward target responses. With current cascade ASDA and HCR strategy, the detection of target DNA could be achieved with a low detection limit of about 0.16 fM and a good selectivity. The developed biosensor also exhibits the distinct advantages of flexibility and simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Application of a molecular beacon based real-time isothermal amplification (MBRTIA) technology for simultaneous detection of Bacillus cereus and Staphylococcus aureus.

    Science.gov (United States)

    Mandappa, I M; Joglekar, Prasanna; Manonmani, H K

    2015-07-01

    A multiplex real-time isothermal amplification assay was developed using molecular beacons for the detection of Bacillus cereus and Staphylococcus aureus by targeting four important virulence genes. A correlation between targeting highly accessible DNA sequences and isothermal amplification based molecular beacon efficiency and sensitivity was demonstrated using phi(Φ)29 DNA polymerase at a constant isothermal temperature of 30 °C. It was very selective and consistently detected down to 10(1) copies of DNA. The specificity and sensitivity of this assay, when tested with pure culture were high, surpassing those of currently used PCR assays for the detection of these organisms. The molecular beacon based real-time isothermal amplification (MBRTIA) assay could be carried out entirely in 96 well plates or well strips, enabling a rapid and high-throughput detection of food borne pathogens.

  12. Realization of the conceptual ideal for x-ray amplification

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, Alex B; Racz, Ervin; Zhang Ping; McCorkindale, John C; Khan, Shahab F; Poopalasingam, Sankar; Zhao Ji; Rhodes, Charles K [Laboratory for X-Ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States)

    2008-05-28

    The Xe(L) system is an amplifier with fundamentally different dynamic characteristics from all previously developed laser amplifiers; it represents the conceptual ideal through full utilization of the Kramers-Kronig relations that fundamentally couple the dispersive and absorptive components. The dispersive response of the system, through optimal governance of the power compression, rules the amplification and establishes a minimum gain for the amplifier. Accordingly, the amplification requires a minimum value of the dispersion to be surpassed; the corresponding gain follows automatically. As a leading consequence, since this minimum gain is sufficiently high, the key experimental observation is the uniform presence of saturated amplification signaled by strong spectral hole burning on all transitions exhibiting amplification, including double-vacancy lines. This cardinal signature demonstrates that the amplification is legislated by the saturated gain g{sub s}, not the corresponding small signal value g{sub 0}. The chief outcome is that explosive dispersion yields perforce explosive amplification and the efficient generation of maximally bright coherent power.

  13. Population diversity of ammonium oxidizers investigated by specific PCR amplification

    Science.gov (United States)

    Ward, B.B.; Voytek, M.A.; Witzel, K.-P.

    1997-01-01

    The species composition of ammonia-oxidizing bacteria in aquatic environments was investigated using PCR primers for 16S rRNA genes to amplify specific subsets of the total ammonia-oxidizer population. The specificity of the amplification reactions was determined using total genomic DNA from known nitrifying strains and non-nitrifying strains identified as having similar rDNA sequences. Specificity of amplification was determined both for direct amplification, using the nitrifier specific primers, and with nested amplification, in which the nitrifier primers were used to reamplify a fragment obtained from direct amplification with Eubacterial universal primers. The present level of specificity allows the distinction between Nitrosomonas europaea, Nitrosomonas sp. (marine) and the other known ammonia-oxidizers in the beta subclass of the Proteobacteria. Using total DNA extracted from natural samples, we used direct amplification to determine presence/absence of different species groups. Species composition was found to differ among depths in vertical profiles of lake samples and among samples and enrichments from various other aquatic environments. Nested PCR yielded several more positive reactions, which implies that nitrifier DNA was present in most samples, but often at very low levels.

  14. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.

    Science.gov (United States)

    Zong, Liang; Chen, Jin; Zhu, Yan; Zhao, Hong-Bo

    2017-07-22

    Mutations of Connexin 26 (Cx26, GJB2), which is a predominant gap junction isoform in the cochlea, can induce high incidence of nonsyndromic hearing loss. We previously found that targeted-deletion of Cx26 in supporting Deiters cells and outer pillar cells in the cochlea can influence outer hair cell (OHC) electromotility and reduce active cochlear amplification leading to hearing loss, even though there are no gap junction connexin expressions in the auditory sensory hair cells. Here, we further report that hearing loss and the reduction of active amplification in the Cx26 targeted-deletion mice are progressive and different at high and low frequency regions, first occurring in the high frequency region and then progressively extending to the middle and low frequency regions with mouse age increased. The speed of hearing loss extending was fast in the basal high frequency region and slow in the apical low frequency region, showing a logarithmic function with mouse age. Before postnatal day 25, there were no significant hearing loss and the reduction of active cochlear amplification in the low frequency region. Hearing loss and the reduction of active cochlear amplification also had frequency difference, severe and large in the high frequency regions. These new data indicate that the effect of gap junction on active cochlear amplification is progressive, but, consistent with our previous report, exists in both high and low frequency regions in adulthood. These new data also suggest that cochlear gap junctions may have an important role in age-related hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Amplification of HER2 is a marker for global genomic instability

    International Nuclear Information System (INIS)

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Love, Brad; Hooke, Jeffrey A; Shriver, Craig D

    2008-01-01

    Genomic alterations of the proto-oncogene c-erbB-2 (HER-2/neu) are associated with aggressive behavior and poor prognosis in patients with breast cancer. The variable clinical outcomes seen in patients with similar HER2 status, given similar treatments, suggests that the effects of amplification of HER2 can be influenced by other genetic changes. To assess the broader genomic implications of structural changes at the HER2 locus, we investigated relationships between genomic instability and HER2 status in patients with invasive breast cancer. HER2 status was determined using the PathVysion ® assay. DNA was extracted after laser microdissection from the 181 paraffin-embedded HER2 amplified (n = 39) or HER2 negative (n = 142) tumor specimens with sufficient tumor available to perform molecular analysis. Allelic imbalance (AI) was assessed using a panel of microsatellite markers representing 26 chromosomal regions commonly altered in breast cancer. Student t-tests and partial correlations were used to investigate relationships between genomic instability and HER2 status. The frequency of AI was significantly higher (P < 0.005) in HER2 amplified (27%) compared to HER2 negative tumors (19%). Samples with HER2 amplification showed significantly higher levels of AI (P < 0.05) at chromosomes 11q23, 16q22-q24 and 18q21. Partial correlations including ER status and tumor grade supported associations between HER2 status and alterations at 11q13.1, 16q22-q24 and 18q21. The poor prognosis associated with HER2 amplification may be attributed to global genomic instability as cells with high frequencies of chromosomal alterations have been associated with increased cellular proliferation and aggressive behavior. In addition, high levels of DNA damage may render tumor cells refractory to treatment. In addition, specific alterations at chromosomes 11q13, 16q22-q24, and 18q21, all of which have been associated with aggressive tumor behavior, may serve as genetic modifiers to HER2

  16. Doublethink and scale mismatch polarize policies for an invasive tree

    Science.gov (United States)

    Roberts, Caleb P.; Uden, Daniel R.; Allen, Craig R.; Twidwell, Dirac

    2018-01-01

    Mismatches between invasive species management policies and ecological knowledge can lead to profound societal consequences. For this reason, natural resource agencies have adopted the scientifically-based density-impact invasive species curve to guide invasive species management. We use the density-impact model to evaluate how well management policies for a native invader (Juniperus virginiana) match scientific guidelines. Juniperus virginiana invasion is causing a sub-continental regime shift from grasslands to woodlands in central North America, and its impacts span collapses in endemic diversity, heightened wildfire risk, and crashes in grazing land profitability. We (1) use land cover data to identify the stage of Juniperus virginiana invasion for three ecoregions within Nebraska, USA, (2) determine the range of invasion stages at individual land parcel extents within each ecoregion based on the density-impact model, and (3) determine policy alignment and mismatches relative to the density-impact model in order to assess their potential to meet sustainability targets and avoid societal impacts as Juniperus virginiana abundance increases. We found that nearly all policies evidenced doublethink and policy-ecology mismatches, for instance, promoting spread of Juniperus virginiana regardless of invasion stage while simultaneously managing it as a native invader in the same ecoregion. Like other invasive species, theory and literature for this native invader indicate that the consequences of invasion are unlikely to be prevented if policies fail to prioritize management at incipient invasion stages. Theory suggests a more realistic approach would be to align policy with the stage of invasion at local and ecoregion management scales. There is a need for scientists, policy makers, and ecosystem managers to move past ideologies governing native versus non-native invader classification and toward a framework that accounts for the uniqueness of native species invasions

  17. Epigenetic suppression of neprilysin regulates breast cancer invasion.

    Science.gov (United States)

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-03-07

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT-PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  18. Doublethink and scale mismatch polarize policies for an invasive tree

    Science.gov (United States)

    Roberts, Caleb P.; Uden, Daniel R.; Allen, Craig R.; Twidwell, Dirac

    2018-01-01

    Mismatches between invasive species management policies and ecological knowledge can lead to profound societal consequences. For this reason, natural resource agencies have adopted the scientifically-based density-impact invasive species curve to guide invasive species management. We use the density-impact model to evaluate how well management policies for a native invader (Juniperus virginiana) match scientific guidelines. Juniperus virginiana invasion is causing a sub-continental regime shift from grasslands to woodlands in central North America, and its impacts span collapses in endemic diversity, heightened wildfire risk, and crashes in grazing land profitability. We (1) use land cover data to identify the stage of Juniperus virginiana invasion for three ecoregions within Nebraska, USA, (2) determine the range of invasion stages at individual land parcel extents within each ecoregion based on the density-impact model, and (3) determine policy alignment and mismatches relative to the density-impact model in order to assess their potential to meet sustainability targets and avoid societal impacts as Juniperus virginiana abundance increases. We found that nearly all policies evidenced doublethink and policy-ecology mismatches, for instance, promoting spread of Juniperus virginiana regardless of invasion stage while simultaneously managing it as a native invader in the same ecoregion. Like other invasive species, theory and literature for this native invader indicate that the consequences of invasion are unlikely to be prevented if policies fail to prioritize management at incipient invasion stages. Theory suggests a more realistic approach would be to align policy with the stage of invasion at local and ecoregion management scales. There is a need for scientists, policy makers, and ecosystem managers to move past ideologies governing native versus non-native invader classification and toward a framework that accounts for the uniqueness of native species

  19. Utility of chromogenic in situ hybridization (CISH) for detection of EGFR amplification in glioblastoma: comparison with fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Fischer, Ingeborg; de la Cruz, Clarissa; Rivera, Andreana L; Aldape, Kenneth

    2008-12-01

    In this study, we test the reliability of chromogenic in situ hybridization (CISH) for the detection of epidermal growth factor receptor (EGFR) gene amplification in glioblastoma. Earlier reports have described EGFR CISH in glioblastoma multiforme, but a comparison of CISH with a "gold standard" testing method, such as fluorescence in situ hybridization (FISH), has not been described. Therapies targeting the EGFR-signaling pathway might increase the importance of assessment of EGFR-amplification status. CISH is a potential alternative to FISH as a testing method. To test its reliability, EGFR-amplification status by CISH was assessed in 89 cases of glioblastoma and compared with FISH results, and correlated with the protein expression using immunohistochemistry (IHC) for EGFR. FISH was scored as being EGFR-amplified in 47/89 tumors, CISH as being amplified in 43/89 tumors. The CISH and FISH results were in agreement in 83/89 cases (93%). Four glioblastomas were scored as being amplified by FISH, but not by CISH; whereas amplification was detected in 2 tumors by CISH that were not amplified using FISH. Forty-eight of the 89 cases were positive for EGFR expression by IHC. EGFR amplification was highly correlated with protein expression by IHC, as 40/48 (83%) EGFR IHC-positive cases were found to be EGFR-amplified. The high concordance of CISH and FISH for the assessment of EGFR gene-amplification status indicates that CISH is a viable alternative to FISH for the detection of EGFR gene amplification in glioblastoma. Detectable EGFR expression by IHC can occur in the absence of gene amplification, but is uncommon.

  20. Non-invasive method to determine target and dose distribution of gamma thalamotomy for tremor. Using a personal computer-assisted three-dimensional variable graphic model of the thalamus

    International Nuclear Information System (INIS)

    Horikoshi, Toru; Nagaseki, Yoshishige; Omata, Tomohiro; Ueno, Takehiko; Asari, Yasuhiro; Nukui, Hideaki

    1996-01-01

    To evaluate the accuracy of a computer-assisted three-dimensional variable graphic map of the thalamus, which consists of seven coronal contours of the thalamus and its substructure, each slice was compared with the corresponding MR coronal image of 13 adults who had no organic intracranial lesions. The graphics were based on the atlas or Schaltenbrand and Bailey, and were magnified linearly in proportion to two parameters. These were intercommisural distance, and distance between the posterior commisure and the lateral margin of the thalamus, measured on a horizontal MR image. The mean error of the slices on the medial margin was less than 1 mm in 10 cases, on the lateral margin of 10, as well as on the upper margin in six cases. This margin of error was pronounced among individuals with dilated ventricles. The additional capacity of the software to draw voluntary concentric circles of ovals on the thalamus image made it easy to recognize the optimal position and size of the figures that cover the target nucleus. The system described will lead to precise targeting of the thalamus nucleus, and will enhance the effectiveness and safety of radiosurgery for involuntary movement disorders, after properly establishing the modifications so as to fit to patients with dilated ventricles. (author)

  1. Cognitive functions of intracellular mechanisms for contextual amplification.

    Science.gov (United States)

    Phillips, William A

    2017-03-01

    Evidence for the hypothesis that input to the apical tufts of neocortical pyramidal cells plays a central role in cognition by amplifying their responses to feedforward input is reviewed. Apical tufts are electrically remote from the soma, and their inputs come from diverse sources including direct feedback from higher cortical regions, indirect feedback via the thalamus, and long-range lateral connections both within and between cortical regions. This suggests that input to tuft dendrites may amplify the cell's response to basal inputs that they receive via layer 4 and which have synapses closer to the soma. ERP data supporting this inference is noted. Intracellular studies of apical amplification (AA) and of disamplification by inhibitory interneurons targeted only at tufts are reviewed. Cognitive processes that have been related to them by computational, electrophysiological, and psychopathological studies are then outlined. These processes include: figure-ground segregation and Gestalt grouping; contextual disambiguation in perception and sentence comprehension; priming; winner-take-all competition; attention and working memory; setting the level of consciousness; cognitive control; and learning. It is argued that theories in cognitive neuroscience should not assume that all neurons function as integrate-and-fire point processors, but should use the capabilities of cells with distinct sites of integration for driving and modulatory inputs. Potentially 'unifying' theories that depend upon these capabilities are reviewed. It is concluded that evolution of the primitives of AA and disamplification in neocortex may have extended cognitive capabilities beyond those built from the long-established primitives of excitation, inhibition, and disinhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Exotic invasive plants

    Science.gov (United States)

    Carolyn Hull Sieg; Barbara G. Phillips; Laura P. Moser

    2003-01-01

    Ecosystems worldwide are threatened by nonnative plant invasions that can cause undesirable, irreversible changes. They can displace native plants and animals, out-cross with native flora, alter nutrient cycling and other ecosystem functions, and even change an ecosystem's flammability (Walker and Smith 1997). After habitat loss, the spread of exotic species is...

  3. Minimally invasive distal pancreatectomy

    NARCIS (Netherlands)

    Røsok, Bård I.; de Rooij, Thijs; van Hilst, Jony; Diener, Markus K.; Allen, Peter J.; Vollmer, Charles M.; Kooby, David A.; Shrikhande, Shailesh V.; Asbun, Horacio J.; Barkun, Jeffrey; Besselink, Marc G.; Boggi, Ugo; Conlon, Kevin; Han, Ho Seong; Hansen, Paul; Kendrick, Michael L.; Kooby, David; Montagnini, Andre L.; Palanivelu, Chinnasamy; Wakabayashi, Go; Zeh, Herbert J.

    2017-01-01

    The first International conference on Minimally Invasive Pancreas Resection was arranged in conjunction with the annual meeting of the International Hepato-Pancreato-Biliary Association (IHPBA), in Sao Paulo, Brazil on April 19th 2016. The presented evidence and outcomes resulting from the session

  4. Pathogenesis of invasive candidiasis.

    NARCIS (Netherlands)

    Veerdonk, F.L. van de; Kullberg, B.J.; Netea, M.G.

    2010-01-01

    PURPOSE OF REVIEW: Disseminated candidiasis remains a life-threatening disease in the ICU. The development of invasive disease with Candida albicans is dependent on multiple factors, such as colonization and efficient host defense at the mucosa. In the present review, we describe the host defense

  5. Economics of Harmful Invasive Species: A Review

    Directory of Open Access Journals (Sweden)

    George Marbuah

    2014-07-01

    Full Text Available The purpose of this study is to review theoretical and empirical findings in economics with respect to the challenging question of how to manage invasive species. The review revealed a relatively large body of literature on the assessment of damage costs of invasive species; single species and groups of species at different geographical scales. However, the estimated damage costs show large variation, from less than 1 million USD to costs corresponding to 12% of gross domestic product, depending on the methods employed, geographical scale, and scope with respect to inclusion of different species. Decisions regarding optimal management strategies, when to act in the invasion chain and which policy to choose, have received much less attention in earlier years, but have been subject to increasing research during the last decade. More difficult, but also more relevant policy issues have been raised, which concern the targeting in time and space of strategies under conditions of uncertainty. In particular, the weighting of costs and benefits from early detection and mitigation against the uncertain avoidance of damage with later control, when the precision in targeting species is typically greater is identified as a key challenge. The role of improved monitoring for detecting species and their spread and damage has been emphasized, but questions remain on how to achieve this in practice. This is in contrast to the relatively large body of literature on policies for mitigating dispersal by trade, which is regarded as one of the most important vectors for the spread of invasive species. On the other hand, the literature on how to mitigate established species, by control or adaptation, is much more scant. Studies evaluating causes for success or failure of policies against invasive in practice are in principal non-existing.

  6. ASAP: Amplification, sequencing & annotation of plastomes

    Directory of Open Access Journals (Sweden)

    Folta Kevin M

    2005-12-01

    Full Text Available Abstract Background Availability of DNA sequence information is vital for pursuing structural, functional and comparative genomics studies in plastids. Traditionally, the first step in mining the valuable information within a chloroplast genome requires sequencing a chloroplast plasmid library or BAC clones. These activities involve complicated preparatory procedures like chloroplast DNA isolation or identification of the appropriate BAC clones to be sequenced. Rolling circle amplification (RCA is being used currently to amplify the chloroplast genome from purified chloroplast DNA and the resulting products are sheared and cloned prior to sequencing. Herein we present a universal high-throughput, rapid PCR-based technique to amplify, sequence and assemble plastid genome sequence from diverse species in a short time and at reasonable cost from total plant DNA, using the large inverted repeat region from strawberry and peach as proof of concept. The method exploits the highly conserved coding regions or intergenic regions of plastid genes. Using an informatics approach, chloroplast DNA sequence information from 5 available eudicot plastomes was aligned to identify the most conserved regions. Cognate primer pairs were then designed to generate ~1 – 1.2 kb overlapping amplicons from the inverted repeat region in 14 diverse genera. Results 100% coverage of the inverted repeat region was obtained from Arabidopsis, tobacco, orange, strawberry, peach, lettuce, tomato and Amaranthus. Over 80% coverage was obtained from distant species, including Ginkgo, loblolly pine and Equisetum. Sequence from the inverted repeat region of strawberry and peach plastome was obtained, annotated and analyzed. Additionally, a polymorphic region identified from gel electrophoresis was sequenced from tomato and Amaranthus. Sequence analysis revealed large deletions in these species relative to tobacco plastome thus exhibiting the utility of this method for structural and

  7. Alternative Chemical Amplification Methods for Peroxy Radical Detection

    Science.gov (United States)

    Wood, E. C. D.

    2014-12-01

    Peroxy radicals (HO2, CH3O2, etc.) are commonly detected by the chemical amplification technique, in which ambient air is mixed with high concentrations of CO and NO, initiating a chain reaction that produces 30 - 200 NO2 molecules per sampled peroxy radical. The NO2 is then measured by one of several techniques. With the exception of CIMS-based techniques, the chemical amplification method has undergone only incremental improvements since it was first introduced in 1982. The disadvantages of the technique include the need to use high concentrations of CO and the greatly reduced sensitivity of the amplification chain length in the presence of water vapor. We present a new chemical amplification scheme in which either ethane or acetaldehyde is used in place of CO, with the NO2 product detected using Cavity Attenuated Phase Shift spectroscopy (CAPS). Under dry conditions, the amplification factor of the alternative amplifiers are approximately six times lower than the CO-based amplifier. The relative humidity "penalty" is not as severe, however, such that at typical ambient relative humidity (RH) values the amplification factor is within a factor of three of the CO-based amplifier. Combined with the NO2 sensitivity of CAPS and a dual-channel design, the detection limit of the ethane amplifier is less than 2 ppt (1 minute average, signal-to-noise ratio 2). The advantages of these alternative chemical amplification schemes are improved safety, a reduced RH correction, and increased sensitivity to organic peroxy radicals relative to HO2.

  8. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    Science.gov (United States)

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  9. Accurate quantification of microorganisms in PCR-inhibiting environmental DNA extracts by a novel Internal Amplification Control approach using Biotrove OpenArrays

    NARCIS (Netherlands)

    Van Doorn, R.; Klerks, M.; van Gent-Pelzer, M.; Speksnijder, A.G.C.L.; Kowalchuk, G.A.; Schoen, C.D.

    2009-01-01

    PCR-based detection assays are prone to inhibition by substances present in environmental samples, thereby potentially leading to inaccurate target quantification or false-negative results. Internal amplification controls (IACs) have been developed to help alleviate this problem but are generally

  10. Expression microarray reproducibility is improved by optimising purification steps in RNA amplification and labelling

    Directory of Open Access Journals (Sweden)

    Brenton James D

    2004-01-01

    Full Text Available Abstract Background Expression microarrays have evolved into a powerful tool with great potential for clinical application and therefore reliability of data is essential. RNA amplification is used when the amount of starting material is scarce, as is frequently the case with clinical samples. Purification steps are critical in RNA amplification and labelling protocols, and there is a lack of sufficient data to validate and optimise the process. Results Here the purification steps involved in the protocol for indirect labelling of amplified RNA are evaluated and the experimentally determined best method for each step with respect to yield, purity, size distribution of the transcripts, and dye coupling is used to generate targets tested in replicate hybridisations. DNase treatment of diluted total RNA samples followed by phenol extraction is the optimal way to remove genomic DNA contamination. Purification of double-stranded cDNA is best achieved by phenol extraction followed by isopropanol precipitation at room temperature. Extraction with guanidinium-phenol and Lithium Chloride precipitation are the optimal methods for purification of amplified RNA and labelled aRNA respectively. Conclusion This protocol provides targets that generate highly reproducible microarray data with good representation of transcripts across the size spectrum and a coefficient of repeatability significantly better than that reported previously.

  11. An exonuclease-assisted amplification electrochemical aptasensor for Hg(2+) detection based on hybridization chain reaction.

    Science.gov (United States)

    Bao, Ting; Wen, Wei; Zhang, Xiuhua; Xia, Qinghua; Wang, Shengfu

    2015-08-15

    In this work, a novel electrochemical aptasensor was developed for Hg(2+) detection based on exonuclease-assisted target recycling and hybridization chain reaction (HCR) dual signal amplification strategy. The presence of Hg(2+) induced the T-rich DNA partly folded into duplex-like structure via the Hg(2+) mediated T-Hg(2+)-T base pairs, which triggered the activity of exonuclease III (Exo III). Exo III selectively digested the double-strand DNA containing multiple T-Hg(2+)-T base pairs from its 3'-end, the released Hg(2+) participated analyte recycle. With each digestion cycle, a digestion product named as help DNA was obtained, which acted as a linkage between the capture DNA and auxiliary DNA. The presence of help DNA and two auxiliary DNA collectively facilitated successful HCR process and formed long double-stranded DNA. [Ru(NH3)6](3+) was used as redox indicator, which electrostatically bound to the double strands and produced an electrochemical signal. Exo III-assisted target recycling and HCR dual amplification significantly improved the sensitivity for Hg(2+) with a detection limit of 0.12 pM (S/N=3). Furthermore, the proposed aptasensor had a promising potential for the application of Hg(2+) detection in real aquatic sample analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  13. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  14. The detection of hTERC amplification using fluorescence in situ hybridization in the diagnosis and prognosis of cervical intraepithelial neoplasia: a case control study

    Directory of Open Access Journals (Sweden)

    Yin Geping

    2012-08-01

    Full Text Available Abstract Background Currently the routine non-invasive screening methods for cervical intraepithelial ne