WorldWideScience

Sample records for ampk exerts dual

  1. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan-Yuan; Yu, Li-Fang; Zhang, Li-Na; Qiu, Bei-Ying; Su, Ming-Bo; Wu, Fang; Chen, Da-Kai; Pang, Tao; Gu, Min; Zhang, Wei; Ma, Wei-Ping; Jiang, Hao-Wen; Li, Jing-Ya, E-mail: jyli@mail.shcnc.ac.cn; Nan, Fa-Jun, E-mail: fjnan@mail.shcnc.ac.cn; Li, Jia, E-mail: jli@mail.shcnc.ac.cn

    2013-12-01

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome.

  2. Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice

    International Nuclear Information System (INIS)

    AMP-activated protein kinase (AMPK), which is a pivotal guardian of whole-body energy metabolism, has become an attractive therapeutic target for metabolic syndrome. Previously, using a homogeneous scintillation proximity assay, we identified the small-molecule AMPK activator C24 from an optimization based on the original allosteric activator PT1. In this paper, the AMPK activation mechanism of C24 and its potential beneficial effects on glucose and lipid metabolism on db/db mice were investigated. C24 allosterically stimulated inactive AMPK α subunit truncations and activated AMPK heterotrimers by antagonizing autoinhibition. In primary hepatocytes, C24 increased the phosphorylation of AMPK downstream target acetyl-CoA carboxylase dose-dependently without changing intracellular AMP/ATP ratio, indicating its allosteric activation in cells. Through activating AMPK, C24 decreased glucose output by down-regulating mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in primary hepatocytes. C24 also decreased the triglyceride and cholesterol contents in HepG2 cells. Due to its improved bioavailability, chronic oral treatment with multiple doses of C24 significantly reduced blood glucose and lipid levels in plasma, and improved the glucose tolerance of diabetic db/db mice. The hepatic transcriptional levels of PEPCK and G6Pase were reduced. These results demonstrate that this orally effective activator of AMPK represents a novel approach to the treatment of metabolic syndrome. - Highlights: • C24 activates AMPK through antagonizing autoinhibition within α subunit. • C24 activates AMPK in hepatocytes and decreases glucose output via AMPK. • C24 exerts beneficial effects on diabetic db/db mice. • C24 represents a novel therapeutic for treatment of metabolic syndrome

  3. Flavonoid derivative exerts an antidiabetic effect via AMPK activation in diet-induced obesity mice.

    Science.gov (United States)

    Chen, Ying; Zhang, Chang; Jin, Mei-Na; Qin, Nan; Qiao, Wei; Yue, Xiao-Long; Duan, Hong-Quan; Niu, Wen-Yan

    2016-09-01

    In our previous study, a derivative of tiliroside, 3-O-[(E)-4-(4-ethoxyphenyl)-2-oxobut-3-en-1-yl]kaempferol (Fla-OEt) significantly enhanced glucose consumption in insulin resistant HepG2 cells. This article deals with the antihyperglycemic and antihyperlipidemic effects of Fla-OEt in diet-induced obesity (DIO) mice. Daily administration of Fla-OEt significantly decreased oral glucose tolerance test, intraperitoneal insulin tolerance test and serum lipids. Hyperinsulinemic-euglycemic clamp and the ratio of high-density-lipoprotein/low-density-lipoprotein with Fla-OEt treatment were increased comparing with high-fat diet (HFD) group, so lipid metabolism was improved. Histopathology examination showed that the Fla-OEt restored the damage of adipose tissues and liver in DIO mice. Moreover, compared with HFD group, Fla-OEt treatment significantly increased the phosphorylation of AMPK and ACC in adiposity tissues, liver, and muscles. The mechanism of its action might be the activation of AMPK pathway. It appears that Fla-OEt is worth further study for development as a lead compound for a potential antidiabetic agent. PMID:26511291

  4. Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response.

    Science.gov (United States)

    Pfeuty, Benjamin; Thommen, Quentin

    2016-01-01

    Cellular metabolism must ensure that supply of nutrient meets the biosynthetic and bioenergetic needs. Cells have therefore developed sophisticated signaling and regulatory pathways in order to cope with dynamic fluctuations of both resource and demand and to regulate accordingly diverse anabolic and catabolic processes. Intriguingly, these pathways are organized around a relatively small number of regulatory hubs, such as the highly conserved AMPK and TOR kinase families in eukaryotic cells. Here, the global metabolic adaptations upon dynamic environment are investigated using a prototypical model of regulated metabolism. In this model, the optimal enzyme profiles as well as the underlying regulatory architecture are identified by combining perturbation and evolutionary methods. The results reveal the existence of distinct classes of adaptive strategies, which differ in the management of storage reserve depending on the intensity of the stress and in the regulation of ATP-producing reaction depending on the nature of the stress. The regulatory architecture that optimally implements these adaptive features is characterized by a crosstalk between two specialized signaling pathways, which bears close similarities with the sensing and regulatory properties of AMPK and TOR pathways. PMID:27505075

  5. A dual role for AMP-activated protein kinase (AMPK) during neonatal hypoxic-ischaemic brain injury in mice.

    Science.gov (United States)

    Rousset, Catherine I; Leiper, Fiona C; Kichev, Anton; Gressens, Pierre; Carling, David; Hagberg, Henrik; Thornton, Claire

    2015-04-01

    Perinatal hypoxic-ischaemic encephalopathy (HIE) occurs in 1-2 in every 1000 term infants and the devastating consequences range from cerebral palsy, epilepsy and neurological deficit to death. Cellular damage post insult occurs after a delay and is mediated by a secondary neural energy failure. AMP-activated protein kinase (AMPK) is a sensor of cellular stress resulting from ATP depletion and/or calcium dysregulation, hallmarks of the neuronal cell death observed after HIE. AMPK activation has been implicated in the models of adult ischaemic injury but, as yet, there have been no studies defining its role in neonatal asphyxia. Here, we find that in an in vivo model of neonatal hypoxia-ischaemic and in oxygen/glucose deprivation in neurons, there is pathological activation of the calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPKα1 signalling pathway. Pharmacological inhibition of AMPK during the insult promotes neuronal survival but, conversely, inhibiting AMPK activity prior to the insult sensitizes neurons, exacerbating cell death. Our data have pathological relevance for neonatal HIE as prior sensitization such as exposure to bacterial infection (reported to reduce AMPK activity) produces a significant increase in injury. We show that in an in vivo model of neonatal hypoxia-ischaemic and in oxygen/glucose deprivation in neurons, there is a pathological activation of the CaMKKβ-AMPKα1 signalling pathway. Inhibiting AMPK during OGD promotes neuronal survival; conversely, inhibiting AMPK prior to OGD exacerbates cell death. Our data have clinical relevance as prior sensitization (e.g. exposure to bacterial infection reducing AMPK activity) increases injury. AMPK, AMP-activated protein kinase; HI, hypoxia-ischaemia; OGD, oxygen-glucose deprivation. PMID:25598140

  6. A dual role for AMP‐activated protein kinase (AMPK) during neonatal hypoxic–ischaemic brain injury in mice

    OpenAIRE

    Rousset, Catherine I.; Leiper, Fiona C.; Kichev, Anton; Gressens, Pierre; Carling, David; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Abstract Perinatal hypoxic–ischaemic encephalopathy (HIE) occurs in 1–2 in every 1000 term infants and the devastating consequences range from cerebral palsy, epilepsy and neurological deficit to death. Cellular damage post insult occurs after a delay and is mediated by a secondary neural energy failure. AMP‐activated protein kinase (AMPK) is a sensor of cellular stress resulting from ATP depletion and/or calcium dysregulation, hallmarks of the neuronal cell death observed after HIE. AMPK act...

  7. Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction

    OpenAIRE

    Paiva, MA; Gonçalves, L.; Providência, LA; Davidson, SM; Yellon, DM; Mocanu, MM

    2010-01-01

    PURPOSE: AMPK plays a crucial role in the regulation of the energy metabolism of the heart. During ischaemia, AMPK activation is a known adaptative prosurvival mechanism that helps to maintain the energy levels of the myocardium. However, it still remains unclear if activation of AMPK during reperfusion is beneficial for the heart. Two known AMPK activators (metformin and AICAR) were used to verify the hypothesis that a transitory activation of AMPK at reperfusion may exert cardioprotection, ...

  8. Dual Targeting of CDK4 and ARK5 Using a Novel Kinase Inhibitor ON123300 Exerts Potent Anticancer Activity against Multiple Myeloma.

    Science.gov (United States)

    Perumal, Deepak; Kuo, Pei-Yu; Leshchenko, Violetta V; Jiang, Zewei; Divakar, Sai Krishna Athaluri; Cho, Hearn Jay; Chari, Ajai; Brody, Joshua; Reddy, M V Ramana; Zhang, Weijia; Reddy, E Premkumar; Jagannath, Sundar; Parekh, Samir

    2016-03-01

    Multiple myeloma is a fatal plasma cell neoplasm accounting for over 10,000 deaths in the United States each year. Despite new therapies, multiple myeloma remains incurable, and patients ultimately develop drug resistance and succumb to the disease. The response to selective CDK4/6 inhibitors has been modest in multiple myeloma, potentially because of incomplete targeting of other critical myeloma oncogenic kinases. As a substantial number of multiple myeloma cell lines and primary samples were found to express AMPK-related protein kinase 5(ARK5), a member of the AMPK family associated with tumor growth and invasion, we examined whether dual inhibition of CDK4 and ARK5 kinases using ON123300 results in a better therapeutic outcome. Treatment of multiple myeloma cell lines and primary samples with ON123300 in vitro resulted in rapid induction of cell-cycle arrest followed by apoptosis. ON123300-mediated ARK5 inhibition or ARK5-specific siRNAs resulted in the inhibition of the mTOR/S6K pathway and upregulation of the AMPK kinase cascade. AMPK upregulation resulted in increased SIRT1 levels and destabilization of steady-state MYC protein. Furthermore, ON123300 was very effective in inhibiting tumor growth in mouse xenograft assays. In addition, multiple myeloma cells sensitive to ON123300 were found to have a unique genomic signature that can guide the clinical development of ON123300. Our study provides preclinical evidence that ON123300 is unique in simultaneously inhibiting key oncogenic pathways in multiple myeloma and supports further development of ARK5 inhibition as a therapeutic approach in multiple myeloma. PMID:26873845

  9. Dual Effects Exerted in Vitro by Micromolar Concentrations of Deoxynivalenol on Undifferentiated Caco-2 Cells

    Science.gov (United States)

    Manda, Gina; Mocanu, Mihaela Andreea; Marin, Daniela Eliza; Taranu, Ionelia

    2015-01-01

    Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37–1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics. PMID:25690693

  10. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats

    DEFF Research Database (Denmark)

    Andreassen, Kim V; Feigh, Michael; Hjuler, Sara T;

    2014-01-01

    The present study investigated a novel oral dual amylin and calcitonin receptor agonist (DACRA), KBP-042, in head-to-head comparison with salmon calcitonin (sCT) with regard to in vitro receptor pharmacology, ex vivo pancreatic islet studies, and in vivo proof of concept studies in diet-induced o......The present study investigated a novel oral dual amylin and calcitonin receptor agonist (DACRA), KBP-042, in head-to-head comparison with salmon calcitonin (sCT) with regard to in vitro receptor pharmacology, ex vivo pancreatic islet studies, and in vivo proof of concept studies in diet......-induced obese (DIO) and Zucker diabetic fatty (ZDF) rats. In vitro, KBP-042 demonstrated superior binding affinity and activation of amylin and calcitonin receptors, and ex vivo, KBP-042 exerted inhibitory action on stimulated insulin and glucagon release from isolated islets. In vivo, KBP-042 induced a...... superior and pronounced reduction in food intake in conjunction with a sustained pair-fed corrected weight loss in DIO rats. Concomitantly, KBP-042 improved glucose homeostasis and reduced hyperinsulinemia and hyperleptinemia in conjunction with enhanced insulin sensitivity. In ZDF rats, KBP-042 induced a...

  11. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism.

    Science.gov (United States)

    Menzfeld, Christiane; John, Michael; van Rossum, Denise; Regen, Tommy; Scheffel, Jörg; Janova, Hana; Götz, Alexander; Ribes, Sandra; Nau, Roland; Borisch, Angela; Boutin, Philippe; Neumann, Konstantin; Bremes, Vanessa; Wienands, Jürgen; Reichardt, Holger M; Lühder, Fred; Tischner, Denise; Waetzig, Vicky; Herdegen, Thomas; Teismann, Peter; Greig, Iain; Müller, Michael; Pukrop, Tobias; Mildner, Alexander; Kettenmann, Helmut; Brück, Wolfgang; Prinz, Marco; Rotshenker, Shlomo; Weber, Martin S; Hanisch, Uwe-Karsten

    2015-06-01

    The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions. PMID:25731696

  12. Bypassing AMPK Phosphorylation

    OpenAIRE

    Viollet, Benoit; Foretz, Marc; Schlattner, Uwe

    2014-01-01

    AMP-activated protein kinase (AMPK) functions as a signaling hub to balance energy supply with demand. Phosphorylation of activation loop Thr172 has been considered as an essential step in AMPK activation. In this issue of Chemistry & Biology, Scott and colleagues show that the small molecule direct AMPK activator, A-769662, bypasses this phosphorylation event, and acts synergistically with AMP on naive AMPK.

  13. Platelet-activating factor and hydrogen peroxide exert a dual modulatory effect on the transcription of LXRα and its target genes in human neutrophils.

    Science.gov (United States)

    Reyes-Quiroz, María E; Alba, Gonzalo; Sáenz, Javier; Geniz, Isabel; Jiménez, Juan; Martín-Nieto, José; Santa-María, Consuelo; Sobrino, Francisco

    2016-09-01

    Liver X receptors (LXRs) are ligand-activated nuclear receptors involved mainly in the regulation of cholesterol metabolism in many organs, including liver and intestine, as well as in macrophages and neutrophils. Besides, both anti-inflammatory and pro-inflammatory properties have been ascribed to LXRs. The effect of the inflammatory condition on the expression of LXRα and its target genes has not been previously addressed in human neutrophils. We have described that platelet-activating factor (PAF) and hydrogen peroxide (H2O2) are potent pro-inflammatory mediators that link the haemostatic and innate immune systems. In this work we report that H2O2 at low doses (1 pM-1μM) exerts an inhibitory effect on TO901317-induced mRNA expression of LXRα and of its target genes encoding the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, and the sterol regulatory element-binding protein 1c (SREBP1c). However, an opposite behaviour, i.e., a transcription-enhancing effect, was found at higher H2O2 doses (100-500μM) on most of these genes. A similar dual effect was observed when the pro-inflammatory molecule PAF was used. Interestingly, H2O2 production separately elicited by 10nM PAF or 1μM H2O2 was similarly low, and analogously, H2O2 production levels elicited by 5μM PAF or 100μM H2O2 were similarly high when they were compared. On the other hand, low doses of PAF or H2O2 induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK 1/2) and NF-κB activation, However, PAF or H2O2 at high doses did not produce changes in NF-κB activation levels. In summary, our results show that H2O2, either exogenous or PAF-induced, exerts a dual regulation on mRNA expression of LXRα and its target genes. PMID:27351826

  14. Chronic exertional compartment syndrome of the lower extremities: improved screening using a novel dual birdcage coil and in-scanner exercise protocol

    International Nuclear Information System (INIS)

    The purpose of this study was to design and evaluate an MRI screening protocol for chronic exertional compartment syndrome (CECS) of the lower legs using an in-scanner exercise protocol and novel dual birdcage coil design for improved imaging. Coil and phantom studies: a custom-made dual birdcage coil designed for this protocol was evaluated for uniformity and signal-to-noise ratio (SNR) compared with a conventional phased-array receive-only torso coil and the body coil. Phantom and normal subject studies were performed to confirm coil performance. In-vivo studies: eight unaffected subjects and 42 patients with lower extremity symptoms suggestive of CECS were imaged with the dual birdcage coil and an in-scanner exercise protocol which included imaging at rest, during isometric resisted dorsi flexion, at rest (recovery), during isometric resisted plantar flexion and, again, at rest. Of 42 patients, 14 had confirmed CECS and 28 had lower extremity anomalies attributable to other causes. Ratios of relative T2-weighted signal intensities were calculated for exercise and recovery images compared to baseline after processing of images, including re-registration for motion, smoothing and segmentation to remove bone and pulsation artifacts from blood vessels. Receiver operating characteristic (ROC) analysis showed a threshold for the ratio of relative T2-weighted signal intensity of 1.54 to have a sensitivity of 96%, specificity of 90% and accuracy of 96% for CECS. Patients with CECS had their peak ratio of signal intensity compared with baseline during the first recovery period after isometric dorsi flexion, whereas unaffected subjects and patients with other causes of exercise-induced lower extremity pain reached their peak values during exercise (P < 0.001). We have developed the first in-scanner MRI exercise protocol for the assessment of patients with suspected CECS. The technique shows high accuracy, sensitivity and specificity for diagnosis in this small cohort of

  15. Inhibition of AMPK expression in skeletal muscle by systemic inflammation in COPD rats

    OpenAIRE

    Qi, Yong; Shang, Jun-yi; Ma, Li-Jun; Sun, Bei-Bei; Hu, Xin-gang; Liu, Bao; Zhang, Guo-Jun

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) is a disease characterized by airflow limitation and inflammation. Meanwhile, COPD also is associated with metabolic disorders, such as skeletal muscle weakness. Strikingly, activation of AMP-activated protein kinase (AMPK) exerts critical roles in energy metabolism. However, it remains unclear whether and how the expression levels of AMPK are affected in the COPD model rats which may lead to the dysfunction of the skeletal muscle in the...

  16. Hypothalamic AMPK: a canonical regulator of whole-body energy balance.

    Science.gov (United States)

    López, Miguel; Nogueiras, Rubén; Tena-Sempere, Manuel; Diéguez, Carlos

    2016-07-01

    AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism. PMID:27199291

  17. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  18. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  19. Phytochemical regulation of Fyn and AMPK signaling circuitry.

    Science.gov (United States)

    Lee, Chan Gyu; Koo, Ja Hyun; Kim, Sang Geon

    2015-12-01

    During the past decades, phytochemical terpenoids, polyphenols, lignans, flavonoids, and alkaloids have been identified as antioxidative and cytoprotective agents. Adenosine monophosphate-activated protein kinase (AMPK) is a kinase that controls redox-state and oxidative stress in the cell, and serves as a key molecule regulating energy metabolism. Many phytochemicals directly or indirectly alter the AMPK pathway in distinct manners, exerting catabolic metabolism. Some of them are considered promising in the treatment of metabolic diseases such as type II diabetes, obesity, and hyperlipidemia. Another important kinase that regulates energy metabolism is Fyn kinase, a member of the Src family kinases that plays a role in various cellular responses such as insulin signaling, cell growth, oxidative stress and apoptosis. Phytochemical inhibition of Fyn leads to AMPK-mediated protection of the cell in association with increased antioxidative capacity and mitochondrial biogenesis. The kinases may work together to form a signaling circuitry for the homeostasis of energy conservation and expenditure, and may serve as targets of phytochemicals. This review is intended as a compilation of recent advancements in the pharmacological research of phytochemicals targeting Fyn and AMPK circuitry, providing information for the prevention and treatment of metabolic diseases and the accompanying tissue injuries. PMID:25951818

  20. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1-AMPK complex

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Koji, E-mail: k_nakagawa@pharm.hokudai.ac.jp [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Uehata, Yasuko; Natsuizaka, Mitsuteru; Kohara, Toshihisa; Darmanin, Stephanie [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Asaka, Masahiro [Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Takeda, Hiroshi [Department of Pathophysiology and Therapeutics, Division of Pharmascience, Faculty of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Department of Gastroenterology and Hematology, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Kobayashi, Masanobu [Department of Cancer Preventive Medicine, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Toubetsu, Hokkaido 061-0293 (Japan)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer The nuclear protein Artemis physically interacts with AMPK{alpha}2. Black-Right-Pointing-Pointer Artemis co-localizes with AMPK{alpha}2 in the nucleus. Black-Right-Pointing-Pointer Artemis promotes phosphorylation and activation of AMPK. Black-Right-Pointing-Pointer The interaction between AMPK{alpha}2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic {alpha} subunit and regulatory {beta} and {gamma} subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the {alpha}-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPK{alpha}2-binding protein. Artemis was found to co-immunoprecipitate with AMPK{alpha}2, and the co-localization of Artemis with AMPK{alpha}2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPK{alpha}2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPK{alpha}2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1-AMPK complex.

  1. LKB1/AMPK inhibits TGF-β1 production and the TGF-β signaling pathway in breast cancer cells.

    Science.gov (United States)

    Li, Nian-Shuang; Zou, Jun-Rong; Lin, Hui; Ke, Rong; He, Xiao-Ling; Xiao, Lu; Huang, Deqiang; Luo, Lingyu; Lv, Nonghua; Luo, Zhijun

    2016-06-01

    Adenosine monophosphate-activated protein kinase (AMPK) acts as a fuel gauge that maintains energy homeostasis in both normal and cancerous cells, and has emerged as a tumor suppressor. The present study aims to delineate the functional relationship between AMPK and transforming growth factor beta (TGF-β). Our results showed that expression of liver kinase B1 (LKB1), an upstream kinase of AMPK, impeded TGF-β-induced Smad phosphorylation and their transcriptional activity in breast cancer cells, whereas knockdown of LKB1 or AMPKα1 subunit by short hairpin RNA (shRNA) enhanced the effect of TGF-β. Furthermore, AMPK activation reduced the promoter activity of TGF-β1. In accordance, type 2 diabetic patients taking metformin displayed a trend of reduction of serum TGF-β1, as compared with those without metformin. A significant reduction of serum TGF-β1 was found in mice after treatment with metformin. These results suggest that AMPK inhibits the transcription of TGF-β1, leading to reduction of its concentration in serum. Finally, metformin suppressed epithelial-to-mesenchymal transition of mammary epithelial cells. Taken together, our study demonstrates that AMPK exerts multiple actions on TGF-β signaling and supports that AMPK can serve as a therapeutic drug target for breast cancer. PMID:26718214

  2. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation.

    Science.gov (United States)

    Ming, Wei; Lu, Gan; Xin, Sha; Huanyu, Lu; Yinghao, Jiang; Xiaoying, Lei; Chengming, Xu; Banjun, Ruan; Li, Wang; Zifan, Lu

    2016-08-01

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. PMID:27237975

  3. : AMPK and skeletal muscle hypertrophy

    OpenAIRE

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Pende, Mario; Daegelen, Dominique; Sakamoto, Kei; Foretz, Marc; Viollet, Benoit

    2009-01-01

    10 pages; 6 figures; 49 références bibliographiques International audience Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of muscle growth. The purpose of this investigation was to determine the role of the AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle hypertrophy. We found that AMPKalpha1(-/-) primary cultured myotubes a...

  4. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator

  5. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  6. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Pierre Sujobert

    2015-06-01

    Full Text Available AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.

  7. Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway.

    Science.gov (United States)

    Shi, Linying; Zhang, Ting; Liang, Xinyu; Hu, Qin; Huang, Juan; Zhou, Yong; Chen, Mingliang; Zhang, Qianyong; Zhu, Jundong; Mi, Mantian

    2015-07-01

    Skeletal muscle insulin resistance (SMIR) plays an important role in the pathogenesis of type 2 diabetes. Dihydromyricetin (DHM), a natural flavonoid, exerts various bioactivities including anti-oxidative and hepatoprotective effects. Herein, we intended to determine the effect of DHM on SMIR and the underlying mechanisms. We found that DHM increased the expression of phosphorylated insulin receptor substrate-1, phosphorylated Akt and glucose uptake capacity in palmitate-treated L6 myotubes under insulin-stimulated conditions. The expression of light chain 3, Beclin 1, autophagy-related gene 5 (Atg5), the degradation of sequestosome 1 and the formation of autophagosomes were also upregulated by DHM. Suppression of autophagy by 3-methyladenine and bafilomycin A1 or Atg5 and Beclin1 siRNA abolished the favorable effects of DHM on SMIR. Furthermore, DHM increased the levels of phosphorylated AMP-activated protein kinase (AMPK) and Ulk1, and decreased phosphorylated mTOR levels. AMPK inhibitor compound C (CC) and AMPK siRNA abrogated DHM-induced autophagy, subsequently suppressed DHM-induced SMIR improvement. Additionally, DHM inhibited the activity of F1F0-ATPase thereby activating AMPK. Finally, the results of in vivo study conducted in high fat diet-fed rats were consistent with the findings of in vitro study. In conclusion, DHM improved SMIR by inducing autophagy via the activation of AMPK signaling pathway. PMID:25797177

  8. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia.

    Science.gov (United States)

    Sujobert, Pierre; Poulain, Laury; Paubelle, Etienne; Zylbersztejn, Florence; Grenier, Adrien; Lambert, Mireille; Townsend, Elizabeth C; Brusq, Jean-Marie; Nicodeme, Edwige; Decrooqc, Justine; Nepstad, Ina; Green, Alexa S; Mondesir, Johanna; Hospital, Marie-Anne; Jacque, Nathalie; Christodoulou, Alexandra; Desouza, Tiffany A; Hermine, Olivier; Foretz, Marc; Viollet, Benoit; Lacombe, Catherine; Mayeux, Patrick; Weinstock, David M; Moura, Ivan C; Bouscary, Didier; Tamburini, Jerome

    2015-06-01

    AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML) cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers. PMID:26004183

  9. Expanding exertion gaming

    OpenAIRE

    Marshall, Joe; Mueller, Florian ‘Floyd’; Benford, Steve; Pijnappel, Sebastiaan

    2016-01-01

    While exertion games - digital games where the outcome is determined by physical exertion - are of growing interest in HCI, we believe the current health and fitness focus in the research of exertion games limits the opportunities this field has to offer. In order to broaden the agenda on exertion games, we link the existing fields of sports and interactive entertainment (arguing these fields have much to offer) by presenting four of our own designs as case studies. Using our experiences with...

  10. AMPK, a metabolic sensor, is involved in isoeugenol-induced glucose uptake in muscle cells

    OpenAIRE

    Kim, Nami; Lee, Jung Ok; Lee, Hye Jeong; Lee, Yong Woo; Kim, Hyung Ip; Kim, Su Jin; Park, Sun Hwa; Lee, Chul Su; Ryoo, Sun Woo; Hwang, Geum-Sook; Kim, Hyeon Soo

    2016-01-01

    Isoeugenol exerts various beneficial effects on human health. However, the mechanisms underlying these effects are poorly understood. In this study, we observed that isoeugenol activated AMP-activated protein kinase (AMPK) and increased glucose uptake in rat L6 myotubes. Isoeugenol-induced increase in intracellular calcium concentration and glucose uptake was inhibited by STO-609, an inhibitor of calcium/calmodulin-dependent protein kinase kinase (CaMKK). Isoeugenol also increased the phospho...

  11. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway.

    Science.gov (United States)

    Han, Fang; Zhang, Shuxian; Hou, Ningning; Wang, Di; Sun, Xiaodong

    2015-11-01

    Irisin is a novel hormone secreted by myocytes. Lower levels of irisin are independently associated with endothelial dysfunction in obese subjects. The objective of this study was to explore whether irisin exerts a direct vascular protective effect on endothelial function in high-fat-diet-induced obese mice. Male C57BL/6 mice were given chow or a high-fat diet with or without treatment with irisin. Aortic endothelial function was determined by measuring endothelium-dependent vasodilatation (EDV). Nitric oxide (NO) in the aorta was determined. The effect of irisin on the levels of AMP-activated protein kinase (AMPK), Akt, and endothelial NO synthase (eNOS) phosphorylation in endothelial cells was determined. Human umbilical vein endothelial cells were used to study the role of irisin in the AMPK-eNOS pathway. Acetylcholine-stimulated EDV was significantly lower in obese mice compared with control mice. Treatment of obese mice with irisin significantly enhanced EDV and improved endothelial function. This beneficial effect of irisin was partly attenuated in the presence of inhibitors of AMPK, Akt, and eNOS. Treatment of obese mice with irisin enhanced NO production and phosphorylation of AMPK, Akt, and eNOS in endothelial cells. These factors were also enhanced by irisin in human umbilical vein endothelial cells in vitro. Suppression of AMPK expression by small interfering RNA blocked irisin-induced eNOS and Akt phosphorylation and NO production. We have provided the first evidence that irisin improves endothelial function in aortas of high-fat-diet-induced obese mice. The mechanism for this protective effect is related to the activation of the AMPK-eNOS signaling pathway. PMID:26371167

  12. AMPK activators: mechanisms of action and physiological activities.

    Science.gov (United States)

    Kim, Joungmok; Yang, Goowon; Kim, Yeji; Kim, Jin; Ha, Joohun

    2016-01-01

    AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease. PMID:27034026

  13. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  14. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity

    OpenAIRE

    Hayley M O'Neill

    2013-01-01

    AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise pro...

  15. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Glund, Stephan; Deshmukh, Atul;

    2006-01-01

    signaling to glucose uptake. We show that AICAR increases AMPK, acetyl-CoA carboxylase, and AS160 phosphorylation by insulin-independent mechanisms in isolated skeletal muscle. Recombinant AMPK heterotrimeric complexes (a1ß1¿1 and a2ß2¿1) phosphorylate AS160 in a cell-free assay. In mice deficient in AMPK...... signaling (a2 AMPK knockout [KO], a2 AMPK kinase dead [KD], and ¿3 AMPK KO), AICAR effects on AS160 phosphorylation were severely blunted, highlighting that complexes containing a2 and ¿3 are necessary for AICAR-stimulated AS160 phosphorylation in intact skeletal muscle. Contraction-mediated AS160......AMP-activated protein kinase (AMPK) is a heterotrimeric protein that regulates glucose transport mediated by cellular stress or pharmacological agonists such as 5-aminoimidazole-4-carboxamide 1 ß-D-ribonucleoside (AICAR). AS160, a Rab GTPase-activating protein, provides a mechanism linking AMPK...

  16. The nuclear protein Artemis promotes AMPK activation by stabilizing the LKB1–AMPK complex

    International Nuclear Information System (INIS)

    Highlights: ► The nuclear protein Artemis physically interacts with AMPKα2. ► Artemis co-localizes with AMPKα2 in the nucleus. ► Artemis promotes phosphorylation and activation of AMPK. ► The interaction between AMPKα2 and LKB1 is stabilized by Artemis. -- Abstract: AMP-activated protein kinase (AMPK) is a hetero-trimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits; it functions as an energy sensor that controls cellular energy homeostasis. In response to an increased cellular AMP/ATP ratio, AMPK is activated by phosphorylation at Thr172 in the α-subunit by upstream AMPK kinases (AMPKKs), including tumor suppressor liver kinase B1 (LKB1). To elucidate more precise molecular mechanisms of AMPK activation, we performed yeast two-hybrid screening and isolated the complementary DNA (cDNA) encoding the nuclear protein Artemis/DNA cross-link repair 1C (DCLRE1C) as an AMPKα2-binding protein. Artemis was found to co-immunoprecipitate with AMPKα2, and the co-localization of Artemis with AMPKα2 in the nucleus was confirmed by immunofluorescence staining in U2OS cells. Moreover, over-expression of Artemis enhanced the phosphorylation of AMPKα2 and the AMPK substrate acetyl-CoA carboxylase (ACC). Conversely, RNAi-mediated knockdown of Artemis reduced AMPK and ACC phosphorylation. In addition, Artemis markedly increased the physical association between AMPKα2 and LKB1. Taken together, these results suggest that Artemis functions as a positive regulator of AMPK signaling by stabilizing the LKB1–AMPK complex.

  17. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H;

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  18. How is AMPK activity regulated in skeletal muscles during exercise?

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Rose, Adam John

    2008-01-01

    AMPK is a metabolic "master" controller activated in skeletal muscle by exercise in a time and intensity dependent manner, and has been implicated in regulating metabolic pathways in muscle during physical exercise. AMPK signaling in skeletal muscle is regulated by several systemic...... and intracellular factors and the regulation of skeletal muscle AMPK in response to exercise is the focus of this review. Specifically, the role of LKB1 and phosphatase PP2C in nucleotide-dependent activation of AMPK, and ionized calcium in CaMKK-dependent activation of AMPK in working muscle is discussed. We also...

  19. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity

    Directory of Open Access Journals (Sweden)

    Hayley M. O'Neill

    2013-02-01

    Full Text Available AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity.

  20. Activation of AMPK and its Impact on Exercise Capacity.

    Science.gov (United States)

    Niederberger, Ellen; King, Tanya S; Russe, Otto Quintus; Geisslinger, Gerd

    2015-11-01

    Activation of the adenosine monophosphate (AMP)-activated kinase (AMPK) contributes to beneficial effects such as improvement of the hyperglycemic state in diabetes as well as reduction of obesity and inflammatory processes. Furthermore, stimulation of AMPK activity has been associated with increased exercise capacity. A study published in 2008, directly before the Olympic Games in Beijing, showed that the AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide) increased the running capacity of mice without any training and thus, prompted the World Anti-Doping Agency (WADA) to include certain AMPK activators in the list of forbidden drugs. This raises the question as to whether all AMPK activators should be considered for registration or whether the increase in exercise performance is only associated with specific AMPK-activating substances. In this review, we intend to shed light on currently published AMPK-activating drugs, their working mechanisms, and their impact on body fitness. PMID:26186961

  1. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity. : AMPK in skeletal musclemetabolic adaptation

    OpenAIRE

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi; Leclerc, Jocelyne; Treebak, Jonas,; Pehmøller, Christian; Sanz, Nieves; Sakakibara, Iori; Saint-Amand, Emmanuelle; Rimbaud, Stéphanie; Maire, Pascal; Marette, André; Ventura-Clapier, Renée; Ferry, Arnaud; Wojtaszewski, Jørgen,

    2014-01-01

    : AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production an...

  2. Cation-selective transporters are critical to the AMPK-mediated antiproliferative effects of metformin in human breast cancer cells.

    Science.gov (United States)

    Cai, Hao; Zhang, Yunhui; Han, Tianxiang Kevin; Everett, Ruth S; Thakker, Dhiren R

    2016-05-01

    The antidiabetic drug metformin exerts antineoplastic effects against breast cancer and other cancers. One mechanism by which metformin is believed to exert its anticancer effect involves activation of its intracellular target, adenosine monophosphate-activated protein kinase (AMPK), which is also implicated in the antidiabetic effect of metformin. It is proposed that in cancer cells, AMPK activation leads to inhibition of the mammalian target of rapamycin (mTOR) and the downstream pS6K that regulates cell proliferation. Due to its hydrophilic and cationic nature, metformin requires cation-selective transporters to enter cells and activate AMPK. This study demonstrates that expression levels of cation-selective transporters correlate with the antiproliferative and antitumor efficacy of metformin in breast cancer. Metformin uptake and antiproliferative activity were compared between a cation-selective transporter-deficient human breast cancer cell line, BT-20, and a BT-20 cell line that was engineered to overexpress organic cation transporter 3 (OCT3), a representative of cation-selective transporters and a predominant transporter in human breast tumors. Metformin uptake was minimal in BT-20 cells, but increased by >13-fold in OCT3-BT20 cells, and its antiproliferative potency was >4-fold in OCT3-BT20 versus BT-20 cells. This increase in antiproliferative activity was associated with greater AMPK phosphorylation and decreased pS6K phosphorylation in OCT3-BT20 cells. In vitro data were corroborated by in vivo observations of significantly greater antitumor efficacy of metformin in xenograft mice bearing OCT3-overexpressing tumors versus low transporter-expressing wildtype tumors. Collectively, these findings establish a clear relationship between cation-selective transporter expression, the AMPK-mTOR-pS6K signaling cascade, and the antiproliferative activity of metformin in breast cancer. PMID:26669511

  3. Histological evaluation of AMPK signalling in primary breast cancer

    International Nuclear Information System (INIS)

    AMP-activated protein kinase (AMPK) acts as a cellular fuel gauge that responds to energy stress by suppressing cell growth and biosynthetic processes, thus ensuring that energy-consuming processes proceed only if there are sufficient metabolic resources. Malfunction of the AMPK pathway may allow cancer cells to undergo uncontrolled proliferation irrespective of their molecular energy levels. The aim of this study was to examine the state of AMPK phosphorylation histologically in primary breast cancer in relation to clinical and pathological parameters. Immunohistochemistry was performed using antibodies to phospho-AMPK (pAMPK), phospho-Acetyl Co-A Carboxylase (pACC) an established target for AMPK, HER2, ERα, and Ki67 on Tissue Micro-Array (TMA) slides of two cohorts of 117 and 237 primary breast cancers. The quick score method was used for scoring and patterns of protein expression were compared with clinical and pathological data, including a minimum 5 years follow up. Reduced signal, compared with the strong expression in normal breast epithelium, using a pAMPK antibody was demonstrated in 101/113 (89.4%) and 217/236 (91.9%) of two cohorts of patients. pACC was significantly associated with pAMPK expression (p = 0.007 & p = 0.014 respectively). For both cohorts, reduced pAMPK signal was significantly associated with higher histological grade (p = 0.010 & p = 0.021 respectively) and axillary node metastasis (p = 0.061 & p = 0.039 respectively). No significant association was found between pAMPK and any of HER2, ERα, or Ki67 expression, disease-free survival or overall survival. This study extends in vitro evidence through immunohistochemistry to confirm that AMPK is dysfunctional in primary breast cancer. Reduced signalling via the AMPK pathway, and the inverse relationship with histological grade and axillary node metastasis, suggests that AMPK re-activation could have therapeutic potential in breast cancer

  4. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK.

    Science.gov (United States)

    Filippov, Sergey; Pinkosky, Stephen L; Lister, Richard J; Pawloski, Catherine; Hanselman, Jeffrey C; Cramer, Clay T; Srivastava, Rai Ajit K; Hurley, Timothy R; Bradshaw, Cheryl D; Spahr, Mark A; Newton, Roger S

    2013-08-01

    ETC-1002 is an investigational drug currently in Phase 2 development for treatment of dyslipidemia and other cardiometabolic risk factors. In dyslipidemic subjects, ETC-1002 not only reduces plasma LDL cholesterol but also significantly attenuates levels of hsCRP, a clinical biomarker of inflammation. Anti-inflammatory properties of ETC-1002 were further investigated in primary human monocyte-derived macrophages and in in vivo models of inflammation. In cells treated with ETC-1002, increased levels of AMP-activated protein kinase (AMPK) phosphorylation coincided with reduced activity of MAP kinases and decreased production of proinflammatory cytokines and chemokines. AMPK phosphorylation and inhibitory effects of ETC-1002 on soluble mediators of inflammation were significantly abrogated by siRNA-mediated silencing of macrophage liver kinase B1 (LKB1), indicating that ETC-1002 activates AMPK and exerts its anti-inflammatory effects via an LKB1-dependent mechanism. In vivo, ETC-1002 suppressed thioglycollate-induced homing of leukocytes into mouse peritoneal cavity. Similarly, in a mouse model of diet-induced obesity, ETC-1002 restored adipose AMPK activity, reduced JNK phosphorylation, and diminished expression of macrophage-specific marker 4F/80. These data were consistent with decreased epididymal fat-pad mass and interleukin (IL)-6 release by inflamed adipose tissue. Thus, ETC-1002 may provide further clinical benefits for patients with cardiometabolic risk factors by reducing systemic inflammation linked to insulin resistance and vascular complications of metabolic syndrome. PMID:23709692

  5. Advances in the Research of AMPK and its Subunit Genes

    Directory of Open Access Journals (Sweden)

    R.S. Jiang

    2013-01-01

    Full Text Available AMP-activated kinase (AMPK is a heterotrimeric complex composed of three subunits and is the core energy sensor of the cell. The AMPK activity is important for survival during periods of stress and starvation and also has implications in type II diabetes, obesity, metabolic syndrome, longevity and cancer, etc. The activation of AMPK is triggered through binding of Adenosine Monophosphate Activated Proteins (AMP to the Bateman domains of the gamma subunit, leading to increased phosphorylation of the threonine 172 on the alpha subunit by inducing allosteric activation and inhibiting dephosphorylation. AMPK and its subunits have been the focuses of many researchers dealing with genetic and metabolic issues. The study makes a comprehensive review on the structure, function, distribution, enzyme activity, the genetic mutation and other aspects of AMPK and its subunit genes, with the aim to outline main aspects of present researches on AMPK and its subunits in animal genetics.

  6. Hypothalamic AMPK as a Regulator of Energy Homeostasis.

    Science.gov (United States)

    Huynh, My Khanh Q; Kinyua, Ann W; Yang, Dong Joo; Kim, Ki Woo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  7. Hypothalamic AMPK as a Regulator of Energy Homeostasis

    Science.gov (United States)

    Huynh, My Khanh Q.; Kinyua, Ann W.; Yang, Dong Joo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  8. Regulation and function of AMPK in physiology and diseases

    Science.gov (United States)

    Jeon, Sang-Min

    2016-01-01

    5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that was originally identified as the key player in maintaining cellular energy homeostasis. Intensive research over the last decade has identified diverse molecular mechanisms and physiological conditions that regulate the AMPK activity. AMPK regulates diverse metabolic and physiological processes and is dysregulated in major chronic diseases, such as obesity, inflammation, diabetes and cancer. On the basis of its critical roles in physiology and pathology, AMPK is emerging as one of the most promising targets for both the prevention and treatment of these diseases. In this review, we discuss the current understanding of the molecular and physiological regulation of AMPK and its metabolic and physiological functions. In addition, we discuss the mechanisms underlying the versatile roles of AMPK in diabetes and cancer. PMID:27416781

  9. Exercise-induced AMPK activity in skeletal muscle

    DEFF Research Database (Denmark)

    Friedrichsen, Martin; Mortensen, Brynjulf; Pehmøller, Christian;

    2013-01-01

    The energy/fuel sensor 5'-AMP-activated protein kinase (AMPK) is viewed as a master regulator of cellular energy balance due to its many roles in glucose, lipid, and protein metabolism. In this review we focus on the regulation of AMPK activity in skeletal muscle and its involvement in glucose...... metabolism, including glucose transport and glycogen synthesis. In addition, we discuss the plausible interplay between AMPK and insulin signaling regulating these processes....

  10. Arctigenin alleviates ER stress via activating AMPK

    Institute of Scientific and Technical Information of China (English)

    Yuan GU; Xiao-xiao SUN; Ji-ming YE; Li HE; Shou-sheng YAN; Hao-hao ZHANG; Li-hong HU; Jun-ying YUAN; Qiang YU

    2012-01-01

    Aim:To investigate the protective effects of arctigenin (ATG),a phenylpropanoid dibenzylbutyrolactone lignan from Arctium lappa L (Compositae),against ER stress in vitro and the underlying mechanisms.Methods:A cell-based screening assay for ER stress regulators was established.Cell viability was measured using MTT assay.PCR and Western blotting were used to analyze gene and protein expression.Silencing of the CaMKKβ,LKB1,and AMPKα1 genes was achieved by RNA interference (RNAi).An ATP bioluminescent assay kit was employed to measure the intracellular ATP levels.Results:ATG (2.5,5,and 10 μmol/L) inhibited cell death and unfolded protein response (UPR) in a concentration-dependent manner in cells treated with the ER stress inducer brefeldin A (100 nmol/L).ATG (1,5,and 10 μmol/L) significantly attenuated protein synthesis in cells through inhibiting mTOR-p7OS6K signaling and eEF2 activity,which were partially reversed by silencing AMPKα1 with RNAi.ATG (1-50 μmol/L) reduced intracellular ATP level and activated AMPK through inhibiting complex I-mediated respiration.Pretreatment of cells with the AMPK inhibitor compound C (25 μmol/L) rescued the inhibitory effects of ATG on ER stress.Furthermore,ATG (2.5 and 5μmol/L) efficiently activated AMPK and reduced the ER stress and cell death induced by palmitate (2 mmol/L) in INS-1 β cells.Conclusion:ATG is an effective ER stress alleviator,which protects cells against ER stress through activating AMPK,thus attenuating protein translation and reducing ER load.

  11. Immunometabolism of AMPK in insulin resistance and atherosclerosis.

    Science.gov (United States)

    Fullerton, Morgan D; Steinberg, Gregory R; Schertzer, Jonathan D

    2013-02-25

    Obesity leads to insulin resistance and atherosclerosis, which precede Type 2 diabetes and cardiovascular disease. Immunometabolism addresses how metabolic and inflammatory pathways converge to maintain health and a contemporary problem is determining how obesity-induced inflammation precipitates chronic diseases such as insulin resistance and atherosclerosis. AMP-activated protein kinase (AMPK) is an important serine/threonine kinase well known for regulating metabolic processes and maintaining energy homeostasis. However, both metabolic and immunological AMPK-mediated effects play a role in disease. Pro-inflammatory mediators suppress AMPK activity and hinder lipid oxidation. In addition, AMPK activation curbs inflammation by directly inhibiting pro-inflammatory signaling pathways and limiting the build-up of specific lipid intermediates that elicit immune responses. In the context of obesity and chronic disease, these reciprocal responses involve both immune and metabolic cells. Therefore, the immunometabolism of AMPK-mediated processes and therapeutics should be considered in atherosclerosis and insulin resistance. PMID:22361321

  12. Role of AMPK in Regulating Muscle Insulin Sensitivity

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus

    skeletal muscle in response to exercise and contraction. It is considered an important sensor of cellular energy-fuel status and fulfills the purpose of regulating energy-fuel homeostasis. Based on this, the aim of the present PhD was to investigate the involvement of AMPK in regulating insulin sensitivity....... Results obtained during this PhD support a role of AMPK in regulating muscle insulin sensitivity, which may occur through phosphorylation of the downstream target TBC1D4. We find that prior AICAR treatment (pharmacological AMPK activator) and in situ contraction enhance mouse muscle insulin sensitivity in...... an AMPK-dependent manner. This is associated with and positively correlated to an increased phosphorylation of TBC1D4 Thr642 and Ser704, of which Thr642 previously has been shown to be important for insulin-stimulated glucose uptake in skeletal muscle. Furthermore, we find intact regulation of AMPK...

  13. AMPK : a master energy regulator for gonadal functions.

    Directory of Open Access Journals (Sweden)

    Michael eBertoldo

    2015-07-01

    Full Text Available From c.elegans to mammals (including humans, nutrition and energy metabolism strongly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity, or poor (diet restriction. One of these detectors is AMPK (5 'AMP-activated protein kinase, a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resistance. AMPK is expressed in muscle and liver, but also in the ovary and testis. This review focuses on the main effects of AMPK identified in gonadal cells. We describe the role of AMPK in gonadal steroidogenesis, in proliferation and survival of somatic gonadal cells and in the maturation of oocytes or spermatozoa. We discuss also the role of AMPK in germ and somatic cell interactions within the cumulus-oocyte complex and in the blood testis barrier. Finally, the interface in the gonad between AMPK and modification of metabolism is reported and discussion about the role of AMPK on fertility, in regards to the treatment of infertility associated with insulin resistance (male obesity, polycystic ovary syndrome.

  14. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway.

    Science.gov (United States)

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  15. GPR40 agonist ameliorates liver X receptor-induced lipid accumulation in liver by activating AMPK pathway

    Science.gov (United States)

    Li, Meng; Meng, Xiangyu; Xu, Jie; Huang, Xiuqing; Li, Hongxia; Li, Guoping; Wang, Shu; Man, Yong; Tang, Weiqing; Li, Jian

    2016-01-01

    Hepatic steatosis is strongly linked to insulin resistance and type 2 diabetes. GPR40 is a G protein-coupled receptor mediating free fatty acid-induced insulin secretion and thus plays a beneficial role in the improvement of diabetes. However, the impact of GPR40 agonist on hepatic steatosis still remains to be elucidated. In the present study, we found that activation of GPR40 by its agonist GW9508 attenuated Liver X receptor (LXR)-induced hepatic lipid accumulation. Activation of LXR in the livers of C57BL/6 mice fed a high-cholesterol diet and in HepG2 cells stimulated by chemical agonist caused increased expression of its target lipogenic genes and subsequent lipid accumulation. All these effects of LXR were dramatically downregulated after GW9508 supplementation. Moreover, GPR40 activation was accompanied by upregulation of AMPK pathway, whereas the inhibitive effect of GPR40 on the lipogenic gene expression was largely abrogated by AMPK knockdown. Taken together, our results demonstrated that GW9508 exerts a beneficial effect to ameliorate LXR-induced hepatic steatosis through regulation of AMPK signaling pathway. PMID:27121981

  16. Discovery of Pyridones As Oral AMPK Direct Activators.

    Science.gov (United States)

    Mirguet, Olivier; Sautet, Stéphane; Clément, Catherine-Anne; Toum, Jérôme; Donche, Frédéric; Marques, Celine; Rondet, Emilie; Pizzonero, Mathieu; Beaufils, Benjamin; Dudit, Yann; Huet, Pascal; Trottet, Lionel; Grondin, Pascal; Brusq, Jean-Marie; Boursier, Eric; Saintillan, Yannick; Nicodeme, Edwige

    2013-07-11

    AMP-activated protein kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for type 2 diabetes and other metabolic disorders. Here, we will report the discovery of pyrrolopyridone derivatives as AMPK direct activators. We will illustrate the synthesis and structure-activity relationships of the series as well as some pharmacokinetic results. Some compounds exhibited encouraging oral exposure and were evaluated in a mouse diabetic model. Compound 17 showed oral activity at 30 mg/kg on blood glucose. PMID:24900722

  17. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    OpenAIRE

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in...

  18. The dark face of AMPK as an essential tumor promoter.

    Science.gov (United States)

    Jeon, Sang-Min; Hay, Nissim

    2012-10-01

    Numerous studies have shown that supraphysiological activation of AMPK could inhibit tumor growth. On the other hand, accumulating data also suggest that AMPK activity is required for tumor growth and migration. These findings suggest that physiological activation of AMPK is critical for tumor growth/migration, possibly through maintenance of ATP levels. Our recent study provides the first evidence that the maintenance of cellular NADPH homeostasis is the predominant mechanism by which AMPK promotes tumor cell survival and solid tumor formation. We showed that AMPK activation is required to maintain intracellular NADPH levels through the activation of fatty acid oxidation (FAO) or the inhibition of fatty acid synthesis (FAS) during glucose deprivation or matrix detachment respectively. Through these processes AMPK activation inhibits the rise in reactive oxygen species (ROS) levels and promotes metabolic adaptation in response to metabolic stress. This finding also provides a new therapeutic opportunity through targeting metabolic adaptation of cancer cells, either alone or in combination with conventional anti-cancer drugs that cause metabolic stress. PMID:23676995

  19. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Department of Infectious Diseases, Peking University Third Hospital, Beijing (China); Zhang, Yuan [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China); Xu, Ming; Zhang, You-Yi [Department of Institute of Vascular Medicine and Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing (China); He, Bei, E-mail: puh3_hb@bjmu.edu.cn [Department of Respiratory Medicine, Peking University Third Hospital, Beijing (China)

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.

  20. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line

    International Nuclear Information System (INIS)

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β2-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β2-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production

  1. Sex-Specific Regulation of AMP-Activated Protein Kinase (AMPK) in the Pacific Oyster Crassostrea gigas

    OpenAIRE

    Guevelou, Eric; Huvet, Arnaud; Galindo-sanchez, Clara E.; Milan, Massimo; Quillien, Virgile; Daniel, Jean-yves; Quere, Claudie; Boudry, Pierre; Corporeau, Charlotte

    2013-01-01

    The hermaphrodite Pacific oyster Crassostrea gigas displays a high energy allocation to reproduction. We studied the expression of AMP-activated protein kinase (AMPK) during gametogenesis in the gonad and characterized the mRNA sequences of the AMPK subunits: the AMPK alpha mRNA sequence was previously characterized; we identified AMPK beta, AMPK gamma, and mRNAs of putative AMPK-related targets following bioinformatics mining on existing genomic resources. We analyzed the mRNA expression of ...

  2. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Richter, Erik; Wojtaszewski, Jørgen

    2006-01-01

    The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism...... furthermore discuss the possible role of AMPK as a master switch in skeletal muscle metabolism with the main focus on AMPK in metabolic regulation during muscle work. Finally, AMPK has a well established role in regulating expression of genes encoding various enzymes in muscle, and this issue is discussed in...... during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We...

  3. Compartmentalized AMPK Signaling Illuminated by Genetically Encoded Molecular Sensors and Actuators

    Directory of Open Access Journals (Sweden)

    Takafumi Miyamoto

    2015-04-01

    Full Text Available AMP-activated protein kinase (AMPK, whose activity is a critical determinant of cell health, serves a fundamental role in integrating extracellular and intracellular nutrient information into signals that regulate various metabolic processes. Despite the importance of AMPK, its specific roles within the different intracellular spaces remain unresolved, largely due to the lack of real-time, organelle-specific AMPK activity probes. Here, we present a series of molecular tools that allows for the measurement of AMPK activity at the different subcellular localizations and that allows for the rapid induction of AMPK inhibition. We discovered that AMPKα1, not AMPKα2, was the subunit that preferentially conferred spatial specificity to AMPK, and that inhibition of AMPK activity at the mitochondria was sufficient for triggering cytosolic ATP increase. These findings suggest that genetically encoded molecular probes represent a powerful approach for revealing the basic principles of the spatiotemporal nature of AMPK regulation.

  4. AMPK in the Brain: Its Roles in Energy Balance and Neuroprotection

    OpenAIRE

    Ronnett, Gabriele V.; Ramamurthy, Santosh; Kleman, Amy M.; Landree, Leslie E.; Aja, Susan

    2009-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) senses metabolic stress and integrates diverse physiological signals to restore energy balance. Multiple functions are indicated for AMPK in the CNS. While all neurons sense their own energy status, some integrate neuro-humoral signals to assess organismal energy balance. A variety of disease states may involve AMPK, so determining the underlying mechanisms is important. We review the impact of altered AMPK activity under physiological (...

  5. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways

    International Nuclear Information System (INIS)

    5-Fluorouracil (5-FU) is one of the widely used chemotherapeutic drugs targeting various cancers, but its chemo-resistance remains as a major obstacle in clinical settings. In the present study, HT-29 colon cancer cells were markedly sensitized to apoptosis by both 5-FU and genistein compared to the 5-FU treatment alone. There is an emerging evidence that genistein, soy-derived phytoestrogen, may have potential as a chemotherapeutic agent capable of inducing apoptosis or suppressing tumor promoting proteins such as cyclooxygenase-2 (COX-2). However, the precise mechanism of cellular cytotoxicity of genistein is not known. The present study focused on the correlation of AMPK and COX-2 in combined cytotoxicity of 5-FU and genistein, since AMPK is known as a primary cellular homeostasis regulator and a possible target molecule of cancer treatment, and COX-2 as cell proliferation and anti-apoptotic molecule. Our results demonstrated that the combination of 5-FU and genistein abolished the up-regulated state of COX-2 and prostaglandin secretion caused by 5-FU treatment in HT-29 colon cancer cells. These appear to be followed by the specific activation of AMPK and the up-regulation of p53, p21, and Bax by genistein. Under same conditions, the induction of Glut-1 by 5-FU was diminished by the combination treatment with 5-FU and genistein. Furthermore, the reactive oxygen species (ROS) was found as an upstream signal for AMPK activation by genistein. These results suggested that the combination of 5-FU and genistein exert a novel chemotherapeutic effect in colon cancers, and AMPK may be a novel regulatory molecule of COX-2 expression, further implying its involvement in cytotoxicity caused by genistein

  6. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK.

    Science.gov (United States)

    Liu, M; Alimov, A P; Wang, H; Frank, J A; Katz, W; Xu, M; Ke, Z-J; Luo, J

    2014-05-16

    Obesity and eating disorders are prevailing health concerns worldwide. It is important to understand the regulation of food intake and energy metabolism. Thiamine (vitamin B1) is an essential nutrient. Thiamine deficiency (TD) can cause a number of disorders in humans, such as Beriberi and Wernicke-Korsakoff syndrome. We demonstrated here that TD caused anorexia in C57BL/6 mice. After feeding a TD diet for 16days, the mice displayed a significant decrease in food intake and an increase in resting energy expenditure (REE), which resulted in a severe weight loss. At the 22nd day, the food intake was reduced by 69% and 74% for male and female mice, respectively in TD group. The REE increased by ninefolds in TD group. The loss of body weight (17-24%) was similar between male and female animals and mainly resulted from the reduction of fat mass (49% decrease). Re-supplementation of thiamine (benfotiamine) restored animal's appetite, leading to a total recovery of body weight. The hypothalamic adenosine monophosphate-activated protein kinase (AMPK) is a critical regulator of food intake. TD inhibited the phosphorylation of AMPK in the arcuate nucleus (ARN) and paraventricular nucleus (PVN) of the hypothalamus without affecting its expression. TD-induced inhibition of AMPK phosphorylation was reversed once thiamine was re-supplemented. In contrast, TD increased AMPK phosphorylation in the skeletal muscle and upregulated the uncoupling protein (UCP)-1 in brown adipose tissues which was consistent with increased basal energy expenditure. Re-administration of thiamine stabilized AMPK phosphorylation in the skeletal muscle as well as energy expenditure. Taken together, TD may induce anorexia by inhibiting hypothalamic AMPK activity. With a simultaneous increase in energy expenditure, TD caused an overall body weight loss. The results suggest that the status of thiamine levels in the body may affect food intake and body weight. PMID:24607345

  7. Does mental exertion alter maximal muscle activation?

    OpenAIRE

    Vianney Rozand; Benjamin Pageaux

    2014-01-01

    Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i) high mental exertion (incongruent Stroop task), ii) moderate mental exertion (con...

  8. Does mental exertion alter maximal muscle activation?

    OpenAIRE

    Rozand, Vianney; Pageaux, Benjamin; Marcora, Samuele M.; Papaxanthis, Charalambos; Lepers, Romuald

    2014-01-01

    Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 min each: (i) high mental exertion (incongruent Stroop task), (ii) moderate mental exertion (congr...

  9. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima;

    2015-01-01

    importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed...

  10. Exertion injuries in female athletes.

    OpenAIRE

    Orava, S.; Hulkko, A; Jormakka, E.

    1981-01-01

    Because sports injuries in men form most of the available statistics, the reportage of injuries in female athletes is sparse. We describe exertion injuries and disorders in 281 women athletes, all of which hampered athletic training or performances. Sixty per cent of the injuries occurred to girls ages between 12-19 years, and about forty-eight per cent were track and field athletes. The most common sites of injury were the ankle, foot, heel and leg. Osteochondritic disorders were the most ty...

  11. Exertion injuries in female athletes.

    Science.gov (United States)

    Orava, S; Hulkko, A; Jormakka, E

    1981-12-01

    Because sports injuries in men form most of the available statistics, the reportage of injuries in female athletes is sparse. We describe exertion injuries and disorders in 281 women athletes, all of which hampered athletic training or performances. Sixty per cent of the injuries occurred to girls ages between 12-19 years, and about forty-eight per cent were track and field athletes. The most common sites of injury were the ankle, foot, heel and leg. Osteochondritic disorders were the most typical injuries in the series, and the chronic medical tibial syndrome was the injury that needed surgical treatment most frequently. Overuse injuries seem to differ very little from each other in the events included in this survey. PMID:6797496

  12. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK) and FOXO1.

    Science.gov (United States)

    Fodor, Tamás; Szántó, Magdolna; Abdul-Rahman, Omar; Nagy, Lilla; Dér, Ádám; Kiss, Borbála; Bai, Peter

    2016-01-01

    Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK) jointly with methotrexate (MTX), a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer. PMID:26919657

  13. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK and FOXO1.

    Directory of Open Access Journals (Sweden)

    Tamás Fodor

    Full Text Available Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK jointly with methotrexate (MTX, a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  14. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways

    International Nuclear Information System (INIS)

    Prostate cancer (PrCa) displays resistance to radiotherapy (RT) and requires radiotherapy dose escalation which is associated with greater toxicity. This highlights a need to develop radiation sensitizers to improve the efficacy of RT in PrCa. Ionizing radiation (IR) stimulates pathways of IR-resistance and survival mediated by the protein kinase Akt but it also activates the metabolic energy sensor and tumor suppressor AMP-Activated Protein Kinase (AMPK). Here, we examined the effects of the polyphenol resveratrol (RSV) on the IR-induced inhibition of cell survival, modulation of cell cycle and molecular responses in PrCa cells. Androgen-insensitive (PC3), sensitive (22RV1) PrCa and PNT1A normal prostate epithelial cells were treated with RSV alone (2.5-10 μM) or in combination with IR (2-8 Gy). Clonogenic assays, cell cycle analysis, microscopy and immunoblotting were performed to assess survival, cell cycle progression and molecular responses. RSV (2.5-5 μM) inhibited clonogenic survival of PC3 and 22RV1 cells but not of normal prostate PNT1A cells. RSV specifically sensitized PrCa cells to IR, induced cell cycle arrest at G1-S phase and enhanced IR-induced nuclear aberrations and apoptosis. RSV enhanced IR-induced expression of DNA damage (γH2Ax) and apoptosis (cleaved-caspase 3) markers as well as of the cell cycle regulators p53, p21cip1 and p27kip1. RSV enhanced IR-activation of ATM and AMPK but inhibited basal and IR-induced phosphorylation of Akt. Our results suggest that RSV arrests cell cycle, promotes apoptosis and sensitizes PrCa cells to IR likely through a desirable dual action to activate the ATM-AMPK-p53-p21cip1/p27kip1 and inhibit the Akt signalling pathways

  15. The Design of Networked Exertion Games

    Directory of Open Access Journals (Sweden)

    Frank Vetere

    2009-01-01

    Full Text Available Incorporating physical activity and exertion into pervasive gaming applications can provide health and social benefits. Prior research has resulted in several prototypes of pervasive games that encourage exertion as interaction form; however, no detailed critical account of the various approaches exists. We focus on networked exertion games and detail some of our work while identifying the remaining issues towards providing a coherent framework. We outline common lessons learned and use them as the basis for generalizations for the design of networked exertion games. We propose possible directions of further investigation, hoping to provide guidance for future work to facilitate greater awareness and exposure of exertion games and their benefits.

  16. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass.

    Science.gov (United States)

    Shah, M; Kola, B; Bataveljic, A; Arnett, T R; Viollet, B; Saxon, L; Korbonits, M; Chenu, C

    2010-08-01

    Adenosine 5'-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cultured in the presence of AMPK activators (AICAR and metformin), AMPK inhibitor (compound C), the gastric peptide hormone ghrelin and the beta-adrenergic blocker propranolol. AMPK activity was measured in cell lysates by a functional kinase assay and AMPK protein phosphorylation was studied by Western Blotting using an antibody recognizing AMPK Thr-172 residue. We demonstrated that treatment of ROS 17/2.8 cells with AICAR and metformin stimulates Thr-172 phosphorylation of AMPK and dose-dependently increases its activity. In contrast, treatment of ROS 17/2.8 cells with compound C inhibited AMPK phosphorylation. Ghrelin and propranolol dose-dependently increased AMPK phosphorylation and activity. Cell proliferation and alkaline phosphatase activity were not affected by metformin treatment while AICAR significantly inhibited ROS 17/2.8 cell proliferation and alkaline phosphatase activity at high concentrations. To study the effect of AMPK activation on bone formation in vitro, primary osteoblasts obtained from rat calvaria were cultured for 14-17days in the presence of AICAR, metformin and compound C. Formation of 'trabecular-shaped' bone nodules was evaluated following alizarin red staining. We demonstrated that both AICAR and metformin dose-dependently increase trabecular bone nodule formation, while compound C inhibits bone formation. When primary osteoblasts were co-treated with AICAR and compound C, compound C suppressed the stimulatory effect of AICAR on bone nodule formation

  17. Genetic and metabolic effects on skeletal muscle AMPK in young and older twins

    DEFF Research Database (Denmark)

    Mortensen, Brynjulf; Poulsen, Pernille; Wegner, Lise;

    2009-01-01

    The protein complex AMP-activated protein kinase (AMPK) is believed to play an important role in the regulation of skeletal muscle glucose and lipid metabolism. Defects in the AMPK system might therefore be an important factor in the pathogenesis of type 2 diabetes. We aimed to identify genetic and...... environmental mechanisms involved in the regulation of AMPK expression and activity and to examine the association between AMPK protein levels and activity on one hand, and glucose and fat metabolism on the other hand. We investigated skeletal muscle biopsies from 100 young and 82 older mono- and dizygotic non...... influence. AMPK gamma3 protein expression and activity were negatively related to whole-body glucose uptake through the non-oxidative metabolic pathway, and positively related to phosphorylation of glycogen synthase. In conclusion, our results suggest that skeletal muscle AMPK expression is under minor...

  18. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  19. Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner.

    Directory of Open Access Journals (Sweden)

    Rajeev Mehla

    Full Text Available HIV's ability to establish long-lived latent infection is mainly due to transcriptional silencing in resting memory T lymphocytes and other non dividing cells including monocytes. Despite an undetectable viral load in patients treated with potent antiretrovirals, current therapy is unable to purge the virus from these latent reservoirs. In order to broaden the inhibitory range and effectiveness of current antiretrovirals, the potential of bryostatin was investigated as an HIV inhibitor and latent activator. Bryostatin revealed antiviral activity against R5- and X4-tropic viruses in receptor independent and partly via transient decrease in CD4/CXCR4 expression. Further, bryostatin at low nanomolar concentrations robustly reactivated latent viral infection in monocytic and lymphocytic cells via activation of Protein Kinase C (PKC -alpha and -delta, because PKC inhibitors rottlerin and GF109203X abrogated the bryostatin effect. Bryostatin specifically modulated novel PKC (nPKC involving stress induced AMP Kinase (AMPK inasmuch as an inhibitor of AMPK, compound C partially ablated the viral reactivation effect. Above all, bryostatin was non-toxic in vitro and was unable to provoke T-cell activation. The dual role of bryostatin on HIV life cycle may be a beneficial adjunct to the treatment of HIV especially by purging latent virus from different cellular reservoirs such as brain and lymphoid organs.

  20. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    OpenAIRE

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2013-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in...

  1. Expanding roles for AMPK in skeletal muscle plasticity

    OpenAIRE

    Mounier, Rémi; Théret, Marine; Lantier, Louise; Foretz, Marc; Viollet, Benoit

    2015-01-01

    Skeletal muscle possesses a remarkable plasticity and responds to environmental and physiological challenges by changing its phenotype in terms of size, composition, and metabolic properties. Muscle fibers rapidly adapt to drastic changes in energy demands during exercise through fine-tuning of the balance between catabolic and anabolic processes. One major sensor of energy demand in exercising muscle is AMP-activated protein kinase (AMPK). Recent advances have shed new light on the relevance...

  2. AMPK: a master energy regulator for gonadal function

    OpenAIRE

    Bertoldo, Michael J.; Faure, Melanie; Dupont, Joëlle; Froment, Pascal

    2015-01-01

    From C. elegans to mammals (including humans), nutrition and energy metabolism significantly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5′ AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insuli...

  3. AMPK : a master energy regulator for gonadal functions.

    OpenAIRE

    Michael eBertoldo; Melanie eFaure; Joëlle eDupont; Pascal eFroment

    2015-01-01

    From c.elegans to mammals (including humans), nutrition and energy metabolism strongly influence reproduction. At the cellular level, some detectors of energy status indicate whether energy reserves are abundant (obesity), or poor (diet restriction). One of these detectors is AMPK (5 'AMP-activated protein kinase), a protein kinase activated by ATP deficiency but also by several natural substances such as polyphenols or synthetic molecules like metformin, used in the treatment of insulin resi...

  4. AMPK Control of Fat Metabolism in Skeletal Muscle

    OpenAIRE

    Thomson, David M.; Winder, William W.

    2009-01-01

    AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK’s role in the muscle is important. It was originally shown to stimulate fatty acid oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review we summarize much of this data, particularly in relation to chan...

  5. AMP-activated protein kinase (AMPK) activation regulates in vitro bone formation and bone mass

    OpenAIRE

    Shah, M; Kola, B; Bataveljic, A.; Arnett, T. R.; Viollet, B.; Saxon, L.; Korbonits, M.; C. Chenu

    2010-01-01

    Adenosine 5′-monophosphate-activated protein kinase (AMPK), a regulator of energy homeostasis, has a central role in mediating the appetite-modulating and metabolic effects of many hormones and antidiabetic drugs metformin and glitazones. The objective of this study was to determine if AMPK can be activated in osteoblasts by known AMPK modulators and if AMPK activity is involved in osteoblast function in vitro and regulation of bone mass in vivo. ROS 17/2.8 rat osteoblast-like cells were cult...

  6. Targeting AMPK Signaling Pathway to Overcome Drug Resistance for Cancer Therapy.

    Science.gov (United States)

    Wang, Zhiyu; Liu, Pengxi; Chen, Qianjun; Deng, Shigui; Liu, Xiaoyan; Situ, Honglin; Zhong, Shaowen; Hann, Swei; Lin, Yi

    2016-01-01

    Mulitdrug resistance (MDR) is one of critical factorslimiting the efficacy of cancer chemoor radiotherapy. Emerging evidence has indicated that MDR is a complex process regulated by multiple factors, among which stress response molecules are considered as central players. AMP-activated protein kinase (AMPK) is a major regulator balancing energy supply and ultimately protects cells from harmful stresses via coordinating multiple metabolic pathways Notably, AMPK activation was recently shown to mediate the metabolism reprogramming in drug resistant cancer cells including promoting Warburg effects and mitochondrial biogenesis. Furthermore, AMPK activity has also been shown to regulate the self-renewal ability of cancer stem cells that are often refractory to chemotherapy. In addition, AMPK phosphorylation was critical in mediating autophagy induction, a process demonstrated to be effective in chemosensitivity modulation via degrading cellular components to satisfy nutrients requirement under stressful condition. Meanwhile, drug discovery targeting AMPK has been developed to validate the pathological significance of AMPK in cancer prevention and treatment. Although conflicting evidence focusing on the AMPK modulation for cancer treatment is still remained, this might be attributed to differences in AMPK isotypes in specific tissues, off-targets effects, the degree and duration of drug administration and experimental setting of stress conditions. This review will focus on AMPK mediated resistance to cancer therapy and discuss its potential therapeutic implication and targeting drug development. PMID:25777274

  7. Protective effect of nectandrin B, a potent AMPK activator on neointima formation: inhibition of Pin1 expression through AMPK activation

    Science.gov (United States)

    Ki, Sung Hwan; Lee, Jung-Woon; Lim, Sung Chul; Hien, Tran Thi; Im, Ji Hye; Oh, Won Keun; Lee, Moo Yeol; Ji, Young Hyun; Kim, Yoon Gyoon; Kang, Keon Wook

    2013-01-01

    Background and Purpose Neointima is considered a critical event in the development of vascular occlusive disease. Nectandrin B from nutmeg functions as a potent AMP-activated protein kinase (AMPK) activators. The present study addressed whether nectandrin B inhibits intimal hyperplasia in guide wire-injured arteries and examined its molecular mechanism. Experimental Approach Neointima was induced by guide wire injury in mouse femoral arteries. Cell proliferation and mechanism studies were performed in rat vascular smooth muscle cells (VSMC) culture model. Key Results Nectandrin B increased AMPK activity in VSMC. Nectandrin B inhibited the cell proliferation induced by PDGF and DNA synthesis. Moreover, treatment of nectandrin B suppressed neointima formation in femoral artery after guide wire injury. We have recently shown that Pin1 plays a critical role in VSMC proliferation and neointima formation. Nectandrin B potently blocked PDGF-induced Pin1 and cyclin D1 expression and nectandrin B‘s anti-proliferation effect was diminished in Pin1 overexpressed VSMC. PDGF-induced phosphorylation of ERK and Akt was marginally affected by nectandrin B. However, nectandrin B increased the levels of p53 and its downstream target p21 and, also reversibly decreased the expression of E2F1 and phosphorylated Rb in PDGF-treated VSMC. AMPK inhibition by dominant mutant form of adenovirus rescued nectandrin B-mediated down-regulation of Pin1 and E2F1. Conclusions and Implications Nectandrin B inhibited VSMC proliferation and neointima formation via inhibition of E2F1-dependent Pin1 gene transcription, which is mediated through the activation of an AMPK/p53-triggered pathway. PMID:23004677

  8. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice

    Science.gov (United States)

    Marcinko, Katarina; Bujak, Adam L.; Lally, James S.V.; Ford, Rebecca J.; Wong, Tammy H.; Smith, Brennan K.; Kemp, Bruce E.; Jenkins, Yonchu; Li, Wei; Kinsella, Todd M.; Hitoshi, Yasumichi; Steinberg, Gregory R.

    2015-01-01

    Objective Skeletal muscle AMP-activated protein kinase (AMPK) is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. R419 is a mitochondrial complex-I inhibitor that has recently been shown to acutely activate AMPK in myotubes. Our main objective was to examine whether R419 treatment improves insulin sensitivity and exercise capacity in obese insulin resistant mice and whether skeletal muscle AMPK was important for mediating potential effects. Methods Glucose homeostasis, insulin sensitivity, exercise capacity, and electron transport chain content/activity were examined in wildtype (WT) and AMPK β1β2 muscle-specific null (AMPK-MKO) mice fed a high-fat diet (HFD) with or without R419 supplementation. Results There was no change in weight gain, adiposity, glucose tolerance or insulin sensitivity between HFD-fed WT and AMPK-MKO mice. In both HFD-fed WT and AMPK-MKO mice, R419 enhanced insulin tolerance, insulin-stimulated glucose disposal, skeletal muscle 2-deoxyglucose uptake, Akt phosphorylation and glucose transporter 4 (GLUT4) content independently of alterations in body mass. In WT, but not AMPK-MKO mice, R419 improved treadmill running capacity. Treatment with R419 increased muscle electron transport chain content and activity in WT mice; effects which were blunted in AMPK-MKO mice. Conclusions Treatment of obese mice with R419 improved skeletal muscle insulin sensitivity through a mechanism that is independent of skeletal muscle AMPK. R419 also increases exercise capacity and improves mitochondrial function in obese WT mice; effects that are diminished in the absence of skeletal muscle AMPK. These findings suggest that R419 may be a promising therapy for improving whole-body glucose homeostasis and exercise capacity. PMID:26413470

  9. Energy Status Determines Hindbrain Signal Transduction Pathway Transcriptional Reactivity to AMPK in the Estradiol-Treated Ovariectomized Female Rat

    OpenAIRE

    Ibrahim, Baher A.; Alenazi, Fahaad S.H.; Briski, Karen P.

    2014-01-01

    Dorsal vagal complex (DVC) AMPK regulation of food intake in the estradiol-treated ovariectomized (OVX) female rat is energy state-dependent. Here, RT-PCR array technology was used to identify estradiol-sensitive AMPK-regulated DVC signal transduction pathways that exhibit differential reactivity to sensor activation during energy balance versus imbalance. The AMP mimetic AICAR correspondingly reduced or stimulated cDVC phosphoAMPK (pAMPK) and estrogen receptor-beta (ERβ) proteins in full-fed...

  10. Modulation of de novo purine biosynthesis leads to activation of AMPK and results in improved glucose handling and insulin sensitivity

    OpenAIRE

    Sadasivan, Satish Kumar; Vasamsetti, Balamuralikrishna; Singh, Jaideep; Siddaraju, Nethra; Khan, Khaiser Mehdi; Oommen, Anup Mammen; Jagannath, Madanalli R; Rao, Raghavendra Pralhada

    2014-01-01

    Background AMP activated protein kinase (AMPK) regulates key metabolic reactions and plays a major role in glucose homeostasis. Activating the AMPK is considered as one of the potential therapeutic strategies in treating type-2 diabetes. However, targeting AMPK by small molecule mediated approach can be challenging owing to diverse isoforms of the enzyme and their varied combination in different tissues. In the current study we employ a novel strategy of achieving AMPK activation through incr...

  11. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi' an 710032 (China); Fu, Jianfang [Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China); Zhang, Shun [Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Zhao, Jie [Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi' an 710032 (China); Xie, Nianlin, E-mail: xienianlin@126.com [Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Cai, Guoqing, E-mail: firstchair@fmmu.edu.cn [Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi' an 710032 (China)

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  12. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis

    International Nuclear Information System (INIS)

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment

  13. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    Science.gov (United States)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  14. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    Science.gov (United States)

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  15. A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress

    KAUST Repository

    Ritho, Joan

    2015-07-23

    SUMOylation has been implicated in cellular stress adaptation, but its role in regulating liver kinase B1 (LKB1), a major upstream kinase of the energy sensor AMP-activated protein kinase (AMPK), is unknown. Here, we show that energy stress triggers an increase in SUMO1 modification of LKB1, despite a global reduction in both SUMO1 and SUMO2/3 conjugates. During metabolic stress, SUMO1 modification of LKB1 lysine 178 is essential in promoting its interaction with AMPK via a SUMO-interacting motif (SIM) essential for AMPK activation. The LKB1 K178R SUMO mutant had defective AMPK signaling and mitochondrial function, inducing death in energy-deprived cells. These results provide additional insight into how LKB1-AMPK signaling is regulated during energy stress, and they highlight the critical role of SUMOylation in maintaining the cell’s energy equilibrium.

  16. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    Science.gov (United States)

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. PMID:23673223

  17. Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes.

    Directory of Open Access Journals (Sweden)

    Antje Bruckbauer

    Full Text Available The AMPK-Sirt1 pathway is an important regulator of energy metabolism and therefore a potential target for prevention and therapy of metabolic diseases. We recently demonstrated leucine and its metabolite β-hydroxy-β-methylbutyrate (HMB to synergize with low-dose resveratrol (200 nM to activate sirtuin signaling and stimulate energy metabolism. Here we show that leucine exerts a direct effect on Sirt1 kinetics, reducing its Km for NAD(+ by >50% and enabling low doses of resveratrol to further activate the enzyme (p = 0.012. To test which structure elements of resveratrol are necessary for synergy, we assessed potential synergy of structurally similar and dissimilar polyphenols as well as other compounds converging on the same pathways with leucine using fatty acid oxidation (FAO as screening tool. Dose-response curves for FAO were constructed and the highest non-effective dose (typically 1-10 nM was used with either leucine (0.5 mM or HMB (5 µM to treat adipocytes and myotubes for 24 h. Significant synergy was detected for stilbenes with FAO increase in adipocytes by 60-70% (p2000% (p1 µM and exhibited little or no synergy. Thus, the six-carbon ring structure bound to a carboxylic group seems to be a necessary element for leucine/HMB synergy with other stilbenes and hydroxycinnamic acids to stimulate AMPK/Sirt1 dependent FAO; these effects occur at concentrations that produce no independent effects and are readily achievable via oral administration.

  18. Gender and contraction mode on perceived exertion.

    Science.gov (United States)

    Pincivero, D M; Polen, R R; Byrd, B N

    2010-05-01

    The purpose of this study was to examine perceived exertion responses during concentric and eccentric elbow flexor contractions between young adult men and women. Thirty healthy young adults participated in two experimental sessions. During the first session, subjects performed five concentric isokinetic maximal voluntary contractions (MVC) of elbow flexion, followed by nine, randomly-ordered sub-maximal contractions (10-90% MVC). The same procedures were repeated during the second session, with the exception that eccentric contractions were performed. Subjects rated their perceived exertion following the sub-maximal contractions with the Borg category-ratio scale. Perceived exertion was significantly (p<0.05) less than equivalent values on the CR-10 scale at intensities greater than, and equal to, 30% MVC. A three-factor interaction between 30-40% MVC indicated that perceived exertion increased more during the eccentric, than concentric, contractions in women, while the opposite pattern was evident for the men. There were no significant contraction mode or gender differences. Power function modeling revealed that perceived exertion increased in a negatively accelerating manner, except for the men performing eccentric exercise. Perceived exertion increases in a similar non-linear manner between men and women during concentric contractions, while men exhibited a statistically linear pattern during eccentric contractions. PMID:20148376

  19. Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit

    Science.gov (United States)

    Wu, Chongming; Guo, Yanshen; Su, Yan; Zhang, Xue; Luan, Hong; Zhang, Xiaopo; Zhu, Huixin; He, Huixia; Wang, Xiaoliang; Sun, Guibo; Sun, Xiaobo; Guo, Peng; Zhu, Ping

    2014-01-01

    Cordycepin is a bioactive component of the fungus Cordyceps militaris. Previously, we showed that cordycepin can alleviate hyperlipidemia through enhancing the phosphorylation of AMP-activated protein kinase (AMPK), but the mechanism of this stimulation is unknown. Here, we investigated the potential mechanisms of cordycepin-induced AMPK activation in HepG2 cells. Treatment with cordycepin largely reduced oleic acid (OA)-elicited intracellular lipid accumulation and increased AMPK activity in a dose-dependent manner. Cordycepin-induced AMPK activation was not accompanied by changes in either the intracellular levels of AMP or the AMP/ATP ratio, nor was it influenced by calmodulin-dependent protein kinase kinase (CaMKK) inhibition; however, this activation was significantly suppressed by liver kinase B1 (LKB1) knockdown. Molecular docking, fluorescent and circular dichroism measurements showed that cordycepin interacted with the γ1 subunit of AMPK. Knockdown of AMPKγ1 by siRNA substantially abolished the effects of cordycepin on AMPK activation and lipid regulation. The modulating effects of cordycepin on the mRNA levels of key lipid regulatory genes were also largely reversed when AMPKγ1 expression was inhibited. Together, these data suggest that cordycepin may inhibit intracellular lipid accumulation through activation of AMPK via interaction with the γ1 subunit. PMID:24286368

  20. Adenosine Monophosphate-Activated Protein Kinase (AMPK) as a Diverse Therapeutic Target: A Computational Perspective.

    Science.gov (United States)

    Ramesh, M; Vepuri, Suresh B; Oosthuizen, Frasia; Soliman, Mahmoud E

    2016-02-01

    Adenosine monophosphate-activated protein kinase (AMPK) is viewed as a privileged therapeutic target for several diseases such as cancer, diabetes, inflammation, obesity, etc. In addition, AMPK has entered the limelight of current drug discovery with its evolution as a key metabolic regulator. AMPK also plays a key role in the maintenance of cellular energy homeostasis. Structurally, AMPK is a heterotrimeric protein, which consists of three protein subunits (α, β, and γ). The crystal structure of AMPK was solved, and several computational studies including homology modeling, molecular docking, molecular dynamics, and QSAR have been reported in order to explore the structure and function of this diverse therapeutic target. In this review, we present a comprehensive up-to-date overview on the computational and molecular modeling approaches that have been carried out on AMPK in order to understand its structure, function, dynamics, and its drug binding landscape. Information provided in this review would be of great interest to a wide pool of researchers involved in the design of new molecules against various diseases where AMPK plays a predominant role. Graphical Abstract ᅟ. PMID:26541160

  1. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism.

    Science.gov (United States)

    Madiraju, Anila K; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T; Kibbey, Richard G; Shulman, Gerald I

    2016-06-14

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  2. PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available BACKGROUND: Under stress, AMP-activated protein kinase (AMPK plays a central role in energy balance, and the heat shock response is a protective mechanism for cell survival. The relationship between AMPK activity and heat shock protein (HSP expression under stress is unclear. METHODOLOGY/PRINCIPAL FINDINGS: We found that heat stress induced dephosphorylation of AMPKα subunit (AMPKα in various cell types from human and rodent. In HepG2 cells, the dephosphorylation of AMPKα under heat stress in turn caused dephosphorylation of acetyl-CoA carboxylase and upregulation of phosphoenolpyruvate carboxykinase, two downstream targets of AMPK, confirming the inhibition of AMPK activity by heat stress. Treatment of HepG2 cells with phosphatase 2A (PP2A inhibitor okadaic acid or inhibition of PP2A expression by RNA interference efficiently reversed heat stress-induced AMPKα dephosphorylation, suggesting that heat stress inhibited AMPK through activation of PP2A. Heat stress- and other HSP inducer (CdCl(2, celastrol, MG132-induced HSP70 expression could be inhibited by AICAR, an AMPK specific activator. Inhibition of AMPKα expression by RNA interference reversed the inhibitory effect of AICAR on HSP70 expression under heat stress. These results indicate that AMPK inhibition under stress contribute to HSP70 expression. Mechanistic studies showed that activation of AMPK by AICAR had no effect on heat stress-induced HSF1 nuclear translocation, phosphorylation and binding with heat response element in the promoter region of HSP70 gene, but significantly decreased HSP70 mRNA stability. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that during heat shock response, PP2A mediated AMPK inhibition upregulates HSP70 expression at least partially through stabilizing its mRNA, which suggests a novel mechanism for HSP induction under stress.

  3. AMPK inhibition blocks ROS-NFκB signaling and attenuates endotoxemia-induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    Full Text Available BACKGROUND: AMP-activated protein kinase (AMPK is an important enzyme in regulation of cellular energy homeostasis. We have previously shown that AMPK activation by 5-aminoimidazole-4-carboxamide (AICAR results in suppression of immune responses, indicating the pivotal role of AMPK in immune regulation. However, the cellular mechanism underpinning AMPK inhibition on immune response remains largely to be elucidated. The study aimed to investigate the effects of AMPK inhibition on reactive oxygen species (ROS-nuclear factor κB (NFκB signaling and endotoxemia-induced liver injury. METHODOLOGY/PRINCIPAL FINDINGS: RAW 264.7 cells were pretreated with AMPK activator or inhibitor, followed by LPS challenge. In addition, LPS was injected intraperitoneally into mice to induce systemic inflammation. The parameters of liver injury and immune responses were determined, and survival of mice was monitored respectively. LPS challenge in RAW 264.7 cells resulted in AMPK activation which was then inhibited by compound C treatment. Both AMPK activation by AICAR or inhibition by compound C diminished LPS-induced ROS generation, inhibited phosphorylation of IKK, IκB, and NFκB p65, and consequently, decreased TNF production of RAW 264.7 cells. AICAR or compound C treatment decreased ALT, AST, and TNF levels in serum, reduced CD68 expression and MPO activity in liver tissue of mice with endotoxemia. Moreover, AICAR or compound C treatment improved survival of endotoxemic mice. CONCLUSIONS: AICAR or compound C treatment attenuates LPS-induced ROS-NFκB signaling, immune responses and liver injury. Strategies to activate or inhibit AMPK signaling may provide alternatives to the current clinical approaches to inhibit immune responses of endotoxemia.

  4. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the

  5. Antagonistic control of muscle cell size by AMPK and mTORC1.

    Science.gov (United States)

    Mounier, Rémi; Lantier, Louise; Leclerc, Jocelyne; Sotiropoulos, Athanassia; Foretz, Marc; Viollet, Benoit

    2011-08-15

    Nutrition and physical activity have profound effects on skeletal muscle metabolism and growth. Regulation of muscle mass depends on a thin balance between growth-promoting and growth-suppressing factors. Over the past decade, the mammalian target of rapamycin (mTOR) kinase has emerged as an essential factor for muscle growth by mediating the anabolic response to nutrients, insulin, insulin-like growth factors and resistance exercise. As opposed to the mTOR signaling pathway, the AMP-activated protein kinase (AMPK) is switched on during starvation and endurance exercise to upregulate energy-conserving processes. Recent evidence indicates that mTORC1 (mTOR Complex 1) and AMPK represent two antagonistic forces governing muscle adaption to nutrition, starvation and growth stimulation. Animal knockout models with impaired mTORC1 signaling showed decreased muscle mass correlated with increased AMPK activation. Interestingly, AMPK inhibition in p70S6K-deficient muscle cells restores cell growth and sensitivity to nutrients. Conversely, muscle cells lacking AMPK have increased mTORC1 activation with increased cell size and protein synthesis rate. We also demonstrated that the hypertrophic action of MyrAkt is enhanced in AMPK-deficient muscle, indicating that AMPK acts as a negative feedback control to restrain muscle hypertrophy. Our recent results extend this notion by showing that AMPKα1, but not AMPKα2, regulates muscle cell size through the control of mTORC1 signaling. These results reveal the diverse functions of the two catalytic isoforms of AMPK, with AMPKα1 playing a predominant role in the control of muscle cell size and AMPKα2 mediating muscle metabolic adaptation. Thus, the crosstalk between AMPK and mTORC1 signaling is a highly regulated way to control changes in muscle growth and metabolic rate imposed by external cues. PMID:21799304

  6. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions.

    Science.gov (United States)

    Salminen, Antero; Kauppinen, Anu; Kaarniranta, Kai

    2016-08-01

    AMP-activated protein kinase (AMPK) and its yeast homolog, Snf1, are critical regulators in the maintenance of energy metabolic balance not only stimulating energy production but also inhibiting energy-consuming processes. The AMPK/Snf1 signaling controls energy metabolism by specific phosphorylation of many metabolic enzymes and transcription factors, enhancing or suppressing their functions. The AMPK/Snf1 complexes can be translocated from cytoplasm into nuclei where they are involved in the regulation of transcription. Recent studies have indicated that AMPK/Snf1 activation can control histone acetylation through different mechanisms affecting not only gene transcription but also many other epigenetic functions. For instance, AMPK/Snf1 enzymes can phosphorylate the histone H3S10 (yeast) and H2BS36 (mammalian) sites which activate specific histone acetyltransferases (HAT), consequently enhancing histone acetylation. Moreover, nuclear AMPK can phosphorylate type 2A histone deacetylases (HDAC), e.g. HDAC4 and HDAC5, triggering their export from nuclei thus promoting histone acetylation reactions. AMPK activation can also increase the level of acetyl CoA, e.g. by inhibiting fatty acid and cholesterol syntheses. Acetyl CoA is a substrate for HATs, thus increasing their capacity for histone acetylation. On the other hand, AMPK can stimulate the activity of nicotinamide phosphoribosyltransferase (NAMPT) which increases the level of NAD(+). NAD(+) is a substrate for nuclear sirtuins, especially for SIRT1 and SIRT6, which deacetylate histones and transcription factors, e.g. those regulating ribosome synthesis and circadian clocks. Histone acetylation is an important epigenetic modification which subsequently can affect chromatin remodeling, e.g. via bromodomain proteins. We will review the signaling mechanisms of AMPK/Snf1 in the control of histone acetylation and subsequently clarify their role in the epigenetic regulation of ribosome synthesis and circadian clocks

  7. AMPK-dependent signaling modulates the suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway.

    Science.gov (United States)

    Tsai, Shih-Chang; Tsai, Ming-Hsui; Chiu, Chang-Fang; Lu, Chi-Cheng; Kuo, Sheng-Chu; Chang, Nai-Wen; Yang, Jai-Sing

    2016-07-01

    Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist and lipid-lowering agent, has been used worldwide for treatment of hyperlipidemia. The clinical trials demonstrate that fenofibrate possesses multiple pharmacological activities, including antitumor effects. However, the precise mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. In this study, we investigated the anticancer effects of fenofibrate on the migration and invasion of human oral cancer CAL 27 cells. Fenofibrate inhibited the cell migration and invasion of CAL 27 cells by the wound healing and Boyden chamber transwell assays, respectively. In addition, fenofibrate reduced the protein expressions of MMP-1, MMP-2, MMP-7, and MMP-9 by Western blotting and inhibited enzyme activities of MMP-2/-9 using gelatin zymography assay. Results from immunoblotting analysis showed that the proteins of p-LKB1 (Ser428), LKB1, p-AMPKα (Thr172), p-AMPKα1/α2 (Ser425/Ser491), p-AMPKβ1 (Ser108), and AMPKγ1 were upregulated by fenofibrate; the levels of p-IKKα/β (Ser176) and p-IκBα were reduced in fenofibrate-treated cells. Also, fenofibrate suppressed the expressions of nuclear NF-κB p65 and p50 by immunoblotting and NF-κB DNA binding activity by EMSA assay. The anti-invasive effect of fenofibrate was attenuated by compound C [an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor] or dominant negative form of AMPK (DN-AMPKα1). Thus, fenofibrate considerably inhibited metastatic behaviors of CAL 27 cells might be mediated through blocking NF-κB signaling, resulting in the inhibition of MMPs; these effects were AMPK-dependent rather than PPARα signaling. Our findings provide a molecular rationale, whereby fenofibrate exerts anticancer effects and additional beneficial effects for the treatment of cancer patients. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 866-876, 2016. PMID:25545733

  8. AMPK β1 Deletion Reduces Appetite, Preventing Obesity and Hepatic Insulin Resistance*

    OpenAIRE

    Dzamko, Nicolas; Van Denderen, Bryce J.W.; Hevener, Andrea L.; Jørgensen, Sebastian Beck; Honeyman, Jane; Galic, Sandra; Chen, Zhi-Ping; Watt, Matthew J.; Campbell, Duncan J.; Steinberg, Gregory R.; Kemp, Bruce E.

    2009-01-01

    The AMP-activated protein kinase (AMPK) is an αβγ heterotrimer that regulates appetite and fuel metabolism. We have generated AMPK β1−/− mice on a C57Bl/6 background that are viable, fertile, survived greater than 2 years, and display no visible brain developmental defects. These mice have a 90% reduction in hepatic AMPK activity due to loss of the catalytic α subunits, with modest reductions of activity detected in the hypothalamus and white adipose tissue and no change in skeletal muscle or...

  9. Blockade of MerTK Activation by AMPK Inhibits RPE Cell Phagocytosis.

    Science.gov (United States)

    Qin, Suofu

    2016-01-01

    Timely removal of shed photoreceptor outer segments by retinal pigment epithelial cells (RPE) plays a key role in biological renewal of these highly peroxidizable structures and in maintenance of retina health. How environmental stress cause RPE cell dysfunction is undefined however. AMP-activated protein kinase (AMPK), a heterotrimer of a catalytic α subunit and regulatory β and γ subunits, maintains energy homeostasis by limiting energy utilization and/or promoting energy production when energy supply is compromised. Intriguingly, AMPK has been shown to be important in functions of RPE cells. In this mini-review, the role and mechanisms of AMPK in controlling RPE cell phagocytosis are discussed. PMID:26427488

  10. Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria

    OpenAIRE

    Hernández, Jessica Soto; Barreto-Torres, Giselle; Kuznetsov, Andrey V.; Khuchua, Zaza; Javadov, Sabzali

    2014-01-01

    AMP-kinase (AMPK) activation reduces cardiac hypertrophy, although underlying molecular mechanisms remain unclear. In this study, we elucidated the anti-hypertrophic action of metformin, specifically, the role of the AMPK/eNOS/p53 pathway. H9c2 rat cardiomyocytes were treated with angiotensin II (AngII) for 24 hrs in the presence or absence of metformin (AMPK agonist), losartan [AngII type 1 receptor (AT1R) blocker], Nω-nitro-L-arginine methyl ester (L-NAME, pan-NOS inhibitor), splitomicin (S...

  11. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity

    DEFF Research Database (Denmark)

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi;

    2014-01-01

    AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle...... as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal...... muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and...

  12. Effects of AMPK on high glucose stimulated apoptosis of endothelial cells via regulation of calcium influx

    Directory of Open Access Journals (Sweden)

    Ting LU

    2015-11-01

    Full Text Available Objective To investigate the inhibitory effect of adenosine monophosphate (AMP-dependent protein kinase (AMPK on high glucose-stimulated endothelial cell apoptosis and its mechanism. Methods MS-1 endothelial cells were cultured in vitro, and they were treated with AMPK agonist, AMPK inhibitor, 2-APB (a blocker of store operated Ca2+ channel (SOCC and (or high glucose, and a control group without any intervention were set up. TUNEL assay was performed to determine apoptotic cells. Laser scanning confocal microscopy was used to assess the Ca2+ influx into cells, and Western-blotting was performed to determine the expressions of Stim1 and Orai1 of the store operated Ca2+ channel (SOCC proteins. Results Apoptosis of endothelial cells was induced significantly, and the expressions of Stim1 and Orai1 were upregulated in high glucose group compared with that in control group (P<0.05. The rate of apoptosis of high glucose-induced endothelial cell was found to be increased in AMPK inhibitor group and decreased in AMPK agonist group, and the expressions of Stim1 and Orai1 were found to be down-regulated in AMPK agonist group as compared with that in high glucose group (P<0.05. Compared with the control group, high glucose stimulation significantly induced the Ca2+ influx to endothelial cells; compared with high glucose group, 2-APB significantly inhibited high glucose-induced Ca2+ influx to endothelial cells, and blocked the inducing effect of high-glucose on endothelial cell apoptosis. Compared with high glucose group, AMPK agonist significantly inhibited high glucose-induced cell Ca2+ influx. Conclusion By reducing the expressions of Stim1 and Orai1, AMPK may inhibit SOCC-mediated Ca2+ influx, and block the high glucose-stimulated endothelial cell apoptosis, thus play an important protective role in sustaining endothelial cell function. DOI: 10.11855/j.issn.0577-7402.2015.10.01

  13. Combined pharmacological activation of AMPK and PPAR δ potentiates the effects of exercise in trained mice

    OpenAIRE

    Manio, Mark Christian C.; Inoue, Kazuo; Fujitani, Mina; Matsumura, Shigenobu; Fushiki, Tohru

    2016-01-01

    Abstract The combined activation of the cellular energy sensor AMP‐activated protein kinase (AMPK) and the nuclear transcription factor peroxisome proliferator‐activated receptor delta (PPAR δ) has been demonstrated to improve endurance and muscle function by mimicking the effects of exercise training. However, their combined pharmacological activation with exercise training has not been explored. Balb/c mice were trained on a treadmill and administered both the AMPK activator AICAR and the P...

  14. The AMPK-related kinase SNARK regulates muscle mass and myocyte survival

    OpenAIRE

    Lessard, Sarah J.; Rivas, Donato A.; So, Kawai; Koh, Ho-Jin; André Lima de QUEIROZ; Hirshman, Michael F.; Fielding, Roger A.; Goodyear, Laurie J.

    2015-01-01

    The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles fro...

  15. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    International Nuclear Information System (INIS)

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress

  16. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China); Feng, Xudong, E-mail: xudong.feng@childrens.harvard.edu [Department of Medicine, Children' s Hospital Boston, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (United States); Xia, Qing, E-mail: xqing@hsc.pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing (China)

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  17. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2α in adipocytes

    International Nuclear Information System (INIS)

    AMP-activated protein kinase (AMPK) is a metabolic master switch regulating glucose and lipid metabolism. Recently, AMPK has been implicated in the control of adipose tissue content. Yet, the nature of this action is controversial. We examined the effect on F442a adipocytes of the AMPK activator-AICAR. Activation of AMPK induced dose-dependent apoptotic cell death, inhibition of lipolysis, and downregulatation key adipogenic genes, such as peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα). We have identified the α-subunit of the eukaryotic initiation factor-2 (eIF2α) as a target gene which is phosphorylated following AICAR treatment. Such phosphorylation is one of the best-characterized mechanisms for downregulating protein synthesis. 2-Aminopurine (2-AP), an inhibitor of eIF2α kinases, could overcome the apoptotic effect of AICAR, abolishing the reduction of PPARγ and C/EBPα and the lipolytic properties of AMPK. Thus, AMPK may diminish adiposity via reduction of fat cell number through eIF2α-dependent translation shutdown

  18. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    International Nuclear Information System (INIS)

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor α

  19. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    Science.gov (United States)

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  20. An evolutionary perspective of AMPK-TOR signaling in the three domains of life.

    Science.gov (United States)

    Roustan, Valentin; Jain, Arpit; Teige, Markus; Ebersberger, Ingo; Weckwerth, Wolfram

    2016-06-01

    AMPK and TOR protein kinases are the major control points of energy signaling in eukaryotic cells and organisms. They form the core of a complex regulatory network to co-ordinate metabolic activities in the cytosol with those in the mitochondria and plastids. Despite its relevance, it is still unclear when and how this regulatory pathway was formed during evolution, and to what extent its representations in the major eukaryotic lineages resemble each other. Here we have traced 153 essential proteins forming the human AMPK-TOR pathways across 412 species representing all three domains of life-prokaryotes (bacteria, archaea) and eukaryotes-and reconstructed their evolutionary history. The resulting phylogenetic profiles indicate the presence of primordial core pathways including seven proto-kinases in the last eukaryotic common ancestor. The evolutionary origins of the oldest components of the AMPK pathway, however, extend into the pre-eukaryotic era, and descendants of these ancient proteins can still be found in contemporary prokaryotes. The TOR complex in turn appears as a eukaryotic invention, possibly to aid in retrograde signaling between the mitochondria and the remainder of the cell. Within the eukaryotes, AMPK/TOR showed both a highly conserved core structure and a considerable plasticity. Most notably, KING1, a protein originally assigned as the γ subunit of AMPK in plants, is more closely related to the yeast SDS23 gene family than to the γ subunits in animals or fungi. This suggests its functional difference from a canonical AMPK γ subunit. PMID:27270999

  1. Contributions of AMPK and p53 dependent signaling to radiation response in the presence of metformin

    International Nuclear Information System (INIS)

    Background and purpose: Metformin is commonly prescribed to treat type 2 diabetes, and has additional potential as a cancer prophylactic and therapeutic. Metformin activates AMPK that in turn can launch a p53-dependent metabolic checkpoint. Possible interactions between metformin and radiation are poorly understood. Since radiation-induced signaling also involves AMPK and p53, we investigated their importance in mediating responses to metformin and radiation. Materials and methods: A549 cells, HCT116 cells wildtype or knockout for p53 or MEFs wildtype or double knockout for AMPKα1 and α2 were irradiated in the presence or absence of metformin. The impact of metformin on oxygen consumption and proliferation rates was determined, as well as clonogenic radiation survival. Results: Metformin resulted in moderate radiation protection in all cell lines, irrespective of AMPK and p53. Loss of AMPK sensitized cells to the anti-proliferative effects of metformin, while loss of p53 promoted both the growth inhibitory and toxic effects of metformin. Consequently, overall cell death after radiation was similar with and without metformin irrespective of AMPK or p53 genotype. Conclusions: The anti-proliferative activity of metformin may confer benefit in combination with radiotherapy, and this benefit is intensified upon loss of AMPK or p53 signaling

  2. Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Guévélou, Eric; Huvet, Arnaud; Galindo-Sánchez, Clara E; Milan, Massimo; Quillien, Virgile; Daniel, Jean-Yves; Quéré, Claudie; Boudry, Pierre; Corporeau, Charlotte

    2013-10-01

    The hermaphrodite Pacific oyster Crassostrea gigas displays a high energy allocation to reproduction. We studied the expression of AMP-activated protein kinase (AMPK) during gametogenesis in the gonad and characterized the mRNA sequences of the AMPK subunits: the AMPK alpha mRNA sequence was previously characterized; we identified AMPK beta, AMPK gamma, and mRNAs of putative AMPK-related targets following bioinformatics mining on existing genomic resources. We analyzed the mRNA expression of the AMPK alpha, beta, and gamma subunits in the gonads of male and female oysters through a reproductive cycle, and we quantified the mRNA expression of genes belonging to fatty acid and glucose metabolism. AMPK alpha mRNA levels were more abundant in males at the first stage of gametogenesis, when mitotic activity and the differentiation of germinal cells occur, and were always more abundant in males than in females. Some targets of fatty acid and glucose metabolism appeared to be correlated with the expression of AMPK subunits at the mRNA level. We then analyzed the sex-specific AMPK activity by measuring the phosphorylation of the catalytic AMPK alpha protein and its expression at the protein level. Both the amount of AMPK alpha protein and threonine 172 phosphorylation appeared to be almost totally inhibited in mature female gonads at stage 3, at the time when accumulation of reserves in oocytes was promoted, while it remained at a high level in mature spermatozoa. Its activation might play a sex-dependent role in the management of energy during gametogenesis in oyster. PMID:23926284

  3. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade

    International Nuclear Information System (INIS)

    Although advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function. Effect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling. Consistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1. Taken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1

  4. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation.

    Science.gov (United States)

    Han, Xiaojuan; Tai, Haoran; Wang, Xiaobo; Wang, Zhe; Zhou, Jiao; Wei, Xiawei; Ding, Yi; Gong, Hui; Mo, Chunfen; Zhang, Jie; Qin, Jianqiong; Ma, Yuanji; Huang, Ning; Xiang, Rong; Xiao, Hengyi

    2016-06-01

    AMPK activation is beneficial for cellular homeostasis and senescence prevention. However, the molecular events involved in AMPK activation are not well defined. In this study, we addressed the mechanism underlying the protective effect of AMPK on oxidative stress-induced senescence. The results showed that AMPK was inactivated in senescent cells. However, pharmacological activation of AMPK by metformin and berberine significantly prevented the development of senescence and, accordingly, inhibition of AMPK by Compound C was accelerated. Importantly, AMPK activation prevented hydrogen peroxide-induced impairment of the autophagic flux in senescent cells, evidenced by the decreased p62 degradation, GFP-RFP-LC3 cancellation, and activity of lysosomal hydrolases. We also found that AMPK activation restored the NAD(+) levels in the senescent cells via a mechanism involving mostly the salvage pathway for NAD(+) synthesis. In addition, the mechanistic relationship of autophagic flux and NAD(+) synthesis and the involvement of mTOR and Sirt1 activities were assessed. In summary, our results suggest that AMPK prevents oxidative stress-induced senescence by improving autophagic flux and NAD(+) homeostasis. This study provides a new insight for exploring the mechanisms of aging, autophagy and NAD(+) homeostasis, and it is also valuable in the development of innovative strategies to combat aging. PMID:26890602

  5. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function.

    Directory of Open Access Journals (Sweden)

    Lia R Edmunds

    Full Text Available The c-Myc (Myc oncoprotein and AMP-activated protein kinase (AMPK regulate glycolysis and oxidative phosphorylation (Oxphos although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT and ampk-/- (KO murine embryo fibroblasts (MEFs. KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions.

  6. AMP-activated protein kinase (AMPK) {beta}1{beta}2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise

    DEFF Research Database (Denmark)

    O'Neill, Hayley M; Maarbjerg, Stine Just; Crane, Justin D;

    2011-01-01

    . Interestingly, young ß1ß2M-KO mice fed a control chow diet are not obese or insulin resistant but do have impaired contraction-stimulated glucose uptake. These data demonstrate an obligatory role for skeletal muscle AMPK in maintaining mitochondrial capacity and contraction-stimulated glucose uptake, findings...

  7. Use of metformin alone is not associated with survival outcomes of colorectal cancer cell but AMPK activator AICAR sensitizes anticancer effect of 5-fluorouracil through AMPK activation.

    Directory of Open Access Journals (Sweden)

    Xinbing Sui

    Full Text Available Colorectal cancer (CRC is still the third most common cancer and the second most common causes of cancer-related death around the world. Metformin, a biguanide, which is widely used for treating diabetes mellitus, has recently been shown to have a suppressive effect on CRC risk and mortality, but not all laboratory studies suggest that metformin has antineoplastic activity. Here, we investigated the effect of metformin and AMPK activator AICAR on CRC cells proliferation. As a result, metformin did not inhibit cell proliferation or induce apoptosis for CRC cell lines in vitro and in vivo. Different from metformin, AICAR emerged antitumor activity and sensitized anticancer effect of 5-FU on CRC cells in vitro and in vivo. In further analysis, we show that AMPK activation may be a key molecular mechanism for the additive effect of AICAR. Taken together, our results suggest that metformin has not antineoplastic activity for CRC cells as a single agent but AMPK activator AICAR can induce apoptosis and enhance the cytotoxic effect of 5-FU through AMPK activation.

  8. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk.

    Science.gov (United States)

    Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K; Staels, Bart; Lefebvre, Philippe

    2014-03-01

    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544

  9. Increased skeletal muscle glucose uptake by rosemary extract through AMPK activation.

    Science.gov (United States)

    Naimi, Madina; Tsakiridis, Theodoros; Stamatatos, Theocharis C; Alexandropoulos, Dimitris I; Tsiani, Evangelia

    2015-04-01

    Stimulation of the energy sensor AMP-activated kinase (AMPK) has been viewed as a targeted approach to increase glucose uptake by skeletal muscle and control blood glucose homeostasis. Rosemary extract (RE) has been reported to activate AMPK in hepatocytes and reduce blood glucose levels in vivo but its effects on skeletal muscle are not known. In the present study, we examined the effects of RE and the mechanism of regulation of glucose uptake in muscle cells. RE stimulated glucose uptake in L6 myotubes in a dose- and time-dependent manner. Maximum stimulation was seen with 5 μg/mL of RE for 4 h (184% ± 5.07% of control, p < 0.001), a response comparable to maximum insulin (207% ± 5.26%, p < 0.001) and metformin (216% ± 8.77%, p < 0.001) stimulation. RE did not affect insulin receptor substrate 1 and Akt phosphorylation but significantly increased AMPK and acetyl-CoA carboxylase phosphorylation. Furthermore, the RE-stimulated glucose uptake was significantly reduced by the AMPK inhibitor compound C, but remained unchanged by the PI3K inhibitor, wortmannin. RE did not affect GLUT4 or GLUT1 glucose transporter translocation in contrast with a significant translocation of both transporters seen with insulin or metformin treatment. Our study is the first to show a direct effect of RE on muscle cell glucose uptake by a mechanism that involves AMPK activation. PMID:25794239

  10. AMPK-independent inhibition of human macrophage ER stress response by AICAR.

    Science.gov (United States)

    Boß, Marcel; Newbatt, Yvette; Gupta, Sahil; Collins, Ian; Brüne, Bernhard; Namgaladze, Dmitry

    2016-01-01

    Obesity-associated insulin resistance is driven by inflammatory processes in response to metabolic overload. Obesity-associated inflammation can be recapitulated in cell culture by exposing macrophages to saturated fatty acids (SFA), and endoplasmic reticulum (ER) stress responses essentially contribute to pro-inflammatory signalling. AMP-activated protein kinase (AMPK) is a central metabolic regulator with established anti-inflammatory actions. Whether pharmacological AMPK activation suppresses SFA-induced inflammation in a human system is unclear. In a setting of hypoxia-potentiated inflammation induced by SFA palmitate, we found that the AMP-mimetic AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) potently suppressed upregulation of ER stress marker mRNAs and pro-inflammatory cytokines. Furthermore, AICAR inhibited macrophage ER stress responses triggered by ER-stressors thapsigargin or tunicamycin. Surprisingly, AICAR acted independent of AMPK or AICAR conversion to 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate (ZMP) while requiring intracellular uptake via the equilibrative nucleoside transporter (ENT) ENT1 or the concentrative nucleoside transporter (CNT) CNT3. AICAR did not affect the initiation of the ER stress response, but inhibited the expression of major ER stress transcriptional effectors. Furthermore, AICAR inhibited autophosphorylation of the ER stress sensor inositol-requiring enzyme 1α (IRE1α), while activating its endoribonuclease activity in vitro. Our results suggest that AMPK-independent inhibition of ER stress responses contributes to anti-inflammatory and anti-diabetic effects of AICAR. PMID:27562249

  11. Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Thiele, Maja; Hillig, Thore;

    2006-01-01

    5'AMP-activated protein kinase (AMPK) is an energy sensor activated by perturbed cellular energy status such as during muscle contraction. Activated AMPK is thought to regulate several key metabolic pathways. We used sex comparison to investigate whether AMPK signalling in skeletal muscle regulat...

  12. Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

    DEFF Research Database (Denmark)

    Kjøbsted, Rasmus; Treebak, Jonas Thue; Fentz, Joachim;

    2015-01-01

    Acute exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise insulin sensitivity to increase glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood, but appear to involve an increased...... AMPK activation increases skeletal muscle insulin sensitivity. We found that prior AICAR stimulation of wild-type mouse muscle increases insulin sensitivity to stimulate glucose uptake. However, this was not observed in mice with reduced or ablated AMPK activity in skeletal muscle. Furthermore, prior...... AICAR stimulation enhanced insulin-stimulated phosphorylation of TBC1D4 at Thr(649) and Ser(711) in wild-type muscle only. These phosphorylation events were positively correlated with glucose uptake. Our results provide evidence to support that AMPK is sufficient to increase skeletal muscle insulin...

  13. Molecular mechanisms of appetite and obesity: a role for brain AMPK.

    Science.gov (United States)

    Martínez de Morentin, Pablo B; Urisarri, Adela; Couce, María L; López, Miguel

    2016-10-01

    Feeding behaviour and energy storage are both crucial aspects of survival. Thus, it is of fundamental importance to understand the molecular mechanisms regulating these basic processes. The AMP-activated protein kinase (AMPK) has been revealed as one of the key molecules modulating energy homoeostasis. Indeed, AMPK appears to be essential for translating nutritional and energy requirements into generation of an adequate neuronal response, particularly in two areas of the brain, the hypothalamus and the hindbrain. Failure of this physiological response can lead to energy imbalance, ultimately with extreme consequences, such as leanness or obesity. Here, we will review the data that put brain AMPK in the spotlight as a regulator of appetite. PMID:27555613

  14. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner.

    Directory of Open Access Journals (Sweden)

    Jee-Hyun Um

    Full Text Available BACKGROUND: AMP protein kinase (AMPK plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo. METHODOLOGY/PRINCIPAL FINDING: THE CATALYTIC SUBUNIT OF AMPK HAS TWO ISOFORMS: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1-/- and AMPKα2-/- mice. We found that both α1-/- and α2-/- mice are able to maintain a circadian rhythm of activity in dark-dark (DD cycle, but α1-/- mice have a shorter circadian period whereas α2-/- mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1-/- mice, but not in α2-/- mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1-/- mice, but it was severely disrupted in the heart and skeletal muscle of α2-/- mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1-/- and α2-/- mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT activity, which converts nicotinamide (NAM to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells. CONCLUSION/SIGNIFICANCE: This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.

  15. Interleukin-18 activates skeletal muscle AMPK and reduces weight gain and insulin resistance in mice

    DEFF Research Database (Denmark)

    Madsen, Birgitte Lindegaard; Matthews, Vance B; Brandt, Claus;

    2013-01-01

    receptor (IL-18R(-/-)), fed a standard chow or high fat diet (HFD). We next performed gain of function experiments in skeletal muscle, in vitro, ex vivo and in vivo. We show that IL-18 is implicated in metabolic homeostasis, inflammation and insulin resistance via mechanisms involving the activation of......-18 into skeletal muscle activated AMPK and concomitantly inhibited high fat diet-induced weight gain. In summary IL-18 enhances AMPK signaling and lipid oxidation in skeletal muscle implicating IL-18 in metabolic homeostasis....

  16. Does heavy physical exertion trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Hallqvist, J; Möller, J; Ahlbom, A; Diderichsen, Finn; Reuterwall, C; de Faire, U

    2000-01-01

    carried out with 699 myocardial infarction patients after onset of the disease. These cases represented 47 percent of all cases in the study base, and 70 percent of all nonfatal cases. The relative risk from vigorous exertion was 6.1 (95% confidence interval: 4.2, 9.0). The rate difference was 1.5 per...... socioeconomic status. Premonitory symptoms were common, and this implies risks of reverse causation bias and misclassification of case exposure information that require methodological consideration. Different techniques (the use of the usual-frequency type of control information, a pair-matched analysis, and a...... standard case-referent analysis) were applied to overcome the threat of misclassification of control exposure information. A case-crossover analysis in a random sample of healthy subjects resulted in a relative risk close to unity, as expected....

  17. Glucose Enhances Leptin Signaling through Modulation of AMPK Activity

    OpenAIRE

    Haoran Su; Lin Jiang; Christin Carter-Su; Liangyou Rui

    2012-01-01

    Leptin exerts its action by binding to and activating the long form of leptin receptors (LEPRb). LEPRb activates JAK2 that subsequently phosphorylates and activates STAT3. The JAK2/STAT3 pathway is required for leptin control of energy balance and body weight. Defects in leptin signaling lead to leptin resistance, a primary risk factor for obesity. Body weight is also regulated by nutrients, including glucose. Defects in glucose sensing also contribute to obesity. Here we report crosstalk bet...

  18. Genetic polymorphisms associated with exertional rhabdomyolysis.

    Science.gov (United States)

    Deuster, Patricia A; Contreras-Sesvold, Carmen L; O'Connor, Francis G; Campbell, William W; Kenney, Kimbra; Capacchione, John F; Landau, Mark E; Muldoon, Sheila M; Rushing, Elisabeth J; Heled, Yuval

    2013-08-01

    Exertional rhabdomyolysis (ER) occurs in young, otherwise healthy, individuals principally during strenuous exercise, athletic, and military training. Although many risk factors have been offered, it is unclear why some individuals develop ER when participating in comparable levels of physical exertion under identical environmental conditions and others do not. This study investigated possible genetic polymorphisms that might help explain ER. DNA samples derived from a laboratory-based study of persons who had never experienced an episode of ER (controls) and clinical ER cases referred for testing over the past several years were analyzed for single nucleotide polymorphisms (SNPs) in candidate genes. These included angiotensin I converting enzyme (ACE), α-actinin-3 (ACTN3), creatine kinase muscle isoform (CKMM), heat shock protein A1B (HSPA1B), interleukin 6 (IL6), myosin light chain kinase (MYLK), adenosine monophosphate deaminase 1 (AMPD1), and sickle cell trait (HbS). Population included 134 controls and 47 ER cases. The majority of ER cases were men (n = 42/47, 89.4 %); the five women with ER were Caucasian. Eighteen African Americans (56.3 %) were ER cases. Three SNPs were associated with ER: CKMM Ncol, ACTN3 R577X, and MYLK C37885A. ER cases were 3.1 times more likely to have the GG genotype of CKMM (odds ratio/OR = 3.1, confidence interval/CI 1.33-7.10), 3.0 times for the XX genotype of ACTN3 SNP (OR = 2.97, CI 1.30-3.37), and 5.7 times for an A allele of MYLK (OR = 21.35, CI 2.60-12.30). All persons with HbS were also ER cases. Three distinct polymorphisms were associated with ER. Further work will be required to replicate these findings and determine the mechanism(s) whereby these variants might confer susceptibility. PMID:23543093

  19. Dual diagnosis

    OpenAIRE

    Prelog, Tjaša

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  20. Targeting AMPK signalling pathway with natural medicines for atherosclerosis therapy: an integration of in silico screening and in vitro assay.

    Science.gov (United States)

    Ou, Tiantong; Hou, Xumin; Guan, Shaofeng; Dai, Jinjie; Han, Wenzheng; Li, Ruogu; Wang, Wenxia; Qu, Xinkai; Zhang, Min

    2016-06-01

    An integration of virtual screening and kinase assay was reported to identify AMPK kinase inhibitors from various natural medicines.The activation of AMP-activated protein kinase (AMPK) signalling pathway plays a central role in the pathologic progression of atherosclerosis (AS). Targeting the AMPK is thus considered as a potential therapeutics to attenuate AS. Here, we report the establishment of a synthetic pipeline that integrates in silico virtual screening and in vitro kinase assay to discover new lead compounds of AMPK inhibitors. The screening is performed against a large-size pool of structurally diverse natural products, from which a number of compounds are inferred as promising candidates, and few of them are further tested in vitro by using a standard kinase assay protocol to determine their inhibitory potency against AMPK. With this scheme we successfully identify five potent AMPK inhibitors with IC50 values at micromolar level. We also examine the structural basis and molecular mechanism of nonbonded interaction network across the modelled complex interface of AMPK kinase domain with a newly identified natural medicine. PMID:26166578

  1. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates.

    Science.gov (United States)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima; Fisher-Wellman, Kelsey H; Kleinert, Maximilian; Humphrey, Sean J; Yang, Pengyi; Holliday, Mira; Trefely, Sophie; Fazakerley, Daniel J; Stöckli, Jacqueline; Burchfield, James G; Jensen, Thomas E; Jothi, Raja; Kiens, Bente; Wojtaszewski, Jørgen F P; Richter, Erik A; James, David E

    2015-11-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry. PMID:26437602

  2. Pharmacologic regulation of AMPK in breast cancer affects cytoskeletal properties involved with microtentacle formation and re-attachment.

    Science.gov (United States)

    Chakrabarti, Kristi R; Whipple, Rebecca A; Boggs, Amanda E; Hessler, Lindsay K; Bhandary, Lekhana; Vitolo, Michele I; Thompson, Keyata; Martin, Stuart S

    2015-11-01

    The presence of tumor cells in the circulation is associated with a higher risk of metastasis in patients with breast cancer. Circulating breast tumor cells use tubulin-based structures known as microtentacles (McTNs) to re-attach to endothelial cells and arrest in distant organs. McTN formation is dependent on the opposing cytoskeletal forces of stable microtubules and the actin network. AMP-activated protein kinase (AMPK) is a cellular metabolic regulator that can alter actin and microtubule organization in epithelial cells. We report that AMPK can regulate the cytoskeleton of breast cancer cells in both attached and suspended conditions. We tested the effects of AMPK on microtubule stability and the actin-severing protein, cofilin. AMPK inhibition with compound c increased both microtubule stability and cofilin activation, which also resulted in higher McTN formation and re-attachment. Conversely, AMPK activation with A-769662 decreased microtubule stability and cofilin activation with concurrent decreases in McTN formation and cell re-attachment. This data shows for the first time that AMPK shifts the balance of cytoskeletal forces in suspended breast cancer cells, which affect their ability to form McTNs and re-attach. These results support a model where AMPK activators may be used therapeutically to reduce the metastatic efficiency of breast tumor cells. PMID:26431377

  3. AMPK Agonist AICAR Improves Cognition and Motor Coordination in Young and Aged Mice

    Science.gov (United States)

    Kobilo, Tali; Guerrieri, Davide; Zhang, Yongqing; Collica, Sarah C.; Becker, Kevin G.; van Praag, Henriette

    2014-01-01

    Normal aging can result in a decline of memory and muscle function. Exercise may prevent or delay these changes. However, aging-associated frailty can preclude physical activity. In young sedentary animals, pharmacological activation of AMP-activated protein kinase (AMPK), a transcriptional regulator important for muscle physiology, enhanced…

  4. Ginkgolide C Suppresses Adipogenesis in 3T3-L1 Adipocytes via the AMPK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Chian-Jiun Liou

    2015-01-01

    Full Text Available Ginkgolide C, isolated from Ginkgo biloba leaves, is a flavone reported to have multiple biological functions, from decreased platelet aggregation to ameliorating Alzheimer disease. The study aim was to evaluate the antiadipogenic effect of ginkgolide C in 3T3-L1 adipocytes. Ginkgolide C was used to treat differentiated 3T3-L1 cells. Cell supernatant was collected to assay glycerol release, and cells were lysed to measure protein and gene expression related to adipogenesis and lipolysis by western blot and real-time PCR, respectively. Ginkgolide C significantly suppressed lipid accumulation in differentiated adipocytes. It also decreased adipogenesis-related transcription factor expression, including peroxisome proliferator-activated receptor and CCAAT/enhancer-binding protein. Furthermore, ginkgolide C enhanced adipose triglyceride lipase and hormone-sensitive lipase production for lipolysis and increased phosphorylation of AMP-activated protein kinase (AMPK, resulting in decreased activity of acetyl-CoA carboxylase for fatty acid synthesis. In coculture with an AMPK inhibitor (compound C, ginkgolide C also improved activation of sirtuin 1 and phosphorylation of AMPK in differentiated 3T3-L1 cells. The results suggest that ginkgolide C is an effective flavone for increasing lipolysis and inhibiting adipogenesis in adipocytes through the activated AMPK pathway.

  5. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Catherine W M Ong

    2015-05-01

    Full Text Available Pulmonary cavities, the hallmark of tuberculosis (TB, are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8 secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  6. The impact of endurance exercise on global and AMPK gene-specific DNA methylation.

    Science.gov (United States)

    King-Himmelreich, Tanya S; Schramm, Stefanie; Wolters, Miriam C; Schmetzer, Julia; Möser, Christine V; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. PMID:27103439

  7. AMPK and the biochemistry of exercise: implications for human health and disease

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, Neil B.

    2009-01-01

    AMPK (AMP-activated protein kinase) is a phylogenetically conserved fuel-sensing enzyme that is present in all mammalian cells. During exercise, it is activated in skeletal muscle in humans, and at least in rodents, also in adipose tissue, liver and perhaps other organs by events that increase th...

  8. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice.

    Directory of Open Access Journals (Sweden)

    Jonas M Kristensen

    Full Text Available Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead α(2 (KD AMPK mice and wild type (WT littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.

  9. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis.

    Science.gov (United States)

    Li, Wei; Fu, Jianfang; Zhang, Shun; Zhao, Jie; Xie, Nianlin; Cai, Guoqing

    2015-06-01

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli-germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli-germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. PMID:25886977

  10. N-Hydroxycinnamide Derivatives of Osthole Ameliorate Hyperglycemia through Activation of AMPK and p38 MAPK

    Directory of Open Access Journals (Sweden)

    Wei-Hwa Lee

    2015-03-01

    Full Text Available Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4 translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the

  11. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK.

    Science.gov (United States)

    Lee, Wei-Hwa; Wu, Hsueh-Hsia; Huang, Wei-Jan; Li, Yi-Ning; Lin, Ren-Jye; Lin, Shyr-Yi; Liang, Yu-Chih

    2015-01-01

    Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor

  12. Dual Perfect Bases and dual perfect graphs

    OpenAIRE

    Kahng, Byeong Hoon; Kang, Seok-Jin; Kashiwara, Masaki; Suh, Uhi Rinn

    2014-01-01

    We introduce the notion of dual perfect bases and dual perfect graphs. We show that every integrable highest weight module $V_q(\\lambda)$ over a quantum generalized Kac-Moody algebra $U_{q}(\\mathcal{g})$ has a dual perfect basis and its dual perfect graph is isomorphic to the crystal $B(\\lambda)$. We also show that the negative half $U_{q}^{-}(\\mathcal{g})$ has a dual perfect basis whose dual perfect graph is isomorphic to the crystal $B(\\infty)$. More generally, we prove that all the dual pe...

  13. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  14. Methotrexate and 5-aminoimidazole-4-carboxamide riboside exert synergistic anticancer action against human breast cancer and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-liang CHENG; Tian-yan ZHOU; Bo LI; Meng-yao LI; Liang LI; Zai-quan LI; Wei LU

    2013-01-01

    Aim:To investigate the influences of methotrexate (MTX) on the anticancer actions and pharmacokinetics of 5-aminoimidazole-4-carboxamide riboside (AICA riboside) in human breast cancer and hepatocellular carcinoma.Methods:Human breast cancer cell line MCF-7 and human hepatocellular carcinoma cell line HepG2 were examined.The cell proliferation was assessed using a sulforhodamine B assay.Western blotting and radioactivity assays were used to analyze the phosphorylation of AMPK.The DNA synthesis was analyzed with BrdU incorporation.Nude mice bearing MCF-7 cell xenografts were used to for in vivo study.MTX (50 mg/kg,ip,per week) and AICA riboside (200 mg/kg,ip,every other day) were administered the animals for 2 weeks.The concentrations of AICA riboside and its active metabolite AICA ribotide in the plasma and tumors were measured with HPLC.Results:Synergistic cytotoxicity in vitro was observed with MTX (0.1,0.5,and 1 μmol/L) combined with AICA riboside (0.25-1 mmol/L)in MCF-7 cells,and with MTX (0.5 and 1 μmol/L) combined with AICA riboside (0.5 and 1 mmol/L) in HepG2 cells.MTX (1 μmol/L) significantly enhanced the AICA riboside-induced AMPK activation and BrdU incorporation in both MCF-7 and HepG2 cells.Co-treatment with MTX and AICA riboside exerted more potent inhibition on the tumor growth in nude mice than either drug alone.After injection of AICA riboside (200 mg/kg,iv) in nude mice bearing MCF-7 xenografts,MTX (50 mg/kg,iv) significantly increased the concentrations of AICA riboside and its active metabolite AICA ribotide in tumors.Conclusion:MTX and AICA riboside exert synergistic anticancer action against MCF-7 and HepG2 cells in vitro and in vivo.MTX increases the concentration of AICA riboside and its active metabolite AICA ribotide in tumors in vivo.

  15. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    Science.gov (United States)

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  16. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    Science.gov (United States)

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  17. Using Ratings of Perceived Exertion in Physical Education

    Science.gov (United States)

    Lagally, Kristen M.

    2013-01-01

    Ratings of perceived exertion have been shown to be a valid method of monitoring physical activity intensity for both adults and children. As such, this subjective method may serve as an alternative to objective measurements for assessing students' performance on national standards 2 and 4. The OMNI-Child perceived exertion scales were…

  18. PKC and AMPK regulation of Kv1.5 potassium channels.

    Science.gov (United States)

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4-2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems. PMID:26043299

  19. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

    OpenAIRE

    López, Miguel; Varela, Luis; Vázquez, María J.; Rodríguez-Cuenca, Sergio; González, Carmen R.; Velagapudi, Vidya R.; Morgan, Donald A.; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; de Morentin, Pablo Blanco Martínez; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher

    2010-01-01

    Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here, we demonstrate that either whole body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipog...

  20. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk

    OpenAIRE

    Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Dorsselaer, Alain Van

    2014-01-01

    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a cor...

  1. Involvement of AMPK in Alcohol Dehydrogenase Accentuated Myocardial Dysfunction Following Acute Ethanol Challenge in Mice

    OpenAIRE

    GUO Rui; Scott, Glenda I.; Ren, Jun

    2010-01-01

    Objectives Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling. Methods ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3...

  2. Liraglutide reduces fatty degeneration in hepatic cells via the AMPK/SREBP1 pathway

    OpenAIRE

    Wang, Yan-Gui; Yang, Tian-lun

    2015-01-01

    Recent studies have suggested that liraglutide could have a potential function in improving non-alcoholic fatty liver disease (NAFLD); however, the underlying molecular mechanism remains unclear. The aim of the present study was to investigate the role of the AMP-activated protein kinase (AMPK)/sterol regulatory element binding protein 1 (SREBP1) pathway in mediating the effect of liraglutide in reducing fatty degeneration in an in vitro NAFLD model. To resemble the NAFLD condition in vitro, ...

  3. Combined Effect of AMPK/PPAR Agonists and Exercise Training in mdx Mice Functional Performance

    OpenAIRE

    Carlos R. Bueno Júnior; Pantaleão, Lucas C; Voltarelli, Vanessa A.; Bozi, Luiz Henrique M.; Brum, Patricia Chakur; Zatz, Mayana

    2012-01-01

    The present investigation was undertaken to test whether exercise training (ET) associated with AMPK/PPAR agonists (EM) would improve skeletal muscle function in mdx mice. These drugs have the potential to improve oxidative metabolism. This is of particular interest because oxidative muscle fibers are less affected in the course of the disease than glycolitic counterparts. Therefore, a cohort of 34 male congenic C57Bl/10J mdx mice included in this study was randomly assigned into four groups:...

  4. Convergence of IPMK and LKB1-AMPK Signaling Pathways on Metformin Action

    OpenAIRE

    Bang, Sookhee; Chen, Yong; Ahima, Rexford S.; Kim, Sangwon F.

    2014-01-01

    Metformin is a biguanide drug that is widely prescribed for type 2 diabetes. Metformin suppresses hepatic gluconeogenesis and increases fatty acid oxidation. Although studies have suggested that metformin acts, at least in part, via activation of the liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway, the specific molecular mechanisms underlying metformin's regulation of glucose and lipid metabolism have not been well delineated. Recently, we have shown that inositol polyphosp...

  5. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway.

    Science.gov (United States)

    He, Qin; Sha, Sha; Sun, Lei; Zhang, Jing; Dong, Ming

    2016-08-01

    The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD. PMID:27208776

  6. Mangiferin decreases plasma free fatty acids through promoting its catabolism in liver by activation of AMPK.

    Directory of Open Access Journals (Sweden)

    Yucun Niu

    Full Text Available Mangiferin has been shown to have the effect of improving dyslipidemia. Plasma free fatty acids (FFA are closely associated with blood lipid metabolism as well as many diseases including metabolic syndrome. This study is to investigate whether mangiferin has effects on FFA metabolism in hyperlipidemic rats. Wistar rats were fed a high-fat diet and administered mangiferin simultaneously for 6 weeks. Mangiferin (50, 100, 150 mg/kg BW decreased dose-dependently FFA and triglycerides (TG levels in plasma, and their accumulations in liver, but increased the β-hydroxybutyrate levels in both plasma and liver of hyperlipidemic rats. HepG2 cells were treated with oleic acid (OA, 0.2 mmol/L to simulate the condition of high level of plasma FFA in vitro, and were treated with different concentrations of mangiferin simultaneously for 24 h. We found that mangiferin significantly increased FFA uptake, significantly decreased intracellular FFA and TG accumulations in HepG2 cells. Mangiferin significantly increased AMP-activated protein kinase (AMPK phosphorylation and its downstream proteins involved in fatty acid translocase (CD36 and carnitine palmitoyltransferase 1 (CPT1, but significantly decreased acyl-CoA: diacylgycerol acyltransferase 2 (DGAT2 expression and acetyl-CoA carboxylase (ACC activity by increasing its phosphorylation level in both in vivo and in vitro studies. Furthermore, these effects were reversed by Compound C, an AMPK inhibitor in HepG2 cells. For upstream of AMPK, mangiferin increased AMP/ATP ratio, but had no effect on LKB1 phosphorylation. In conclusion, mangiferin decreased plasma FFA levels through promoting FFA uptake and oxidation, inhibiting FFA and TG accumulations by regulating the key enzymes expression in liver through AMPK pathway. Therefore, mangiferin is a possible beneficial natural compound for metabolic syndrome by improving FFA metabolism.

  7. 5'-Monophosphate-activated protein kinase (AMPK) improves autophagic activity in diabetes and diabetic complications

    OpenAIRE

    Fan Yao; Ming Zhang; Li Chen

    2015-01-01

    Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed t...

  8. AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of β-catenin at Ser 552

    International Nuclear Information System (INIS)

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; its activity is regulated by a plethora of physiological conditions, exercises and many anti-diabetic drugs. Recent studies show that AMPK involves in cell differentiation but the underlying mechanism remains undefined. Wingless Int-1 (Wnt)/β-catenin signaling pathway regulates the differentiation of mesenchymal stem cells through enhancing β-catenin/T-cell transcription factor 1 (TCF) mediated transcription. The objective of this study was to determine whether AMPK cross-talks with Wnt/β-catenin signaling through phosphorylation of β-catenin. C3H10T1/2 mesenchymal cells were used. Chemical inhibition of AMPK and the expression of a dominant negative AMPK decreased phosphorylation of β-catenin at Ser 552. The β-catenin/TCF mediated transcription was correlated with AMPK activity. In vitro, pure AMPK phosphorylated β-catenin at Ser 552 and the mutation of Ser 552 to Ala prevented such phosphorylation, which was further confirmed using [γ-32P]ATP autoradiography. In conclusion, AMPK phosphorylates β-catenin at Ser 552, which stabilizes β-catenin, enhances β-catenin/TCF mediated transcription, expanding AMPK from regulation of energy metabolism to cell differentiation and development via cross-talking with the Wnt/β-catenin signaling pathway.

  9. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling.

    Science.gov (United States)

    Wang, Kai; Jin, Xiaolu; Chen, Yifan; Song, Zehe; Jiang, Xiasen; Hu, Fuliang; Conlon, Michael A; Topping, David L

    2016-01-01

    Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE) on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ) loci occludin and zona occludens (ZO)-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet) exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health. PMID:27164138

  10. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-05-01

    Full Text Available Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ loci occludin and zona occludens (ZO-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  11. The In Vivo Antidiabetic Activity of Nigella sativa Is Mediated through Activation of the AMPK Pathway and Increased Muscle Glut4 Content

    Directory of Open Access Journals (Sweden)

    Ali Benhaddou-Andaloussi

    2011-01-01

    Full Text Available The antidiabetic effect of N. sativa seed ethanol extract (NSE was assessed in Meriones shawi after development of diabetes. Meriones shawi were divided randomly into four groups: normal control, diabetic control, diabetic treated with NSE (2 g eq plant/kg or with metformin (300 mg/kg positive control, both administered by daily intragastric gavage for 4 weeks. Glycaemia and body weight were evaluated weekly. At study's end, an Oral Glucose Tolerance Test (OGTT was performed to estimate insulin sensitivity. Upon sacrifice, plasma lipid profile, insulin, leptin, and adiponectin levels were assessed. ACC phosphorylation and Glut4 protein content were determined in liver and skeletal muscle. NSE animals showed a progressive normalization of glycaemia, albeit slower than that of metformin controls. Moreover, NSE increased insulinemia and HDL-cholesterol, compared to diabetic controls. Leptin and adiponectin were unchanged. NSE treatment decreased OGTT and tended to decrease liver and muscle triglyceride content. NSE stimulated muscle and liver ACC phosphorylation and increased muscle Glut4. These results confirm NSE's previously reported hypoglycaemic and hypolipidemic activity. More significantly, our data demonstrate that in vivo treatment with NSE exerts an insulin-sensitizing action by enhancing ACC phosphorylation, a major component of the insulin-independent AMPK signaling pathway, and by enhancing muscle Glut4 expression.

  12. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    Energy Technology Data Exchange (ETDEWEB)

    Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com; King, Tanya S., E-mail: tanya.sarah.king@googlemail.com; Olbrich, Katrin, E-mail: Katrin.olbrich@gmx.net; Grösch, Sabine, E-mail: groesch@em.uni-frankfurt.de; Geisslinger, Gerd, E-mail: geisslinger@em.uni-frankfurt.de; Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de

    2014-05-09

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.

  13. LPS inhibits caspase 3-dependent apoptosis in RAW264.7 macrophages induced by the AMPK activator AICAR

    International Nuclear Information System (INIS)

    Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells

  14. FK866-induced NAMPT inhibition activates AMPK and downregulates mTOR signaling in hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Susanne, E-mail: Susanne.Schuster@medizin.uni-leipzig.de [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Penke, Melanie; Gorski, Theresa [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany); Gebhardt, Rolf [Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Weiss, Thomas S. [Children' s University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg (Germany); Kiess, Wieland; Garten, Antje [Center for Pediatric Research Leipzig, University Hospital for Children and Adolescents, Faculty of Medicine, University of Leipzig, Liebigstr. 21, 04103 Leipzig (Germany)

    2015-03-06

    Background: Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme of the NAD salvage pathway starting from nicotinamide. Cancer cells have an increased demand for NAD due to their high proliferation and DNA repair rate. Consequently, NAMPT is considered as a putative target for anti-cancer therapies. There is evidence that AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) become dysregulated during the development of hepatocellular carcinoma (HCC). Here, we investigated the effects of NAMPT inhibition by its specific inhibitor FK866 on the viability of hepatocarcinoma cells and analyzed the effects of FK866 on the nutrient sensor AMPK and mTOR complex1 (mTORC1) signaling. Results: FK866 markedly decreased NAMPT activity and NAD content in hepatocarcinoma cells (Huh7 cells, Hep3B cells) and led to delayed ATP reduction which was associated with increased cell death. These effects could be abrogated by administration of nicotinamide mononucleotide (NMN), the enzyme product of NAMPT. Our results demonstrated a dysregulation of the AMPK/mTOR pathway in hepatocarcinoma cells compared to non-cancerous hepatocytes with a higher expression of mTOR and a lower AMPKα activation in hepatocarcinoma cells. We found that NAMPT inhibition by FK866 significantly activated AMPKα and inhibited the activation of mTOR and its downstream targets p70S6 kinase and 4E-BP1 in hepatocarcinoma cells. Non-cancerous hepatocytes were less sensitive to FK866 and did not show changes in AMPK/mTOR signaling after FK866 treatment. Conclusion: Taken together, these findings reveal an important role of the NAMPT-mediated NAD salvage pathway in the energy homeostasis of hepatocarcinoma cells and suggest NAMPT inhibition as a potential treatment option for HCC. - Highlights: • FK866 increases cell death in p53-deficient hepatocarcinoma cells. • AMPK/mTOR signaling is dysregulated in hepatocarcinoma cells. • FK866-induced NAMPT inhibition activates AMPK

  15. Antidiabetic Effect of Salvianolic Acid A on Diabetic Animal Models via AMPK Activation and Mitochondrial Regulation

    Directory of Open Access Journals (Sweden)

    Guifen Qiang

    2015-05-01

    Full Text Available Background/Aims: Diabetes mellitus (DM characterized by hyperglycemia contributes to macrovascular and microvascular complications. Salvianolic acid A (SalA is a polyphenolic compound isolated from the root of Salvia miltiorrhiza Bunge, which is a traditional Chinese medicine widely used to treat cardiovascular diseases. However, little is known about its antidiabetic effect. Our study aimed to investigate the in vivo and in vitro antidiabetic effect of SalA and the underlying mechanisms. Methods: Alloxan-induced type 1 diabetic mice and high-fat diet (HFD and low-dose streptozotocin (STZ-induced type 2 diabetic rats received SalA treatment. Blood glucose, oral glucose tolerance test (OGTT, 24-h food and water intake were monitored. In vitro, glucose consumption and uptake were measured in HepG2 cells and L6 myotubes. Mitochondrial function was detected in hepatic and skeletal muscle mitochondria. AMP-activated protein kinase (AMPK and Akt were analyzed by western blot. Results: In both type 1 and type 2 diabetic animals, SalA lowered fasting blood glucose (FBG and fed blood glucose in dose-dependent manner, as well as reduced 24-h food and water intake. In vitro, SalA caused dose-dependent increase in glucose consumption and enhanced glucose uptake. SalA significantly increased ATP production from 10 min to 12 h in HepG2 cells and L6 myotubes. Interestingly, SalA decreased mitochondrial membrane potential (MMP in HepG2 cells. Furthermore, SalA improved hepatic and skeletal muscle mitochondrial function, increased ATP production, and concurrently decreased MMP. In particularly, SalA activated AMPK phosphorylation through Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ/AMPK signaling pathway, independent of liver kinase 1 (LKB1/AMPK pathway. However, SalA didn't show any effect on insulin secretagogue and activation of PI3K/Akt signaling pathway. Conclusion: SalA exhibits the antidiabetic effects in diabetic animal models through

  16. Optical Force and Torque on Dipolar Dual Chiral Particles

    CERN Document Server

    Rahimzadegan, Aso; Alaee, Rasoul; Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    On the one hand, electromagnetic dual particles preserve the helicity of light upon interaction. On the other hand, chiral particles respond differently to light of opposite helicity. These two properties on their own constitute a source of fascination. Their combined action, however, is less explored. Here, we study on analytical grounds the force and torque as well as the optical cross sections of dual chiral particles in dipolar approximation exerted by a wave of well-defined helicity, i.e. a circularly polarized plane wave. We put emphasis on particles that possess a maximally electromagnetic chiral and hence dual response. Besides the analytical insights, we also investigate the exerted optical force and torque on a real particle at the example of a metallic helix that is designed to approach the maximal electromagnetic chirality condition. Various applications in the context of optical sorting but also nanorobotics can be perceived considering the particles studied in this contribution.

  17. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress.

    Science.gov (United States)

    Qiang, Xiaoyan; Xu, Lulu; Zhang, Miao; Zhang, Pengcheng; Wang, Yinhang; Wang, Yongchen; Zhao, Zheng; Chen, Huan; Liu, Xie; Zhang, Yubin

    2016-04-15

    Non-alcoholic fatty liver disease (NAFLD) has reached an epidemic level globally, which is recognized to form non-alcoholic steatohepatitis (NASH) by the "two-hit" model, including oxidative stress and inflammation. AMP-activated protein kinase (AMPK) has long been regarded as a key regulator of energy metabolism, which is recognized as a critical target for NAFLD treatment. Here we introduce a natural product, demethyleneberberine (DMB), which potentially ameliorated NAFLD by activating AMPK pathways. Our study showed that the intraperitoneal injection of DMB (20 or 40 mg/kg body weight) decreased hepatic lipid accumulation in methionine and choline deficient (MCD) high-fat diet feeding mice and db/db mice. The further investigation demonstrated that DMB activated AMPK by increasing its phosphorylation in vitro and in vivo. Accompanied with AMPK activation, the expression of lipogenic genes were significantly reduced while genes responsible for the fatty acid β-oxidation were restored in DMB-treated NAFLD mice. In addition, the remarkable oxidative damage and inflammation induced by NAFLD were both attenuated by DMB treatment, which is reflected by decreased lipid oxidative product, malonaldehyde (MDA) and inflammatory factors, tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). Based on all above, DMB could serve as a novel AMPK activator for treating NAFLD and preventing the pathologic progression from NAFLD to NASH by inhibiting the oxidative stress and inflammation. PMID:26970305

  18. Endothelial AMPK activation induces mitochondrial biogenesis and stress adaptation via eNOS-dependent mTORC1 signaling.

    Science.gov (United States)

    Li, Chunying; Reif, Michaella M; Craige, Siobhan M; Kant, Shashi; Keaney, John F

    2016-05-01

    Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010

  19. Stimulation of Wnt/β-Catenin Signaling to Improve Bone Development by Naringin via Interacting with AMPK and Akt

    Directory of Open Access Journals (Sweden)

    Dawei Wang

    2015-07-01

    Full Text Available Background/Aims: Naringin is a naturally existing compound in citrus fruits and has been elucidated to promote bone development and maintenance. Methods: The biological roles of naringin were investigated in vitro using osteoblast-like UMR-106 cells, and in vivo through performing ovariectomy to mimic osteoporosis in female mice. Since Wnt/β-catenin signaling is involved in osteoblastogenesis, the effect of naringin on Wnt/β-catenin signaling was studied. Results: Naringin promoted the mRNA and protein expressions of β-catenin, and improved Ser552 phosphorylation on β-catenin in UMR-106 cells, which leads to the activation of lymphoid enhancer factor (LEF/ T-cell factor (TCF transcription factors. The recruitments of protein kinase B (Akt inhibitor (Akti-1/2 and AMP-activated protein kinase (AMPK inhibitor (Dorsomorphin reduced the influence of naringin on β-catenin phosphorylation, suggesting naringin activates β-catenin via regulating Akt and AMPK. In ovariectomized (OVX mice naringin treatment improved the bone strength while AMPK and Akt inhibitors partly reversed the effect, which further proved the involvements of Akt and AMPK in the action of naringin in vivo. Conclusion: Our study points to a novel finding on the mechanism of naringin in facilitating bone formation via Akt and AMPK signaling.

  20. Variation in genes coding for AMP-activated protein kinase (AMPK) and breast cancer risk in the European Prospective Investigation on Cancer (EPIC)

    NARCIS (Netherlands)

    Campa, Daniele; Claus, Rainer; Dostal, Lucie; Stein, Angelika; Chang-Claude, Jenny; Meidtner, Karina; Boeing, Heiner; Olsen, Anja; Tjonneland, Anne; Overvad, Kim; Rodriguez, Laudina; Bonet, Catalina; Sanchez, Maria-Jose; Amiano, Pilar; Huerta, Jose Maria; Barricarte, Aurelio; Khaw, Kay-Tee; Wareham, Nicholas; Travis, Ruth C.; Allen, Naomi E.; Trichopoulou, Antonia; Bamia, Christina; Benetou, Vassiliki; Palli, Domenico; Agnoli, Claudia; Panico, Salvatore; Tumino, Rosario; Sacerdote, Carlotta; van Kranen, Henk; Bueno-de-Mesquita, H. Bas; Peeters, Petra H. M.; van Gils, Carla H.; Lenner, Per; Sund, Malin; Lund, Eiliv; Gram, Inger Torhild; Rinaldi, Sabina; Chajes, Veronique; Romieu, Isabelle; Engel, Pierre; Boutron-Ruault, Marie Christine; Clavel-Chapelon, Francoise; Siddiq, Afshan; Riboli, Elio; Canzian, Federico; Kaaks, Rudolf

    2011-01-01

    AMP-activated protein kinase (AMPK) is an energy sensing/signalling intracellular protein which is activated by an increase in the cellular AMP:ATP ratio after ATP depletion. Once activated, AMPK inhibits fatty acid synthesis and the Akt-mTOR pathway, and activates the p53-p21 axis. All these molecu

  1. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons.

    Directory of Open Access Journals (Sweden)

    Johanneke E Oosterman

    Full Text Available Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1, agouti-related peptide (AgRP, carnitine palmitoyltransferase 1C (Cpt1c, and O-linked N-acetylglucosamine transferase (Ogt were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.

  2. Glucose-Based Regulation of miR-451/AMPK Signaling Depends on the OCT1 Transcription Factor

    Directory of Open Access Journals (Sweden)

    Khairul I. Ansari

    2015-05-01

    Full Text Available In aggressive, rapidly growing solid tumors such as glioblastoma multiforme (GBM, cancer cells face frequent dynamic changes in their microenvironment, including the availability of glucose and other nutrients. These challenges require that tumor cells have the ability to adapt in order to survive periods of nutrient/energy starvation. We have identified a reciprocal negative feedback loop mechanism in which the levels of microRNA-451 (miR-451 are negatively regulated through the phosphorylation and inactivation of its direct transcriptional activator OCT1 by 5′ AMP-activated protein kinase (AMPK, which is activated by glucose depletion-induced metabolic stress. Conversely, in a glucose-rich environment, unrestrained expression of miR-451 suppresses AMPK pathway activity. These findings uncover miR-451 as a major effector of glucose-regulated AMPK signaling, allowing tumor cell adaptation to variations in nutrient availability in the tumor microenvironment.

  3. Effect of birth weight and 12 weeks of exercise training on exercise-induced AMPK signaling in human skeletal muscle

    DEFF Research Database (Denmark)

    Mortensen, Brynjulf; Hingst, Janne Rasmuss; Frederiksen, Nicklas;

    2013-01-01

    Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling....... We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 hour of acute exercise performed at the same relative workload before and after 12 weeks of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status...... need for AMPK to control energy turnover during exercise. Thus, the remaining ¿3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance....

  4. Combined pharmacological activation of AMPK and PPARδ potentiates the effects of exercise in trained mice.

    Science.gov (United States)

    Manio, Mark Christian C; Inoue, Kazuo; Fujitani, Mina; Matsumura, Shigenobu; Fushiki, Tohru

    2016-03-01

    The combined activation of the cellular energy sensor AMP-activated protein kinase (AMPK) and the nuclear transcription factor peroxisome proliferator-activated receptor delta (PPARδ) has been demonstrated to improve endurance and muscle function by mimicking the effects of exercise training. However, their combined pharmacological activation with exercise training has not been explored. Balb/c mice were trained on a treadmill and administered both the AMPK activator AICAR and the PPARδ agonist GW0742 for 4 weeks. AICAR treatment potentiated endurance, but the combination of AICAR and GW0742 further potentiated endurance and increased all running parameters significantly relative to exercised and nonexercised groups (138-179% and 355% increase in running time, respectively). Despite the lack of change in basal whole-body metabolism, a significant shift to fat as the main energy source with a decline in carbohydrate utilization was observed upon indirect calorimetry analysis at the period near exhaustion. Increased energy substrates before exercise, and elevated muscle nonesterified fatty acids (NEFA) and elevated muscle glycogen at exhaustion were observed together with increased PDK4 mRNA expression. Citrate synthase activity was elevated in AICAR-treated groups, while PGC-1α protein level tended to be increased in GW0742-treated groups. At exhaustion, Pgc1a was robustly upregulated together with Pdk4, Cd36, and Lpl in the muscle. A robust upregulation of Pgc1a and a downregulation in Chrebp were observed in the liver. Our data show that combined pharmacological activation of AMPK and PPARδ potentiates endurance in trained mice by transcriptional changes in muscle and liver, increased available energy substrates, delayed hypoglycemia through glycogen sparing accompanied by increased NEFA availability, and improved substrate shift from carbohydrate to fat. PMID:26997622

  5. Region-specific activation of the AMPK system by cocaine: The role of D1 and D2 receptors.

    Science.gov (United States)

    Xu, Shijie; Kang, Ung Gu

    2016-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) functions as an intracellular energy sensor that regulates and maintains energy balance. The psychostimulant drug cocaine has profound effects on behavior that are accentuated with repeated use, which is a process termed sensitization. Thus, the present study examined whether the sensitizing effects of cocaine could be observed in the AMPK system and aimed to determine whether these effects were mediated by dopamine (DA) D1 or D2 receptors. In the first set of experiments, rats were injected daily for 5days with either cocaine (15mg/kg, intraperitoneal [IP]) or saline. On the day 6, each group was divided into two subgroups and given either cocaine or saline. In the second set of experiments, rats were pretreated with SCH23390 (0.5mg/kg, IP), haloperidol (1mg/kg, IP), or both agents in combination, followed by cocaine or saline treatment. In the drug-naïve state, acute treatment with cocaine produced an increase in locomotor activity and increased AMPK phosphorylation in the frontal cortex but decreased it in the dorsal striatum. In the drug-sensitized state (following repeated treatment), the behavioral responsiveness to cocaine was augmented and accompanied by alterations in AMPK activity. The phosphorylation levels of the upstream kinases Ser-431-LKB1 and Thr-196-CaMK4 were congruent with the changes in AMPK activity. Thr-184/187-TAK1 was phosphorylated after chronic cocaine treatment in the dorsal striatum but not in the frontal cortex. The opposite effects induced by cocaine in the AMPK system in the dorsal striatum and frontal cortex may be explained by the differential activations of DA D1 and D2 receptors in these brain regions. PMID:27132751

  6. The pentacyclic triterpenoid, plectranthoic acid, a novel activator of AMPK induces apoptotic death in prostate cancer cells.

    Science.gov (United States)

    Akhtar, Nosheen; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Mirza, Bushra; Mukhtar, Hasan

    2016-01-26

    Epidemiologic studies indicated that diabetics treated with metformin had a lower incidence of cancer than those taking other anti-diabetes drugs. This led to a surge in the efforts for identification of safer and more effective metformin mimetic compounds. The plant Ficus microcarpa is widely used for the treatment of type 2 diabetes in traditional medicine in South Asia. We obtained extracts from this plant and identified a small molecule, plectranthoic acid (PA), with potent 5'AMP-activated kinase (AMPK) activating properties far superior than metformin. AMPK is the central hub of metabolic regulation and a well-studied therapeutic target for metabolic syndrome, type-2 diabetes and cancer. We observed that treatment of prostate cancer (PCa) cells with PA inhibited proliferation and induced G0/G1 phase cell cycle arrest that was associated with up-regulation of cyclin kinase inhibitors p21/CIP1 and p27/KIP1. PA treatment suppressed mTOR/S6K signaling and induced apoptosis in PCa cells in an AMPK-dependent manner. Interestingly, PA-induced autophagy in PCa cells was found to be independent of AMPK activation. Combination studies of PA and metformin demonstrated that metformin had an inhibitory effect on PA-induced AMPK activation and suppressed PA-mediated apoptosis. Given the anti-proliferative role of PA in cancer and its potent anti-hyperglycemic activity, we suggest that PA should be explored further as a novel activator of AMPK for its ultimate use for the prevention of cancers and treatment of type 2 diabetes. PMID:26683363

  7. Cadmium induces autophagy through ROS-dependent activation of the LKB1-AMPK signaling in skin epidermal cells

    International Nuclear Information System (INIS)

    Cadmium is a toxic heavy metal which is environmentally and occupationally relevant. The mechanisms underlying cadmium-induced autophagy are not yet completely understood. The present study shows that cadmium induces autophagy, as demonstrated by the increase of LC3-II formation and the GFP-LC3 puncta cells. The induction of autophagosomes was directly visualized by electron microscopy in cadmium-exposed skin epidermal cells. Blockage of LKB1 or AMPK by siRNA transfection suppressed cadmium-induced autophagy. Cadmium-induced autophagy was inhibited in dominant-negative AMPK-transfected cells, whereas it was accelerated in cells transfected with the constitutively active form of AMPK. mTOR signaling, a negative regulator of autophagy, was downregulated in cadmium-exposed cells. In addition, cadmium generated reactive oxygen species (ROS) at relatively low levels, and caused poly(ADP-ribose) polymerase-1 (PARP) activation and ATP depletion. Inhibition of PARP by pharmacological inhibitors or its siRNA transfection suppressed ATP reduction and autophagy in cadmium-exposed cells. Furthermore, cadmium-induced autophagy signaling was attenuated by either exogenous addition of catalase and superoxide dismutase, or by overexpression of these enzymes. Consequently, these results suggest that cadmium-mediated ROS generation causes PARP activation and energy depletion, and eventually induces autophagy through the activation of LKB1-AMPK signaling and the down-regulation of mTOR in skin epidermal cells. - Highlights: → Cadmium, a toxic heavy metal, induces autophagic cell death through ROS-dependent activation of the LKB1-AMPK signaling. → Cadmium generates intracellular ROS at low levels and this leads to severe DNA damage and PARP activation, resulting in ATP depletion, which are the upstream events of LKB1-AMPK-mediated autophagy. → This novel finding may contribute to further understanding of cadmium-mediated diseases.

  8. Rapamycin requires AMPK activity and p27 expression for promoting autophagy-dependent Tsc2-null cell survival.

    Science.gov (United States)

    Campos, Tania; Ziehe, Javiera; Fuentes-Villalobos, Francisco; Riquelme, Orlando; Peña, Daniela; Troncoso, Rodrigo; Lavandero, Sergio; Morin, Violeta; Pincheira, Roxana; Castro, Ariel F

    2016-06-01

    Tuberous sclerosis complex (TSC) disease results from inactivation of the TSC1 or TSC2 gene, and is characterized by benign tumors in several organs. Because TSC tumorigenesis correlates with hyperactivation of mTORC1, current therapies focus on mTORC1 inhibition with rapamycin or its analogs. Rapamycin-induced tumor shrinkage has been reported, but tumor recurrence occurs on withdrawal from rapamycin. Autophagy has been associated with development of TSC tumors and with tumor cell survival during rapamycin treatment. mTORC1 and AMPK directly inhibit and activate autophagy, respectively. AMPK is hyperactivated in TSC cells and tumors, and drives cytoplasmic sequestration of the cell-cycle inhibitor p27KIP (p27). Whether AMPK and p27 are involved in rapamycin-induced autophagy and survival of TSC cells remain unexplored. Here, we show that inhibition of AMPK by compound C or by shRNA-mediated depletion of LKB1 reduces activation of autophagy by rapamycin in Tsc2-null cells. Similarly, shRNA-mediated depletion of p27 inhibited rapamycin-induced autophagy. In support of p27 lying downstream of AMPK on the activation of autophagy in Tsc2-null cells, a p27 mutant that preferentially localizes in the cytosol recovered the effect of rapamycin on autophagy in both p27- and LKB1-depleted cells, but a nuclear p27 mutant was inactive. Finally, we show that p27-dependent activation of autophagy is involved in Tsc2-null cell survival under rapamycin treatment. These results indicate that an AMPK/p27 axis is promoting a survival mechanism that could explain in part the relapse of TSC tumors treated with rapamycin, exposing new avenues for designing more efficient treatments for TSC patients. PMID:26975583

  9. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK.

    Science.gov (United States)

    Murase, Takatoshi; Misawa, Koichi; Haramizu, Satoshi; Minegishi, Yoshihiko; Hase, Tadashi

    2010-08-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is implicated in the control of energy metabolism and is considered to be a molecular target for the suppression of obesity and the treatment of metabolic syndrome. Here, we identified and characterized nootkatone, a constituent of grapefruit, as a naturally occurring AMPK activator. Nootkatone induced an increase in AMPKalpha1 and -alpha2 activity along with an increase in the AMP/ATP ratio and an increase the phosphorylation of AMPKalpha and the downstream target acetyl-CoA carboxylase (ACC), in C(2)C(12) cells. Nootkatone-induced activation of AMPK was possibly mediated both by LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase. Nootkatone also upregulated PPARgamma coactivator-1alpha in C(2)C(12) cells and C57BL/6J mouse muscle. In addition, administration of nootkatone (200 mg/kg body wt) significantly enhanced AMPK activity, accompanied by LKB1, AMPK, and ACC phosphorylation in the liver and muscle of mice. Whole body energy expenditure evaluated by indirect calorimetry was also increased by nootkatone administration. Long-term intake of diets containing 0.1% to 0.3% (wt/wt) nootkatone significantly reduced high-fat and high-sucrose diet-induced body weight gain, abdominal fat accumulation, and the development of hyperglycemia, hyperinsulinemia, and hyperleptinemia in C57BL/6J mice. Furthermore, endurance capacity, evaluated as swimming time to exhaustion in BALB/c mice, was 21% longer in mice fed 0.2% nootkatone than in control mice. These findings indicate that long-term intake of nootkatone is beneficial toward preventing obesity and improving physical performance and that these effects are due, at least in part, to enhanced energy metabolism through AMPK activation in skeletal muscle and liver. PMID:20501876

  10. AMPK activators suppress cervical cancer cell growth through inhibition of DVL3 mediated Wnt/β-catenin signaling activity.

    Directory of Open Access Journals (Sweden)

    H T Kwan

    Full Text Available Recent evidence has suggested that AMPK activators may be applied as therapeutic drugs in suppressing cancer cell growth. However, the molecular mechanism of their suppressive function in cancer cells is still unclear. Here we show that AMPK activators impair cervical cancer cell growth through the reduction of DVL3, a positive regulator in Wnt/β-catenin signaling and an oncogenic player in cervical cancer tumorigenesis. By western blot and immunohistochemical analyses, we demonstrated that DVL3 was frequently upregulated and significantly associated with elevated β-catenin (P = 0.009 and CyclinD1 (P = 0.009 expressions in cervical cancer. Enforced expression of DVL3 elevated β-catenin and augmented cervical cancer cell growth, verifying that DVL3-mediated Wnt/β-catenin activation is involved in cervical cancer oncogenesis. On the other aspect, we noted that the cervical cancer cell growth was remarkably suppressed by AMPK activators and such cell growth inhibition was in concomitant with the reduction of DVL3 protein level in dose- and time-dependent manners. Besides, impaired mTOR signaling activity also reduced DVL3 expression. In contrast, co-treatment with Compound C (AMPK inhibitor could significantly abrogate metformin induced DVL3 reduction. In addition, co-treatment with AM114 or MG132 (proteosomal inhibitors could partially restore DVL3 expression under the treatment of metformin. Further in vivo ubiquitination assay revealed that metformin could reduce DVL3 by ubiquitin/proteasomal degradation. To our knowledge, this is the first report showing the probable molecular mechanisms of that the AMPK activators suppress cervical cancer cell growth by impairing DVL3 protein synthesis via AMPK/mTOR signaling and/or partially promoting the proteasomal degradation of DVL3.

  11. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    International Nuclear Information System (INIS)

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity

  12. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang, E-mail: lvguoqiangwuxivip@163.com

    2015-08-07

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK–HO–1 signaling. - Highlights: • We synthesized compound 13 (C13), a α1-selective small molecule AMPK activator. • C13-induced AMPK activation requires α1 subunit in gastric epithelial cells (GECs). • C13 enhances Helicobacter pylori-induced pro-survival AMPK activation to inhibit GEC apoptosis. • C13 inhibits H. pylori-induced reactive oxygen species (ROS) production in GECs. • AMPK-heme oxygenase (HO-1) activation is required for C13-mediated anti-oxidant activity.

  13. Effects of wintertime fasting and seasonal adaptation on AMPK and ACC in hypothalamus, adipose tissue and liver of the raccoon dog (Nyctereutes procyonoides).

    Science.gov (United States)

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2016-02-01

    The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog. PMID:26603554

  14. In Vivo Correction of COX Deficiency by Activation of the AMPK/PGC-1α Axis

    OpenAIRE

    Viscomi, Carlo; Bottani, Emanuela; Civiletto, Gabriele; Cerutti, Raffaele; Moggio, Maurizio; Fagiolari, Gigliola; Schon, Eric A.; Lamperti, Costanza; Zeviani, Massimo

    2011-01-01

    Summary Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal ...

  15. PKC and AMPK regulation of Kv1.5 potassium channels

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells....... dependent on co-expression of Nedd4-2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems....

  16. Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent

    OpenAIRE

    Jeppesen, J; Albers, P. H.; Rose, A. J.; Birk, J. B.; Schjerling, P; Dzamko, N.; Steinberg, G. R.; Kiens, B

    2011-01-01

    The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat ...

  17. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK

    OpenAIRE

    Zou, Feng; Mao, Xian-qing; Wang, Nian; Liu, Jian; Ou-Yang, Jing-ping

    2009-01-01

    Aim: To establish the mechanism underlying the improvement of glucose toxicity by Astragalus polysaccharide (APS), which occurred via an AMP activated protein kinase (AMPK)-dependent pathway. Methods: In vivo and in vitro effects of APS on glucose homeostasis were examined in a type 2 diabetes mellitus (T2DM) rat model. The T2DM rat model was duplicated by a high-fat diet (58% fat, 25.6% carbohydrate, and 16.4% protein) and a small dose of streptozotocin (STZ, 25 mg/kg, ip). After APS therapy...

  18. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction

    OpenAIRE

    Sakamoto, Kei; McCarthy, Afshan; Smith, Darrin; Green, Kevin A.; Grahame Hardie, D.; Ashworth, Alan; Dario R. Alessi

    2005-01-01

    Recent studies indicate that the LKB1 tumour suppressor protein kinase is the major ‘upstream' activator of the energy sensor AMP-activated protein kinase (AMPK). We have used mice in which LKB1 is expressed at only ∼10% of the normal levels in muscle and most other tissues, or that lack LKB1 entirely in skeletal muscle. Muscle expressing only 10% of the normal level of LKB1 had significantly reduced phosphorylation and activation of AMPKα2. In LKB1-lacking muscle, the basal activity of the A...

  19. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Koh, Ho-Jin; Toyoda, Taro; Fujii, Nobuharu;

    2010-01-01

    The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK....... Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction......-stimulated glucose transport in skeletal muscle....

  20. Honokiol activates the LKB1–AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Min Suk; Kim, Jung Hwan; Kim, Hye Jung; Chang, Ki Churl; Park, Sang Won, E-mail: parksw@gnu.ac.kr

    2015-04-15

    Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1 h, and then exposed to 1 mM free fatty acid (FFA) for 24 h to simulate non-alcoholic steatosis in vitro. C57BL/6 mice were fed with a high-fat diet for 28 days, and honokiol (10 mg/kg/day) was daily treated. Honokiol concentration-dependently attenuated intracellular fat overloading and triglyceride (TG) accumulation in FFA-exposed HepG2 cells. These effects were blocked by pretreatment with an AMP-activated protein kinase (AMPK) inhibitor. Honokiol significantly inhibited sterol regulatory element-binding protein-1c (SREBP-1c) maturation and the induction of lipogenic proteins, stearoyl-CoA desaturase-1 (SCD-1) and fatty acid synthase (FAS) in FFA-exposed HepG2 cells, but these effects were blocked by pretreatment of an AMPK inhibitor. Honokiol induced AMPK phosphorylation and subsequent acetyl-CoA carboxylase (ACC) phosphorylation, which were inhibited by genetic deletion of liver kinase B1 (LKB1). Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1–AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes. - Highlights: • Honokiol attenuates lipid accumulation induced by free fatty acid in hepatocyte. • Honokiol inhibits the increase in lipogenic enzyme levels induced by free fatty

  1. Nuevas dianas de actuación de la proteína quinasa activada por AMP (AMPK)

    OpenAIRE

    Solaz Fuster, María del Carmen

    2007-01-01

    RESUMEN En múltiples tejidos de mamíferos, la proteína quinasa activada por AMP (AMPK) controla el metabolismo de la glucosa y de los lípidos. Esta importante función de AMPK como sensor energético conservado evolutivamente y regulador clave del metabolismo estaría, además, apoyada por el papel de su ortólogo en el metabolismo de la glucosa del eucariota unicelular Saccharomyces cerevisiae. La proteína se activa en respuesta a un aumento en la relación de AMP respecto a ATP en el interior ...

  2. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Larsen, Steen; Helge, Jørn Wulff;

    2013-01-01

    diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK) has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been......Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for...

  3. Persulfate activation during exertion of total oxidant demand.

    Science.gov (United States)

    Teel, Amy L; Elloy, Farah C; Watts, Richard J

    2016-09-01

    Total oxidant demand (TOD) is a parameter that is often measured during in situ chemical oxidation (ISCO) treatability studies. The importance of TOD is based on the concept that the oxidant demand created by soil organic matter and other reduced species must be overcome before contaminant oxidation can proceed. TOD testing was originally designed for permanganate ISCO, but has also recently been applied to activated persulfate ISCO. Recent studies have documented that phenoxides activate persulfate; because soil organic matter is rich in phenolic moieties, it may activate persulfate rather than simply exerting TOD. Therefore, the generation of reactive oxygen species was investigated in three soil horizons of varied soil organic carbon content over 5-day TOD testing. Hydroxyl radical may have been generated during TOD exertion, but was likely scavenged by soil organic matter. A high flux of reductants + nucleophiles (e.g. alkyl radicals + superoxide) was generated as TOD was exerted, resulting in the rapid destruction of the probe compound hexachloroethane and the common groundwater contaminant trichloroethylene (TCE). The results of this research document that, unlike permanganate TOD, contaminant destruction does occur as TOD is exerted in persulfate ISCO systems and is promoted by the activation of persulfate by soil organic matter. Future treatability studies for persulfate ISCO should consider contaminant destruction as TOD is exerted, and the potential for persulfate activation by soil organic matter. PMID:27269993

  4. Perceived exertion and the field-independence--dependence dimension.

    Science.gov (United States)

    Robertson, R J; Gillespie, R L; McCarthy, J; Rose, K D

    1978-04-01

    Perceived exertion responses were compared between field-independent and field-dependent perceivers at three cycle-ergometer pedalling rates. 50 male subjects were classified according to mode of field approach on the basis of their performance on an embedded-figures test. Power output was held constant at 840 kpm/min., while pedalling rate was randomly set at 40, 60, or 80 rpm. Significant differences between the field-independent and -dependent groups were not found at the three pedalling rates for any of the physiological variables or for over-all, legs and chest ratings of perceived exertion. The extent of differentiated psychological functioning did not account for individual differences in perceptual reactance during muscular exertion. PMID:662550

  5. Weakly Dual Rings

    Institute of Scientific and Technical Information of China (English)

    魏俊潮; 孙建华

    2004-01-01

    In This paper, the concept of weakly dual ring is introduced, which is a proper generalization of the dual ring. If R is a right weakly dual ring, then (1)Z(RR) = J(R); (2) If R is also a zero-division power ring, then R is a right AP-injective ring. In addition, some properties of weakly dual rings are given.

  6. A dual egalitarian solution

    OpenAIRE

    2001-01-01

    In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is the natural counterpart of the egalitarian solution of Dutta and Ray (1989). We prove, among others, that for a convex game the egalitarian solution coincides with the dual egalitarian solution for its dual concave game.

  7. A Dual Egalitarian Solution

    OpenAIRE

    Klijn, F.; Slikker, M.; Tijs, S.H.

    2000-01-01

    In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is the natural counterpart of the egalitarian solution of Dutta and Ray (1989).We prove, among others, that for a convex game the egalitarian solution coincides with the dual egalitarian solution for its dual concave game.

  8. SOME DUAL KINEMATIC FORMULAS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, some kinematic formulas for dual quermassintegral of star bodies and for chord power integrals of convex bodies are established by using dual mixed volumes. These formulas are the extensions of the fundamental kinematic formula involving quermassintegral to the case of dual quermassintegral and chord power integrals.

  9. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    Science.gov (United States)

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  10. In vivo correction of COX deficiency by activation of the AMPK/PGC-1α axis.

    Science.gov (United States)

    Viscomi, Carlo; Bottani, Emanuela; Civiletto, Gabriele; Cerutti, Raffaele; Moggio, Maurizio; Fagiolari, Gigliola; Schon, Eric A; Lamperti, Costanza; Zeviani, Massimo

    2011-07-01

    Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1(-/-) and Cox15(-/-) mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2(KO/KI) mouse. These results open new perspectives for therapy of mitochondrial disease. PMID:21723506

  11. The AMPK-related kinase SNARK regulates muscle mass and myocyte survival

    Science.gov (United States)

    Lessard, Sarah J.; Rivas, Donato A.; So, Kawai; Koh, Ho-Jin; Queiroz, André Lima; Hirshman, Michael F.; Fielding, Roger A.; Goodyear, Laurie J.

    2015-01-01

    The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age. PMID:26690705

  12. The AMPK-related kinase SNARK regulates muscle mass and myocyte survival.

    Science.gov (United States)

    Lessard, Sarah J; Rivas, Donato A; So, Kawai; Koh, Ho-Jin; Queiroz, André Lima; Hirshman, Michael F; Fielding, Roger A; Goodyear, Laurie J

    2016-02-01

    The maintenance of skeletal muscle mass is critical for sustaining health; however, the mechanisms responsible for muscle loss with aging and chronic diseases, such as diabetes and obesity, are poorly understood. We found that expression of a member of the AMPK-related kinase family, the SNF1-AMPK-related kinase (SNARK, also known as NUAK2), increased with muscle cell differentiation. SNARK expression increased in skeletal muscles from young mice exposed to metabolic stress and in muscles from healthy older human subjects. The regulation of SNARK expression in muscle with differentiation and physiological stress suggests that SNARK may function in the maintenance of muscle mass. Consistent with this hypothesis, decreased endogenous SNARK expression (using siRNA) in cultured muscle cells resulted in increased apoptosis and decreased cell survival under conditions of metabolic stress. Likewise, muscle-specific transgenic animals expressing a SNARK dominant-negative inactive mutant (SDN) had increased myonuclear apoptosis and activation of apoptotic mediators in muscle. Moreover, animals expressing SDN had severe, age-accelerated muscle atrophy and increased adiposity, consistent with sarcopenic obesity. Reduced SNARK activity, in vivo and in vitro, caused downregulation of the Rho kinase signaling pathway, a key mediator of cell survival. These findings reveal a critical role for SNARK in myocyte survival and the maintenance of muscle mass with age. PMID:26690705

  13. Compound 13, an α1-selective small molecule activator of AMPK, inhibits Helicobacter pylori-induced oxidative stresses and gastric epithelial cell apoptosis.

    Science.gov (United States)

    Zhao, Hangyong; Zhu, Huanghuang; Lin, Zhou; Lin, Gang; Lv, Guoqiang

    2015-08-01

    Half of the world's population experiences Helicobacter pylori (H. pylori) infection, which is a main cause of gastritis, duodenal and gastric ulcer, and gastric cancers. In the current study, we investigated the potential role of compound 13 (C13), a novel α1-selective small molecule activator of AMP-activated protein kinase (AMPK), against H. pylori-induced cytotoxicity in cultured gastric epithelial cells (GECs). We found that C13 induced significant AMPK activation, evidenced by phosphorylation of AMPKα1 and ACC (acetyl-CoA carboxylase), in both primary and transformed GECs. Treatment of C13 inhibited H. pylori-induced GEC apoptosis. AMPK activation was required for C13-mediated GEC protection. Inhibition of AMPK kinase activity by the AMPK inhibitor Compound C, or silencing AMPKα1 expression by targeted-shRNAs, alleviated C13-induced GEC protective activities against H. pylori. Significantly, C13 inhibited H. pylori-induced reactive oxygen species (ROS) production in GECs. C13 induced AMPK-dependent expression of anti-oxidant gene heme oxygenase (HO-1) in GECs. Zinc protoporphyrin (ZnPP) and tin protoporphyrin (SnPP), two HO-1 inhibitors, not only suppressed C13-mediated ROS scavenging activity, but also alleviated its activity in GECs against H. pylori. Together, these results indicate that C13 inhibits H. pylori-induced ROS production and GEC apoptosis through activating AMPK-HO-1 signaling. PMID:26022128

  14. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with a

  15. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα.

    Science.gov (United States)

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Rosa Dufour, Catherine; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-05-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  16. The energy sensor AMPK regulates Hedgehog signaling in human cells through a unique Gli1 metabolic checkpoint

    Science.gov (United States)

    Di Magno, Laura; Basile, Alessio; Coni, Sonia; Manni, Simona; Sdruscia, Giulia; D'Amico, Davide; Antonucci, Laura; Infante, Paola; De Smaele, Enrico; Cucchi, Danilo; Ferretti, Elisabetta; Di Marcotullio, Lucia; Screpanti, Isabella; Canettieri, Gianluca

    2016-01-01

    Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs) and its aberrant activation is a leading cause of Medulloblastoma, the most frequent pediatric brain tumor. We show here that the energy sensor AMPK inhibits Hh signaling by phosphorylating a single residue of human Gli1 that is not conserved in other species. Studies with selective agonists and genetic deletion have revealed that AMPK activation inhibits canonical Hh signaling in human, but not in mouse cells. Indeed we show that AMPK phosphorylates Gli1 at the unique residue Ser408, which is conserved only in primates but not in other species. Once phosphorylated, Gli1 is targeted for proteasomal degradation. Notably, we show that selective AMPK activation inhibits Gli1-driven proliferation and that this effect is linked to Ser408 phosphorylation, which represents a key metabolic checkpoint for Hh signaling. Collectively, this data unveil a novel mechanism of inhibition of Gli1 function, which is exclusive for human cells and may be exploited for the treatment of Medulloblastoma or other Gli1 driven tumors. PMID:26843621

  17. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade.

    Science.gov (United States)

    Shang, Fenqing; Zhang, Jiao; Li, Zhao; Zhang, Jin; Yin, Yanjun; Wang, Yaqiong; Marin, Traci L; Gongol, Brendan; Xiao, Han; Zhang, You-Yi; Chen, Zhen; Shyy, John Y-J; Lei, Ting

    2016-01-01

    Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose) polymerase 1 (PARP1). Biguanides and angiotensin II receptor blockers (ARBs) such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs), diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK) phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosyl)ation (PARylation), but increased endothelial nitric oxide synthase (eNOS) activity and silent mating type information regulation 2 homolog 1 (SIRT1) expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction. PMID:26986624

  18. Cardiovascular Protective Effect of Metformin and Telmisartan: Reduction of PARP1 Activity via the AMPK-PARP1 Cascade.

    Directory of Open Access Journals (Sweden)

    Fenqing Shang

    Full Text Available Hyperglycemia and hypertension impair endothelial function in part through oxidative stress-activated poly (ADP-ribose polymerase 1 (PARP1. Biguanides and angiotensin II receptor blockers (ARBs such as metformin and telmisartan have a vascular protective effect. We used cultured vascular endothelial cells (ECs, diabetic and hypertensive rodent models, and AMPKα2-knockout mice to investigate whether metformin and telmisartan have a beneficial effect on the endothelium via AMP-activated protein kinase (AMPK phosphorylation of PARP1 and thus inhibition of PARP1 activity. The results showed that metformin and telmisartan, but not glipizide and metoprolol, activated AMPK, which phosphorylated PARP1 Ser-177 in cultured ECs and the vascular wall of rodent models. Experiments using phosphorylated/de-phosphorylated PARP1 mutants show that AMPK phosphorylation of PARP1 leads to decreased PARP1 activity and attenuated protein poly(ADP-ribosylation (PARylation, but increased endothelial nitric oxide synthase (eNOS activity and silent mating type information regulation 2 homolog 1 (SIRT1 expression. Taken together, the data presented here suggest biguanides and ARBs have a beneficial effect on the vasculature by the cascade of AMPK phosphorylation of PARP1 to inhibit PARP1 activity and protein PARylation in ECs, thereby mitigating endothelial dysfunction.

  19. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance

    Science.gov (United States)

    Sayers, Sophie R.; Reimann, Frank; Gribble, Fiona M.; Parker, Helen; Zac-Varghese, Sagen; Bloom, Stephen R.; Foretz, Marc; Viollet, Benoit; Rutter, Guy A.

    2016-01-01

    Background Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1) in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK) in these cells. Method Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre) to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay. Results Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01) in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01) and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01) GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01). Conclusion AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes. PMID:27010458

  20. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  1. Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation.

    Directory of Open Access Journals (Sweden)

    Ying Li

    Full Text Available Adiponectin and miR-133a are key regulators in cardiac hypertrophy. However, whether APN has a potential effect on miR-133a remains unclear. In this study, we aimed to investigate whether APN could regulate miR-133a expression in Angiotensin II (Ang II induced cardiac hypertrophy in vivo and in vitro. Lentiviral-mediated adiponectin treatment attenuated cardiac hypertrophy induced by Ang II infusion in male wistar rats as determined by reduced cell surface area and mRNA levels of atrial natriuretic peptide (ANF and brain natriuretic peptide (BNP, also the reduced left ventricular end-diastolic posterior wall thickness (LVPWd and end-diastolic interventricular septal thickness (IVSd. Meanwhile, APN elevated miR-133a level which was downregulated by Ang II. To further investigate the underlying molecular mechanisms, we treated neonatal rat ventricular myocytes (NRVMs with recombinant rat APN before Ang II stimulation. Pretreating cells with recombinant APN promoted AMP-activated protein kinase (AMPK phosphorylation and inhibited ERK activation. By using the inhibitor of AMPK or a lentiviral vector expressing AMPK short hairpin RNA (shRNA cancelled the positive effect of APN on miR-133a. The ERK inhibitor PD98059 reversed the downregulation of miR-133a induced by Ang II. These results indicated that the AMPK activation and ERK inhibition were responsible for the positive effect of APN on miR-133a. Furthermore, adiponectin receptor 1 (AdipoR1 mRNA expression was inhibited by Ang II stimulation. The positive effects of APN on AMPK activation and miR-133a, and the inhibitory effect on ERK phosphorylation were inhibited in NRVMs transfected with lentiviral AdipoR1shRNA. In addition, APN depressed the elevated expression of connective tissue growth factor (CTGF, a direct target of miR-133a, through the AMPK pathway. Taken together, our data indicated that APN reversed miR-133a levels through AMPK activation, reduced ERK1/2 phosphorylation in

  2. Measurement and Relation between Received and Exerted Violence against Partner

    Directory of Open Access Journals (Sweden)

    José Moral de la Rubia

    2014-07-01

    Full Text Available A female victimization model is often assumed in the study of couple violence, even in general population. In Mexico, a questionnaire of couple violence has been developed. This instrument evaluates suffered and exerted violence. The aims of this paper were to contrast the factor structure of this questionnaire, calculate its internal consistency, describe its distributions, compare means of violence between both sexes and between persons who live or not with their partners, and study the relationship between received and exerted violence. A non-experimental research with a trans-sectional design was performed. The questionnaire was applied to a non probability sample of 223 women and 177 men with heterosexual couples from general population. Confirmatory factor analysis and structural equation modeling were used for data analysis. The factor structure of received violence scale was one-dimensional, and the one of exerted violence scale was two-dimensional. Both sexes reported to exert violence with the same frequency, but men complained to receive violence with more frequency than women. Persons who live with their partners reported to receive more violence and to exert more non-psychological violence than persons who do not live with their partners. The correlations between received and exercised violence were moderate. A recursive model of violent reaction showed a fit to data from good to adequate, and had good properties of invariance between both sexes, and between persons who live or not with their partners. It is concluded that the questionnaire has good properties of factor structure and internal consistency, and data refute a model of female victimization.

  3. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Sylow, Lykke; Rose, Adam John; Madsen, Agnete Louise Bjerregaard; Angin, Yeliz; Maarbjerg, Stine J; Richter, Erik

    2014-01-01

    signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca(2+) release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress......-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport...

  4. The Effects of Altitude Training on the AMPK-Related Glucose Transport Pathway in the Red Skeletal Muscle of Both Lean and Obese Zucker Rats

    OpenAIRE

    Chen, Yu-Ching; Lee, Shin-Da; Kuo, Cha-Hua; Ho, Low-Tone

    2011-01-01

    Chen, Yu-Ching, Shin-Da Lee, Cha-Hua Kuo, and Low-Tone Ho. The effects of altitude training on the AMPK-related glucose transport pathway in the red skeletal muscle of both lean and obese Zucker rats. High Alt. Med. Biol. 12:371–378.—Introduction: The skeletal muscle AMP-activated protein kinase (AMPK)-related glucose transport pathway is involved in glucose homeostasis. Aim: In this study, we examined whether obese control Zucker rats had abnormal expression of proteins in the LKB1-AMPK-AS16...

  5. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23 Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shimoda

    Full Text Available Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23 is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.

  6. Astragalus polysaccharide stimulates glucose uptake in L6 myotubes through AMPK activation and AS160/TBC1D4 phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jian LIU; Si-tu YANG; Lang BU; Jing-ping OU-YANG; Jing-fang ZHANG; Jin-zhi LU; De-ling ZHANG; Ke LI; Ke SU; Jing WANG; Ye-min ZHANG; Nian WANG

    2013-01-01

    Aim:To establish the mechanism responsible for the stimulation of glucose uptake by Astragalus polysaccharide (APS),extracted from Astragalus membranaceus Bunge,in L6 myotubes in vitro.Methods:APS-stimulated glucose uptake in L6 myotubes was measured using the 2-deoxy-[3H]-D-glucose method.The adenine nucleotide contents in the cells were measured by HPLC.The phosphorylation of AMP-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) was examined using Western blot analysis.The cells transfected with 4P mutant AS160 (AS160-4P) were constructed using gene transfer approach.Results:Treatment of L6 myotubes with APS (100-1600 μg/mL) significantly increased glucose uptake in time-and concentration-dependent manners.The maximal glucose uptake was reached in the cells treated with APS (400 μg/mL) for 36 h.The APS-stimulated glucose uptake was significantly attenuated by pretreatment with Compound C,a selective AMPK inhibitor or in the cells overexpressing AS160-4P.Treatment of L6 myotubes with APS strongly promoted the activation of AMPK.We further demonstrated that either Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) or liver kinase B1 (LKB1) mediated APS-induced activation of AMPK in L6 myotubes,and the increased cellular AMP:ATP ratio was also involved.Treatment of L6 myotubes with APS robustly enhanced the phosphorylation of AS160,which was significantly attenuated by pretreatment with Compound C.Conclusion:Our results demonstrate that APS stimulates glucose uptake in L6 myotubes through the AMP-AMPK-AS160 pathway,which may contribute to its hypoglycemic effect.

  7. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways.

    Science.gov (United States)

    Chiang, Po-Cheng; Lin, Ssu-Chia; Pan, Shiow-Lin; Kuo, Ching-Hua; Tsai, I-Lin; Kuo, Mao-Tien; Wen, Wu-Che; Chen, Peini; Guh, Jih-Hwa

    2010-01-15

    5'AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are two serine/threonine protein kinases responsible for cellular energy homeostasis and translational control, respectively. Evidence suggests that these two kniases are potential targets for cancer chemotherapy against hepatocellular carcinoma (HCC). Antroquinonol that is isolated from Antrodia camphorate, a well-known Traditional Chinese Medicine for treatment of liver diseases, displayed effective anticancer activity against both HBV DNA-positive and -negative HCC cell lines. The rank order of potency against HCCs is HepG2>HepG2.2.15>Mahlavu>PLC/PRF/5>SK-Hep1>Hep3B. Antroquinonol completely abolished cell-cycle progression released from double-thymidine-block synchronization and caused a subsequent apoptosis. The data were supported by down-regulation and reduced nuclear translocation of G1-regulator proteins, including cyclin D1, cyclin E, Cdk4 and Cdk2. Further analysis showed that the mRNA expressions of the G1-regulator proteins were not modified by antroquinonol, indicating an inhibition of translational but not transcriptional levels. Antroquinonol induced the assembly of tuberous sclerosis complex (TSC)-1/TSC2, leading to the blockade of cellular protein synthesis through inhibition of protein phosphorylation including mTOR (Ser(2448)), p70(S6K) (Thr(421)/Ser(424) and Thr(389)) and 4E-BP1 (Thr(37)/Thr(46) and Thr(70)). Furthermore, the AMPK activity was elevated by antroquinonol. Compound C, a selective AMPK inhibitor, significantly reversed antroquinonol-mediated effects suggesting the crucial role of AMPK. Besides, the loss of mitochondrial membrane potential and depletion of mitochondrial content indicated the mitochondrial stress caused by antroquinonol. In summary, the data suggest that antroquinonol displays anticancer activity against HCCs through AMPK activation and inhibition of mTOR translational pathway, leading to G1 arrest of the cell-cycle and subsequent cell

  8. Chronic stress-induced memory deficits are reversed by regular exercise via AMPK-mediated BDNF induction.

    Science.gov (United States)

    Kim, D-M; Leem, Y-H

    2016-06-01

    Chronic stress has a detrimental effect on neurological insults, psychiatric deficits, and cognitive impairment. In the current study, chronic stress was shown to impair learning and memory functions, in addition to reducing in hippocampal Adenosine monophosphate-activated protein kinase (AMPK) activity. Similar reductions were also observed for brain-derived neurotrophic factor (BDNF), synaptophysin, and post-synaptic density-95 (PSD-95) levels, all of which was counter-regulated by a regime of regular and prolonged exercise. A 21-day restraint stress regimen (6 h/day) produced learning and memory deficits, including reduced alternation in the Y-maze and decreased memory retention in the water maze test. These effects were reversed post-administration by a 3-week regime of treadmill running (19 m/min, 1 h/day, 6 days/week). In hippocampal primary culture, phosphorylated-AMPK (phospho-AMPK) and BDNF levels were enhanced in a dose-dependent manner by 5-amimoimidazole-4-carboxamide riboside (AICAR) treatment, and AICAR-treated increase was blocked by Compound C. A 7-day period of AICAR intraperitoneal injections enhanced alternation in the Y-maze test and reduced escape latency in water maze test, along with enhanced phospho-AMPK and BDNF levels in the hippocampus. The intraperitoneal injection of Compound C every 4 days during exercise intervention diminished exercise-induced enhancement of memory improvement during the water maze test in chronically stressed mice. Also, chronic stress reduced hippocampal neurogenesis (lower Ki-67- and doublecortin-positive cells) and mRNA levels of BDNF, synaptophysin, and PSD-95. Our results suggest that regular and prolonged exercise can alleviate chronic stress-induced hippocampal-dependent memory deficits. Hippocampal AMPK-engaged BDNF induction is at least in part required for exercise-induced protection against chronic stress. PMID:26975895

  9. Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts.

    Science.gov (United States)

    Klein, Janet D; Wang, Yanhua; Blount, Mitsi A; Molina, Patrick A; LaRocque, Lauren M; Ruiz, Joseph A; Sands, Jeff M

    2016-05-15

    Nephrogenic diabetes insipidus (NDI) is characterized by production of very large quantities of dilute urine due to an inability of the kidney to respond to vasopressin. Congenital NDI results from mutations in the type 2 vasopressin receptor (V2R) in ∼90% of families. These patients do not have mutations in aquaporin-2 (AQP2) or urea transporter UT-A1 (UT-A1). We tested adenosine monophosphate kinase (AMPK) since it is known to phosphorylate another vasopressin-sensitive transporter, NKCC2 (Na-K-2Cl cotransporter). We found AMPK expressed in rat inner medulla (IM). AMPK directly phosphorylated AQP2 and UT-A1 in vitro. Metformin, an AMPK activator, increased phosphorylation of both AQP2 and UT-A1 in rat inner medullary collecting ducts (IMCDs). Metformin increased the apical plasma membrane accumulation of AQP2, but not UT-A1, in rat IM. Metformin increased both osmotic water permeability and urea permeability in perfused rat terminal IMCDs. These findings suggest that metformin increases osmotic water permeability by increasing AQP2 accumulation in the apical plasma membrane but increases urea permeability by activating UT-A1 already present in the membrane. Lastly, metformin increased urine osmolality in mice lacking a V2R, a mouse model of congenital NDI. We conclude that AMPK activation by metformin mimics many of the mechanisms by which vasopressin increases urine-concentrating ability. These findings suggest that metformin may be a novel therapeutic option for congenital NDI due to V2R mutations. PMID:26962099

  10. Environmental and genetic preconditioning for long-term anoxia responses requires AMPK in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Bobby L LaRue

    Full Text Available BACKGROUND: Preconditioning environments or therapeutics, to suppress the cellular damage associated with severe oxygen deprivation, is of interest to our understanding of diseases associated with oxygen deprivation. Wildtype C. elegans exposed to anoxia enter into a state of suspended animation in which energy-requiring processes reversibly arrest. C. elegans at all developmental stages survive 24-hours of anoxia exposure however, the ability of adult hermaphrodites to survive three days of anoxia significantly decreases. Mutations in the insulin-like signaling receptor (daf-2 and LIN-12/Notch (glp-1 lead to an enhanced long-term anoxia survival phenotype. METHODOLOGY/PRINCIPAL FINDINGS: In this study we show that the combined growth environment of 25°C and a diet of HT115 E. coli will precondition adult hermaphrodites to survive long-term anoxia; many of these survivors have normal movement after anoxia treatment. Animals fed the drug metformin, which induces a dietary-restriction like state in animals and activates AMPK in mammalian cell culture, have a higher survival rate when exposed to long-term anoxia. Mutations in genes encoding components of AMPK (aak-2, aakb-1, aakb-2, aakg-2 suppress the environmentally and genetically induced long-term anoxia survival phenotype. We further determine that there is a correlation between the animals that survive long-term anoxia and increased levels of carminic acid staining, which is a fluorescent dye that incorporates in with carbohydrates such as glycogen. CONCLUSIONS/SIGNIFICANCE: We conclude that small changes in growth conditions such as increased temperature and food source can influence the physiology of the animal thus affecting the responses to stress such as anoxia. Furthermore, this supports the idea that metformin should be further investigated as a therapeutic tool for treatment of oxygen-deprived tissues. Finally, the capacity for an animal to survive long bouts of severe oxygen

  11. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  12. Measurement and Relation between Received and Exerted Violence against Partner

    OpenAIRE

    Moral de la Rubia, José; López Rosales, Fuensanta

    2014-01-01

    A female victimization model is often assumed in the study of couple violence, even in general population. In Mexico, a questionnaire of couple violence has been developed. This instrument evaluates suffered and exerted violence. The aims of this paper were to contrast the factor structure of this questionnaire, calculate its internal consistency, describe its distributions, compare means of violence between both sexes and between persons who live or not with their partners, and study the rel...

  13. NEBIVOLOL IN TREATMENT OF STABLE EXERTIONAL ANGINA PECTORIS

    OpenAIRE

    Gavrilov, Y V; V. A. Sulimov; V. I. Makolkin

    2015-01-01

    Aim. To evaluate antianginal and antiischemic efficiency of nebivolol in patients with stable angina pectoris.Material and methods. 100 patients with ischemic heart disease showing stable exertional angina pectoris and having no contraindications to beta-blockers were studied. After 5-7 days of control period 50 randomly selected patients began to take nebivolol in initial dose of 5mg once daily and 50 patients started to take metoprolol in initial dose of 50 mg twice daily. Duration of treat...

  14. Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation

    Institute of Scientific and Technical Information of China (English)

    Yong-nan FU; Han XIAO; Xiao-wei MA; Sheng-yang JIANG; Ming XU; You-yi ZHANG

    2011-01-01

    Aim: To identify the role of metformin in cardiac hypertrophy and investigate the possible mechanism underlying this effect.Methods: Wild type and AMPKα2 knockout (AMPKα2-/-) littermates were subjected to left ventricular pressure overload caused by evaluated using echocardiography and anatomic and histological methods. The antihypertrophic mechanism of metformin was analyzed using Western blotting.Results: Metformin significantly attenuated cardiac hypertrophy induced by pressure overload in wild type mice, but the antihypertrophic actions of metformin were ablated in AMPKx2-/- mice. Furthermore, metformin suppressed the phosphorylation of Akt/protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in response to pressure overload in wild type mice, but not in AMPKα2-/-mice.Conclusion: Long-term administration of metformin may attenuate cardiac hypertrophy induced by pressure overload in nondiabetic mice, and this attenuation is highly dependent on AMPK activation. These findings may provide a potential therapy for patients at risk of developing pathological cardiac hypertrophy.

  15. Exercise, physical activity, and exertion over the business cycle.

    Science.gov (United States)

    Colman, Gregory; Dave, Dhaval

    2013-09-01

    Shifts in time and income constraints over economic expansions and contractions would be expected to affect individuals' behaviors. We explore the impact of the business cycle on individuals' exercise, time use, and total physical exertion, utilizing information on 112,000 individual records from the 2003-2010 American Time Use Surveys. In doing so, we test a key causal link that has been hypothesized in the relation between unemployment and health, but not heretofore assessed. Using more precise measures of exercise (and other activities) than previous studies, we find that as work-time decreases during a recession, recreational exercise, TV-watching, sleeping, childcare, and housework increase. This, however, does not compensate for the decrease in work-related exertion due to job-loss, and total physical exertion declines. These effects are strongest among low-educated men, which is validating given that employment in the Great Recession has declined most within manufacturing, mining, and construction. We also find evidence of intra-household spillover effects, wherein individuals respond to shifts in spousal employment conditional on their own labor supply. The decrease in total physical activity during recessions is especially problematic for vulnerable populations concentrated in boom-and-bust industries, and may have longer-term effects on obesity and related health outcomes. PMID:23906116

  16. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang

    2011-09-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  17. Dual Income Taxes

    DEFF Research Database (Denmark)

    Sørensen, Peter Birch

    This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part of the...... paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....

  18. Molecular signalling pathways involved in AMPK-mediated neuronal preconditioning and optimisation of a high content screening assay to monitor excitotoxic neuronal death.

    OpenAIRE

    Kumar, Ujval A

    2013-01-01

    Neuronal preconditioning is a phenomenon where a previous exposure to a sublethal stress stimulus increases the resistance of neurons towards a second, normally lethal stress stimulus. Activation of the energy stress sensor, AMP-activated protein kinase (AMPK) has been shown to contribute to the protective effects of ischemic and mitochondrial uncoupling-induced preconditioning in neurons, however the molecular basis of AMPK-mediated preconditioning have been less well characterised. First...

  19. Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism.

    Science.gov (United States)

    Møller, Lisbeth L V; Sylow, Lykke; Gøtzsche, Casper R; Serup, Annette K; Christiansen, Søren H; Weikop, Pia; Kiens, Bente; Woldbye, David P D; Richter, Erik A

    2016-10-01

    It is well known that physical activity has several health benefits, yet many people do not exercise. Dopamine levels in the striatum of the brain are thought to be important for the motivation to exercise. Conversely, we hypothesized that muscle quality can affect the motivation to exercise through alterations of the brain dopamine levels specifically in the striatal region. To test this hypothesis, transgenic mice overexpressing an inactivatable dominant negative α2 AMPK construct (AMPK α2 KD) in muscles and littermate wildtype (WT) mice were tested. AMPK α2 KD mice have impaired running capacity and display reduced voluntary wheel running activity. Striatal content of dopamine and its metabolites were measured under basal physiological conditions and after cocaine-induced dopamine efflux from the ventral striatum by in vivo microdialysis. Moreover, cocaine-induced locomotor activity was tested in an open field test. Furthermore, we investigated maximal running capacity and voluntary running over a period of 19days. AMPK α2 KD mice ran 30% less in daily distance compared to WT. Furthermore, AMPK α2 KD mice showed significantly decreased locomotor activity in the open field test compared to WT when treated with saline or cocaine, respectively, but the increase induced by cocaine was similar in AMPK α2 KD and WT mice. The efflux of dopamine in ventral striatum after cocaine treatment increased similarly by 2.5-fold in the two genotypes, and basal levels of dopamine and its metabolites DOPAC and HVA were also similar between genotypes. These findings show that decreased AMPK activity in muscle leads to decreased voluntary activity which is not due to secondary abnormalities in dopamine levels in the ventral striatum or sensitivity to cocaine. Thus, decreased voluntary activity in AMPK muscle deficient mice is most likely unrelated to regulation of brain dopamine content and metabolism. PMID:27306083

  20. The effect of an intracerebroventricular injection of metformin or AICAR on the plasma concentrations of melatonin in the ewe: potential involvement of AMPK?

    Directory of Open Access Journals (Sweden)

    Collet Armelle

    2011-07-01

    Full Text Available Abstract Background It is now widely accepted that AMP-activated protein kinase (AMPK is a critical regulator of energy homeostasis. Recently, it has been shown to regulate circadian clocks. In seasonal breeding species such as sheep, the circadian clock controls the secretion of an endogenous rhythm of melatonin and, as a consequence, is probably involved in the generation of seasonal rhythms of reproduction. Considering this, we identified the presence of the subunits of AMPK in different hypothalamic nuclei involved in the pre- and post-pineal pathways that control seasonality of reproduction in the ewe and we investigated if the intracerebroventricular (i.c.v. injection of two activators of AMPK, metformin and AICAR, affected the circadian rhythm of melatonin in ewes that were housed in constant darkness. In parallel the secretion of insulin was monitored as a peripheral metabolic marker. We also investigated the effects of i.c.v. AICAR on the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC, a downstream target of AMPK, in brain structures along the photoneuroendocrine pathway to the pineal gland. Results All the subunits of AMPK that we studied were identified in all brain areas that were dissected but with some differences in their level of expression among structures. Metformin and AICAR both reduced (p Conclusions Taken together, these results suggest a potential role for AMPK on the secretion of melatonin probably acting trough the paraventricular nucleus and/or directly in the pineal gland. We conclude that AMPK may act as a metabolic cue to modulate the rhythm of melatonin secretion.

  1. Resveratrol Inhibition of Rac1-Derived Reactive Oxygen Species by AMPK Decreases Blood Pressure in a Fructose-Induced Rat Model of Hypertension

    Science.gov (United States)

    Cheng, Pei-Wen; Lee, Hui-Chieh; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Lin, Yu-Te; Liu, Chun-Peng; Tseng, Ching-Jiunn

    2016-01-01

    Recent studies have reported that the activation of AMP-activated protein kinase (AMPK) suppressed oxidative stress. The aim of this study was to examine whether the activation of AMPK in the brain decreased Rac1-induced ROS generation, thereby reducing blood pressure (BP) in rats with fructose-induced hypertension. The inhibition of ROS by treatment with an AMPK activator (oral resveratrol, 10 mg/kg/day) for 1 week decreased the BP and increased the NO production in the rostral ventrolateral medulla (RVLM) of fructose-fed rats but not in control Wistar-Kyoto (WKY) rats. In addition, resveratrol treatment abolished the Rac1-induced increases in the activity of the NADPH oxidase subunits p22-phox and reduced the activity of SOD2, while treatment with an AMPK inhibitor (compound C, 40 μM/day) had the opposite effect, in the fructose-fed rats. Interestingly, the activation of AMPK abolished Rac1 activation and decreased BP by inducing the activities of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and ribosomal protein S6 kinase (RSK) and nNOS phosphorylation in the fructose-fed rats. We conclude that the activation of AMPK decreased BP, abolished ROS generation, and enhanced ERK1/2-RSK-nNOS pathway activity by negatively regulating Racl-induced NADPH oxidase levels in the RVLM during oxidative stress–associated hypertension. PMID:27138844

  2. AMPK-Activated Protein Kinase Suppresses Ccr2 Expression by Inhibiting the NF-κB Pathway in RAW264.7 Macrophages

    Science.gov (United States)

    Kumase, Fumiaki; Takeuchi, Kimio; Morizane, Yuki; Suzuki, Jun; Matsumoto, Hidetaka; Kataoka, Keiko; Al-Moujahed, Ahmad; Maidana, Daniel E.; Miller, Joan W.; Vavvas, Demetrios G.

    2016-01-01

    C-C chemokine receptor 2 (Ccr2) is a key pro-inflammatory marker of classic (M1) macrophage activation. Although Ccr2 is known to be expressed both constitutively and inductively, the full regulatory mechanism of its expression remains unclear. AMP-activated protein kinase (AMPK) is not only a master regulator of energy homeostasis but also a central regulator of inflammation. In this study, we sought to assess AMPK’s role in regulating RAW264.7 macrophage Ccr2 protein levels in resting (M0) or LPS-induced M1 states. In both M0 and M1 RAW264.7 macrophages, knockdown of the AMPKα1 subunit by siRNA led to increased Ccr2 levels whereas pharmacologic (A769662) activation of AMPK, attenuated LPS-induced increases in Ccr2 expression in an AMPK dependent fashion. The increases in Ccr2 levels by AMPK downregulation were partially reversed by NF-κB inhibition whereas TNF-a inhibition had minimal effects. Our results indicate that AMPK is a negative regulator of Ccr2 expression in RAW264.7 macrophages, and that the mechanism of action of AMPK inhibition of Ccr2 is mediated, in part, through the NF-κB pathway. PMID:26799633

  3. Research on Dual Control

    Institute of Scientific and Technical Information of China (English)

    Duan Li; Fucai Qian; Peilin Fu

    2005-01-01

    This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.

  4. Pressure exerted by a grafted polymer: Bethe lattice solution

    Science.gov (United States)

    Mynssem Brum, Rafael; Stilck, Jürgen F.

    2015-01-01

    We solve the problem of a chain, modeled as a self-avoiding walk (SAW), grafted to the wall limiting a semi-infinite Bethe lattice of arbitrary coordination number q. In particular, we determine the pressure exerted by the polymer on the wall, as a function of the distance to the grafting point. The pressure, in general, decays exponentially with the distance, at variance with what is found for SAWs and directed walks on regular lattices and gaussian walks. The adsorption transition, which is discontinuous, and its influence on the pressure are also studied.

  5. Metal Ion Effect on BOD Exertion at Different Temperatures

    OpenAIRE

    Ajay Sharma; Siloni Goel; SUSHEEL K. MITTAL

    2004-01-01

    The toxic effect of metal ions like chromium (Cr3+), cobalt (Co2+), nickel (Ni2+), copper (Cu2+), cadmium (Cd2+) and lead (Pb2+) on biochemical oxygen demand (BOD) of synthetic wastewater samples has been studied at different temperatures i.e., 15°C, 20°C, 25°C and 30°C. Experiments were conducted for BOD exertion in presence (10 ppm of each metal ion) and in the absence of metal ions at different temperatures. Transition metal ions like Cr3+, Co2+, Ni2+ and Cu2+ show an increase ...

  6. Autophagy facilitates lung adenocarcinoma resistance to cisplatin treatment by activation of AMPK/mTOR signaling pathway

    Science.gov (United States)

    Wu, Tao; Wang, Min-Cong; Jing, Li; Liu, Zhi-Yan; Guo, Hui; Liu, Ying; Bai, Yi-Yang; Cheng, Yang-Zi; Nan, Ke-Jun; Liang, Xuan

    2015-01-01

    Resistance to cisplatin-based therapy is a major challenge in the control of lung cancer progression. However, the underlying mechanisms remain largely unclear. Autophagy is closely associated with resistance to lung cancer therapy, but the function of autophagy in cisplatin treatment is still controversial. Here, we investigated whether autophagy was involved in lung adenocarcinoma resistance to cisplatin and further elucidated the underlying molecular mechanisms. Cisplatin-refractory lung adenocarcinoma cells increased autophagic vacuole formation detected by monodansylcadaverine staining. When exposed to cisplatin, lung adeno-carcinoma cells demonstrated increased levels of autophagy detected by MAP1A/1B LC3B and mammalian homologue of yeast Atg6 (Beclin-1) expression using Western blot analysis. Activation of cisplatin-induced autophagic flux was increased by using chloroquine (CQ), which can accumulate LC3B-II protein and increase punctate distribution of LC3B localization. The combination of cisplatin with CQ was more potent than cisplatin alone in inhibiting lung adenocarcinoma cell growth, which also increased cisplatin-induced apoptosis. Compared to cisplatin treatment alone, the combination of cisplatin and CQ decreased p-AMPK and increased p-mTOR protein expressions, in addition, the AMPK inhibitor Compound C plus cisplatin downregulated p-AMPK and upregulated p-mTOR as well as depressed LC3B cleavage. These findings demonstrate that activation of autophagy is a hallmark of cisplatin exposure in human lung adenocarcinoma cells, and that there is a cisplatin-induced autophagic response via activation of the AMPK/mTOR signaling pathway. We speculate that autophagy can be used as a novel therapeutic target to overcome cisplatin-resistant lung adenocarcinoma. PMID:26715839

  7. G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Feng Li

    Full Text Available G9a has been reported to highly express in bladder transitional cell carcinoma (TCC and G9a inhibition significantly attenuates cell proliferation, but the underlying mechanism is not fully understood. The present study aimed at examining the potential role of autophagy in the anti-proliferation effect of G9a inhibition on TCC T24 and UMUC-3 cell lines in vitro. We found that both pharmaceutical and genetical G9a inhibition significantly attenuated cell proliferation by MTT assay, Brdu incorporation assay and colony formation assay. G9a inhibition induced autophagy like morphology as determined by transmission electron microscope and LC-3 fluorescence assay. In addition, autophagy flux was induced by G9a inhibition in TCC cells, as determined by p62 turnover assay and LC-3 turnover assay. The autophagy induced positively contributed to the inhibition of cell proliferation because the growth attenuation capacity of G9a inhibition was reversed by autophagy inhibitors 3-MA. Mechanically, AMPK/mTOR pathway was identified to be involved in the regulation of G9a inhibition induced autophagy. Intensively activating mTOR by Rheb overexpression attenuated autophagy and autophagic cell death induced by G9a inhibition. In addition, pre-inhibiting AMPK by Compound C attenuated autophagy together with the anti-proliferation effect induced by G9a inhibition while pre-activating AMPK by AICAR enhanced them. In conclusion, our results indicate that G9a inhibition induces autophagy through activating AMPK/mTOR pathway and the autophagy induced positively contributes to the inhibition of cell proliferation in TCC cells. These findings shed some light on the functional role of G9a in cell metabolism and suggest that G9a might be a therapeutic target in bladder TCC in the future.

  8. 3-Iodothyronamine-mediated metabolic suppression increases the phosphorylation of AMPK and induces fuel choice toward lipid mobilization.

    Science.gov (United States)

    Ju, H; Shin, H; Son, C; Park, K; Choi, I

    2015-07-01

    Despite broad medical application, induction of artificial hypometabolism in vitro and its biochemical consequence have been rarely addressed. This study aimed to elucidate whether 3-iodothyronamine (T1AM) induces hypometabolism in an in vitro model with activation of AMP-activated protein kinase (AMPK) and whether it leads to a switch in primary fuel from carbohydrates to lipids as observed in in vivo models. Mouse C2C12 myotube and T1AM, a natural derivative of thyroid hormone, were used in this study. The oxygen consumption rate (OCR) decreased in a dose-dependent manner in response to 0-100 μM T1AM for up to 10 h. Upon 6-h of exposure to 75 μM T1AM, the OCR was reduced to 60 vs. ~ 95% for the control. The intracellular [AMP]/[ATP] was 1.35-fold higher in T1AM-treated cells. RT-PCR and immunoblotting analyses revealed that treated cells had upregulated p-AMPK/AMPK (1.8-fold), carnitine palmitoyl transferase 1 mRNA, and pyruvate dehydrogenase kinase, and downregulated acetyl CoA carboxylase (0.4-fold) and pyruvate dehydrogenase phosphatase. The treated cells had darker periodic acid-Schiff staining with 1.2-fold greater glycogen content than controls. Taken together, the hypometabolic response of myotubes to T1AM was dramatic and accompanied by increases in both the relative abundance of AMP and AMPK activation, and fuel choice favoring lipids over carbohydrates. These results are consistent with the general trends observed for rodent models and true hibernators. PMID:25372779

  9. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways.

    Science.gov (United States)

    Lee, Chae Eun; Hur, Haeng Jeon; Hwang, Jin-Taek; Sung, Mi Jeong; Yang, Hye Jeong; Kim, Hyun-Jin; Park, Jae Ho; Kwon, Dae Young; Kim, Myung-Sunny

    2012-01-01

    This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda) H. Hara) on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG), T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP)-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation. PMID:22829857

  10. Energy Stress Regulates Hippo-YAP Signaling Involving AMPK-Mediated Regulation of Angiomotin-like 1 Protein

    Directory of Open Access Journals (Sweden)

    Michael DeRan

    2014-10-01

    Full Text Available Hippo signaling is a tumor-suppressor pathway involved in organ size control and tumorigenesis through the inhibition of YAP and TAZ. Here, we show that energy stress induces YAP cytoplasmic retention and S127 phosphorylation and inhibits YAP transcriptional activity and YAP-dependent transformation. These effects require the central metabolic sensor AMP-activated protein kinase (AMPK and the upstream Hippo pathway components Lats1/Lats2 and angiomotin-like 1 (AMOTL1. Furthermore, we show that AMPK directly phosphorylates S793 of AMOTL1. AMPK activation stabilizes and increases AMOTL1 steady-state protein levels, contributing to YAP inhibition. The phosphorylation-deficient S793Ala mutant of AMOTL1 showed a shorter half-life and conferred resistance to energy-stress-induced YAP inhibition. Our findings link energy sensing to the Hippo-YAP pathway and suggest that YAP may integrate spatial (contact inhibition, mechanical, and metabolic signals to control cellular proliferation and survival.

  11. Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways

    Directory of Open Access Journals (Sweden)

    Chae Eun Lee

    2012-01-01

    Full Text Available This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda H. Hara on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG, T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.

  12. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. PMID:26852013

  13. NEBIVOLOL IN TREATMENT OF STABLE EXERTIONAL ANGINA PECTORIS

    Directory of Open Access Journals (Sweden)

    Y. V. Gavrilov

    2015-12-01

    Full Text Available Aim. To evaluate antianginal and antiischemic efficiency of nebivolol in patients with stable angina pectoris.Material and methods. 100 patients with ischemic heart disease showing stable exertional angina pectoris and having no contraindications to beta-blockers were studied. After 5-7 days of control period 50 randomly selected patients began to take nebivolol in initial dose of 5mg once daily and 50 patients started to take metoprolol in initial dose of 50 mg twice daily. Duration of treatment was 8 weeks. Efficiency of treatment was assessed according to the results of control treadmill assessment and control daily ECG monitoring.Results. 56-day therapy with nebivolol at a dose of 7,5 mg per day results in increase in duration of treadmill test before angina or ST depression (p<0.05. Antianginal and antiischemic effect of nebivolol 7.5 mg once daily is rather similar with that of metoprolol in average daily dose of 175 mg. Nebivolol compared to metoprolol significantly (p<0.05 more effectively reduces the number of silent myocardial ischemia.Conclusion. Nebivolol is an efficient antianginal and antiischemic drug for patients with stable exertional angina pectoris.

  14. Physical exertion and working efficiency of reforestation workers

    Directory of Open Access Journals (Sweden)

    Kennedy Michael D

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to quantify the physical exertion during tree planting work and to examine the relationships between exertion, task efficiency, and productivity. Methods Heart rate (HR was monitored on 34 tree planters while they worked. HR data was collected for a complete working day on 19 subjects and for shorter periods of time on 15 subjects. Video of work tasks was recorded on 22 subjects (video was recorded on 7 of the subjects for whom HR was monitored through a full working day and analyzed for working pace and proportion of time spent on each task. Results HR during a full day (9.0 ± 1.2 hours of tree planting work was 115.2 ± 8.8 beats.min-1, and working HR was 128.2 ± 15.6 beats.min-1 for 82.5 ± 6.8% of the work day. Mean work pace was 452 ± 174 trees.h-1, and the proportion of time spent planting each tree was 53 ± 8% of the working time. Significant (P Conclusions Tree planters work at approximately 65% of age-predicted HRmax, and maintain HR at approximately 59% of HRmax throughout the entire working day. Productivity in these workers appears to be related to effort rather than to experience or task efficiency per se.

  15. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    Science.gov (United States)

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  16. Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer.

    Science.gov (United States)

    Fan, Cong; Wang, Yunshan; Liu, Ziming; Sun, Ying; Wang, Xiuwen; Wei, Guangwei; Wei, Junmin

    2015-07-01

    Metformin, a widely prescribed antidiabetic drug, has previously been shown to lower the risk of certain types of cancer, including that of breast cancer, and to improve prognosis. Its anticancer effects, which are mediated by the activation of AMP-activated protein kinase (AMPK), have become notable. The Sonic hedgehog (Shh) signaling pathway is involved in changes in mammary ducts and malignant transformation. The aim of the present study was to elucidate the role of the Shh pathway in mediating the anticancer effects of metformin and the correlation between AMPK and the Shh pathway. We investigated the effectiveness of metformin in inhibiting the proliferation, migration, invasion and stemness of breast cancer cells in vitro using RNA extraction and reverse transcription‑polymerase chain reaction (RT-PCR), western blot analysis, cell proliferation assay, scratch-wound assay (cell migration assay), cell invasion assay, mammosphere culture and flow cytometry. In in vivo experiments, a tumor xenograft model was used to detect the effects of metformin on cancer cell proliferation. The results revealed that the treatment of breast cancer cells with metformin led to the inhibition of the Shh signaling pathway. Importantly, metformin inhibited recombinant human Shh (rhShh)‑induced cell migration, invasion, and stemness, and impaired cell proliferation both in vitro and in vivo. Furthermore, the small interfering RNA (siRNA)‑mediated downregulation of AMPK reversed the inhibitory effects of metformin on rhShh‑induced Gli-1 expression and stemness. Our findings identified a role of the Shh signaling pathway in the anticancer effects of metformin in breast cancer. Furthermore, we revealed that the metformin-mediated inhibition of the Shh signaling pathway may be dependent on AMPK. PMID:25999130

  17. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    International Nuclear Information System (INIS)

    Research highlights: → AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. → Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. → AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACCβ) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACCβ activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid β-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACCβ promoter activity via AMPK activation. A human ACCβ promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes ± a NRF-1 expression construct. NRF-1 overexpression decreased ACCβ gene promoter activity by 71 ± 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACCβ was abolished with a pPIIβ-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACCβ promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACCβ gene promoter. Here NRF-1 blunted USF1-dependent induction of ACCβ promoter activity by 58 ± 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 ± 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACCβ gene promoter in the mammalian heart. Our data extends AMPK regulation of ACCβ to the transcriptional level.

  18. Specific deletion of AMP-activated protein kinase (α1AMPK in murine oocytes alters junctional protein expression and mitochondrial physiology.

    Directory of Open Access Journals (Sweden)

    Michael J Bertoldo

    Full Text Available Oogenesis and folliculogenesis are dynamic processes that are regulated by endocrine, paracrine and autocrine signals. These signals are exchanged between the oocyte and the somatic cells of the follicle. Here we analyzed the role of AMP-activated protein kinase (AMPK, an important regulator of cellular energy homeostasis, by using transgenic mice deficient in α1AMPK specifically in the oocyte. We found a decrease of 27% in litter size was observed in ZP3-α1AMPK-/- (ZP3-KO female mice. Following in vitro fertilization, where conditions are stressful for the oocyte and embryo, ZP3-KO oocytes were 68% less likely to pass the 2-cell stage. In vivo and in cumulus-oocyte complexes, several proteins involved in junctional communication, such as connexin37 and N-cadherin were down-regulated in the absence of α1AMPK. While the two signalling pathways (PKA and MAPK involved in the junctional communication between the cumulus/granulosa cells and the oocyte were stimulated in control oocytes, ZP3-KO oocytes exhibited only low phosphorylation of MAPK or CREB proteins. In addition, MII oocytes deficient in α1AMPK had a 3-fold lower ATP concentration, an increase in abnormal mitochondria, and a decrease in cytochrome C and PGC1α levels, suggesting perturbed energy production by mitochondria. The absence of α1AMPK also induced a reduction in histone deacetylase activity, which was associated with an increase in histone H3 acetylation (K9/K14 residues. Together, the results of the present study suggest that absence of AMPK, modifies oocyte quality through energy processes and oocyte/somatic cell communication. The limited effect observed in vivo could be partly due to a favourable follicle microenvironment where nutrients, growth factors, and adequate cell interaction were present. Whereas in a challenging environment such as that of in vitro culture following IVF, the phenotype is revealed.

  19. Negative regulation of mTOR activity by LKB1-AMPK signaling in non-small cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Li-xia DONG; Lin-lin SUN; Xia ZHANG; Li PAN; Lin-juan LIAN; Zhe CHEN; Dian-sheng ZHONG

    2013-01-01

    Aim: To investigate the role of LKB1 in regulation of mTOR signaling in non-small cell lung cancer (NSCLC) cells.Methods: LKB1 protein expression and phosphorylation of AMPK,4E-BP1 and S6K in the cells were assessed using Western blotting in various NSCLC cell lines (A549,H460,H1792,Calu-1,and H1299).Energy stress was mimicked by treating the cells with 2-deoxyglucose (2-DG).Compound C was used to inhibit AMPK activity.Cell growth was measured using the MTS assay.Results: LKB1 protein was expressed in LKB1 wild-type Calu-1,H1299,and H1792 cells,but it was undetected in LKB1 mutant A549 and H460 cells.Treatment of the LKB1 wild-type cells with 2-DG (5,10,and 25 mmol/L) augmented the phosphorylation of AMPK in dose-and time-dependent manners.In the LKB1 wild-type cells,2-DG dramatically suppressed the phosphorylation of two mTOR targets,4E-BP1 and S6K,whereas the LKB1 mutant A549 and H460 cells were highly resistant to 2-DG-induced inhibition on mTOR activity.In addition,stable knockdown of LKB1 in H1299 cells impaired 2-DG-induced inhibition on mTOR activity.Pretreatment of H1299 and H1792 cells with the AMPK inhibitor compound C (10 Pmoi/L) blocked 2-DG-induced inhibition on mTOR activity.2-DG inhibited the growth of H1299 cells more effectively than that of H460 cells; stable knockdown of LKB1 in H1299 cells attenuated the growth inhibition caused by 2-DG.Conclusion: In non-small cell lung cancer cells,LKB1/AMPK signaling negatively regulates mTOR activity and contributes to cell growth inhibition in response to energy stress.

  20. DCP-LA Exerts an Antiaging Action on the Skin.

    Science.gov (United States)

    Nishizaki, Tomoyuki

    2016-01-01

    The present study assessed the possibility for the linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) as an antiaging compound for the skin by assaying senescence-associated β-galactosidase (SA-β-Gal), a biomarker of senescence and cell viability. The nitric oxide (NO) donor sodium nitroprusside (SNP) increased in SA-β-Gal-positive cells in cultured human fibroblasts and mouse keratinocytes, and DCP-LA significantly inhibited the effect of SNP. Moreover, SNP induced cell death in cultured mouse keratinocytes, and DCP-LA significantly prevented NO stress-induced death of keratinocytes. Taken together, these results indicate that DCP-LA exerts an antiaging action on the skin. PMID:27310436

  1. Dual strings and magnetohydrodynamics

    OpenAIRE

    Olesen, P.

    1995-01-01

    We investigate whether dual strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the dual string equations (with a non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magneti...

  2. Ultraviolet (UV and Hydrogen Peroxide Activate Ceramide-ER Stress-AMPK Signaling Axis to Promote Retinal Pigment Epithelium (RPE Cell Apoptosis

    Directory of Open Access Journals (Sweden)

    Jin Yao

    2013-05-01

    Full Text Available Ultraviolet (UV radiation and reactive oxygen species (ROS impair the physiological functions of retinal pigment epithelium (RPE cells by inducing cell apoptosis, which is the main cause of age-related macular degeneration (AMD. The mechanism by which UV/ROS induces RPE cell death is not fully addressed. Here, we observed the activation of a ceramide-endoplasmic reticulum (ER stress-AMP activated protein kinase (AMPK signaling axis in UV and hydrogen peroxide (H2O2-treated RPE cells. UV and H2O2 induced an early ceramide production, profound ER stress and AMPK activation. Pharmacological inhibitors against ER stress (salubrinal, ceramide production (fumonisin B1 and AMPK activation (compound C suppressed UV- and H2O2-induced RPE cell apoptosis. Conversely, cell permeable short-chain C6 ceramide and AMPK activator AICAR (5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide mimicked UV and H2O2’s effects and promoted RPE cell apoptosis. Together, these results suggest that UV/H2O2 activates the ceramide-ER stress-AMPK signaling axis to promote RPE cell apoptosis.

  3. A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation

    International Nuclear Information System (INIS)

    A 1.9 Å resolution crystal structure of the isolated kinase domain from the α2 subunit of human AMPK, the first from a multicellular organism, is presented. The AMP-activated protein kinase (AMPK) is a highly conserved trimeric protein complex that is responsible for energy homeostasis in eukaryotic cells. Here, a 1.9 Å resolution crystal structure of the isolated kinase domain from the α2 subunit of human AMPK, the first from a multicellular organism, is presented. This human form adopts a catalytically inactive state with distorted ATP-binding and substrate-binding sites. The ATP site is affected by changes in the base of the activation loop, which has moved into an inhibited DFG-out conformation. The substrate-binding site is disturbed by changes within the AMPKα2 catalytic loop that further distort the enzyme from a catalytically active form. Similar structural rearrangements have been observed in a yeast AMPK homologue in response to the binding of its auto-inhibitory domain; restructuring of the kinase catalytic loop is therefore a conserved feature of the AMPK protein family and is likely to represent an inhibitory mechanism that is utilized during function

  4. EBV-LMP1 suppresses the DNA damage response through DNA-PK/AMPK signaling to promote radioresistance in nasopharyngeal carcinoma.

    Science.gov (United States)

    Lu, Jingchen; Tang, Min; Li, Hongde; Xu, Zhijie; Weng, Xinxian; Li, Jiangjiang; Yu, Xinfang; Zhao, Luqing; Liu, Hongwei; Hu, Yongbin; Tan, Zheqiong; Yang, Lifang; Zhong, Meizuo; Zhou, Jian; Fan, Jia; Bode, Ann M; Yi, Wei; Gao, Jinghe; Sun, Lunquan; Cao, Ya

    2016-09-28

    We conducted this research to explore the role of latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus (EBV) in modulating the DNA damage response (DDR) and its regulatory mechanisms in radioresistance. Our results revealed that LMP1 repressed the repair of DNA double strand breaks (DSBs) by inhibiting DNA-dependent protein kinase (DNA-PK) phosphorylation and activity. Moreover, LMP1 reduced the phosphorylation of AMP-activated protein kinase (AMPK) and changed its subcellular location after irradiation, which appeared to occur through a disruption of the physical interaction between AMPK and DNA-PK. The decrease in AMPK activity was associated with LMP1-mediated glycolysis and resistance to apoptosis induced by irradiation. The reactivation of AMPK significantly promoted radiosensitivity both in vivo and in vitro. The AMPKα (Thr172) reduction was associated with a poorer clinical outcome of radiation therapy in NPC patients. Our data revealed a new mechanism of LMP1-mediated radioresistance and provided a mechanistic rationale in support of the use of AMPK activators for facilitating NPC radiotherapy. PMID:27255972

  5. Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism

    DEFF Research Database (Denmark)

    Møller, Lisbeth Liliendal Valbjørn; Sylow, Lykke; Gøtzsche, Casper René;

    2016-01-01

    It is well known that physical activity has several health benefits, yet many people do not exercise. Dopamine levels in the striatum of the brain are thought to be important for the motivation to exercise. Conversely, we hypothesized that muscle quality can affect the motivation to exercise...... through alterations of the brain dopamine levels specifically in the striatal region. To test this hypothesis, transgenic mice overexpressing an inactivatable dominant negative α2 AMPK construct (AMPK α2 KD) in muscles and littermate wildtype (WT) mice were tested. AMPK α2 KD mice have impaired running...... capacity and display reduced voluntary wheel running activity. Striatal content of dopamine and its metabolites were measured under basal physiological conditions and after cocaine-induced dopamine efflux from the ventral striatum by in vivo microdialysis. Moreover, cocaine-induced locomotor activity was...

  6. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release

    Directory of Open Access Journals (Sweden)

    Thomas E. Jensen

    2014-10-01

    Full Text Available Understanding how muscle contraction orchestrates insulin-independent muscle glucose transport may enable development of hyperglycemia-treating drugs. The prevailing concept implicates Ca2+ as a key feed forward regulator of glucose transport with secondary fine-tuning by metabolic feedback signals through proteins such as AMPK. Here, we demonstrate in incubated mouse muscle that Ca2+ release is neither sufficient nor strictly necessary to increase glucose transport. Rather, the glucose transport response is associated with metabolic feedback signals through AMPK, and mechanical stress-activated signals. Furthermore, artificial stimulation of AMPK combined with passive stretch of muscle is additive and sufficient to elicit the full contraction glucose transport response. These results suggest that ATP-turnover and mechanical stress feedback are sufficient to fully increase glucose transport during muscle contraction, and call for a major reconsideration of the established Ca2+ centric paradigm.

  7. Effect of radiation exerted to creep rate of resin

    International Nuclear Information System (INIS)

    One of the high performance composite materials which became to be manufactured by the progress of working techniques and the improvement of material performance is fiber-reinforced plastics (FRP). Carbon fiber-reinforced plastics (CFRP) are used as space and aircraft material, and glass fiber-reinforced plastics (GFRP) are expected as the structural material for superconducting magnets in nuclear fusion. In these materials, the use for long term must be considered, and the creep characteristics, of resin should be taken as one of the design factors. Therefore, the effect that radiation exerted to the stress relaxation of epoxy resin was measured, and its mechanism was investigated. The sample was bisphenol F system epoxy. The measurements of DSC, dynamic viscoelasticity and stress relaxation were carried out. The stress relaxation in bisphenol F system epoxy resin occurred down to 10 % of the initial stress only at 3 MGy. This is the dose far lower than the life in the radiation resistance of this resin. It is considered that the stress relaxation of the resin was caused by the change in molecular structure instead of the cut of molecular chain, as energy was given to the microscopic region by the interaction with radiation. (K.I.)

  8. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo.

    Science.gov (United States)

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-06-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans. PMID:26567514

  9. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2015-07-01

    Full Text Available Astaxanthin (ATX is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and peroxisome proliferator-activated receptor gamma (PPARγ. Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX.

  10. Dynamic respiratory mechanics and exertional dyspnoea in pulmonary arterial hypertension.

    Science.gov (United States)

    Laveneziana, Pierantonio; Garcia, Gilles; Joureau, Barbara; Nicolas-Jilwan, Fadia; Brahimi, Toufik; Laviolette, Louis; Sitbon, Olivier; Simonneau, Gérald; Humbert, Marc; Similowski, Thomas

    2013-03-01

    Patients with pulmonary arterial hypertension (PAH) may exhibit reduced expiratory flows at low lung volumes, which could promote exercise-induced dynamic hyperinflation (DH). This study aimed to examine the impact of a potential exercise-related DH on the intensity of dyspnoea in patients with PAH undergoing symptom-limited incremental cardiopulmonary cycle exercise testing (CPET). 25 young (aged mean±sd 38±12 yrs) nonsmoking PAH patients with no evidence of spirometric obstruction and 10 age-matched nonsmoking healthy subjects performed CPET to the limit of tolerance. Ventilatory pattern, operating lung volumes (derived from inspiratory capacity (IC) measurements) and dyspnoea intensity (Borg scale) were assessed throughout CPET. IC decreased (i.e. DH) progressively throughout CPET in PAH patients (average 0.15 L), whereas it increased in all the healthy subjects (0.45 L). Among PAH patients, 15 (60%) exhibited a decrease in IC throughout exercise (average 0.50 L), whereas in the remaining 10 (40%) patients IC increased (average 0.36 L). Dyspnoea intensity and ventilation were greater in PAH patients than in controls at any stage of CPET, whereas inspiratory reserve volume was lower. We conclude that DH-induced mechanical constraints and excessive ventilatory demand occurred in these young nonsmoking PAH patients with no spirometric obstruction and was associated with exertional dyspnoea. PMID:22790921

  11. Formwork pressure exerted by self-consolidating concrete

    Science.gov (United States)

    Omran, Ahmed Fathy

    Self-consolidating concrete (SCC) is an emerging technology that utilizes flowable concrete that eliminates the need for consolidation. The advantages of SCC lie in a remarkable reduction of the casting time, facilitating the casting of congested and complex structural elements, possibility to reduce labor demand, elimination of mechanical vibrations and noise, improvement of surface appearance, producing a better and premium concrete product. The research focussed on capturing existing knowledge and making recommendations for current practice. An experimental program was undertaken at the Universite de Sherbrooke to evaluate the lateral pressure developed by SCC mixtures. A portable devise (UofS2 pressure column) for measuring and predicting lateral pressure and its rate of decay of SCC was developed and validated. The UofS2 pressure column is cast with 0.5 m high fresh concrete and air pressure is introduced from the top to simulate casting depth up to 13 m. Then, develop and implement test method for field evaluation of relevant plastic and thixotropic properties of SCC that affect formwork pressure were done. Portable vane (PV) test based on the hand-held vane test method used to determine the undrained shear strength property of clay soil was the first setup as well as the inclined plane (IP) test. The IP device involves slumping a small concrete cylinder on a horizontal plate and then lifting up the plate at different durations of rest until the slumped sample starts to move. Identifying role of material constituents, mix design, concrete placement characteristics (casting rate, waiting periods between lifts, and casting depth), temperature, and formwork characteristics that have major influence on formwork pressure exerted by SCC were evaluated in laboratory and validated by actual field measurements. Relating the maximum lateral pressure and its rate of decay to the plastic properties of SCC were established. In the analytical part of the research

  12. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Kohjima, Motoyuki; Higuchi, Nobito; Kato, Masaki; Kotoh, Kazuhiro; Yoshimoto, Tsuyoshi; Fujino, Tatsuya; Yada, Masayoshi; Yada, Ryoko; Harada, Naohiko; Enjoji, Munechika; Takayanagi, Ryoichi; Nakamuta, Makoto

    2008-04-01

    Nonalcoholic fatty liver disease (NAFLD) is a common liver disease whose prevalence has increased markedly. We reported previously that fatty acid synthesis was enhanced in NAFLD with the accumulation of fatty acids. To clarify the disorder, we evaluated the expression of genes regulating fatty acid synthesis by real-time PCR using samples from NAFLD (n=22) and normal liver (control; n=10). A major regulator of fatty acids synthesis is sterol regulatory element-binding protein-1c (SREBP-1c). Its expression was significantly higher in NAFLD, nearly 5-fold greater than the controls. SREBP-1c is positively regulated by insulin signaling pathways, including insulin receptor substrate (IRS)-1 and -2. In NAFLD, IRS-1 expression was enhanced and correlated positively with SREBP-1c expression. In contrast, IRS-2 expression decreased by 50% and was not correlated with SREBP-1c. Forkhead box protein A2 (Foxa2) is a positive regulator of fatty acid oxidation and is itself negatively regulated by IRSs. Foxa2 expression increased in NAFLD and showed a negative correlation with IRS-2, but not with IRS-1, expression. It is known that SREBP-1c is negatively regulated by AMP-activated protein kinase (AMPK) but expression levels of AMPK in NAFLD were almost equal to those of the controls. These data indicate that, in NAFLD, insulin signaling via IRS-1 causes the up-regulation of SREBP1-c, leading to the increased synthesis of fatty acids by the hepatocytes; negative feedback regulation via AMPK does not occur and the activation of Foxa2, following a decrease of IRS-2, up-regulates fatty acid oxidation. PMID:18360697

  13. Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1α in db/db mice.

    Directory of Open Access Journals (Sweden)

    Yu Ah Hong

    Full Text Available Peroxisome proliferator-activated receptor (PPAR-α, a lipid-sensing transcriptional factor, serves an important role in lipotoxicity. We evaluated whether fenofibrate has a renoprotective effect by ameliorating lipotoxicity in the kidney. Eight-week-old male C57BLKS/J db/m control and db/db mice, divided into four groups, received fenofibrate for 12 weeks. In db/db mice, fenofibrate ameliorated albuminuria, mesangial area expansion and inflammatory cell infiltration. Fenofibrate inhibited accumulation of intra-renal free fatty acids and triglycerides related to increases in PPARα expression, phosphorylation of AMP-activated protein kinase (AMPK, and activation of Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α-estrogen-related receptor (ERR-1α-phosphorylated acetyl-CoA carboxylase (pACC, and suppression of sterol regulatory element-binding protein (SREBP-1 and carbohydrate regulatory element-binding protein (ChREBP-1, key downstream effectors of lipid metabolism. Fenofibrate decreased the activity of phosphatidylinositol-3 kinase (PI3K-Akt phosphorylation and FoxO3a phosphorylation in kidneys, increasing the B cell leukaemia/lymphoma 2 (BCL-2/BCL-2-associated X protein (BAX ratio and superoxide dismutase (SOD 1 levels. Consequently, fenofibrate recovered from renal apoptosis and oxidative stress, as reflected by 24 hr urinary 8-isoprostane. In cultured mesangial cells, fenofibrate prevented high glucose-induced apoptosis and oxidative stress through phosphorylation of AMPK, activation of PGC-1α-ERR-1α, and suppression of SREBP-1 and ChREBP-1. Our results suggest that fenofibrate improves lipotoxicity via activation of AMPK-PGC-1α-ERR-1α-FoxO3a signaling, showing its potential as a therapeutic modality for diabetic nephropathy.

  14. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: implication of the cell survival in mitochondrial diseases.

    Science.gov (United States)

    Wu, Shi-Bei; Wei, Yau-Huei

    2012-02-01

    We report that the energy metabolism shifts to anaerobic glycolysis as an adaptive response to oxidative stress in the primary cultures of skin fibroblasts from patients with MERRF syndrome. In order to unravel the molecular mechanism involved in the alteration of energy metabolism under oxidative stress, we treated normal human skin fibroblasts (CCD-966SK cells) with sub-lethal doses of H(2)O(2). The results showed that several glycolytic enzymes including hexokinase type II (HK II), lactate dehydrogenase (LDH) and glucose transporter 1 (GLUT1) were up-regulated in H(2)O(2)-treated normal skin fibroblasts. In addition, the glycolytic flux of skin fibroblasts was increased by H(2)O(2) in a dose-dependent manner through the activation of AMP-activated protein kinase (AMPK) and phosphorylation of its downstream target, phosphofructokinase 2 (PFK2). Moreover, we found that the AMPK-mediated increase of glycolytic flux by H(2)O(2) was accompanied by an increase of intracellular NADPH content. By treatment of the cells with glycolysis inhibitors, an AMPK inhibitor or genetic knockdown of AMPK, respectively, the H(2)O(2)-induced increase of NADPH was abrogated leading to the overproduction of intracellular ROS and cell death. Significantly, we showed that phosphorylation levels of AMPK and glycolysis were up-regulated to confer an advantage of survival for MERRF skin fibroblasts. Taken together, our findings suggest that the increased production of NADPH by AMPK-mediated increase of the glycolytic flux contributes to the adaptation of MERRF skin fibroblasts and H(2)O(2)-treated normal skin fibroblasts to oxidative stress. PMID:22001850

  15. AMPK-mediated up-regulation of mTORC2 and MCL-1 compromises the anti-cancer effects of aspirin

    Science.gov (United States)

    Hua, Hui; Yin, Yancun; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2016-01-01

    AMP-activated protein kinase (AMPK) is an important energy sensor that may inhibit cell proliferation or promote cell survival during stresses. Besides cyclooxygenase, AMPK is another target of the nonsteroid anti-inflammatory agent aspirin. Preclinical and clinical investigations demonstrate that aspirin can inhibit several types of cancer such as colorectal adenomas and hepatocellular carcinoma (HCC). However, little is known about the cellular response to aspirin that may lead to aspirin resistance. Here, we show that aspirin induces the expression of MCL-1 in HepG2 and SW480 cells through AMPK-mTOR-Akt/ERK axis. Treatment of HepG2 and SW480 cells with aspirin leads to increased MCL-1 expression, Akt and ERK1/2 phosphorylation. Inhibition of Akt/MEK abrogates the induction of MCL-1 by aspirin. Aspirin activates AMPK, which in turn up-regulates mTORC2 activity, Akt, ERK1/2 phosphorylation and MCL-1 expression. MCL-1 knockdown sensitizes cancer cells to aspirin-induced apoptosis. Combination of aspirin and AMPK, Akt or MEK inhibitor results in more significant inhibition of cell proliferation and induction of apoptosis than single agent. Moreover, sorafenib blocks aspirin-induced MCL-1 up-regulation. Combination of aspirin and sorafenib leads to much more cell death and less cell proliferation than each drug alone. Treatment of HCC and colon cancer xenografts with both aspirin and sorafenib results in more significant tumor suppression than single agent. These data demonstrate that AMPK-mediated up-regulation of mTORC2 and MCL-1 may compromise the anticancer effects of aspirin. Combination of aspirin and sorafenib may be an effective regimen to treat HCC and colon cancer. PMID:26918349

  16. AMPK inhibits MTDH expression via GSK3β and SIRT1 activation: potential role in triple negative breast cancer cell proliferation.

    Science.gov (United States)

    Gollavilli, Paradesi Naidu; Kanugula, Anantha Koteswararao; Koyyada, Rajeswari; Karnewar, Santosh; Neeli, Praveen Kumar; Kotamraju, Srigiridhar

    2015-10-01

    Recent studies have highlighted the involvement of metadherin (MTDH), an oncogenic protein, in promoting cancer progression, metastasis and chemoresistance in many cancers including mammary carcinomas. However, the molecular regulation of MTDH is still not completely understood. In this study we document that AMP activated protein kinase (AMPK) activation-induced anti-proliferative effects are, in part, mediated by inhibiting MTDH expression in MDA-MB-231 and BT-549 triple negative breast cancer (TNBC) cells. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, caused growth arrest, inhibition of migration and invasion of TNBC cells. Intriguingly, AICAR or metformin treatment resulted in significant downregulation of MTDH expression via inhibiting c-Myc expression. In contrast, treatment of cells with compound C, an inhibitor of AMPK, increased both c-Myc and MTDH expressions in TNBC cells. Also, AMPK activation caused increased glycogen synthase kinase 3β (GSK3β) activity by inhibiting the inactive phosphorylation at Ser9, on the one hand, and activation of sirtuin1 (SIRT1) by inhibiting Ser47 phosphorylation, as evidenced by deacetylation of p53, on the other hand. Moreover, AMPK-induced GSK3β and SIRT1 activities were found to be responsible for inhibiting c-Myc-mediated upregulation of MTDH, as LiCl (an inhibitor of GSK3β) and EX-527 (an inhibitor of SIRT1) reversed AICAR-mediated downregulation of c-Myc and MTDH expressions. Similar results were observed with siSIRT1 treatment. Furthermore, AICAR and EX-527 treatments caused increased cell death under MTDH-depleted conditions. Finally, we uncovered a novel regulation of MTDH expression and showed that AMPK activation by inducing GSK3β and SIRT1 downregulates MTDH expression via inhibiting c-Myc in TNBC cells. PMID:26236947

  17. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi-Wei [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Wu, Chun-Ying [Division of Gastroenterology and Hepatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, Yen-Ting [Department of Medical Research and Education, Cheng Hsin General Hospital, Taipei, Taiwan (China); Kao, Jun-Kai [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Pediatrics, Children' s Hospital, Changhua Christian Hospital, Changhua, Taiwan (China); Lin, Chi-Chen; Chang, Chia-Che; Mu, Szu-Wei; Chen, Yu-Yu [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Chiu, Husan-Wen [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chang, Chuan-Hsun [Department of Surgical Oncology, Cheng Hsin General Hospital, Taipei, Taiwan (China); Department of Nutrition Therapy, Cheng Hsin General Hospital, Taipei, Taiwan (China); School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan (China); Liang, Shu-Mei [Institute of Biotechnology, National Cheng-Kung University, Tainan, Taiwan (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan (China); Chen, Yi-Ju [Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Huang, Jau-Ling [Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan (China); Shieh, Jeng-Jer, E-mail: shiehjj@vghtc.gov.tw [Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan (China)

    2013-02-15

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.

  18. p53 modulates the AMPK inhibitor compound C induced apoptosis in human skin cancer cells

    International Nuclear Information System (INIS)

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status

  19. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Shicheng Cao

    Full Text Available Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague-Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK and downstream components of phosphatidylinositol 3-kinase (PI3K signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC. Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKCζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr(308 and (Ser(473 and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1 mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of

  20. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  1. Holographic Dual of BCFT

    OpenAIRE

    Takayanagi, Tadashi

    2011-01-01

    We propose a holographic dual of a conformal field theory defined on a manifold with boundaries, i.e. boundary conformal field theory (BCFT). Our new holography, which may be called AdS/BCFT, successfully calculates the boundary entropy or g-function in two dimensional BCFTs and it agrees with the finite part of the holographic entanglement entropy. Moreover, we can naturally derive a holographic g-theorem. We also analyze the holographic dual of an interval at finite temperature and show tha...

  2. Dual Affine invariant points

    OpenAIRE

    Meyer, Mathieu; Schuett, Carsten; Werner, Elisabeth M.

    2013-01-01

    An affine invariant point on the class of convex bodies in R^n, endowed with the Hausdorff metric, is a continuous map p which is invariant under one-to-one affine transformations A on R^n, that is, p(A(K))=A(p(K)). We define here the new notion of dual affine point q of an affine invariant point p by the formula q(K^{p(K)})=p(K) for every convex body K, where K^{p(K)} denotes the polar of K with respect to p(K). We investigate which affine invariant points do have a dual point, whether this ...

  3. Dual phase evolution

    CERN Document Server

    Green, David G; Abbass, Hussein A

    2014-01-01

    This book explains how dual phase evolution operates in all these settings and provides a detailed treatment of the subject. The authors discuss the theoretical foundations for the theory, how it relates to other phase transition phenomena and its advantages in evolutionary computation and complex adaptive systems. The book provides methods and techniques to use this concept for problem solving. Dual phase evolution concerns systems that evolve via repeated phase shifts in the connectivity of their elements. It occurs in vast range of settings, including natural systems (species evolution, landscape ecology, geomorphology), socio-economic systems (social networks) and in artificial systems (annealing, evolutionary computing).

  4. On Certain Dual Integral Equations

    Directory of Open Access Journals (Sweden)

    R. S. Pathak

    1974-01-01

    Full Text Available Dual integral equations involving H-Functions have been solved by using the theory of Mellin transforms. The proof is analogous to that of Busbridge on solutions of dual integral equations involving Bessel functions.

  5. Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity.

    NARCIS (Netherlands)

    Forcet, C.; Etienne-Manneville, S.; Gaude, H.; Fournier, L.; Debilly, S.; Salmi, M.; Baas, A.; Olschwang, S.; Clevers, J.C.; Billaud, M.

    2005-01-01

    Germline mutations of the LKB1 gene are responsible for the cancer-prone Peutz-Jeghers syndrome (PJS). LKB1 encodes a serine-threonine kinase that acts as a regulator of cell cycle, metabolism and cell polarity. The majority of PJS missense mutations abolish LKB1 enzymatic activity and thereby impai

  6. Exercise exerts neuroprotective effects on Parkinson's disease model of rats.

    Science.gov (United States)

    Tajiri, Naoki; Yasuhara, Takao; Shingo, Tetsuro; Kondo, Akihiko; Yuan, Wenji; Kadota, Tomohito; Wang, Feifei; Baba, Tanefumi; Tayra, Judith Thomas; Morimoto, Takamasa; Jing, Meng; Kikuchi, Yoichiro; Kuramoto, Satoshi; Agari, Takashi; Miyoshi, Yasuyuki; Fujino, Hidemi; Obata, Futoshi; Takeda, Isao; Furuta, Tomohisa; Date, Isao

    2010-01-15

    Recent studies demonstrate that rehabilitation ameliorates physical and cognitive impairments of patients with stroke, spinal cord injury, and other neurological diseases and that rehabilitation also has potencies to modulate brain plasticity. Here we examined the effects of compulsive exercise on Parkinson's disease model of rats. Before 6-hydroxydopamine (6-OHDA, 20 microg) lesion into the right striatum of female SD rats, bromodeoxyuridine (BrdU) was injected to label the proliferating cells. Subsequently, at 24 h after the lesion, the rats were forced to run on the treadmill (5 days/week, 30 min/day, 11 m/min). As behavioral evaluations, cylinder test was performed at 1, 2, 3, and 4 weeks and amphetamine-induced rotational test was performed at 2 and 4 weeks with consequent euthanasia for immunohistochemical investigations. The exercise group showed better behavioral recovery in cylinder test and significant decrease in the number of amphetamine-induced rotations, compared to the non-exercise group. Correspondingly, significant preservation of tyrosine hydroxylase (TH)-positive fibers in the striatum and TH-positive neurons in the substantia nigra pars compacta (SNc) was demonstrated, compared to the non-exercise group. Additionally, the number of migrated BrdU- and Doublecortin-positive cells toward the lesioned striatum was increased in the exercise group. Furthermore, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor increased in the striatum by exercise. The results suggest that exercise exerts neuroprotective effects or enhances the neuronal differentiation in Parkinson's disease model of rats with subsequent improvement in deteriorated motor function. PMID:19900418

  7. Qualitative dimensions of exertional dyspnea in adults with cystic fibrosis.

    Science.gov (United States)

    Quon, Bradley S; Wilkie, Sabrina S; Ramsook, Andrew H; Schaeffer, Michele R; Puyat, Joseph H; Wilcox, Pearce G; Guenette, Jordan A

    2016-08-01

    No studies of cystic fibrosis (CF) have systematically characterized the evolution of the qualitative dimensions of exertional dyspnea. Adults with CF (n = 25) and control individuals matched for sex, age, and body mass index (n = 25) underwent cardiopulmonary cycle exercise testing with a detailed evaluation of ventilatory and dyspnea responses. The qualitative dimensions of dyspnea were examined during each exercise stage by having subjects select phrases that best described their breathing (i.e., "work/effort," "unsatisfied inspiration," and "unsatisfied expiration"). Subjects also selected phrases that described the quality of their breathing at peak exercise using an established 15-item questionnaire, which was then clustered into different categories. Subjects with CF had greater ventilatory requirements, higher end-inspiratory and end-expiratory lung volumes (% total lung capacity), and an earlier inflection/plateau in tidal volume during exercise compared with control subjects. Increased work/effort was the dominant qualitative descriptor in both groups throughout exercise. Unsatisfied inspiration was selected by 48% of subjects with CF and 40% of controls at some point during exercise. The onset of unsatisfied inspiration in these subjects occurred at a significantly lower relative exercise intensity in subjects with CF vs. controls (72 ± 21 vs. 94 ± 11% Wmax, P < 0.01). Chest tightness was the only qualitative descriptor cluster that was selected more frequently by subjects with CF vs. controls (36 vs. 0%, respectively, P < 0.05) at peak exercise. Therapeutic interventions that reduce ventilatory requirements and improve lung volumes may delay the onset of distressing sensations such as unsatisfied inspiration and chest tightness in adults with CF. PMID:27311438

  8. Early Dual Language Learning

    Science.gov (United States)

    Genesee, Fred

    2008-01-01

    Parents and child care personnel in English-dominant parts of the world often express misgivings about raising children bilingually. Their concerns are based on the belief that dual language learning during the infant-toddler stage confuses children, delays their development, and perhaps even results in reduced language competence. In this…

  9. Dual temperature exchange apparatus

    International Nuclear Information System (INIS)

    A dual temperature final enrichment system is described that can effect the further enrichment of the previously augmented deuterium content of water from a concentration of 1 mol percent to a desired concentration of up to 99.8 mol percent; and a product finishing system which can remove dissolved contaminants from such enriched water to provide a high purity product

  10. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    Directory of Open Access Journals (Sweden)

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  11. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Frøsig, Christian; Jeppesen, Jacob Fuglsbjerg; Jensen, Thomas Elbenhardt; Lundsgaard, Anne-Marie; Serup, Annette Karen Lundbeck; Schjerling, Peter; Proud, Chris G; Richter, Erik; Kiens, Bente

    2016-01-01

    During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various...... tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3.......01) in plasma insulin concentration, a subsequent decrease in muscle mTORC1 signaling and increased (p<0.05) levels of the autophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in...

  12. Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle.

    Science.gov (United States)

    Fritzen, Andreas Mæchel; Frøsig, Christian; Jeppesen, Jacob; Jensen, Thomas Elbenhardt; Lundsgaard, Anne-Marie; Serup, Annette Karen; Schjerling, Peter; Proud, Chris G; Richter, Erik A; Kiens, Bente

    2016-06-01

    During induction of the autophagosomal degradation process, LC3-I is lipidated to LC3-II and associates to the cargo isolation membrane allowing for autophagosome formation. Lipidation of LC3 results in an increased LC3-II/LC3-I ratio, and this ratio is an often used marker for autophagy in various tissues, including skeletal muscle. From cell studies AMPK has been proposed to be necessary and sufficient for LC3 lipidation. The aim of the present study was to investigate the role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. We observed an increase in the LC3-II/LC3-I ratio in skeletal muscle of AMPKα2 kinase-dead (KD) (pautophagy-promoting proteins, FoxO3a and ULK1. Furthermore, a higher (p<0.01) LC3-II/LC3-I ratio was observed in old compared to young mice. We were not able to detect any change in LC3 lipidation with either in vivo treadmill exercise or in situ contractions. Collectively, these findings suggest that AMPKα2 is not necessary for induction of LC3 lipidation with fasting and aging. Furthermore, LC3 lipidation is increased in muscle lacking functional AMPKα2 during fasting and aging. Moreover, LC3 lipidation seems not to be a universal response to muscle contraction in mice. PMID:26976209

  13. mTOR remains unchanged in diet-resistant (DR) rats despite impaired LKB1/AMPK cascade in adipose tissue.

    Science.gov (United States)

    Han, Jie; Liang, Huimin; Tian, Derun; Du, Jianying; Wang, Qiming; Xi, Pengjiao; Wang, Haomin; Li, Yongmei

    2016-08-01

    Liver kinase B1 (LKB1) plays an important role in adipogenesis, but the underlying molecular mechanism is poorly understood. Here, we explored the functional relationship between LKB1 and the mammalian target of rapamycin (mTOR) in regulating adipogenesis in rats and preadipocytes. We found that LKB1 and the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) cascade are impaired in the white adipose tissue (WAT) of diet-induced obesity (DIO) and diet-resistant (DR) rats when compared with chow-fed (CF) rats. While DIO activated the mTOR pathway in WAT and led to a more fat mass gain, DR maintained the normal activity of the mTOR pathway and normal weight and percentage of fat mass. We further constructed overexpressed LKB1 (OE) and silenced LKB1 (Si) 3T3-L1 preadipocytes monoclonal cell lines. In the OE cell line, the mTOR pathway was inactivated, and intracellular lipid content was reduced during differentiation. This effect could be reversed by AMPK inhibition. Conversely, in the Si cell line, the mTOR pathway was activated and intracellular lipid content increased. This effect could be reversed by rapamycin, an inhibitor of mTOR. Our results suggest that mTOR mediates the effect of LKB1 on adipogenesis, and normal activity of mTOR in DR rats interferes with the effect of LKB1 in WAT. PMID:27235551

  14. Exertional heat stroke in a young military trainee: is it preventable?

    OpenAIRE

    Wijerathne, Buddhika T. B.; Pilapitiya, Senaka D.; Vijitharan, Vadivel; Farah, Mohammed M. F.; Wimalasooriya, Yashodhara V. M.; Siribaddana, Sisira H.

    2016-01-01

    Background Heat stroke is a life-threatening condition with exertional heat stroke occurring frequently among soldiers and athletes. Because of its common occurrence, many military trainees practice preventive measures prior to any activity requiring severe exertion. Although it is said to be common in practice, different presentations of heat stroke are scarcely described in literature. Case Presentation We describe a case of an exertional heat stroke in a 23-year-old male Sinhalese soldier ...

  15. Sepsis and mechnaical ventilation restrain translation initiation in skeletal muscle by inducing AMPK-associated TSC[2] restriction of mTOR signaling in pigs

    Science.gov (United States)

    In skeletal muscle, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor of AMP: ATP and modulates translation by repressing mammalian target of rapamycin (mTOR) activation. Endotoxin (LPS)-induced sepsis reduces muscle protein synthesis by blunting translation initiation. We hypothe...

  16. A SIRT3/AMPK/autophagy network orchestrates the protective effects of trans-resveratrol in stressed peritoneal macrophages and RAW 264.7 macrophages.

    Science.gov (United States)

    Duan, Wen-Jun; Li, Yi-Fang; Liu, Fang-Lan; Deng, Jie; Wu, Yan-Ping; Yuan, Wei-Lin; Tsoi, Bun; Chen, Jun-Li; Wang, Qi; Cai, Shao-Hui; Kurihara, Hiroshi; He, Rong-Rong

    2016-06-01

    Resveratrol gains a great interest for its strong antioxidant properties, while the molecular mechanisms underlie the beneficial effects on psychosocial stress remain controversial. In this study, we demonstrated that resveratrol protected peritoneal macrophages and RAW 264.7 cells from stress-induced decrease in the total cell count, phagocytic capability, reactive oxygen species generation, monodansylcadaverine and mitochondrial membrane potential in stressed mice. Resveratrol promoted stress-induced autophagy in both models. Modulation of autophagy by rapamycin or 3-methyladenine regulated the protective effect of resveratrol, suggesting a role of autophagy in the protective mechanisms of resveratrol. The comparison studies revealed that distinct mechanisms were implicated in the protective effect of resveratrol and other antioxidants (vitamin C and edaravone). Resveratrol promoted autophagy via upregulating SIRT3 expression and phosphorylation of AMP-activated protein kinase (AMPK). Knockdown of SIRT3 resulted in decreased autophagy and abolished protective effect of resveratrol. SIRT1 was also involved in the protective mechanism of resveratrol, although its effect on autophagy was unnoticeable. Pharmacological manipulation of autophagy modulated the effects of resveratrol on SIRT3 and AMPK, revealing the engagement of a positive feedback loop. In sharp contrast, vitamin C and edaravone effectively protected macrophages from stress-induced cytotoxicity, accompanied by downregulated SIRT3 expression and AMPK phosphorylation, and decreased level of autophagy response. Taken together, we conclude that a SIRT3/AMPK/autophagy network orchestrates in the protective effect of resveratrol in macrophages. PMID:27021965

  17. Wedelolactone Regulates Lipid Metabolism and Improves Hepatic Steatosis Partly by AMPK Activation and Up-Regulation of Expression of PPARα/LPL and LDLR.

    Directory of Open Access Journals (Sweden)

    Yun Zhao

    Full Text Available Hyperlipidemia is considered one of the greatest risk factors of cardiovascular diseases. We investigated the anti-hyperlipidemic effect and the underlying mechanism of wedelolactone, a plant-derived coumestan, in HepG2 cells and high-fat diet (HFD-induced hyperlipidemic hamsters. We showed that in cultured HepG2 cells, wedelolactone up-regulated protein levels of adenosine monophosphate activated protein kinase (AMPK and peroxisome proliferator-activated receptor-alpha (PPARα as well as the gene expression of AMPK, PPARα, lipoprotein lipase (LPL, and the low-density lipoprotein receptor (LDLR. Meanwhile, administration of wedelolactone for 4 weeks decreased the lipid profiles of plasma and liver in HFD-induced hyperlipidemic hamsters, including total cholesterol (TC, triglycerides (TG, and low-density lipoprotein-cholesterol (LDL-C. The activation of AMPK and up-regulation of PPARα was also observed with wedelolactone treatment. Furthermore, wedelolactone also increased the activities of superoxidase dismutase (SOD and glutathione peroxidase (GSH-Px and decreased the level of the lipid peroxidation product malondialdehyde (MDA in the liver, therefore decreasing the activity of alanine aminotransferase (ALT. In conclusion, we provide novel experimental evidence that wedelolactone possesses lipid-lowering and steatosis-improving effects, and the underlying mechanism is, at least in part, mediated by the activation of AMPK and the up-regulation of PPARα/LPL and LDLR.

  18. Computational Analysis of AMPK-Mediated Neuroprotection Suggests Acute Excitotoxic Bioenergetics and Glucose Dynamics Are Regulated by a Minimal Set of Critical Reactions.

    Directory of Open Access Journals (Sweden)

    Niamh M C Connolly

    Full Text Available Loss of ionic homeostasis during excitotoxic stress depletes ATP levels and activates the AMP-activated protein kinase (AMPK, re-establishing energy production by increased expression of glucose transporters on the plasma membrane. Here, we develop a computational model to test whether this AMPK-mediated glucose import can rapidly restore ATP levels following a transient excitotoxic insult. We demonstrate that a highly compact model, comprising a minimal set of critical reactions, can closely resemble the rapid dynamics and cell-to-cell heterogeneity of ATP levels and AMPK activity, as confirmed by single-cell fluorescence microscopy in rat primary cerebellar neurons exposed to glutamate excitotoxicity. The model further correctly predicted an excitotoxicity-induced elevation of intracellular glucose, and well resembled the delayed recovery and cell-to-cell heterogeneity of experimentally measured glucose dynamics. The model also predicted necrotic bioenergetic collapse and altered calcium dynamics following more severe excitotoxic insults. In conclusion, our data suggest that a minimal set of critical reactions may determine the acute bioenergetic response to transient excitotoxicity and that an AMPK-mediated increase in intracellular glucose may be sufficient to rapidly recover ATP levels following an excitotoxic insult.

  19. Chronic Caloric Restriction and Exercise Improve Metabolic Conditions of Dietary-Induced Obese Mice in Autophagy Correlated Manner without Involving AMPK

    Directory of Open Access Journals (Sweden)

    Mingxia Cui

    2013-01-01

    Full Text Available Aim. To investigate the role of AMPK activation and autophagy in mediating the beneficial effects of exercise and caloric restriction in obesity. Methods. Dietary-induced obesity mice were made and divided into 5 groups; one additional group of normal mice serves as control. Mice in each group received different combinations of interventions including low fat diet, caloric restriction, and exercise. Then their metabolic conditions were assessed by measuring serum glucose and insulin, serum lipids, and liver function. AMPK phosphorylation and autophagy activity were detected by western blotting. Results. Obese mice models were successfully induced by high fat diet. Caloric restriction consistently improved the metabolic conditions of the obese mice, and the effects are more prominent than the mice that received only exercise. Also, caloric restriction, exercise, and low fat diet showed a synergistic effect in the improvement of metabolic conditions. Western blotting results showed that this improvement was not related with the activation of AMPK in liver, skeletal muscle, or heart but correlates well with the autophagy activity. Conclusion. Caloric restriction has more prominent beneficial effects than exercise in dietary-induced obese mice. These effects are correlated with the autophagy activity and may be independent of AMPK activation.

  20. Research Development of AMPK as Targets for Obesity Treatment%AMPK作为治疗肥胖靶点的研究进展

    Institute of Scientific and Technical Information of China (English)

    郑丽英

    2012-01-01

    肥胖发生的主要原因是能量代谢平衡失调,腺苷酸激活蛋白激酶(AMPK)在调节机体能量代谢平衡方面起总开关作用,其激活后磷酸化下游信号分子,关闭消耗ATP的合成代谢途径,开启产生ATP的分解代谢途径.AMPK还可通过介导某些激素和细胞因子的释放和表达,作用下丘脑摄食中枢,调节食物摄入,与肥胖的发生密切相关.因此,AMPK信号通路有望成为治疗肥胖的药理学靶点.%Obesity is mainly due to the imbalance of energy metabolism,adenosine monophosphate-acti-vated protein kinase( AMPK ), which is the switch of energy metabolism in body, once activated, AMPK switches off catabolic pathways that generate ATP, and switches on ATP-consuming processes. The system can also interact with hormones and cytokines,functioning on hypothalamus feeding center to regulate food intake, thus playing a key role in the occurrence of obesity. Therefore, AMPK signaling pathway is expected to be a pharmacological target in treating obesity.

  1. On the Wilson loop in the dual representation within the dual Higgs model with dual Dirac strings

    OpenAIRE

    Ivanova, V. A.; Troitskaya, N. I.

    2001-01-01

    The vacuum expectation value of the Wilson loop in the dual representation is calculated in the dual Higgs model with dual Dirac strings. It is shown that the averaged value of the Wilson loop in the dual representation obeys the area-law falloff. Quantum fluctuations of the dual-vector and the Higgs field around Abrikosov flux lines induced by dual Dirac strings in a dual superconducting vacuum and string shape fluctuations are taken into account.

  2. AMPK activation represses the human gene promoter of the cardiac isoform of acetyl-CoA carboxylase: Role of nuclear respiratory factor-1

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Tasneem; Opie, Lionel H. [Hatter Cardiovascular Research Institute, Faculty of Health Sciences, University of Cape Town, Observatory 7925 (South Africa); Essop, M. Faadiel, E-mail: mfessop@sun.ac.za [Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600 (South Africa)

    2010-07-30

    Research highlights: {yields} AMPK inhibits acetyl-CoA carboxylase beta gene promoter activity. {yields} Nuclear respiratory factor-1 inhibits acetyl-CoA carboxylase beta promoter activity. {yields} AMPK regulates acetyl-CoA carboxylase beta at transcriptional level. -- Abstract: The cardiac-enriched isoform of acetyl-CoA carboxylase (ACC{beta}) produces malonyl-CoA, a potent inhibitor of carnitine palmitoyltransferase-1. AMPK inhibits ACC{beta} activity, lowering malonyl-CoA levels and promoting mitochondrial fatty acid {beta}-oxidation. Previously, AMPK increased promoter binding of nuclear respiratory factor-1 (NRF-1), a pivotal transcriptional modulator controlling gene expression of mitochondrial proteins. We therefore hypothesized that NRF-1 inhibits myocardial ACC{beta} promoter activity via AMPK activation. A human ACC{beta} promoter-luciferase construct was transiently transfected into neonatal cardiomyocytes {+-} a NRF-1 expression construct. NRF-1 overexpression decreased ACC{beta} gene promoter activity by 71 {+-} 4.6% (p < 0.001 vs. control). Transfections with 5'-end serial promoter deletions revealed that NRF-1-mediated repression of ACC{beta} was abolished with a pPII{beta}-18/+65-Luc deletion construct. AMPK activation dose-dependently reduced ACC{beta} promoter activity, while NRF-1 addition did not further decrease it. We also investigated NRF-1 inhibition in the presence of upstream stimulatory factor 1 (USF1), a known transactivator of the human ACC{beta} gene promoter. Here NRF-1 blunted USF1-dependent induction of ACC{beta} promoter activity by 58 {+-} 7.5% (p < 0.001 vs. control), reversed with a dominant negative NRF-1 construct. NRF-1 also suppressed endogenous USF1 transcriptional activity by 55 {+-} 6.2% (p < 0.001 vs. control). This study demonstrates that NRF-1 is a novel transcriptional inhibitor of the human ACC{beta} gene promoter in the mammalian heart. Our data extends AMPK regulation of ACC{beta} to the transcriptional level.

  3. The Effect of Exertion and Sex on Vertical Ground Reaction Force Variables and Landing Mechanics.

    Science.gov (United States)

    Bell, David R; Pennuto, Anthony P; Trigsted, Stephanie M

    2016-06-01

    Bell, DR, Pennuto, AP, and Trigsted, SM. The effect of exertion and sex on vertical ground reaction force variables and landing mechanics. J Strength Cond Res 30(6): 1661-1669, 2016-The purpose of this investigation was to determine how exertion and sex affected a variety of vertical ground reaction force (VGRF) parameters during a jump-landing task, including peak VGRF, peak VGRF asymmetry, loading rate, and loading rate asymmetry. Additionally, we wanted to determine whether landing mechanics changed after exertion as measured by the Landing Error Scoring System (LESS). Forty recreationally active participants (20 men and 20 women) completed jump landings from a 30-cm-high box onto force plates before and after repeated bouts of an exercise circuit until a specific rating of perceived exertion was achieved. Three-way (sex × time × limb) analyses of variance were used to analyze variables pre-exertion to postexertion. No significant 3-way interactions were observed for peak VGRF (p = 0.31) or loading rate (p = 0.14). Time by sex interactions were observed for peak VGRF (p = 0.02) and loading rate (p = 0.008). Post hoc analysis revealed that men increased landing force and loading rate after exertion while women did not. Landing mechanics, as assessed by total LESS score, were worse after exertion (p < 0.001) with increased frequency of errors for knee flexion <30° at initial contact, lateral trunk flexion, and not flexing the hip during landing. Women may be more resistant to exertion compared with men and use different joint controls' strategies to cope with VGRF after exertion. However, VGRF asymmetry is not affected by sex and exertion. Limiting peak VGRF and addressing landing postures, especially after exertion, should be components of injury prevention strategies. PMID:26562710

  4. Dual-readout Calorimetry

    CERN Document Server

    Akchurin, N; Cardini, A.; Cascella, M.; Cei, F.; De Pedis, D.; Fracchia, S.; Franchino, S.; Fraternali, M.; Gaudio, G.; Genova, P.; Hauptman, J.; La Rotonda, L.; Lee, S.; Livan, M.; Meoni, E.; Moggi, A.; Pinci, D.; Policicchio, A.; Saraiva, J.G.; Sill, A.; Venturelli, T.; Wigmans, R.

    2013-01-01

    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to un- derstand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\\sigma}/E $\\approx$ 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.

  5. Dual Double Field Theory

    CERN Document Server

    Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio

    2016-01-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  6. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Tillu Dipti V

    2012-01-01

    Full Text Available Abstract Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6 is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling

  7. Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator.

    Science.gov (United States)

    Lee, Kuen-Haur; Hsu, En-Chi; Guh, Jih-Hwa; Yang, Hsiao-Ching; Wang, Dasheng; Kulp, Samuel K; Shapiro, Charles L; Chen, Ching-Shih

    2011-11-11

    The antitumor activities of the novel adenosine monophosphate-activated protein kinase (AMPK) activator, OSU-53, were assessed in in vitro and in vivo models of triple-negative breast cancer. OSU-53 directly stimulated recombinant AMPK kinase activity (EC(50), 0.3 μM) and inhibited the viability and clonogenic growth of MDA-MB-231 and MDA-MB-468 cells with equal potency (IC(50), 5 and 2 μM, respectively) despite lack of LKB1 expression in MDA-MB-231 cells. Nonmalignant MCF-10A cells, however, were unaffected. Beyond AMPK-mediated effects on mammalian target of rapamycin signaling and lipogenesis, OSU-53 also targeted multiple AMPK downstream pathways. Among these, the protein phosphatase 2A-dependent dephosphorylation of Akt is noteworthy because it circumvents the feedback activation of Akt that results from mammalian target of rapamycin inhibition. OSU-53 also modulated energy homeostasis by suppressing fatty acid biosynthesis and shifting the metabolism to oxidation by up-regulating the expression of key regulators of mitochondrial biogenesis, such as a peroxisome proliferator-activated receptor γ coactivator 1α and the transcription factor nuclear respiratory factor 1. Moreover, OSU-53 suppressed LPS-induced IL-6 production, thereby blocking subsequent Stat3 activation, and inhibited hypoxia-induced epithelial-mesenchymal transition in association with the silencing of hypoxia-inducible factor 1a and the E-cadherin repressor Snail. In MDA-MB-231 tumor-bearing mice, daily oral administration of OSU-53 (50 and 100 mg/kg) suppressed tumor growth by 47-49% and modulated relevant intratumoral biomarkers of drug activity. However, OSU-53 also induced protective autophagy that attenuated its antiproliferative potency. Accordingly, cotreatment with the autophagy inhibitor chloroquine increased the in vivo tumor-suppressive activity of OSU-53. OSU-53 is a potent, orally bioavailable AMPK activator that acts through a broad spectrum of antitumor activities. PMID

  8. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  9. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ming Ming

    Full Text Available Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC cells (PANC-1, MiaPaCa-2 with the isoquinoline alkaloid berberine (0.3-6 µM inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70% the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244 and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.

  10. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    International Nuclear Information System (INIS)

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser79 and Raptor at Ser792, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α1 and α2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  11. Dual isotope assays

    International Nuclear Information System (INIS)

    Dual isotope assays for thyroid function are performed by carrying out a radio-immunoassay for two of thyroxine (T4), tri-iodothyronine (T3), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG), by a method wherein a version of one of the thyroid components, preferably T4 or T3 is labelled with Selenium-75 and the version of the other thyroid component is labelled with a different radionuclide, preferably Iodine-125. (author)

  12. Compactifications for Dual Processes

    OpenAIRE

    Glover, Joseph

    1980-01-01

    We develop a general theory of duality for Markov processes satisfying Meyer's hypothesis (L) and possessing an excessive reference measure. We make use of a compactification introduced by Walsh which allows a right process and its moderate dual to have strong Markov versions on an enlarged state space. The representation theory for potentials of additive functionals due to Revuz and Sharpe can be extended to this setting. Using this theory, we show that the conatural additive functionals int...

  13. Dynamics of Perceived Exertion in Constant-Power Cycling: Time- and Workload-Dependent Thresholds

    Science.gov (United States)

    Balagué, Natàlia; Hristovski, Robert; García, Sergi; Aguirre, Cecilia; Vázquez, Pablo; Razon, Selen; Tenenbaum, Gershon

    2015-01-01

    Purpose: The purpose of this study was to test the dynamics of perceived exertion shifts (PES) as a function of time and workload during constant-power cycling. Method: Fifty-two participants assigned to 4 groups performed a cycling task at 4 different constant workloads corresponding to their individual rates of perceived exertion (RPEs = 13, 15,…

  14. Regulation of Torpor in the Gray Mouse Lemur:Transcriptional and Translational Controls and Role of AMPK Signaling

    Institute of Scientific and Technical Information of China (English)

    Jing Zhang; Shannon N Tessier; Kyle K Biggar; Cheng-Wei Wu; Fabien Pifferi; Martine Perret; Kenneth B Storey

    2015-01-01

    The gray mouse lemur (Microcebus murinus) is one of few primate species that is able to enter daily torpor or prolonged hibernation in response to environmental stresses. With an emerg-ing significance to human health research, lemurs present an optimal model for exploring molecular adaptations that regulate primate hypometabolism. A fundamental challenge is how to effectively regulate energy expensive cellular processes (e.g., transcription and translation) during transitions to/from torpor without disrupting cellular homeostasis. One such regulatory mechanism is reversi-ble posttranslational modification of selected protein targets that offers fine cellular control without the energetic burden. This study investigates the role of phosphorylation and/or acetylation in reg-ulating key factors involved in energy homeostasis (AMP-activated protein kinase, or AMPK, sig-naling pathway), mRNA translation (eukaryotic initiation factor 2a or eIF2a, eukaryotic initiation factor 4E or eIF4E, and initiation factor 4E binding protein or 4EBP), and gene transcription (his-tone H3) in six tissues of torpid and aroused gray mouse lemurs. Our results indicated selective tissue-specific changes of these regulatory proteins. The relative level of Thr172-phosphorylated AMPKa was significantly elevated in the heart but reduced in brown adipose tissue during daily torpor, as compared to the aroused lemurs, implicating the regulation of AMPK activity during daily torpor in these tissues. Interestingly, the levels of the phosphorylated eIFs were largely unal-tered between aroused and torpid animals. Phosphorylation and acetylation of histone H3 were examined as a marker for transcriptional regulation. Compared to the aroused lemurs, level of Ser10-phosphorylated histone H3 decreased significantly in white adipose tissue during torpor, sug-gesting global suppression of gene transcription. However, a significant increase in acetyl-histone H3 in the heart of torpid lemurs indicated a

  15. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tong; Wu, Yu-wei; Lu, Hui; Guo, Yuan [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China); Tang, Zhi-hui, E-mail: tang_zhihui@live.cn [Second Dental Center, Peking University School and Hospital of Stomatology, Beijing (China); National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing (China)

    2015-05-29

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  16. Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells by activating the APPL1-AMPK signaling pathway

    International Nuclear Information System (INIS)

    Human adipose-derived stem cells (hASCs) are multipotent progenitor cells with multi-lineage differentiation potential including osteogenesis and adipogenesis. While significant progress has been made in understanding the transcriptional control of hASC fate, little is known about how hASC differentiation is regulated by the autocrine loop. The most abundant adipocytokine secreted by adipocytes, adiponectin (APN) plays a pivotal role in glucose metabolism and energy homeostasis. Growing evidence suggests a positive association between APN and bone formation yet little is known regarding the direct effects of APN on hASC osteogenesis. Therefore, this study was designed to investigate the varied osteogenic effects and regulatory mechanisms of APN in the osteogenic commitment of hASCs. We found that APN enhanced the expression of osteoblast-related genes in hASCs, such as osteocalcin, alkaline phosphatase, and runt-related transcription factor-2 (Runx2, also known as CBFa1), in a dose- and time-dependent manner. This was further confirmed by the higher expression levels of alkaline phosphatase and increased formation of mineralization nodules, along with the absence of inhibition of cell proliferation. Importantly, APN at 1 μg/ml was the optimal concentration, resulting in maximum deposition of calcium nodules, and was significant superior to bone morphogenetic protein 2. Mechanistically, we found for the first time that APN increased nuclear translocation of the leucine zipper motif (APPL)-1 as well as AMP-activated protein kinase (AMPK) phosphorylation, which were reversed by pretreatment with APPL1 siRNA. Our results indicate that APN promotes the osteogenic differentiation of hASCs by activating APPL1-AMPK signaling, suggesting that manipulation of APN is a novel therapeutic target for controlling hASC fate. - Highlights: • Adiponectin enhances osteogenic differentiation in human adipose-derived stem cells. • The knock-down of APPL1 block the enhancement of

  17. Investigations on the dual calculus

    OpenAIRE

    Tzevelekos, Nikos

    2006-01-01

    The Dual Calculus, proposed recently by Wadler, is the outcome of two distinct lines of research in theoretical computer science: (A) Efforts to extend the Curry–Howard isomorphism, established between the simply-typed lambda calculus and intuitionistic logic, to classical logic. (B) Efforts to establish the tacit conjecture that call-by-value (CBV) reduction in lambda calculus is dual to call-by-name (CBN) reduction. This paper initially investigates relations of the Dual Calculus t...

  18. Ethanolic Extract of Vitis thunbergii Exhibits Lipid Lowering Properties via Modulation of the AMPK-ACC Pathway in Hypercholesterolemic Rabbits

    Directory of Open Access Journals (Sweden)

    Chun-Hsu Pan

    2012-01-01

    Full Text Available Vitis thunbergii (VT is a wild grape that has been shown to provide various cardioprotective effects. The present study was designed to examine whether a VT extract could reduce serum lipid levels and prevent atherogenesis in a hypercholesterolemic rabbit model. At the end of an 8-week study, our results showed that a VT extract supplement markedly suppressed the serum levels of cholesterol and low-density lipoprotein, reduced lipid accumulation in liver tissues, and limited aortic fatty streaks. Our findings suggest that the VT extract activated AMPK (5′-adenosine monophosphate-activated protein kinase with subsequent inhibition of the activation of ACC (acetyl-CoA carboxylase. Our results suggest that this VT extract could be further developed as a potential lipid-lowering agent and as a natural health food to prevent atherogenesis.

  19. Alexander Duals of Multipermutohedron Ideals

    Indian Academy of Sciences (India)

    Ajay Kumar; Chanchal Kumar

    2014-02-01

    An Alexander dual of a multipermutohedron ideal has many combinatorial properties. The standard monomials of an Artinian quotient of such a dual correspond bijectively to some -parking functions, and many interesting properties of these Artinian quotients are obtained by Postnikov and Shapiro (Trans. Am. Math. Soc. 356 (2004) 3109–3142). Using the multigraded Hilbert series of an Artinian quotient of an Alexander dual of multipermutohedron ideals, we obtained a simple proof of Steck determinant formula for enumeration of -parking functions. A combinatorial formula for all the multigraded Betti numbers of an Alexander dual of multipermutohedron ideals are also obtained.

  20. Abdominal Dual Energy Imaging

    Science.gov (United States)

    Sommer, F. Graham; Brody, William R.; Cassel, Douglas M.; Macovski, Albert

    1981-11-01

    Dual energy scanned projection radiography of the abdomen has been performed using an experimental line-scanned radiographic system. Digital images simultaneously obtained at 85 and 135 kVp are combined, using photoelectric/Compton decomposition algorithms to create images from which selected materials are cancelled. Soft tissue cancellation images have proved most useful in various abdominal imaging applications, largely due to the elimination of obscuring high-contrast bowel gas shadows. These techniques have been successfully applied to intravenous pyelography, oral cholecystography, intravenous abdominal arteriog-raphy and the imaging of renal calculi.

  1. Dual cure photocatalyst systems

    Energy Technology Data Exchange (ETDEWEB)

    DeVoe, R.J.; Brown-Wensley, K.A.; Holmes, G.L.; Mathis, M.D.; McCormick, F.B.; Palazzotto, M.C.; Spurgeon, K.M. (Minnesota Mining and Mfg. Co., St. Paul, MN (USA). Corporate Research Labs.)

    1990-01-01

    A family of dual cure photocatalyst systems is being developed to be used in the solventless processing of organic coatings. The photocatalyst systems consist of organometallic compounds often in combination with other agents. Upon photolysis, the photocatalyst system generates a Lewis acid and a free radical. The Lewis acid can initiate the polymerization of epoxies or the addition of isocyanates and polyols to form polyurethanes while the free radical can initiate the polymerization of acrylates. The performance of the various photocatalyst systems will be compared on the basis of the physical properties of the cured compositions they produce. 17 figs.

  2. 高脂饮食对大鼠脂肪组织AMP激活的蛋白激酶表达的影响%EFFECT OF HIGH-FAT DIET ON EXPRESSION OF AMPK IN RAT ADIPOSE TISSUE

    Institute of Scientific and Technical Information of China (English)

    买淑鹏; 李晓山; 徐增光; 杨年红

    2008-01-01

    目的 探讨不同膳食模式对大鼠脂肪组织AMP激活的蛋白激酶(AMP-activated proteinkinase,AMPK)表达的影响.方法 高脂饲料喂养雄性SD大鼠实验组15 w,按体重分为肥胖(DIO)和肥胖抵抗(DIO-R)组,再将DIO组一半改用基础饲料喂养(DIO-HF/LF),另一半继续喂养高脂饮食(DIO-HF),DIO-R组继续喂养高脂饮食;以基础饲料喂养组作对照(CF).至23 w末禁食过夜处死动物,取脂肪组织,用RT-PCR法检测AMPK?1和AMPK?2mRNA表达水平,免疫印迹法检测AMPK?蛋白水平.结果 DIO-HF组大鼠体重和肾周、腰周、睾周脂肪湿重、三个部位总的脂肪湿重及脂体比均显著高于CF、DIO-HF/LF及Dio-R组,DIO-HF/LF组大鼠体重高于CF组.各组间AMPK?1 mRNA表达均无差异;DIO-HF组AMPK?2 mRNA表达及AMPKe蛋白表达水平显著低于CF、DIO-HF/LF及DIO-R组,而其余各组之间差异无统计学意义.结论 脂肪组织AMPK?水平降低与饮食诱导大鼠肥胖密切相关,其中AMPK?2可能扮演重要角色.

  3. CNX-012-570, a direct AMPK activator provides strong glycemic and lipid control along with significant reduction in body weight; studies from both diet-induced obese mice and db/db mice models

    OpenAIRE

    Anil, Tharappel M; Harish, Chandrashekaran; Lakshmi, Mudigere N; Harsha, KrishnaReddy; Onkaramurthy, Mallappa; Sathish Kumar, Venkatesh; Shree, Nitya; Geetha, Venkatachalaiah; Balamurali, Gundalmandikal V; Gopala, Aralakuppe S; Madhusudhan Reddy, Bobbili; Govind, Madabosse K; Anup, Mammen O; Moolemath, Yoganand; Venkataranganna, Marikunte V.

    2014-01-01

    Objectives AMP activated protein kinase (AMPK) regulates the coordination of anabolic and catabolic processes and is an attractive therapeutic target for T2DM, obesity and metabolic syndrome. We report the anti-hyperglycemic and anti-hyperlipidemic effects of CNX-012-570 is an orally bioavailable small molecule (molecular weight of 530 Daltons) that directly activates AMPK in DIO and db/db animal models of diabetes. Methods Activity and efficacy of the compound was tested in cell based as wel...

  4. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding.

    Science.gov (United States)

    Tarr, Bronwyn; Launay, Jacques; Cohen, Emma; Dunbar, Robin

    2015-10-01

    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and reward-inducing, and have been implicated in primate social bonding. We used a 2 × 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and in-group bonding. This suggests that dance which involves both exertive and synchronized movement may be an effective group bonding activity. PMID:26510676

  5. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    International Nuclear Information System (INIS)

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  6. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jae Yun [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Seung Sik [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Da Eon [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Bang, Joon Seok [Graduate School of Clinical Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Jung, Young Suk [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  7. Dual Card,Double Happiness

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    As Christmas Day and New Year Day draw near, why not treat yourself with a smart digital gizmo. Then, the Samsung Dual-card Cellphone is what you are longing for. Samsung B5712C, the first dual-card model released by Samsung,

  8. Dual-Credit in Kentucky

    Science.gov (United States)

    Stephenson, Lisa G.

    2013-01-01

    Credit-based transition programs provide high school students with opportunities to jump start their college education. The Kentucky Community and Technical College System (KCTCS) offers college credit through dual-credit programs. While KCTCS dual-credit offerings have been successful in helping high school students start their college education…

  9. Dual resonance models and superstrings

    CERN Document Server

    Frampton, Paul H

    1986-01-01

    This is an excellent book on dual model and string theories. This updated issue of the author's book 'Dual Resonance Models' has new chapters on string theories added to it. This new volume therefore provides much background on the non-symmetrical aspects as well as modern development in the theory of strong interactions. This is a must for high energy physicists.

  10. Asymmetry in Dual Language Practice

    Directory of Open Access Journals (Sweden)

    Audrey Amrein

    2000-01-01

    Full Text Available The capacity for dual-language programs to deliver specific benefits to students with different primary and secondary language skills continues to be debated. Individuals favoring dual language assert that as it relies upon a reciprocal approach, dual language students acquire dual language proficiency without the need for teachers to translate from one language to another. By utilizing and conserving the language skills that students bring, dual language students also gain cross-cultural understandings and an expanded opportunity to realize academic success in the future. Research that explores whether these programs meet the needs of monolingual and bilingual students is limited. The intent of this study is not to criticize dual language practice. Instead, it is to describe a newly implemented dual language immersion program that exists and operates in Phoenix, Arizona. In particular, this study examines the practices of dual language teachers at Leigh Elementary School and the challenges encountered as school personnel worked to provide students with different primary and secondary language skills increased opportunities to learn.

  11. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per;

    2011-01-01

    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  12. Accidents leading to over-exertion back injuries among nursing personnel

    OpenAIRE

    Engkvist, Inga-Lill

    1999-01-01

    The overall aim of the present thesis was to contribute to the knowledge of occupational accidents leading to over-exertion back injuries among nursing personnel, which can be used for developing effective preventive strategies. Different combinations of factors and events were assumed to determine the type of accident process leading to an over-exertion injury. The first study used the Swedish Occupational Injury Register (ISA) to investigate the occurrence of reported ...

  13. Synchrony and exertion during dance independently raise pain threshold and encourage social bonding

    OpenAIRE

    Tarr, B; Launay, JP; Cohen, EEA; Dunbar, RIM

    2015-01-01

    Group dancing is a ubiquitous human activity that involves exertive synchronized movement to music. It is hypothesized to play a role in social bonding, potentially via the release of endorphins, which are analgesic and reward-inducing, and have been implicated in primate social bonding. We used a 2 × 2 experimental design to examine effects of exertion and synchrony on bonding. Both demonstrated significant independent positive effects on pain threshold (a proxy for endorphin activation) and...

  14. Prolonged mental exertion does not alter neuromuscular function of the knee extensors

    OpenAIRE

    Pageaux, Benjamin; Marcora, Samuele; Lepers, Romuald

    2013-01-01

    Purpose: The aim of this study was to test the hypotheses that prolonged mental exertion i) reduces maximal muscle activation and ii) increases the extent of central fatigue induced by subsequent endurance exercise. Methods: Neuromuscular function of the knee extensor muscles was assessed in 10 male subjects in two different conditions: i) before and after prolonged mental exertion leading to mental fatigue; ii) before and after an easy cognitive task (control). Both cognitive tasks lasted 90...

  15. Papel de AMPK en la regulación del metabolismo y proliferación celular durante el proceso de tumorogénesis

    OpenAIRE

    Ríos García, Marcos

    2012-01-01

    AMPK es un sensor energético y ha sido relacionado con la inhibición de rutas anabólicas, apoptosis y ciclo celular. Aunque su papel en la homeostasis metabólica está bien documentado, su posible función en cáncer es todavía poco conocida. El principal objetivo de este estudio ha sido analizar el papel de AMPK en metabolismo y proliferación de células tumorales, evaluando las implicaciones de dos rutas de señalización celular; Raf/MEK/ERK y PI3K/Akt. Para este fin hemos usado un modelo de gli...

  16. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4.

    Directory of Open Access Journals (Sweden)

    Tomoaki Eguchi

    Full Text Available Aerobic exercise can promote "fast-to-slow transition" in skeletal muscles, i.e. an increase in oxidative fibers, mitochondria, and myoglobin and improvement in glucose and lipid metabolism. Here, we found that mice administered Mitochondria Activation Factor (MAF combined with exercise training could run longer distances and for a longer time compared with the exercise only group; MAF is a high-molecular-weight polyphenol purified from black tea. Furthermore, MAF intake combined with exercise training increased phosphorylation of AMPK and mRNA level of glucose transporter 4 (GLUT4. Thus, our data demonstrate for the first time that MAF activates exercise training-induced intracellular signaling pathways that involve AMPK, and improves endurance capacity.

  17. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    International Nuclear Information System (INIS)

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress

  18. NOX1 to NOX2 switch deactivates AMPK and induces invasive phenotype in colon cancer cells through overexpression of MMP-7

    OpenAIRE

    Banskota, Suhrid; Sushil C Regmi; Kim, Jung-Ae

    2015-01-01

    Background Although matrix metalloproteinase (MMP)-7 expression is correlated with increased metastatic potential in human colon cancer cells, the underlying molecular mechanism of invasive phenotype remains unknown. In the current study, we investigated the regulatory effects of membrane NADPH oxidase (NOX) and AMP activated protein kinase (AMPK) on MMP-7 expression and invasive phenotype change in colon cancer cells. Methods Production of superoxide anion was measured by lucigenin chemilumi...

  19. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway.

    Science.gov (United States)

    Quan, Hai Yan; Kim, Do Yeon; Kim, Soo Jung; Jo, Hee Kyung; Kim, Go Woon; Chung, Sung Hyun

    2013-05-01

    Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. The discovery of food components that can ameliorate NAFLD is therefore of interest. Betulinic acid (BA) is a triterpenoid with many pharmacological activities, but the effect of BA on fatty liver is as yet unknown. To explore the possible anti-fatty liver effects and their underlying mechanisms, we used insulin-resistant HepG2 cells, primary rat hepatocytes and liver tissue from ICR mice fed a high-fat diet (HFD). Oil Red O staining revealed that BA significantly suppressed excessive triglyceride accumulation in HepG2 cells and in the livers of mice fed a HFD. Ca(+2)-calmodulin dependent protein kinase kinase (CAMKK) and AMP-activated protein kinase (AMPK) were both activated by BA treatment. In contrast, the protein levels of sterol regulatory element-binding protein 1 (SREBP1), mammalian target of rapamycin (mTOR) and S6 kinase (S6K) were all reduced when hepatocytes were treated with BA for up to 24h. We found that BA activates AMPK via phosphorylation, suppresses SREBP1 mRNA expression, nuclear translocation and repressed SREBP1 target gene expression in HepG2 cells and primary hepatocytes, leading to reduced lipogenesis and lipid accumulation. These effects were completely abolished in the presence of STO-609 (a CAMKK inhibitor) or compound C (an AMPK inhibitor), indicating that the BA-induced reduction in hepatic steatosis was mediated via the CAMKK-AMPK-SREBP1 signaling pathway. Taken together, our results suggest that BA effectively ameliorates intracellular lipid accumulation in liver cells and thus is a potential therapeutic agent for the prevention of fatty liver disease. PMID:23435355

  20. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying; Li, Jia; Li, Shanshan; Li, Yi; Wang, Xiangxiang; Liu, Baolin [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Fu, Qiang, E-mail: fuqiang@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China); Ma, Shiping, E-mail: spma@cpu.edu.cn [Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 639, Longmian Road, Nanjing 211198 (China); Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, China Pharmaceutical University, 639, Longmian Road, Nanjing 211198 (China)

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for the suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.

  1. Effect of exhaustive ultra-endurance exercise in muscular glycogen and both Alpha1 and Alpha2 Ampk protein expression in trained rats.

    Science.gov (United States)

    Tarini, V A F; Carnevali, L C; Arida, R M; Cunha, C A; Alves, E S; Seeleander, M C L; Schmidt, B; Faloppa, F

    2013-09-01

    Glycogen is the main store of readily energy in skeletal muscle and plays a key role in muscle function, demonstrated by the inability to sustain prolonged high-intensity exercise upon depletion of these glycogen stores. With prolonged exercise, glycogen depletion occurs and 5'-AMP-activated protein kinase (AMPK), a potent regulator of muscle metabolism and gene expression, is activated promoting molecular signalling that increases glucose uptake by muscular skeletal cells. The aim of this study was primarily to determine the effect of ultra-endurance exercise on muscle glycogen reserves and secondly to verify the influence of this type of exercise on AMPK protein expression. Twenty-four male Wistar rats, 60 days old, were divided into four experimental groups: sedentary, sedentary exhausted (SE), endurance trained (T) and endurance trained exhausted (TE). The animals ran for 10 to 90 min/day, 5 days/week, for 12 weeks to attain trained status. Rats were killed immediately after the exhaustion protocol, which consisted of running on a treadmill (at approximately 60% Vmax until exhaustion). Optical density of periodic acid-Schiff was detected and glycogen depletion observed predominantly in type I muscle fibres of the TE group and in both type I and II muscle fibres in the SE group. Plasma glucose decreased only in the TE group. Hepatic glycogen was increased in T group and significantly depleted in TE group. AMPK protein expression was significantly elevated in TE and T groups. In conclusion, acute exhaustive ultra-endurance exercise promoted muscle glycogen depletion. It seems that total AMPK protein and gene expression is more influenced by status training. PMID:23184732

  2. Autophagy is not required to sustain exercise and PRKAA1/AMPK activity but is important to prevent mitochondrial damage during physical activity

    OpenAIRE

    Lo Verso, Francesca; Carnio, Silvia; Vainshtein, Anna; Sandri, Marco

    2014-01-01

    Physical activity has been recently documented to play a fundamental physiological role in the regulation of autophagy in several tissues. It has also been reported that autophagy is required for exercise itself and for training-induced adaptations in glucose homeostasis. These autophagy-mediated metabolic improvements are thought to be largely dependent on the activation of the metabolic sensor PRKAA1/AMPK. However, it is unknown whether these important benefits stem from systemic adaptation...

  3. Dual-horizon Peridynamics

    CERN Document Server

    Ren, Huilong; Cai, Yongchang; Rabczuk, Timon

    2015-01-01

    In this paper we develop a new Peridynamic approach that naturally includes varying horizon sizes and completely solves the "ghost force" issue. Therefore, the concept of dual-horizon is introduced to consider the unbalanced interactions between the particles with different horizon sizes. The present formulation is proved to fulfill both the balances of linear momentum and angular momentum. Neither the "partial stress tensor" nor the "`slice" technique are needed to ameliorate the ghost force issue in \\cite{Silling2014}. The consistency of reaction forces is naturally fulfilled by a unified simple formulation. The method can be easily implemented to any existing peridynamics code with minimal changes. A simple adaptive refinement procedure is proposed minimizing the computational cost. The method is applied here to the three Peridynamic formulations, namely bond based, ordinary state based and non-ordinary state based Peridynamics. Both two- and three- dimensional examples including the Kalthof-Winkler experi...

  4. Dual parton model

    International Nuclear Information System (INIS)

    Soft multiparticle production is a dominant feature of most events in high energy hadronic collisions. Since soft processes have no large momentum transfer, perturbative QCD expansions in the strong coupling constant are not applicable. However, suitable large N expansions of QCD provide a topological classification of diagrams and a potentially useful non-perturbative approach. This topological expansion, when supplemented with generally accepted theoretical principles like duality, unitarity, Regge behavior and the parton structure of hadrons, provides the basis underlying the dual parton model (DPM). This model has been extensively studied and gradually extended over the past twelve years. It has been shown that DPM provides a complete, phenomenological description of all facets of soft processes. This is a non-trivial achievement in view of the large amount of soft multiparticle data available from both hadronic as well as nuclear beams and targets. Here, we describe the basic ideas of the model and review the main results coming from DPM. (orig.)

  5. Dual Criteria Decisions

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten Igel; Rutström, Elisabet E.

    2014-01-01

    The most popular models of decision making use a single criterion to evaluate projects or lotteries. However, decision makers may actually consider multiple criteria when evaluating projects. We consider a dual criteria model from psychology. This model integrates the familiar tradeoffs between...... risk and utility that economists traditionally assume, allowance for rank-dependent decision weights, and consideration of income thresholds. We examine the issues involved in full maximum likelihood estimation of the model using observed choice data. We propose a general method for integrating the...... multiple criteria, using the logic of mixture models, which we believe is attractive from a decision-theoretic and statistical perspective. The model is applied to observed choices from a major natural experiment involving intrinsically dynamic choices over highly skewed outcomes. The evidence points to...

  6. Dual surface interferometer

    Science.gov (United States)

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  7. Anti-Diabetic Activities of Jiaotaiwan in db/db Mice by Augmentation of AMPK Protein Activity and Upregulation of GLUT4 Expression

    Directory of Open Access Journals (Sweden)

    Na Hu

    2013-01-01

    Full Text Available Jiaotaiwan (JTW, which is composed of Coptis chinensis (CC and cinnamon (CIN, is one of the most well-known traditional Chinese medicines. In this study, we investigated the antidiabetic effects and mechanism of JTW in db/db mice. Results showed that JTW significantly decreased the level of fasting blood glucose and improved glucose and insulin tolerance better than CC or CIN alone. JTW also effectively protected the pancreatic islet shape, augmented the activation of AMP-activated protein kinase (AMPK in the liver, and increased the expression of glucose transporter 4 (GLUT4 protein in skeletal muscle and white fat. AMPK and GLUT4 contributed to glucose metabolism regulation and had an essential function in the development of diabetes mellitus (DM. Therefore, the mechanisms of JTW may be related to suppressing gluconeogenesis by activating AMPK in the liver and affecting glucose uptake in surrounding tissues through the upregulation of GLUT4 protein expression. These findings provided a new insight into the antidiabetic clinical applications of JTW and demonstrated the potential of JTW as a new drug candidate for DM treatment.

  8. Cordycepin Down-Regulates Multiple Drug Resistant (MDR/HIF-1α through Regulating AMPK/mTORC1 Signaling in GBC-SD Gallbladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei-Ding Wu

    2014-07-01

    Full Text Available Gallbladder cancer is the most common malignancy of the bile duct, with low 5-year survival rate and poor prognosis. Novel effective treatments are urgently needed for the therapy of this disease. Here, we showed that cordycepin, the bioactive compound in genus Cordyceps, induced growth inhibition and apoptosis in cultured gallbladder cancer cells (Mz-ChA-1, QBC939 and GBC-SD lines. We found that cordycepin inhibited mTOR complex 1 (mTORC1 activation and down-regulated multiple drug resistant (MDR/hypoxia-inducible factor 1α (HIF-1α expression through activating of AMP-activated protein kinase (AMPK signaling in gallbladder cancer GBC-SD cells. Contrarily, AMPKα1-shRNA depletion dramatically inhibited cordycepin-induced molecular changes as well as GBC-SD cell apoptosis. Further, our results showed that co-treatment with a low concentration cordycepin could remarkably enhance the chemosensitivity of GBC-SD cells to gemcitabine and 5-fluorouracil (5-FU, and the mechanism may be attributed to AMPK activation and MDR degradation. In summary, cordycepin induces growth inhibition and apoptosis in gallbladder cancer cells via activating AMPK signaling. Cordycepin could be a promising new drug or chemo-adjuvant for gallbladder cancer.

  9. α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK

    Science.gov (United States)

    Enriori, Pablo J.; Jensen, Thomas Elbenhardt; Garcia-Rudaz, Cecilia; Litwak, Sara A.; Raun, Kirsten; Wojtaszewski, Jørgen; Wulff, Birgitte Schjellerup; Cowley, Michael A.

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure regulation, which are mainly mediated by MC4R. The pituitary gland is the source of various POMC-derived hormones released to the circulation, which raises the possibility that there may be actions of the melanocortins on peripheral energy homeostasis. In this study, we examined the molecular signaling pathway involved in α-MSH-stimulated glucose uptake in differentiated L6 myotubes and mouse muscle explants. In order to examine the involvement of AMPK, we investigate α-MSH stimulation in both wild type and AMPK deficient mice. We found that α-MSH significantly induces phosphorylation of TBC1 domain (TBC1D) family member 1 (S237 and T596), which is independent of upstream PKA and AMPK. We find no evidence to support that α-MSH-stimulated glucose uptake involves TBC1D4 phosphorylation (T642 and S704) or GLUT4 translocation. PMID:27467141

  10. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2012-09-01

    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  11. Fermented Rhus verniciflua Stokes Extract Exerts an Antihepatic Lipogenic Effect in Oleic-Acid-Induced HepG2 Cells via Upregulation of AMP-Activated Protein Kinase.

    Science.gov (United States)

    Lee, Myoung-Sun; Kim, Joo-Seok; Cho, Sun-Mi; Lee, Seon Ok; Kim, Sung-Hoon; Lee, Hyo-Jeong

    2015-08-19

    Rhus verniciflua Stokes has been used as a traditional medicine and food supplement in Korea. In the present study, fermented R. verniciflua Stokes extract (FRVE), an allergen-free extract of R. verniciflua Stokes fermented with the yeast Saccharomyces carlsbergensis, was assessed for its lipid-lowering potential in an in vitro non-alcoholic fatty liver disease model. FRVE markedly suppressed lipid accumulation and intracellular triglycerides (TGs) in the presence of oleic acid (OA). Additionally, FRVE decreased both mRNA and protein levels of lipid-synthesis- and cholesterol-metabolism-related factors, such as sterol regulatory element-binding protein-1 (SREBP-1), fatty acid synthase (FAS), glycerol-3-phosphate acyltransferase (GPAT), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), in OA-induced HepG2 cells. Moreover, FRVE activated low-density lipoprotein receptor (LDLR), AMP-activated protein kinase (AMPK), and fatty acid oxidation-related factors peroxisome proliferator activated receptor α (PPARα) and carnitine palmitoyltransferase 1 (CPT-1). Further, the AMPK inhibitor compound C suppressed the increased expression of AMPK phosphorylation induced by FRVE. Phenolics and cosanols in FRVE increased the phosphorylation of AMPK and decreased that of SREBP-1. Taken together, our findings suggest that FRVE has antilipogenic potential in non-alcoholic fatty livers via AMPK upregulation. PMID:26176317

  12. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype

    Science.gov (United States)

    Abdul-Rahman, Omar; Kristóf, Endre; Doan-Xuan, Quang-Minh; Vida, András; Nagy, Lilla; Horváth, Ambrus; Simon, József; Maros, Tamás; Szentkirályi, István; Palotás, Lehel; Debreceni, Tamás; Csizmadia, Péter; Szerafin, Tamás; Fodor, Tamás; Szántó, Magdolna; Tóth, Attila; Kiss, Borbála; Bacsó, Zsolt; Bai, Péter

    2016-01-01

    Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ) by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs) from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R)-5-(4-Carbamoyl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR), a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis) when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained the same when

  13. AMP-Activated Kinase (AMPK Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    Directory of Open Access Journals (Sweden)

    Omar Abdul-Rahman

    Full Text Available Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R-5-(4-Carbamoyl-5-aminoimidazol-1-yl-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR, a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained

  14. Dual of QCD with One Adjoint Fermion

    DEFF Research Database (Denmark)

    Mojaza, Matin; Nardecchia, Marco; Pica, Claudio;

    2011-01-01

    We construct the magnetic dual of QCD with one adjoint Weyl fermion. The dual is a consistent solution of the 't Hooft anomaly matching conditions, allows for flavor decoupling and remarkably constitutes the first nonsupersymmetric dual valid for any number of colors. The dual allows to bound the...

  15. The impact of specific exertion on the efficiency and ease of the voice: a pilot study.

    Science.gov (United States)

    Bagnall, Alison D; McCulloch, Kirsty

    2005-09-01

    Even though most singers and other professional voice users are encouraged to relax to optimize the quality and performance of the voice, observations of acclaimed singers, actors, and public speakers would suggest otherwise. These successful vocal performers appear to be energized, actively working and exerting themselves. For this reason, a study was designed to explore the role of exertion in maintaining and optimizing the voice. The focus of this study was the possibility that increasing exertion could improve the voice and might result in the voice user experiencing less strain and, therefore, more comfort and ease. Ten subjects were recorded before and after completing a workshop to develop their skills with precise use of effort involving selected parameters of the larynx and vocal tract. Self-reported ratings of degree of exertion and level of comfort were collected at the time of each recording. The preworkshop and postworkshop recordings were analyzed acoustically and perceptually to compare the degree of noise in the signal that corresponds with the efficiency of the voice. The results indicated that, for all subjects, the quality of the voice improved with an increase in the use of specific exertion. Furthermore, ease and comfort also significantly increased. PMID:16102665

  16. Effect of Exhausted Exercise on AMPK Expression in Rat's Myocardium%力竭运动对大鼠心肌AMPK活性的影响

    Institute of Scientific and Technical Information of China (English)

    王兵

    2013-01-01

    An animal model of exhaustive exercise was establed to investigate the effects of exhaustive exercise on the expression of the rat cardiomyocytes AMP, ATP content and AMPK, and to clarify the AMP/ATP ratio and AMPK features both, and their relationship after exhastive exercise. High performance liquid chromatography (HPLC) is used to determine the content of AMP, ATP in rat's cardiac tissue. The AMPK expression of cardiac tissue is detected by using Western blot analysis. Results show that:l) compared with the resting group, after exhaustive exercise, the 0 h myocardial AMPK activity significantly increased (P<0. 01), one hour after exercise myocardial AMPK activity increased (P<0. 05), and it returns to the quiet level 6 h after exercise. Compared with the resting group AMP after exhaustive exercise increased by 60% (P<0. 01) and AMP, AMP/ATP rose to 400% (P< 0. 01). Both indicators return to the quiet level in 1 h. Two conclusions and draun: (1) Exhaustive Exercise increases AMPK expression in rat's cardiac tissue and is mainly affected by the increase in the AMP / ATP ratio. (2) The recovery of AMPK acticity after exercise lags behind the recovery after exercise (2) lag in the recovery of the AMP / ATP ratio.%为了探讨力竭运动对大鼠心肌AMP、ATP含量及AMPK表达的影响,阐明力竭运动后AMP/ATP的比值和AMPK的变化特点及二者的相互关系,建立了力竭运动动物模型,应用高效液相色谱法(HPLC)测定大鼠心肌组织中AMP、ATP含量,用Western blot检测心肌组织中AMPK的表达.结果显示:与静息组比较,力竭运动后0h心肌AMPK活性显著增加(P<0.01),运动后1h心肌AMPK活性增加(P<0.05),运动后6h恢复到安静水平;与静息组比较,力竭运动后AMP增加60 %(P<0.01),AMP/ATP升至400% (P<0.01),两项指标均在1h回到安静水平.通过以上结果分析,可以得到:力竭运动使大鼠心肌组织AMPK表达增加且主要受AMP/ATP比值升高调控;运动后心肌

  17. Lp-dual Quermassintegral sums

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper,we first introduce a concept of L_p-dual Quermassintegral sum function of convex bodies and establish the polar projection Minkowski inequality and the polar projection Aleksandrov-Fenchel inequality for L_p-dual Quermassintegral sums.Moreover,by using Lutwak’s width-integral of index i,we establish the L_p-Brunn-Minkowski inequality for the polar mixed projec- tion bodies.As applications,we prove some interrelated results.

  18. Self-dual continuous processes

    CERN Document Server

    Rheinländer, Thorsten

    2012-01-01

    The important application of semi-static hedging in financial markets naturally leads to the notion of quasi self-dual processes which is, for continuous semimartingales, related to symmetry properties of both their ordinary as well as their stochastic logarithms. We provide a structure result for continuous quasi self-dual processes. Moreover, we give a characterisation of continuous Ocone martingales via a strong version of self-duality.

  19. Dual geometries and spacetime singularities

    OpenAIRE

    Quiros, Israel

    1999-01-01

    The notion of geometrical duality is discussed in the context of both Brans-Dicke theory and general relativity. It is shown that, in some particular solutions, the spacetime singularities that arise in usual Riemannian general relativity may be avoided in its dual representation (Weyl-type general relativity). This dual representation provides a singularity-free picture of the World that is physicaly equivalent to the canonical general relativistic one.

  20. Dual Distribution and Differentiated Products

    OpenAIRE

    Philippe Cyrenne

    2011-01-01

    This paper develops an approach to analyzing the equilibrium in markets where firms selling differentiated products can choose dual distribution to sell their products. Dual distribution involves a firm selling its product both through company owned stores and through independently operated franchises. In choosing the proportion of company owned versus franchise stores, in equilibrium, the firms have no incentive to alter this ratio given the proportions chosen by rival firms. The approach ta...

  1. Homogeneous M2 duals

    CERN Document Server

    Figueroa-O'Farrill, José

    2015-01-01

    Motivated by the search for new gravity duals to M2 branes with $N>4$ supersymmetry --- equivalently, M-theory backgrounds with Killing superalgebra $\\mathfrak{osp}(N|4)$ for $N>4$ --- we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra $\\mathfrak{so}(n) \\oplus \\mathfrak{so}(3,2)$ for $n=5,6,7$. We find that there are no new backgrounds with $n=6,7$ but we do find a number of new (to us) backgrounds with $n=5$. All backgrounds are metrically products of the form $\\operatorname{AdS}_4 \\times P^7$, with $P$ riemannian and homogeneous under the action of $\\operatorname{SO}(5)$, or $S^4 \\times Q^7$ with $Q$ lorentzian and homogeneous under the action of $\\operatorname{SO}(3,2)$. At least one of the new backgrounds is supersymmetric (albeit with only $N=2$) and we show that it can be constructed from a supersymmetric Freund--Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  2. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo

    Science.gov (United States)

    Dehghan, Firouzeh; Hajiaghaalipour, Fatemeh; Yusof, Ashril; Muniandy, Sekaran; Hosseini, Seyed Ali; Heydari, Sedigheh; Salim, Landa Zeenelabdin Ali; Azarbayjani, Mohammad Ali

    2016-01-01

    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake. PMID:27122001

  3. Saffron with resistance exercise improves diabetic parameters through the GLUT4/AMPK pathway in-vitro and in-vivo.

    Science.gov (United States)

    Dehghan, Firouzeh; Hajiaghaalipour, Fatemeh; Yusof, Ashril; Muniandy, Sekaran; Hosseini, Seyed Ali; Heydari, Sedigheh; Salim, Landa Zeenelabdin Ali; Azarbayjani, Mohammad Ali

    2016-01-01

    Saffron is consumed as food and medicine to treat several illnesses. This study elucidates the saffron effectiveness on diabetic parameters in-vitro and combined with resistance exercise in-vivo. The antioxidant properties of saffron was examined. Insulin secretion and glucose uptake were examined by cultured RIN-5F and L6 myotubes cells. The expressions of GLUT2, GLUT4, and AMPKα were determined by Western blot. Diabetic and non-diabetic male rats were divided into: control, training, extract treatment, training + extract treatment and metformin. The exercise and 40 mg/kg/day saffron treatments were carried out for six weeks. The antioxidant capacity of saffron was higher compare to positive control (P saffron stimulated insulin release in RIN-5F cells and improved glucose uptake in L6 myotubes. GLUT4 and AMPKα expressions increased in both doses of saffron (P  0.05). Serum glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein, insulin resistance, and glycated hemoglobin levels decreased in treated rats compared to untreated (p  0.05). The findings suggest that saffron consuming alongside exercise could improve diabetic parameters through redox-mediated mechanisms and GLUT4/AMPK pathway to entrap glucose uptake. PMID:27122001

  4. Association between intrauterine mild hyperglycemia and post-natal high-fat diet with adiponectin and AMPK pathway genes.

    Science.gov (United States)

    Zhang, Kai; Li, Xin; Zhang, Li; Yang, Huixia

    2016-01-01

    To investigate the mechanisms of maternal-fetal interactions in the setting of gestational diabetes mellitus. We investigated the long-term effects of intrauterine mild hyperglycemia and a postnatal high-fat diet on the glucose metabolism of adult offspring, and explored the role of adiponectin on hepatic gluconeogenesis. Twenty-one pregnant Wistar rats were randomly divided into an intrauterine hyperglycemia group (group D, n = 14) and a control group (group C, n = 7). Offspring were divided into four groups according to intrauterine blood glucose level and post-weaning dietary patterns (high-fat diet groups: DF and CF or normal diet groups: DN and CN, n = 8 per group). The average birth weights of group D offspring were higher than for group C. In the DF rats, low adiponectin mRNA expression in perirenal and epididymal fat was significantly positively correlated with low hepatic AdipoR1 mRNA expression and significantly correlated with high hepatic PEPCK, G-6-Pase, and PGC-1α mRNA levels. In DF rats, hepatic P-AMPK was cytoplasmically located and its level was decreased; in these rats, hepatic CRTC2 was expressed in the nucleus and its level was significantly increased. Our study shows that the dietary structure of offspring has a large influence on the incidence of abnormal glucose tolerance. PMID:26416799

  5. Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin.

    Science.gov (United States)

    Zhang, Lin; Li, Ming-Ming; Corcoran, Marie; Zhang, Shaoping; Cooper, Garth J S

    2015-01-01

    Post-translational modifications (PTMs) of the adiponectin molecule are essential for its full bioactivity, and defects in PTMs leading to its defective production and multimerization have been linked to the mechanisms of insulin resistance, obesity, and type-2 diabetes. Here we observed that, in differentiated 3T3-L1 adipocytes, decreased insulin signaling caused by blocking of insulin receptors (InsR) with an anti-InsR blocking antibody, increased rates of adiponectin secretion, whereas concomitant elevations in insulin levels counteracted this effect. Adenosine monophosphate-activated protein kinase (AMPK) signaling regulated adiponectin production by modulating the expression of adiponectin receptors, the secretion of adiponectin, and eventually the expression of adiponectin itself. We found that lysyl hydroxylases (LHs) and prolyl hydroxylases (PHs) were expressed in white-adipose tissue of ob/ob mice, wherein LH3 levels were increased compared with controls. In differentiated 3T3-L1 adipocytes, both non-specific inhibition of LHs and PHs by dipyridyl, and specific inhibition of LHs by minoxidil and of P4H with ethyl-3,4-dihydroxybenzoate, caused significant suppression of adiponectin production, more particularly of the higher-order isoforms. Transient gene knock-down of LH3 (Plod3) caused a suppressive effect, especially on the high molecular-weight (HMW) isoforms. These data indicate that PHs and LHs are both required for physiological adiponectin production and in particular are essential for the formation/secretion of the HMW isoforms. PMID:25240468

  6. Recognition and treatment of exertional heat illness at a marathon race.

    Science.gov (United States)

    Hostler, David; Franco, Vanessa; Martin-Gill, Chris; Roth, Ronald N

    2014-01-01

    Exertional heat illness is rarely encountered by individual EMS providers but can be common in certain settings and events. The notion that significantly altered mental status must accompany elevated core temperature in heat illness may delay recognition and treatment. We report on a series of marathon and half-marathon runners who suffered exertional heat illness during a marathon race in relatively mild conditions. Altered mental status was not uniformly present. All patients were treated in the finish line medical tent and responded well to cooling. More than half were discharged from the medical tent without being transported to the hospital. This case series demonstrates that many runners respond to early identification and treatment of exertional heat illness. Significant preparation is required by the medical providers to handle the rapid influx of patients at the conclusion of the event. PMID:24460521

  7. Effects of fitness and self-confidence on time perception during exertion

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available Aims: Human physical and psychological features influence perceptions of the environment during activity. If during exercise an individual over-estimates time, they may interpret this as spending longer than necessary under a potentially aversive state of exertion. This may in turn decrease one’s sense of exercise success and tendency to persevere with exercise. We tested if experimentally manipulating sense of exercise self-efficacy would affect time perception during standardised physical exertion. Method: Exercise Self-Efficacy (ESE of 18 -73 year olds (N=51 was measured before and after an exercise challenge of moderate intensity. Height, weight and body fat composition were measured before participants were randomly allocated to one of three groups. After a 4-minute treadmill fitness test, participants were presented with either bogus feedback about their performance (positive or negative or no feedback (control. Before and during exercise, participants estimated a prescribed 2-minute time interval. Ratings of perceived exertion were also measured periodically. Results: Feedback on performance had no significant effect on time perception, even when controlling for individual exertion level. Reported ESE was also unaffected by whether someone received positive, negative or no feedback. Age was again found to be significantly correlated with VO2max, r(51 = .62, p < .001, but in contrast to prior findings, estimates of general fitness such as VO2max, BMI and waist circumference were unrelated to changes in time perception due to exertion. Conclusions: These findings failed to support prior findings and anecdotal evidence suggesting that exertion might alter one’s perception of time. We also failed to find any support for effects on ESE when participants were given explicit performance feedback. Finally, participants’ physical characteristics appear to be unrelated to time perception whilst exercising at moderate intensity.

  8. Neuroretinitis with dual infections

    Directory of Open Access Journals (Sweden)

    Kiu KH

    2015-10-01

    Full Text Available Kwong-Han Kiu,1,2 Hashim Hanizasurana,1 Embong Zunaina21Department of Ophthalmology, Hospital Selayang, Selayang, Selangor, 2Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, MalaysiaAbstract: A 22-year-old Malay female presented with left eye floaters for 2 weeks, associated with temporal visual field defect and metamorphopsia for 3 days. She has a guinea pig and a hedgehog at home, but denied being bitten or scratched by them. Her visual acuity at presentation was 6/12 on the left eye and 6/6 on the right eye. Her left eye relative afferent pupillary defect was barely positive with mild anterior chamber reaction. Fundus examination of the left eye showed mild vitritis, swollen optic disc with macular star, crops of active choroidal lesions at superonasal retina with a linear arrangement in the form of migratory track nasally. However, there were no nematodes seen on fundus examination. Investigations showed normal full blood count with no eosinophilia and positive serology test for Bartonella henselae. She was diagnosed to have dual infection – diffuse unilateral subacute neuroretinitis (DUSN, based on the presence of crops of choroidal lesions with migratory track, and cat scratch disease (CSD based on a positive serological test. She was treated with oral albendazole 400 mg 12 hourly for 6 weeks for DUSN and oral doxycycline 100 mg 12 hourly for 4 weeks for CSD. Focal laser had been applied to the area of migratory track in the left eye. Her left eye vision improved to 6/6 at 1 month after treatment, with resolution of neuroretinitis.Keywords: neuroretinitis, diffuse unilateral subacute neuroretinitis, bartonellosis, cat scratch disease

  9. Exercício físico reduz a hiperglicemia de jejum em camundongos diabéticos através da ativação da AMPK Physical exercise decreases fasting hyperglycemia in diabetic mice through AMPK activation

    Directory of Open Access Journals (Sweden)

    Mônica F. de Pádua

    2009-06-01

    Full Text Available INTRODUÇÃO: A deficiência na captação de glicose em tecidos periféricos e o aumento da gliconeogênese hepática são fenômenos fisiopatológicos observados em pacientes diabéticos do tipo 2. O exercício físico é considerado um importante aliado para a melhora do perfil glicêmico em pacientes diabéticos; entretanto, os mecanismos envolvidos nesse processo não estão completamente elucidados. OBJETIVO: Avaliar o papel da proteína AMPK no controle glicêmico em camundongos diabéticos após o exercício físico. MÉTODOS: Durante o jejum, o teste de tolerância à insulina (ITT e a técnica de Western blot foram combinados para avaliar a homeostase da glicose em camundongos diabéticos (ob/ob e db/db submetidos a uma única sessão de natação. RESULTADOS: A hiperglicemia de jejum, a severa resistência à insulina e a deficiência na sinalização da via AMPK/ACC no músculo e no fígado observadas nos camundongos diabéticos foram revertidas após a sessão de exercício. A restauração da via AMPK/ACC reduziu a expressão da enzima gliconeogênica PEPCK no fígado e aumentou a translocação do GLUT4 no músculo esquelético. Esses dados apontam que a ativação da via AMPK/ACC induzida pelo exercício físico é importante para a redução da glicemia de jejum em modelos experimentais de diabetes tipo 2. Esses dados abrem novas frentes para o entendimento de como a atividade física controla da homeostase da glicose em pacientes diabéticos.INTRODUCTION: The deficiency in glucose uptake in peripheral tissues and increased hepatic gluconeogenesis are physiopathological phenomena observed in type 2 diabetes patients. Physical exercise plays an important role in the improvement of glycemic profile in diabetic patients; however, the mechanisms involved in these processes have not been fully elucidated. OBJECTIVE: to assess the role of AMPK protein in the glycemic control of diabetic mice after exercise. METHODS: During fasting

  10. [Characteristics of non-exertional heat-related illness in Japan].

    Science.gov (United States)

    Miyake, Yasufumi

    2012-06-01

    This report shows characteristics of non-exertional heat-related illness in Japan. The findings are similar to those of previous reports in heatwaves of Europe and The United States. Eldery people with pre-existing diseases, homeless, living alone, poverty are independent risk factors of heatstoke and are strongly associated with severity and mortality. PMID:22690607

  11. Exertional dyspnoea in chronic heart failure: the role of the lung and respiratory mechanical factors.

    Science.gov (United States)

    Dubé, Bruno-Pierre; Agostoni, Piergiuseppe; Laveneziana, Pierantonio

    2016-09-01

    Exertional dyspnoea is among the dominant symptoms in patients with chronic heart failure and progresses relentlessly as the disease advances, leading to reduced ability to function and engage in activities of daily living. Effective management of this disabling symptom awaits a better understanding of its underlying physiology.Cardiovascular factors are believed to play a major role in dyspnoea in heart failure patients. However, despite pharmacological interventions, such as vasodilators or inotropes that improve central haemodynamics, patients with heart failure still complain of exertional dyspnoea. Clearly, dyspnoea is not determined by cardiac factors alone, but likely depends on complex, integrated cardio-pulmonary interactions.A growing body of evidence suggests that excessively increased ventilatory demand and abnormal "restrictive" constraints on tidal volume expansion with development of critical mechanical limitation of ventilation, contribute to exertional dyspnoea in heart failure. This article will offer new insights into the pathophysiological mechanisms of exertional dyspnoea in patients with chronic heart failure by exploring the potential role of the various constituents of the physiological response to exercise and particularly the role of abnormal ventilatory and respiratory mechanics responses to exercise in the perception of dyspnoea in patients with heart failure. PMID:27581831

  12. Implicit theories about willpower predict the activation of a rest goal following self-control exertion.

    Science.gov (United States)

    Job, Veronika; Bernecker, Katharina; Miketta, Stefanie; Friese, Malte

    2015-10-01

    Past research indicates that peoples' implicit theories about the nature of willpower moderate the ego-depletion effect. Only people who believe or were led to believe that willpower is a limited resource (limited-resource theory) showed lower self-control performance after an initial demanding task. As of yet, the underlying processes explaining this moderating effect by theories about willpower remain unknown. Here, we propose that the exertion of self-control activates the goal to preserve and replenish mental resources (rest goal) in people with a limited-resource theory. Five studies tested this hypothesis. In Study 1, individual differences in implicit theories about willpower predicted increased accessibility of a rest goal after self-control exertion. Furthermore, measured (Study 2) and manipulated (Study 3) willpower theories predicted an increased preference for rest-conducive objects. Finally, Studies 4 and 5 provide evidence that theories about willpower predict actual resting behavior: In Study 4, participants who held a limited-resource theory took a longer break following self-control exertion than participants with a nonlimited-resource theory. Longer resting time predicted decreased rest goal accessibility afterward. In Study 5, participants with an induced limited-resource theory sat longer on chairs in an ostensible product-testing task when they had engaged in a task requiring self-control beforehand. This research provides consistent support for a motivational shift toward rest after self-control exertion in people holding a limited-resource theory about willpower. PMID:26075793

  13. Effects of the Visual Exercise Environments on Cognitive Directed Attention, Energy Expenditure and Perceived Exertion

    OpenAIRE

    Mike Rogerson; Jo Barton

    2015-01-01

    Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control) during two consistently-ordered exercise bouts...

  14. Citrus-derived flavonoid naringenin exerts uterotrophic effects in female mice at human relevant doses

    DEFF Research Database (Denmark)

    Breinholt, Vibeke Miller; Svendsen, Gitte Winkel; Dragsted, Lars Ove;

    2004-01-01

    following ingestion of 400-760 ml of orange juice (Erlund et al. 2001). This could be taken to suggests that ingestion of orange juice and other citrus fruits and juices may give rise to sufficiently high tissue levels of naringenin in man to exert a biological effect....

  15. Coordination of strength exertion during the chair-rise movement in very old people

    NARCIS (Netherlands)

    Lindemann, Ulrich; Muche, Rainer; Stuber, Michael; Zijlstra, Wiebren; Hauer, Klaus; Becker, Clemens

    2007-01-01

    Background. Changes in performance of standing up from a chair have been related to measures of strength or power. However, the sit-to-stand (STS) transfer requires that the individual exerts forces with appropriate magnitude and timing. These coordinative aspects have received less attention. This

  16. Professional Preparation regarding the Recognition and Treatment of Exertional Heat Stroke: The Student Perspective

    Science.gov (United States)

    Mazerolle, Stephanie M.; Pagnotta, Kelly D.; Casa, Douglas J.; Armstrong, Lawrence; Maresh, Carl

    2011-01-01

    Context: Current evidence suggests rectal temperature(T[subscript re] and cold-water immersion (CWI) are the most effective means to diagnose and treat exertional heat stroke (EHS), respectively. Educators, clinicians, and students should be apprised of this evidence to guide their practice. Objective: Investigate what athletic training students…

  17. Sparsity and spectral properties of dual frames

    DEFF Research Database (Denmark)

    Krahmer, Felix; Kutyniok, Gitta; Lemvig, Jakob

    2013-01-01

    We study sparsity and spectral properties of dual frames of a given finite frame. We show that any finite frame has a dual with no more than $n^2$ non-vanishing entries, where $n$ denotes the ambient dimension, and that for most frames no sparser dual is possible. Moreover, we derive an expression...... for the exact sparsity level of the sparsest dual for any given finite frame using a generalized notion of spark. We then study the spectral properties of dual frames in terms of singular values of the synthesis operator. We provide a complete characterization for which spectral patterns of dual...

  18. Dual Field Dual Core Secure Cryptoprocessor on FPGA Platform

    Directory of Open Access Journals (Sweden)

    C Veeraraghavan

    2013-02-01

    Full Text Available This paper is devoted to the design of dual core crypto processor for executing both Prime field and binary field instructions. The proposed design is specifically optimized for Field programmable gate array (FPGA platform. Combination of two different field (prime field GF(p and Binary field GF(2m instructions execution is analysed.The design is implemented in Spartan 3E and virtex5. Both the performance results are compared. The implementation result shows the execution of parallelism using dual field instructions

  19. Effects of acclimation on water and electrolitic disbalance in soldiers during exertional heat stress

    Directory of Open Access Journals (Sweden)

    Radaković Sonja S.

    2007-01-01

    Full Text Available Background/Aim. Exertional heat stress is a common problem in military services. The aim of this study was to examine changes in body water and serum concentrations of some electrolites in soldiers during exertional heat stress (EHST, as well as effects of 10-day passive or active acclimation in a climatic chamber. Methods. Forty male soldiers with high aerobic capacity, performed EHST either in cool (20 ºC, 16 ºC WBGT-wet bulb globe temperature, or hot (40 ºC, 25 ºC WBGT environment, unacclimatized, or after 10 days of passive or active acclimation. The subjects were allowed to drink tap water ad libitum during EHST. Mean skin (Tsk and tympanic (Tty temperatures and heart rates (HR measured physiological strain, while sweat rate (SwR, and serum concentrations of sodium, potassium and osmolality measured changes in water and electrolyte status. Blood samples were collected before and immediately after the EHST. Results. Exertional heat stress in hot conditions induced physiological heat stress (increase in Tty, HR, and SwR, with significant decrease in serum sodium concentration (140.6±1.52 before vs 138.5±1.0 mmol/l after EHST, p < 0.01 and osmolality (280.7±3.8 vs 277.5±2.6 mOsm/kg, p < 0.05 in the unacclimatized group. The acclimated soldiers suffered no such effects of exertional heat stress, despite almost the same degree of heat strain, measured by Tty, HR and SwR. Conclusion. In the trained soldiers, 10-day passive or active acclimation in a climatic chamber can prevent disturbances in water and electrolytic balance, i.e. decrease in serum sodium concentrations and osmolality induced by exertional heat stress.

  20. Physiological responses and perceptions of exertion in a step aerobics session.

    Science.gov (United States)

    Sutherland, R; Wilson, J; Aitchison, T; Grant, S

    1999-06-01

    The aims of this study were to establish the cardiovascular and metabolic demands of a university step aerobics session entitled 'Uni-Step' performed at three step heights, and to evaluate the use of heart rate and ratings of perceived exertion for the estimation of exercise intensity during this mode. Ten female participants in step aerobics (mean VO2max = 47.7, s = 6.8 ml.kg-1.min-1) performed a 40-min Uni-Step routine on steps of height 6, 8 and 10 inches (15.2, 20.3 and 25.4 cm). Oxygen uptake, heart rate and ratings of perceived exertion were recorded throughout each test. Maximum oxygen uptake (VO2max) and maximum heart rate were measured using a continuous treadmill protocol. The mean intensities were 45.6%, 51.6% and 56.2% VO2max for the 6-, 8- and 10-inch steps respectively. The mean percent heart rate reserves were 57.2%, 63.6% and 70.1% at these three heights respectively. Correlations indicated a weak relationship between %VO2max and ratings of perceived exertion for the 6- and 8-inch steps (r = 0.61 and 0.66 respectively) but a stronger one for the 10-inch step (r = 0.79). Uni-Step performed on the two highest steps was of a sufficient relative intensity to improve or maintain the cardiovascular fitness of participants in this study. The lowest step may be useful for participants of lower fitness. Heart rate overestimated the metabolic cost of Uni-Step at all three step heights and therefore caution is advised if used to predict intensity. Low correlations between %VO2max and ratings of perceived exertion at the two lower step heights indicate that ratings of perceived exertion may have limited utility in prescribing training intensity. PMID:10404498

  1. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade

    Science.gov (United States)

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995

  2. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade.

    Science.gov (United States)

    Rivera Rivera, Amilcar; Castillo-Pichardo, Linette; Gerena, Yamil; Dharmawardhane, Suranganie

    2016-01-01

    The Akt/adenosine monophosphate protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC), at equimolar concentrations, reduces breast cancer (BC) growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation) of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K) and 4E binding protein (4EBP1), were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic. PMID:27285995

  3. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR Signaling Cascade.

    Directory of Open Access Journals (Sweden)

    Amilcar Rivera Rivera

    Full Text Available The Akt/adenosine monophosphate protein kinase (AMPK/mammalian target of rapamycin (mTOR pathway has emerged as a critical signaling nexus for regulating cellular metabolism, energy homeostasis, and cell growth. Thus, dysregulation of this pathway contributes to the development of metabolic disorders such as obesity, type 2diabetes, and cancer. We previously reported that a combination of grape polyphenols (resveratrol, quercetin and catechin: RQC, at equimolar concentrations, reduces breast cancer (BC growth and metastasis in nude mice, and inhibits Akt and mTOR activities and activates AMPK, an endogenous inhibitor of mTOR, in metastatic BC cells. The objective of the present study was to determine the contribution of individual polyphenols to the effect of combined RQC on mTOR signaling. Metastatic BC cells were treated with RQC individually or in combination, at various concentrations, and the activities (phosphorylation of AMPK, Akt, and the mTOR downstream effectors, p70S6 kinase (p70S6K and 4E binding protein (4EBP1, were determined by Western blot. Results show that quercetin was the most effective compound for Akt/mTOR inhibition. Treatment with quercetin at 15μM had a similar effect as the RQC combination in the inhibition of BC cell proliferation, apoptosis, and migration. However, cell cycle analysis showed that the RQC treatment arrested BC cells in the G1 phase, while quercetin arrested the cell cycle in G2/M. In vivo experiments, using SCID mice with implanted tumors from metastatic BC cells, demonstrated that administration of quercetin at 15mg/kg body weight resulted in a ~70% reduction in tumor growth. In conclusion, quercetin appears to be a viable grape polyphenol for future development as an anti BC therapeutic.

  4. Antidepressant actions of lateral habenula deep brain stimulation differentially correlate with CaMKII/GSK3/AMPK signaling locally and in the infralimbic cortex.

    Science.gov (United States)

    Kim, Yesul; Morath, Brooke; Hu, Chunling; Byrne, Linda K; Sutor, Shari L; Frye, Mark A; Tye, Susannah J

    2016-06-01

    High frequency deep brain stimulation (DBS) of the lateral habenula (LHb) reduces symptoms of depression in severely treatment-resistant individuals. Despite the observed therapeutic effects, the molecular underpinnings of DBS are poorly understood. This study investigated the efficacy of high frequency LHb DBS (130Hz; 200μA; 90μs) in an animal model of tricyclic antidepressant resistance. Further, we reported DBS mediated changes in Ca(2+)/calmodulin-dependent protein kinase (CaMKIIα/β), glycogen synthase kinase 3 (GSK3α/β) and AMP-activated protein kinase (AMPK) both locally and in the infralimbic cortex (IL). Protein expressions were then correlated to immobility time during the forced swim test (FST). Antidepressant actions were quantified via FST. Treatment groups comprised of animals treated with adrenocorticotropic hormone alone (ACTH; 100μg/day, 14days, n=7), ACTH with active DBS (n=7), sham DBS (n=8), surgery only (n=8) or control (n=8). Active DBS significantly reduced immobility in ACTH-treated animals (p<0.05). For this group, western blot results demonstrated phosphorylation status of LHb CaMKIIα/β and GSK3α/β significantly correlated to immobility time in the FST. Concurrently, we observed phosphorylation status of CaMKIIα/β, GSK3α/β, and AMPK in the IL to be negatively correlated with antidepressant actions of DBS. These findings suggest that activity dependent phosphorylation of CaMKIIα/β, and GSK3α/β in the LHb together with the downregulation of CaMKIIα/β, GSK3α/β, and AMPK in the IL, contribute to the antidepressant actions of DBS. PMID:26956153

  5. Caffeamide 36-13 Regulates the Antidiabetic and Hypolipidemic Signs of High-Fat-Fed Mice on Glucose Transporter 4, AMPK Phosphorylation, and Regulated Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2014-01-01

    Full Text Available This study was to investigate the antidiabetic and antihyperlipidemic effects of (E-3-[3, 4-dihydroxyphenyl-1-(piperidin-1-ylprop-2-en-1-one] (36-13 (TS, one of caffeic acid amide derivatives, on high-fat (HF- fed mice. The C57BL/6J mice were randomly divided into the control (CON group and the experimental group, which was firstly fed a HF diet for 8 weeks. Then, the HF group was subdivided into four groups and was given TS orally (including two doses or rosiglitazone (Rosi or vehicle for 4 weeks. Blood, skeletal muscle, and tissues were examined by measuring glycaemia and dyslipidemia-associated events. TS effectively prevented HF diet-induced increases in the levels of blood glucose, triglyceride, insulin, leptin, and free fatty acid (FFA and weights of visceral fa; moreover, adipocytes in the visceral depots showed a reduction in size. TS treatment significantly increased the protein contents of glucose transporter 4 (GLUT4 in skeletal muscle; TS also significantly enhanced Akt phosphorylation in liver, whereas it reduced the expressions of phosphoenolpyruvate carboxykinase (PEPCK and glucose-6-phosphatase (G6Pase. Moreover, TS enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK both in skeletal muscle and liver tissue. Therefore, it is possible that the activation of AMPK by TS resulted in enhanced glucose uptake in skeletal muscle, contrasting with diminished gluconeogenesis in liver. TS exhibits hypolipidemic effect by decreasing the expressions of fatty acid synthase (FAS. Thus, antidiabetic properties of TS occurred as a result of decreased hepatic glucose production by PEPCK and G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic state by TS in HF-fed mice occurred by regulation of GLUT4, G6Pase, and FAS and phosphorylation of AMPK.

  6. Visfatin Protects Rat Pancreatic β-cells against IFN-γ-Induced Apoptosis through AMPK and ERK1/2 Signaling Pathways

    Institute of Scientific and Technical Information of China (English)

    XIANG Ruo Lan; MEIMei; SU Yun Chao; LI Li; WANG Jin Yu; WU Li Ling

    2015-01-01

    ObjectiveInterferon-γ (IFN-γ) plays an important role in apoptosis and was shown to increase the risk of diabetes.Visfatin, an adipokine, has anti-diabetic, anti-tumor, and regulating inflammatory properties. In this study we investigated the effect of visfatin on IFN-γ-induced apoptosis in rat pancreatic β-cells. MethodsThe RINm5F (rat insulinoma cell line) cells exposed to IFN-γ were treated with or without visfatin. The viability and apoptosis of the cells were assessed by using MTT and flow cytometry. The expressionsof mRNA and protein were detected by using real-time PCR and western blot analysis. ResultsThe exposure of RINm5F cells to IFN-γ for 48 h led to increased apoptosis percentage of the cells. Visfatin pretreatment significantly increased the cellviability and reduced the cell apoptosis induced by IFN-γ. IFN-γ-induced increase in expression of p53 mRNA and cytochrome c protein, decrease in mRNA and protein levels of anti-apoptotic protein Bcl-2 were attenuated by visfatin pretreatment. Visfatin alsoincreasedAMPK and ERK1/2phosphorylation and the anti-apoptotic action of visfatin was attenuated by the AMPK and ERK1/2 inhibitor. ConclusionThese results suggested that visfatin protected pancreatic islet cells against IFN-γ-induced apoptosis via mitochondria-dependent apoptotic pathway. The anti-apoptotic action of visfatin is mediated by activation of AMPK and ERK1/2 signaling molecules.

  7. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    Institute of Scientific and Technical Information of China (English)

    Xing ZHONG; Ling-ling XIU; Guo-hong WEI; Yuan-yuan LIU; Lei SU; Xiao-pei CAO; Yan-bing LI; Hai-peng XIAO

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects.Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins.Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezaflbrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARa inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or N-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 pmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast prolifera-tion.Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation.

  8. C1q/Tumor Necrosis Factor-Related Protein 9 Protects against Acute Myocardial Injury through an Adiponectin Receptor I-AMPK-Dependent Mechanism.

    Science.gov (United States)

    Kambara, Takahiro; Shibata, Rei; Ohashi, Koji; Matsuo, Kazuhiro; Hiramatsu-Ito, Mizuho; Enomoto, Takashi; Yuasa, Daisuke; Ito, Masanori; Hayakawa, Satoko; Ogawa, Hayato; Aprahamian, Tamar; Walsh, Kenneth; Murohara, Toyoaki; Ouchi, Noriyuki

    2015-06-01

    Obesity is a risk factor for cardiovascular disease. C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine that is downregulated by obesity. We investigated the role of CTRP9 in cardiac injury with loss-of-function genetic manipulations and defined the receptor-mediated signaling pathway downstream of this adipokine. CTRP9-knockout (CTRP9-KO) mice at the age of 12 weeks were indistinguishable from wild-type (WT) mice under basal conditions. CTRP9-KO mice had exacerbated contractile left ventricle dysfunction following intraperitoneal injection of lipopolysaccharide (LPS) compared to WT mice. Administration of LPS to CTRP9-KO mice also resulted in increased expression of proinflammatory cytokines and oxidative stress markers in the heart compared to WT mice. Likewise, CTRP9-KO mice showed increased myocardial infarct size and elevated expression of inflammatory mediators in ischemic heart following ischemia and reperfusion compared to WT mice. Treatment of cardiac myocytes with CTRP9 protein led to suppression of LPS-induced expression of proinflammatory genes, which was reversed by blockade of AMPK or ablation of adiponectin receptor I (AdipoR1). Systemic delivery of CTRP9 attenuated LPS-induced cardiac dysfunction in WT mice but not in muscle-specific transgenic mice expressing dominant-negative mutant form of AMPK or in AdipoR1-knockout mice. CTRP9 protects against acute cardiac damage in response to pathological stimuli by suppressing inflammatory reactions through AdipoR1/AMPK-dependent mechanisms. PMID:25870106

  9. Assessment of Dual Life Stage Antiplasmodial Activity of British Seaweeds

    Directory of Open Access Journals (Sweden)

    Deniz Tasdemir

    2013-10-01

    Full Text Available Terrestrial plants have proven to be a prolific producer of clinically effective antimalarial drugs, but the antimalarial potential of seaweeds has been little explored. The main aim of this study was to assess the in vitro chemotherapeutical and prophylactic potential of the extracts of twenty-three seaweeds collected from the south coast of England against blood stage (BS and liver stage (LS Plasmodium parasites. The majority (14 of the extracts were active against BS of P. falciparum, with brown seaweeds Cystoseira tamariscifolia, C. baccata and the green seaweed Ulva lactuca being the most active (IC50s around 3 μg/mL. The extracts generally had high selectivity indices (>10. Eight seaweed extracts inhibited the growth of LS parasites of P. berghei without any obvious effect on the viability of the human hepatoma (Huh7 cells, and the highest potential was exerted by U. lactuca and red seaweeds Ceramium virgatum and Halopitys incurvus (IC50 values 14.9 to 28.8 μg/mL. The LS-active extracts inhibited one or more key enzymes of the malarial type-II fatty acid biosynthesis (FAS-II pathway, a drug target specific for LS. Except for the red seaweed Halopitys incurvus, all LS-active extracts showed dual activity versus both malarial intracellular stage parasites. This is the first report of LS antiplasmodial activity and dual stage inhibitory potential of seaweeds.

  10. Assessment of dual life stage antiplasmodial activity of british seaweeds.

    Science.gov (United States)

    Spavieri, Jasmine; Allmendinger, Andrea; Kaiser, Marcel; Itoe, Maurice Ayamba; Blunden, Gerald; Mota, Maria M; Tasdemir, Deniz

    2013-10-01

    Terrestrial plants have proven to be a prolific producer of clinically effective antimalarial drugs, but the antimalarial potential of seaweeds has been little explored. The main aim of this study was to assess the in vitro chemotherapeutical and prophylactic potential of the extracts of twenty-three seaweeds collected from the south coast of England against blood stage (BS) and liver stage (LS) Plasmodium parasites. The majority (14) of the extracts were active against BS of P. falciparum, with brown seaweeds Cystoseira tamariscifolia, C. baccata and the green seaweed Ulva lactuca being the most active (IC(50)s around 3 μg/mL). The extracts generally had high selectivity indices (>10). Eight seaweed extracts inhibited the growth of LS parasites of P. berghei without any obvious effect on the viability of the human hepatoma (Huh7) cells, and the highest potential was exerted by U. lactuca and red seaweeds Ceramium virgatum and Halopitys incurvus (IC50 values 14.9 to 28.8 μg/mL). The LS-active extracts inhibited one or more key enzymes of the malarial type-II fatty acid biosynthesis (FAS-II) pathway, a drug target specific for LS. Except for the red seaweed Halopitys incurvus, all LS-active extracts showed dual activity versus both malarial intracellular stage parasites. This is the first report of LS antiplasmodial activity and dual stage inhibitory potential of seaweeds. PMID:24152562

  11. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells.

    Science.gov (United States)

    Sakanaka, Akito; Takeuchi, Hiroki; Kuboniwa, Masae; Amano, Atsuo

    2016-05-01

    Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis. PMID:26456558

  12. Compound C induces the ramification of murine microglia in an AMPK-independent and small rhogtpase-dependent manner.

    Science.gov (United States)

    Huang, C; Lu, X; Wang, J L; Tong, L J; Ling, Y; Jiang, B; Yang, R R; Zhang, W

    2016-09-01

    Microglial cells are the pivotal immune cells of the central nervous system. Adult microglia cells under physiological conditions are in a ramification state with extensively branched processes. Upon disease stimulation, they retract their processes and become activated. Induction of ramification is an attracting strategy to terminate the excessive activation of microglia. Here, we investigated the influence of compound C (CC) on microglial shape. Results showed that CC reversibly induced a ramification of murine microglia in both basal and inflammatory conditions. These pro-ramification effects were independent of adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibition as both AMPKα1 and AMPKα2 silence failed to induce microglial ramification. The ramification state of microglia induced by CC was associated with a decrease in pro-inflammatory factors and an increase in brain-derived neurotrophic factors (BDNF) protein and phagocytic activity. Mechanistic studies confirmed that the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signal, extracellular signal-regulated kinase 1/2 (ERK1/2) or small RhoGTPase activation mediated the effect of CC on microglial shape change based on the following observations: (i) CC induced a significant activation of the small RhoGTPase Rac1 and Cdc42; (ii) CC promoted the phosphorylation of ERK1/2 and Akt; (iii) inhibition of Rac1, Cdc42, ERK1/2, or the PI3K-Akt signal abolished the effect of CC on microglial shape change. These signal mechanisms were also ascertained in primary microglia. Our results explore a potential agent that promotes microglial ramification, and provide an alternative explanation for the neuroprotective effects of CC in various disease models such as brain ischemia and subarachnoid hemorrhage. PMID:27318303

  13. Resistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling

    DEFF Research Database (Denmark)

    Apró, William; Moberg, Marcus; Hamilton, D. Lee;

    2015-01-01

    hypothesis was tested in eight trained male subjects who in randomized order performed either resistance exercise only (R) or interval cycling followed by resistance exercise (ER). Biopsies taken from the vastus lateralis before and after endurance exercise and repeatedly after resistance exercise were......Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This...

  14. Glucose-induced repression of PPARalpha gene expression in pancreatic beta-cells involves PP2A activation and AMPK inactivation

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Dalgaard, Louise T;

    2006-01-01

    mechanism underlying this transcriptional repression by glucose remains unclear. Here we report that glucose-induced repression of PPARalpha gene expression in INS-1E cells is independent of beta-cell excitation and insulin secretion but requires activation of protein phosphatase 2A in a process involving...... AMPKalpha1 using RNAi suppressed PPARalpha expression, thereby mimicking the effect of glucose. These results indicate that activation of protein phosphatase 2A and subsequent inactivation of AMPK is necessary for glucose repression of PPARalpha expression in pancreatic beta-cells....

  15. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    OpenAIRE

    Brandt, Nina; De Bock, Katrien; Richter, Erik A.; Hespel, Peter

    2010-01-01

    Brandt N, De Bock K, Richter EA, Hespel P. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. Am J Physiol Endocrinol Metab 299: E215-E224, 2010. First published May 18, 2010; doi:10.1152/ajpendo.00098.2010.-Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptatio...

  16. Prior physical exertion modulates allocentric distance perception: a demonstration of task-irrelevant cross-modal transfer

    OpenAIRE

    Clark, E. V.; Ward, N.S.; Kuppuswamy, A.

    2016-01-01

    Physical exertion has been previously shown to influence distance perception in the egocentric framework. In this study, we show that physical exertion influences allocentric distance perception. Twenty healthy volunteers made allocentric line length estimates following varying levels of physical exertion. Each participant was presented with 30 different line lengths ranging from 1 to 12 cm, and each length was presented three times. Each line presentation was preceded by the participant exer...

  17. Effect and expression of AMPK adenovirus on mouse skeletal muscle%AMPK腺病毒载体在小鼠骨骼肌中的表达和作用

    Institute of Scientific and Technical Information of China (English)

    刘倩; 胡芳; 牛文彦

    2016-01-01

    Objective: To explore the effect and expression of injected AMPK adenovirus on mouse skeletal muscle. Methods: Ten weeks old C57BL/6 male mice were randomly divided into four groups. Mice in group1 were normal control group without treatment. Mice in group 2 were intramuscularly injected green fluorescence protein adenovirus (Ad-GFP). Mice in group 3 were intramuscularly injected Ad-GFP, after which were intraperitoneally injected AMPK activator AICAR in 48 h. Mice in group 4 were intramuscularly injected Ad-AMPK-CA. Seventy two hours after adenovirus treatment, all mice were executed and the expression of adenovirus was analysed in skeletal muscle. Fluorescence intensity and ACC phosphorylation in skeletal muscle were analysed by vivo imaging system and western blot, respectively. Results: Compared with the control group, the mean fluorescence intensity of the experimental groups which were injected adenovirus was significantly higher. Compared with the Ad-GFP group, ACC phosphorylation of AICAR and Ad-AMPK-CA groups were significantly increased. Conclusion:AMPK adenovirus can express the target protein in mouse skeletal muscle, and regulate the activity of AMPK.%目的:探讨注射AMPK腺病毒在小鼠骨骼肌中的表达和作用。方法:C57BL/6小鼠随机分为4组:(1)无任何处理的空白对照组。(2)肌肉注射腺病毒空载体(Ad-GFP)组。(3)肌肉注射Ad-GFP,48 h后腹腔注射AMPK激活剂AICAR组。(4)肌肉注射GFP标记的激活型AMPK腺病毒(Ad-AMPK-CA)组。注射腺病毒72 h后,处死小鼠,通过小动物成像系统测定骨骼肌中的荧光强度,检测腺病毒的表达,用Western blot方法检测ACC的磷酸化。结果:与空白对照组比较,注射腺病毒组的平均荧光强度显著增高。与病毒空载体组比较,注射AICAR组和Ad-AMPK-CA组的ACC磷酸化水平显著升高。结论:AMPK腺病毒能在小鼠骨骼肌中表达目的蛋白,调节AMPK的作用。

  18. DUAL BAND MONOPOLE ANTENNA DESIGN

    Directory of Open Access Journals (Sweden)

    P. Jithu

    2013-06-01

    Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.

  19. Towards a big crunch dual

    Energy Technology Data Exchange (ETDEWEB)

    Hertog, Thomas E-mail: hertog@vulcan2.physics.ucsb.edu; Horowitz, Gary T

    2004-07-01

    We show there exist smooth asymptotically anti-de Sitter initial data which evolve to a big crunch singularity in a low energy supergravity limit of string theory. This opens up the possibility of using the dual conformal field theory to obtain a fully quantum description of the cosmological singularity. A preliminary study of this dual theory suggests that the big crunch is an endpoint of evolution even in the full string theory. We also show that any theory with scalar solitons must have negative energy solutions. The results presented here clarify our earlier work on cosmic censorship violation in N=8 supergravity. (author)

  20. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  1. Nuclearity for Dual Operator Spaces

    Indian Academy of Sciences (India)

    Zhe Dong; Jicheng Tao

    2010-02-01

    In this short paper, we study the nuclearity for the dual operator space $V^∗$ of an operator space . We show that $V^∗$ is nuclear if and only if $V^{∗∗∗}$ is injective, where $V^{∗∗∗}$ is the third dual of . This is in striking contrast to the situation for general operator spaces. This result is used to prove that $V^{∗∗}$ is nuclear if and only if is nuclear and $V^{∗∗}$ is exact.

  2. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  3. Meglumine exerts protective effects against features of metabolic syndrome and type II diabetes.

    Directory of Open Access Journals (Sweden)

    Arturo Bravo-Nuevo

    Full Text Available Metabolic syndrome, diabetes and diabetes complications pose a growing medical challenge worldwide, accentuating the need of safe and effective strategies for their clinical management. Here we present preclinical evidence that the sorbitol derivative meglumine (N-methyl-D-glucamine can safely protect against several features of metabolic syndrome and diabetes, as well as elicit enhancement in muscle stamina. Meglumine is a compound routinely used as an approved excipient to improve drug absorption that has not been ascribed any direct biological effects in vivo. Normal mice (SV129 administered 18 mM meglumine orally for six weeks did not display any gastrointestinal or other observable adverse effects, but had a marked effect on enhancing muscle stamina and at longer times in limiting weight gain. In the established KK.Cg-Ay/J model of non-insulin dependent diabetes, oral administration of meglumine significantly improved glycemic control and significantly lowered levels of plasma and liver triglycerides. Compared to untreated control animals, meglumine reduced apparent diabetic nephropathy. Sorbitol can improve blood glucose uptake by liver and muscle in a manner associated with upregulation of the AMPK-related enzyme SNARK, but with undesirable gastrointestinal side effects not seen with meglumine. In murine myoblasts, we found that meglumine increased steady-state SNARK levels in a dose-dependent manner more potently than sorbitol. Taken together, these findings provide support for the clinical evaluation of meglumine as a low-cost, safe supplement offering the potential to improve muscle function, limit metabolic syndrome and reduce diabetic complications.

  4. Dual Quaternion Functions and Its Applications

    OpenAIRE

    Su Jin Lim; Kwang Ho Shon

    2013-01-01

    A dual quaternion is associated with two quaternions that have basis elements ${e}_{0}$ , ${e}_{1}$ , ${e}_{2}$ , ${e}_{3}$ , and $\\epsilon $ . Dual numbers are often written in the form $z=\\zeta +\\epsilon {\\zeta }^{\\ast}$ , where $\\epsilon $ is the dual identity and has the properties ${\\epsilon }^{2}=0  (\\epsilon \

  5. Optical sorting of particles by dual-channel line optical tweezers

    International Nuclear Information System (INIS)

    A novel configuration of dual-channel line optical tweezers with a ‘Y’ shape is constructed for sorting of particles within a microfluidic chip. When yeast cells with different size pass the intersection of the specially designed line optical tweezers, they are separated and transported to different channels due to a difference in the forces exerted by the line tweezers that depends on the size of the cells. The influences of some experimental conditions, such as laser power and flow velocity, on the sorting efficiency are discussed. (paper)

  6. Dual acting slit control mechanism

    Science.gov (United States)

    Struthoff, G. L. (Inventor)

    1980-01-01

    A dual acting control system for mass spectrometers is described, which permits adjustment of the collimating slit width and centering of the collimating slit while using only one vacuum penetration. Coaxial shafts, each with independent vacuum bellows are used to independently move the entire collimating assembly or to adjust the slit dimension through a parallelogram linkage.

  7. Pairs of dual periodic frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2012-01-01

    needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients in the...

  8. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  9. Experimental Study of Forces Exerted on Ships Due to the Vertical Walls of Navigation Channels

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fathi Kazerooni

    2015-06-01

    Full Text Available Ship maneuvering in restricted waters of harbor basins and navigation channels had been the main concern in recent years due to sudden increase of ship’s size. When the ship enters a navigation channel the lateral boundary of the channel exerts a transverse force and turning moment on the ship hull. These forces are so important in the analysis of safety of ship navigation in the channels. Ship model test in the towing tank is a reliable method to evaluate these forces. Therefore systematic model tests are held for modeling of the forces exerted on the tanker ship and dhow model traveling alongside a vertical wall. A database of the interaction forces is developed and the specific hydrodynamic effects related to the phenomena are discussed. The results can be used for simulation of ship maneuvering and assessment of safety limits for navigation of ships alongside the quay walls and breakwaters.

  10. Radiation pressure cross section exerted on homogenous dielectric spherical particle by zeroth order Mathieu beams

    Science.gov (United States)

    Chafiq, A.; Belafhal, A.

    2016-08-01

    In this paper, we present a full calculation of radiation pressure cross section and optical forces exerted by linearly polarized zeroth order Mathieu beams on homogenous dielectric spherical particle in the framework of generalized Lorenz-Mie theory (GLMT). In this theory, the scattered fields are dependent upon the Mie scattering coefficients and the beam shape coefficients. So a new optical property such as force and torque appears by changing the beam profile and the nature of particle. In this way, this work is devoted to the analysis of both transverse and longitudinal optical forces exerted on a simple dielectric spherical particle by zeroth order Mathieu beams and zeroth order Bessel (which is a particular case of the first beam). Thus, through numerical simulations, we show that zeroth order Mathieu beams can't trap this particle but Bessel beam presents some dimensional stable equilibrium points.

  11. Angina and exertional myocardial ischemia in diabetic and nondiabetic patients: assessment by exercise thallium scintigraphy

    International Nuclear Information System (INIS)

    Patients with diabetes mellitus and coronary artery disease are thought to have painless myocardial ischemia more often than patients without diabetes. We studied 50 consecutive patients with diabetes and 50 consecutive patients without diabetes, all with ischemia, on exercise thallium scintigraphy to show the reliability of angina as a marker for exertional ischemia. The two groups had similar clinical characteristics, treadmill test results, and extent of infarction and ischemia, but only 7 patients with diabetes compared with 17 patients without diabetes had angina during exertional ischemia. In diabetic patients the extent of retinopathy, nephropathy, or peripheral neuropathy was similar in patients with and without angina. Angina is an unreliable index of myocardial ischemia in diabetic patients with coronary artery disease. Given the increased cardiac morbidity and mortality in such patients, periodic objective assessments of the extent of ischemia are warranted

  12. Endothelin B receptors exert antipruritic effects via peripheral κ-opioid receptors

    OpenAIRE

    Ji, Wenjin; Liang, Jiexian; Zhang, Zhiwei

    2012-01-01

    Endothelin B receptor agonists exert antipruritic effects on itching induced via endothelin-1 (ET-1) and compound 48/80. Peripheral µ- and κ-opioid receptors (MORs and KORs, respectively) are reported to be involved in the anti-nociceptive properties triggered by ETB agonists. Therefore, we investigated the role of peripheral opioid receptors in the scratching response induced by ET-1. ETA and ETB antagonists and non-selective and selective opioid receptor antagonists were co-injected with ET...

  13. Fucoxanthin: A Marine Carotenoid Exerting Anti-Cancer Effects by Affecting Multiple Mechanisms

    OpenAIRE

    Sangeetha Ravi Kumar; Masashi Hosokawa; Kazuo Miyashita

    2013-01-01

    Fucoxanthin is a marine carotenoid exhibiting several health benefits. The anti-cancer effect of fucoxanthin and its deacetylated metabolite, fucoxanthinol, is well documented. In view of its potent anti-carcinogenic activity, the need to understand the underlying mechanisms has gained prominence. Towards achieving this goal, several researchers have carried out studies in various cell lines and in vivo and have deciphered that fucoxanthin exerts its anti-proliferative and cancer preventing ...

  14. Acute Hepatic Failure as a Leading Manifestation in Exertional Heat Stroke

    OpenAIRE

    Qi Jin; Erzhen Chen; Jie Jiang; Yiming Lu

    2012-01-01

    Background. Acute hepatic failure (AHF) is uncommon as a leading symptom in patients with exertional heat stroke (EHS). Which stage to perform the liver transplantation for severe hepatic failure in EHS is still obscure at clinical setting. The conservative management has been reported to be successful in treating heat-stroke-associated AHF even in the presence of accepted criteria for emergency liver transplantation. Case Presentation. Here, we reported a 35-year-old male who presented with ...

  15. Defining the Focus of Attention: Effects of Attention on Perceived Exertion and Fatigue.

    OpenAIRE

    Keith eLohse; SHERWOOD, DAVID E.

    2011-01-01

    This manuscript presents two experiments designed to explore the effects of attention on perceived exertion and time to failure in a fatiguing athletic task. There were two major motivating factors for these experiments. First, there are few studies evaluating attentional focus effects in endurance tasks and, second, there is a lack of integration between studies of attentional focus as external/internal (e.g., Wulf, 2007a) compared to associative/dissociative (e.g., Stevinson and Biddle, 199...

  16. Neuropathogenic Escherichia coli K1 does not exhibit proteolytic activities to exert its pathogenicity

    OpenAIRE

    Iqbal, Junaid; Rajani, Mehak; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2013-01-01

    Background Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood–brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogen...

  17. n-3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization

    OpenAIRE

    Shaikh, Saame Raza; Jolly, Christopher A.; Chapkin, Robert S.

    2011-01-01

    Fish oil, enriched in bioactive n-3 polyunsaturated fatty acids (PUFA), has therapeutic value for the treatment of inflammation-associated disorders. The effects of n-3 PUFAs are pleiotropic and complex; hence, an understanding of their cellular targets and molecular mechanisms of action remains incomplete. Here we focus on recent data indicating n-3 PUFAs exert immunosuppressive effects on the function of effector and regulatory CD4+ T cells. In addition, we also present emerging evidence th...

  18. Persisting Effects of Concussion on Heart Rate Variability during Physical Exertion.

    Science.gov (United States)

    Abaji, Joseph Patrick; Curnier, Daniel; Moore, Robert Davis; Ellemberg, Dave

    2016-05-01

    The purpose of this study was to evaluate cardiac autonomic modulation in university athletes during the post-acute to late phase (mean, 95 days ±63) of injury at rest and during physical exertion. We also sought to evaluate the effect of time since injury and number of injuries on heart rate variability (HRV). We hypothesized that physical exertion would reveal persisting modifications in HRV following a concussion. We included, in a cross-sectional design, athletes who sustained a concussion and matched controls. Concussions were identified by a medical doctor using established criteria. Twelve male concussed and 12 control athletes took part in the study. Control participants were teammates who were chosen to match the concussed athletes with regard to their height, weight, education, and age. The beat-to-beat electrocardiogram intervals of the participants were measured at rest and during physical exertion (isometric hand grip contraction; IHGC), which was sustained for 3 minutes at 30% of the participants' maximum. Linear and nonlinear parameters of HRV were calculated. The ratio between low and high frequency (LF/HF) bands was calculated to assess the sympathovagal balance. During the IHGC, but not at rest, concussed athletes presented significantly lower power in HF bands, leading to a significantly higher LF/HF ratio (p ≤ 0.05). Thus, asymptomatic athletes still may exhibit modifications in cardiac autonomic modulation weeks to months following injury. These modifications may only become apparent during physical exertion. Monitoring HRV may aid diagnosis and provide insight about safe return to play. PMID:26159461

  19. Do Thoroughbred and Standardbred horses have similar increases in pulmonary vascular pressures during exertion?

    OpenAIRE

    Hackett, R. P.; Ducharme, N G; Gleed, R. D.; Mitchell, L; Soderholm, L. V.; Erickson, B. K.; Erb, H. N.

    2003-01-01

    To test the hypothesis that the pulmonary vascular pressures of Thoroughbred and Standardbred horses behave similarly during exertion. Measurements were made on 5 Thoroughbred and 5 Standardbred horses on a treadmill at rest and during 3-minute exercise intervals at speeds predicted to produce 75%, 90%, and 100% maximal heart rate. Left forelimb acceleration, heart rate, esophageal pressure, and pulmonary artery pressure were measured continuously. Pulmonary capillary and wedge pressures were...

  20. Comparison of the Force Exerted by Hippocampal and DRG Growth Cones

    OpenAIRE

    Amin, Ladan; Ercolini, Erika; Ban, Jelena; Torre, Vincent

    2013-01-01

    Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we obse...

  1. Unexplained exertional dyspnea caused by low ventricular filling pressures: results from clinical invasive cardiopulmonary exercise testing

    OpenAIRE

    Oldham, William M.; Lewis, Gregory D.; Opotowsky, Alexander R.; Waxman, Aaron B.; Systrom, David M.

    2016-01-01

    To determine whether low ventricular filling pressures are a clinically relevant etiology of unexplained dyspnea on exertion, a database of 619 consecutive, clinically indicated invasive cardiopulmonary exercise tests (iCPETs) was reviewed to identify patients with low maximum aerobic capacity (V̇o2max) due to inadequate peak cardiac output (Qtmax) with normal biventricular ejection fractions and without pulmonary hypertension (impaired: n = 49, V̇o2max = 53% predicted [interquartile range (I...

  2. Core muscle activity, exercise preference, and perceived exertion during core exercise with elastic resistance versus machine

    OpenAIRE

    Jonas Vinstrup; Emil Sundstrup; Mikkel Brandt; Jakobsen, Markus D.; Joaquin Calatayud; Andersen, Lars L.

    2015-01-01

    Objectives. To investigate core muscle activity, exercise preferences, and perceived exertion during two selected core exercises performed with elastic resistance versus a conventional training machine. Methods. 17 untrained men aged 26–67 years participated in surface electromyography (EMG) measurements of five core muscles during torso-twists performed from left to right with elastic resistance and in the machine, respectively. The order of the exercises was randomized and each exercise con...

  3. Effects of Perceived Fitness Level of Exercise Partner on Intensity of Exertion

    OpenAIRE

    Thomas G.   Plante; Meghan Madden; Sonia Mann; Grace Lee

    2010-01-01

    Problem statement: Social comparison theory was used to examine if exercising with a research confederate posing as either high fit or low fit would increase the exertion in exercising. Approach: 91 college students were randomly assigned to one of three conditions: Biking alone, biking with a high fit confederate, or biking with a low fit confederate. All participants were instructed to complete 20 min of exercise at 60-70% of their maximum target heart rate. Results: Results indicated that ...

  4. Validity of Borg Ratings of Perceived Exertion During Active Video Game Play

    OpenAIRE

    Pollock, Brandon S; Jacob E. Barkley; POTENZINI, NICK; DESALVO, RENEE M.; BUSER, STACEY L.; OTTERSTETTER, RONALD; JUVANCIC-HELTZEL, JUDITH A.

    2013-01-01

    During physically interactive video game play (e.g., Nintendo Wii), users are exposed to potential distracters (e.g., video, music), which may decrease their ratings of perceived exertion (RPE) throughout game play. The purpose of this investigation was to determine the association between RPE scores and heart rate while playing the Nintendo Wii. Healthy adults (N = 13, 53.5 ± 5.4 years old) participated in two exercise sessions using the Nintendo Wii Fit Plus. During each session participant...

  5. Acute Exertional Rhabdomyolysis and Triceps Compartment Syndrome During a High School Football Camp

    OpenAIRE

    Oh, John Y.; Laidler, Matthew; Fiala, Steven C.; Hedberg, Katrina

    2012-01-01

    Background: Acute exertional rhabdomyolysis has been infrequently reported among adolescents. In August 2010, several high school football players from one team developed rhabdomyolysis and triceps compartment syndrome following an upper arm exercise held in a non-air-conditioned wrestling room. Purpose: To confirm the diagnoses, characterize the spectrum of illnesses, and determine the factors contributing to rhabdomyolysis and triceps compartment syndromes. Study Design: Descriptive epidemi...

  6. The effects of exertion on the postural stability in young soccer players

    OpenAIRE

    Arliani, Gustavo Gonçalves; Almeida, Gabriel Peixoto Leão; dos Santos, Ciro Veronese; Venturini, André Manrique; Astur, Diego da Costa; Cohen, Moises

    2013-01-01

    OBJECTIVE : Analyze the effects of physical exertion during a soccer match on the functional capacity and stability of the lower limbs of young soccer players. METHODS : We analyzed 10 soccer players who underwent functional capacity assessment of the lower limbs by a Hop Test protocol and evaluation of the level of postural stability in the Biodex Stability System (Biodex, Inc., Shirley, NY) before and immediately after a friendly game lasting 45 minutes. RESULTS : After the match, there was...

  7. Interactive Effects of Physical and Mental Workload: A Study of Muscle Function, Capacity and Exertion Type

    OpenAIRE

    Ranjana K Mehta

    2011-01-01

    Workers experience combined physical and mental demands in their daily jobs, yet the contribution of these concurrent demands in the development of work-related musculoskeletal disorders (WMSDs) is not clearly understood. There is a need to understand how concurrent demands interact with different work parameters, such as force levels, muscles employed, and types of exertion, to influence physiological responses. Furthermore, whether muscle capacity is altered with these concurrent demands ...

  8. CORELATIVE ASPECTS REGARDING THE FUNCTIONAL EXERTION AND THE TECHNICAL DIFFICULTY ELEMENTS IN HIGH PERFORMANCE AEROBIC GYMNASTICS

    OpenAIRE

    MEZEI MARIANA; URZEALĂ CONSTANTA; BOTA AURA

    2012-01-01

    AbstractPurpose. The purpose of this study is to identify the correlative aspects between the functional exertion and the technical difficulty elements in junior aerobic gymnastics.Methods. Next to the bibliographical study, the pedagogical observation, we used a heart rate monitor, routines’ video, referees’ sheets, training programs analysis and statistical processing methods. Results. Data collected prove high intensity levels for each of the required technical elements, fact which has imp...

  9. Dual approaches for defects condensation

    International Nuclear Information System (INIS)

    Full text. Due to the fact that the QCD running coupling constant becomes larger as we go into the low energy (or large distance) limit of the theory, a perturbative treatment of its infrared (IR) region is impossible. In particular, a formal mathematical demonstration of color confinement and a complete physical understanding of the exact mechanism that confines quarks and gluons are two missing points in our current knowledge of the IR-QCD. It was known that due to the Meissner effect of expulsion of magnetic fields in a electric condensate that usual superconductors should confine magnetic monopoles. That point led to the conjecture that the QCD vacuum could be a condensate of chromomagnetic monopoles, a dual superconductor (DSC). Such a chromomagnetic condensate should be responsible for the dual Meissner effect which is expected to lead to the confinement of color charges immersed in this medium. In dual superconductor models of color confinement, magnetic monopoles appear as topological defects in points of the space where the abelian projection becomes singular. Also, condensation of other kinds of defects such as vortices in superfluids and line-like defects in solids are responsible for a great variety of phase transitions, which once more proves the relevance of the subject. In the present work we review two methods that allow us to approach the condensation of defects: the Kleinert Mechanism (KM) and the Julia-Toulouse Mechanism (JTM). We show that in the limit where the vortex gauge field goes to zero, which we identify as the signature of the condensation of defects in the dual picture, these are two equivalent dual prescriptions for obtaining an effective theory for a phase where defects are condensed, starting from the fundamental theory defined in the normal phase where defects are diluted. (author)

  10. Activity limitation and exertional dyspnea in adult asthmatic patients: What do we know?

    Science.gov (United States)

    Vermeulen, François; Garcia, Gilles; Ninane, Vincent; Laveneziana, Pierantonio

    2016-08-01

    Limitation of activity is the most cited symptom described by uncontrolled asthma patients. Assessment of activity limitation can be undertaken through several ways, more or less complex, subjective or objective. Yet little is known about the link between patients sensations and objective measurements. The present review reports the current knowledge regarding activity limitation and symptom perception (i.e., exertional dyspnea) in adult patients with asthma. This work is based on references indexed by PubMed, irrespective of the year of publication. Overall, patients with stable asthma do not have a more sedentary lifestyle than healthy subjects. However, during a cycle ergometric test, the maximal load is reduced when FEV1, FVC and muscle strengths are decreased. Additionally, during the six-minute walking test, mild asthma patients walk less than healthy subjects even if the minimal clinically important difference is not reached. The major complaint of asthma patients when exercising is dyspnea that is mainly related to the inspiratory effort and also to dynamic hyperinflation in some circumstances. Finally, the administration of bronchodilator does not improve the ventilatory pattern and the exercise capacity of asthma patients and little is known on its effect on exertional dyspnea. The present review allows to conclude that until now there is no gold standard test allowing the objective assessment of "activity limitation and exertional dyspnea" in asthma patients. PMID:27492522

  11. Physical exercise at the workplace reduces perceived physical exertion during healthcare work

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Brandt, Mikkel;

    2015-01-01

    exercise may decrease physical exertion during work. This study investigates the effect of workplace-based versus home-based physical exercise on physical exertion during work (WRPE) among healthcare workers. METHODS: 200 female healthcare workers (age: 42.0, body mass index: 24.1, average pain intensity......: 3.1 on a scale of 0 to 10, average WRPE: 3.6 on a scale of 0 to 10) from 18 departments at three participating hospitals. Participants were randomly allocated at the cluster level to 10 weeks of: (1) workplace physical exercise (WORK) performed in groups during working hours for 5×10 minutes per...... week and up to five group-based coaching sessions on motivation for regular physical exercise, or (2) home-based physical exercise (HOME) performed during leisure time for 5×10 minutes per week. Physical exertion was assessed at baseline and at 10-week follow-up. RESULTS: 2.2 (SD: 1.1) and 1.0 (SD: 1...

  12. Effects of the Visual Exercise Environments on Cognitive Directed Attention, Energy Expenditure and Perceived Exertion

    Directory of Open Access Journals (Sweden)

    Mike Rogerson

    2015-06-01

    Full Text Available Green exercise research often reports psychological health outcomes without rigorously controlling exercise. This study examines effects of visual exercise environments on directed attention, perceived exertion and time to exhaustion, whilst measuring and controlling the exercise component. Participants completed three experimental conditions in a randomized counterbalanced order. Conditions varied by video content viewed (nature; built; control during two consistently-ordered exercise bouts (Exercise 1: 60% VO2peakInt for 15-mins; Exercise 2: 85% VO2peakInt to voluntary exhaustion. In each condition, participants completed modified Backwards Digit Span tests (a measure of directed attention pre- and post-Exercise 1. Energy expenditure, respiratory exchange ratio and perceived exertion were measured during both exercise bouts. Time to exhaustion in Exercise 2 was also recorded. There was a significant time by condition interaction for Backwards Digit Span scores (F2,22 = 6.267, p = 0.007. Scores significantly improved in the nature condition (p < 0.001 but did not in the built or control conditions. There were no significant differences between conditions for either perceived exertion or physiological measures during either Exercise 1 or Exercise 2, or for time to exhaustion in Exercise 2. This was the first study to demonstrate effects of controlled exercise conducted in different visual environments on post-exercise directed attention. Via psychological mechanisms alone, visual nature facilitates attention restoration during moderate-intensity exercise.

  13. Exertional Myopathy in a Juvenile Green Sea Turtle (Chelonia mydas Entangled in a Large Mesh Gillnet

    Directory of Open Access Journals (Sweden)

    Brianne E. Phillips

    2015-01-01

    Full Text Available A juvenile female green sea turtle (Chelonia mydas was found entangled in a large mesh gillnet in Pamlico Sound, NC, and was weak upon presentation for treatment. Blood gas analysis revealed severe metabolic acidosis and hyperlactatemia. Plasma biochemistry analysis showed elevated aspartate aminotransferase and creatine kinase, marked hypercalcemia, hyperphosphatemia, and hyperkalemia. Death occurred within 24 hours of presentation despite treatment with intravenous and subcutaneous fluids and sodium bicarbonate. Necropsy revealed multifocal to diffuse pallor of the superficial and deep pectoral muscles. Mild, multifocal, and acute myofiber necrosis was identified by histopathological examination. While histological changes in the examined muscle were modest, the acid-base, mineral, and electrolyte abnormalities were sufficiently severe to contribute to this animal’s mortality. Exertional myopathy in reptiles has not been well characterized. Sea turtle mortality resulting from forced submergence has been attributed to blood gas derangements and seawater aspiration; however, exertional myopathy may also be an important contributing factor. If possible, sea turtles subjected to incidental capture and entanglement that exhibit weakness or dull mentation should be clinically evaluated prior to release to minimize the risk of delayed mortality. Treatment with appropriate fluid therapy and supportive care may mitigate the effects of exertional myopathy in some cases.

  14. Gartanin Protects Neurons against Glutamate-Induced Cell Death in HT22 Cells: Independence of Nrf-2 but Involvement of HO-1 and AMPK.

    Science.gov (United States)

    Gao, Xiao-Yun; Wang, Sheng-Nan; Yang, Xiao-Hong; Lan, Wen-Jian; Chen, Zi-Wei; Chen, Jing-Kao; Xie, Jian-Hui; Han, Yi-Fan; Pi, Rong-Biao; Yang, Xiao-Bo

    2016-09-01

    Oxidative stress mediates the pathogenesis of neurodegenerative disorders. Gartanin, a natural xanthone of mangosteen, possesses multipharmacological activities. Herein, the neuroprotection capacity of gartanin against glutamate-induced damage in HT22 cells and its possible mechanism(s) were investigated for the first time. Glutamate resulted in cell death in a dose-dependent manner and supplementation of 1-10 µM gartanin prevented the detrimental effects of glutamate on cell survival. Additional investigations on the underlying mechanisms suggested that gartanin could effectively reduce glutamate-induced intracellular ROS generation and mitochondrial depolarization. We further found that gartanin induced HO-1 expression independent of nuclear factor erythroid-derived 2-like 2 (Nrf2). Subsequent studies revealed that the inhibitory effects of gartanin on glutamate-induced apoptosis were partially blocked by small interfering RNA-mediated knockdown of HO-1. Finally, the protein expression of phosphorylation of AMP-activated protein kinase (AMPK) and its downstream signal molecules, Sirtuin activator (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), increased after gartanin treatment. Taken together, these findings suggest gartanin is a potential neuroprotective agent against glutamate-induced oxidative injury partially through increasing Nrf-2-independed HO-1 and AMPK/SIRT1/PGC-1α signaling pathways. PMID:27161377

  15. A PPARγ, NF-κB and AMPK-Dependent Mechanism May Be Involved in the Beneficial Effects of Curcumin in the Diabetic db/db Mice Liver

    Directory of Open Access Journals (Sweden)

    Lizbeth M. Jiménez-Flores

    2014-06-01

    Full Text Available Turmeric (Curcuma longa is a rhizomatous herbaceous perennial plant of the ginger family which has been used to treat biliary disorders, anorexia, cough, rheumatism, cancer, sinusitis, hepatic disorders, hyperglycemia, obesity, and diabetes in both Ayurvedic and Traditional Chinese Medicine. Suggested mechanisms of action include the modulation of signal transduction cascades and effects on gene expression, however they remain to be elucidated. In this study, the expression of some proteins responsible for transcription factors, inflammation, and metabolic control were evaluated by western blot in 15-week-old db/db mice livers treated with curcumin 0.75% mixed in their diet for 8 weeks. In addition, nitrosative stress was evaluated. Curcumin increased the expression of AMPK and PPARγ, and diminished NF-κB protein in db/db mice. However, it did not modify the expression of PGC-1α or SIRT1. Nitrosative stress present in db/db mice livers was determined by a unique nitrotyrosylated protein band (75 kDa and was not reverted with curcumin. In conclusion, curcumin regulates the expression of AMPK, PPARγ, and NF-κB; suggesting a beneficial effect for treatment of T2DM complications. In order to observe best beneficial effects it is desirable to administer curcumin in the earlier states of T2DM.

  16. Rosemary (Rosmarinus officinalis L.) extract regulates glucose and lipid metabolism by activating AMPK and PPAR pathways in HepG2 cells.

    Science.gov (United States)

    Tu, Zheng; Moss-Pierce, Tijuana; Ford, Paul; Jiang, T Alan

    2013-03-20

    An epidemic of metabolic disorders such as obesity and diabetes is rising dramatically. Using natural products as potential preventive and therapeutic interventions for these disorders has drawn worldwide attention. Rosemary has been shown to lower blood glucose and cholesterol levels and mitigate weight gain in several in vivo studies. However, the mechanisms are essentially unknown. We investigated the effects of rosemary extract on metabolism and demonstrated that rosemary extract significantly increased glucose consumption in HepG2 cells. The phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase (ACC), was increased by rosemary extract. Rosemary extract also transcriptionally regulated the genes involved in metabolism, including SIRT1, PPARγ coactivator 1α (PGC1α), glucose-6-phosphatase (G6Pase), ACC, and low-density lipoprotein receptor (LDLR). Furthermore, the PPARγ-specific antagonist GW9662 diminished rosemary's effects on glucose consumption. Overall, our study suggested that rosemary potentially increases liver glycolysis and fatty acid oxidation by activating AMPK and PPAR pathways. PMID:23432097

  17. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    Science.gov (United States)

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy. PMID:26689352

  18. Oocyte activation and latent HIV-1 reactivation: AMPK as a common mechanism of action linking the beginnings of life and the potential eradication of HIV-1.

    Science.gov (United States)

    Finley, Jahahreeh

    2016-08-01

    In all mammalian species studied to date, the initiation of oocyte activation is orchestrated through alterations in intracellular calcium (Ca(2+)) signaling. Upon sperm binding to the oocyte plasma membrane, a sperm-associated phospholipase C (PLC) isoform, PLC zeta (PLCζ), is released into the oocyte cytoplasm. PLCζ hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce diacylglycerol (DAG), which activates protein kinase C (PKC), and inositol 1,4,5-trisphosphate (IP3), which induces the release of Ca(2+) from endoplasmic reticulum (ER) Ca(2+) stores. Subsequent Ca(2+) oscillations are generated that drive oocyte activation to completion. Ca(2+) ionophores such as ionomycin have been successfully used to induce artificial human oocyte activation, facilitating fertilization during intra-cytoplasmic sperm injection (ICSI) procedures. Early studies have also demonstrated that the PKC activator phorbol 12-myristate 13-acetate (PMA) acts synergistically with Ca(2+) ionophores to induce parthenogenetic activation of mouse oocytes. Interestingly, the Ca(2+)-induced signaling cascade characterizing sperm or chemically-induced oocyte activation, i.e. the "shock and live" approach, bears a striking resemblance to the reactivation of latently infected HIV-1 viral reservoirs via the so called "shock and kill" approach, a method currently being pursued to eradicate HIV-1 from infected individuals. PMA and ionomycin combined, used as positive controls in HIV-1 latency reversal studies, have been shown to be extremely efficient in reactivating latent HIV-1 in CD4(+) memory T cells by inducing T cell activation. Similar to oocyte activation, T cell activation by PMA and ionomycin induces an increase in intracellular Ca(2+) concentrations and activation of DAG, PKC, and downstream Ca(2+)-dependent signaling pathways necessary for proviral transcription. Interestingly, AMPK, a master regulator of cell metabolism that is activated thorough the induction of cellular

  19. Renal applications of dual-energy CT.

    Science.gov (United States)

    Kaza, Ravi K; Platt, Joel F

    2016-06-01

    Dual-energy CT is being increasingly used for abdominal imaging due to its incremental benefit of material characterization without significant increase in radiation dose. Knowledge of the different dual-energy CT acquisition techniques and image processing algorithms is essential to optimize imaging protocols and understand potential limitations while using dual-energy CT renal imaging such as urinary calculi characterization, assessment of renal masses and in CT urography. This review article provides an overview of the current dual-energy CT techniques and use of dual-energy CT in renal imaging. PMID:27010938

  20. A dual-systems perspective on addiction: contributions from neuroimaging and cognitive training.

    Science.gov (United States)

    McClure, Samuel M; Bickel, Warren K

    2014-10-01

    Dual-systems theories explain lapses in self-control in terms of a conflict between automatic and deliberative modes of behavioral control. Numerous studies have now tested whether the brain areas that control behavior are organized in a manner consistent with dual-systems models. Brain regions directly associated with the mesolimbic dopamine system, the nucleus accumbens and ventromedial prefrontal cortex in particular, capture some of the features assumed by automatic processing. Regions in the lateral prefrontal cortex are more closely linked to deliberative processing and the exertion of self-control in the suppression of impulses. While identifying these regions crudely supports dual-systems theories, important modifications to what constitutes automatic and deliberative behavioral control are also suggested. Experiments have identified various means by which automatic processes may be sculpted. Additional work decomposes deliberative processes into component functions such as generalized working memory, reappraisal of emotional stimuli, and prospection. The importance of deconstructing dual-systems models into specific cognitive processes is clear for understanding and treating addiction. We discuss intervention possibilities suggested by recent research, and focus in particular on cognitive training approaches to bolster deliberative control processes that may aid quit attempts. PMID:25336389

  1. Non-CDK-bound p27 (p27{sup NCDK}) is a marker for cell stress and is regulated through the Akt/PKB and AMPK-kinase pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, Mia A. [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Vaahtomeri, Kari [Genome-Scale Biology Program and Institute of Biotechnology, 00014 University of Helsinki, Helsinki (Finland); Peltonen, Karita [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Viollet, Benoit [Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), 75014 Paris (France); INSERM U567, 75014 Paris (France); Maekelae, Tomi P. [Genome-Scale Biology Program and Institute of Biotechnology, 00014 University of Helsinki, Helsinki (Finland); Band, Arja M. [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Laiho, Marikki, E-mail: mlaiho1@jhmi.edu [Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki (Finland); Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD (United States)

    2010-03-10

    p27Kip1 (p27) tumour suppressor protein is regulated by multiple mechanisms including its turnover, localization and complex formation with its key targets, cyclin-dependent kinases (CDK) and cyclins. We have earlier shown that p27 exists in cells in a form that lacks cyclin/CDK interactions (hence non-CDK, p27{sup NCDK}) but the nature of p27{sup NCDK} has remained unresolved. Here we demonstrate that the epitope recognized by the p27{sup NCDK}-specific antibody resides in the p27 CDK-interaction domain and that p27{sup NCDK} is regulated by the balance of CDK inhibitors and cyclin-CDK complexes. We find that signalling by cellular growth promoting pathways, like phosphoinositol 3-kinase (PI3K) and specifically Akt/PKB kinase, inversely correlates with p27{sup NCDK} levels whereas total p27 levels are unaffected. p27{sup NCDK}, but not total p27, is increased by cellular perturbations such as hyperosmotic and metabolic stress and activation of AMP-activated protein kinase (AMPK). By using AMPK catalytic subunit proficient and deficient cells we further demonstrate that the AMPK pathway governs p27{sup NCDK} responses to metabolic stress and PI3K inhibition. These results indicate that p27{sup NCDK} is a sensitive marker for both cell stress and proliferation over and above p27 and is regulated by Akt/PKB and AMPK pathways.

  2. Docosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition

    Directory of Open Access Journals (Sweden)

    Nayeong Kim

    2015-01-01

    Full Text Available The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA, a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC cells. DHA-induced cell death was accompanied by AMP-activated protein kinase (AMPK activation and inactivated phosphatidylinositol 3-kinase (PI3K/Akt/mammalian target of rapamycin (mTOR signaling. Knocking down AMPK and overexpressing Akt increased mTOR activity and attenuated DHA-induced cell death, suggesting that DHA induces cell death via AMPK- and Akt-regulated mTOR inactivation. This was confirmed in Fat-1 transgenic mice, which produce ω3-PUFAs. Lewis lung cancer (LLC tumor cells implanted into Fat-1 mice showed slower growth, lower phospho-Akt levels, and higher levels of apoptosis and autophagy than cells implanted into wild-type mice. Taken together, these data suggest that DHA-induced apoptosis and autophagy in NSCLC cells are associated with AMPK activation and PI3K/Akt inhibition, which in turn lead to suppression of mTOR; thus ω3-PUFAs may be utilized as potential therapeutic agents for NSCLC treatment.

  3. 脂肪细胞AMPK活性对NF-κB活性的影响%Effects of the Phosphorylation of AMPK on NF-κB Activity in Adipocytes

    Institute of Scientific and Technical Information of China (English)

    郑丽英; 张君; 徐文静; 陆环; 李宏; 冯晓朋; 王金宝; 谢建新

    2012-01-01

    为检测AICAR激活及Compound C抑制脂肪细胞AMPK磷酸化后对NF-κB的磷酸化活性的影响,探讨肥胖启动炎症的分子机制.将3T3-L1细胞诱导为成熟脂肪细胞后,实验分3个处理:基础培养液组(对照组)、实验组(基础培养液组分别加入AICAR和Compound C).运用Western blot检测药物干预后AMPK与NF-κB的磷酸化水平.结果显示,AICAR培养1h脂肪细胞内AMPK磷酸化水平增加,Compound C培养1h脂肪细胞内AMPK磷酸化水平降低,差异有统计学意义(P<0.05).AICAR培养1h脂肪细胞内NF-κB磷酸化水平降低,Compound C培养1h脂肪细胞NF-κB磷酸化水平增高,差异有统计学意义(P<0.05).由此可知,AMPK活性与NF-κB活性呈一定的负相关,AMPK可抑制NF-κB信号,肥胖导致炎症可能是AMPK活性降低引发NF-κB信号活性增强有关.%To explore the effects of the phosphorylation of AMPK activated by AICAR and inhibited by Compound C on NF-κB activity in adipocytes, and investigate molecular mechanisms of obesity-related inflammation. 3T3-L1 cells were induced into adipocytes, and three treatments were used in this experiment. AICAR and Compound C were added respectively into the standard culture medium (control), AMPK and NF-kB phosphorylation were examined by Western blot. AICAR activated AMPK and inhibited NF-κB phospho-rylation(P<0.05). Compound C inhibited AMPK and activated NF-κB phosphorylatioa AMPK activities and NF-κB activities have a certain negative correlation, and AMPK can inhibit NF-κB signaling pathway. The decrease of AMPK activities may enhance the activities of NF-kB signaling pathway, and then lead to obesity-related inflammation.

  4. Wavelet frames and their duals

    DEFF Research Database (Denmark)

    Lemvig, Jakob

    2008-01-01

    This thesis is concerned with computational and theoretical aspects of wavelet frame analysis in higher dimensions and, in particular, with the study of so-called dual frames of wavelet frames. A frame is a system of "simple" functions or building blocks which deliver ways of analyzing signals. The...... signals are then represented by linear combinations of the building blocks with coefficients found by an associated frame, called a dual frame. A wavelet frame is a frame where the building blocks are stretched (dilated) and translated versions of a single function; such a frame is said to have wavelet...... structure. The dilation of the wavelet building blocks in higher dimension is done via a square matrix which is usually taken to be integer valued. In this thesis we step away from the "usual" integer, expansive dilation and consider more general, expansive dilations. In most applications of wavelet frames...

  5. Planar split dual gate MOSFET

    Institute of Scientific and Technical Information of China (English)

    XIAO DeYuan; CHEN Gary; LEE Roger; LIU Yung; SHEN GhiCheong

    2008-01-01

    A new planar split dual gate (PSDG) MOSFET device, its characteristics and ex-perimental results, as well as the three dimensional device simulations, are re-ported here for the first time. Both theoretical calculation and 3D simulation, as well as the experiment data, show that the two independent split dual gates can provide dynamical control of the device characteristics, such as threshold voltage (Vt) and sub-threshold swing (SS), as well as the device saturated current. The PSDG MOSFET transistor leakage current (loft) can be reduced as much as 78% of the traditional single gate MOSFET. The PSDG is fabricated and fully compatible with our conventional 0.18 μm logic process flow.

  6. Dual arm master controller concept

    International Nuclear Information System (INIS)

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented

  7. Dual arm master controller concept

    International Nuclear Information System (INIS)

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures

  8. A dual history of securitization

    OpenAIRE

    Guzzini, Stefano

    2015-01-01

    This Working Paper provides a dual historisation of ‘securitisation’, i.e. of the origins of the Copenhagen School in terms of its direct world historical context and of the historical origins of the specific bias in our political discourse which is prompted by security discourses. Born almost as a rationalisation of German Ostpolitik, and hence with desecuritisation, the Copenhagen School understood the speech act less as a kind of conspiratorial or elite manipulation than as the manifold pr...

  9. Monopolistic Competition: A Dual Approach

    OpenAIRE

    Paolo Bertoletti; Federico Etro

    2013-01-01

    We study monopolistic competition under indirect additivity of preferences. This is dual to the Dixit-Stiglitz model, where direct additivity is assumed, with the CES case as the only common ground. Other examples include (perceived) demand functions that are exponential or linear. Our equilibrium results are generally in contrast with those received by the literature. An increase of the number of consumers never affects prices and firms’ size, but increases proportionally the number of firms...

  10. Dual labour markets: A survey

    OpenAIRE

    Wapler, Rüdiger

    1999-01-01

    Whereas the standard modern theories of unemployment were developed in the context of a single sector labour market, this paper presents a survey of how these theories can be integrated into a dual labour market setting. This approach dichotomises the labour market into two sectors, a primary with high wages and high job security, and a secondary sector with lower wages and higher labour turnover. The survey consists of three main parts. Part one applies standard labour market theories to dua...

  11. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    Energy Technology Data Exchange (ETDEWEB)

    Sebastià, N., E-mail: natividad.sebastia@uv.es [Radiation Protection Service, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Montoro, A. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Hervás, D. [Biostatistics Unit, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Pantelias, G.; Hatzi, V.I. [Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, Athens (Greece); Soriano, J.M. [Grupo de Investigación Biomédica en Imagen GIBI230, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica, IIS La Fe, Health Research Institute La Fe, Valencia (Spain); Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia (Spain); Villaescusa, J.I. [Radiation Protection Service, Universitary and Politechnic Hospital La Fe, Valencia (Spain); and others

    2014-08-15

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  12. Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay

    International Nuclear Information System (INIS)

    Highlights: • Curcumin and trans-resveratrol can exert radioprotective or radiosensitizing effects. • The mechanisms underlying such dual action were elucidated using the PCC and G2-assay. • Radioprotection occurs in non-cycling cells exposed to curcumin and resveratrol. • Radiosensitization occurs in cycling cells exposed to the chemicals. • G2-checkpoint abrogation by the chemicals underlies the radiosensitizing mechanism. - Abstract: Curcumin and trans-resveratrol are well-known antioxidant polyphenols with radiomodulatory properties, radioprotecting non-cancerous cells while radiosensitizing tumor cells. This dual action may be the result of their radical scavenging properties and their effects on cell-cycle checkpoints that are activated in response to radiation-induced chromosomal damage. It could be also caused by their effect on regulatory pathways with impact on detoxification enzymes, the up-regulation of endogenous protective systems, and cell-cycle-dependent processes of DNA damage. This work aims to elucidate the mechanisms underlying the dual action of these polyphenols and investigates under which conditions they exhibit radioprotecting or radiosensitizing properties. The peripheral blood lymphocyte test system was used, applying concentrations ranging from 1.4 to 140 μM curcumin and 2.2 to 220 μM trans-resveratrol. The experimental design focuses first on their radioprotective effects in non-cycling lymphocytes, as uniquely visualized using cell fusion-mediated premature chromosome condensation, excluding, thus, cell-cycle interference to repair processes and activation of checkpoints. Second, the radiosensitizing potential of these chemicals on the induction of chromatid breaks in cultured lymphocytes following G2-phase irradiation was evaluated by a standardized G2-chromosomal radiosensitivity predictive assay. This assay uses caffeine for G2-checkpoint abrogation and it was applied to obtain an internal control for radiosensitivity

  13. Tobacco and psychiatric dual disorders.

    Science.gov (United States)

    Graham, Noni A; Frost-Pineda, Kimberly; Gold, Mark S

    2007-01-01

    Smoking is a leading cause of morbidity and premature mortality in the United States. The relationship between tobacco smoking and several forms of cancer, heart disease, stroke, chronic lung disease, and other medical diseases is well recognized and accepted. Recent epidemiological studies are now focusing on the link between tobacco use and psychiatric diseases. Experts now suggest that in the differential diagnosis of "smoker," depression, alcohol dependence, and schizophrenia are highest on the list. Studies are also focusing on the role of secondhand tobacco exposure, either in utero or during childhood, in the risk of dual disorders. Prenatal exposure may alter gene expression and change the risk for a variety of life-long psychiatric diseases, e.g., ADD/ADHD, antisocial personality disorders, substance use disorders, and major depression. Considerable time and effort have been devoted to studying the link between smoking and depression and also schizophrenia. We will focus on less well-studied areas in tobacco use and psychiatric dual disorders (including eating disorders), prenatal and early childhood secondhand smoke (SHS) exposure, and the relationship to the genesis of these dual disorders. PMID:19283970

  14. Effect of Beetroot Juice on Moderate-Intensity Exercise at a Constant Rating of Perceived Exertion

    OpenAIRE

    RIENKS, JORDYN N.; VANDERWOUDE, ANDREA A.; MAAS, ELIZABETH; BLEA, ZACHARY M.; Subudhi, Andrew W.

    2015-01-01

    Dietary nitrate supplementation has been shown to reduce oxygen consumption at a fixed work rate. We questioned whether a similar effect would be observed during variable work rate exercise at a specific rating of perceived exertion (RPE), as is commonly prescribed for aerobic training sessions. Using a double-blind, placebo controlled, crossover design, ten females (25 ± 3 years; VO2peak 37.1 ± 5.3 ml/kg/min) performed two 20-min cycle ergometer trials at a constant RPE of 13 (somewhat hard)...

  15. Motorcycle racer with unilateral forearm flexor and extensor chronic exertional compartment syndrome.

    Science.gov (United States)

    Winkes, Michiel B; Teijink, Joep A; Scheltinga, Marc R

    2016-01-01

    We discuss a case of a 26-year-old man, a motorcycle racer, who presented with progressive pain, weakness and swelling of his right forearm and loss of power in his index finger, experienced during motor racing. Chronic exertional compartment syndrome (CECS) of both flexor and extensor compartments of his forearm was diagnosed by dynamic intracompartmental muscle pressure measurements. After fasciotomies, all symptoms were resolved and the patient was able to improve on his preinjury racing skills, without any limitations. A literature review and a surgical 'how-to' for correct release of the extensor and deep flexor compartments of the forearm are provided. PMID:27080851

  16. Gain of function AMP-activated protein kinase γ3 mutation (AMPKγ3R200Q) in pig muscle increases glycogen storage regardless of AMPK activation.

    Science.gov (United States)

    Scheffler, Tracy L; Park, Sungkwon; Roach, Peter J; Gerrard, David E

    2016-06-01

    Chronic activation of AMP-activated protein kinase (AMPK) increases glycogen content in skeletal muscle. Previously, we demonstrated that a mutation in the ryanodine receptor (RyR1(R615C)) blunts AMPK phosphorylation in longissimus muscle of pigs with a gain of function mutation in the AMPKγ3 subunit (AMPKγ3(R200Q)); this may decrease the glycogen storage capacity of AMPKγ3(R200Q) + RyR1(R615C) muscle. Therefore, our aim in this study was to utilize our pig model to understand how AMPKγ3(R200Q) and AMPK activation contribute to glycogen storage and metabolism in muscle. We selected and bred pigs in order to generate offspring with naturally occurring AMPKγ3(R200Q), RyR1(R615C), and AMPKγ3(R200Q) + RyR1(R615C) mutations, and also retained wild-type littermates (control). We assessed glycogen content and parameters of glycogen metabolism in longissimus muscle. Regardless of RyR1(R615C), AMPKγ3(R200Q) increased the glycogen content by approximately 70%. Activity of glycogen synthase (GS) without the allosteric activator glucose 6-phosphate (G6P) was decreased in AMPKγ3(R200Q) relative to all other genotypes, whereas both AMPKγ3(R200Q) and AMPKγ3(R200Q) + RyR1(R615C) muscle exhibited increased GS activity with G6P. Increased activity of GS with G6P was not associated with increased abundance of GS or hexokinase 2. However, AMPKγ3(R200Q) enhanced UDP-glucose pyrophosphorylase 2 (UGP2) expression approximately threefold. Although UGP2 is not generally considered a rate-limiting enzyme for glycogen synthesis, our model suggests that UGP2 plays an important role in increasing flux to glycogen synthase. Moreover, we have shown that the capacity for glycogen storage is more closely related to the AMPKγ3(R200Q) mutation than activity. PMID:27302990

  17. On involutions in extremal self-dual codes and the dual distance of semi self-dual codes

    OpenAIRE

    Borello, Martino; Nebe, Gabriele

    2014-01-01

    A classical result of Conway and Pless is that a natural projection of the fixed code of an automorphism of odd prime order of a self-dual binary linear code is self-dual. In this paper we prove that the same holds for involutions under some (quite strong) conditions on the codes. In order to prove it, we introduce a new family of binary codes: the semi self-dual codes. A binary self-orthogonal code is called semi self-dual if it contains the all-ones vector and is of codimension 2 in its dua...

  18. Dual Field Dual Core Secure Cryptoprocessor on FPGA Platform

    Directory of Open Access Journals (Sweden)

    C. Veeraraghavan

    2013-03-01

    Full Text Available This paper is devoted to the design of dual core crypto processor for executing both Prime field and binaryfield instructions. The proposed design is specifically optimized for Field programmable gate array(FPGA platform. Combination of two different field(prime field GF(p and Binary field GF(2minstructions execution is analysed.The design is implemented in Spartan 3E and virtex5. Both theperformance results are compared. The implementation result shows the execution of parallelism usingdual field instructions

  19. Effect that atmospheric pressure exerts to DC tracking of polyethylene irradiated with gamma ray

    International Nuclear Information System (INIS)

    In the testing method of tracking resistance carried out generally, particular stipulation is not made on atmospheric pressure. But there is the case that electric and electronic equipments are used in the place of low pressure. The lowering of atmospheric pressure affects the phenomenon of tracking deterioration, and it is sufficiently conceivable that tracking resistance changes. So far, the effect that atmospheric pressure exerts on tracking resistance at the time of applying AC voltage has been mainly studied, however recently, DC voltage has become widely utilized, and the elucidation of DC tracking phenomena has become important. The experiment of irradiating Co-60 gamma ray to polyethylene and obtaining the basic data on the effect that atmospheric pressure exerts to DC tracking using those samples was carried out. The experimental setup, the samples and the tracking resistance test are reported. The relation of the weight loss with atmospheric pressure, the relation of the maximum erosion depth and atmospheric pressure, the measurement of the amount of residual carbide and the tracking resistance using brass electrodes are described. (K.I.)

  20. Seed predators exert selection on the subindividual variation of seed size.

    Science.gov (United States)

    Sobral, M; Guitián, J; Guitián, P; Larrinaga, A R

    2014-07-01

    Subindividual variation among repeated organs in plants constitutes an overlooked level of variation in phenotypic selection studies, despite being a major component of phenotypic variation. Animals that interact with plants could be selective agents on subindividual variation. This study examines selective pressures exerted during post-dispersal seed predation and germination on the subindividual variation of seed size in hawthorn (Crataegus monogyna). With a seed offering experiment and a germination test, we estimated phenotypic selection differentials for average and subindividual variation of seed size due to seed predation and germination. Seed size affects germination, growth rate and the probability of an individual seed of escaping predation. Longer seeds showed higher germination rates, but this did not result in significant selection on phenotypes of the maternal trees. On the other hand, seed predators avoided wider seeds, and by doing so exerted phenotypic selection on adult average and subindividual variation of seed size. The detected selection on subindividual variation suggests that the levels of phenotypic variation within individual plants may be, at least partly, the adaptive consequence of animal-mediated selection. PMID:24176051

  1. Exertional dyspnoea in COPD: the clinical utility of cardiopulmonary exercise testing.

    Science.gov (United States)

    O'Donnell, Denis E; Elbehairy, Amany F; Faisal, Azmy; Webb, Katherine A; Neder, J Alberto; Mahler, Donald A

    2016-09-01

    Activity-related dyspnoea is often the most distressing symptom experienced by patients with chronic obstructive pulmonary disease (COPD) and can persist despite comprehensive medical management. It is now clear that dyspnoea during physical activity occurs across the spectrum of disease severity, even in those with mild airway obstruction. Our understanding of the nature and source of dyspnoea is incomplete, but current aetiological concepts emphasise the importance of increased central neural drive to breathe in the setting of a reduced ability of the respiratory system to appropriately respond. Since dyspnoea is provoked or aggravated by physical activity, its concurrent measurement during standardised laboratory exercise testing is clearly important. Combining measurement of perceptual and physiological responses during exercise can provide valuable insights into symptom severity and its pathophysiological underpinnings. This review summarises the abnormal physiological responses to exercise in COPD, as these form the basis for modern constructs of the neurobiology of exertional dyspnoea. The main objectives are: 1) to examine the role of cardiopulmonary exercise testing (CPET) in uncovering the physiological mechanisms of exertional dyspnoea in patients with mild-to-moderate COPD; 2) to examine the escalating negative sensory consequences of progressive respiratory impairment with disease advancement; and 3) to build a physiological rationale for individualised treatment optimisation based on CPET. PMID:27581832

  2. Diorcinol D Exerts Fungicidal Action against Candida albicans through Cytoplasm Membrane Destruction and ROS Accumulation.

    Science.gov (United States)

    Li, Ying; Chang, Wenqiang; Zhang, Ming; Li, Xiaobin; Jiao, Yang; Lou, Hongxiang

    2015-01-01

    Candida albicans, which is the most common human fungal pathogen, causes high mortality among immunocompromised patients. Antifungal drug resistance becomes a major challenge for the management of Candida infection. Diorcinol D (DD), a diphenyl ether derivative isolated from an endolichenic fungus, exerted fungicidal action against Candida species. In this study, we investigated the possible mechanism of its antifungal activity. The change of membrane dynamics and permeability suggested that the cell membrane was disrupted by the treatment of DD. This was further supported by the evidences of intracellular glycerol accumulation, alteration of cell ultrastructure, and down-regulation of genes involved in cell membrane synthesis. In addition, the treatment of C. albicans with DD resulted in the elevation of reactive oxygen species (ROS), which caused the dysfunction of mitochondria. These altogether suggested that DD exerted its antifungal activity through cytoplasmic membrane destruction and ROS accumulation. This finding is helpful to uncover the underlying mechanisms for the diphenyl ether derivatives and provides a potential application in fighting clinical fungal infections. PMID:26047493

  3. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways.

    Science.gov (United States)

    Yu, Xiaoming; Zhong, Jingtao; Yan, Li; Li, Jie; Wang, Hui; Wen, Yan; Zhao, Yu

    2016-09-01

    Curcumin, a naturally occurring polyphenolic compound present in turmeric (Curcuma longa), exerts antitumor effects in various types of malignancy. However, the precise mechanisms responsible for the effects of curcumin on retinoblastoma (RB) cells have not been fully explored. In the present study, the molecular mechanisms by which curcumin exerts its anticancer effects in RB Y79 cells were investigated. The results showed that curcumin reduced cell viability in Y79 cells. Curcumin induced G1 phase arrest through downregulating the expression of cyclin D3 and cyclin-dependent kinase (CDK)2/6 and upregulating the expression of CDK inhibitor proteins p21 and p27. Curcumin-induced apoptosis of Y79 cells occurred through the activation of caspases-9/-3. Moreover, flow cytometric analysis showed that curcumin induced mitochondrial membrane potential (∆Ψm) collapse in Y79 cells. We also found that curcumin induced the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). JNK and p38 MAPK inhibitors significantly suppressed curcumin‑induced activation of caspases-9/-3 and inhibited the apoptosis of Y79 cells. Taken together, our results suggest that curcumin induced the apoptosis of Y79 cells through the activation of JNK and p38 MAPK pathways. These findings provide a novel treatment strategy for human RB. PMID:27432244

  4. Activity Exerted by a Testosterone Derivative on Myocardial Injury Using an Ischemia/Reperfusion Model

    Directory of Open Access Journals (Sweden)

    Figueroa-Valverde Lauro

    2014-01-01

    Full Text Available Some reports indicate that several steroid derivatives have activity at cardiovascular level; nevertheless, there is scarce information about the activity exerted by the testosterone derivatives on cardiac injury caused by ischemia/reperfusion (I/R. Analyzing these data, in this study, a new testosterone derivative was synthetized with the objective of evaluating its effect on myocardial injury using an ischemia/reperfusion model. In addition, perfusion pressure and coronary resistance were evaluated in isolated rat hearts using the Langendorff technique. Additionally, molecular mechanism involved in the activity exerted by the testosterone derivative on perfusion pressure and coronary resistance was evaluated by measuring left ventricular pressure in the absence or presence of the following compounds: flutamide, prazosin, metoprolol, nifedipine, indomethacin, and PINANE TXA2. The results showed that the testosterone derivative significantly increases P=0.05 the perfusion pressure and coronary resistance in isolated heart. Other data indicate that the testosterone derivative increases left ventricular pressure in a dose-dependent manner (0.001–100 nM; however, this phenomenon was significantly inhibited P=0.06 by indomethacin and PINANE-TXA2  P=0.05 at a dose of 1 nM. In conclusion, these data suggest that testosterone derivative induces changes in the left ventricular pressure levels through thromboxane receptor activation.

  5. Physical exertion in simple reaction time and continuous attention of sport participants.

    Science.gov (United States)

    Tsorbatzoudis, H; Barkoukis, V; Danis, A; Grouios, G

    1998-04-01

    To investigate the effect of physical exertion on simple reaction time and continuous attention of sport participants, an experiment was conducted with 46 male university students and 12 male cyclists. The subjects were assigned to three experimental and two control groups. The subjects of the experimental groups were asked to perform, following a 5-min, period of warming up, a high intensity exercise protocol for 5 min., on a mechanically braked cycle ergometer (Group A) or a moderate intensity exercise protocol for 30 min, on the same cycle ergometer (Groups B and C). Shortly before and immediately after the physical exercise subjects of all groups were asked to perform a test of simple reaction time and continuous attention. The subjects of the control groups were asked to perform at rest both tests of the simple reaction time and the continuous attention twice, with a 10-min. and a 35-min. interval between the first and second attempts, respectively. The results did not support the notion that exercise of moderate or high intensity influences significantly the cognitive performance of aerobically trained or untrained subjects. The results are discussed in the light of the current research findings concerning exertion and human psychomotor performance. PMID:9638756

  6. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    OpenAIRE

    Yu, Lifeng; Christner, Jodie A.; Leng, Shuai; Wang, Jia; Fletcher, Joel G.; McCollough, Cynthia H.

    2011-01-01

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose.

  7. AMPK and insulin action

    DEFF Research Database (Denmark)

    Frøsig, Christian; Jensen, Thomas Elbenhardt; Jeppesen, Jacob;

    2013-01-01

    and insulin stimulated glucose uptake in both the soleus and extensor digitorum longus muscle, coinciding with reduced insulin signaling at the level of Akt (pSer473 and pThr308), TBC1D1 (pThr590) and TBC1D4 (pThr642). In contrast to our hypothesis, the impact of ageing and high fat diet on insulin action...

  8. Cryptanalysis of Dual CRT-RSA

    OpenAIRE

    Santanu, Sarkar; Maitra, Subhamoy

    2011-01-01

    International audience Several schemes under the framework of Dual RSA have been proposed by Sun et al (IEEE-IT, August 2007). We here concentrate on the Dual CRT-RSA scheme and present certain range of parameters for which this is insecure. As a corollary of our work, we prove that the Dual Generalized Rebalanced-RSA (Scheme III of Sun et al) can be e ciently broken for a signi cant region where the scheme has been claimed to be secure.

  9. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats

    DEFF Research Database (Denmark)

    Brandt, Nina; De Bock, Katrien; Richter, Erik;

    2010-01-01

    counteracted by training. In the perfused hindlimb, insulin-stimulated glucose transport in red gastrocnemius muscle was completely abolished in CAF and rescued by exercise training. Apart from a tendency toward an approximately 20% reduction in both basal and insulin-stimulated Akt Ser(473) phosphorylation (P......) among the groups. In conclusion, surplus energy intake of a palatable but low-fat cafeteria diet resulted in obesity and insulin resistance that was rescued by exercise training. Interestingly, insulin resistance was not accompanied by major defects in the insulin-signaling cascade or in altered AMPK......Excess energy intake via a palatable low-fat diet (cafeteria diet) is known to induce obesity and glucose intolerance in rats. However, the molecular mechanisms behind this adaptation are not known, and it is also not known whether exercise training can reverse it. Male Wistar rats were assigned to...

  10. Dual-frequency Dual-sense Circularly-polarized Slot Antenna Fed by Microstrip Line

    OpenAIRE

    Bao, Xiulong; Ammann, Max

    2008-01-01

    A new design of a dual-frequency dual circularly-polarized slot antenna is presented. The dual-frequency is achieved using a single-layer microstrip-fed configuration coupled to a modified annular-slot antenna. The dual sense circular-polarization is obtained by four unequal linear slots which augment the annular slot. Experimental results show the proposed antenna has good circular polarization characteristics for both right-hand circular polarization (RHCP) and left-hand circular polarizati...

  11. Maximal dynamic grip force and wrist torque: the effects of gender, exertion direction, angular velocity, and wrist angle.

    Science.gov (United States)

    Morse, Jonathan L; Jung, Myung-Chul; Bashford, Gregory R; Hallbeck, M Susan

    2006-11-01

    The objective of this study was to examine the effects of gender, exertion direction, angular velocity and wrist angle on simultaneous grip force and wrist torque under the isokinetic condition. The study used 20 participants (10 males and 10 females) and included 6 angular velocities (15, 30, 45, 60, 75, and 90 degrees /s) and 2 wrist exertion directions (flexion and extension) over the wrist range of motion of 70 degrees flexion to 60 degrees extension in 5 degrees increments. Similar to other studies, males and flexion exertion produced larger forces than females and extension exertion, respectively. However, the largest forces were generated at near extreme flexion of the wrist and the dependent variable of angular velocity was not practically significant. These results can contribute to the evaluation of cumulative trauma syndromes, but there is a need for more research on the dynamic measures of the hand and wrist complex and for standard development for dynamic force measurement. PMID:16442072

  12. Autonomous sensor-based dual-arm satellite grappling

    Science.gov (United States)

    Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce

    1989-01-01

    Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.

  13. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats.

    Science.gov (United States)

    Zhang, Qing-Yu; Pan, Ying; Wang, Rong; Kang, Lin-Lin; Xue, Qiao-Chu; Wang, Xiao-Ning; Kong, Ling-Dong

    2014-04-01

    Fructose is a nutritional composition of fruits and honey. Its excess consumption induces insulin resistance-associated metabolic diseases. Hypothalamic insulin signaling plays a pivotal role in controlling whole-body insulin sensitivity and energy homeostasis. Quercetin, a natural flavonoid, has been reported to ameliorate high fructose-induced rat insulin resistance and hyperlipidemia. In this study, we investigated its regulatory effects on the hypothalamus of high fructose-fed rats. Rats were fed 10% fructose in drinking water for 10 weeks. After 4 weeks, these animals were orally treated with quercetin (50 and 100 mg/kg), allopurinol (5 mg/kg) and water daily for the next 6 weeks, respectively. Quercetin effectively restored high fructose-induced hypothalamic insulin signaling defect by up-regulating the phosphorylation of insulin receptor and protein kinase B. Furthermore, quercetin was found to reduce metabolic nutrient sensors adenosine monophosphate-activated protein kinase (AMPK) activation and thioredoxin-interacting protein (TXNIP) overexpression, as well as the glutamine-glutamate cycle dysfunction in the hypothalamus of high fructose-fed rats. Subsequently, it ameliorated high fructose-caused hypothalamic inflammatory lesions in rats by suppressing the activation of hypothalamic nuclear factor κB (NF-κB) pathway and NOD-like receptor 3 (NLRP3) inflammasome with interleukin 1β maturation. Allopurinol had similar effects. These results provide in vivo evidence that quercetin-mediated down-regulation of AMPK/TXNIP and subsequent inhibition of NF-κB pathway/NLRP3 inflammasome activation in the hypothalamus of rats may be associated with the reduction of hypothalamic inflammatory lesions, contributing to the improvement of hypothalamic insulin signaling defect in this model. Thus, quercetin with the central activity may be a therapeutic for high fructose-induced insulin resistance and hyperlipidemia in humans. PMID:24491314

  14. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Eveline A I F Queiroz

    Full Text Available Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration-dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role.

  15. Baicalein induces autophagic cell death through AMPK/ULK1 activation and downregulation of mTORC1 complex components in human cancer cells.

    Science.gov (United States)

    Aryal, Pramod; Kim, Kijoong; Park, Pil-Hoon; Ham, Seongho; Cho, Junghee; Song, Kyung

    2014-10-01

    Baicalein, a flavonoid and aglycon hydrolyzed from baicalin, has anticancer properties in several human carcinomas, but its molecular mechanisms of action remain unclear. Here, we show that baicalein leads to human cancer cell death by inducing autophagy rather than apoptosis, because cell death induced by baicalein was completely reversed by suppressing the expression levels of key molecules in autophagy such as Beclin 1, vacuolar protein sorting 34 (Vps34), autophagy-related (Atg)5 and Atg7, but not by pan-caspase inhibitor. Our data revealed that baicalein significantly increased the number of green fluorescence protein-cytosol-associated protein light chain 3 (GFP-LC3)-containing puncta and LC3B-II expression levels, which were further enhanced by chloroquine treatment. Furthermore, a luciferase-based reporter assay showed that the ratio of RLuc-LC3wt/RLuc-LC3G120A was greatly reduced. The data suggested that baicalein induced not only autophagosome formation, but also autophagic flux. Experiments using short interfering RNAs and pharmacological inhibitors revealed that Beclin 1, Vps34, Atg5, Atg7 and UNC-51 (Caenorhabditis elegans)-like kinase 1 (ULK1) play pivotal roles in mediating baicalein-induced autophagy. Moreover, baicalein activated AMP-activated protein kinase (AMPK)α, leading to ULK1 activation through phosphorylation at Ser555, whereas both protein and mRNA levels of mammalian target of rapamycin (mTOR) and Raptor, upstream inhibitors of ULK1 and autophagy, were markedly downregulated by baicalein. Our data suggest that the anticancer effects of baicalein are mainly due to autophagic cell death through activation of the AMPK/ULK1 pathway and inhibition of mTOR/Raptor complex 1 expression. These results provide new mechanistic insights into the anticancer functions of autophagy inducers, such as baicalein, which may be used as potential therapeutics for cancer treatment. PMID:25132405

  16. Adiponectin promotes VEGF-C-dependent lymphangiogenesis by inhibiting miR-27b through a CaMKII/AMPK/p38 signaling pathway in human chondrosarcoma cells.

    Science.gov (United States)

    Huang, Chun-Yin; Chang, An-Chen; Chen, Hsien-Te; Wang, Shih-Wei; Lo, Yuan-Shun; Tang, Chih-Hsin

    2016-09-01

    Chondrosarcoma is the second most frequently occurring type of bone malignancy characterized by distant metastatic propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumour lymphangiogenesis and lymphatic metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. In recent years, adiponectin has also been indicated as facilitating tumorigenesis, angiogenesis and metastasis. However, the effect of adiponectin on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has remained largely a mystery. In the present study, we have shown a clinical correlation between adiponectin and VEGF-C, as well as tumour stage, in human chondrosarcoma tissues. We further demonstrated that adiponectin promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium from adiponectin-treated cells significantly induced tube formation and migration of human lymphatic endothelial cells. In addition, adiponectin knock down inhibited lymphangiogenesis in vitro and in vivo We also found that adiponectin-induced VEGF-C is mediated by the calmodulin-dependent protein kinase II (CaMKII), AMP-activated protein kinase (AMPK) and p38 signaling pathway. Furthermore, the expression of miR-27b was negatively regulated by adiponectin via the CaMKII, AMPK and p38 cascade. The present study is the first to describe the mechanism of adiponectin-promoted lymphangiogenesis by up-regulating VEGF-C expression in chondrosarcomas. Thus, adiponectin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis. PMID:27252405

  17. Nonlinear dual-spectral image fusion for improving cone-beam-CT-based breast cancer diagnosis

    Science.gov (United States)

    Chen, Zikuan; Ning, Ruola; Conover, David; Willison, Kathleen

    2006-03-01

    Cone-beam breast computed tomography (CB Breast CT) can easily detect micro-calcifications and distinguish fat and glandular tissues from normal breast tissue. However, it may be a challenging task for CB Breast CT to distinguish benign from malignant tumors because of the subtle difference in x-ray attenuation. Due to the use of polyenergetic x-ray source, the x-ray and tissue interaction exhibits energy-dependent attenuation behavior, a phenomenon that, to date, has not been used for breast tissue characterization. We will exploit this spectral nature by equipping our CB Breast CT with dual-spectral imaging. The dual-spectral cone-beam scanning produces two spectral image datasets, from which we propose a nonlinear dual-spectral image fusion scheme to combine them into a single dataset, thereby incorporating the spectral information. In implementation, we will perform dual-spectral image fusion through a bi-variable polynomial that can be established by applying dual-spectral imaging to a reference material (with eight different thicknesses). From the fused dataset, we can reconstruct a volume, called a reference-equivalent volume or a fusion volume. By selecting the benign tissue as a reference material, we obtain a benign-equivalent volume. Likewise, we obtain a malignant-equivalent volume as well. In the pursuit of the discrimination of benign versus malignant tissues in a breast image, we perform intra-image as well as inter-image processing. The intra-image processing is an intensity transformation imposed only to a tomographic breast image itself, while the inter-image processing is exerted on two tomographic images extracted from two volumes. The nonlinear fusion scheme possesses these properties: 1) no noise magnification; 2) no feature dimensionality problem, and 3) drastic enhancement among specific features offered by nonlinear mapping. Its disadvantage lies in the possible misinterpretation resulting from nonlinear mapping.

  18. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    Science.gov (United States)

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  19. Dual phase bainitic linepipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, D.; Yakubtsov, I.; Zhang, R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; Poruks, P. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Turi, T. [Stelco Lake Erie, Nanticoke, ON (Canada); Emadi, D.; Essadiqi, E. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2005-07-01

    Over the past 50 years, the strength of commercial linepipe steel has increased at a steady rate of about 70 MPa per decade due to advances in steelmaking, plate processing and microstructural design. API X100 grade steel, which has a yield strength of 690 MPa, is currently available, and X120 steels are under development. The microstructure of linepipe steels has evolved from predominantly polygonal ferrite to fine bainite. For the X120 steels, lower bainite-, tempered lath martensite- and dual phase microstructures are being examined. This study obtained the microstructures of ultrafine bainite with dispersed particles of the carbon-rich martensite-austenite (M-A) phase. The objective was to obtain a matrix of mostly intragranularly-nucleated bainitic ferrite containing a high volume fraction of dispersed M-A particles. The mechanical properties of bainitic linepipe steels were also examined. Basic studies of phase transformations and mechanical properties in these steels established significant relationships between processing schedule and the evolution of microstructure, and between final microstructure and mechanical properties. The optimal combination of strength and toughness properties was obtained with a microstructure consisting of a matrix of intragranularly-nucleated bainite and small dispersed particles of martensite. This microstructure was described as being a dual phase acicular ferrite (AF) with M-A. The window of steel composition and processing parameters which give the dual phase AF-M-A microstructure was determined in an experimental study on 15 mm thick plate. The minimum strength and toughness properties for Grade 621 (X90) linepipe steel can be achieved by either a lean steel composition with extreme processing parameters, or by a higher alloy composition with a more industrially realistic processing schedule. This study also proposed how this approach can be extended to obtain high strength linepipe grades. 15 refs., 9 tabs., 10 figs.

  20. Dual arm master controller development

    International Nuclear Information System (INIS)

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab

  1. Dual photon absorptiometry in endocrinology

    International Nuclear Information System (INIS)

    Several endocrinological diseases are responsible for mineral bone loss, occurring mainly in trabecular bone. Dual photon absorptiometry allows the measurement of the bone mineral content of lumbar spine. Using this method, a bone loss in the axial skeleton has been assessed during hypercorticism, hyperparathyroidism and hyperthyroidism. The study of 112 patients suffering from Graves'disease, which we present here, showed a significant vertebral bone loss either in untreated patients or in treated patients returned to euthyroidism. 28 of these patients were studied before and during treatment. In most of them, the demineralization did not recover, furthermore the bone loss trended to enhance in menopausal women

  2. Gravity duals of boundary cones

    CERN Document Server

    Camps, Joan

    2016-01-01

    The replica trick defines Renyi entropies as partition functions on conically singular geometries. We discuss their gravity duals: regular bulk solutions to the Einstein equations inducing conically singular metrics at the boundary. When the conical singularity is supported on a flat or spherical surface, these solutions are rewritings of the hyperbolic black hole. For more general shapes, these solutions are new. We construct them perturbatively in a double expansion in the distance and strength of the conical singularity, and extract the vacuum polarisation due to the cone. Recent results about the structure of logarithmic divergences of Renyi entropies are reproduced ---in particular, $f_b\

  3. EEG signatures of arm isometric exertions in preparation, planning and execution.

    Science.gov (United States)

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  4. Dual instantons in antimembranes theory

    International Nuclear Information System (INIS)

    We introduce two ansatzs for the 3-form potential of Euclidean 11d supergravity on skew-whiffed AdS4xS7 background which results in two scalar modes with m2=-2 on AdS4. Being conformally coupled with a quartic interaction, it is possible to find the exact solutions of the scalar equation on this background. These modes turn out to be invariant under the SU(4) subgroup of the SO(8) isometry group, whereas there are no corresponding SU(4) singlet Bogomol'nyi-Prasad-Sommerfeld operators of dimensions one or two on the boundary theory constructed by Aharony, Bergman, Jafferis, and Maldacena. Noticing the interchange of 8s and 8c representations under skew-whiffing in the bulk, we propose the theory of antimembranes should similarly be obtained from Aharony, Bergman, Jafferis, and Maldacena's theory by swapping these representations. In particular, this enables us to identify the dual boundary operators of the two scalar modes. We deform the boundary theory by the dual operators and examine the fermionic field equations, and compare the solutions of the deformed theory with those of the bulk.

  5. Robot Kinematics, using Dual Quaternions

    Directory of Open Access Journals (Sweden)

    Mahmoud Gouasmi

    2012-03-01

    Full Text Available From the point of view of classical mechanics, deriving the equations of motion for systems of coupled rigid bodies is regarded as a straightforward procedure: once a suitable set of generalized coordinates and reference frames have been chosen, what remains is to either apply Lagrange’s equations or Newton and Euler’s equations to obtain the differential equations of motion. As the complexity of multibody system increases, the need for more elegant formulation of the equation of motion becomes an issue of paramount importance. Our primary focus is on the kinematic analysis of rigid bodies and serial manipulators (robotic systems  using simultaneously, both homogeneous transformations (4x4 matrices and Dual Quaternions, for the sake of results comparisons (cost,complexity,storage capacity etc. . This paper has been done mainly for educational and peadagogical purposes, hoping that the scientific community will finally adopt and use Dual Quaternions at least when dealing with multibody systems and specially robotics.

  6. Acute Hepatic Failure as a Leading Manifestation in Exertional Heat Stroke

    Directory of Open Access Journals (Sweden)

    Qi Jin

    2012-01-01

    Full Text Available Background. Acute hepatic failure (AHF is uncommon as a leading symptom in patients with exertional heat stroke (EHS. Which stage to perform the liver transplantation for severe hepatic failure in EHS is still obscure at clinical setting. The conservative management has been reported to be successful in treating heat-stroke-associated AHF even in the presence of accepted criteria for emergency liver transplantation. Case Presentation. Here, we reported a 35-year-old male who presented with very high transaminases, hyperbilirubinemia, significant prolongation of the prothrombin time, and coma. No other causes for AHF could be identified but physical exhaustion and hyperthermia. Although the current patient fulfilled London criteria for emergency liver transplantation, he spontaneously recovered under conservative treatment including intravenous fluids, cooling, diuretics as mannitol, and hepatocyte growth-promoting factors. Conclusions. Meticulous supportive management could be justified in some selected cases of AHF due to EHS.

  7. Startle stimuli exert opposite effects on human cortical and spinal motor system excitability in leg muscles

    DEFF Research Database (Denmark)

    Ilic, T V; Pötter-Nerger, M; Holler, I;

    2011-01-01

    Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains...... (ISI) varied between 20 to 160 ms. When given alone, the test stimulus evoked a MEP amplitude of approximately 0.5 mV in theslightly preinervated soleus muscle (SOL). In the second experiment, the startling AS was used to condition the size of the H-reflex in SOL muscle. Mean MEP amplitude was...... calculated for each ISI. The conditioning AS suppressed MEP amplitude at ISIs of 30-80 ms. By contrast, H-reflex amplitude was augmented at ISIs of 100-200 ms. In conclusions, acoustic stimulation exerts opposite and ISI-specific effects on the amplitude of MEPs and H-reflex in the SOL muscle, indicating...

  8. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    International Nuclear Information System (INIS)

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm2) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and it was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.

  9. A 29-Year-Old Man With Nonproductive Cough, Exertional Dyspnea, and Chest Discomfort.

    Science.gov (United States)

    Halpenny, Darragh; Suh, James; Garofano, Suzette; Alpert, Jeffrey

    2015-09-01

    A 29-year-old man presented with a 5-month history of worsening dry cough, exertional dyspnea, chest tightness, and palpitations. He had been treated by his primary care physician with trials of guaifenesin/codeine, azithromycin, albuterol, and omeprazole without improvement. He denied wheezing, fever, sweats, anorexia, joint pain, swelling, or rash. He had no past medical history. He denied a history of tobacco smoking or IV drug use. He kept no pets, worked as a manager in an office environment, and had no history of occupational inhalational exposure. He reported using aerosolized insect spray to eradicate bed bugs in his house shortly before the cough began but did not report any acute symptoms when using the spray. PMID:26324141

  10. The pressure exerted by adsorbing directed lattice paths and staircase polygons

    International Nuclear Information System (INIS)

    A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we determine asymptotic expressions for the pressure on the X-axis in models of adsorbing directed paths in the first quadrant. Our models show that the pressure vanishes in the limit of long paths in the desorbed phase, but there is a non-zero pressure in the adsorbed phase. We determine asymptotic approximations of the pressure for finite length Dyck paths and directed paths, as well as for a model of adsorbing staircase polygons with both ends grafted to the X-axis. (paper)

  11. Fgf8-Related Secondary Organizers Exert Different Polarizing Planar Instructions along the Mouse Anterior Neural Tube

    Science.gov (United States)

    Crespo-Enriquez, Ivan; Partanen, Juha; Martinez, Salvador; Echevarria, Diego

    2012-01-01

    Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens) detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO) and the anterior neural ridge (anr) but not on zona limitans intrathalamica (zli). Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development. PMID:22792203

  12. Fgf8-related secondary organizers exert different polarizing planar instructions along the mouse anterior neural tube.

    Directory of Open Access Journals (Sweden)

    Ivan Crespo-Enriquez

    Full Text Available Early brain patterning depends on proper arrangement of positional information. This information is given by gradients of secreted signaling molecules (morphogens detected by individual cells within the responding tissue, leading to specific fate decisions. Here we report that the morphogen FGF8 exerts initially a differential signal activity along the E9.5 mouse neural tube. We demonstrate that this polarizing activity codes by RAS-regulated ERK1/2 signaling and depends on the topographical location of the secondary organizers: the isthmic organizer (IsO and the anterior neural ridge (anr but not on zona limitans intrathalamica (zli. Our results suggest that Sprouty2, a negative modulator of RAS/ERK pathway, is important for regulating Fgf8 morphogenetic signal activity by controlling Fgf8-induced signaling pathways and positional information during early brain development.

  13. 'Too much of a coincidence': identical twins with exertional heatstroke in the same race.

    Science.gov (United States)

    Smith, R; Jones, N; Martin, D; Kipps, C

    2016-01-01

    This report discusses a unique case of monozygotic male twins who both collapsed with exertional heat stroke (EHS) during the same marathon in relatively cool conditions. The twins were official race pacers in a popular city marathon held in the early spring in the UK. Both recovered uneventfully due to the prompt recognition of EHS and use of aggressive cooling measures, which prevented life-threatening complications. The case illustrates that EHS is a complex illness with a possible genetic predisposition, which can occur among runners even in cooler conditions. This link is explored together with the influence of their role as race pacers and the additional backpack worn in the development of EHS. PMID:26851253

  14. Effects of Perceived Fitness Level of Exercise Partner on Intensity of Exertion

    Directory of Open Access Journals (Sweden)

    Thomas G.   Plante

    2010-01-01

    Full Text Available Problem statement: Social comparison theory was used to examine if exercising with a research confederate posing as either high fit or low fit would increase the exertion in exercising. Approach: 91 college students were randomly assigned to one of three conditions: Biking alone, biking with a high fit confederate, or biking with a low fit confederate. All participants were instructed to complete 20 min of exercise at 60-70% of their maximum target heart rate. Results: Results indicated that participants in the high fit condition exercised harder than those in the low fit condition. However, no mood differences emerged between conditions. Conclusion: Social comparison theory predicts exercise outcome such that participants gravitate towards the behavior (high fit or low fit of those around them.

  15. Locked-in syndrome caused by the pressure exerted by the sound gun

    Directory of Open Access Journals (Sweden)

    Ayse Belin Ozer

    2014-01-01

    Full Text Available A 19-year-old male patient who wounded himself with a gun in the cranial region had a Glasgow coma scale of 3E. At posttraumatic day 7, locked-in syndrome was considered upon detection of vertical eye movements, meaningful winks, and quadriplegia. Apart from the classical view, computed tomography (CT and postmortem examination of the brain showed an infarct area in the cerebellum. However, vertebrobasilar artery system was normal. In this case report, we would like to present that unlike cases with ischemia, specific CT findings may not be evident in posttraumatic cases and ischemia may occur in the cerebellum as a result of the pressure exerted by a sound gun.

  16. Recording forces exerted on the bowel wall during colonoscopy: in vitro evaluation.

    Science.gov (United States)

    Dogramadzi, S; Virk, G S; Bell, G D; Rowland, R S; Hancock, J

    2005-12-01

    A novel system for distributed force measurement between the bowel wall and the shaft of a colonoscope is presented. The system, based on the piezoresistive method, involves the integration of soft miniature transducers to a colonoscope to enable a wide range of forces to be sensed. The attached sensing sheath does not restrict the propulsion of the colonoscope nor notably alter its flexibility. The addition of the sensor sheath increases the colonoscope diameter by 15-20% depending on the type of the colonoscope (adult or paediatric). The transducer's accuracy is +/-20 grammes if it is not subjected to extensive static forces. Under large static force conditions the errors may increase to +/-50 grammes. The tactile force measuring sensors have provided preliminary results from experiments on a model of the large bowel. The force measurements confirm the predictions on the location and magnitude of the forces and that most of the forces are exerted whilst the instrument is looping. PMID:17518409

  17. 小檗碱影响 AMPK/PGC-1信号途径改善糖尿病胰岛素抵抗和线粒体功能的研究%Berberine improves insulin-resistance and mitochondrial function by activating AMP-activated ;protein kinase (AMPK)/PGC-1α pathway

    Institute of Scientific and Technical Information of China (English)

    王会玲; 李燕; 胡伟锋; 田军; 张金元

    2014-01-01

    Objective To investigate Berberine improve metabolism and insulin resistant in db/db mice and effects on skeletal muscle mitochondrial function, and relative mechanisms. Methods We selected db/db mouse as model of diabetes/insulin-resistance, the wild type mouse as control group. The db/db mice were administrated with berberine(5 mg·kg-1·d-1) by intraperitoneal injection till three weeks. The food intake, body weight and fasting blood glucose levels were observed every week. At 3rd weekend, all the mice were sacrificed, blood serum sample was collected for measurement the fasting insulin level by ELISA, then calculation of insulin sensitivity index (ISI). The epididymal fat pads were separation and weighed. The gastrocnemius was extracted mitochondria and measured the cytochrome C oxidase activity and ATP content. The gastrocnemius AMPK/PGC-1-αexpression was detected by Western blot. Results The body weight and fat weight of db/db mice decreased dramatically after treated with berberine. Berberine showed lowering fast blood glucose and improving the ISI. No significant change in serum insulin release before or after Berberine treated. Berberine increased the COX activity and ATP content in skeletal muscle mitochondria. We also observed the AMPK phosphorylation was significantly activated and the nucleus transcriptional PGC-1αincreased. Conclusion Berberine obviously improved insulin-resistance by lower blood glucose, body weight and fat weight. These effects showed no relationship to insulin release, but related to increase mitochondria energy metabolism by active AMPK/PGC-1αsignaling.%目的:探讨小檗碱改善糖尿病鼠糖代谢及胰岛素抵抗作用及对骨骼肌线粒体功能的影响和机制。方法采用db/db小鼠为研究对象,以野生型小鼠为对照组。给予小檗碱(5 mg·kg-1·d-1)腹腔注射3周,观察食量、体重和空腹血糖水平;第3周末处死,留取血标本分离血清,检测胰岛素水平并计算

  18. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    Science.gov (United States)

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might

  19. The effects of physical exertion on decision-making performance of Australian football umpires.

    Science.gov (United States)

    Paradis, Kasey; Larkin, Paul; O'Connor, Donna

    2016-08-01

    Decision-making is a key component of an umpire's in-game performance, with each decision potentially having a direct impact on the result of the game. Additionally, umpires have to be physically fit to ensure they keep up with the gameplay. While research has identified the decision-making demands and running demands of umpires separately, few have explored the relationship between them. The aim of this investigation was to examine the relationship between physical exertion and decision-making performance of Australian football umpires at the sub-elite and junior levels. A total of 18 Australian football umpires (sub-elite, n = 10; junior n = 8) performed 10 × 300 m runs, with each repetition immediately followed by a video-based decision-making test, then 1 min of recovery. A Mann-Whitney U assessment indicated a significant difference between the sub-elite and junior level umpires for decision-making accuracy (U = 13.00, z = -2.43, P = 0.016, r = -0.5). However, there was no significant difference in response time (U = 28.00, z = -1.07, P = 0.315, r = -0.25). The sub-elite umpires completed the running efforts in significantly less time than the junior umpires (P running times for either skill level (P > 0.05). This suggests decision-making performance may not be affected by physical exertion. Therefore, it may be suggested coaches of football umpires allocate more time to the decision-making development of their umpires instead of focusing largely on the physical fitness side, as is currently the trend. PMID:26654891

  20. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression.

    Science.gov (United States)

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701