WorldWideScience

Sample records for amphiregulin thrombospondin-1 junb

  1. Analysis list: Junb [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Junb Blood,Embryonic fibroblast,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Jun...b.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Junb.5.tsv http://dbarchive....biosciencedbc.jp/kyushu-u/mm9/target/Junb.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Junb.B...lood.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Junb.Embryonic_fibro...blast.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Junb.Neural.tsv http://dbarchive.biosciencedbc

  2. Thrombospondin-1 in a Murine Model of Colorectal Carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Zenaida P Lopez-Dee

    Full Text Available Colorectal Cancer (CRC is one of the late complications observed in patients suffering from inflammatory bowel diseases (IBD. Carcinogenesis is promoted by persistent chronic inflammation occurring in IBD. Understanding the mechanisms involved is essential in order to ameliorate inflammation and prevent CRC. Thrombospondin 1 (TSP-1 is a multidomain glycoprotein with important roles in angiogenesis. The effects of TSP-1 in colonic tumor formation and growth were analyzed in a model of inflammation-induced carcinogenesis. WT and TSP-1 deficient mice (TSP-1-/- of the C57BL/6 strain received a single injection of azoxymethane (AOM and multiple cycles of dextran sodium sulfate (DSS to induce chronic inflammation-related cancers. Proliferation and angiogenesis were histologically analyzed in tumors. The intestinal transcriptome was also analyzed using a gene microarray approach. When the area containing tumors was compared with the entire colonic area of each mouse, the tumor burden was decreased in AOM/DSS-treated TSP-1-/- versus wild type (WT mice. However, these lesions displayed more angiogenesis and proliferation rates when compared with the WT tumors. AOM-DSS treatment of TSP-1-/- mice resulted in significant deregulation of genes involved in transcription, canonical Wnt signaling, transport, defense response, regulation of epithelial cell proliferation and metabolism. Microarray analyses of these tumors showed down-regulation of 18 microRNAs in TSP-1-/- tumors. These results contribute new insights on the controversial role of TSP-1 in cancer and offer a better understanding of the genetics and pathogenesis of CRC.

  3. Thrombospondin-1 and VEGF in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Canan Alkim

    2012-01-01

    Full Text Available Angiogenesis is an important process in the pathogenesis of chronic inflammation. We aimed to study the angiogeneic balance in inflammatory bowel disease (IBD by evaluating the expression of vascular endothelial growth factor (VEGF and thrombospondin-1 (TSP-1 on colonic epithelial cells, together with the expression of inducible nitric oxide synthase (iNOS.Twenty-one ulcerative colitis (UC, 14 Crohn's disease (CD, 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically.The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, all with statistical significance. However, in colorectal cancer group, VEGF and iNOS expressions were increased importantly, but TSP-1 expression was not statistically different from healthy control group's expression. Both TSP-1 and VEGF expressions were correlated with iNOS expression distinctly but did not correlate with each other.Both pro-angiogeneic VEGF and antiangiogeneic TSP-1 expressions were found increased in our IBD groups, but in colorectal cancer group, only VEGF expression was increased. TSP-1 increases in IBD patients as a response to inflammatory condition, but this increase was not enough to suppress pathologic angiogenesis and inflammation in IBD.

  4. Thrombospondin-1 Expression in RPE and Choroidal Neovascular Membranes

    Institute of Scientific and Technical Information of China (English)

    Shikun He; Francesca Incardona; Manlin Jin; Stephen J. Ryan; David R. Hinton

    2006-01-01

    Purpose: To investigate the expression of thrombospondin 1 (TSP-1) in retinal pigment epithelium (RPE) and choroidal neovascular membranes (CNVMs) from patients with age-related macular degeneration (AMD).Methods: Tissue sections from normal human fetal and adult eyes and surgically removed CNVMs were immunostained for TSP-1 localization. Polymerase chain reaction and Western blotting were used to analyze TSP-1 mRNA and protein from human RPE cells, respectively. TSP-1 in the supernatant of cultured RPE cells and eye explants were measured using enzyme-linked immunosorbent assay. MTT assay was used to evaluate the RPE survival after TSP-1 treatment.Results: The strongest immunostaining for TSP-1 was observed in the RPE monolayer around drusen in early AMD. The intensity of TSP-1 staining in normal eye sections was much weaker than that of early AMD and CNVM. TSP-1 mRNA was positive in cultured fetal and adult RPE cells. There was increasing secretion of TSP-1 into the supernatant of cultured RPE and eye explants. The specific band of TSP-1 was identified by Western blot. No significant inhibition of RPE survival was found with the exposure to TSP-1.Conclusions: TSP-1 expression in drusen and CNVM was upregulated and associated with RPE monolayer. TSP-1 may be a natural negative regulator for choroidal neovascularization.

  5. Determination of the CD148-Interacting Region in Thrombospondin-1.

    Directory of Open Access Journals (Sweden)

    Keiko Takahashi

    Full Text Available CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types, including vascular endothelial cells and duct epithelial cells. Previous studies have shown a prominent role of CD148 to reduce growth factor signals and suppress cell proliferation and transformation. Further, we have recently shown that thrombospondin-1 (TSP1 serves as a functionally important ligand for CD148. TSP1 has multiple structural elements and interacts with various cell surface receptors that exhibit differing effects. In order to create the CD148-specific TSP1 fragment, here we investigated the CD148-interacting region in TSP1 using a series of TSP1 fragments and biochemical and biological assays. Our results demonstrate that: 1 CD148 binds to the 1st type 1 repeat in TSP1; 2 Trimeric TSP1 fragments that contain the 1st type repeat inhibit cell proliferation in A431D cells that stably express wild-type CD148 (A431D/CD148wt cells, while they show no effects in A431D cells that lack CD148 or express a catalytically inactive form of CD148. The anti-proliferative effect of the TSP1 fragment in A431D/CD148wt cells was largely abolished by CD148 knockdown and antagonized by the 1st, but not the 2nd and 3rd, type 1 repeat fragment. Furthermore, the trimeric TSP1 fragments containing the 1st type repeat increased the catalytic activity of CD148 and reduced phospho-tyrosine contents of EGFR and ERK1/2, defined CD148 substrates. These effects were not observed in the TSP1 fragments that lack the 1st type 1 repeat. Last, we demonstrate that the trimeric TSP1 fragment containing the 1st type 1 repeat inhibits endothelial cell proliferation in culture and angiogenesis in vivo. These effects were largely abolished by CD148 knockdown or deficiency. Collectively, these findings indicate that the 1st type 1 repeat interacts with CD148, reducing growth factor signals and inhibiting epithelial or endothelial cell proliferation and angiogenesis.

  6. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis.

    Science.gov (United States)

    Martin-Manso, Gema; Navarathna, Dhammika H M L P; Galli, Susana; Soto-Pantoja, David R; Kuznetsova, Svetlana A; Tsokos, Maria; Roberts, David D

    2012-01-01

    Disseminated Candida albicans infection results in high morbidity and mortality despite treatment with existing antifungal drugs. Recent studies suggest that modulating the host immune response can improve survival, but specific host targets for accomplishing this goal remain to be identified. The extracellular matrix protein thrombospondin-1 is released at sites of tissue injury and modulates several immune functions, but its role in C. albicans pathogenesis has not been investigated. Here, we show that mice lacking thrombospondin-1 have an advantage in surviving disseminated candidiasis and more efficiently clear the initial colonization from kidneys despite exhibiting fewer infiltrating leukocytes. By examining local and systemic cytokine responses to C. albicans and other standard inflammatory stimuli, we identify a crucial function of phagocytes in this enhanced resistance. Subcutaneous air pouch and systemic candidiasis models demonstrated that endogenous thrombospondin-1 enhances the early innate immune response against C. albicans and promotes activation of inflammatory macrophages (inducible nitric oxide synthase⁺, IL-6(high), TNF-α(high), IL-10(low)), release of the chemokines MIP-2, JE, MIP-1α, and RANTES, and CXCR2-driven polymorphonuclear leukocytes recruitment. However, thrombospondin-1 inhibited the phagocytic capacity of inflammatory leukocytes in vivo and in vitro, resulting in increased fungal burden in the kidney and increased mortality in wild type mice. Thus, thrombospondin-1 enhances the pathogenesis of disseminated candidiasis by creating an imbalance in the host immune response that ultimately leads to reduced phagocytic function, impaired fungal clearance, and increased mortality. Conversely, inhibitors of thrombospondin-1 may be useful drugs to improve patient recovery from disseminated candidiasis.

  7. Autocrine stimulation of clear-cell renal carcinoma cell migration in hypoxia via HIF-independent suppression of thrombospondin-1

    Science.gov (United States)

    Bienes-Martínez, Raquel; Ordóñez, Angel; Feijoo-Cuaresma, Mónica; Corral-Escariz, María; Mateo, Gloria; Stenina, Olga; Jiménez, Benilde; Calzada, María J.

    2012-01-01

    Thrombospondin-1 is a matricellular protein with potent antitumour activities, the levels of which determine the fate of many different tumours, including renal carcinomas. However, the factors that regulate this protein remain unclear. In renal carcinomas, hypoxic conditions enhance the expression of angiogenic factors that help adapt tumour cells to their hostile environment. Therefore, we hypothesized that anti-angiogenic factors should correspondingly be dampened. Indeed, we found that hypoxia decreased the thrombospondin-1 protein in several clear cell renal carcinoma cell lines (ccRCC), although no transcriptional regulation was observed. Furthermore, we proved that hypoxia stimulates multiple signals that independently contribute to diminish thrombospondin-1 in ccRCC, which include a decrease in the activity of oxygen-dependent prolylhydroxylases (PHDs) and activation of the PI3K/Akt signalling pathway. In addition, thrombospondin-1 regulation in hypoxia proved to be important for ccRCC cell migration and invasion. PMID:23145312

  8. Amphiregulin Antibody and Reduction of Axial Elongation in Experimental Myopia

    Directory of Open Access Journals (Sweden)

    Wen Jun Jiang

    2017-03-01

    Full Text Available To examine the mechanism of ocular axial elongation in myopia, guinea pigs (age: 2–3 weeks which either underwent unilateral or bilateral lens-induced myopization (group 1 or which were primarily myopic at baseline (group 2 received unilateral intraocular injections of amphiregulin antibody (doses: 5, 10, or 15 μg three times in intervals of 9 days. A third group of emmetropic guinea pigs got intraocular unilateral injections of amphiregulin (doses: 0.25, 0.50 or 1.00 ng, respectively. In each group, the contralateral eyes received intraocular injections of Ringer's solution. In intra-animal inter-eye comparison and intra-eye follow-up comparison in groups 1 and 2, the study eyes as compared to the contralateral eyes showed a dose-dependent reduction in axial elongation. In group 3, study eyes and control eyes did not differ significantly in axial elongation. Immunohistochemistry revealed amphiregulin labelling at the retinal pigment epithelium in eyes with lens-induced myopization and Ringer's solution injection, but not in eyes with amphiregulin antibody injection. Intraocular injections of amphiregulin-antibody led to a reduction of lens-induced axial myopic elongation and of the physiological eye enlargement in young guinea pigs. In contrast, intraocularly injected amphiregulin in a dose of ≤1 ng did not show a significant effect. Amphiregulin may be one of several essential molecular factors for axial elongation.

  9. Expression of Pentraxin 3 and Thrombospondin 1 in Gingival Crevicular Fluid during Wound Healing after Gingivectomy in Postorthodontic Patients.

    Science.gov (United States)

    Rauten, Anne Marie; Silosi, Isabela; Stratul, Stefan Ioan; Foia, Liliana; Camen, Adrian; Toma, Vasilica; Cioloca, Daniel; Surlin, Valeriu; Surlin, Petra; Bogdan, Maria

    2016-01-01

    Background. Wound healing is a tissue repair process after an injury, and two of its main components are inflammation and angiogenesis, in which course a cascade of mediators is involved. The aim of this research was to evaluate the involvement of Pentraxin 3 and Thrombospondin 1 in wound healing after periodontal surgery (gingivectomy) for gingival overgrowth during orthodontic treatment with or without magnification devices, by assessing their levels in GCF. Methods. From 19 patients with gingival overgrowth as a result of fixed orthodontic treatment, the overgrown gingiva was removed by gingivectomy, from one half of the mandibular arch without magnification and from the other under magnification. Pentraxin 3 and Thrombospondin 1 were determined from gingival crevicular fluid by ELISA tests. Results. Statistically significant differences (p gingivectomy. The dynamics of Pentraxin 3 and Thrombospondin 1 levels could suggest a reduced inflammation and a faster angiogenesis using microsurgery.

  10. File list: Oth.ALL.05.Junb.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.05.Junb.AllCell mm9 TFs and others Junb All cell types SRX671668,SRX520196,...1,SRX122415,SRX122417,SRX122414 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.ALL.05.Junb.AllCell.bed ...

  11. Hantavirus infection suppresses thrombospondin-1 expression in cultured endothelial cells in a strain-specific manner

    Directory of Open Access Journals (Sweden)

    Svetlana F Khaiboullina

    2016-07-01

    Full Text Available Hantavirus infection is associated with two frequently fatal diseases in humans: hemorrhagic fever with renal syndrome (HFRS and hantavirus pulmonary syndrome (HPS. The pathogenesis of hantavirus infection is complex and not fully understood; however, it is believed to involve virus-induced hyperinflammatory immune responses. Thrombospondin-1 (THBS1 is a large homotrimeric protein that plays a putative role in regulating blood homeostasis. Hyperresponsiveness to inflammatory stimuli has also been associated with defects in the THBS1 gene. Our data suggest that hantavirus infection of human umbilical cord vein endothelial cells (HUVEC suppress the accumulation of THBS1 in the extracellular matrix. Additionally, this suppression is dependent on virus replication, implying a direct mechanism of action. Our data also imply that the pathogenic Andes and Hantaan strains inhibit THBS1 expression while the non-pathogenic Prospect Hill strain showed little inhibition. These observations suggest that a dysregulation of THBS1 may contribute to the pathogenesis of hantavirus infection.

  12. Expression of Pentraxin 3 and Thrombospondin 1 in Gingival Crevicular Fluid during Wound Healing after Gingivectomy in Postorthodontic Patients

    Directory of Open Access Journals (Sweden)

    Anne Marie Rauten

    2016-01-01

    Full Text Available Background. Wound healing is a tissue repair process after an injury, and two of its main components are inflammation and angiogenesis, in which course a cascade of mediators is involved. The aim of this research was to evaluate the involvement of Pentraxin 3 and Thrombospondin 1 in wound healing after periodontal surgery (gingivectomy for gingival overgrowth during orthodontic treatment with or without magnification devices, by assessing their levels in GCF. Methods. From 19 patients with gingival overgrowth as a result of fixed orthodontic treatment, the overgrown gingiva was removed by gingivectomy, from one half of the mandibular arch without magnification and from the other under magnification. Pentraxin 3 and Thrombospondin 1 were determined from gingival crevicular fluid by ELISA tests. Results. Statistically significant differences (p<0.05 and correlations between levels of the two biomarkers were analyzed. Statistically significant differences were established between levels of the two biomarkers at different time points, with significant positive correlation at the point of 24 hours. Conclusions. Within the limitations of this study, the results seem to sustain the involvement of Pentraxin 3 and Thrombospondin 1 in the processes of inflammation and angiogenesis in wound healing of patients with postorthodontic gingivectomy. The dynamics of Pentraxin 3 and Thrombospondin 1 levels could suggest a reduced inflammation and a faster angiogenesis using microsurgery.

  13. Mitogen-activated protein kinase signaling controls basal and oncostatin M-mediated JUNB gene expression.

    Science.gov (United States)

    Hicks, Mellissa J; Hu, Qiuping; Macrae, Erin; DeWille, James

    2015-05-01

    The mitogen-activated protein kinase (MAPK) pathway is aberrantly activated in many human cancers, including breast cancer. Activation of MAPK signaling is associated with the increased expression of a wide range of genes that promote cell survival, proliferation, and migration. This report investigated the influence of MAPK signaling on the regulation and expression of JUNB in human breast cancer cell lines. JUNB has been associated with tumor suppressor and oncogenic functions, with most reports describing JUNB as an oncogene in breast cancer. Our results indicated that JUNB expression is elevated in MCF10A(met), SKBR3, and MDA-MB-231 human breast cancer cell lines compared to nontransformed MCF10A mammary epithelial cells. Increased RAS/MAPK signaling in MCF10A(met) cells correlates with the increased association of RNA polymerase II (Pol II) phosphorylated on serine 5 (Pol IIser5p) with the JUNB proximal promoter. Pol IIser5p is the "transcription initiating" form of Pol II. Treatment with U0126, a MAPK pathway inhibitor, reduces Pol IIser5p association with the JUNB proximal promoter and reduces JUNB expression. Oncostatin M (OSM) enhances MAPK and STAT3 signaling and significantly induces JUNB expression. U0126 treatment reduces OSM-induced Pol IIser5p binding to the JUNB proximal promoter and JUNB expression, but does not reduce pSTAT3 levels or the association of pSTAT3 with the JUNB proximal promoter. These results demonstrate that the MAPK pathway plays a primary role in the control of JUNB gene expression by promoting the association of Pol IIser5p with the JUNB proximal promoter.

  14. Neisseria gonorrhoeae infection induces altered amphiregulin processing and release.

    Directory of Open Access Journals (Sweden)

    Sonja Löfmark

    Full Text Available Adhesion of the human pathogen Neisseria gonorrhoeae has established effects on the host cell and evokes a variety of cellular events including growth factor activation. In the present study we report that infection with N. gonorrhoeae causes altered amphiregulin processing and release in human epithelial cells. Amphiregulin is a well-studied growth factor with functions in various cell processes and is upregulated in different forms cancer and proliferative diseases. The protein is prototypically cleaved on the cell surface in response to external stimuli. We demonstrate that upon infection, a massive upregulation of amphiregulin mRNA is seen. The protein changes its subcellular distribution and is also alternatively cleaved at the plasma membrane, which results in augmented release of an infection-specific 36 kDa amphiregulin product from the surface of human cervical epithelial cells. Further, using antibodies directed against different domains of the protein we could determine the impact of infection on pro-peptide processing. In summary, we present data showing that the infection of N. gonorrhoeae causes an alternative amphiregulin processing, subcellular distribution and release in human epithelial cervical cells that likely contribute to the predisposition cellular abnormalities and anti-apoptotic features of N. gonorrhoeae infections.

  15. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    Science.gov (United States)

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  16. Extensible byssus of Pinctada fucata: Ca(2+)-stabilized nanocavities and a thrombospondin-1 protein.

    Science.gov (United States)

    Liu, Chuang; Li, Shiguo; Huang, Jingliang; Liu, Yangjia; Jia, Ganchu; Xie, Liping; Zhang, Rongqing

    2015-10-08

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca(2+) by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.

  17. Pneumococcal association to platelets is mediated by soluble fibrin and supported by thrombospondin-1.

    Science.gov (United States)

    Niemann, Silke; Kehrel, Beate E; Heilmann, Christine; Rennemeier, Claudia; Peters, Georg; Hammerschmidt, Sven

    2009-10-01

    Platelets and coagulation are involved in bacterial colonisation of the host. Streptocococcus pneumoniae (pneumococcus) are important etiologic agents of respiratory tract infections in humans. The formation of pneumococci-platelet associations may facilitate haematogenous dissemination of pneumococci by providing an adhesive surface on damaged endothelium. However, the formation of platelet-pneumococci associations and the factors involved in this process have not been described so far. The formation of platelet-pneumococci associates was analysed and quantified using flow cytometry. Binding of pneumococci to platelets was significantly increased after activation of platelets with thrombin, while platelet activation by ADP or collagen did not promote formation of platelet-pneumococci associates. In addition to be a platelet agonist, thrombin cleaves fibrinogen, which results in the generation of fibrin. The simultaneous formation of fibrin and activation of platelets was shown to be a prerequisite for a high number of platelet-pneumococci associates. Moreover, exogenously added human thrombospondin-1 (TSP-1) significantly enhanced the association of pneumococci with activated platelets. Soluble fibrin and TSP-1 are key co-factors of platelet-pneumococci-association. Similar results were recently demonstrated for S. aureus-platelet adhesion. Consequently, we hypothesise that the described mechanism of platelet-bacteria-association might represent a general and important strategy of Gram-positive bacteria during development of invasive diseases.

  18. Expression of Thrombospondin-1 is Correlated with Microvessel Density in Prostate Cancer

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Jiaju Lu; Ying Liu; Qiang Fu

    2006-01-01

    OBJECTIVE To observe the expression of thrombospondin-1 (TSP-1) in prostate cancer, and examine its expression in relation to angiogenesis.METHODS The expression of TSP-1 and microvessel density (MVD) were studied in 22 prostate cancer patients by using immunohistochemistry.RESULTS Positive expression of the TSP-1 protein was detected in 16(72.7%)of the 22 cases. Most of the positive staining for TSP-1 was seen in the cytoplasm of the cancer cells, but some was in the extracellular matrix. The mean MVD in the 22 prostate cancer cases was 71.21±31.14vessels per 100 high field of vision. Tumors with an elevated expression of TSP-1 showed a high MVD resulting in a correlation between TSP-1immunopositivity and microvessel density that was highly significant (r=0.54, P=0.009).CONCLUSION TSP-1 is strongly expressed in most prostate cancers and is associated with neovascularization. Therefore TSP-1 is a likely contributor to the extensive neovascularization in prostate cancer and increased TSP-1 expression might participate in an angiogenic phenotype.

  19. Thrombospondin-1 production is enhanced by Porphyromonas gingivalis lipopolysaccharide in THP-1 cells.

    Directory of Open Access Journals (Sweden)

    Misa Gokyu

    Full Text Available Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1 in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS. TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.

  20. Expression of Pentraxin 3 and Thrombospondin 1 in Gingival Crevicular Fluid during Wound Healing after Gingivectomy in Postorthodontic Patients

    OpenAIRE

    Anne Marie Rauten; Isabela Silosi; Stefan Ioan Stratul; Liliana Foia; Adrian Camen; Vasilica Toma; Daniel Cioloca; Valeriu Surlin; Petra Surlin; Maria Bogdan

    2016-01-01

    Background. Wound healing is a tissue repair process after an injury, and two of its main components are inflammation and angiogenesis, in which course a cascade of mediators is involved. The aim of this research was to evaluate the involvement of Pentraxin 3 and Thrombospondin 1 in wound healing after periodontal surgery (gingivectomy) for gingival overgrowth during orthodontic treatment with or without magnification devices, by assessing their levels in GCF. Methods. From 19 patients with g...

  1. P-selectin can promote thrombus propagation independently of both von Willebrand factor and thrombospondin-1 in mice.

    Science.gov (United States)

    Prakash, P; Nayak, M K; Chauhan, A K

    2017-02-01

    Essentials The main receptor for platelet glycoprotein (GP) Ibα is von Willebrand factor (VWF). P-selectin and thrombospondin-1 (TSP1) have been suggested as counter receptors for GPIbα. In a laser injury model, P-selectin promotes thrombus propagation independently of VWF and TSP1. In a laser injury model, thrombus persists in interleukin-4 receptor α/GPIbα-transgenic mice.

  2. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Science.gov (United States)

    Audet, Gerald N; Fulks, Daniel; Stricker, Janelle C; Olfert, I Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  3. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Directory of Open Access Journals (Sweden)

    Gerald N Audet

    Full Text Available Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1, a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510, which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA, 11% decrease in the plantaris (PLT, and a 35% decrease in the soleus (SOL. ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF in both the GA (-140% and SOL (-62%; however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  4. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  5. JUNB/AP-1 controls IFN-γ during inflammatory liver disease

    Science.gov (United States)

    Thomsen, Martin K.; Bakiri, Latifa; Hasenfuss, Sebastian C.; Hamacher, Rainer; Martinez, Lola; Wagner, Erwin F.

    2013-01-01

    Understanding the molecular pathogenesis of inflammatory liver disease is essential to design efficient therapeutic approaches. In hepatocytes, the dimeric transcription factor c-JUN/AP-1 is a major mediator of cell survival during hepatitis, although functions for other JUN proteins in liver disease are less defined. Here, we found that JUNB was specifically expressed in human and murine immune cells during acute liver injury. We analyzed the molecular function of JUNB in experimental models of hepatitis, including administration of concanavalin A (ConA) or α-galactosyl-ceramide, which induce liver inflammation and injury. Mice specifically lacking JUNB in hepatocytes displayed a mild increase in ConA-induced liver damage. However, targeted deletion of Junb in immune cells and hepatocytes protected against hepatitis in experimental models that involved NK/NKT cells. The absence of JUNB in immune cells decreased IFN-γ expression and secretion from NK and NKT cells, leading to reduced STAT1 pathway activation. Systemic IFN-γ treatment or adenovirus-based IRF1 delivery to Junb-deficient mice restored hepatotoxicity, and we demonstrate that Ifng is a direct transcriptional target of JUNB. These findings demonstrate that JUNB/AP-1 promotes cell death during acute hepatitis by regulating IFN-γ production in NK and NKT cells and thus functionally antagonizes the hepatoprotective function of c-JUN/AP-1 in hepatocytes. PMID:24200694

  6. Expression of JunB Induced by X-rays in Mice

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; HIROSHI ISHIHARA

    2004-01-01

    To explore JunB gene expression in spleen cells of mice after the whole body irradiation as well as in normal hematopoietic and leukemia cells in the primary culture after different dosages of X-ray irradiation. Methods Spleen cells were isolated from the mice irradiated with 3 Gy X-rays. Primary cultured cells from mice were incubated in different intervals after X-irradiation at different dosages. Total RNA was extracted from the cells and the fluctuation of JunB mRNA level was assessed by the RNA ratio of JunB/β-actin measured by quantitative Northern blot hybridization. Results After the mice were exposed to 3 Gy X-rays irradiation, JunB expression in spleen cells was remarkably and rapidly increased, and reached its peak 0.5 h later in C3H/He mice and 1 h later in Balb/c mice. In the primary culture of normal spleen and leukemia cells, JunB mRNA levels increased 30 min after irradiation. The enhanced levels of JunB mRNA were returned to a normal level within 240 min after irradiation. Conclusions JunB gene is responsive to ionizing irradiation and is induced at immediate-early phase after the stimulation. This suggests that the JunB gene plays an important role in the early process of the cells against radiation.

  7. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas.

    Science.gov (United States)

    Mao, Xin; Orchard, Guy; Lillington, Debra M; Russell-Jones, Robin; Young, Bryan D; Whittaker, Sean J

    2003-02-15

    Primary cutaneous lymphomas (PCLs) represent a heterogeneous group of extranodal T- and B-cell malignancies. The underlying molecular pathogenesis of this malignancy remains unclear. This study aimed to characterize oncogene abnormalities in PCLs. Using genomic microarray, we detected oncogene copy number gains of RAF1 (3p25), CTSB (8p22), PAK1 (11q13), and JUNB (19p13) in 5 of 7 cases of mycosis fungoides (MF)/Sezary syndrome (SS) (71%), gains of FGFR1 (8p11), PTPN (20q13), and BCR (22q11) in 4 cases (57%), and gains of MYCL1 (1p34), PIK3CA (3q26), HRAS (11p15), MYBL2 (20q13), and ZNF217 (20q13) in 3 cases (43%). Amplification of JUNB was studied in 104 DNA samples from 78 PCL cases using real-time polymerase chain reaction. Twenty-four percent of cases, including 7 of 10 cases of primary cutaneous CD30(+) anaplastic large-cell lymphoma (C-ALCL), 4 of 14 MF, 4 of 22 SS, and 2 of 23 primary cutaneous B-cell lymphoma (PCBCL) showed amplification of JUNB, and high-level amplification of this oncogene was present in 3 C-ALCL and 2 MF cases. JUNB protein expression was analyzed in tissue sections from 69 PCL cases, and 44% of cases, consisting of 21 of 23 SS, 6 of 8 C-ALCL, 5 of 10 MF, and 9 of 21 PCBCL, demonstrated nuclear expression of JUNB by tumor cells. Overexpression of JUNB also was detected in 5 C-ALCL and 2 SS cases. These results have revealed, for the first time, amplification and expression patterns of JUNB in PCL, suggesting that JUNB may be critical in the pathogenesis of primary cutaneous T-cell lymphomas.

  8. JunB mediates basal- and TGFβ1-induced smooth muscle cell contractility.

    Directory of Open Access Journals (Sweden)

    Aruna Ramachandran

    Full Text Available Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are robustly upregulated downstream of transforming growth factor beta-1 (TGFβ1, a known inducer of SMC contractility. RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC inhibited cell contractility under both basal and TGFβ1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown did not alter expression of the contractile proteins α-SMA, calponin or SM22α. However, JunB silencing decreased levels of Rho kinase (ROCK and myosin light chain (MLC20. Moreover, JunB silencing attenuated phosphorylation of the MLC20 regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFβ1. Together these findings demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both myosin and the actin cytoskeleton.

  9. c-Jun promotes whereas JunB inhibits epidermal neoplasia.

    Science.gov (United States)

    Jin, Jane Y; Ke, Hengning; Hall, Russell P; Zhang, Jennifer Y

    2011-05-01

    Deregulation of the activator protein 1 (AP1) family gene regulators has been implicated in a wide range of diseases, including cancer. In this study we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven by Ras or spontaneous human SCC cells. Conversely, the dominant-negative JunB mutant (DNJunB) promoted tumorigenesis, which is in contrast to the tumor-suppressor function of the corresponding c-Jun mutant. At the cellular level, JunB induced epidermal cell senescence and slowed cell growth in a cell-autonomous manner. Consistently, coexpression of JunB and Ras induced premature epidermal differentiation concomitant with upregulation of p16 and filaggrin and downregulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). These findings indicate that JunB and c-Jun differentially regulate cell growth and differentiation and induce opposite effects on epidermal neoplasia.JID JOURNAL CLUB ARTICLE: For questions, answers, and open discussion about this article, please go to http://www.nature.com/jid/journalclub.

  10. Monoclonal antibodies to murine thrombospondin-1 and thrombospondin-2 reveal differential expression patterns in cancer and low antigen expression in normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bujak, Emil [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland); Pretto, Francesca; Ritz, Danilo; Gualandi, Laura; Wulhfard, Sarah [Philochem AG, Libernstrasse 3, CH-8112 Otelfingen (Switzerland); Neri, Dario, E-mail: neri@pharma.ethz.ch [Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2014-09-10

    There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity. An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens

  11. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1.

    Science.gov (United States)

    Tong, Xin; Mirzoeva, Salida; Veliceasa, Dorina; Bridgeman, Bryan B; Fitchev, Philip; Cornwell, Mona L; Crawford, Susan E; Pelling, Jill C; Volpert, Olga V

    2014-11-30

    Plant flavonoid apigenin prevents and inhibits UVB-induced carcinogenesis in the skin and has strong anti-proliferative and anti-angiogenic properties. Here we identify mechanisms, by which apigenin controls these oncogenic events. We show that apigenin acts, at least in part, via endogenous angiogenesis inhibitor, thrombospondin-1 (TSP1). TSP1 expression by the epidermal keratinocytes is potently inhibited by UVB. It inhibits cutaneous angiogenesis and UVB-induced carcinogenesis. We show that apigenin restores TSP1 in epidermal keratinocytes subjected to UVB and normalizes proliferation and angiogenesis in UVB-exposed skin. Importantly, reconstituting TSP1 anti-angiogenic function in UVB-irradiated skin with a short bioactive peptide mimetic representing exclusively its anti-angiogenic domain reproduced the anti-proliferative and anti-angiogenic effects of apigenin. Cox-2 and HIF-1α are important mediators of angiogenesis. Both apigenin and TSP1 peptide mimetic attenuated their induction by UVB. Finally we identified the molecular mechanism, whereby apigenin did not affect TSP1 mRNA, but increased de novo protein synthesis. Knockdown studies implicated the RNA-binding protein HuR, which controls mRNA stability and translation. Apigenin increased HuR cytoplasmic localization and physical association with TSP1 mRNA causing de novo TSP1 synthesis. HuR cytoplasmic localization was, in turn, dependent on CHK2 kinase. Together, our data provide a new mechanism, by which apigenin controls UVB-induced carcinogenesis.

  12. Thrombospondin-1 deficiency causes a shift from fibroproliferative to inflammatory kidney disease and delays onset of renal failure.

    Science.gov (United States)

    Zeisberg, Michael; Tampe, Björn; LeBleu, Valerie; Tampe, Desiree; Zeisberg, Elisabeth M; Kalluri, Raghu

    2014-10-01

    Thrombospondin-1 (TSP1) is a multifunctional matricellular protein known to promote progression of chronic kidney disease. To gain insight into the underlying mechanisms through which TSP1 accelerates chronic kidney disease, we compared disease progression in Col4a3 knockout (KO) mice, which develop spontaneous kidney failure, with that of Col4a3;Tsp1 double-knockout (DKO) mice. Decline of excretory renal function was significantly delayed in the absence of TSP1. Although Col4a3;Tsp1 DKO mice did progress toward end-stage renal failure, their kidneys exhibited distinct histopathological lesions, compared with creatinine level-matched Col4a3 KO mice. Although kidneys of both Col4a3 KO and Col4a3;Tsp1 DKO mice exhibited a widened tubulointerstitium, predominant lesions in Col4a3 KO kidneys were collagen deposition and fibroblast accumulation, whereas in Col4a3;Tsp1 DKO kidney inflammation was predominant, with less collagen deposition. Altered disease progression correlated with impaired activation of transforming growth factor-β1 (TGF-β1) in vivo and in vitro in the absence of TSP1. In summary, our findings suggest that TSP1 contributes to progression of chronic kidney disease by catalyzing activation of latent TGF-β1, resulting in promotion of a fibroproliferative response over an inflammatory response. Furthermore, the findings suggest that fibroproliferative and inflammatory lesions are independent entities, both of which contribute to decline of renal function.

  13. c-Jun Promotes whereas JunB Inhibits Epidermal Neoplasia

    OpenAIRE

    Jin, Jane Yingai; Ke, Hengning; Hall, Russell P.; Zhang, Jennifer Y.

    2011-01-01

    Deregulation of the AP1 family gene regulators have been implicated in a wide range of diseases, including cancer. Here, we report that c-Jun was activated in human squamous cell carcinoma (SCC) and coexpression of c-Jun with oncogenic Ras was sufficient to transform primary human epidermal cells into malignancy in a regenerated human skin grafting model. In contrast, JunB was not induced in a majority of human SCC cells. Moreover, exogenous expression of JunB inhibited tumorigenesis driven b...

  14. Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA.

    Directory of Open Access Journals (Sweden)

    Makio Saeki

    Full Text Available Increased stabilization of mRNA coding for key cancer genes can contribute to invasiveness. This is achieved by down-regulation of exosome cofactors, which bind to 3'-UTR in cancer-related genes. Here, we identified amphiregulin, an EGFR ligand, as a target of WD repeat protein Monad, a component of R2TP/prefoldin-like complex, in MDA-MB-231 breast cancer cells. Monad specifically interacted with both the 3'-UTR of amphiregulin mRNA and the RNA degrading exosome, and enhanced decay of amphiregulin transcripts. Knockdown of Monad increased invasion and this effect was abolished with anti-amphiregulin neutralizing antibody. These results suggest that Monad could prevent amphiregulin-mediated invasion by degrading amphiregulin mRNA.

  15. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects.

    Directory of Open Access Journals (Sweden)

    Zenaida P Lopez-Dee

    Full Text Available Thrombospondin-1 (TSP-1 is a matricellular protein with regulatory functions in inflammation and cancer. The type 1 repeats (TSR domains of TSP-1 have been shown to interact with a wide range of proteins that result in the anti-angiogenic and anti-tumor properties of TSP-1. To ascertain possible functions and evaluate potential therapeutic effects of TSRs in inflammatory bowel disease, we conducted clinical, histological and microarray analyses on a mouse model of induced colitis. We used dextran sulfate sodium (DSS to induce colitis in wild-type (WT mice for 7 days. Simultaneously, mice were injected with either saline or one form of TSP-1 derived recombinant proteins, containing either (1 the three type 1 repeats of the TSP-1 (3TSR, (2 the second type 1 repeat (TSR2, or (3 TSR2 with the RFK sequence (TSR2+RFK. Total RNA isolated from the mice colons were processed and hybridized to mouse arrays. Array data were validated by real-time qPCR and immunohistochemistry. Histological and disease indices reveal that the mice treated with the TSRs show different patterns of leukocytic infiltration and that 3TSR treatment was the most effective in decreasing inflammation in DSS-induced colitis. Transcriptional profiling revealed differentially expressed (DE genes, with the 3TSR-treated mice showing the least deviation from the WT-water controls. In conclusion, this study shows that 3TSR treatment is effective in attenuating the inflammatory response to DSS injury. In addition, the transcriptomics work unveils novel genetic data that suggest beneficial application of the TSR domains in inflammatory bowel disease.

  16. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bréchot

    Full Text Available BACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI. However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1 is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/- mice subjected to femoral artery excision, we report that tsp-1(-/- mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/- and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/- mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/- mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/- mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue

  17. Micro RNA-19a suppresses thrombospondin-1 in CD35(+) B cells in the intestine of mice with food allergy.

    Science.gov (United States)

    Yang, Li-Tao; Li, Xiao-Xi; Qiu, Shu-Qi; Zeng, Lu; Li, Lin-Jing; Feng, Bai-Sui; Zheng, Peng-Yuan; Liu, Zhi-Gang; Yang, Ping-Chang

    2016-01-01

    Disruption of immune tolerance is associated in the pathogenesis of allergy. Thrombospondin-1 (TSP1) plays a role in the maintenance of immune tolerance, which is compromised in allergic disorders. Micro RNA (miR) is involved in the regulation of immune responses. This study tests a hypothesis that miR-17-92 cluster is involved in the regulation of TSP1 in the intestinal CD35(+) B cells. In this study, a food allergy mouse model was developed. The intestinal B cells were isolated to be analyzed for the expression of a miR-17-92 cluster and TSP1. The role of miR-19a in the suppression of TSP1 in B cells was tested in a cell culture model. We observed that the levels of TSP1 were significantly decreased; the levels of miR-19a were significantly increased in intestinal CD35(+) B cells of mice sensitized to ovalbumin (OVA) as compared with naïve controls. Exposure to interleukin (IL)-4 suppressed the expression of TSP1 in B cells, which was abolished by inhibition of miR-19a. miR-19a mediated the effects of IL-4 on repressing TSP1 expression in B cells. We conclude that IL-4 suppresses the expression of TSP1 in the intestinal CD35(+) B cells via up regulating miR-19a. The miR-19a may be a target to regulate the immune tolerant status in the body.

  18. The Role of Angiopoietin-1 and Thrombospondin-1 in the Kidney of Rats Subject to 5/6 Nephrectomy

    Institute of Scientific and Technical Information of China (English)

    Xiao YANG; Lanxiang LIU

    2009-01-01

    The expression of angiopoietin-1 (Ang-1) and thrombospondin-1 (TSP-1) in 5/6 subtotal nephrectomy (STN) rats model, and its correlation to the renal microvasculature injury were investi-gated. Rat 5/6 STN model was established in adult male SD rats, and the sham-operated group and 5/6 STN group were set up. The renal function and histopathological changes were examined at the 1 st, 2nd, 4th, 8th and 12th week after operation. The expression of Ang-1, TSP-1 and CD31 in renal tissues was detected by using immunohistochemistry. From 2nd to 8th week after operation, Ang-1 was significantly expressed in glomeruli of rats with STN. Ang-1 staining in glomeruli of STN group was increased significantly as compared with that in sham-operated group at 4th and 8th week after operation, and subsequently decreased after the 12th week. The expression of TSP-1 was increased significantly in STN group. As compared with sham-operated group, the CD31 expression was sig-nificantly down-regulated from the 2nd week. The expression orAng-1 mRNA was detected by using RT-PCR at the same time points. The expression of Ang-1 mRNA in renal tissue of rats with STN was significantly up-regulated at the 2rid, 4th and 8th week after operation as compared with that in STN group at other time points or in sham-operated group at the same time points, while decreased evidently at the 12th week as compared with that in sham-operated group. It is concluded that there are changes in the mRNA expression of Ang-1, and the significant up-regulation of the expression of TSP-1 in renal tissue of rats with STN, which may be involved in the remnant renal microvasculature injury.

  19. Thrombospondin1 deficiency reduces obesity-associated inflammation and improves insulin sensitivity in a diet-induced obese mouse model.

    Directory of Open Access Journals (Sweden)

    Yanzhang Li

    Full Text Available BACKGROUND: Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1 is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice. METHODOLOGY/PRINCIPAL FINDINGS: Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF or a high-fat (HF diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype. CONCLUSION: TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin

  20. GTP cyclohydrolase I prevents diabetic-impaired endothelial progenitor cells and wound healing by suppressing oxidative stress/thrombospondin-1.

    Science.gov (United States)

    Tie, Lu; Chen, Lu-Yuan; Chen, Dan-Dan; Xie, He-Hui; Channon, Keith M; Chen, Alex F

    2014-05-15

    Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic refractory wounds. Endothelial nitric oxide synthase (eNOS), which critically regulates the mobilization and function of EPCs, is uncoupled in diabetes due to decreased cofactor tetrahydrobiopterin (BH4). We tested whether GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 synthesis, preserves EPC function in type 1 diabetic mice. Type 1 diabetes was induced in wild-type (WT) and GTPCH I transgenic (Tg-GCH) mice by intraperitoneal injection of streptozotocin (STZ). EPCs were isolated from the peripheral blood and bone marrow of WT, Tg-GCH, and GTPCH I-deficient hph-1 mice. The number of EPCs was significantly lower in STZ-WT mice and hph-1 mice and was rescued in STZ Tg-GCH mice. Furthermore, GTPCH I overexpression improved impaired diabetic EPC migration and tube formation. EPCs from WT, Tg-GCH, and STZ-Tg-GCH mice were administered to diabetic excisional wounds and accelerated wound healing significantly, with a concomitant augmentation of angiogenesis. Flow cytometry measurements showed that intracellular nitric oxide (NO) levels were reduced significantly in STZ-WT and hph-1 mice, paralleled by increased superoxide anion levels; both were rescued in STZ-Tg-GCH mice. Western blot analysis revealed that thrombospondin-1 (TSP-1) was significantly upregulated in the EPCs of STZ-WT mice and hph-1 mice and suppressed in STZ-treated Tg-GCH mice. Our results demonstrate that the GTPCH I/BH4 pathway is critical to preserve EPC quantity, function, and regenerative capacity during wound healing in type 1 diabetic mice at least partly through the attenuation of superoxide and TSP-1 levels and augmentation of NO level.

  1. The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling.

    Science.gov (United States)

    Staber, Philipp B; Vesely, Paul; Haq, Naznin; Ott, Rene G; Funato, Kotaro; Bambach, Isabella; Fuchs, Claudia; Schauer, Silvia; Linkesch, Werner; Hrzenjak, Andelko; Dirks, Wilhelm G; Sexl, Veronika; Bergler, Helmut; Kadin, Marshall E; Sternberg, David W; Kenner, Lukas; Hoefler, Gerald

    2007-11-01

    Anaplastic large cell lymphomas (ALCLs) are highly proliferating tumors that commonly express the AP-1 transcription factor JunB. ALK fusions occur in approximately 50% of ALCLs, and among these, 80% have the t(2;5) translocation with NPM-ALK expression. We report greater activity of JunB in NPM-ALK-positive than in NPM-ALK-negative ALCLs. Specific knockdown of JUNB mRNA using small interfering RNA and small hairpin RNA in NPM-ALK-expressing cells decreases cellular proliferation as evidenced by a reduced cell count in the G2/M phase of the cell cycle. Expression of NPM-ALK results in ERK1/2 activation and transcriptional up-regulation of JUNB. Both NPM-ALK-positive and -negative ALCL tumors demonstrate active ERK1/2 signaling. In contrast to NPM-ALK-negative ALCL, the mTOR pathway is active in NPM-ALK-positive lymphomas. Pharmacological inhibition of mTOR in NPM-ALK-positive cells down-regulates JunB protein levels by shifting JUNB mRNA translation from large polysomes to monosomes and ribonucleic particles (RNPs), and decreases cellular proliferation. Thus, JunB is a critical target of mTOR and is translationally regulated in NPM-ALK-positive lymphomas. This is the first study demonstrating translational control of AP-1 transcription factors in human neoplasia. In conjunction with NPM-ALK, JunB enhances cell cycle progression and may therefore represent a therapeutic target.

  2. Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1

    Directory of Open Access Journals (Sweden)

    Yao Jorge L

    2008-04-01

    Full Text Available Abstract Background Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive. Methods Flat panel detector-based cone beam computed tomography (FPDCT was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT. Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1 protein expression. Results Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071 and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.. Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients. Conclusion

  3. The Functional Effect of an Amphiregulin Autocrine Loop on Inflammatory Breast Cancer Progression

    Science.gov (United States)

    2008-03-01

    Betacellulin: a mitogen from pancreatic h cell tumors. Science 1993;259:1604 –7. 8. Strachan L, Murison JG, Prestidge RL, Sleeman MA, Watson JD...of transforming growth factor a, amphiregulin and CRIPTO in human normal and malignant breast tissues. Int J Cancer 1996;65:51 –6. 44. Ma L, Gauville

  4. Temporal and spatial expression of c-jun and jun-B proto-oncogenes in pulp cells involved with reparative dentinogenesis after cavity preparation of rat molars.

    Science.gov (United States)

    Kitamura, C; Kimura, K; Nakayama, T; Terashita, M

    1999-02-01

    c-jun and jun-B are nuclear proto-oncogenes induced by growth factors such as bone morphogenetic proteins (BMPs). These gene products enhance the expression of many genes, including osteocalcin and collagen types, indicating that c-jun and jun-B play important roles in the cell differentiation process. It is also known that BMPs affect the differentiation of pulp cells to odontoblast-like cells during reparative dentinogenesis, but little is known about the transcriptional regulation of genes in cells associated with reparative dentinogenesis. In this study, we examined the expression of c-jun and jun-B in pulp cells during reparative dentinogenesis after cavity preparation of rat molars by in situ hybridization. In rat tooth germs, c-jun and jun-B were co-expressed in the odontoblastic lineage. In rat adult molars, c-jun was expressed in the odontoblast layer, but the jun-B expression was absent in all pulp cells. After cavity preparation, we found that c-jun and jun-B were coexpressed in pulp cells underneath cavities. During the early phase of reparative dentinogenesis, levels of c-jun and jun-B greatly increased in pulp cells within and around the reparative dentin matrix formed adjacent to the cavity floor. Fourteen days after cavity preparation, c-jun and jun-B were expressed only in pulp cells lining the irregular surface of the thick reparative dentin. These results suggest that c-jun and jun-B may play important roles both in physiological and in reparative dentinogenesis; in particular, the limited distribution of the jun-B expression suggests a specific role of jun-B only in cells involved with the active formation of the dentin matrix during primary and reparative dentinogenesis.

  5. Amphiregulin Antisense RNA Delivered by Adnovirus Suppresses Growth of Breast Cancer Cells In Vitro and In Vivo

    Institute of Scientific and Technical Information of China (English)

    Lin Ma; Voahangy Randrianarison; Fabien Calvo

    2005-01-01

    OBJECTIVE To investigate the therapeutic potential of amphiregulin antisense RNA delivered by adenoviral vector in a human breast cancer model.METHODS Human amphiregulin cDNA was subcloned in the opposite orientation to the cytomegaloviral promoter and inserted into an E1/E3-deleted type 5 adenoviral vector to obtain an AdA4 construct which expresses amphiregulin antisense mRNA. Both in vitro and in vivo antiproliferative effects of the antisense RNA were studied by infecting transformed human breast epithelial NS2T2A1 cells and tumors.RESULTS Amphiregulin protein expression was inhibited dramatically in the NS2T2A1 cells after infection with AdA4. The in vitro cell growth was inhibited significantly at day 4 post-AdA4 infection compared with control empty virus AdC1 at a MOl of 200 and 400 pfu/cell to 69.3% and 49.8%, respectively (P<0.02, P<0.005). After 3 intra-tumoral injections of 109 pfu AdA4, tumor volumes were reduced to 40.6% of that of the control group at day 35 (P<0.005).CONCLUSION The transfer of amphiregulin RNA antisense by adenoviral vector is effective for amphiregulin targeting strategy, leading to an inhibition of in vitro cell proliferation and in vivo tumor growth in this breast cancer model.

  6. A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS.

    Science.gov (United States)

    Mao, Xin; Orchard, Guy; Mitchell, Tracey J; Oyama, Noritaka; Russell-Jones, Robin; Vermeer, Maarten H; Willemze, Rein; van Doorn, Remko; Tensen, Cornelis P; Young, Bryan D; Whittaker, Sean J

    2008-10-01

    Activator protein 1 (AP-1) consists of a group of transcription factors including the JUN and FOS family proteins with diverse biological functions. This study assessed the genomic and expression status of the AP-1 transcription factors in primary cutaneous T-cell lymphoma (CTCL) by using immunohistochemistry (IHC), Affymetrix expression microarray, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and fluorescent in situ hybridization (FISH). IHC showed JUNB protein expression in tumor cells from 17 of 33 cases of Sezary syndrome (SS) and JUND protein expression in 16 of 23 mycosis fungoides cases. There was no correlation between JUNB and CD30 expression. However, 7 of 12 JUNB-positive SS cases expressed both phosphorylated and total extracellular signal-regulated kinase (ERK) 1/2 mitogen-activated protein kinase (MAPK) proteins. Expression microarray showed over threefold increased expression of JUNB in three of six SS patients and similar findings were also noted after re-analysis of previously published data. Real-time RT-PCR confirmed the overexpression of JUNB in four SS cases and of JUND in three of four cases. FISH showed increased JUNB copy number in four of seven SS cases. These findings suggest that deregulation of AP-1 expression in CTCL is the result of aberrant expression of JUNB and possible JUND resulting from genomic amplification and constitutive activation of ERK1/2 MAPK in this type of lymphoma.

  7. JunB breakdown in mid-/late G2 is required for down-regulation of cyclin A2 levels and proper mitosis.

    Science.gov (United States)

    Farràs, Rosa; Baldin, Véronique; Gallach, Sandra; Acquaviva, Claire; Bossis, Guillaume; Jariel-Encontre, Isabelle; Piechaczyk, Marc

    2008-06-01

    JunB, a member of the AP-1 family of dimeric transcription factors, is best known as a cell proliferation inhibitor, a senescence inducer, and a tumor suppressor, although it also has been attributed a cell division-promoting activity. Its effects on the cell cycle have been studied mostly in G1 and S phases, whereas its role in G2 and M phases still is elusive. Using cell synchronization experiments, we show that JunB levels, which are high in S phase, drop during mid- to late G2 phase due to accelerated phosphorylation-dependent degradation by the proteasome. The forced expression of an ectopic JunB protein in late G2 phase indicates that JunB decay is necessary for the subsequent reduction of cyclin A2 levels in prometaphase, the latter event being essential for proper mitosis. Consistently, abnormal JunB expression in late G2 phase entails a variety of mitotic defects. As these aberrations may cause genetic instability, our findings contrast with the acknowledged tumor suppressor activity of JunB and reveal a mechanism by which the deregulation of JunB might contribute to tumorigenesis.

  8. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies.

    Science.gov (United States)

    Jayakumar, Arumugam R; Tong, Xiao Y; Curtis, Kevin M; Ruiz-Cordero, Roberto; Shamaladevi, Nagarajarao; Abuzamel, Missa; Johnstone, Joshua; Gaidosh, Gabriel; Rama Rao, Kakulavarapu V; Norenberg, Michael D

    2014-11-01

    Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over

  9. Immediate-early Inducible Function in Upstream Region of junB Gene

    Institute of Scientific and Technical Information of China (English)

    HONG WAN; HIROSHI ISHIHARA; IZUMI TANAKA

    2006-01-01

    Objective To analyze the upstream region of radiation-induced junB gene. Methods Four plasmids containing 250 bp, 590 bp, 900 bp and 1650 bp, and CAT reporter gene were constructed separately and introduced to L8704 cells. The cells were irradiated with 2 Gy X-rays and incubated at different intervals. Total RNA was extracted from the cells and fluctuation of the CAT mRNA level was assessed by the RNA ratio of CAT/β-actin measured by quantitative Northern blot hybridization. Results CAT mRNA expression containing 900 bp and 1560 bpjunB promoter remarkably and rapidly increased, and reached its peak 30 min after 2 Gy X-ray irradiation. Conclusions 590~900 bp fragments located in the upstream region ofjunB gene play an important role in the early process of cells against radiation.

  10. Direct and allosteric inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule.

    Directory of Open Access Journals (Sweden)

    Katiuscia Pagano

    Full Text Available Fibroblast growth factors (FGFs are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs, and heparan sulphate proteoglycans (HSPGs is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1. NMR and MD data demonstrate that sm27 engages the heparin-binding site of FGF2 and induces long-range dynamics perturbations along FGF2/FGFR1 interface regions. The functional consequence of the inhibitor binding is an impaired FGF2 interaction with both its receptors, as demonstrated by SPR and cell-based binding assays. We propose that sm27 antiangiogenic activity is based on a twofold-direct and allosteric-mechanism, inhibiting FGF2 binding to both its receptors.

  11. Abnormalities in three-dimensional capillary architecture and imbalance between vascular endothelial growth factor-A and thrombospondin-1 in soleus muscle of ovariectomized rat.

    Science.gov (United States)

    Tanaka, Masayuki; Kanazashi, Miho; Maezawa, Toshiyuki; Kondo, Hiroyo; Fujino, Hidemi

    2015-09-01

    Reduced ovarian hormone levels associated with menopause or ovariectomy (OVX) not only result in vascular dysfunction but also lead to structural abnormalities in capillaries. Therefore, the effect of OVX on the three-dimensional (3-D) architecture of capillary networks and the underlying molecular mechanisms were investigated in rat soleus muscle. Seven-week-old female Wistar rats were divided into the OVX and sham-treated (Sham) groups. The OVX group exhibited lower endurance exercise capacity compared to the sham group and resulted in decreased capillary diameter, number of anastomoses and capillary/anastomosis volume in soleus muscle, indicating 3-D structural abnormalities of capillary networks. Furthermore, OVX led to increased concentrations of thrombospondin-1 (TSP-1) protein and a decreased VEGF-A/TSP-1 ratio, an indicator of angio-adaptations, in soleus muscle compared with the Sham group. These results indicate OVX may induce 3-D capillary regression in soleus muscle through an imbalance between VEGF-A and TSP-1 expression, possibly associated with decreased exercise tolerance in ovariectomized rats.

  12. Structure and function of a fungal adhesin that binds heparin and mimics thrombospondin-1 by blocking T cell activation and effector function.

    Directory of Open Access Journals (Sweden)

    T Tristan Brandhorst

    Full Text Available Blastomyces adhesin-1 (BAD-1 is a 120-kD surface protein on B. dermatitidis yeast. We show here that BAD-1 contains 41 tandem repeats and that deleting even half of them impairs fungal pathogenicity. According to NMR, the repeats form tightly folded 17-amino acid loops constrained by a disulfide bond linking conserved cysteines. Each loop contains a highly conserved WxxWxxW motif found in thrombospondin-1 (TSP-1 type 1 heparin-binding repeats. BAD-1 binds heparin specifically and saturably, and is competitively inhibited by soluble heparin, but not related glycosaminoglycans. According to SPR analysis, the affinity of BAD-1 for heparin is 33 nM±14 nM. Putative heparin-binding motifs are found both at the N-terminus and within each tandem repeat loop. Like TSP-1, BAD-1 blocks activation of T cells in a manner requiring the heparan sulfate-modified surface molecule CD47, and impairs effector functions. The tandem repeats of BAD-1 thus confer pathogenicity, harbor motifs that bind heparin, and suppress T-cell activation via a CD47-dependent mechanism, mimicking mammalian TSP-1.

  13. Methylation status of the SOCS 1 and JUNB genes in chronic myeloid leukemia patients Padrão de metilação dos genes SOCS 1 e JUNB em pacientes com leucemia mieloide crônica

    Directory of Open Access Journals (Sweden)

    Márcia Cristina R. Pena

    2009-01-01

    Full Text Available Alterations in the methylation status of genes may contribute to the progression of Chronic Myeloid Leukemia (CML. In this study, the methylation status in exon2 of SOCS- 1 and promoter regions of both SOCS- 1 and JUNB were evaluated in CML patients. The methylation status of these genes was analyzed using methylation- specific Polymerase Chain Reaction (MSP in 30 samples from CML patients, 30 samples from these same patients after hematopoietic stem cell transplantation (HSCT and 30 samples from healthy controls. The samples of CML patients presented methylation as follows: JUNB gene (3.3%, promoter region of the SOCS- 1 gene (6.6% and exon2 of the SOCS- 1 gene (46.6%. The samples of the healthy individuals presented methylation (10%, P = 0.002 only in exon 2 of the SOCS- 1 gene. After transplantation, patients presented alterations in the methylation status of the promoter region of the SOCS- 1 gene (6.6%, exon2 of SOCS- 1 (46.6% and the promoter region of the JUNB gene (16.6%. Methylation of the promoter regions of the SOCS- 1 gene and the JUNB gene is not a frequent event in CML. In contrast, SOCS- 1 gene methylation in exon2 is a frequent event, susceptible to alterations in status after HSCT with possible implications for the progression of this disease.Alteração no padrão de metilação gênica pode contribuir para a progressão da leucemia mielóide crônica (LMC. Neste estudo, o padrão de metilação no exon 2 do gene SOCS- 1 e região promotora de ambos SOCS- 1 e JUNB foram avaliadas em pacientes com LMC. O padrão de metilação desses genes foi analisado usando a técnica " methylation- specific polymerase chain reaction (MSP" em 30 amostras de pacientes com LMC, 30 amostras desses mesmos pacientes após transplante de medula óssea (TMO e 30 amostras controle de indivíduos saudáveis. As amostras de pacientes com LMC apresentaram o seguinte padrão de metilação: gene JUNB (3.3%, região promotora do gene SOCS- 1 (6.6% e exon2

  14. The Thrombospondin-1 Mimetic ABT-510 Increases the Uptake and Effectiveness of Cisplatin and Paclitaxel in a Mouse Model of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Nicole E. Campbell

    2010-03-01

    Full Text Available Epithelial ovarian cancer (EOC comprises approximately 90% of ovarian cancers and arises from the surface epithelium. Typical treatment of EOC involves cytoreductive surgery combined with chemotherapy. More recent therapies have targeted the tumor vasculature using antiangiogenic compounds such as thrombospondin-1 (TSP-1. TSP-1 mimetic peptides such as ABT-510 have been created and have been in various clinical trials. We have previously shown that ABT-510 reduces abnormal vasculature associated with tumor tissue and increases the presence of mature blood vessels. It has been hypothesized that treatment with antiangiogenic compounds would allow increased delivery of cytotoxic agents and enhance treatment. In this study, we evaluated the potential role of ABT-510 and various chemotherapeutics (cisplatin and paclitaxel on tumor progression, angiogenesis, and the benefits of combinational treatments on tissue uptake and perfusion using an orthotopic syngeneic mouse model of EOC. Animals were treated with ABT-510 (100 mg/kg per day alone or in combination with cisplatin (2 mg/kg per 3 days or paclitaxel (10 mg/kg per 2 days at 60 days after tumor induction. Radiolabeled and fluorescently labeled paclitaxel demonstrated a significant increase in tumor uptake after ABT-510 treatment. Combined treatment with ABT-510 and cisplatin or paclitaxel resulted in a significant increase in tumor cell and tumor endothelial cell apoptosis and a resultant decrease in ovarian tumor size. Combined treatment also regressed secondary lesions and eliminated the presence of abdominal ascites. The results from this study show that through vessel normalization, ABT-510 increases uptake of chemotherapy drugs and can induce regression of advanced ovarian cancer.

  15. Metronomic Ceramide Analogs Inhibit Angiogenesis in Pancreatic Cancer through Up-regulation of Caveolin-1 and Thrombospondin-1 and Down-regulation of Cyclin D1

    Directory of Open Access Journals (Sweden)

    Guido Bocci

    2012-09-01

    Full Text Available AIMS: To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms. METHODS: Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC] and pancreatic cancer cells (Capan-1 and MIA PaCa-2 were treated with the ceramide analogs (C2, AL6, C6, and C8, at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1 and thrombospondin-1 (TSP-1 mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2 and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice. RESULTS: Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine. CONCLUSIONS: Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1.

  16. Tasquinimod (ABR-215050, a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors

    Directory of Open Access Journals (Sweden)

    Isaacs John T

    2010-05-01

    Full Text Available Abstract Background The orally active quinoline-3-carboxamide tasquinimod [ABR-215050; CAS number 254964-60-8, which currently is in a phase II-clinical trial in patients against metastatic prostate cancer, exhibits anti-tumor activity via inhibition of tumor angiogenesis in human and rodent tumors. To further explore the mode of action of tasquinimod, in vitro and in vivo experiments with gene microarray analysis were performed using LNCaP prostate tumor cells. The array data were validated by real-time semiquantitative reversed transcriptase polymerase chain reaction (sqRT-PCR and protein expression techniques. Results One of the most significant differentially expressed genes both in vitro and in vivo after exposure to tasquinimod, was thrombospondin-1 (TSP1. The up-regulation of TSP1 mRNA in LNCaP tumor cells both in vitro and in vivo correlated with an increased expression and extra cellular secretion of TSP1 protein. When nude mice bearing CWR-22RH human prostate tumors were treated with oral tasquinimod, there was a profound growth inhibition, associated with an up-regulation of TSP1 and a down- regulation of HIF-1 alpha protein, androgen receptor protein (AR and glucose transporter-1 protein within the tumor tissue. Changes in TSP1 expression were paralleled by an anti-angiogenic response, as documented by decreased or unchanged tumor tissue levels of VEGF (a HIF-1 alpha down stream target in the tumors from tasquinimod treated mice. Conclusions We conclude that tasquinimod-induced up-regulation of TSP1 is part of a mechanism involving down-regulation of HIF1α and VEGF, which in turn leads to reduced angiogenesis via inhibition of the "angiogenic switch", that could explain tasquinimods therapeutic potential.

  17. Modification of EGF-like module 1 of thrombospondin-1, an animal extracellular protein, by O-linked N-acetylglucosamine.

    Directory of Open Access Journals (Sweden)

    Brian R Hoffmann

    Full Text Available Thrombospondin-1 (TSP-1 is known to be subject to three unusual carbohydrate modifications: C-mannosylation, O-fucosylation, and O-glucosylation. We now describe a fourth: O-β-N-acetylglucosaminylation. Previously, O-β-N-acetylglucosamine (O-β-GlcNAc was found on a threonine in the loop between the fifth and sixth cysteines of the 20(th epidermal growth factor (EGF-like module of Drosophila Notch. A BLAST search based on the Drosophila Notch loop sequence identified a number of human EGF-like modules that contain a similar sequence, including EGF-like module 1 of TSP-1 and its homolog, TSP-2. TSP-1, which has a potentially modifiable serine in the loop, reacted in immuno-blots with the CTD110.6 anti-O-GlcNAc antibody. Antibody reactivity was diminished by treatment of TSP-1 with β-N-acetylhexosaminidase. TSP-2, which lacks a potentially modifiable serine/threonine in the loop, did not react with CTD110.6. Analysis of tandem modules of TSP-1 localized reactivity of CTD110.6 to EGF-like module 1. Top-down mass spectrometric analysis of EGF-like module 1 demonstrated the expected modifications with glucose (+162 Da and xylose (+132 Da separately from modification with N-acetyl hexosamine (+203 Da. Mass spectrometric sequence analysis localized the +203-Da modification to Ser580 in the sequence (575CPPGYSGNGIQC(586. These results demonstrate that O-β-N-acetylglucosaminylation can occur on secreted extracellular matrix proteins as well as on cell surface proteins.

  18. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-β

    Institute of Scientific and Technical Information of China (English)

    FANG Xiang-qian; FANG Mei; FAN Shun-wu; GU Chuan-long

    2009-01-01

    Background Erythropoietin (EPO) functions as a tissue-protective cytokine in addition to its crucial hormonal role in red cell production and neuron protection. This study aimed to determine the neuron protective effect of erythropoietin on experimental rats enduring spinal cord injury (SCI) by assessing thrombospondin-1 (TSP-1) level and transforming growth factor-β (TGF-β) in the development of a rat model of SCI. Methods Sixty Sprague-Dawley rats were randomly assigned to three groups: sham operation control group, SCI group and EPO treatment group. By using a weight-drop contusion SCI model, the rats in the SCI group and EPO treatment group were sacrificed at 24 hours and 7 days subsequently. The Basso, Beattie, and Bresnahan (BBB) scores were examined for locomotor function. Pathological changes were observed after HE staining. The expressions of thrombospondin-2 (TSP-1) and TGF-β were determined by immunohistochemical staining and Western blotting. Results Slighter locomotor dysfunction was discovered and it was recovered abruptly as higher BBB scores were found in the EPO treatment group than in the SCI group (P <0.01). Pathologically, progressive disruption of the dorsal white matter and regeneration of a few neurons were also observed in SCI rats. TSP-1 and TGF-β expression increased at 24 hours and 7 days after SCI in the injured segment, and it was higher in the SCI group than in the EPO treatment group. Spinal cord samples from the animals demonstrated a TSP-1 optical density of 112.2±6.8 and TSP-1 positive cells of 5.7±1.3 respectively. After injury, the TSP-1 optical density and cell number increased to 287.2±14.3/mm2 and 23.2±2.6/mm2 at 24 hours and to 232.1±13.2/mm2 and 15.2±2.3/mm2 at 7 days respectively. When EPO treated rats compared with the SCI rats, the TSP-1 optical density and cell number decreased to 213.1±11.6/mm2 and 11.9±1.6/mm2 at 24 hours and to 189.9±10.5/mm2 and 9.3±1.5/mm2 at 7 days, respectively (P <0.01 ). In the SCI

  19. NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma.

    Science.gov (United States)

    Pearson, Joel D; Lee, Jason K H; Bacani, Julinor T C; Lai, Raymond; Ingham, Robert J

    2011-01-30

    Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) is an aggressive non-Hodgkin lymphoma of T/null immunophenotype that is most prevalent in children and young adults. The normal cellular counterpart of this malignancy is presumed to be the cytotoxic T lymphocyte (CTL), and this presumption is partly based on the observation that these tumour cells often express cytotoxic granules containing Granzyme B (GzB) and Perforin. Chromosomal translocations involving the gene encoding for the ALK tyrosine kinase are also characteristic of ALK+ ALCL, and the resulting fusion proteins (e.g. NPM-ALK) initiate signalling events important in ALK+ ALCL pathogenesis. These events include the elevated expression of JunB; an AP-1 family transcription factor that promotes ALK+ ALCL proliferation. In this report we demonstrate that JunB is a direct transcriptional activator of GzB and that GzB transcription is also promoted by NPM-ALK. We found that Perforin expression was not regulated by JunB, but was promoted by NPM-ALK in some cell lines and inhibited by it in others. In conclusion, our study makes the novel observation that signalling through NPM-ALK and JunB affect the expression of cytotoxic molecules in ALK+ ALCL. Moreover, these findings demonstrate the expression of GzB and Perforin in this lymphoma is not solely due its presumed CTL origin, but that oncogenic signalling is actively influencing the expression of these proteins.

  20. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis

    Science.gov (United States)

    McKee, Chad; Sigala, Barbara; Soeda, Junpei; Mouralidarane, Angelina; Morgan, Maelle; Mazzoccoli, Gianluigi; Rappa, Francesca; Cappello, Francesco; Cabibi, Daniela; Pazienza, Valerio; Selden, Claire; Roskams, Tania; Vinciguerra, Manlio; Oben, Jude A.

    2015-01-01

    Amphiregulin (AR) involvement in liver fibrogenesis and hepatic stellate cells (HSC) regulation is under study. Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular cancer (HCC). Our aim was to investigate ex vivo the effect of AR on human primary HSC (hHSC) and verify in vivo the relevance of AR in NAFLD fibrogenesis. hHSC isolated from healthy liver segments were analyzed for expression of AR and its activator, TNF-α converting enzyme (TACE). AR induction of hHSC proliferation and matrix production was estimated in the presence of antagonists. AR involvement in fibrogenesis was also assessed in a mouse model of NASH and in humans with NASH. hHSC time dependently expressed AR and TACE. AR increased hHSC proliferation through several mitogenic signaling pathways such as EGFR, PI3K and p38. AR also induced marked upregulation of hHSC fibrogenic markers and reduced hHSC death. AR expression was enhanced in the HSC of a murine model of NASH and of severe human NASH. In conclusion, AR induces hHSC fibrogenic activity via multiple mitogenic signaling pathways, and is upregulated in murine and human NASH, suggesting that AR antagonists may be clinically useful anti-fibrotics in NAFLD. PMID:25744849

  1. The Effects of Amphiregulin Induced MMP-13 Production in Human Osteoarthritis Synovial Fibroblast

    Directory of Open Access Journals (Sweden)

    Yi-Te Chen

    2014-01-01

    Full Text Available Osteoarthritis (OA belongs to a group of degenerative diseases. Synovial inflammation, cartilage abrasion, and subchondral sclerosis are characteristics of OA. Researchers do not fully understand the exact etiology of OA. However, matrix metalloproteinases (MMPs, which are responsible for cartilage matrix degradation, play a pivotal role in the progression of OA. Amphiregulin (AREG binds to the EGF receptor (EGFR and activates downstream proteins. AREG is involved in a variety of pathological processes, such as the development of tumors, inflammatory diseases, and rheumatoid arthritis. However, the relationship between AREG and MMP-13 in OA synovial fibroblasts (SFs remains unclear. We investigated the signaling pathway involved in AREG-induced MMP-13 production in SFs. AREG caused MMP-13 production in a concentration- and time-dependent manner. The results of using pharmacological inhibitors and EGFR siRNA to block EGFR revealed that the EGFR receptor was involved in the AREG-mediated upregulation of MMP-13. AREG-mediated MMP-13 production was attenuated by PI3K and Akt inhibitors. The stimulation of cells by using AREG activated p65 phosphorylation and p65 translocation from the cytosol to the nucleus. Our results provide evidence that AREG acts through the EGFR and activates PI3K, Akt, and finally NF-kappaB on the MMP-13 promoter, thus contributing to cartilage destruction during osteoarthritis.

  2. Peptides Derived from Type IV Collagen, CXC Chemokines, and Thrombospondin-1 Domain-Containing Proteins Inhibit Neovascularization and Suppress Tumor Growth in MDA-MB-231 Breast Cancer Xenografts

    Directory of Open Access Journals (Sweden)

    Jacob E. Koskimaki

    2009-12-01

    Full Text Available Angiogenesis or neovascularization, the process of new blood vessel formation from preexisting microvasculature, involves interactions among several cell types including parenchymal, endothelial cells, and immune cells. The formation of new vessels is tightly regulated by a balance between endogenous proangiogenic and antiangiogenic factors to maintain homeostasis in tissue; tumor progression and metastasis in breast cancer have been shown to be angiogenesis-dependent. We previously introduced a systematic methodology to identify putative endogenous antiangiogenic peptides and validated these predictions in vitro in human umbilical vein endothelial cell proliferation and migration assays. These peptides are derived from several protein families including type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins. On the basis of the results from the in vitro screening, we have evaluated the ability of one peptide selected from each family named pentastatin-1, chemokinostatin-1, and properdistatin, respectively, to suppress angiogenesis in an MDA-MB-231 human breast cancer orthotopic xenograft model in severe combined immunodeficient mice. Peptides were administered intraperitoneally once per day. We have demonstrated significant suppression of tumor growth in vivo and subsequent reductions in microvascular density, indicating the potential of these peptides as therapeutic agents for breast cancer.

  3. The role of thrombospondin-1 in corneal wound healing%血小板反应蛋白-1对角膜创伤修复的影响

    Institute of Scientific and Technical Information of China (English)

    倪双

    2015-01-01

    Thrombospondin-1 (THBS-1),a kind of extracellular matrix proteins,whose biological action played an important role in corneal wound healing has became a research highlight.The currently research findings showed that THBS-1 could promote the healing of epithelium,stroma and endothelium through activating the transforming growth factor-β1 (TGF-β1) which can accelerate cell proliferation,promote stroma forming and inducing cell migration.It is worthful in clinical treatment of all kinds of corneal wound healing.Now we summarized the research developments which have been acquired in the field recently in this article.%血小板反应蛋白-1 (THBS-1)是一种细胞外基质蛋白,其在角膜创伤修复中发挥的作用是近年来国内外研究的热点.研究发现THBS-1可通过激活转化生长因子-β1(TGF-β1)来促进细胞增生、细胞外基质形成、诱导细胞移行,从而在上皮基底膜、基质层和内皮修复中起重要作用,这将为临床上治疗各种原因引起的角膜创伤开辟新的途径.本文就THBS-1的来源及结构、生物学功能及其在角膜创伤修复过程中所起的作用进行综述.

  4. Clinical Observation of Children with Acute Rheumatic Fever Thrombospondin-1%急性风湿热患儿血小板反应蛋白-1的临床观察

    Institute of Scientific and Technical Information of China (English)

    石坤; 陈婷婷; 方钰; 王献民

    2015-01-01

    Objective To observe the clinical relationships between Acute rheumatic fever (ARF)and thrombospondin-1 (TSP-1) levels,and provide a basis for the diagnosis of the disease.Methods Compare TSP-1 level in observer group and control group with Enzyme-linked immunosorbent assay (ELISA).Independent t-test analysis and Pearson cor elation analysis wil be analyzed.Results TSP-1 level in observer group is higher than which in control group [(317.1±103.05)μg/ml VS (206.12±83.65)μg/ml,<0.01].Acute rheumatic fever and ASO serum levels of TSP-1 was positively cor elated(=0.443, <0.05). Conclusion TSP-1 levels in acute rheumatic fever is a marker for disease diagnosis and has a certain significance.%目的:观察急性风湿热(ARF)患儿血清血小板反应蛋白-1(TSP-1)的水平与临床的关系,为疾病的诊断提供一定±据。方法急性风湿热组35例,对照组35例,取血清10μl,应用酶联免疫吸附法(ELISA)检测急性风湿热及对照者血清中TSP-1水平,应用独立资料的t检验分析和Pearson相关性分析对资料进行分析。结果急性风湿热患者血清TS-l的水平明显高于健康对照者[(317.1±103.05)μg/ml VS (206.12±83.65)μg/ml,<0.01]。急性风湿热血清TSP-1与ASO水平呈正相关(r=0.443,<0.05)。结论 TSP-1水平是急性风湿热活动期的血清标记物,对病情诊断具有一定意义。

  5. Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells

    Science.gov (United States)

    Fang, Lanlan; Yu, Yiping; Zhang, Ruizhe; He, Jingyan; Sun, Ying-Pu

    2016-01-01

    Progesterone plays critical roles in maintaining a successful pregnancy at the early embryonic stage. Human chorionic gonadotropin (hCG) rapidly induces amphiregulin (AREG) expression. However, it remains unknown whether AREG mediates hCG-induced progesterone production. Thus, the objective of this study was to investigate the role of AREG in hCG-induced progesterone production and the underlying molecular mechanism in human granulosa cells; primary cells were used as the experimental model. We demonstrated that the inhibition of EGFR and the knockdown of AREG abolished hCG-induced steroidogenic acute regulatory protein (StAR) expression and progesterone production. Importantly, follicular fluid AREG levels were positively correlated with progesterone levels in the follicular fluid and serum. Treatment with AREG increased StAR expression and progesterone production, and these stimulatory effects were abolished by EGFR inhibition. Moreover, activation of ERK1/2, but not PI3K/Akt, signaling was required for the AREG-induced up-regulation of StAR expression and progesterone production. Our results demonstrate that AREG mediates hCG-induced StAR expression and progesterone production in human granulosa cells, providing novel evidence for the role of AREG in the regulation of steroidogenesis. PMID:27113901

  6. Pro-inflammatory role of Anti-Ro/SSA autoantibodies through the activation of Furin-TACE-amphiregulin axis.

    Science.gov (United States)

    Lisi, Sabrina; Sisto, Margherita; Lofrumento, Dario Domenico; Cucci, Liana; Frassanito, Maria Antonia; Mitolo, Vincenzo; D'Amore, Massimo

    2010-09-01

    Prolonged inflammation can be detrimental because it may cause host toxicity and tissue damage. Indeed, excessive production of inflammatory cytokines is often associated with many autoimmune diseases. In this study we demonstrate that the anti-Ro/SSA autoantibodies (Abs) stimulate the production of pro-inflammatory cytokines IL-6 and IL-8 by human healthy salivary gland epithelial cells (healthy SGEC). The secretion of these cytokines is due to amphiregulin (AREG) that is overexpressed in healthy SGEC treated with anti-Ro/SSA Abs and in Sjögren's syndrome. We have discovered that the up-regulation of AREG occurs through TNF-alpha produced following anti-Ro/SSA Abs treatment. The gene silencing technique was used to study the AREG-TNF-alpha-IL-6/IL-8 secretion pathway, demonstrating that: (i) TNF-alpha gene silencing provokes a significant decrease of proinflammatory cytokines production and AREG expression in anti-Ro/SSA Abs-treated healthy SGEC; (ii) AREG gene silencing has a potent inhibitory effect on TNF-alpha-induced IL-6 and IL-8 secretion in healthy SGEC treated with anti-Ro/SSA Abs. These findings indicate that TACE-mediated AREG shedding plays a critical role in TNF-alpha-induced IL-6 and IL-8 secretion by the human healthy salivary gland epithelial cells, suggesting that this may be one of the possible intracellular mechanisms involved in the salivary glands inflammatory response in Sjögren's syndrome.

  7. Role of JunB in experimental bronchial asthma%JunB在实验性支气管哮喘中的作用

    Institute of Scientific and Technical Information of China (English)

    李海燕; 郭琦; 陈如冲; 周一平; 李明; 喻海琼; 江梅

    2013-01-01

    Objective To determine the key activator protein-1 (AP~1) subunit involved in the characteristics of the pathophysiology of asthma, in order to provide more accurate and novel molecular targets for the treatment of asthma. Methods Asthmatic rat models were employed. One hundred and thirty Wistar male rats were randomly divided into normal control, blank control, c-Jun antisense oligodeoxynucleotides (AS-ODNs), JunB AS-ODNs, JunD AS-ODNs, c-Fos AS-ODNs, FosB AS-ODNs, Fra-1 AS-ODNs, Fra-2 AS-ODNs, and nonsense ODNs groups. After gene silencing, the percentages of eosinophils (EOS) in the bronchoalveolar lavage fluid were calculated using haema-toxylin-eosin staining, and interleukin (IL)-5 mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR). Results The percentage of EOS in JunB AS-ODNs group was decreased significantly as compared with that in the blank control [(34.33±9.62)% vs (13.39±3.72)%, PO.001], but was still higher than that in the normal control [(5.61 ± 1.76)%, P=0.04]. No significant differences in the percentages of EOS between other ODNs groups and the blank control were observed (P>0.05). Compared with that in the blank control, the expression of IL5 mRNA in JunB AS-ODNs group was markedly suppressed [(0.554 2 ± 0.082 9) vs (0.822 4 ± 0.066 0), PO.001], which was also still higher than that in the normal control [(0.323 7±0.057 7), PO.001]. There were no significant differences in the expression of IL-5 mRNA between other ODNs groups and the blank control (P>0.05). Conclusion Chronic airway inflammation in asthmatic rats might depend on JunB, one of the subunits in the family of transcription factor AP-1. JunB might be a novel therapeutic target in asthma.%目的 探索激活蛋白-1 (Activator protein-1,AP-1)家族成员中参与构成哮喘病理生理特征的关键亚单位,为哮喘治疗提供更精确和新颖分子靶点.方法 建立大鼠哮喘模型.130只雄性Wistar大鼠随机分为正常对照组、哮喘

  8. Insulin induces a transcriptional activation of epiregulin, HB-EGF and amphiregulin, by a PI3K-dependent mechanism: identification of a specific insulin-responsive promoter element

    DEFF Research Database (Denmark)

    Ornskov, Dorthe; Nexo, Ebba; Sørensen, Boe Sandahl

    2007-01-01

    Previously we have shown that insulin-stimulation of RT4 bladder cancer cells leads to increased proliferation, which require HER1 activation, and is accompanied by increased mRNA expression of the EGF-ligands heparin-binding EGF-like growth factor (HB-EGF), amphiregulin (AR), and epiregulin (EPI...

  9. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  10. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system.

    Science.gov (United States)

    Latasa, Maria U; Salis, Fabiana; Urtasun, Raquel; Garcia-Irigoyen, Oihane; Elizalde, Maria; Uriarte, Iker; Santamaria, Monica; Feo, Francesco; Pascale, Rosa M; Prieto, Jesús; Berasain, Carmen; Avila, Matías A

    2012-01-01

    Hepatocellular carcinoma (HCC) is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR) signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR) in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19). FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that combined targeting of

  11. Regulation of amphiregulin gene expression by β-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system.

    Directory of Open Access Journals (Sweden)

    Maria U Latasa

    Full Text Available Hepatocellular carcinoma (HCC is the most prevalent liver tumor and a deadly disease with limited therapeutic options. Dysregulation of cell signaling pathways is a common denominator in tumorigenesis, including hepatocarcinogenesis. The epidermal growth factor receptor (EGFR signaling system is commonly activated in HCC, and is currently being evaluated as a therapeutic target in combination therapies. We and others have identified a central role for the EGFR ligand amphiregulin (AR in the proliferation, survival and drug resistance of HCC cells. AR expression is frequently up-regulated in HCC tissues and cells through mechanisms not completely known. Here we identify the β-catenin signaling pathway as a novel mechanism leading to transcriptional activation of the AR gene in human HCC cells. Activation of β-catenin signaling, or expression of the T41A β-catenin active mutant, led to the induction of AR expression involving three specific β-catenin-Tcf responsive elements in its proximal promoter. We demonstrate that HCC cells expressing the T41A β-catenin active mutant show enhanced proliferation that is dependent in part on AR expression and EGFR signaling. We also demonstrate here a novel cross-talk of the EGFR system with fibroblast growth factor 19 (FGF19. FGF19 is a recently identified driver gene in hepatocarcinogenesis and an activator of β-catenin signaling in HCC and colon cancer cells. We show that FGF19 induced AR gene expression through the β-catenin pathway in human HCC cells. Importantly, AR up-regulation and EGFR signaling participated in the induction of cyclin D1 and cell proliferation elicited by FGF19. Finally, we demonstrate a positive correlation between FGF19 and AR expression in human HCC tissues, therefore supporting in clinical samples our experimental observations. These findings identify the AR/EGFR system as a key mediator of FGF19 responses in HCC cells involving β-catenin signaling, and suggest that

  12. 益气活血法对脑出血大鼠脑内凝血酶敏感蛋白-1及其受体CD36表达的影响%Effects of Replenishing Qi and Promoting Blood Circulation Treatment on the Expression of Thrombospondin-1 and Receptor CD36 of lntracerebral Hemorrhagic Rats

    Institute of Scientific and Technical Information of China (English)

    陈柏林; 邢之华; 唐涛; 刘宜峰; 阳鹤鹏; 刘清娥; 吴汉军

    2011-01-01

    OBJECTIVE To make a primary study of the mechanism of replenishing qi and promoting blood circulation treatment for curing intracerebral hemorrhage (ICH) rats by observing the expression of thrombospondin-1 (TSP-1) and its receptor CD36. METHODS 155 SD rats were randomly divided into six groups, namely normal group, sham operated group, ICH model group, replenishing qi and promoting blood circulation treatment group, replenishing qi group and promoting blood circulation treatment group. ICH model was established by injecting collagenase type Ⅶ, while replenishing qi group, promoting blood circulation treatment group and replenishing qi and promoting blood circulation treatment group were respectively administered with replenishing qi decoction, promoting blood circulation treatment decoction and Buyang Huanwu Decoction. Afterwards, brain tissue was extracted different and the expression of TSP-1 and CD36 were detected by western blotting. RESULTS There was no significant changes in the expression of TSP-1 and CD36 between normal group and sham operated group at different time. In ICH model group, TSP-1 reached peak on the fourth day,CD36 on the 4th and 28th day. In replenishing qi and promoting blood circulation treatment group, the expression of TSP-1 was lower than that in model group on the 1st day(P<0.01); the expression of TSP-1 and CD36 was both lower than that in model group on the 4th day(P<0.01); the expression of CD36 was higher than that in model group on the 28th day(P<0.01).CONCLUSION Replenishing qi and promoting blood circulation treatment may regulate the expression of TSP-1 and its receptor CD36 in ICH rat, thus it can lower the inhibiting effect on angiogenesis and promote the shaping and maturity of new blood vessels as well as the recovery of brain tissue injury.%目的 通过观察益气活血法对脑出血大鼠脑内损伤区凝血酶敏感蛋白-1(thrombospondin-1,TSP-1)及其受体CD36表达的影响,初步探讨益气活血法

  13. Relationship between thrombospondin-1 gene GI678A polymorphism and acute coronary syndrome%血小板反应素-1基因G1678A多态性与急性冠脉综合征的相关性

    Institute of Scientific and Technical Information of China (English)

    高磊; 何国平; 戚传平; 杨国英; 马继政; 杨笛; 张寄南

    2008-01-01

    目的 探讨血小板反应素-1(thrombospondin-1,TSP-1)基困G1678A(Ala523Thr)多态性与中国汉族人群急性冠脉综合征(ACS)的可能关系.方法 采用病例对照研究,病例均选自2003年11月至2006年5月在江苏大学附属武进医院等4家医院住院的患者,其中ACS患者412例,病例均符合2002年AHA/ACC关于ACS诊断指南的诊断指标;同期选择年龄、性别相匹配的经相关检查排除冠心病者319例为对照.应用聚合酶链反应.限制性片段长度多态性(PCR-RFLP)方法检测TSP-1 G1678A多态性.结果 ACS患者TSP-1 G1678A多态性从基因型频率(49.5%)明显高于对照组(40.4%),两组差异有统计学意义(P=0.015).GA和GG基因型在ACS组和对照组的分布差异无统计学意义(GA:39.3%vs.46.1%,P=0.070;GG:11.2%vs.13.5%,P=0.340).A等位基因频率在ACS组和对照组分别为69.2%、63.5%(P=0.022).多元logistic回归分析显示,TSP-1基因AA基因型与ACS的发生具有显著相关性(OR=1.52;95%CI:1.11~2.08;P=0.010).结论 TSP-1基因G1678A多态性与中国汉族人群ACS密切相关,从基因型可能是ACS遗传易感性的基因标记之一.%Objective To investigate the possible association between the thrombospandin-1(TSP-1) gene GI678A (Ala523Thr)polymorphism and acute coronary syndrome (ACS) in a Chinese Han population.Method he ease cohort studied was compsed of 412 hospitalized patients with ACS recruited from four participating hospitals between November 2003 and May 2006.The diagnosis of ACS was based on the criteria of AHA/ACC set in 2002.The eontrul group was consisted of 319 age- and sex-matched subjects from partiei pating hospitals,and they were free from coronary artery disease judged by history,clinical examination,electrocardiography,exercise test and angiography.The TSP-1 GI678A polymorphism was determined by polymerase ehain reaction and restriction fragment length polymurphism analysis(PCR-RFLP).Results The prevalence OfAA genotype of the G1678A polymorphismin

  14. Overexpression of thrombospondin-1 reduces growth and vascular index but not perfusion in glioblastoma

    DEFF Research Database (Denmark)

    Kragh, Michael; Quistorff, Bjørn; Tenan, Mirna

    2002-01-01

    Little is known about the effects of antiangiogenic therapy on perfusion of human tumors and the mechanisms by which tumors can adapt to these treatments and recur. Here, we examined the effects of serial passaging of LN-229 human glioma xenografts overexpressing thrombospondin (TSP)-1 on tumor g...

  15. Extensible byssus of Pinctada fucata: Ca2+-stabilized nanocavities and a thrombospondin-1 protein

    OpenAIRE

    Chuang Liu; Shiguo Li; Jingliang Huang; Yangjia Liu; Ganchu Jia; Liping Xie; Rongqing Zhang

    2015-01-01

    The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssu...

  16. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma

    DEFF Research Database (Denmark)

    Rendtlew Danielsen, Jannie M; Knudsen, Lene Meldgaard; Dahl, Inger Marie;

    2007-01-01

    % of patients with monoclonal gammopathy of undetermined significance (MGUS) expressed CD47; median expression level increased 10-fold with progression from MGUS to MM. Elevated TSP1/TSP2 levels occurred in bone marrow cultures from MM patients compared with healthy donors. CD47 and TSP1/TSP2 may have...

  17. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely due conservation of N-terminal domains in TSP-1 and -2. In addition, TSP-1, -2 and -5 significantly affect VSMC gene expression; however, little overlap exists in the specific genes altered. This study further delineates TSP-1, -2 and -5's contributions to processes related to VSMC physiology. - Highlights: • We examined the effects of three different thrombospondins on smooth muscle cells. • Thrombospondins −1, −2, −5 all increase smooth muscle cell migration. • Thrombospondins −1 and −2, but not −5, increase smooth muscle cell proliferation. • All three thrombospondins exhibit temporally distinct patterns of gene expression. • Thrombospondins −1 and −2 display distinct patterns of gene expression.

  18. The Prognostic Role of AmphirEgulin in the Treatment of Erlotinib Against Non-small Cell Lung Cancer with Wild-type EGFR%双调蛋白在厄洛替尼治疗EGFR野生型NSCLC中的预后价值研究

    Institute of Scientific and Technical Information of China (English)

    丁江华; 龚升平; 吴小建; 谢联斌

    2016-01-01

    Objective To explore the prognostic role of amphiregulin (AREG) in the treatment of erlotinib against non-small cell lung cancer ( NSCLC) with wild-type epidermal growth factor receptor ( wt-EGFR) . Methods 40 consecutive patients with advanced NSCLC harboring wt-EGFR were collected in this study during Jan. 2010 and Jan. 2015 from the on-cology department of the 171st Hospital of PLA, the affiliated Hospital of Jiujiang University. The AREG expression was deter-mined by immunohistostaining with the aim of investigating the association between AREG level and the effect of erlotinib treat-ment. Results In the study, the patients with AREG-positive accounted for 65% (26/40), while 35% (14/40) patients were AREG-negative. The expression of AREG was correlated with the factor of age in patients (χ2 =4. 050, P=0. 0320). The overall response rate (OR) was 22. 5% (9/40) and the disease control rate (DCR) was 50. 0% (20/40) in the patients treated with erlotinib. The DCR in the AREG-positive group was markedly higher than that in the AREG-negative group (61. 5% vs 28. 6%, P =0. 0210). No significant difference was found in the OR between the two groups (26. 9% vs 14. 3%, P=0. 7800). The AREG-positive group achieved better prolonged progression-free survival (PFS) and overall sur-vival (OS) rates than that of the AREG-negative group (7 week vs 4 week, P =0. 0012; 11. 5 month vs 4 month, P =0. 0003). The incidence rate of skin rash in AREG-positive group was markedly higher than that in AREG-negative group (57. 7% vs 21. 4%, P=0. 0350) . Conclusion The advanced NSCLC patients harboring wt-EGFR with AREG-positive tumors may benefit from erlotinib treatment accompanying higher incidence rate of skin rash, indicating the potential molecular marker of AREG for the patients with wt-EGFR NSCLC when treated with erlotinib.%目的:探讨双调蛋白( Amphiregulin, AREG)在厄洛替尼治疗表皮生长因子受体( epidermal growth factor receptor, EGFR)

  19. Thrombospondin-1 is not the major activator of TGF-β1 in thrombopoietin-induced myelofibrosis

    DEFF Research Database (Denmark)

    Evrard, Solène; Bluteau, Olivier; Tulliez, Micheline;

    2011-01-01

    -β1 activation, we investigated the role of TSP-1 in the TPO(high) murine model of myelofibrosis. Two groups of engrafted mice, WT TPO(high) and Tsp-1-null TPO(high), were constituted. All mice developed a similar myeloproliferative syndrome and an increase in total TGF-β1 levels in the plasma...... of TGF-β1 in TPO-induced myelofibrosis, suggesting the contribution of another mechanism in the megakaryocyte/platelet compartment....

  20. Characterization of intracellular pathways leading to coinduction of thrombospondin-1 and TGF-beta1 expression in rat hepatic stellate cells.

    Science.gov (United States)

    Breitkopf, Katja; Sawitza, Iris; Gressner, Axel M

    2005-06-01

    Accumulating evidence has identified Thrombospondin (TSP)-1 as important activator of latent TGF-beta. Since little is known about signal transduction pathways regulating TSP expression in liver, we investigated cytokine-mediated upregulation of TSP-1 and TGF-beta1 in primary rat hepatic stellate cells (HSC). PDGF-BB and TNF-a rapidly coinduce mRNA levels of TSP-1 and TGF-beta1. Interestingly, blockade of basal Erk activity by synthetic Erk-binding peptides also leads to strong induction of both mRNA transcripts in non-stimulated cells. We show that PDGF-BB induces TSP-1 and TGF-beta1 via the src kinase pathway whereas TNF-a utilizes the MAPK/Erk pathway. However, especially TSP-1 induction by both cytokines involves a pathway, which depends to a certain extent on PI3 kinase activity. In summary the data illustrate specific pathways activated by PDGF-BB and TNF-a in HSC giving new insights into the tightly controlled mechanisms regulating TSP-1 and TGF-beta1 expression in these cells.

  1. Inhibition of VEGFR2 Activation and Its Downstream Signaling to ERK1/2 and Calcium by Thrombospondin-1 (TSP1): In silico Investigation

    Science.gov (United States)

    Bazzazi, Hojjat; Isenberg, Jeffery S.; Popel, Aleksander S.

    2017-01-01

    VEGF signaling through VEGFR2 is a central regulator of the angiogenic response. Inhibition of VEGF signaling by the stress-induced matricellular protein TSP1 plays a role in modulating the angiogenic response to VEGF in both health and disease. TSP1 binding to CD47 inhibits VEGFR2 activation. The full implications of this inhibitory interaction are unknown. We developed a detailed rule-based computational model to inquire if TSP1-CD47 signaling through VEGF had downstream effects upon ERK1/2 and calcium. Our Simulations suggest that enhanced degradation of VEGFR2 initiated by the binding of TSP1 to CD47 is sufficient to explain the inhibition of VEGFR2 phosphorylation, calcium elevation, and ERK1/2 activation downstream of VEGF. A complementary mechanism involving the recruitment of phosphatases to the VEGFR2 complex with consequent increase in the rate of receptor dephosphorylation may augment the inhibition of the VEGF signal. The model was then utilized to simulate the effect of inhibiting external TSP1 or the depletion of CD47 as potential therapeutic strategies in restoring VEGF signaling. Results suggest that depleting CD47 is a more efficient strategy in inhibiting the effects of TSP1/CD47 on VEGF signaling. Our results highlight the utility of in silico investigations in elucidating and clarifying molecular mechanisms at the intersection of TSP1 and VEGF biology and in differentiating between competing pro-angiogenic therapeutic strategies relevant to peripheral arterial disease (PAD) and wound healing. PMID:28220078

  2. A phase I study assessing the safety and pharmacokinetics of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with gemcitabine and cisplatin in patients with solid tumors

    NARCIS (Netherlands)

    Gietema, J. A.; Hoekstra, R.; de Vos, F. Y. F. L.; Uges, D. R. A.; van der Gaast, A.; Groen, H. J. M.; Loos, W. J.; Knight, R. A.; Carr, R. A.; Humerickhouse, R. A.; Eskens, F. A. L. M.

    2006-01-01

    Background: The aim of the study was to determine the safety profile, pharmacokinetics and potential drug interactions of the angiogenesis inhibitor ABT-510 combined with gemcitabine-cisplatin chemotherapy in patients with solid tumors. Patients and methods: Patients with advanced solid tumors recei

  3. JUNB PROMOTER REGULATION - RAS MEDIATED TRANSACTIVATION BY C-ETS-1 AND C-ETS-2

    NARCIS (Netherlands)

    COFFER, P; DEJONGE, M; METTOUCHI, A; BINETRUY, B; GHYSDAEL, J; KRUIJER, W

    1994-01-01

    The Jun gene family encode components of the AP-1 transcription factor complex that regulate a variety of TRE-containing target promoters. Expression of family members is induced by a wide variety of extracellular stimuli and thought to be important in mediating cellular proliferation and differenti

  4. [Study of the polymorphism R353Q in the coagulation factor VII gene and the N700S in the thrombospondin-1 gene in young patients with acute myocardial infarction].

    Science.gov (United States)

    Valades-Mejía, María Guadalupe; Domínguez-López, María Lilia; Aceves-Chimal, José Luis; Miranda, Alfredo Leaños; Majluf-Cruz, Abraham; Isordia-Salas, Irma

    2014-01-01

    Antecedentes: el infarto agudo de miocardio es la principal causa de morbilidad y mortalidad en el mundo, y resulta de la combinación de factores modificables y genéticos. Se ha propuesto que el polimorfismo R353Q en el gen del factor VII de la coagulación representa un factor protector en contra del infarto agudo de miocardio, mientras que el polimorfismo N700S en el gen de la trombospondina-1 (TSP- 1) incrementa el riesgo; sin embargo, los resultados aún suscitan controversia. Objetivo: determinar la posible asociación de los polimorfismos R353Q y del N700S con el infarto agudo de miocardio en pacientes mexicanos menores de 45 años. Material y métodos: estudio de casos y controles que incluyó 252 pacientes con diagnóstico de infarto agudo de miocardio y 252 individuos aparentemente sanos sin antecedentes de enfermedad coronaria, pareados por edad y sexo. Los polimorfismos R353Q N700S se determinaron en todos los participantes por medio de PCR-RFLP. Resultados: no se observó diferencia estadística en la distribución genotípica del polimorfismo R353Q del FVII entre los grupos con infarto agudo de miocardio y el grupo control (p = 0.06). Se encontró una distribución genotípica similar del polimorfismo N700S en ambos grupos (p = 0.50). Se identificaron como factores de riesgo independiente para infarto agudo de miocardio: hipertensión arterial, diabetes mellitus, antecedentes heredofamiliares para enfermedad coronaria y dislipidemia. Conclusiones: los polimorfismos R353Q y N700S no representan un factor protector o de riesgo, respectivamente, para infarto agudo de miocardio en pacientes jóvenes mexicanos. Palabras clave: factor VII de la coagulación, trombospondina-1, infarto agudo de miocardio, polimorfismo.

  5. The change and significance of thrombospondin-1 in septic liver injury%脓毒症肝损伤中凝血酶敏感蛋白-1的变化及意义

    Institute of Scientific and Technical Information of China (English)

    缪玉兰; 夏照帆; 王广庆; 付晋凤

    2012-01-01

    目的 探讨凝血酶敏感蛋白-1(TSP-1)在脓毒症肝损伤中的变化及意义.方法 雄性Balb/c小鼠通过盲肠结扎穿刺(CLP)成功制作脓毒症模型,分为对照组,CLP后0.5、1、3、6、12、24 h七个组(每组5只),观察腹腔及肝脏大体解剖,检测血清转氨酶含量、肝脏TSP-1 mRNA及TSP-1蛋白表达水平,从而探讨脓毒症时肝脏TSP-1的变化规律.结果 与对照组相比,制作脓毒症模型后6 h肝脏TSP-1 mRNA及TSP-1蛋白表达明显增高,同时伴有肝脏炎症加重、血清ALT和AST含量明显升高,在制模24 h观察期内TSP-1维持于较高水平.结论 脓毒症时肝脏TSP-1表达增加,TSP-1作为炎症介质可能参与介导脓毒症肝损伤发生、发展.%Objective To explore ihe alleralion and significance of ihe ihrombospondin - 1 in seplic liver injury. Methods The model for sepsis was developed by cecal ligalion and punclure ( CLP) in male Balb/c mice. All mice were divided inlo seven groups; control, O.5h,lh,3h,6h, 12h,24 h afler ihe CLP model for sepsis(n =5). Then ihe general analomical fealure of abdominal cavily and liver was observed. Serum aminolransferase, expression level of liver TSP - 1 mRNA and TSP - 1 prolein were delecled. The pallern of liver TSP - 1 in sepsis was investigated. Results In comparison with control group, the expression of liver TSP - 1 mRNA and TSP - 1 protein was significantly increased accompanied with more severe liver inflammation as well as dramatically increasing serum ALT and AST contents 6 h after the CLP model for sepsis. TSP - 1 maintained a relatively high level during 24 h observation period. Conclusion In sepsis the expression of liver TSP - 1 is increased which may induce and develop septic liver injury as a mediator of inflammation.

  6. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines.

    DEFF Research Database (Denmark)

    Tørring, Niels; Sørensen, Boe Sandahl; Nexø, Ebba

    2000-01-01

    BACKGROUND: The proliferation of androgen-independent prostate cancer cell lines has previously been shown to be influenced by an autocrine loop of the epidermal growth factor (EGF) system. This observation has alerted us to study the expression of ligands and receptors from the EGF-system in pro...

  7. Gclust Server: 34444 [Gclust Server

    Lifescience Database Archive (English)

    Full Text Available CTED: similar to Amphiregulin precursor (AR) (Colorectum cell-derived growth factor) (CRDGF) ; no annotation...e length 252 Representative annotation XP_001125684.1 PREDICTED: similar to Amphiregulin precursor (AR) (Color

  8. Levels of the epidermal growth factor-like peptide amphiregulin in follicular fluid reflect the mode of triggering ovulation: a comparison between gonadotrophin-releasing hormone agonist and urinary human chorionic gonadotrophin

    DEFF Research Database (Denmark)

    Al Humaidan, Peter Samir Heskjær; Westergaard, Lars Grabow; Mikkelsen, Anne Lis

    2011-01-01

    . INTERVENTION(S): Ovulation triggered with either urinary hCG or GnRH agonist (GnRH-a). Controls: 15 FF samples from small antral follicles (3-9 mm) and 12 FF samples from natural cycle. MAIN OUTCOME MEASURE(S): Follicular fluid concentration of AR, P(4), E(2), vascular endothelial growth factor, and inhibin B...

  9. Experiment list: SRX172345 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SRX172345 mm9 TFs and others Junb Blood Th17 NA 14576053,91.7,88.1,4510 GSM978769: Th17... JunB; Mus musculus; ChIP-Seq source_name=Th17 Cells || strain=C57BL/6 || cell type=Th17 Cells || tissue

  10. Experiment list: SRX390506 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available .6,34.6,328 GSM1288393: BMDC 6hr LPS JunB; Mus musculus; ChIP-Seq source_name=BMDCs, LPS, 6 hrs, JunB ChIP |...ESENTING CELLS of dendritic cell morphology found in the LYMPH NODES and other lymphoid tissues. 19057068,96

  11. Metoprolol treatment lowers thrombospondin-4 expression in rats with myocardial infarction and left ventricular hypertrophy.

    Science.gov (United States)

    Mustonen, Erja; Leskinen, Hanna; Aro, Jani; Luodonpää, Marja; Vuolteenaho, Olli; Ruskoaho, Heikki; Rysä, Jaana

    2010-09-01

    Thrombospondins are matrix proteins linked to extracellular matrix remodelling but their precise role in the heart is not known. In this study, we characterised left ventricular thrombospondin-1 and -4 expression in rats treated with a beta-blocker metoprolol during the remodelling process in response to pressure overload and acute myocardial infarction. Left ventricular thrombospondin-1 and thrombospondin-4 mRNA levels increased 8.4-fold (p infarction, respectively. Metoprolol infusion by osmotic minipumps (1.5 mg/kg/hr) for 2 weeks after myocardial infarction decreased thrombospondin-1 and thrombospondin-4 mRNA levels (55% and 50%, respectively), improved left ventricular function, and attenuated left ventricular remodelling with reduction of left ventricular atrial natriuretic peptide and brain natriuretic peptide gene expression. Thrombospondin-1 and -4 mRNA levels correlated positively with echocardiographic parameters of left ventricular remodelling as well as with atrial natriuretic peptide and brain natriuretic peptide gene expression. Moreover, there was a negative correlation between left ventricular ejection fraction and thrombospondin-1 mRNA levels. In 12-month-old spontaneously hypertensive rats with left ventricular hypertrophy, metoprolol decreased left ventricular thrombospondin-4 levels and attenuated remodelling while thrombospondin-1, atrial natriuretic peptide and brain natriuretic peptide mRNA levels as well as left ventricular function remained unchanged. In metoprolol-treated spontaneously hypertensive rats, thrombospondin-4 gene expression correlated with parameters of left ventricular remodelling, while no correlations between thrombospondins and natriuretic peptides were observed. These results indicate that thrombospondin-1 expression is linked exclusively to left ventricular remodelling process post-infarction while thrombospondin-4 associates with myocardial remodelling both after myocardial infarction and in hypertensive heart disease

  12. Experiment list: SRX122412 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Junb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http:/

  13. Experiment list: SRX122417 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  14. Experiment list: SRX122415 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  15. Experiment list: SRX122414 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  16. Experiment list: SRX122416 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  17. Experiment list: SRX122413 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Junb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http:/

  18. Domain Modeling: NP_001035362.3 [SAHG[Archive

    Lifescience Database Archive (English)

    Full Text Available NP_001035362.3 chr9 Crystal Structure of the Thrombospondin-1 Type 1 Repeats c1lsla_ chr9/NP_001035362.3.../NP_001035362.3_holo_1612-1725.pdb swppa 1621P,1622C,1666C,1667S,1681T,1682C,1703V,1704P FUC,FUL 0 ...

  19. Members of the CREB/ATF and AP1 family of transcription factors are involved in the regulation of SOX18 gene expression

    Directory of Open Access Journals (Sweden)

    Petrović Isidora

    2011-01-01

    Full Text Available The SOX18 transcription factor plays an important role in endothelial cell specification, angiogenesis and atherogenesis. By profiling transcription factor interactions (TranSignal TM TF Protein Array we identified several transcription factors implicated in angiogenesis that have the ability to bind to the SOX18 optimal promoter region in vitro. In this report we focused our attention on distinct transcription factors identified by the array as belonging to AP-1 and CREB/ATF protein families. In particular, we analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expression. Functional analysis revealed that CREB acts as a repressor, while JunB, c-Jun and ATF3 act as activators of SOX18 promoter activity. Our findings indicate that a transcriptional network that includes CREB, JunB, c-Jun and ATF3 could be involved in angiogenesis-related transcriptional regulation of the SOX18 gene.

  20. Experiment list: SRX122410 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog n...umber 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://db

  1. Experiment list: SRX122411 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog n...umber 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://db

  2. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2000-08-01

    Coutts, A., and Watson , P. The pathophysiological role of estrogen receptor variants in human breast cancer, J Steroid Biochem Mol Biol. 65: 175-80, 1998...breast cancer, Clin Cancer Res. 6: 512-8, 2000. 37. Leygue, E., Dotzlaw, H., Watson , P. H., and Murphy, L. C. Altered estrogen receptor alpha and beta...amphiregulin and CRIPTO in human normal and malignant breast tissues, Int J Cancer. 65: 51-6, 1996. 124. Depowski, P. L., Brien, T. P., Sheehan, C. E

  3. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands.

    Science.gov (United States)

    Light, Allison; Hammes, Stephen R

    2015-09-01

    Oocyte maturation and cumulus cell expansion depend on luteinizing hormone (LH)-mediated upregulation of membrane-bound epidermal growth factor (EGF)-like ligands, including amphiregulin, epiregulin, and betacellulin. These ligands then transactivate the EGF receptor (EGFR) after release by matrix metalloproteinases (MMPs). However, direct measurement of released EGF-like ligands or MMPs from granulosa cells has not been formally evaluated, nor has direct identification of responsible MMPs. Here we address these issues by analyzing LH-induced steroidogenesis, which is also MMP and EGFR dependent, in freshly isolated mouse primary granulosa cells. We demonstrate a correlation between amphiregulin and epiregulin mRNA induction and steroid production in LH-treated granulosa cells as well as in ovaries of human chorionic gonadotropin-treated mice. In contrast, LH does not alter Mmp1, Mmp2, Mmp3, Mmp8, Mmp9, or Adam17 mRNA expression. We demonstrate that, in primary mouse granulosa cells, LH triggers release of soluble amphiregulin that correlates with steroid production, both of which are blocked by MMP2/9 inhibition, confirming that MMP2/9 likely regulates LH-induced amphiregulin release and downstream processes. Notably, LH does not alter secretion of MMP2/9 from primary granulosa cells, nor does it modulate MMP activity. These findings indicate that, in the ovary, LH dictates EGFR-mediated processes not by regulating MMPs, but instead by increasing EGF-like ligand availability. In contrast, LH stimulation of primary mouse Leydig cells does not induce EGF-like ligand expression or require MMP2/9 for steroidogenesis, confirming marked differences in LH receptor-induced processes in the testes. Our results suggest that MMP inhibition may be a means of attenuating excess ovarian steroid production in diseases like polycystic ovary syndrome.

  4. Expression pattern of immediate early genes in the cerebellum of D1R KO, D2R KO, and wild type mice under vestibular-controlled activity.

    Science.gov (United States)

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Sasaoka, Toshikuni; Yamamori, Tetsuo

    2015-01-01

    We previously reported the different motor abilities of D1R knockout (KO), D2R KO and wild-type (WT) mice. To understand the interaction between the cerebellum and the striatal direct and indirect pathways, we examined the expression patterns of immediate early genes (IEG) in the cerebellum of these three genotypes of mice. In the WT naive mice, there was little IEG expression. However, we observed a robust expression of c-fos mRNA in the vermis and hemisphere after running rota-rod tasks. In the vermis, c-fos was expressed throughout the lobules except lobule 7, and also in crus 1 of the ansiform lobule (Crus1), copula of the pyramis (Cop) and most significantly in the flocculus in the hemisphere. jun-B was much less expressed but more preferentially expressed in Purkinje cells. In addition, we observed significant levels of c-fos and jun-B expressions after handling mice, and after the stationary rota-rod task in naive mice. Surprisingly, we observed significant expression of c-fos and jun-B even 30 min after single weighing. Nonetheless, certain additional c-fos and jun-B expressions were observed in three genotypes of the mice that experienced several sessions of motor tasks 24 h after stationary rota-rod task and on days 1 and 5 after rota-rod tasks, but no significant differences in expressions after the running rota-rod tasks were observed among the three genotypes. In addition, there may be some differences 24 h after the stationary rota-rod task between the naive mice and the mice that experienced several sessions of motor tasks.

  5. Kinome-wide functional screen identifies role of PLK1 in hormone-independent, ER-positive breast cancer.

    Science.gov (United States)

    Bhola, Neil E; Jansen, Valerie M; Bafna, Sangeeta; Giltnane, Jennifer M; Balko, Justin M; Estrada, Mónica V; Meszoely, Ingrid; Mayer, Ingrid; Abramson, Vandana; Ye, Fei; Sanders, Melinda; Dugger, Teresa C; Allen, Eliezer V; Arteaga, Carlos L

    2015-01-15

    Estrogen receptor (ER) α-positive breast cancers initially respond to antiestrogens but eventually become estrogen independent and recur. ER(+) breast cancer cells resistant to long-term estrogen deprivation (LTED) exhibit hormone-independent ER transcriptional activity and growth. A kinome-wide siRNA screen using a library targeting 720 kinases identified Polo-like kinase 1 (PLK1) as one of the top genes whose downregulation resulted in inhibition of estrogen-independent ER transcriptional activity and growth of LTED cells. High PLK1 mRNA and protein correlated with a high Ki-67 score in primary ER(+) breast cancers after treatment with the aromatase inhibitor letrozole. RNAi-mediated knockdown of PLK1 inhibited ER expression, estrogen-independent growth, and ER transcription in MCF7 and HCC1428 LTED cells. Pharmacologic inhibition of PLK1 with volasertib, a small-molecule ATP-competitive PLK1 inhibitor, decreased LTED cell growth, ER transcriptional activity, and ER expression. Volasertib in combination with the ER antagonist, fulvestrant, decreased MCF7 xenograft growth in ovariectomized mice more potently than each drug alone. JUNB, a component of the AP-1 complex, was expressed 16-fold higher in MCF7/LTED compared with parental MCF7 cells. Furthermore, JUNB and BCL2L1 (which encodes antiapoptotic BCL-xL) mRNA levels were markedly reduced upon volasertib treatment in MCF7/LTED cells, while they were increased in parental MCF7 cells. Finally, JUNB knockdown decreased ER expression and transcriptional activity in MCF7/LTED cells, suggesting that PLK1 drives ER expression and estrogen-independent growth via JUNB. These data support a critical role of PLK1 in acquired hormone-independent growth of ER(+) human breast cancer and is therefore a promising target in tumors that have escaped estrogen deprivation therapy.

  6. Roles of main pro-and anti-angiogenic factors in tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Zhi Huang; Shi-Deng Bao

    2004-01-01

    Tumor growth without size restriction depends on vascular supply. The ability of tumor to induce new blood-vessel formation has been a major focus of cancer research over the past decade. It is now known that members of the vascular endothelial growth factor and angiopoietin families,mainly secreted by tumor cells, induce tumor angiogenesis,whereas other endogenous angiogenic inhibitors, including thrombospondin-1 and angiostatin, keep tumor in dormancy.Experimental and clinical evidence has suggested that the process of tumor metastasis depends on angiogenesis or lymphangiogenesis. This article summarizes the recent research progress for some basic pro- or anti-angiogenic factors in tumor angiogenesis.

  7. Military Vision Research Program

    Science.gov (United States)

    2012-10-01

    3: Association of Thrombospondin-1 polymorphism with predisposition to chronic dry eye after refractive surgery and ocular surface diseases ...patients  with  or  without  PVR.    Vitreous  from   patients  with  PVR  or  non-­‐PVR  retinal   diseases  ( macular ... macular degeneration , and uveitis. During the funding period were showed that both SPANTIDE I and II were effective antagonists of the substance P

  8. Deletion of Jun proteins in adult oligodendrocytes does not perturb cell survival, or myelin maintenance in vivo.

    Directory of Open Access Journals (Sweden)

    Bettina Schreiner

    Full Text Available Oligodendrocytes, the myelin-forming glial cells of the central nervous system (CNS, are fundamental players in rapid impulse conduction and normal axonal functions. JunB and c-Jun are DNA-binding components of the AP-1 transcription factor, which is known to regulate different processes such as proliferation, differentiation, stress responses and death in several cell types, including cultured oligodendrocyte/lineage cells. By selectively inactivating Jun B and c-Jun in myelinating oligodendrocytes in vivo, we generated mutant mice that developed normally, and within more than 12 months showed normal ageing and survival rates. In the adult CNS, absence of JunB and c-Jun from mature oligodendrocytes caused low-grade glial activation without overt signs of demyelination or secondary leukocyte infiltration into the brain. Even after exposure to toxic or autoimmune oligodendrocyte insults, signs of altered oligodendrocyte viability were mild and detectable only upon cuprizone treatment. We conclude that JunB and c-Jun expression in post-mitotic oligodendrocytes is mostly dispensable for the maintainance of white matter tracts throughout adult life, even under demyelinating conditions.

  9. Cholesterol affects gene expression of the Jun family in colon carcinoma cells using different signaling pathways.

    Science.gov (United States)

    Scheinman, Eyal J; Rostoker, Ran; Leroith, Derek

    2013-07-15

    Hyperlipidemia and hypercholesterolemia have been found to be important factors in cancer development and metastasis. However, the metabolic mechanism and downstream cellular processes following cholesterol stimulation are still unknown. Here we tested the effect of cholesterol on MC-38 colon cancer cells. Using Illumina gene array technology we found a number of genes that were differentially expressed following short term (20-40 min) and longer term (between 2 and 5h) cholesterol stimulation. Three genes were consistently increased at these time points; c-Jun, Jun-B and the chemokine CXCL-1. We have previously shown that cholesterol stimulation leads to PI3K/Akt phosphorylation, and now demonstrated that cholesterol inhibits ERK1/2 phosphorylation; both effects reversed when cholesterol is depleted from lipid rafts using methyl-β-cyclodextrin (MBCD). In addition, vanadate, an inhibitor of phosphatases, reversed the cholesterol inhibition of ERK1/2 phosphorylation. Specific inhibition of p-Akt by wortmannin did not affect cholesterol's stimulation of the expression of c-Jun and Jun-B, however the vanadate effect of increasing p-ERK1/2, inhibited c-Jun expression, specifically, and the MBCD effect of increasing p-ERK and inhibiting p-Akt reduced c-Jun expression. In contrast MBCD and vanadate both enhanced Jun-B gene expression in the presence of cholesterol and elevation of ERK phosphorylation. Thus there is apparently, a differential signaling pathway whereby cholesterol enhances gene expression of the Jun family members.

  10. A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing.

    Science.gov (United States)

    Feng, Weiyi; Madajka, Maria; Kerr, Bethany A; Mahabeleshwar, Ganapati H; Whiteheart, Sidney W; Byzova, Tatiana V

    2011-04-07

    Angiogenesis alleviates hypoxic stress in ischemic tissues or during tumor progression. In addition to endothelial cell proliferation and migration, the angiogenic process requires bone marrow-derived cell (BMDC) recruitment to sites of neovascularization. However, the mechanism of communication between hypoxic tissues and the BM remains unknown. Using 2 models of hypoxia-induced angiogenesis (ischemic hindlimb surgery and subcutaneous tumor growth), we show that platelet infusion promotes BMDC mobilization into the circulation, BMDC recruitment into growing neovasculature, tumor vascularization, and blood flow restoration in ischemic limbs, whereas platelet depletion inhibits these effects. Thus, platelets are required for BMDC recruitment into ischemia-induced vasculature. Secretion of platelet α-granules, but neither dense granules nor platelet aggregation is crucial for BMDC homing and subsequent angiogenesis, as determined using VAMP-8(-/-), Pearl, and integrin Beta 3(-/-) platelets. Finally, platelets sequester tumor-derived promoters of angiogenesis and BMDC mobilization, which are counterbalanced by the antiangiogenic factor thrombospondin-1. A lack of thrombospondin-1 in platelets leads to an imbalance in proangiogenic and antiangiogenic factors and accelerates tumor growth and vascularization. Our data demonstrate that platelets stimulate BMDC homing in a VAMP-8-dependent manner, revealing a previously unknown role for platelets as key mediators between hypoxic tissues and the bone marrow during angiogenesis.

  11. The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia.

    Science.gov (United States)

    Chang, Sung-Hee; Ai, Youxi; Breyer, Richard M; Lane, Timothy F; Hla, Timothy

    2005-06-01

    Expression of cyclooxygenase 2 (COX-2) in breast cancer correlates with poor prognosis, and COX-2 enzyme inhibitors reduce breast cancer incidence in humans. We recently showed that COX-2 overexpression in the mammary gland of transgenic mice induced mammary cancer. Because prostaglandin E2 (PGE2) is the major eicosanoid and because the EP2 subtype of the PGE2 receptor is highly expressed in the mammary tumors, we tested if this G protein-coupled receptor is required for tumorigenesis. We crossed the MMTV-COX-2 transgenic mice with Ep2-/- mice and studied tumor development in bigenic mice. Lack of EP2 receptor strongly suppressed COX-2-induced effects such as precocious development of the mammary gland in virgins and the development of mammary hyperplasia in multiparous female mice. Interestingly, the expression of amphiregulin, a potent mammary epithelial cell growth factor was down regulated in mammary glands of Ep2-/- mice. Total cyclic AMP (cAMP) levels were reduced in Ep2-/- mammary glands suggesting that PGE2 signaling via the EP2 receptor activates the Gs/cAMP/protein kinase A pathway. In mammary tumor cell lines, expression of the EP2 receptor followed by treatment with CAY10399, an EP2-specific agonist, strongly induced amphiregulin mRNA levels in a protein kinase A-dependent manner. These data suggest that PGE2 signaling via the EP2 receptor in mammary epithelial cells regulate mammary gland hyperplasia by the cAMP-dependent induction of amphiregulin. Inhibition of the EP2 pathway in the mammary gland may be a novel approach in the prevention and/or treatment of mammary cancer.

  12. Growth Factor Receptor-Directed Therapy in Human Breast Cancer

    Science.gov (United States)

    1997-12-01

    ligands which bind to EGFR, including EGF, TGF- 4 a a a, amphiregulin, and cripto - 1, and by the capability of EGFR to transactivate other type-I tyrosine...amplification in breast cancer was recently reported by Watson et al. (69). In this analysis, encompassing over 5,000 breast tumors, the amplification rate was...activation of c-myc oncogene expression. Oncogene 7: 1587-1594. 58. Shiu, R., Watson , P. and Dubik, D. (1993) C-myc oncogene expression in estrogen

  13. EGF receptor ligands: recent advances [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Bhuminder Singh

    2016-09-01

    Full Text Available Seven ligands bind to and activate the mammalian epidermal growth factor (EGF receptor (EGFR/ERBB1/HER1: EGF, transforming growth factor-alpha (TGFA, heparin-binding EGF-like growth factor (HBEGF, betacellulin (BTC, amphiregulin (AREG, epiregulin (EREG, and epigen (EPGN. Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  14. Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets, Complementary/Innovative Treatment, and Therapeutic Modalities

    Science.gov (United States)

    2011-02-01

    detection, antibody in a microplate well to form a capture sandwich immunoassay . Multiplex assays can be created by mixing bead sets with different...Epiregulin, FGF-basic, HB -EGF, PDGF-BB, PlGF, Tenascin C, and TGF-α (Table 3). Table 1: Acquired samples Sample Type Timepoint Frequency Percent...PDGF-bb Amphiregulin, Betacellulin MIP-1α, β IL-2, -2Ra MMP-9, PlGF HB -EGF RANTES (CCL5) IL3 - IL10 hypoxia MIP-2 IL-12 – IL18 endothelial function

  15. BATTLE (Biomarker-based Approach of Targeted Therapy for Lung Cancer Elimination)

    Science.gov (United States)

    2010-04-01

    Betacellulin, EGF, EGFR, Epiregulin, FGF-basic, HB -EGF, PDGF-BB, PlGF, Tenascin C, and TGF-α (Table 4). With these additional markers, we will be able to...Amphiregulin, Betacellulin MIP-1a, b IL-2, -2Ra MMP-9, PlGF HB -EGF RANTES (CCL5) IL3 - IL10 MIP-2 IL-12 – IL18 MIG (CXCL-9) Endothelial function...samples of plasma (163 of 168 patients, study 3; 65 of 127, study 6) or serum (144 of 181, study 7). High baseline VEGF values were above the immunoassay

  16. Expression of the epidermal growth factor system in human endometrium during the menstrual cycle

    DEFF Research Database (Denmark)

    Ejskjaer, Kirsten; Sørensen, B S; Poulsen, Steen Seier;

    2005-01-01

    The epidermal growth factor (EGF) system is ubiquitous in humans and plays fundamental roles in embryogenesis, development, proliferation and differentiation. As the endometrium of fertile women is characterized by proliferation and differentiation, we hypothesize a role for the EGF system...... (HER1) showed highest expression during the proliferative phase, HER2 and HER4 during the early and HER3 during the late secretory phase. Amphiregulin (AR) and transforming growth factor alpha (TGFalpha) expression is highest in proliferative phase. Heparin binding (HB)-EGF and betacellulin (BCL) show...

  17. JunD Is Required for Proliferation of Prostate Cancer Cells and Plays a Role in Transforming Growth Factor-β (TGF-β)-induced Inhibition of Cell Proliferation.

    Science.gov (United States)

    Millena, Ana Cecilia; Vo, BaoHan T; Khan, Shafiq A

    2016-08-19

    TGF-β inhibits proliferation of prostate epithelial cells. However, prostate cancer cells in advanced stages become resistant to inhibitory effects of TGF-β. The intracellular signaling mechanisms involved in differential effects of TGF-β during different stages are largely unknown. Using cell line models, we have shown that TGF-β inhibits proliferation in normal (RWPE-1) and prostate cancer (DU145) cells but does not have any effect on proliferation of prostate cancer (PC3) cells. We have investigated the role of Jun family proteins (c-Jun, JunB, and JunD) in TGF-β effects on cell proliferation. Jun family members were expressed at different levels and responded differentially to TGF-β treatment. TGF-β effects on JunD protein levels, but not mRNA levels, correlated with its effects on cell proliferation. TGF-β induced significant reduction in JunD protein in RWPE-1 and DU145 cells but not in PC3 cells. Selective knockdown of JunD expression using siRNA in DU145 and PC3 cells resulted in significant reduction in cell proliferation, and forced overexpression of JunD increased the proliferation rate. On the other hand, knockdown of c-Jun or JunB had little, if any, effect on cell proliferation; overexpression of c-Jun and JunB decreased the proliferation rate in DU145 cells. Further studies showed that down-regulation of JunD in response to TGF-β treatment is mediated via the proteasomal degradation pathway. In conclusion, we show that specific Jun family members exert differential effects on proliferation in prostate cancer cells in response to TGF-β, and inhibition of cell proliferation by TGF-β requires degradation of JunD protein.

  18. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein

    Directory of Open Access Journals (Sweden)

    Pearson Joel D

    2012-06-01

    Full Text Available Abstract Background Anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL is a T cell lymphoma defined by the presence of chromosomal translocations involving the ALK tyrosine kinase gene. These translocations generate fusion proteins (e.g. NPM-ALK with constitutive tyrosine kinase activity, which activate numerous signalling pathways important for ALK+ ALCL pathogenesis. The molecular chaperone heat shock protein-90 (Hsp90 plays a critical role in allowing NPM-ALK and other signalling proteins to function in this lymphoma. Co-chaperone proteins are important for helping Hsp90 fold proteins and for directing Hsp90 to specific clients; however the importance of co-chaperone proteins in ALK+ ALCL has not been investigated. Our preliminary findings suggested that expression of the immunophilin co-chaperone, Cyclophilin 40 (Cyp40, is up-regulated in ALK+ ALCL by JunB, a transcription factor activated by NPM-ALK signalling. In this study we examined the regulation of the immunophilin family of co-chaperones by NPM-ALK and JunB, and investigated whether the immunophilin co-chaperones promote the viability of ALK+ ALCL cell lines. Methods NPM-ALK and JunB were knocked-down in ALK+ ALCL cell lines with siRNA, and the effect on the expression of the three immunophilin co-chaperones: Cyp40, FK506-binding protein (FKBP 51, and FKBP52 examined. Furthermore, the effect of knock-down of the immunophilin co-chaperones, either individually or in combination, on the viability of ALK+ ALCL cell lines and NPM-ALK levels and activity was also examined. Results We found that NPM-ALK promoted the transcription of Cyp40 and FKBP52, but only Cyp40 transcription was promoted by JunB. We also observed reduced viability of ALK+ ALCL cell lines treated with Cyp40 siRNA, but not with siRNAs directed against FKBP52 or FKBP51. Finally, we demonstrate that the decrease in the viability of ALK+ ALCL cell lines treated with Cyp40 siRNA does not appear to

  19. The tumor microenvironment: a potential arbitrator of the tumor suppressive and promoting actions of TGFbeta.

    Science.gov (United States)

    Dumont, Nancy; Arteaga, Carlos L

    2002-12-01

    Transforming growth factor beta (TGFbeta) members are secreted in biologically inactive complexes that must be activated in order to enable binding to their cell surface receptors. Interestingly, many of the proteins that can activate TGFbeta have been implicated in either suppressing or promoting tumorigenesis. Included among these are matrix proteins (thrombospondin-1), receptors (integrins alphanubeta6 and alphanubeta8) and proteases (matrix metalloproteases and plasmin). These proteins cannot only activate TGFbeta, but can also modulate cell responsiveness to TGFbeta. In this section, we review data highlighting the complexity and bidirectionality of TGFbeta matrix interactions within the tumor microenvironment, and propose that these dynamic interactions are a critical spatial and temporal determinant of the effects of TGFbeta on tumorigenesis.

  20. The Role of Structural Extracellular Matrix Proteins in Urothelial Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Andrea Brunner

    2007-01-01

    Full Text Available The extracellular matrix (ECM plays a key role in the modulation of cancer cell invasion. In urothelial carcinoma of the bladder (UC the role of ECM proteins has been widely studied. The mechanisms, which are involved in the development of invasion, progression and generalization, are complex, depending on the interaction of ECM proteins with each other as well as with cancer cells. The following review will focus on the pathogenetic role and prognostic value of structural proteins, such as laminins, collagens, fi bronectin (FN, tenascin (Tn-C and thrombospondin 1 (TSP1 in UC. In addition, the role of integrins mediating the interaction of ECM molecules and cancer cells will be addressed, since integrin-mediated FN, Tn-C and TSP1 interactions seem to play an important role during tumor cell invasion and angiogenesis.

  1. Expression of angiostatic factors in colorectal cancer.

    Science.gov (United States)

    Yoshida, Y; Oshika, Y; Fukushima, Y; Tokunaga, T; Hatanaka, H; Kijima, H; Yamazaki, H; Ueyama, Y; Tamaoki, N; Miura, S; Nakamura, M

    1999-12-01

    Angiogenesis plays an important role in growth and proliferation of cancer. Various angiogenic and angiostatic factors regulate angiogenesis. We examined expression of genes encoding various angiostatic factors: thrombospondin 1 (TSP1), thrombospondin 2 (TSP2), brain-specific angiogenesis inhibitor 1 (BAI1) and angiopoietin 2 (AGP2) in 62 colorectal cancers and 40 samples of extraneoplastic colon mucosa. The expression of the angiostatic factors TSP2 and AGP2 were significantly increased in the cancerous mucosa as compared to these in extraneoplastic mucosa (o2 test; p<0. 0001, and Fisher's exact test; p<0.0001), while the increase in TSP1 expression was not significant. BAI1 expression was slightly decreased in the cancer tissue. These results suggested that specific types of angiostatic factors might have protective roles against cancer cell proliferation via dormancy due to hyponutrition caused by decreased vascularity.

  2. Mapping the heparin-binding site of the osteoinductive protein NELL1 by site-directed mutagenesis.

    Science.gov (United States)

    Takahashi, Kaneyoshi; Imai, Arisa; Iijima, Masumi; Yoshimoto, Nobuo; Maturana, Andrés D; Kuroda, Shun'ichi; Niimi, Tomoaki

    2015-12-21

    Neural epidermal growth factor-like (NEL)-like 1 (NELL1) is a secretory osteogenic protein comprising an N-terminal thrombospondin-1-like (TSPN) domain, four von Willebrand factor type C domains, and six epidermal growth factor-like repeats. NELL1 shows heparin-binding activity; however, the biological significance remains to be explored. In this report, we demonstrate that NELL1 binds to cell surface proteoglycans through its TSPN domain. Major heparin-binding sites were identified on the three-dimensional structural model of the TSPN domain of NELL1. Mutant analysis of the heparin-binding sites indicated that the heparin-binding activity of the TSPN domain is involved in interaction of NELL1 with cell surface proteoglycans.

  3. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    Science.gov (United States)

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.

  4. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas.

    Science.gov (United States)

    Laimer, Daniela; Dolznig, Helmut; Kollmann, Karoline; Vesely, Paul W; Schlederer, Michaela; Merkel, Olaf; Schiefer, Ana-Iris; Hassler, Melanie R; Heider, Susi; Amenitsch, Lena; Thallinger, Christiane; Staber, Philipp B; Simonitsch-Klupp, Ingrid; Artaker, Matthias; Lagger, Sabine; Turner, Suzanne D; Pileri, Stefano; Piccaluga, Pier Paolo; Valent, Peter; Messana, Katia; Landra, Indira; Weichhart, Thomas; Knapp, Sylvia; Shehata, Medhat; Todaro, Maria; Sexl, Veronika; Höfler, Gerald; Piva, Roberto; Medico, Enzo; Ruggeri, Bruce A; Cheng, Mangeng; Eferl, Robert; Egger, Gerda; Penninger, Josef M; Jaeger, Ulrich; Moriggl, Richard; Inghirami, Giorgio; Kenner, Lukas

    2012-11-01

    Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin's lymphoma found in children and young adults. ALCLs frequently carry a chromosomal translocation that results in expression of the oncoprotein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The key molecular downstream events required for NPM-ALK-triggered lymphoma growth have been only partly unveiled. Here we show that the activator protein 1 family members JUN and JUNB promote lymphoma development and tumor dissemination through transcriptional regulation of platelet-derived growth factor receptor-β (PDGFRB) in a mouse model of NPM-ALK-triggered lymphomagenesis. Therapeutic inhibition of PDGFRB markedly prolonged survival of NPM-ALK transgenic mice and increased the efficacy of an ALK-specific inhibitor in transplanted NPM-ALK tumors. Notably, inhibition of PDGFRA and PDGFRB in a patient with refractory late-stage NPM-ALK(+) ALCL resulted in rapid, complete and sustained remission. Together, our data identify PDGFRB as a previously unknown JUN and JUNB target that could be a highly effective therapy for ALCL.

  5. Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism.

    Science.gov (United States)

    Tang, Chengyuan; Chen, Xiang; Chi, Jingwei; Yang, Dawei; Liu, Shu; Liu, Mujun; Pan, Qian; Fan, Jianbing; Wang, Danling; Zhang, Zhuohua

    2015-11-01

    Mutations in connexin-31 (Cx31) are associated with multiple human diseases, including familial erythrokeratodermia variabilis (EKV). The pathogenic mechanism of EKV-associated Cx31 mutants remains largely elusive. Here, we show that EKV-pathogenic Cx31 mutants are un/misfolded and temperature sensitive. In Drosophila, expression of pathogenic Cx31, but not wild-type Cx31, causes depigmentation and degeneration of ommatidia that are rescued by expression of either dBip or dHsp70. Ectopic expression of Cx31 in mouse skin results in skin abnormalities resembling human EKV. The affected tissues show remarkable disrupted gap junction formation and significant upregulation of chaperones Bip and Hsp70 as well as AP-1 proteins c-Fos and JunB, in addition to molecular signatures of skin diseases. Consistently, c-Fos, JunB, Bip and Hsp70 are strikingly higher in keratinocytes of EKV patients than their matched control individuals. Furthermore, a druggable AP-1 inhibitory small molecule suppresses skin phenotype and pathological abnormalities of transgenic Cx31 mice. The study suggests that Cx31 mutant proteins are un/misfolded to cause EKV likely via an AP-1-mediated mechanism and identifies a small molecule with therapeutic potential of the disease.

  6. MicroRNA Expression Profiling in Clear Cell Renal Cell Carcinoma: Identification and Functional Validation of Key miRNAs.

    Directory of Open Access Journals (Sweden)

    Haowei He

    Full Text Available This study aims to profile dysregulated microRNA (miRNA expression in clear cell renal cell carcinoma (ccRCC and to identify key regulatory miRNAs in ccRCC.miRNA expression profiles in nine pairs of ccRCC tumor samples at three different stages and the adjacent, non-tumorous tissues were investigated using miRNA arrays. Eleven miRNAs were identified to be commonly dysregulated, including three up-regulated (miR-487a, miR-491-3p and miR-452 and eight down-regulated (miR-125b, miR-142-3p, miR-199a-5p, miR-22, miR-299-3p, miR-29a, miR-429, and miR-532-5p in tumor tissues as compared with adjacent normal tissues. The 11 miRNAs and their predicted target genes were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis, and three key miRNAs (miR-199a-5p, miR-22 and miR-429 were identified by microRNA-gene network analysis. Dysregulation of the three key miRNAs were further validated in another cohort of 15 ccRCC samples, and the human kidney carcinoma cell line 786-O, as compared with five normal kidney samples. Further investigation showed that over-expression of miR-199a-5p significantly inhibited the invasion ability of 786-O cells. Luciferase reporter assays indicated that miR-199a-5p regulated expression of TGFBR1 and JunB by directly interacting with their 3' untranslated regions. Transfection of miR-199a-5p successfully suppressed expression of TGFBR1 and JunB in the human embryonic kidney 293T cells, further confirming the direct regulation of miR-199a-5p on these two genes.This study identified 11 commonly dysregulated miRNAs in ccRCC, three of which (miR-199a-5p, miR-22 and miR-429 may represent key miRNAs involved in the pathogenesis of ccRCC. Further studies suggested that miR-199a-5p plays an important role in inhibition of cell invasion of ccRCC cells by suppressing expression of TGFBR1 and JunB.

  7. Down-regulation of the A3 adenosine receptor in human mast cells upregulates mediators of angiogenesis and remodeling.

    Science.gov (United States)

    Rudich, Noam; Dekel, Ornit; Sagi-Eisenberg, Ronit

    2015-05-01

    Adenosine activated mast cells have been long implicated in allergic asthma and studies in rodent mast cells have assigned the A3 adenosine receptor (A3R) a primary role in mediating adenosine responses. Here we analyzed the functional impact of A3R activation on genes that are implicated in tissue remodeling in severe asthma in the human mast cell line HMC-1 that shares similarities with lung derived human mast cells. Quantitative real time PCR demonstrated upregulation of IL6, IL8, VEGF, amphiregulin and osteopontin. Moreover, further upregulation of these genes was noted upon the addition of dexamethasone. Unexpectedly, activated A3R down regulated its own expression and knockdown of the receptor replicated the pattern of agonist induced gene upregulation. This study therefore identifies the human mast cell A3R as regulator of tissue remodeling gene expression in human mast cells and demonstrates a heretofore-unrecognized mode of feedback regulation that is exerted by this receptor.

  8. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, we demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.

  9. Epidermal growth factor receptor ligands as new extracellular targets for the metastasis-promoting S100A4 protein

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Møller, Henrik D.; Sumer, Eren U

    2009-01-01

    The function of S100A4, a member of the calcium-binding S100 protein family, has been associated with tumor invasion and metastasis. Although an essential pro-metastatic role of extracellular S100A4 in tumor progression has been demonstrated, the identification of the precise underlying mechanisms...... and protein partners (receptors) has remained elusive. To identify putative targets for extracellular S100A4, we screened a phage display peptide library using S100A4 as bait. We identified three independent peptide motifs with varying affinities for the S100A4 protein. Sequence analyses indicated...... that the most abundant peptide mimicked the F/YCC motif present in the epidermal growth factor domain of ErbB receptor ligands. S100A4 selectively interacted with a number of epidermal growth factor receptor (EGFR) ligands, demonstrating highest affinity for amphiregulin. Importantly, we found that S100A4...

  10. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    Science.gov (United States)

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  11. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia.

    Science.gov (United States)

    Wang, Yang; Shi, Chanjuan; Lu, Yuanyuan; Poulin, Emily J; Franklin, Jeffery L; Coffey, Robert J

    2015-04-01

    Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a pan-ErbB negative regulator and intestinal stem cell marker down-regulated in many malignancies. We previously reported that 14 of 16 Lrig1-CreERT2/CreERT2 (Lrig1(-/-)) mice developed duodenal adenomas, providing the first in vivo evidence that Lrig1 acts as a tumor suppressor. We extended this study to a larger cohort and found that 49 of 54 Lrig1(-/-) mice develop duodenal adenomas beginning at 3 months. Most adenomas were histologically low grade and overlaid expanded Brunner glands. There was morphologic and biochemical blurring of the boundary between the epithelium and Brunner glands with glandular coexpression of ErbB2, which is normally restricted to the epithelium, and the Brunner gland marker Mucin6. Some adenomas were high grade with reduced Brunner glands. At age 4 to 5 weeks, before adenoma formation, we observed enhanced proliferation in Brunner glands and, at 2 months, an increase in the size of the Brunner gland compartment. Elevated expression of the epidermal growth factor receptor (Egfr) ligands amphiregulin and β-cellulin, as well as Egfr and phosphorylated Egfr, was detected in adenomas compared with adjacent normal tissue. These adenomas expressed the gastric-specific genes gastrokine1 and mucin5ac, indicating gastric metaplasia. Moreover, we found that a subset of human duodenal tumors exhibited features of LRIG1(-/-) adenomas, including loss of LRIG1, gastric metaplasia (MUCIN5AC and MUCIN6), and increased amphiregulin and Egfr activity.

  12. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter....... Besides, we observed that DLK1/FA1 induced strong NFκB activity evidenced by NFκB responsive luciferase reporter assay and real-time RT-PCR analysis of NFκB target genes. The inhibitory effect of NFκB signaling on BMP signaling was confirmed by luciferase assay in C2C12 BMP luciferase reporter cells...

  13. Genomic structure and mapping of precerebellin and a precerebellin-related gene.

    Science.gov (United States)

    Kavety, B; Jenkins, N A; Fletcher, C F; Copeland, N G; Morgan, J I

    1994-11-01

    The cerebellum-specific hexadecapeptide, cerebellin, is derived from a larger precursor, precerebellin, that has sequence homology to the complement component C1qB. We report the cloning of the murine homolog of precerebellin, Cbln1, and a closely related gene, Cbln2. Amino acid comparison of Cbln1 with Cbln2 revealed that Cbln2 is 88% identical to the carboxy terminal region of Cbln1. That these are independent genes was confirmed by Southern analysis and genome mapping. Cbln1 was positioned to the central region of mouse chromosome 8, 2.3 cM distal of JunB and 6.0 cM proximal of Mt1, while Cbln2 mapped to the distal end of mouse chromosome 18, 1.7 cM telomeric of Mbp.

  14. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function

    DEFF Research Database (Denmark)

    Furlan, Federico; Galbiati, Clara; Jørgensen, Niklas R;

    2007-01-01

    reorganization in mature osteoclasts. INTRODUCTION: Urokinase receptor (uPAR) is actively involved in the regulation of important cell functions, such as proliferation, adhesion, and migration. It was previously shown that the major players in bone remodeling, osteoblasts and osteoclasts, express u...... to mechanical tests. UPAR KO calvaria osteoblasts were characterized by proliferation assays, RT-PCR for important proteins secreted during differentiation, and immunoblot for activator protein 1 (AP-1) family members. In vitro osteoclast formation was tested with uPAR KO bone marrow monocytes in the presence...... a proliferative advantage with no difference in apoptosis, higher matrix mineralization, and earlier appearance of alkaline phosphatase (ALP). Surface RANKL expression at different stages of differentiation was not altered. AP-1 components, such as JunB and Fra-1, were upregulated in uPAR KO osteoblasts, along...

  15. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells.

    LENUS (Irish Health Repository)

    Looby, Eileen

    2009-01-01

    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  16. Signalling in inflammatory skin disease by AP-1 (Fos/Jun).

    Science.gov (United States)

    Uluçkan, Özge; Guinea-Viniegra, Juan; Jimenez, Maria; Wagner, Erwin F

    2015-01-01

    Skin inflammation is a physiological reaction to tissue injury, pathogen invasion and irritants. During this process, innate and/or adaptive immune cells are activated and recruited to the site of inflammation to either promote or suppress inflammation. The sequential recruitment and activation of immune cells is modulated by a combination of cytokines and chemokines, which are regulated by transcription factors, such as AP-1 (Fos/Jun), NF-κB, NFATs, and STATs. Here we review the present evidence and the underlying mechanisms of how Jun/AP-1 proteins control skin inflammation. Genetically engineered mouse models (GEMMs) in which AP-1 proteins are deleted in the epidermis have revealed that these proteins control cytokine expression at multiple levels. Constitutive epidermal deletion of JunB in mice leads to a multi-organ disease characterised by increased levels of pro-inflammatory cytokines. These JunB-deficient mutant mice display several phenotypes from skin inflammation to a G-CSF-dependent myeloproliferative disease, as well as kidney atrophy and bone loss, reminiscent of psoriasis and systemic lupus erythematosus. Importantly, epidermal deletion of both JunB and c-Jun in an inducible manner in adult mice leads to a psoriasis-like disease, in which the epidermal proteome expression profile is comparable to the one from psoriasis patient samples. In this GEMM and in psoriasis patient-derived material, S100A8/A9-dependent C3/CFB complement activation, as well as a miR-21-dependent TIMP-3/TACE pathway leading to TNF-α shedding, plays causal roles in disease development. The newly identified therapeutic targets from GEMMs together with investigations in human patient samples open up new avenues for therapeutic interventions for psoriasis and related inflammatory skin diseases.

  17. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells

    Directory of Open Access Journals (Sweden)

    Long Aideen

    2009-06-01

    Full Text Available Abstract Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  18. A designated centre for people with disabilities operated by S.O.S. Kilkenny Ltd, Kilkenny

    LENUS (Irish Health Repository)

    Looby, Eileen

    2009-01-01

    BACKGROUND: The progression from Barrett\\'s metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. METHODS: Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. RESULTS: DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1\\/2- and p38 MAPK while Erk1\\/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK\\/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. CONCLUSION: DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.

  19. Increase in proto-oncogene mRNA transcript levels in bovine lymphoid cells infected with a cytopathic type 2 bovine viral diarrhea virus.

    Science.gov (United States)

    Neill, John D; Ridpath, Julia F

    2008-08-01

    Infection of susceptible animals with bovine viral diarrhea viruses (BVDV) can result in an array of disease symptoms that are dependent in part on the strain of infecting virus and the physiological status of the host. BVDV are lymphotrophic and exist as two biotypes. Cytopathic BVDV kill cells outright while noncytopathic strains can readily establish persistent infections. The molecular mechanisms behind these different affects are unknown. To gain a better understanding of the mechanisms of disease, serial analysis of gene expression (SAGE), a powerful method for global gene expression analysis, was employed to examine gene expression changes in BVDV-infected BL3 cells, a bovine B-cell lymphosarcoma cell line. SAGE libraries were constructed from mRNA derived from BL3 cells that were noninfected or infected with the cytopathic BVDV2 strain 296c. Annotation of the SAGE data showed the expression of many genes that are characteristic of B cells and integral to their function. Comparison of the SAGE databases also revealed a number of genes that were differentially expressed. Of particular interest was the increased numbers of transcripts encoding proto-oncogenes (c-fos, c-jun, junB, junD) in 296c-infected cells, all of which are constituents of the AP-1 transcriptional activation complex. Real-time RT-PCR confirmed these results and indicated that the actual increases were larger than that predicted by SAGE. In contrast, there was no corresponding increase in protein levels, but instead a significant decrease of c-jun and junB protein levels in the infected BL3 cells was observed. Rather than an increase in transcription of these genes, it appeared that these proto-oncogenes transcripts accumulated in the BVDV2-infected cells.

  20. Metronomic chemotherapy following the maximum tolerated dose is an effective anti-tumour therapy affecting angiogenesis, tumour dissemination and cancer stem cells.

    Science.gov (United States)

    Vives, Marta; Ginestà, Mireia M; Gracova, Kristina; Graupera, Mariona; Casanovas, Oriol; Capellà, Gabriel; Serrano, Teresa; Laquente, Berta; Viñals, Francesc

    2013-11-15

    In this article, the effectiveness of a multi-targeted chemo-switch (C-S) schedule that combines metronomic chemotherapy (MET) after treatment with the maximum tolerated dose (MTD) is reported. This schedule was tested with gemcitabine in two distinct human pancreatic adenocarcinoma orthotopic models and with cyclophosphamide in an orthotopic ovarian cancer model. In both models, the C-S schedule had the most favourable effect, achieving at least 80% tumour growth inhibition without increased toxicity. Moreover, in the pancreatic cancer model, although peritoneal metastases were observed in control and MTD groups, no dissemination was observed in the MET and C-S groups. C-S treatment caused a decrease in angiogenesis, and its effect on tumour growth was similar to that produced by the MTD followed by anti-angiogenic DC101 treatment. C-S treatment combined an increase in thrombospondin-1 expression with a decrease in the number of CD133+ cancer cells and triple-positive CD133+/CD44+/CD24+ cancer stem cells (CSCs). These findings confirm that the C-S schedule is a challenging clinical strategy with demonstrable inhibitory effects on tumour dissemination, angiogenesis and CSCs.

  1. (-)-Epicatechin Attenuates Degradation of Mouse Oxidative Muscle Following Hindlimb Suspension.

    Science.gov (United States)

    Lee, Icksoo; Hüttemann, Maik; Malek, Moh H

    2016-01-01

    The purpose of this study was to conduct a 14-day hindlimb suspension (HS) with and without (-)-epicatechin supplementation to determine whether (-)-epicatechin treatment can attenuate the loss in muscle degradation, angiogenesis, and mitochondrial signaling in oxidative skeletal muscle. Adult mice were randomized into 3 groups: (a) control (C); (b) HS with vehicle (HS-V); and (c) HS with (-)-epicatechin (HS-(-)-Epi). Animals in the HS-(-)-Epi group received (-)-epicatechin (1.0 mg · kg(-1) of body mass) twice daily through oral gavage. For markers related to muscle degradation, the HS-V group had significantly higher protein expression compared with the control and HS-(-)-Epi groups. Moreover, protein expression for myosin heavy chain type I was significantly reduced by approximately 45% in the HS-V group compared with the control and HS-(-)-Epi groups. In addition, capillarity contact and capillary-to-fiber ratio were significantly higher in the HS-(-)-Epi group compared with the HS-V group. Furthermore, protein expression for thrombospondin-1 was significantly higher in HS-V group compared with the control and HS-(-)-Epi groups. Hindlimb suspension also significantly reduced protein expression for mitochondrial signaling compared with the control and HS-(-)-Epi groups. These findings suggest that (-)-epicatechin supplementation attenuates degradation in oxidative muscles after HS.

  2. Expression of angiogenic regulators and skeletal muscle capillarity in selectively bred high aerobic capacity mice.

    Science.gov (United States)

    Audet, Gerald N; Meek, Thomas H; Garland, Theodore; Olfert, I Mark

    2011-11-01

    Selective breeding for high voluntary wheel running in untrained mice has resulted in a 'mini muscle' (MM) phenotype, which has increased skeletal muscle capillarity compared with muscles from non-selected control lines. Vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) are essential mediators of skeletal muscle angiogenesis; thus, we hypothesized that untrained MM mice with elevated muscle capillarity would have higher basal VEGF expression and lower basal TSP-1 expression, and potentially an exaggerated VEGF response to acute exercise. We examined skeletal muscle morphology and skeletal muscle protein expression of VEGF and TSP-1 in male mice from two (untrained) mouse lines selectively bred for high exercise capacity (MM and Non-MM), as well as one non-selected control mouse line (normal aerobic capacity). In the MM mice, gastrocnemius (GA) and plantaris (PLT) muscle capillarity (i.e. capillary-to-fibre ratio and capillary density) were greater compared with control mice (P capillarity in PLT was greater than in control mice (P capillarity among groups. In the GA, MM mice had 58% greater basal VEGF (P capillarity is associated with altered balance between positive and negative angiogenic regulators (i.e. VEGF versus TSP-1, respectively). Based on the greater capillarity and significant VEGF response to exercise in MM mice, these data suggest that VEGF expression may, at least in part, be genetically determined.

  3. Ca(2+) Mediates the Self-Assembly of the Foot Proteins of Pinctada fucata from the Nanoscale to the Microscale.

    Science.gov (United States)

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2016-10-10

    Bivalve animals such as mussels and pearl oysters secrete proteinaceous byssus from the foot to attach themselves to solid surfaces under seawater. Although the biomolecules of mussel byssus have been extensively studied, how they form insoluble threads underwater from soluble protein precursors and how they produce hierarchical microscale threads from biomolecules remains unclear. Here, using the pearl oyster Pinctada fucata as a model, metal ions rather than pH are found to play critical roles in the solidification process of the byssus. Particularly, Ca(2+) can induce self-assembly of the foot proteins and the byssal proteins, resulting in aggregate formation. At a concentration of 10 mM, protein fibers with a diameter of approximately 26 μm and a length ranging from 50 to 400 μm were formed. Moreover, the fibers are composed of 60-90 nm nanospheres, reminiscent of the ultrastructure sizes of threads. It is proposed that Ca(2+) can interact with byssal proteins such as thrombospondin-1 containing protein through phosphorylated serine and/or von Willebrand factor type A domains. This study provides insight into how the byssus forms from the soluble protein molecules into insoluble threads underwater and may inspire further biomaterial design for underwater use.

  4. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome.

    Directory of Open Access Journals (Sweden)

    Philippe Boucher

    Full Text Available BACKGROUND: The multifunctional receptor LRP1 controls expression, activity and trafficking of the PDGF receptor-beta in vascular smooth muscle cells (VSMC. LRP1 is also a receptor for TGFbeta1 and is required for TGFbeta mediated inhibition of cell proliferation. METHODS AND PRINCIPAL FINDINGS: We show that loss of LRP1 in VSMC (smLRP(- in vivo results in a Marfan-like syndrome with nuclear accumulation of phosphorylated Smad2/3, disruption of elastic layers, tortuous aorta, and increased expression of the TGFbeta target genes thrombospondin-1 (TSP1 and PDGFRbeta in the vascular wall. Treatment of smLRP1(- animals with the PPARgamma agonist rosiglitazone abolished nuclear pSmad accumulation, reversed the Marfan-like phenotype, and markedly reduced smooth muscle proliferation, fibrosis and atherosclerosis independent of plasma cholesterol levels. CONCLUSIONS AND SIGNIFICANCE: Our findings are consistent with an activation of TGFbeta signals in the LRP1-deficient vascular wall. LRP1 may function as an integrator of proliferative and anti-proliferative signals that control physiological mechanisms common to the pathogenesis of Marfan syndrome and atherosclerosis, and this is essential for maintaining vascular wall integrity.

  5. Eimeria tenella microneme protein EtMIC3: identification, localisation and role in host cell infection.

    Science.gov (United States)

    Labbé, M; de Venevelles, P; Girard-Misguich, F; Bourdieu, C; Guillaume, A; Péry, P

    2005-03-01

    The gene coding for Eimeria tenella protein EtMIC3 was cloned by screening a sporozoite cDNA library with two independent monoclonal antibodies raised against the oocyst stage. The deduced sequence of EtMIC3 is 988 amino acids long. The protein presents seven repeats in tandem, with four highly conserved internal repeats and three more divergent external repeats. Each repeat is characterised by a tyrosine kinase phosphorylation site, WRCY, and a reminiscent motif of the thrombospondin1 (TSP1)-type I domain, CXXXCG. The protein EtMIC3 is localised at the apex of free parasite stages. It is not detected in the early intracellular parasite stage but is synthesised in mature schizonts. Secretion of the protein is induced when sporozoites are incubated in complete medium at 41 degrees C. Strangely enough, the two independent mAb that allow cloning of EtMIC3 interfere with parasitic growth in different ways. One is able to inhibit parasite invasion whereas the other inhibits development. Expression and localisation of the protein EtMIC3 are consistent with a protein involved in the invasion process as is expected for a microneme protein.

  6. Genomic reprograming analysis of the Mesothelial to Mesenchymal Transition identifies biomarkers in peritoneal dialysis patients

    Science.gov (United States)

    Ruiz-Carpio, Vicente; Sandoval, Pilar; Aguilera, Abelardo; Albar-Vizcaíno, Patricia; Perez-Lozano, María Luisa; González-Mateo, Guadalupe T.; Acuña-Ruiz, Adrián; García-Cantalejo, Jesús; Botías, Pedro; Bajo, María Auxiliadora; Selgas, Rafael; Sánchez-Tomero, José Antonio; Passlick-Deetjen, Jutta; Piecha, Dorothea; Büchel, Janine; Steppan, Sonja; López-Cabrera, Manuel

    2017-01-01

    Peritoneal dialysis (PD) is an effective renal replacement therapy, but a significant proportion of patients suffer PD-related complications, which limit the treatment duration. Mesothelial-to-mesenchymal transition (MMT) contributes to the PD-related peritoneal dysfunction. We analyzed the genetic reprograming of MMT to identify new biomarkers that may be tested in PD-patients. Microarray analysis revealed a partial overlapping between MMT induced in vitro and ex vivo in effluent-derived mesothelial cells, and that MMT is mainly a repression process being higher the number of genes that are down-regulated than those that are induced. Cellular morphology and number of altered genes showed that MMT ex vivo could be subdivided into two stages: early/epithelioid and advanced/non-epithelioid. RT-PCR array analysis demonstrated that a number of genes differentially expressed in effluent-derived non-epithelioid cells also showed significant differential expression when comparing standard versus low-GDP PD fluids. Thrombospondin-1 (TSP1), collagen-13 (COL13), vascular endothelial growth factor A (VEGFA), and gremlin-1 (GREM1) were measured in PD effluents, and except GREM1, showed significant differences between early and advanced stages of MMT, and their expression was associated with a high peritoneal transport status. The results establish a proof of concept about the feasibility of measuring MMT-associated secreted protein levels as potential biomarkers in PD. PMID:28327551

  7. Involvement of TSP1 and MMP9/NGAL in Angiogenesis during Orthodontic Periodontal Remodeling

    Directory of Open Access Journals (Sweden)

    Petra Surlin

    2014-01-01

    Full Text Available In the present study the aim was to measure the levels of Thrombospondin-1 (TSP1 and Lipocalin-2/matrix metalloproteinase 9 (MMP9/NGAL complex in gingival crevicular fluid (GCF at different time points of orthodontic treatment, to determine the relationship between these values and those of total-matrix metalloproteinase 9 (MMP9 and theirs implication in angiogenesis balance, in the situation of a good control of the bacterial plaque, emphasizing the role of TSP1 and MMP9/NGAL complex. GCF samples were collected from 16 young orthodontic patients requiring upper canine distalization (test tooth with first premolar extraction. The contralateral canine (control tooth was free from orthodontic force. For the orthodontic appliance, brackets Roth 0.018 inch with 0.012 inch NiTi archwire and a laceback were used. TSP1, MMP9/NGAL, and MMP9 increased from 1 hour before activation of orthodontic appliance to a maximum at 8 hours for MMP9 and 72 hours for MMP9/NGAL and TSP1. The results show a change in time of TSP1, MMP9/NGAL, and MMP9 levels in GCF of patients with this method of orthodontic treatment. The powerful correlation of MMP9/NGAL with TSP1 suggests their stronger involvement in angiogenesis processes in PDL during orthodontic periodontal remodeling, in the situation of a healthy periodontium and a good control of the bacterial plaque.

  8. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function.

    Science.gov (United States)

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2017-01-06

    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  9. Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.

    Science.gov (United States)

    Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K

    2015-11-01

    Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing.

  10. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons.

    Science.gov (United States)

    Proschel, Christoph; Stripay, Jennifer L; Shih, Chung-Hsuan; Munger, Joshua C; Noble, Mark D

    2014-04-01

    In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAs(BMP), that are generated in vitro by directed differentiation of glial precursors. GDAs(BMP) produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAs(BMP) also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDA(BMP) transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDA(BMP) transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin(+) GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAs(BMP), increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAs(BMP) offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.

  11. Metronomic paclitaxel-loaded mPEG-PLA nanoparticles show enhanced anti-tumor efficacy compared to maximum tolerated dose administration

    Science.gov (United States)

    Fei, Tan; Yang, Lian-juan; Mo, Xiao-hui; Wang, Xiu-li; Jun, Gu

    2014-11-01

    Low-dose metronomic (LDM) chemotherapy with cytotoxic agents, aimed at disrupting tumor endothelial cells, is an alternative method to maximum tolerated dose chemotherapy targeting proliferating tumor cells in clinical practice. However, even in the LDM schedule, cytotoxic agents still exhibit serious side effects due to non-distribution and high accumulated doses in the body. Nanocarriers can maximize the efficacy of the encapsulated drug by adjusting the pharmacokinetics and bio-distribution pattern, and minimize excessive toxic side effects. In the present study, we prepared polyethylene glycol (PEG)-coated stealth nanoparticles containing paclitaxel (PTX-NP) in order to evaluate their accumulation in tumor and their anti-tumor activity following LDM administration. PTX-NPs were prepared by a modified emulsification/solvent diffusion method with methoxy PEG-poly(lactide). The in vitro viability, migration, and tube formation of primary human umbilical vein endothelial cells, in addition to thrombospondin-1 positive expression and microvessel density in vivo, confirmed the anti-angiogenic activity of PTX-NP. The cellular uptake and retention study, in addition to pharmacokinetics in Sprague-Dawley rats demonstrated sustained circulation of PTX-NP. The in vivo tumor accumulation of PTX-NP was monitored using the Xenogen IVIS 200 non-invasive optical imaging system. The anti-tumor activity of LDM PTX-NP was studied in B16 melanoma cancer-bearing mice in vivo. In conclusion, PTX-NP improved tumor accumulation and anti-tumor efficacy following LDM administration.

  12. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood–brain barrier impairment

    Science.gov (United States)

    Aragon, Mario J.; Topper, Lauren; Tyler, Christina R.; Sanchez, Bethany; Zychowski, Katherine; Young, Tamara; Herbert, Guy; Hall, Pamela; Erdely, Aaron; Eye, Tracy; Bishop, Lindsey; Saunders, Samantha A.; Muldoon, Pretal P.; Ottens, Andrew K.; Campen, Matthew J.

    2017-01-01

    Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity. PMID:28223486

  13. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood-brain barrier impairment.

    Science.gov (United States)

    Aragon, Mario J; Topper, Lauren; Tyler, Christina R; Sanchez, Bethany; Zychowski, Katherine; Young, Tamara; Herbert, Guy; Hall, Pamela; Erdely, Aaron; Eye, Tracy; Bishop, Lindsey; Saunders, Samantha A; Muldoon, Pretal P; Ottens, Andrew K; Campen, Matthew J

    2017-03-07

    Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.

  14. Effects of low-dose cyclophosphamide with piroxicam on tumour neovascularization in a canine oral malignant melanoma-xenografted mouse model.

    Science.gov (United States)

    Choisunirachon, N; Jaroensong, T; Yoshida, K; Saeki, K; Mochizuki, M; Nishimura, R; Sasaki, N; Nakagawa, T

    2015-12-01

    Low-dose cyclophosphamide (CyLD) has shown promise in the treatment of several cancers; however, the effect of CyLD on canine oral malignant melanoma has never been explored. In this study, we investigated the effects of CyLD with or without piroxicam (Px) on tumour neovascularization and vascular normalization in a canine oral malignant melanoma-xenografted mice model. After treatment with CyLD, Px or a combination of both (CyPx), the growth of the tumour in the treatment groups was significantly suppressed compared to the control group at 30 days of treatment. Proliferation index was also significantly reduced by all treatments, only CyPx significantly lowered microvessel density and vascular endothelial growth factor (VEGF) levels. Additionally, CyLD significantly reduced the proportion of normal vessels and caused an imbalance between VEGF and thrombospondin-1. These results suggested that CyPx has potent anti-angiogenic effects in terms of both the number and quality of blood vessels in xenografted canine oral malignant melanoma.

  15. Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    Yutaka; Matsui; Junko; Morimoto; Toshimitsu; Uede

    2010-01-01

    After onset of myocardial infarction(MI),the left ventricle(LV) undergoes a continuum of molecular,cellular,and extracellular responses that result in LV wall thinning,dilatation,and dysfunction.These dynamic changes in LV shape,size,and function are termed cardiac remodeling.If the cardiac healing after MI does not proceed properly,it could lead to cardiac rupture or maladaptive cardiac remodeling,such as further LV dilatation and dysfunction,and ultimately death.Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated,this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix(ECM) proteins.The components of ECM include basic structural proteins such as collagen,elastin and specialized proteins such as fibronectin,proteoglycans and matricellular proteins.Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors,other matrix proteins,and soluble extracellular factors such as growth factors and cytokines.This small group of proteins,which includesosteopontin,thrombospondin-1/2,tenascin,periostin,and secreted protein,acidic and rich in cysteine,shows a low level of expression in normal adult tissue,but is markedly upregulated during wound healing and tissue remodeling,including MI.In this review,we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI.

  16. Akt mediates an angiogenic switch in transformed keratinocytes.

    Science.gov (United States)

    Segrelles, Carmen; Ruiz, Sergio; Santos, Mirentxu; Martínez-Palacio, Jesús; Lara, M Fernanda; Paramio, Jesús M

    2004-07-01

    Akt signaling is involved in tumorigenesis via a number of different mechanisms that result in increased proliferation and decreased apoptosis. Previous data have demonstrated that Akt-mediated signaling is functionally involved in keratinocyte transformation. This work investigates the involvement of angiogenesis as a mediator of tumorigenesis in Akt-transformed keratinocytes. Tumors produced by subcutaneous injection of the latter showed increased angiogenic profiles associated with increased vascular endothelial growth factor (VEGF) protein levels. However, in contrast to v-ras(Ha)-transformed keratinocytes, VEGF mRNA levels were not increased. The induction of VEGF protein by Akt is associated with increased phosphorylation and thus activation of p70S6K and eIF4E-binding protein 1, leading to increased VEGF translation. In addition, we observed increased metaloproteinases 2 and 9 expression, but not thrombospondin 1, in tumors derived from Akt-transformed keratinocytes. Collectively, these results demonstrate that Akt is an important mediator of angiogenesis in malignant keratinocytes through a post-transcriptional mechanism.

  17. [Scavenger receptor CD36: its expression, regulation, and role in the pathogenesis of atherosclerosis. Part I].

    Science.gov (United States)

    Kuliczkowska-Płaksej, Justyna; Bednarek-Tupikowska, Grazyna; Płaksej, Rafał; Filus, Alicja

    2006-01-01

    Atherosclerosis is a progressive pathological process based on endothelial dysfunction and chronic inflammation. Monocytes, macrophages, and modified lipoproteins, especially oxidized LDLs (oxLDLs), play a fundamental role in the pathogenesis of atherosclerosis. Monocytes evolve into macrophages in the vascular wall and then accumulate oxLDLs, forming foam cells. OxLDLs are toxic and activate foam cells, stimulate the replication of macrophages and their migration into atherosclerotic plaque, and increase the expression of metaloproteinases. Macrophages bind oxLDLs through many types of receptors, among them scavenger receptors. One of these is CD36, a membrane glycoprotein expressed by endothelial cells, adipocytes, smooth and skeletal muscle cells, cardiomiocytes, platelets, monocytes, and macrophages. CD36 recognizes and binds many ligands, such as oxLDLs, long-chain fatty acids, collagen, thrombospondin 1, apoptotic cells, anionic phospholipids, and Plasmodium falciparum-infected erythrocytes. CD36 is involved in many processes, e.g. inner immune system responses, removal of apoptotic cells and Plasmodium falciparum-infected erythrocytes, and the transport of long-chain fatty acids, and it also mediates collagen and thrombospondin action. Recent reports indicate that CD36 may play a role in the development of atherosclerosis. An animal model revealed that lack of CD36 expression restrains atheroslerosis. Increased expression of CD36 was shown in atheroslerotic plaque and damaged vascular tissue. Contradictory data about the effects of antiatherosclerotic drugs on CD36 expression indicate the necessity for further investigation of the role of CD36 in the development of atherosclerosis.

  18. Impaired Resolution of Inflammation in the Endoglin Heterozygous Mouse Model of Chronic Colitis

    Directory of Open Access Journals (Sweden)

    Madonna R. Peter

    2014-01-01

    Full Text Available Endoglin is a coreceptor of the TGF-β superfamily predominantly expressed on the vascular endothelium and selective subsets of immune cells. We previously demonstrated that Endoglin heterozygous (Eng+/− mice subjected to dextran sulfate sodium (DSS developed persistent gut inflammation and pathological angiogenesis. We now report that colitic Eng+/− mice have low colonic levels of active TGF-β1, which was associated with reduced expression of thrombospondin-1, an angiostatic factor known to activate TGF-β1. We also demonstrate dysregulated expression of BMPER and follistatin, which are extracellular regulators of the TGF-β superfamily that modulate angiogenesis and inflammation. Heightened colonic levels of the neutrophil chemoattractant and proangiogenic factor, CXCL1, were also observed in DSS-treated Eng+/− mice. Interestingly, despite increased macrophage and neutrophil infiltration, a gut-specific reduction in expression of the key phagocytic respiratory burst enzymes, NADPH oxidase 2 (Nox-2 and myeloperoxidase, was seen in Eng+/− mice undergoing persistent inflammation. Taken together, these findings suggest that endoglin is required for TGF-β superfamily mediated resolution of inflammation and fully functional myeloid cells.

  19. Amyloid-β inhibits No-cGMP signaling in a CD36- and CD47-dependent manner.

    Directory of Open Access Journals (Sweden)

    Thomas W Miller

    Full Text Available Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional responses to nitric oxide in platelets and vascular smooth muscle cells were correspondingly inhibited by amyloid-β. Functional interaction of amyloid-β with the scavenger receptor CD36 was indicated by inhibition of free fatty acid uptake via this receptor. Both soluble oligomer and fibrillar forms of amyloid-β were active. In contrast, amyloid-β did not compete with the known ligand SIRPα for binding to CD47. However, both receptors were necessary for amyloid-β to inhibit cGMP accumulation. These data suggest that amyloid-β interaction with CD36 induces a CD47-dependent signal that inhibits soluble guanylate cyclase activation. Combined with the pleiotropic effects of inhibiting free fatty acid transport via CD36, these data provides a molecular mechanism through which amyloid-β can contribute to the nitric oxide signaling deficiencies associated with Alzheimer's disease.

  20. Interstitial guidance of cancer invasion.

    Science.gov (United States)

    Gritsenko, Pavlo G; Ilina, Olga; Friedl, Peter

    2012-01-01

    Cancer cell invasion into healthy tissues develops preferentially along pre-existing tracks of least resistance, followed by secondary tissue remodelling and destruction. The tissue scaffolds supporting or preventing guidance of invasion vary in structure and molecular composition between organs. In the brain, the guidance is provided by myelinated axons, astrocyte processes, and blood vessels which are used as invasion routes by glioma cells. In the human breast, containing interstitial collagen-rich connective tissue, disseminating breast cancer cells preferentially invade along bundled collagen fibrils and the surface of adipocytes. In both invasion types, physical guidance prompted by interfaces and space is complemented by molecular guidance. Generic mechanisms shared by most, if not all, tissues include (i) guidance by integrins towards fibrillar interstitial collagen and/or laminins and type IV collagen in basement membranes decorating vessels and adipocytes, and, likely, CD44 engaging with hyaluronan; (ii) haptotactic guidance by chemokines and growth factors; and likely (iii) physical pushing mechanisms. Tissue-specific, resticted guidance cues include ECM proteins with restricted expression (tenascins, lecticans), cell-cell interfaces, and newly secreted matrix molecules decorating ECM fibres (laminin-332, thrombospondin-1, osteopontin, periostin). We here review physical and molecular guidance mechanisms in interstitial tissue and brain parenchyma and explore shared principles and organ-specific differences, and their implications for experimental model design and therapeutic targeting of tumour cell invasion.

  1. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  2. Structure of the poly-C9 component of the complement membrane attack complex.

    Science.gov (United States)

    Dudkina, Natalya V; Spicer, Bradley A; Reboul, Cyril F; Conroy, Paul J; Lukoyanova, Natalya; Elmlund, Hans; Law, Ruby H P; Ekkel, Susan M; Kondos, Stephanie C; Goode, Robert J A; Ramm, Georg; Whisstock, James C; Saibil, Helen R; Dunstone, Michelle A

    2016-02-04

    The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.

  3. Postoperative Atypical Hemolytic Uremic Syndrome Associated with Complement C3 Mutation

    Directory of Open Access Journals (Sweden)

    Eiji Matsukuma

    2014-01-01

    Full Text Available Atypical hemolytic uremic syndrome (aHUS can be distinguished from typical or Shiga-like toxin-induced HUS. The clinical outcome is unfavorable; up to 50% of affected patients progress to end-stage renal failure and 25% die during the acute phase. Multiple conditions have been associated with aHUS, including infections, drugs, autoimmune conditions, transplantation, pregnancy, and metabolic conditions. aHUS in the nontransplant postsurgical period, however, is rare. An 8-month-old boy underwent surgical repair of tetralogy of Fallot. Neurological disturbances, acute renal failure, thrombocytopenia, and microangiopathic hemolytic anemia developed 25 days later, and aHUS was diagnosed. Further evaluation revealed that his complement factor H (CFH level was normal and that anti-FH antibodies were not detected in his plasma. Sequencing of his CFH, complement factor I, membrane cofactor protein, complement factor B, and thrombomodulin genes was normal. His ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin-1 repeats 13 activity was also normal. However, he had a potentially causative mutation (R425C in complement component C3. Restriction fragment length polymorphism analysis revealed that his father and aunt also had this mutation; however, they had no symptoms of aHUS. We herein report a case of aHUS that developed after cardiovascular surgery and was caused by a complement C3 mutation.

  4. Thrombospondin and VEGF-R: Is There a Correlation in Inflammatory Bowel Disease?

    Directory of Open Access Journals (Sweden)

    Jaroslaw Wejman

    2013-01-01

    Full Text Available Up to date several authors discussed interactions between cells forming inflammatory infiltrates in the course of inflammatory bowel disease (IBD, mainly dealing with endoscopic biopsy specimens. These usually contain only mucosa. We have evaluated full bowel wall sections, which seems to be especially important in patients with Crohn's disease (CD. The purpose of our study was to evaluate the relationship between vascular density and expression of thrombospondin-1 (TSP-1 and vascular endothelial growth factor receptor 1 (VEGFR-1 in full-thickness tissue fragments of intestinal wall taken from patients after colectomy, comparing those with IBD to non-IBD control group. Histological sections were immunostained with antibodies against CD-31, TSP-1, and VEGFR-1 and analyzed by pathologists with the use of computer-assisted morphometrics. Our research showed significantly higher vascular density and vascular area percentage in all layers of bowel wall in patients with CD when compared to control. We have also demonstrated differences in vascular density distribution between ulcerative colitis (CU and CD and between CU and control. However we have not found statistically significant correlation between those findings and VEGFR-1 or TSP-1 expression. Our results might suggest existence of different, TSP-1 independent pathways of antiangiogenesis in IBD.

  5. Perindopril Induces TSP-1 Expression in Hypertensive Patients with Endothelial Dysfunction in Chronic Treatment

    Directory of Open Access Journals (Sweden)

    Valentina Buda

    2017-02-01

    Full Text Available Thrombospondin-1 (TSP-1 is a potent endogenous inhibitor of both physiological and pathological angiogenesis, widely studied as a target in drug development for treating cancer. Several studies performed in the cardiovascular field on TSP-1 are contradictory, the role of TSP-1 in the physiopathology of cardiovascular disorders (CVDs being, for the moment, incompletely understood and may be due to the presence of several domains in its structure which can stimulate many cellular receptors. It has been reported to inhibit NO-mediated signaling and to act on the angiogenesis, tissue perfusion, endothelial cell proliferation, and homeostasis, so we aimed to quantify the effect Perindopril has on TSP-1 plasma levels in hypertensive patients with endothelial dysfunction in comparison with other antihypertensive drugs, such as beta blockers, calcium channel blockers, and diuretics, in a chronic treatment. As a conclusion, patients under treatment with Perindopril had increased plasma levels of TSP-1 compared with other hypertensive patients and with the control group. The results of this study confirms the pleiotropic properties of Perindopril: anti-proliferative, anti-inflammatory, with effects showed by quantifying a single biomarker: TSP-1.

  6. THROMBOTIC MICROANGIOPATHY IN HAEMATOPOIETIC CELL TRANSPLANTATION:AN UPDATE

    Directory of Open Access Journals (Sweden)

    Evi Stavrou

    2010-10-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT represents a vital procedure for patients with various hematologic conditions. Despite advances in the field, HCT carries significant morbidity and mortality. A rare but potentially devastating complication is transplantation-associated thrombotic microangiopathy (TA-TMA. In contrast to idiopathic TTP, whose etiology is attributed to deficient activity of ADAMTS13, (a member of the A Disintegrin And Metalloprotease with Thrombospondin 1 repeats family of metalloproteases, patients with TA-TMA have > 5% ADAMTS13 activity. Pathophysiologic mechanisms associated with TA-TMA, include loss of endothelial cell integrity induced by intensive conditioning regimens, immunosuppressive therapy, irradiation, infections and graft-versus-host (GVHD disease. The reported incidence of TA-TMA ranges from 0.5% to 75%, reflecting the difficulty of accurate diagnosis in these patients. Two different groups have proposed consensus definitions for TA-TMA, yet they fail to distinguish the primary syndrome from secondary causes such as infections or medication exposure. Despite treatment, mortality rate in TA-TMA ranges between 60% to 90%. The treatment strategies for TA-TMA remain challenging. Calcineurin inhibitors should be discontinued and replaced with alternative immunosuppressive agents.  Daclizumab, a humanized monoclonal anti-CD25 antibody, has shown promising results in the treatment of TA-TMA. Rituximab or the addition of defibrotide, have been reported to induce remission in this patient population. In general, plasma exchange is not recommended.

  7. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Aniekanabassi N Udoko

    2016-01-01

    Full Text Available The molecular mechanisms of Trypanosoma cruzi induced cardiac fibrosis remains to be elucidated. Primary human cardiomyoctes (PHCM exposed to invasive T. cruzi trypomastigotes were used for transcriptome profiling and downstream bioinformatic analysis to determine fibrotic-associated genes regulated early during infection process (0 to 120 minutes. The identification of early molecular host responses to T. cruzi infection can be exploited to delineate important molecular signatures that can be used for the classification of Chagasic patients at risk of developing heart disease. Our results show distinct gene network architecture with multiple gene networks modulated by the parasite with an incline towards progression to a fibrogenic phenotype. Early during infection, T. cruzi significantly upregulated transcription factors including activator protein 1 (AP1 transcription factor network components (including FOSB, FOS and JUNB, early growth response proteins 1 and 3 (EGR1, EGR3, and cytokines/chemokines (IL5, IL6, IL13, CCL11, which have all been implicated in the onset of fibrosis. The changes in our selected genes of interest did not all start at the same time point. The transcriptome microarray data, validated by quantitative Real-Time PCR, was also confirmed by immunoblotting and customized Enzyme Linked Immunosorbent Assays (ELISA array showing significant increases in the protein expression levels of fibrogenic EGR1, SNAI1 and IL 6. Furthermore, phosphorylated SMAD2/3 which induces a fibrogenic phenotype is also upregulated accompanied by an increased nuclear translocation of JunB. Pathway analysis of the validated genes and phospho-proteins regulated by the parasite provides the very early fibrotic interactome operating when T. cruzi comes in contact with PHCM. The interactome architecture shows that the parasite induces both TGF-β dependent and independent fibrotic pathways, providing an early molecular foundation for Chagasic

  8. Characterization of key transcription factors as molecular signatures of HPV-positive and HPV-negative oral cancers.

    Science.gov (United States)

    Verma, Gaurav; Vishnoi, Kanchan; Tyagi, Abhishek; Jadli, Mohit; Singh, Tejveer; Goel, Ankit; Sharma, Ankita; Agarwal, Kiran; Prasad, Subhash Chandra; Pandey, Durgatosh; Sharma, Shashi; Mehrotra, Ravi; Singh, Sukh Mahendra; Bharti, Alok Chandra

    2017-02-03

    Prior studies established constitutively active AP-1, NF-κB, and STAT3 signaling in oral cancer. Differential expression/activation of specific members of these transcription factors has been documented in HPV-positive oral lesions that respond better to therapy. We performed a comprehensive analysis of differentially expressed, transcriptionally active members of these pivotal signaling mediators to develop specific signatures of HPV-positive and HPV-negative oral lesions by immunohistochemical method that is applicable in low-resource settings. We examined a total of 31 prospective and 30 formalin-fixed, paraffin-embedded tissues from treatment-naïve, histopathologically and clinically confirmed cases diagnosed as oral or oropharyngeal squamous cell carcinoma (OSCC/OPSCC). Following determination of their HPV status by GP5 + /GP6 +  PCR, the sequential sections of the tissues were evaluated for expression of JunB, JunD, c-Fos, p50, p65, STAT3, and pSTAT3(Y705), along with two key regulatory proteins pEGFR and p16 by IHC. Independent analysis of JunB and p65 showed direct correlation with HPV positivity, whereas STAT3 and pSTAT3 were inversely correlated. A combined analysis of transcription factors revealed a more restrictive combination, characterized by the presence of AP-1 and NF-κB lacking involvement of STAT3 that strongly correlated with HPV-positive tumors. Presence of STAT3/pSTAT3 with NF-κB irrespective of the presence or absence of AP-1 members was present in HPV-negative lesions. Expression of pSTAT3 strongly correlated with all the AP-1/NF-κB members (except JunD), its upstream activator pEGFR(Y)(1092) , and HPV infection-related negative regulator p16. Overall, we show a simple combination of AP-1, NF-κB, and STAT3 members' expression that may serve as molecular signature of HPV-positive lesions or more broadly the tumors that show better prognosis.

  9. Differential regulation by MK801 of immediate-early genes, brain-derived neurotrophic factor and trk receptor mRNA induced by a kindling after-discharge.

    Science.gov (United States)

    Hughes, P E; Young, D; Preston, K M; Yan, Q; Dragunow, M

    1998-01-01

    Transient changes in immediate-early genes and neurotrophin expression produced by kindling stimulation may mediate secondary downstream events involved in kindling development. Recent experiments have demonstrated conclusively that both kindling progression and mossy fibre sprouting are significantly impaired by administration of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801. To further examine the link between kindling, changes in gene expression and the NMDA receptor, we examined the effects of MK801 on neuronal induction of immediate-early genes, brain-derived neurotrophic factor (BDNF) and trk receptor mRNA expression produced by a single electrically induced hippocampal after-discharge in rats. The after-discharge produced a rapid (after 1 h) increase in Fos, Jun-B, c-Jun, Krox-24 mRNA and protein and Krox-20 protein in dentate granule neurons and a delayed, selective expression of Fos, Jun-D and Krox-24 in hilar interneurons. MK801 pretreatment produced a very strong inhibition of Fos, Jun-D and Krox-20 increases in dentate neurons but had a much smaller effect on Jun-B and c-Jun expression. MK801 did not inhibit Krox-24 expression in granule neurons or the delayed expression of Fos, Jun-D and Krox-24 in hilar interneurons. BDNF protein and trk B and trk C mRNA expression were also strongly induced in dentate granule cells 4 h following an after-discharge. MK801 abolished the increase in BDNF protein and trk B, but not trk C mRNA in granule cells at 4 h. These results demonstrate that MK801 differentially regulates the AD-increased expression of a group of genes previously identified as being likely candidates for an involvement in kindling. Because MK801 significantly retards the development of kindling and mossy fibre sprouting, it can be argued that those genes whose induction is not significantly attenuated by MK801 are unlikely to play an important role in the MK801-sensitive component of kindling and the changes in neural connectivity

  10. 去冷沉淀血浆的质量分析%Analysis of quality of cryoprecipitate-reduced plasma

    Institute of Scientific and Technical Information of China (English)

    马莉; 周静宇; 黎美君; 李长清; 孙盼; 林方昭; 刁戈; 李剑平; 张红抑; 刘建强; 张心声; 柏则蓉

    2013-01-01

    Objective To compare the levels of coagulation factors, fibrinogen (Fib) and Von Willebrand factor cleaving protease, a disintegrin-like and metalloprotease with thrombospondin-1 repeats 13 (ADAMTS13), in cryoprecipitate-re-duced plasma (CRP). Methods CRP was prepared with the fresh frozen plasma (FFP) from 140 donors. The coagula-tion-promoting activities of FⅡ, FⅣ, FⅦ, FⅧ, FⅨ, FⅩ, FⅪ and FⅫ in FFP and CRP were determined by one-stage Biggers method, while the activities of Fib and Von Willebrand factor antigen (vWF : Ag) by immune turbidimetry. The activity and antigen contents of ADAMTS13 in FFP and CRP were determined by fluorescence resonance energy transfer (FRET) assay. Results As compared with those in FFP, the levels of FⅧ : C, FⅤ : C, FⅦ : C, FⅨ : C, FⅩ : C, FⅪ : C, Fib, vWF : Ag decreased significantly (P 0. 05). Conclusion CRP may be used for treatment of thrombotic thrombocytopenic purpura (TTP) instead of CRP, while is unsuitable for complementary treatment of FⅧ, Fib and vWF deficiency.%目的 比较去冷沉淀血浆(Cryoprecipitate-reduced plasma,CRP)中系列凝血因子、纤维蛋白原(Fibrinogen,Fib)和血管性血友病因子裂解蛋白酶(A disintegrin-like and metalloprotease with thrombospondin-1 repeats 13,ADAMTS-13)水平的变化.方法 用140人份新鲜冰冻血浆(Fresh frozen plasma,FFP)制备CRP,采用Biggers一期法测定FFP和CRP中FⅡ、FⅤ、FⅦ、FⅧ、FⅨ、FX、FⅪ、FⅫ的促凝活性;免疫比浊法测定Fib和血管性血友病因子抗原因子活动度(vWF:Ag)水平;荧光共振能量转移法(Fluorescence resonance energy transfer,FRET)测定70人份FFP和CRP中的ADAMTS13活性及抗原含量.结果 与FFP比较,CRP中FⅧ:C、FⅤ:C、FⅦ:C、FⅨ:C、FX:C、FⅪ:C、Fib、vWF:Ag水平均明显下降,且差异均有统计学意义(P<0.05或<0.001);FⅡ:C、FⅫ:C、ADAMTS13抗原含量和活性差异均无统计学意义(P>0.05).结论 CRP可代替FFP用于血栓

  11. Innate lymphoid cells in asthma: Will they take your breath away?

    Science.gov (United States)

    Kim, Hye Young; Umetsu, Dale T; Dekruyff, Rosemarie H

    2016-04-01

    Asthma is a complex and heterogeneous disease that is characterized by airway hyper-reactivity (AHR) and airway inflammation. Although asthma was long thought to be driven by allergen-reactive TH 2 cells, it has recently become clear that the pathogenesis of asthma is more complicated and associated with multiple pathways and cell types. A very exciting recent development was the discovery of innate lymphoid cells (ILCs) as key players in the pathogenesis of asthma. ILCs do not express antigen receptors but react promptly to "danger signals" from inflamed tissue and produce an array of cytokines that direct the ensuing immune response. The roles of ILCs may differ in distinct asthma phenotypes. ILC2s may be critical for initiation of adaptive immune responses in inhaled allergen-driven AHR, but may also function independently of adaptive immunity, mediating influenza-induced AHR. ILC2s also contribute to resolution of lung inflammation through their production of amphiregulin. Obesity-induced asthma is associated with expansion of IL-17A-producing ILC3s in the lungs. Furthermore, ILCs may also contribute to steroid-resistant asthma. Although the precise roles of ILCs in different types of asthma are still under investigation, it is clear that inhibition of ILC function represents a potential target that could provide novel treatments for asthma.

  12. Molecular analysis of tumor-promoting CD8+ T cells in two-stage cutaneous chemical carcinogenesis.

    Science.gov (United States)

    Kwong, Bernice Y; Roberts, Scott J; Silberzahn, Tobias; Filler, Renata B; Neustadter, Jason H; Galan, Anjela; Reddy, Swapna; Lin, William M; Ellis, Peter D; Langford, Cordelia F; Hayday, Adrian C; Girardi, Michael

    2010-06-01

    T-pro are tumor-infiltrating TCRalphabeta(+)CD8(+) cells of reduced cytotoxic potential that promote experimental two-stage chemical cutaneous carcinogenesis. Toward understanding their mechanism of action, this study uses whole-genome expression analysis to compare T-pro with systemic CD8(+) T cells from multiple groups of tumor-bearing mice. T-pro show an overt T helper 17-like profile (high retinoic acid-related orphan receptor-(ROR)gammat, IL-17A, IL-17F; low T-bet and eomesodermin), regulatory potential (high FoxP3, IL-10, Tim-3), and transcripts encoding epithelial growth factors (amphiregulin, Gro-1, Gro-2). Tricolor flow cytometry subsequently confirmed the presence of TCRbeta(+) CD8(+) IL-17(+) T cells among tumor-infiltrating lymphocytes (TILs). Moreover, a time-course analysis of independent TIL isolates from papillomas versus carcinomas exposed a clear association of the "T-pro phenotype" with malignant progression. This molecular characterization of T-pro builds a foundation for elucidating the contributions of inflammation to cutaneous carcinogenesis, and may provide useful biomarkers for cancer immunotherapy in which the widely advocated use of tumor-specific CD8(+) cytolytic T cells should perhaps accommodate the cells' potential corruption toward the T-pro phenotype. The data are also likely germane to psoriasis, in which the epidermis may be infiltrated by CD8(+) IL-17-producing T cells.

  13. Loss of tricellular tight junction protein LSR promotes cell invasion and migration via upregulation of TEAD1/AREG in human endometrial cancer

    Science.gov (United States)

    Shimada, Hiroshi; Abe, Shyuetsu; Kohno, Takayuki; Satohisa, Seiro; Konno, Takumi; Takahashi, Syunta; Hatakeyama, Tsubasa; Arimoto, Chihiro; Kakuki, Takuya; Kaneko, Yakuto; Takano, Ken-ichi; Saito, Tsuyoshi; Kojima, Takashi

    2017-01-01

    Lipolysis-stimulated lipoprotein receptor (LSR) is a unique molecule of tricellular contacts of normal and cancer cells. We investigated how the loss of LSR induced cell migration, invasion and proliferation in endometrial cancer cell line Sawano. mRNAs of amphiregulin (AREG) and TEA domain family member 1 (TEAD1) were markedly upregulated by siRNA-LSR. In endometrial cancer tissues, downregulation of LSR and upregulation of AREG were observed together with malignancy, and Yes-associated protein (YAP) was present in the nuclei. siRNA-AREG prevented the cell migration and invasion induced by siRNA-LSR, whereas treatment with AREG induced cell migration and invasion. LSR was colocalized with TRIC, angiomotin (AMOT), Merlin and phosphorylated YAP (pYAP). siRNA-LSR increased expression of pYAP and decreased that of AMOT and Merlin. siRNA-YAP prevented expression of the mRNAs of AREG and TEAD1, and the cell migration and invasion induced by siRNA-LSR. Treatment with dobutamine and 2-deoxy-D-glucose and glucose starvation induced the pYAP expression and prevented the cell migration and invasion induced by siRNA-LSR. siRNA-AMOT decreased the Merlin expression and prevented the cell migration and invasion induced by siRNA-LSR. The loss of LSR promoted cell invasion and migration via upregulation of TEAD1/AREG dependent on YAP/pYAP and AMOT/Merlin in human endometrial cancer cells. PMID:28071680

  14. Role of ADAMs in cancer formation and progression.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    The ADAMs (a disintegrin and metalloproteinase) comprise a family of multidomain transmembrane and secreted proteins. One of their best-established roles is the release of biologically important ligands, such as tumor necrosis factor-alpha, epidermal growth factor, transforming growth factor-alpha, and amphiregulin. Because these ligands have been implicated in the formation and progression of tumors, it might be expected that the specific ADAMs involved in their release would also be involved in malignancy. Consistent with this hypothesis, emerging data from model systems suggest that ADAMs, such as ADAM-9, ADAM-12, ADAM-15, and ADAM-17, are causally involved in tumor formation\\/progression. In human cancer, specific ADAMs are up-regulated, with levels generally correlating with parameters of tumor progression and poor outcome. In preclinical models, selective ADAM inhibitors against ADAM-10 and ADAM-17 have been shown to synergize with existing therapies in decreasing tumor growth. The ADAMs are thus a new family of potential targets for the treatment of cancer, especially malignancies that are dependent on human epidermal growth factor receptor ligands or tumor necrosis factor-alpha.

  15. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways.

    Science.gov (United States)

    Dang, Michelle; Armbruster, Nicole; Miller, Miles A; Cermeno, Efrain; Hartmann, Monika; Bell, George W; Root, David E; Lauffenburger, Douglas A; Lodish, Harvey F; Herrlich, Andreas

    2013-06-11

    Ectodomain cleavage of cell-surface proteins by A disintegrin and metalloproteinases (ADAMs) is highly regulated, and its dysregulation has been linked to many diseases. ADAM10 and ADAM17 cleave most disease-relevant substrates. Broad-spectrum metalloprotease inhibitors have failed clinically, and targeting the cleavage of a specific substrate has remained impossible. It is therefore necessary to identify signaling intermediates that determine substrate specificity of cleavage. We show here that phorbol ester or angiotensin II-induced proteolytic release of EGF family members may not require a significant increase in ADAM17 protease activity. Rather, inducers activate a signaling pathway using PKC-α and the PKC-regulated protein phosphatase 1 inhibitor 14D that is required for ADAM17 cleavage of TGF-α, heparin-binding EGF, and amphiregulin. A second pathway involving PKC-δ is required for neuregulin (NRG) cleavage, and, indeed, PKC-δ phosphorylation of serine 286 in the NRG cytosolic domain is essential for induced NRG cleavage. Thus, signaling-mediated substrate selection is clearly distinct from regulation of enzyme activity, an important mechanism that offers itself for application in disease.

  16. Phorbol ester-modulation of estrogenic genomic effects triggered by the environmental contaminant benzanthracene.

    Science.gov (United States)

    Kolasa, Elise; Balaguer, Patrick; Houlbert, Noémie; Fardel, Olivier

    2012-09-01

    Aryl hydrocarbon receptor-dependent genomic effects of environmental polycyclic aromatic hydrocarbons (PAHs) have been shown to be modulated by non-genomic protein kinase C (PKC)-related pathways. The present study was designed to determine whether PKC activation may also impair estrogenic genomic response triggered by PAHs. Treatment by the PKC activator phorbol 12-myristate 13-acetate (PMA) was found to markedly and differentially impair the up-regulation of estrogenic markers triggered by the estrogenic PAH benzanthracene (BZA) in cultured human mammary cells; BZA-mediated mRNA up-regulation of pS2 and amphiregulin was thus increased, whereas that of progesterone receptor and CXCL12 was repressed. BZA/PMA cotreatment however failed to alter BZA-mediated increase of activity of a luciferase gene reporter construct driven by an estrogen response element, thus discarding any global effect of PMA toward BZA-triggered estrogen receptor activation. Various chemicals inhibiting PKCs or extracellular signal-regulated kinase (ERK) as well as the knock-down of PKCδ expression counteracted the PMA-mediated increase of pS2 mRNA up-regulation triggered by BZA, demonstrating that it was dependent on PKCs, including PKCδ isoform, and ERKs. This non-genomic modulation of estrogenic effects of PAHs by PKC activation may have to be considered when considering the deleterious effects of these environmental contaminants towards the endocrine system.

  17. TACE cleavage of proamphiregulin regulates GPCR-induced proliferation and motility of cancer cells.

    Science.gov (United States)

    Gschwind, Andreas; Hart, Stefan; Fischer, Oliver M; Ullrich, Axel

    2003-05-15

    Communication between G protein-coupled receptor (GPCR) and epidermal growth factor receptor (EGFR) signalling systems involves cell surface proteolysis of EGF-like precursors. The underlying mechanisms of EGFR signal transactivation pathways, however, are largely unknown. We demonstrate that in squamous cell carcinoma cells, stimulation with the GPCR agonists LPA or carbachol specifically results in metalloprotease cleavage and release of amphiregulin (AR). Moreover, AR gene silencing by siRNA or inhibition of AR biological activity by neutralizing antibodies and heparin prevents GPCR-induced EGFR tyrosine phosphorylation, downstream mitogenic signalling events, cell proliferation, migration and activation of the survival mediator Akt/PKB. Therefore, despite some functional redundancy among EGF family ligands, the present study reveals a distinct and essential role for AR in GPCR-triggered cellular responses. Furthermore, we present evidence that blockade of the metalloprotease-disintegrin tumour necrosis factor-alpha-converting enzyme (TACE) by the tissue inhibitor of metalloprotease-3, a dominant-negative TACE mutant or RNA interference suppresses GPCR-stimulated AR release, EGFR activation and downstream events. Thus, TACE can function as an effector of GPCR-mediated signalling and represents a key element of the cellular receptor cross-talk network.

  18. Biologic Roles of Estrogen Receptor-β and Insulin-Like Growth Factor-2 in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Nalo Hamilton

    2015-01-01

    Full Text Available Triple-negative breast cancer (TNBC occurs in 10–15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERβ, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERβ expression, we find that ERβ1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERβ protein. To assess ERβ effects on proliferation, ERβ expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERβ-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERβ may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2, along with ERβ1, is significantly expressed in TNBC and stimulates high ERβ mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC.

  19. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  20. Application of Translational Medicine Concept in Chinese Materia Medica:Effect and Mechanism of Mahuang and Wuweizi on Pulmonary Fibrosis

    Institute of Scientific and Technical Information of China (English)

    QIN Hai-zhi; DONG Wei-tao

    2015-01-01

    Objective:To explore the effect and mechanism of Mahuang (Herba Ephedra) and Wuweizi (Schisandra Chinesis) on pulmonary ifbrosis based on translation medicine theory. Methods: Totally 90 Wistar rats were divided into 6 groups. Pulmonary ifbrosis models of rats were established by drip of bleomycin A5 through trachea while sham-operation group was infused with equivalent normal saline instead of bleomycin A5 into trachea. Sham-operation group and negative control group were performed with normal saline gavage while positive control group with subcutaneous injection of hydrocortisone, Mahuang group and Wuweizi group with gavage of Mahuang and Wuweizi concentrated decoction, respectively, whereas combined group was treated with gavage of Mahuang concentrated decoction during the ifrst 7 days and with Wuweizi concentrated decoction in the ensuing 21 days. On the 7th day and 28th day, pulmonary alveolitis and fibrosis in different groups were observed and the expression levels of serum vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), thrombospondin-1 (TSP-1), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) were detected and compared. Results: All models of groups were successfully established. Compared with negative control group, the levels of VEGF, Ang-2, MCP-1 and MIP-1α decreased in different degrees but TSP-1 increased in other groups after medication for 7 days and 28 days. Conclusion: Mahuang and Wuweizi have intervention effects on pulmonary fibrosis, the mechanism of which might be related to the inhibition of excessive angiogenesis through inhibiting the expression of MCP-1 and MIP-1α, lowering the level of proangiogenic factors (Ang-2 and BEGF), and enhancing the level of angiogenesis inhibiting factor (TSP-1).

  1. Membranous nephropathy: A fairy tale for immunopathologists, nephrologists and patients.

    Science.gov (United States)

    Ronco, Pierre; Debiec, Hanna

    2015-11-01

    This article reviews the considerable progress which has been made in the recent years in the understanding of the pathophysiology of membranous nephropathy, a model of organ-specific auto-immune disease. It shows how experimental models developed more than 30 years ago have led to the identification of several human antigens including neutral endopeptidase in the neonate, phospholipase A2 receptor, and thrombospondin 1 domain 7A in the adult, and cationic bovine serum albumin in children. Thanks to a successful GWAS performed in European Caucasians, the genetics of the disease begins to be understood. These groundbreaking findings already have a major impact on patients' care owing to the development of reliable ELISA and immunofluorescence test for the detection of PLA2R antibodies and of PLA2R antigen screening in biopsies. This review will tell the story from the careful clinical observation of cases to the most recent therapeutic perspectives which have been made possible by these advances. Advances in medical science often proceed by steps which are highly interdependent. New, groundbreaking findings with important clinical implications often result from the combination of faithful experimental models and careful clinical observations. This is well illustrated by the story of membranous nephropathy which started more than 50 years ago. It is remarkable that in this disease, the experimental models predicted the pathophysiology of the human glomerulopathy. The stories that we will tell in this article are aimed at young clinical investigators who are sometimes reluctant to embark on research projects. We hope that they will convince them that bedside research performed with intellectual curiosity and a bit of chance can lead to significant progress in clinical medicine.

  2. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system.

    Science.gov (United States)

    Yanai, Anat; Laver, Christopher R J; Gregory-Evans, Cheryl Y; Liu, Ran R; Gregory-Evans, Kevin

    2015-06-01

    Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.

  3. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17β-Estradiol induced cell migration and proliferation in HUVECs.

    Science.gov (United States)

    Nikhil, Kumar; Sharan, Shruti; Wishard, Rohan; Palla, Srinivasa Rao; Krishna Peddinti, Rama; Roy, Partha

    2016-04-01

    Angiogenesis plays important roles in tumor growth and metastasis, thus development of a novel angiogenesis inhibitor is essential for the improvement of therapeutics against cancer. Thrombospondins-1 (TSP-1) is a potent endogenous inhibitor of angiogenesis that acts through direct effects on endothelial cell migration, proliferation, survival, and activating apoptotic pathways. TSP-1 has been shown to disrupt estrogen-induced endothelial cell proliferation and migration. Here we investigated the potential of pterostilbene carboxaldehyde thiosemicarbazone (PTERC-T), a novel resveratrol (RESV) derivative, to inhibit angiogenesis induced by female sex steroids, particularly 17β-Estradiol (E2), on Human umbilical vein endothelial cells (HUVECs) and to elucidate the involvement of TSP-1 in PTERC-T action. Our results showed that PTERC-T significantly inhibited 17β-E2-stimulated proliferation of HUVECs and induced apoptosis as determined by annexin V/propidium iodide staining and cleaved caspase-3 expression. Furthermore, PTERC-T also inhibited endothelial cell migration, and invasion in chick chorioallantoic membrane (CAM) assay. In contrast, RESV failed to inhibit 17β-E2 induced HUVECs proliferation and invasion at similar dose. PTERC-T was also found to increase TSP-1 protein expression levels in a dose-dependent manner which, however, was counteracted by co-incubation with p38MAPK or JNK inhibitors, suggesting involvement of these pathways in PTERC-T action. These results suggest that the inhibitory effect of PTERC-T on 17β-E2 induced angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis and inhibition of cell migration through targeting TSP-1. Thus, PTERC-T could be considered as a potential lead compound for developing a class of new drugs targeting angiogenesis-related diseases.

  4. Simulation of TGF-Beta Activation by Low-Dose HZE Radiation in a Cell Culture

    Science.gov (United States)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    High charge (Z) and energy (E) (HZE) nuclei comprised in the galactic cosmic rays are main contributors to space radiation risk. They induce many lesions in living matter such as non-specific oxidative damage and the double-strand breaks (DSBs), which are considered key precursors of early and late effects of radiation. There is increasing evidence that cells respond collectively rather than individually to radiation, suggesting the importance of cell signaling1. The transforming growth factor (TGF ) is a signaling peptide that is expressed in nearly all cell type and regulates a large array of cellular processes2. TGF have been shown to mediate cellular response to DNA damage3 and to induce apoptosis in non-irradiated cells cocultured with irradiated cells4. TFG molecules are secreted by cells in an inactive complex known as the latency-associated peptide (LAP). TGF is released from the LAP by a conformational change triggered by proteases, thrombospondin-1, integrins, acidic conditions and .OH radical5. TGF then binds to cells receptors and activates a cascade of events mediated by Smad proteins6, which might interfere with the repair of DNA. Meanwhile, increasingly sophisticated Brownian Dynamics (BD) algorithms have appeared recently in the literature7 and can be applied to study the interaction of molecules with receptors. These BD computer models have contributed to the elucidation of signal transduction, ligand accumulation and autocrine loops in the epidermal growth factor (EGF) and its receptor (EFGR) system8. To investigate the possible roles of TGF in an irradiated cell culture, our Monte-Carlo simulation codes of the radiation track structure9 will be used to calculate the activation of TFG triggered by .OH produced by low doses of HZE ions. The TGF molecules will then be followed by a BD algorithm in a medium representative of a cell culture to estimate the number of activated receptors.

  5. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration.

  6. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression.

    Directory of Open Access Journals (Sweden)

    Erika L Spaeth

    Full Text Available BACKGROUND: Tumor associated fibroblasts (TAF, are essential for tumor progression providing both a functional and structural supportive environment. TAF, known as activated fibroblasts, have an established biological impact on tumorigenesis as matrix synthesizing or matrix degrading cells, contractile cells, and even blood vessel associated cells. The production of growth factors, cytokines, chemokines, matrix-degrading enzymes, and immunomodulatory mechanisms by these cells augment tumor progression by providing a suitable environment. There are several suggested origins of the TAF including tissue-resident, circulating, and epithelial-to-mesenchymal-transitioned cells. METHODOLOGY/PRINCIPAL FINDINGS: We provide evidence that TAF are derived from mesenchymal stem cells (MSC that acquire a TAF phenotype following exposure to or systemic recruitment into adenocarcinoma xenograft models including breast, pancreatic, and ovarian. We define the MSC derived TAF in a xenograft ovarian carcinoma model by the immunohistochemical presence of 1 fibroblast specific protein and fibroblast activated protein; 2 markers phenotypically associated with aggressiveness, including tenascin-c, thrombospondin-1, and stromelysin-1; 3 production of pro-tumorigenic growth factors including hepatocyte growth factor, epidermal growth factor, and interleukin-6; and 4 factors indicative of vascularization, including alpha-smooth muscle actin, desmin, and vascular endothelial growth factor. We demonstrate that under long-term tumor conditioning in vitro, MSC express TAF-like proteins. Additionally, human MSC but not murine MSC stimulated tumor growth primarily through the paracrine production of secreted IL6. CONCLUSIONS/SIGNIFICANCE: Our results suggest the dependence of in vitro Skov-3 tumor cell proliferation is due to the presence of tumor-stimulated MSC secreted IL6. The subsequent TAF phenotype arises from the MSC which ultimately promotes tumor growth through the

  7. Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment.

    Science.gov (United States)

    Ardelean, Daniela S; Jerkic, Mirjana; Yin, Melissa; Peter, Madonna; Ngan, Bo; Kerbel, Robert S; Foster, F Stuart; Letarte, Michelle

    2014-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia associated with dysregulated angiogenesis and arteriovascular malformations. The disease is caused by mutations in endoglin (ENG; HHT1) or activin receptor-like kinase 1 (ALK1; HHT2) genes, coding for transforming growth factor β (TGF-β) superfamily receptors. Vascular endothelial growth factor (VEGF) has been implicated in HHT and beneficial effects of anti-VEGF treatment were recently reported in HHT patients. To investigate the systemic angiogenic phenotype of Endoglin and Alk1 mutant mice and their response to anti-VEGF therapy, we assessed microvessel density (MVD) in multiple organs after treatment with an antibody to mouse VEGF or vehicle. Lungs were the only organ showing an angiogenic defect, with reduced peripheral MVD and secondary right ventricular hypertrophy (RVH), yet distinctly associated with a fourfold increase in thrombospondin-1 (TSP-1) in Eng (+/-) versus a rise in angiopoietin-2 (Ang-2) in Alk1 (+/-) mice. Anti-VEGF treatment did reduce lung VEGF levels but interestingly, led to an increase in peripheral pulmonary MVD and attenuation of RVH; it also normalized TSP-1 and Ang-2 expression. Hepatic MVD, unaffected in mutant mice, was reduced by anti-VEGF therapy in heterozygous and wild type mice, indicating a liver-specific effect of treatment. Contrast-enhanced micro-ultrasound demonstrated a reduction in hepatic microvascular perfusion after anti-VEGF treatment only in Eng (+/-) mice. Our findings indicate that the mechanisms responsible for the angiogenic imbalance and the response to anti-VEGF therapy differ between Eng and Alk1 heterozygous mice and raise the need for systemic monitoring of anti-angiogenic therapy effects in HHT patients.

  8. A112

    Directory of Open Access Journals (Sweden)

    E. Kisseleva

    2015-11-01

    Full Text Available Recruitment of mononuclear phagocytes from the blood into tissues is considered to be a crucial process during inflammatory reactions, wound healing and tumor growth. Macrophages are known to reveal high plasticity and may change under the influence of microenvironment. The aim of the study was to evaluate the changes of macrophage functional activity under the influence of Vascular endothelial growth factor (VEGF in vitro. This factor is known to be the main angiogenic factor but also possesses several immunomodulatory properties. Here we report that VEGF revealed a dose-dependent effects on cultured freshly isolated murine resident peritoneal macrophages: modulated iNOS mRNA expression, nitroxide and superoxide anion production, decreased 5′-nucleotidase (5′-N activity, but had no influence on fluid-phase pinocytosis. Moreover, VEGF increased expression of its own mRNA via autocrine pathway as well as of VEGF protein expression. VEGF also induced up-regulation of extracellular matrix protein thrombospondin-1 (TSP-1 mRNA, which is considered as a part of macrophage activation phenotype. Production of cytokines and chemokines by macrophages was screened with the help of Multi- analyte ELISArray kits. It was found that incubation of macrophages in the presence of VEGF increased the production of angiogenic cytokines – TNF-α and IL-6 as well as several monocyte and leukocyte chemoattractants such as MCP-1, RANTES and MIP-1β. Therefore, we suggest that locally established VEGF gradient may influence inflammatory phenotype of tissue macrophages as well as potentiate their pro-angiogenic properties. This work was supported by Russian Foundation for Basic Research – Russia, Grant No. 15-04-06150.

  9. The research development of vascular factors in recurrent spontaneous abortion%血管相关因素在复发性流产中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王珊; 于彩虹; 李肖肖; 刘梅梅

    2016-01-01

    Recurrent spontaneous abortion (RSA) was one of the most difficult infertile diseases which was usually defined as consecutive still birth for more than three times during the first 20 weeks of gestation. Various factors and pathogeneses were thought to play a role in RSA. Recent studies had indicated that the disorders of blood vessel growth and the secondary abnormal blood perfusion may contribute to the occurrence of RSA. However, blood vessel growth was linked with the regulation of angiogenesis related factors. To provide references for the clinical prevention and treatment, the purpose of this paper was to evaluate the association between solubility vascular endothelial growth factor receptor-1(sflt-1), thrombospondin 1(TSP-1) and ovary, endometrial abnormal blood perfusion in cases of RSA.%复发性流产(RSA)是指与同一性伴侣连续发生3次或3次以上在妊娠20周前的胎儿丢失者,是临床上难处理的不育症之一。其病因及发病机制多样,近年的研究表明妊娠过程中卵巢、子宫内膜血管生长紊乱及其所致的异常血流灌注可导致RSA,而血管的生长受血管相关因子的调控。本文就血管相关因子可溶性血管内皮生长因子受体-1(sflt-1)、血小板反应蛋白-1(TSP-1)及卵巢、子宫内膜异常血流灌注在RSA中的作用做一综述,为临床提供参考。

  10. Transport physics and biorheology in the setting of hemostasis and thrombosis.

    Science.gov (United States)

    Brass, L F; Diamond, S L

    2016-05-01

    The biophysics of blood flow can dictate the function of molecules and cells in the vasculature with consequent effects on hemostasis, thrombosis, embolism, and fibrinolysis. Flow and transport dynamics are distinct for (i) hemostasis vs. thrombosis and (ii) venous vs. arterial episodes. Intraclot transport changes dramatically the moment hemostasis is achieved or the moment a thrombus becomes fully occlusive. With platelet concentrations that are 50- to 200-fold greater than platelet-rich plasma, clots formed under flow have a different composition and structure compared with blood clotted statically in a tube. The platelet-rich, core/shell architecture is a prominent feature of self-limiting hemostatic clots formed under flow. Importantly, a critical threshold concentration of surface tissue factor is required for fibrin generation under flow. Once initiated by wall-derived tissue factor, thrombin generation and its spatial propagation within a clot can be modulated by γ'-fibrinogen incorporated into fibrin, engageability of activated factor (FIXa)/activated FVIIIa tenase within the clot, platelet-derived polyphosphate, transclot permeation, and reduction of porosity via platelet retraction. Fibrin imparts tremendous strength to a thrombus to resist embolism up to wall shear stresses of 2400 dyne cm(-2) . Extreme flows, as found in severe vessel stenosis or in mechanical assist devices, can cause von Willebrand factor self-association into massive fibers along with shear-induced platelet activation. Pathological von Willebrand factor fibers are A Disintegrin And Metalloprotease with ThromboSpondin-1 domain 13 resistant but are a substrate for fibrin generation due to FXIIa capture. Recently, microfluidic technologies have enhanced the ability to interrogate blood in the context of stenotic flows, acquired von Willebrand disease, hemophilia, traumatic bleeding, and drug action.

  11. The remote effects of intravitreal anti-VEGF therapy.

    Science.gov (United States)

    Balta, F; Merticariu, M; Taban, C; Neculau, G; Merticariu, A; Muresanu, D; Badescu, D; Jinga, V

    2016-01-01

    Objective: To study the effects of intravitreal anti-Vascular Endothelial Growth Factor (VEGF) therapy with Avastin for wet Age-Related Macular Degeneration (AMD) on Benign Prostatic Hyperplasia (BPH)-related symptoms. Methods: An exploratory trial was conducted from August 1, 2013 to February 1, 2014, that included 14 male patients previously diagnosed with BPH, who were aged between 59 and 69 years. The trial was performed in Bucharest and involved two medical institutions: the Clinical Hospital of Eye Emergencies and the "Prof. Dr. Theodor Burghele" Hospital. This prospective study utilized both objective and subjective indicators to analyze the link between intravitreal anti-VEGF therapy for wet AMD and BPH. The evaluations consisted of uroflowmetry and International Prostate Symptom Score (I-PSS) assessments. Results: The maximum flow rate (Qmax) improved by an average of 5.05 ml/ sec in 9 patients, whereas the remaining 5 patients showed a slight decrease in Qmax (mean 1.6 ml/ sec). The I-PSS score improved, with an overall decrease of 1.18 points at follow-up compared to the initial score (mean initial score = 2.42; mean follow-up score = 1.24). Conclusion: The analysis revealed that anti-VEGF therapy for wet AMD had a significant positive effect on all BPH-related symptoms; patients reported improved urinary streams and decreased nocturia. Abbreviations: BPH = benign prostatic hyperplasia, AMD = age-related macular degeneration, VEGF = vascular endothelial growth factor, I-PSS = international prostate symptom score, Qmax = maximum flow rate, TSP-1 = thrombospondin-1, FGF-2 = fibroblast growth factor, mRNA = precursor messenger ribonucleic acid, PSA = prostate-specific antigen, DRE = digital rectal examination, AUR = acute urinary retention, COX2 = cyclooxygenase 2, QoL = quality of life.

  12. Generation of trans-arachidonic acid under nitrative stress is associated with upregulation of thromponsdin-1 in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    XU Lin; XU Xun; LIU Yu-min; YAO Zhu-jun; XUN Guo-liang; YU Wen-juan; LIU Kun; SUN Xiao-dong; QIU Yun-ping; WU Hai-xiang

    2011-01-01

    Background Trans-arachidonic acids (TAAs), newly discovered markers of nitrative stress and the major products of nitrogen dioxide (NO2)-mediated isomerization of arachidonic acid (AA), represent a new mechanism of NO2-induced toxicity. It has been reported that TAAs were generated in oxygen-induced microvascular degeneration model and TAAs were also generated in a diabetic retinopathy (DR) model. In this study, we examined high glucose-induced nitrative stress damage and TAAs levels and explored the possible mechanisms for DR caused by reactive nitrogen species. Methods Diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) at 60 mg/kg. Bovine retinal capillary endothelial cells (BRECs) were selectively cultured and incubated with normal or high glucose. The serum TAAs and AA in diabetic rats were measured by the gas chromatography and mass spectrometry (GC/MS) method. The ratio of peak area of TAAs to AA with selected ion of 79 was estimated by a group (-test. Thrombospondin-1 (TSP-1) in the rat retinas and BRECs extracts were examined by Western blotting. The phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) protein was examined by Western blotting in BRECs incubated with high glucose.Results The TAAs to AA ratio (TAAs/AA) was significantly increased in the serum at 8, 12 and 16 weeks after STZ injection (P 0.05). Expression of TSP-1 in the retina of diabetic rats was progressively elevated according to the duration of diabetes. TSP-1 expression was increased in BRECs incubated with high glucose at 48 hours. Moreover, high glucose also increased ERK1/2 expression, which peaked at 30 minutes and then decreased in the following 48 hours.Conclusion An elevation of TAAs/AA is associated with high glucose-induced nitrative stress, which probably involves upregulation of TSP-1 through activating ERK1/2.

  13. The D173G mutation in ADAMTS-13 causes a severe form of congenital thrombotic thrombocytopenic purpura

    KAUST Repository

    Lancellotti, S.

    2015-08-13

    Congenital thrombotic thrombocytopenic purpura (TTP) is a rare form of thrombotic microangiopathy, inherited with autosomal recessive mode as a dysfunction or severe deficiency of ADAMTS-13 (A Disintegrin And Metalloprotease with ThromboSpondin 1 repeats Nr. 13), caused by mutations in the ADAMTS-13 gene. About 100 mutations of the ADAMTS-13 gene were identified so far, although only a few characterised by in vitro expression studies. A new Asp to Gly homozygous mutation at position 173 of ADAMTS-13 sequence was identified in a family of Romanian origin, with some members affected by clinical signs of TTP. In two male sons, this mutation caused a severe (< 3 %) deficiency of ADAMTS-13 activity and antigen level, associated with periodic thrombocytopenia, haemolytic anaemia and mild mental confusion. Both parents, who are cousins, showed the same mutation in heterozygous form. Expression studies of the mutant ADAMTS-13, performed in HEK293 cells, showed a severe decrease of the enzyme’s activity and secretion, although the protease was detected inside the cells. Molecular dynamics found that in the D173G mutant the interface area between the metalloprotease domain and the disintegrin-like domain significantly decreases during the simulations, while the proline-rich 20 residues linker region (LR, 285–304) between them undergoes extensive conformational changes. Inter-domain contacts are also significantly less conserved in the mutant compared to the wild-type. Both a decrease of the inter-domain contacts along with a substantial conformational rearrangement of LR interfere with the proper maturation and folding of the mutant ADAMTS-13, thus impairing its secretion.

  14. Extended interaction network of procollagen C-proteinase enhancer-1 in the extracellular matrix.

    Science.gov (United States)

    Salza, Romain; Peysselon, Franck; Chautard, Emilie; Faye, Clément; Moschcovich, Laura; Weiss, Tali; Perrin-Cocon, Laure; Lotteau, Vincent; Kessler, Efrat; Ricard-Blum, Sylvie

    2014-01-01

    PCPE-1 (procollagen C-proteinase enhancer-1) is an extracellular matrix glycoprotein that can stimulate procollagen processing by procollagen C-proteinases such as BMP-1 (bone morphogenetic protein 1). PCPE-1 interacts with several proteins in addition to procollagens and BMP-1, suggesting that it could be involved in biological processes other than collagen maturation. We thus searched for additional partners of PCPE-1 in the extracellular matrix, which could provide new insights into its biological roles. We identified 17 new partners of PCPE-1 by SPR (surface plasmon resonance) imaging. PCPE-1 forms a transient complex with the β-amyloid peptide, whereas it forms high or very high affinity complexes with laminin-111 (KD=58.8 pM), collagen VI (KD=9.5 nM), TSP-1 (thrombospondin-1) (KD1=19.9 pM, KD2=14.5 nM), collagen IV (KD=49.4 nM) and endostatin, a fragment of collagen XVIII (KD1=0.30 nM, KD2=1.1 nM). Endostatin binds to the NTR (netrin-like) domain of PCPE-1 and decreases the degree of superstimulation of PCPE-1 enhancing activity by heparin. The analysis of the PCPE-1 interaction network based on Gene Ontology terms suggests that, besides its role in collagen deposition, PCPE-1 might be involved in tumour growth, neurodegenerative diseases and angiogenesis. In vitro assays have indeed shown that the CUB1CUB2 (where CUB is complement protein subcomponents C1r/C1s, urchin embryonic growth factor and BMP-1) fragment of PCPE-1 inhibits angiogenesis.

  15. Proteomics analysis of human obesity reveals the epigenetic factor HDAC4 as a potential target for obesity.

    Directory of Open Access Journals (Sweden)

    Mohamed Abu-Farha

    Full Text Available Sedentary lifestyle and excessive energy intake are prominent contributors to obesity; a major risk factors for the development of insulin resistance, type 2 diabetes and cardiovascular diseases. Elucidating the molecular mechanisms underlying these chronic conditions is of relevant importance as it might lead to the identification of novel anti-obesity targets. The purpose of the current study is to investigate differentially expressed proteins between lean and obese subjects through a shot-gun quantitative proteomics approach using peripheral blood mononuclear cells (PBMCs extracts as well as potential modulation of those proteins by physical exercise. Using this approach, a total of 47 proteins showed at least 1.5 fold change between lean and obese subjects. In obese, the proteomic profiling before and after 3 months of physical exercise showed differential expression of 38 proteins. Thrombospondin 1 (TSP1 was among the proteins that were upregulated in obese subjects and then decreased by physical exercise. Conversely, the histone deacetylase 4 (HDAC4 was downregulated in obese subjects and then induced by physical exercise. The proteomic data was further validated by qRT-PCR, Western blot and immunohistochemistry in both PBMCs and adipose tissue. We also showed that HDAC4 levels correlated positively with maximum oxygen consumption (VO2 Max but negatively with body mass index, percent body fat, and the inflammatory chemokine RANTES. In functional assays, our data indicated that ectopic expression of HDAC4 significantly impaired TNF-α-dependent activation of NF-κB, establishing thus a link between HDAC4 and regulation of the immune system. Together, the expression pattern of HDAC4 in obese subjects before and after physical exercise, its correlation with various physical, clinical and metabolic parameters along with its inhibitory effect on NF-κB are suggestive of a protective role of HDAC4 against obesity. HDAC4 could therefore represent

  16. Periostin, discovered by nano-flow liquid chromatography and mass spectrometry, is a novel marker of diabetic retinopathy

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Michiya [Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Tokyo (Japan); Ban, Yoshiyuki, E-mail: yshyban@yahoo.co.jp [Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Tokyo (Japan); Yamamoto, Gou [Department of Oral Pathology and Diagnosis, School of Dentistry, Showa University, Tokyo (Japan); Ueda, Toshihiko; Saito, Yuta; Nishimura, Eiichi; Fujisawa, Kunimi; Koide, Ryohei [Department of Ophthalmology, Showa University School of Medicine, Tokyo (Japan); Mizutani, Masakazu; Kozawa, Tadahiko; Shiraishi, Yuji [Kozawa Eye Hospital and Diabetes Center, Ibaraki-ken (Japan); Bando, Yasuhiko [Biosys Technologies, Inc., Meguro, Tokyo (Japan); Tachikawa, Tetsuhiko [Department of Oral Pathology and Diagnosis, School of Dentistry, Showa University, Tokyo (Japan); Hirano, Tsutomu [Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Tokyo (Japan)

    2010-08-20

    Research highlights: {yields} In proliferative membrane and epiretinal membrane specimens, the numbers of proteins are 225 and 154, respectively, and 123 proteins are common to both. {yields} Periostin and thrombospondin-1 proteins are unique to the proliferative membrane specimens. {yields} The expression of periostin is significantly up-regulated in proliferative membrane specimens. -- Abstract: Diabetes can lead to serious microvascular complications including proliferative diabetic retinopathy (PDR), the leading cause of blindness in adults. Recent studies using gene array technology have attempted to apply a hypothesis-generating approach to elucidate the pathogenesis of PDR, but these studies rely on mRNA differences, which may or may not be related to significant biological processes. To better understand the basic mechanisms of PDR and to identify potential new biomarkers, we performed shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS) analysis on pooled protein extracts from neovascular membranes obtained from PDR specimens and compared the results with those from non-vascular epiretinal membrane (ERM) specimens. We detected 226 distinct proteins in neovascular membranes and 154 in ERM. Among these proteins, 102 were specific to neovascular membranes and 30 were specific to ERM. We identified a candidate marker, periostin, as well as several known PDR markers such as pigment epithelium-derived factor (PEDF). We then performed RT-PCR using these markers. The expression of periostin was significantly up-regulated in proliferative membrane specimens. Periostin induces cell attachment and spreading and plays a role in cell adhesion. Proteomic analysis by LC/MS/MS, which permits accurate quantitative comparison, was useful in identifying new candidates such as periostin potentially involved in the pathogenesis of PDR.

  17. Expression of Angiogenesis Regulatory Proteins and Epithelial-Mesenchymal Transition Factors in Platelets of the Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Hui Han

    2014-01-01

    Full Text Available Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP and platelet-poor plasma (PPP were collected by routine protocols. Vascular endothelial growth factor (VEGF, platelet-derived growth factor BB (PDGF-BB, thrombospondin-1 (TSP-1, platelet factor 4 (PF4, and transforming growth factor-β1 (TGF-β1 were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001, PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001, PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001, and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001 differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P<0.05. Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.

  18. Renal Protective Activity of Hsian-tsao Extracts in Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    MIN YANG; ZHENG-PING XU; CAI-JU XU; JIA MENG; GANG-QIANG DING; XIAO-MING ZHANG; YAN WENG

    2008-01-01

    Objective To investigate the renal protective activity of Hsian-tsao Mesona procumbens Hemsl. water extracts in diabetic rats. Methods Thirty Sprague-dawley female rats were randomly divided into three groups (n=10 each), "control group" with intraperitoneal saline injection, "diabetic group" with 60 mg of intraperitoneal streptozotocin injection per kg of body weight and "Hsian-tsao group" with intragastric administration of Hsian-tsao extraction everyday for 4 weeks after intraperitoneal streptozotocin injection. The body weight and blood sugar were measured before and after model induction in the three groups. Thrombospondin-1 (TSP-1) expressions in the kidney were monitored by immunohistochemistry. Kidney ultrastructural changes were also analyzed by using transmission electron microscopy. Results Before diabetic model induction, there were no significant differences among the three groups in body weight and blood sugar. Four weeks after the induction of diabetes, the differences became statistically significant. Electron microscopy also revealed disruption of the foot processes of the podocytes and other damages in diabetic group. These damages were significantly less severe in Hsian-tsao group when compared with the diabetic group. TSP-1 expressions in the kidney were significantly increased in both the diabetic group and Hsian-tsao group, but it was relatively lower in Hsian-tsao group than in diabetic group. Conclusion Our results showed that Hsian-tsao treatment in the diabetic rats effectively prevented the pathological alterations in the kidney and decreased the TSP-1 expression. It was suggested that Hsian-tsao had protective effect on the kidneys of the diabetic rats.

  19. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    LENUS (Irish Health Repository)

    Larkin, Deirdre

    2009-03-01

    Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU\\/ml versus 1.9 IU\\/ml; p<0.005). This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  20. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis.

    Science.gov (United States)

    Navarathna, Dhammika H M L P; Stein, Erica V; Lessey-Morillon, Elizabeth C; Nayak, Debasis; Martin-Manso, Gema; Roberts, David D

    2015-01-01

    CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47-/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47-/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47-/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47-/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47-/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47-/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47-/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity.

  1. Irinotecan Synergistically Enhances the Antiproliferative and Proapoptotic Effects of Axitinib In Vitro and Improves Its Anticancer Activity In Vivo

    Directory of Open Access Journals (Sweden)

    Bastianina Canu

    2011-03-01

    Full Text Available Aims: To demonstrate the synergistic antiproliferative and proapoptotic activity of irinotecan and axitinib in vitro and the improvement of the in vivo effects on angiogenesis and pancreatic cancer. Methods: Proliferation and apoptotic assays were performed on human dermal microvascular endothelial cells and pancreas cancer (MIAPaCa-2, Capan-1 cell lines exposed to SN-38, the active metabolite of irinotecan, axitinib, or their simultaneous combination for 72 hours. ERK1/2 and Akt phosphorylation, the vascular endothelial growth factor (VEGF, VEGF receptor-2, and thrombospondin-1 (TSP-1 concentration were measured by ELISAs. ATP7A and ABCG2 gene expression was performed with real-time polymerase chain reaction and SN-38 intracellular concentrations were measured by high-performance liquid chromatography. Capan-1 xenografts in nude mice were treated with irinotecan and axitinib alone or in simultaneous combination. Results: A strong synergistic effect on antiproliferative and proapoptotic activity was found with the axitinib/SN-38 combination on endothelial and cancer cells. ERK1/2 and Akt phosphorylation were significantly inhibited by lower concentrations of the combined drugs in all the cell lines. Axitinib and SN-38 combined treatment greatly inhibited the expression of the ATP7A and ABCG2 genes in endothelial and cancer cells, increasing the SN-38 intracellular concentration. Moreover, TSP-1 secretion was increased in cells treated with both drugs, whereas VEGFR-2 levels significantly decreased. In vivo administration of the simultaneous combination determined an almost complete regression of tumors and tumor neovascularization. Conclusions:In vitro results show the highly synergistic properties of simultaneous combination of irinotecan and axitinib on endothelial and pancreas cancer cells, suggesting a possible translation of this schedule into the clinics.

  2. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    Directory of Open Access Journals (Sweden)

    Deirdre Larkin

    2009-03-01

    Full Text Available Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20 and cerebral (n = 13 P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU/ml versus 1.9 IU/ml; p<0.005. This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005. Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1. These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  3. Nuclear factor kappa B activation occurs in the amnion prior to labour onset and modulates the expression of numerous labour associated genes.

    Directory of Open Access Journals (Sweden)

    Sheri Lim

    Full Text Available BACKGROUND: Prior to the onset of human labour there is an increase in the synthesis of prostaglandins, cytokines and chemokines in the fetal membranes, particular the amnion. This is associated with activation of the transcription factor nuclear factor kappa B (NFκB. In this study we characterised the level of NFκB activity in amnion epithelial cells as a measure of amnion activation in samples collected from women undergoing caesarean section at 39 weeks gestation prior to the onset of labour. METHODOLOGY/PRINCIPAL FINDINGS: We found that a proportion of women exhibit low or moderate NFκB activity while other women exhibit high levels of NFκB activity (n = 12. This activation process does not appear to involve classical pathways of NFκB activation but rather is correlated with an increase in nuclear p65-Rel-B dimers. To identify the full range of genes upregulated in association with amnion activation, microarray analysis was performed on carefully characterised non-activated amnion (n = 3 samples and compared to activated samples (n = 3. A total of 919 genes were upregulated in response to amnion activation including numerous inflammatory genes such cyclooxygenase-2 (COX-2, 44-fold, interleukin 8 (IL-8, 6-fold, IL-1 receptor accessory protein (IL-1RAP, 4.5-fold, thrombospondin 1 (TSP-1, 3-fold and, unexpectedly, oxytocin receptor (OTR, 24-fold. Ingenuity Pathway Analysis of the microarray data reveal the two main gene networks activated concurrently with amnion activation are i cell death, cancer and morphology and ii cell cycle, embryonic development and tissue development. CONCLUSIONS/SIGNIFICANCE: Our results indicate that assessment of amnion NFκB activation is critical for accurate sample classification and subsequent interpretation of data. Collectively, our data suggest amnion activation is largely an inflammatory event that occurs in the amnion epithelial layer as a prelude to the onset of labour.

  4. Increased expression of HIF-1α, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency

    Science.gov (United States)

    Misra, Sanjay; Shergill, Uday; Yang, Binxia; Janardhanan, Rajiv; Misra, Khamal D.

    2010-01-01

    Purpose A mouse model of renal insufficiency with arteriovenous fistula (AVF) and venous stenosis was created. We tested the hypothesis that there is increased gene expression of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor- A (VEGF-A) and its receptors (VEGFR-1, -2), matrix metalloproteinase-2 (MMP-2), -9 (MMP-9), tissue inhibitor of metalloproteinase-1, -2 (TIMP-1, -2), and a disintegrin and metalloproteinase thrombospondin-1 (ADAMTS-1) at the venous stenosis. Materials and methods Nineteen male C57BL/6 mice underwent a left nephrectomy and a surgical occlusion of the right upper pole to induce renal insufficiency and characterized in eight mice. Twenty eight days later, an AVF (n=11) was created from the right carotid artery to ipsilateral jugular vein and the mice were sacrificed at day 7 (n=4) and day 14 (n=4). The outflow and control veins were removed for gene expression. Three mice were sacrificed at day 28 for histologic analysis. Results The mean serum blood urea nitrogen remained significantly elevated for 8 weeks when compared to baseline (P<0.05). By day 7, there was a significant increase in the expression of HIF-1α, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with HIF-1α and TIMP-1 being significantly elevated at day 14 (P<0.05). By day 28, the venous stenosis was characterized by a thickened vein wall and neointima. Conclusions A mouse model of renal insufficiency with AVF was developed which had increased expression of HIF-1α, VEGF-A, VEGFR-1, VEGFR-2, MMP-2, TIMP-1, and ADAMTS-1 at the outflow vein with venous stenosis by day 28. PMID:20598569

  5. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  6. Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF-beta2 and migration of glioma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Corinna Seliger

    Full Text Available BACKGROUND: An important phenomenon observed in glioma metabolism is increased aerobic glycolysis in tumor cells, which is generally referred to as the Warburg effect. Transforming growth factor (TGF-beta2, which we previously showed to be induced by lactic acid, is a key pathophysiological factor in glioblastoma, leading to increased invasion and severe local immunosuppression after proteolytic cleavage from its latency associated peptide. In this study we tested the hypothesis, that lactate regulates TGF-beta2 expression and glioma cell migration via induction of Thrombospondin-1 (THBS-1, a TGF-beta activating protein. METHODS: Lactate levels were reduced by knockdown of LDH-A using specific small interfering RNA (siRNA and competitive inhibition of LDH-A by sodium oxamate. Knockdown of THBS-1 was performed using specific siRNA. Western Blot, qRT-PCR, and ELISA were used to investigate expression levels of LDH-A, LDH-B, TGF-beta2 and THBS-1. Migration of cells was examined by Spheroid, Scratch and Boyden Chamber assays. RESULTS: Knockdown of LDH-A with subsequent decrease of lactate concentration leads to reduced levels of THBS-1 and TGF-beta2 in glioma cells. Lactate addition increases THBS-1 protein, leading to increased activation of TGF-beta2. Inhibition of THBS-1 reduces TGF-beta2 protein and migration of glioma cells. Addition of synthetic THBS-1 can rescue reduced TGF-beta2 protein levels and glioma cell migration in siLDH-A treated cells. CONCLUSION: We define a regulatory cascade between lactate, THBS-1 and TGF-beta2, leading to enhanced migration of glioma cells. Our results demonstrate a specific interaction between tumor metabolism and migration and provide a better understanding of the mechanisms underlying glioma cell invasion.

  7. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.

    Science.gov (United States)

    Chan, Yuk-Kit; Zhang, Huoming; Liu, Pei; Tsao, Sai-Wah; Lung, Maria Li; Mak, Nai-Ki; Ngok-Shun Wong, Ricky; Ying-Kit Yue, Patrick

    2015-10-15

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1 and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future.

  8. Influence of ginsenoside Rg1, a panaxatriol saponin from Panax notoginseng, on renal fibrosis in rats with unilateral ureteral obstruction

    Institute of Scientific and Technical Information of China (English)

    Xi-sheng XIE; Man YANG; Heng-cuang LIU; Chuan ZUO; Zi LI; Yao DENG; Jun-ming FAN

    2008-01-01

    Total saponins ofPanax notoginseng (PNS) have been shown to ameliorate renal interstitial fibrosis. Ginsenoside Rg1, a panaxatriol saponin, is one of the major active molecules from PNS. The present study was undertaken to investigate the effect of ginsenoside Rg1 on renal fibrosis in rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into 3 groups:sham-operation (n=15), UUO (n=15) and UUO with ginsenoside Rg1 treatment (n=15, 50 mg per kg body weight, intraperito-neally (i.p.) injected). The rats were sacrificed on Days 7 and 14 after the surgery. Histological examination demonstrated that ginsenoside Rg1 significantly inhibited interstitial fibrosis including tubular injury as well as collagen deposition, a-smooth muscle actin (α-SMA) and E-cadherin are two markers of tubular epithelial-myofibroblast transition (TEMT). Interestingly, ginsenoside Rg1 notably decreased a-SMA expression and simultaneously enhanced E-eadherin expression. The messenger RNA (mRNA) of transforming growth factor-131 (TGF-β1), a key mediator to regulate TEMT, in the obstructed kidney increased dra-matically, but was found to decrease significantly after administration of ginsenoside Rg1. Further study showed that ginsenoside Rg1 considerably decreased the levels of both active TGF-β1 and phosphorylated Smad2 (pSmad2). Moreover, ginsenoside Rg1 substantially suppressed the expression of thrombospondin-1 (TSP-1), a cytokine which can promote the transcription of TGF-β1 mRNA and the activation of latent TGF-β1. These results suggest that ginsenoside Rg1 inhibits renal interstitial fibrosis in rats with UUO. The mechanism might be partly related to the blocking of TEMT via suppressing the expression of TSP-1.

  9. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    Science.gov (United States)

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  10. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    Directory of Open Access Journals (Sweden)

    C. Chen

    2013-08-01

    Full Text Available MP [4-(3′,3′-dimethylallyloxy-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21CIP1 , p16INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.

  11. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang, E-mail: brilliant212@163.com; Yang, Xinghai, E-mail: cnspineyang@163.com; Xiao, Jianru, E-mail: jianruxiao83@163.com

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  12. Silibinin suppresses NPM-ALK, potently induces apoptosis and enhances chemosensitivity in ALK-positive anaplastic large cell lymphoma.

    Science.gov (United States)

    Molavi, Ommoleila; Samadi, Nasser; Wu, Chengsheng; Lavasanifar, Afsaneh; Lai, Raymond

    2016-05-01

    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), an oncogenic fusion protein carrying constitutively active tyrosine kinase, is known to be central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK+ALCL). Here, it is reported that silibinin, a non-toxic naturally-occurring compound, potently suppressed NPM-ALK and effectively inhibited the growth and soft agar colony formation of ALK+ALCL cells. By western blots, it was found that silibinin efficiently suppressed the phosphorylation/activation of NPM-ALK and its key substrates/downstream mediators (including STAT3, MEK/ERK and Akt) in a time- and dose-dependent manner. Correlating with these observations, silibinin suppressed the expression of Bcl-2, survivin and JunB, all of which are found to be upregulated by NPM-ALK and pathogenetically important in ALK+ALCL. Lastly, silibinin augmented the chemosensitivity of ALK+ALCL cells to doxorubicin, particularly the small cell sub-set expressing the transcriptional activity of Sox2, an embryonic stem cell marker. To conclude, the findings suggest that silibinin might be useful in treating ALK+ALCL.

  13. Collagen XVI induces expression of MMP9 via modulation of AP-1 transcription factors and facilitates invasion of oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Konstanze B Bedal

    Full Text Available Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT. It is overexpressed during the progression of oral squamous cell carcinoma (OSCC. The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.

  14. Collagen XVI induces expression of MMP9 via modulation of AP-1 transcription factors and facilitates invasion of oral squamous cell carcinoma.

    Science.gov (United States)

    Bedal, Konstanze B; Grässel, Susanne; Oefner, Peter J; Reinders, Joerg; Reichert, Torsten E; Bauer, Richard

    2014-01-01

    Collagen XVI belongs to the family of fibril-associated collagens with interrupted triple helices (FACIT). It is overexpressed during the progression of oral squamous cell carcinoma (OSCC). The present data show a strong collagen XVI-dependent induction of MMP9 and an increase in OSCC cell invasion. We found activated integrin-linked kinase (ILK) in a complex with kindlin-1 and activation of protein kinase B (PKB/Akt) to be responsible for MMP9 induction. Inhibition of the formation of focal adhesions reduced MMP9 expression. Moreover, collagen XVI overexpressing OSCC cell clones (COLXVI cell clones) transfected with vectors containing different MMP9 promoter fragments adjacent to a luciferase reporter revealed an increase in luciferase signal dependent on AP-1 binding sites. Deletion of the AP-1 binding site 98 bp upstream of the reported transcription start site and inhibition of AP-1 with Tanshinone IIA resulted in decreased MMP9 expression. The AP-1 subunit JunB showed differential expression between COLXVI cell clones and mock control cells. Additionally, mass spectrometric analysis of immunoprecipitates revealed that c-Fos interacted strongly with dyskerin in COLXVI cell clones compared to mock controls.

  15. Linkage study of nonsyndromic cleft lip with or without cleft palate using candidate genes and mapped polymorphic markers

    Energy Technology Data Exchange (ETDEWEB)

    Stein, J.D.; Nelson, L.D.; Conner, B.J. [Univ. of Texas, Houston (United States)] [and others

    1994-09-01

    Nonsyndromic cleft lip with or without cleft palate (CL(P)) involves fusion or growth failure of facial primordia during development. Complex segregation analysis of clefting populations suggest that an autosomal dominant gene may play a role in this common craniofacial disorder. We have ascertained 16 multigenerational families with CL(P) and tested linkage to 29 candidate genes and 139 mapped short tandem repeat markers. The candidate genes were selected based on their expression in craniofacial development or were identified through murine models. These include: TGF{alpha}, TGF{beta}1, TGF{beta}2, TGF{beta}3, EGF, EGFR, GRAS, cMyc, FGFR, Jun, JunB, PDFG{alpha}, PDGF{beta}, IGF2R, GCR Hox7, Hox8, Hox2B, twirler, 5 collagen and 3 extracellular matrix genes. Linkage was tested assuming an autosomal dominant model with sex-specific decreased penetrance. Linkage to all of the candidate loci was excluded in 11 families. RARA was tested and was not informative. However, haplotype analysis of markers flanking RARA on 17q allowed exclusion of this candidate locus. We have previously excluded linkage to 61 STR markers in 11 families. Seventy-eight mapped short tandem repeat markers have recently been tested in 16 families and 30 have been excluded. The remaining are being analyzed and an exclusion map is being developed based on the entire study results.

  16. Some facts and thoughts: p73 as a tumor suppressor gene in the network of tumor suppressors

    Directory of Open Access Journals (Sweden)

    Boominathan Lakshmanane

    2007-04-01

    Full Text Available Abstract The question of whether p73 is a tumor suppressor gene, is not yet answered with full confidence. The lack of spontaneous tumor formation in p73 null mice and infrequent p73 mutations seen in a variety of cancers analyzed would straightaway negate its role as a primary tumor suppressor gene. However, accumulating evidence suggest that p73 gene and its target genes are hypermethylated in the cancer of lymphoid origin. Here I discuss some facts and thoughts that support the idea that p73 could still be a tumor suppressor gene. The tumor suppressor network in which p73 appears to be a participant involves E2F1, JunB, INK4a/p16, ARF/p19, p57kip2 and BRCA1. Knock out of each gene in E2F-1-p73-JunB-p16INK4a network of tumor suppressor proteins result in lymphoma/leukemia formation. Further, I tried to explain why lymphomas are not seen in p73 null mice and why p73 gene is not prone to frequent mutation.

  17. A phthalide derivative isolated from endophytic fungi Pestalotiopsis photiniae induces G1 cell cycle arrest and apoptosis in human HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [College of Life Science, Hebei University, Baoding (China); Yang, R.L. [Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China, Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding (China)

    2013-07-30

    MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27{sup KIP1} protein and p21{sup CIP1} mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21{sup CIP1}, p16{sup INK4a} and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.

  18. BRD4 Phosphorylation Regulates HPV E2-Mediated Viral Transcription, Origin Replication, and Cellular MMP-9 Expression

    Directory of Open Access Journals (Sweden)

    Shwu-Yuan Wu

    2016-08-01

    Full Text Available Post-translational modification can modulate protein conformation and alter binding partner recruitment within gene regulatory regions. Here, we report that bromodomain-containing protein 4 (BRD4, a transcription co-factor and chromatin regulator, uses a phosphorylation-induced switch mechanism to recruit E2 protein encoded by cancer-associated human papillomavirus (HPV to viral early gene and cellular matrix metalloproteinase-9 (MMP-9 promoters. Enhanced MMP-9 expression, induced upon keratinocyte differentiation, occurs via BRD4-dependent recruitment of active AP-1 and NF-κB to their target sequences. This is triggered by replacement of AP-1 family members JunB and JunD by c-Jun and by re-localization of NF-κB from the cytoplasm to the nucleus. In addition, BRD4 phosphorylation is critical for E2- and origin-dependent HPV DNA replication. A class of phospho-BRD4-targeting compounds, distinct from the BET bromodomain inhibitors, effectively blocks BRD4 phosphorylation-specific functions in transcription and factor recruitment.

  19. Modulation of fibroblast growth factor receptor expression and signalling during retinoic acid-induced differentiation of Tera-2 teratocarcinoma cells.

    Science.gov (United States)

    Pertovaara, L; Tienari, J; Vainikka, S; Partanen, J; Saksela, O; Lehtonen, E; Alitalo, K

    1993-02-26

    We have analyzed the regulation of fibroblast growth factor receptors (FGFRs) during retinoic acid (RA) induced differentiation of Tera-2 human embryonal carcinoma cells. Undifferentiated Tera-2 cells expressed mRNAs for all four known FGFRs. Their differentiation led to loss of FGFR-4 mRNA expression and mRNA levels for FGFR-2 and FGFR-3 were considerably downregulated, whereas the mRNA levels for FGFR-1 remained unaltered. A substantial decrease in binding of K-FGF was found to occur upon RA-induced differentiation of the cells. In undifferentiated Tera-2 cells FGF stimulation caused an increase of c-fos mRNA, and c-jun mRNAs, but no increase of junB mRNA, whereas in the differentiated cells, FGFs strongly stimulated the expression of all three genes. Thus differentiation of the Tera-2 cells leads to marked changes in FGFR gene expression as well as to complex alterations in their responses to exogenous FGFs.

  20. Shape-induced terminal differentiation of human epidermal stem cells requires p38 and is regulated by histone acetylation.

    Directory of Open Access Journals (Sweden)

    John T Connelly

    Full Text Available Engineered model substrates are powerful tools for examining interactions between stem cells and their microenvironment. Using this approach, we have previously shown that restricted cell adhesion promotes terminal differentiation of human epidermal stem cells via activation of serum response factor (SRF and transcription of AP-1 genes. Here we investigate the roles of p38 MAPK and histone acetylation. Inhibition of p38 activity impaired SRF transcriptional activity and shape-induced terminal differentiation of human keratinocytes. In addition, inhibiting p38 reduced histone H3 acetylation at the promoters of SRF target genes, FOS and JUNB. Although histone acetylation correlated with SRF transcriptional activity and target gene expression, treatment with the histone de-acetylase inhibitor, trichostatin A (TSA blocked terminal differentiation on micro-patterned substrates and in suspension. TSA treatment simultaneously maintained expression of LRIG1, TP63, and ITGB1. Therefore, global histone de-acetylation represses stem cell maintenance genes independent of SRF. Our studies establish a novel role for extrinsic physical cues in the regulation of chromatin remodeling, transcription, and differentiation of human epidermal stem cells.

  1. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H2O2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H2O2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells.

  2. Biocompatible Silk Noil-Based Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue.

    Science.gov (United States)

    Chiarini, Anna; Freddi, Giuliano; Liu, Daisong; Armato, Ubaldo; Dal Prà, Ilaria

    2016-08-01

    Retracting hypertrophic scars resulting from healed burn wounds heavily impact on the patients' life quality. Biomaterial scaffolds guiding burned-out skin regeneration could suppress or lessen scar retraction. Here we report a novel silk noil-based three-dimensional (3D) nonwoven scaffold produced by carding and needling with no formic acid exposure, which might improve burn healing. Once wetted, it displays human skin-like physical features and a high biocompatibility. Human keratinocyte-like cervical carcinoma C4-I cells seeded onto the carded-needled nonwovens in vitro quickly adhered to them, grew, and actively metabolized glutamine releasing lactate. As on plastic, they released no proinflammatory IL-1β, although secreting tumor necrosis factor-alpha, an inducer of the autocrine mitogen amphiregulin in such cells. Once grafted into interscapular subcutaneous tissue of mice, carded-needled nonwovens guided the afresh assembly of a connective tissue enveloping the fibroin microfibers and filling the interposed voids within 3 months. Fibroblasts and a few poly- or mononucleated macrophages populated the engineered tissue. Besides, its extracellular matrix contained thin sparse collagen fibrils and a newly formed vascular network whose endothelin-1-expressing endothelial cells grew first on the fibroin microfibrils and later expanded into the intervening matrix. Remarkably, no infiltrates of inflammatory leukocytes and no packed collagen fibers bundles among fibroin microfibers, no fibrous capsules at the grafts periphery, and hence no foreign body response was obtained at the end of 3 months of observation. Therefore, we posit that silk noil-based 3D carded-needled nonwoven scaffolds are tools for translational medicine studies as they could guide connective tissue regeneration at deep burn wounds averting scar retraction with good functional results.

  3. Effect of Mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro

    Institute of Scientific and Technical Information of China (English)

    Chuanming Xu; Chunju Liu; Wei Huang; Shuo Tu; Fusheng Wan

    2013-01-01

    Mammalian STE20-like kinase 1 (Mst1) is the mammalian homologue of Drosophila Hippo,a major inhibitor of cell proliferation in Drosophila.It ubiquitously encodes serine threonine kinase that belongs to the family of protein kinases related to yeast STE20,and is involved in cell proliferation,apoptosis,oncogenesis,and organ growth.Recent studies have shown that Mst1 has tumor-suppressor function,and the deletion or mutation of Mst1 is reported to be associated with tumorigenesis.To investigate the effect of overexpression of Mst1 on the growth of human liver cancer cell line HepG2 cells and the sensitivity to cisplatin in vitro,here we constructed recombinant eukaryotic expression vector pEGFP-N1-Mst1 containing Mst1 gene,and transiently transfected into HepG2 cells.The effects of Mst1 overexpression on the cell proliferation and apoptosis,the phosphorylation status of Yes-associated protein,and the mRNA transcript levels of connective tissue growth factor (CTGF),amphiregulin (AREG),and birc5 (Survivin) were determined.Results showed that overexpression of Mst1 inhibited cell proliferation,induced apoptosis of HepG2 cells,promoted YAP (Ser127) phosphorylation,and downregulated the mRNA expression of CTGF,AREG,and Survivin.We also investigated the relationship between the expression and cleavage of Mst1 and cisplatin-induced cell death.We found that Mst1 overexpression could induce cisplatin chemosensitivity,and cisplatin could promote the cleavage of Mst1 without affecting the expression of Mst1.Overall,our results indicated that Mst1 might be a promising anticancer target.

  4. Estrogenic potency of benzophenone UV filters in breast cancer cells: proliferative and transcriptional activity substantiated by docking analysis.

    Directory of Open Access Journals (Sweden)

    Gwenneg Kerdivel

    Full Text Available The results from recent studies show that some benzophenones (BPs and their hydroxylated metabolites can function as weak estrogens (E2 in the environment. However, little is known about the structure-activity relationship of these molecules. We have examined the effects of exposure to ten different BPs on the proliferation of estrogen receptor (ER-positive breast cancer cells and on the transcriptional activity of E2-target genes. We analyzed two genes that are tightly linked with estrogen-mediated proliferation, the CXCL12 and amphiregulin genes and two classical estrogen-responsive genes, the pS2 and progesterone receptor. Significant differences in the BPs efficiency to induce cell proliferation and endogenous E2-target gene expressions were observed. Using ERE-, Sp1-, AP1- and C3-reporter genes that contain different ER-binding sites in their promoter, we also showed significant differences in the BPs efficiency in activation of the ER transactivation. Together, our analyzes showed that the most active molecule is 4-hydroxy-BP. Docking analysis of the interaction of BPs in the ligand-binding pocket of ERα suggests that the minimum structural requirement for the estrogenic activity of BPs is a hydroxyl (OH group in the phenyl A-ring that allows interaction with Glu-353, Arg-394 or Phe-404, which enhances the stability between BPs and ERα. Our modeling also indicates a loss of interaction between the OH groups of the phenyl B-ring and His-524. In addition, the presence of some OH groups in the phenyl B-ring can create repulsion forces, which may constrain helix 12 in an unfavorable position, explaining the differential estrogenic effects of BPs. These results, together with our analysis of BPs for their potency in activation of cell proliferation and ER-mediated transcription, report an improved understanding of the mechanism and structure-activity relationship of BPs.

  5. Distinct effects of EGFR ligands on human mammary epithelial cell differentiation.

    Directory of Open Access Journals (Sweden)

    Chandrani Mukhopadhyay

    Full Text Available Based on gene expression patterns, breast cancers can be divided into subtypes that closely resemble various developmental stages of normal mammary epithelial cells (MECs. Thus, understanding molecular mechanisms of MEC development is expected to provide critical insights into initiation and progression of breast cancer. Epidermal growth factor receptor (EGFR and its ligands play essential roles in normal and pathological mammary gland. Signals through EGFR is required for normal mammary gland development. Ligands for EGFR are over-expressed in a significant proportion of breast cancers, and elevated expression of EGFR is associated with poorer clinical outcome. In the present study, we examined the effect of signals through EGFR on MEC differentiation using the human telomerase reverse transcriptase (hTERT-immortalized human stem/progenitor MECs which express cytokeratin 5 but lack cytokeratin 19 (K5(+K19(- hMECs. As reported previously, these cells can be induced to differentiate into luminal and myoepithelial cells under appropriate culture conditions. K5(+K19(- hMECs acquired distinct cell fates in response to EGFR ligands epidermal growth factor (EGF, amphiregulin (AREG and transforming growth factor alpha (TGFα in differentiation-promoting MEGM medium. Specifically, presence of EGF during in vitro differentiation supported development into both luminal and myoepithelial lineages, whereas cells differentiated only towards luminal lineage when EGF was replaced with AREG. In contrast, substitution with TGFα led to differentiation only into myoepithelial lineage. Chemical inhibition of the MEK-Erk pathway, but not the phosphatidylinositol 3-kinase (PI3K-AKT pathway, interfered with K5(+K19(- hMEC differentiation. The present data validate the utility of the K5(+K19(- hMEC cells for modeling key features of human MEC differentiation. This system should be useful in studying molecular/biochemical mechanisms of human MEC differentiation.

  6. A novel signaling pathway of tissue kallikrein in promoting keratinocyte migration: Activation of proteinase-activated receptor 1 and epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Lin; Chao, Lee [Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2211 (United States); Chao, Julie, E-mail: chaoj@musc.edu [Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425-2211 (United States)

    2010-02-01

    Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR{sub 1}), and by PAR{sub 1} inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR{sub 1}-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.

  7. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Science.gov (United States)

    Nickerson, Nicole K; Mohammad, Khalid S; Gilmore, Jennifer L; Crismore, Erin; Bruzzaniti, Angela; Guise, Theresa A; Foley, John

    2012-01-01

    Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR) and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231), and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01), reduced osteolytic lesion tumor volume (p<0.01), increased survivorship in vivo (p<0.001), and resulted in decreased MDA-231 growth in the fat pad (p<0.01). Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1) and matrix metalloproteinase 9 (MMP9), both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  8. Decreased autocrine EGFR signaling in metastatic breast cancer cells inhibits tumor growth in bone and mammary fat pad.

    Directory of Open Access Journals (Sweden)

    Nicole K Nickerson

    Full Text Available Breast cancer metastasis to bone triggers a vicious cycle of tumor growth linked to osteolysis. Breast cancer cells and osteoblasts express the epidermal growth factor receptor (EGFR and produce ErbB family ligands, suggesting participation of these growth factors in autocrine and paracrine signaling within the bone microenvironment. EGFR ligand expression was profiled in the bone metastatic MDA-MB-231 cells (MDA-231, and agonist-induced signaling was examined in both breast cancer and osteoblast-like cells. Both paracrine and autocrine EGFR signaling were inhibited with a neutralizing amphiregulin antibody, PAR34, whereas shRNA to the EGFR was used to specifically block autocrine signaling in MDA-231 cells. The impact of these was evaluated with proliferation, migration and gene expression assays. Breast cancer metastasis to bone was modeled in female athymic nude mice with intratibial inoculation of MDA-231 cells, and cancer cell-bone marrow co-cultures. EGFR knockdown, but not PAR34 treatment, decreased osteoclasts formed in vitro (p<0.01, reduced osteolytic lesion tumor volume (p<0.01, increased survivorship in vivo (p<0.001, and resulted in decreased MDA-231 growth in the fat pad (p<0.01. Fat pad shEGFR-MDA-231 tumors produced in nude mice had increased necrotic areas and decreased CD31-positive vasculature. shEGFR-MDA-231 cells also produced decreased levels of the proangiogenic molecules macrophage colony stimulating factor-1 (MCSF-1 and matrix metalloproteinase 9 (MMP9, both of which were decreased by EGFR inhibitors in a panel of EGFR-positive breast cancer cells. Thus, inhibiting autocrine EGFR signaling in breast cancer cells may provide a means for reducing paracrine factor production that facilitates microenvironment support in the bone and mammary gland.

  9. Hair-Growth-Promoting Effect of Conditioned Medium of High Integrin α6 and Low CD 71 (α6bri/CD71dim Positive Keratinocyte Cells

    Directory of Open Access Journals (Sweden)

    Chong Hyun Won

    2015-02-01

    Full Text Available Keratinocyte stem/progenitor cells (KSCs reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs and outer root sheath (ORS cells were treated with conditioned medium (CM of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor. A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.

  10. RETRACTED: Blockade of TNF-α signaling suppresses the AREG-mediated IL-6 and IL-8 cytokines secretion induced by anti-Ro/SSA autoantibodies.

    Science.gov (United States)

    Sisto, Margherita; Lisi, Sabrina; Lofrumento, Dario Domenico; Cucci, Liana; Mitolo, Vincenzo; D'Amore, Massimo

    2010-09-20

    The aim of this study was to analyze the Furin-TNF-α-converting enzyme (TACE)-amphiregulin (AREG)-IL-6/IL-8 secretion pathway in non-neoplastic human salivary gland epithelial cells (SGECs) stimulated with anti-Ro/SSA autoantibodies (Abs). We examined whether anti-Ro/SSA Abs-mediated TACE activation is responsible for AREG activation. As recent studies have demonstrated that AREG could induce proinflammatory cytokines secretion in epithelial cells, we discuss how TACE-mediated AREG shedding, caused by anti-Ro/SSA Abs treatment, could have a critical role in TNF-α-induced IL-6 and IL-8 secretion by SGEC. Furthermore, the effects of TNF-α blockade on AREG expression and TNF-α-AREG-mediated IL-6 and IL-8 secretion were evaluated. We have discovered that the upregulation of AREG occurs through TNF-α produced after anti-Ro/SSA Abs uptake via Fcγ receptors. Biological drug adalimumab and the gene silencing technique were used to study the AREG-IL-6/IL-8 secretion pathway, demonstrating that (i) adalimumab-mediated TNF-α blocking and TNF-α gene silencing provoke a significant decrease of proinflammatory cytokines production and AREG expression in anti-Ro/SSA Abs-treated SGEC; (ii) AREG gene silencing has a potent inhibitory effect on TNF-α-induced IL-6 and IL-8 secretion in SGEC treated with anti-Ro/SSA Abs; (iii) an inspection of the kinetics of cytokine production after exogeni TNF-α and AREG addition, and the use of cycloheximide in the presence of exogenous TNF-α as stimulant, clarified that TNF-α induces IL-6 and IL-8 secretion through AREG.Laboratory Investigation advance online publication, 20 September 2010; doi:10.1038/labinvest.2010.168.

  11. Transcriptional profiling defines the effects of nickel in human epidermal keratinocytes.

    Science.gov (United States)

    Gazel, Alix; Rosdy, Martin; Tornier, Carine; De Fraissinette, Anne De Brugerolle; Blumenberg, Miroslav

    2008-12-01

    Nickel is a ubiquitous and virtually unavoidable environmental pollutant and occupational hazard, but its molecular and cellular effects are not well understood. Human epidermal keratinocytes are the sentinel and the primary target for nickel. We treated with nickel salts skin equivalents containing differentiating epidermal keratinocytes grown on air-liquid interface in standard cell culture conditions. We identified the transcriptional profiles affected by nickel in reconstructed human epidermis (RHE) using DNA microarrays. The Ni-regulated genes were determined at two time points, immediate-early, 30 min after treatment, and late, at 6 h. Using in silico data analysis, we determined that 134 genes are regulated by nickel; of these, 97 are induced and 37 suppressed. Functional categories of regulated genes suggest that Ni inhibits apoptosis, promotes cell cycle and induces synthesis of extracellular matrix proteins and extracellular proteases. Importantly, Ni also regulates a set of secreted signaling proteins, inducing VEGF, amphiregulin, PGF, GDF15, and BST2, while suppressing IL-18, galectin-3, and LITAF. These secreted proteins may be important in Ni-caused allergic reactions. Ni induced inhibitors of the NFkappaB signaling pathway, and suppressed its activators. Correspondingly, NFkappaB binding sites were found to be overrepresented in the Ni-suppressed genes, whereas cFOS/AP1 binding sites were common in the Ni-induced genes. Significant parallels were found between the Ni-regulated genes and the genes regulated by TGFbeta, EGF, glucocorticoids, or Oncostatin-M. The comprehensive identification of Ni-regulated genes in human epidermal equivalents significantly advances our understanding of the molecular effects of nickel in skin.

  12. Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.

    Directory of Open Access Journals (Sweden)

    Frank Götschel

    Full Text Available Aberrant activation of Hedgehog (HH signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies.

  13. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor.

    Science.gov (United States)

    Yan, Fang; Liu, Liping; Dempsey, Peter J; Tsai, Yu-Hwai; Raines, Elaine W; Wilson, Carole L; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D Brent

    2013-10-18

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.

  14. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma.

    Science.gov (United States)

    Hutchinson, Katherine E; Johnson, Douglas B; Johnson, Adam S; Sanchez, Violeta; Kuba, Maria; Lu, Pengcheng; Chen, Xi; Kelley, Mark C; Wang, Qingguo; Zhao, Zhongming; Kris, Mark; Berger, Michael F; Sosman, Jeffrey A; Pao, William

    2015-09-08

    Melanomas are characterized by activating "driver" mutations in BRAF, NRAS, KIT, GNAQ, and GNA11. Resultant mitogen-activated protein kinase (MAPK) pathway signaling makes some melanomas susceptible to BRAF (BRAF V600 mutations), MEK1/2 (BRAF V600, L597, fusions; NRAS mutations), or other kinase inhibitors (KIT), respectively. Among driver-negative ("pan-negative") patients, an unexplained heterogeneity of response to MEK1/2 inhibitors has been observed. Analysis of 16 pan-negative melanoma cell lines revealed that 8 (50%; termed Class I) are sensitive to the MEK1/2 inhibitor, trametinib, similar to BRAF V600E melanomas. A second set (termed Class II) display reduced trametinib sensitivity, paradoxical activation of MEK1/2 and basal activation of ERBBs 1, 2, and 3 (4 lines, 25%). In 3 of these lines, PI3K/AKT and MAPK pathway signaling is abrogated using the ERBB inhibitor, afatinib, and proliferation is even further reduced upon the addition of trametinib. A potential mechanism of ERBB activation in Class II melanomas is minimal expression of the ERK1/2 phosphatase, DUSP4, as ectopic restoration of DUSP4 attenuated ERBB signaling through potential modulation of the ERBB ligand, amphiregulin (AREG). Consistent with these data, immunohistochemical analysis of patient melanomas revealed a trend towards lower overall DUSP4 expression in pan-negative versus BRAF- and NRAS-mutant tumors. This study is the first to demonstrate that differential ERBB activity in pan-negative melanoma may modulate sensitivity to clinically-available MEK1/2 inhibitors and provides rationale for the use of ERBB inhibitors, potentially in combination with MEK1/2 inhibitors, in subsets of this disease.

  15. ADAM17 is associated with EMMPRIN and predicts poor prognosis in patients with uterine cervical carcinoma.

    Science.gov (United States)

    Xu, Qin; Ying, Mingang; Chen, Guilin; Lin, Ang; Xie, Yunqing; Ohara, Noriyuki; Zhou, Dongmei

    2014-08-01

    Metalloproteinase activities of a disintegrin and metalloproteinase 17 (ADAM17), amphiregulin (AREG), extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinases (MMPs) are involved in tumor biology. In patients with uterine cervical carcinoma, the expression and prognostic significance of ADAM17 remain to be fully elucidated. The expression of ADAM17, AREG, EMMPRIN, phospho-epidermal growth factor receptor (p-EGFR), phospho-extracellular signal-regulated kinase (p-ERK), MMP-2, and MMP-9 was assessed by immunohistochemistry and/or Western blotting from cervical carcinoma cell lines, SiHa and HeLa cells, and cervical carcinoma tissues. AREG activity was measured by ELISA assay. The correlation of ADAM17, AREG, EMMPRIN, and MMP-9 expression with patients' survival rates was assessed by Kaplan-Meier and Cox regression analyses. RNA interference (RNAi) experiment was performed using small interfering mRNA to ADAM17 and EMMPRIN. ADAM17, EMMPRIN, and MMP-9 protein content was overexpressed in cervical carcinoma tissues compared with normal cervical tissues (P cervical cancer. ADAM17 RNAi decreased EMMPRIN, p-EGFR, p-ERK, MMP-2, and MMP-9 proteins in SiHa and HeLa cells. ELISA assay revealed that AREG activity was stimulated by ADAM17 and was reversed by ADAM17 RNAi in SiHa and HeLa cells. Our data suggest that the increased expression of ADAM17 in cervical cancer is significantly associated with aggressive progression and poor prognosis. ADAM17 may be a molecular marker for predicting the progression and prognosis in cervical cancer.

  16. Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Directory of Open Access Journals (Sweden)

    Boersma Hester

    2009-04-01

    Full Text Available Abstract Background Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD, a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome. Methods Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Results Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH. Conclusion Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary

  17. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters.

    Science.gov (United States)

    Shahed, Asha; Simmons, Jamie J; Featherstone, Sydney L; Young, Kelly A

    2015-05-15

    Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.

  18. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Science.gov (United States)

    Khan, Junaid A; Bellance, Catherine; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2012-01-01

    Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  19. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Directory of Open Access Journals (Sweden)

    Junaid A Khan

    Full Text Available Progesterone receptor isoforms (PRA and PRB are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  20. Yes-associated protein regulates the growth of human non-small cell lung cancer in response to matrix stiffness.

    Science.gov (United States)

    Yuan, Yonggang; Zhong, Weiliang; Ma, Ge; Zhang, Baoxiang; Tian, Hui

    2015-06-01

    The Yes‑associated protein (YAP) transcriptional coactivator is recognized as a crucial regulator of human cancer. However, its involvement in human non‑small cell lung cancer (NSCLC) in response to physical cues remains unclear. In this study, substrates with different rigidity were generated in order to evaluate the role of YAP, and its upstream regulators in the Hippo pathway, in the regulation of growth of an NSCLC cell line within particular environments. It was shown that the expression of the YAP protein in SPCA-1 NSCLC cells was significantly increased when cultured on a stiff substrate compared to a soft substrate. However, the expression of phospho‑YAP protein and large tumor suppressor kinase 1 (LATS1) were markedly decreased after culturing on the stiff substrate. Phosphorylation of YAP by LATS1 leads to cytoplasmic retention of YAP, which inhibits its function as a nuclear transcription coactivator. The study also found that the stiff substrate promoted the growth of NSCLC cells in vitro, and an increase in the transcription levels of Survivin, connective tissue growth factor, amphiregulin and Ki67, as well as a decrease in the expression level of YAP in the cytoplasm, and adecrease in p-YAP. In conclusion, the findings showed that the stiffness of the subcellular matrix altered the behavior of NSCLC cells, and that YAP regulated the growth of NSCLC cells in response to matrix stiffness, thereby suggesting a role for the Hippo‑YAP pathway in the response of NSCLC cell growth to specific microenvironments.

  1. Topical application of phosphatidyl-inositol-3,5-bisphosphate for acute lung injury in neonatal swine

    Science.gov (United States)

    Preuß, Stefanie; Omam, Friede D; Scheiermann, Julia; Stadelmann, Sabrina; Winoto-Morbach, Supandi; von Bismarck, Philipp; Adam-Klages, Sabine; Knerlich-Lukoschus, Friederike; Lex, Dennis; Wesch, Daniela; Held-Feindt, Janka; Uhlig, Stefan; Schütze, Stefan; Krause, Martin F

    2012-01-01

    Hypoxemic respiratory failure of the neonatal organism involves increased acid sphingomyelinase (aSMase) activity and production of ceramide, a second messenger of a pro-inflammatory pathway that promotes increased vascular permeability, surfactant alterations and alveolar epithelial apoptosis. We comparatively assessed the benefits of topical aSMase inhibition by either imipramine (Imi) or phosphatidylinositol-3,5-bisphosphate (PIP2) when administered into the airways together with surfactant (S) for fortification. In this translational study, a triple-hit acute lung injury model was used that entails repeated airway lavage, injurious ventilation and tracheal lipopolysaccharide instillation in newborn piglets subject to mechanical ventilation for 72 hrs. After randomization, we administered an air bolus (control), S, S+Imi, or S+PIP2. Only in the latter two groups we observed significantly improved oxygenation and ventilation, dynamic compliance and pulmonary oedema. S+Imi caused systemic aSMase suppression and ceramide reduction, whereas the S+PIP2 effect remained compartmentalized in the airways because of the molecule's bulky structure. The surfactant surface tensions improved by S+Imi and S+PIP2 interventions, but only to a minor extent by S alone. S+PIP2 inhibited the migration of monocyte-derived macrophages and granulocytes into airways by the reduction of CD14/CD18 expression on cell membranes and the expression of epidermal growth factors (amphiregulin and TGF-β1) and interleukin-6 as pro-fibrotic factors. Finally we observed reduced alveolar epithelial apoptosis, which was most apparent in S+PIP2 lungs. Exogenous surfactant “fortified” by PIP2, a naturally occurring surfactant component, improves lung function by topical suppression of aSMase, providing a potential treatment concept for neonates with hypoxemic respiratory failure. PMID:22882773

  2. Screening and regulation network analysis of clear cell renal cell carcinoma related differentially expressed miRNAs%肾透明细胞癌相关特异miRNAs的筛选及分子网络调控机制分析

    Institute of Scientific and Technical Information of China (English)

    何昊玮; 葛京平; 董杰; 王林辉

    2013-01-01

    Objective Micro RNAs (miRNAs) have been identified as key regulators in many biological processes , including proliferation, cell cycle control, apoptosis escape , tissue invasion and metastasis , angiopoiesis and unlimited replication potential. This study was to analyze differentially expressed miRNAs in clear cell renal cell carcinoma ( ccRCC ) and its adjacent normal renal tissue , investigate the regulating mechanisms of their molecular networks and verify the targets of the hub -miRNAs. Methods TargetScan software was employed to predict the targets of deregulated miRNAs . The regulation network of differentially expressed miRNAs and the target genes was established using gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Luciferase assay was performed to verify the targets of the hub -miRNA. Results miR-22, miR499a-5p and miR-429 were the key miRNAs in the regulation network, and TGFBR1 and JUNB were the direct targets of miR-199a-5p. Conclusion Our findings suggest an important regula — tory role of miR-199a-5p in the tumorigenesis of ccRCC by inhibiting the expressions of its targets TGFBR 1 and JUNB.%目的 miRNAs(microRNAs)是肿瘤重要的调节因子,对细胞增殖、细胞周期的控制、逃避细胞凋亡、组织侵袭及转移、血管形成、无限复制潜力均起到重要的调节作用.文中对肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)与癌旁正常肾组织的差异miRNAs表达谱进行分子网络调控机制分析,找到关键miRNA并验证其靶基因.方法 通过TargetScan预测得到差异miRNA调控的所有靶基因,并在筛选后利用GO显著性功能分析和KEGG Pathway显著性分析,构建差异miRNA与靶基因的调控网络.筛选关键miRNA及其靶基因,对miR-199a-5p调控的靶基因进行验证.结果 miR-22、miR-199a-5p、miR-429是调控网络的关键miRNA.转化生长因子β受体1(transforming growth factor-β receptor 1,TGFBR1)、jun B原癌基因(jun B

  3. Hepatocarcinogenic potential of the glucocorticoid antagonist RU486 in B6C3F1 mice: effect on apoptosis, expression of oncogenes and the tumor suppressor gene p53

    Directory of Open Access Journals (Sweden)

    Badr Mostafa Z

    2003-01-01

    Full Text Available Abstract Background Glucocorticoids inhibit hepatocellular proliferation and modulate the expression of oncogenes and tumor suppressor genes via mechanisms involving the glucocorticoid receptor. Glucocorticoids also produce a receptor-mediated inhibitory effect on both basal and hormone-stimulated expression of a newly discovered family of molecules important for shutting off cytokine action. We therefore hypothesized that inhibiting glucocorticoid receptors may disturb hepatocellular growth and apoptosis. Consequently, we investigated the effect of RU486, a potent antagonist of the glucocorticoid receptor, on basal levels of hepatocellular proliferation and apoptosis in male B6C3F1 mice. Furthermore, we evaluated the effect of this compound on cellular genes involved in the regulation of these important processes. Results Data show that treatment of male B6F3C1 mice with RU486 (2 mg/kg/d, ip for 7 days dramatically inhibited liver cell proliferation by about 45% and programmed hepatocellular death by approximately 66%. RU 486 also significantly increased hepatic expression of the oncogenes mdm2 and JunB, while reducing that of the tumor suppressor gene p53. Conclusion Exposure to RU486 may ultimately enhance the susceptibility of the liver to cancer risk by diminishing its ability to purge itself of pre-cancerous cells via apoptosis. This effect may be mediated through increases in the hepatic expression of the oncogene mdm2, coupled with decreases in that of the tumor suppressor gene p53. The decrease in hepatocellular proliferation caused by RU 486 may be related to effects other than its anti-glucocorticoid activity.

  4. Expression of tyrosine kinase Etk/Bmx and its relationship with AP-1- and NF-kappaB-associated proteins in hepatocellular carcinoma.

    Science.gov (United States)

    Guo, Linlang; Guo, Ying; Xiao, Sha

    2007-01-01

    Etk/Bmx is a cytoplasmic tyrosine kinase, which was first identified in human bone marrow cells. It has been found to play an important role in the regulation of differentiation and tumorigenicity in some cancers. The aim of this study was to investigate the significance of Etk/Bmx expression in hepatocellular carcinoma (HCC) and the relationship between Etk/Bmx and activated protein-1 (AP-1)- and nuclear factor-kappaB (NF-kappaB)-associated proteins. We used immunohistochemisty to examine 40 cases of human HCC along with corresponding nontumor tissues to assess Etk/Bmx, Jun family (c-Jun, JunB, JunD), Fos family (c-Fos, FosB, Fra-1) and NF-kappaB p65 expression in these samples. Etk/Bmx expression was present in 12 of 40 (30%) HCC specimens, 4 of which among the 25 well-differentiated tumors and 8 among the 15 poorly differentiated tumors, respectively. In contrast, 6 of 40 (15%) cases expressed Etk/Bmx in adjacent nontumor tissues. Expression level and cellular localization of Etk/Bmx were different in cancer cells and nontumor cells. Etk/Bmx expression was correlated with histological differentiation, but not with clinicopathological features including tumor size, HBV infection, cirrhosis, and metastasis. There was a close relationship between Etk/Bmx and c-Fos expression in HCC. Etk/Bmx immunopositivity was independent of c-Jun, JunD, FosB, Fra-1 and NF-kappaB p65. Our results indicated that Etk/Bmx may have different biological roles in tumor and nontumor cells, and may be involved in regulating hepatocyte differentiation by c-Fos activation in HCC.

  5. Cyclin-dependent kinase 5 modulates STAT3 and androgen receptor activation through phosphorylation of Ser⁷²⁷ on STAT3 in prostate cancer cells.

    Science.gov (United States)

    Hsu, Fu-Ning; Chen, Mei-Chih; Lin, Kuan-Chia; Peng, Yu-Ting; Li, Pei-Chi; Lin, Eugene; Chiang, Ming-Ching; Hsieh, Jer-Tsong; Lin, Ho

    2013-10-15

    Cyclin-dependent kinase 5 (Cdk5) is known to regulate prostate cancer metastasis. Our previous results indicated that Cdk5 activates androgen receptor (AR) and supports prostate cancer growth. We also found that STAT3 is a target of Cdk5 in promoting thyroid cancer cell growth, whereas STAT3 may play a role as a regulator to AR activation under cytokine control. In this study, we investigated the regulation of Cdk5 and its activator p35 on STAT3/AR signaling in prostate cancer cells. Our results show that Cdk5 biochemically interacts with STAT3 and that this interaction depends on Cdk5 activation in prostate cancer cells. The phosphorylation of STAT3 at Ser⁷²⁷ (p-Ser⁷²⁷-STAT3) is regulated by Cdk5 in cells and xenograft tumors. The mutant of STAT3 S727A reduces its interaction with Cdk5. We further show that the nuclear distribution of p-Ser⁷²⁷-STAT3 and the expression of STAT3-regulated genes (junB, c-fos, c-myc, and survivin) are regulated by Cdk5 activation. STAT3 mutant does not further decrease cell proliferation upon Cdk5 inhibition, which implies that the role of STAT3 regulated by Cdk5 correlates to cell proliferation control. Interestingly, Cdk5 may regulate the interaction between STAT3 and AR through phosphorylation of Ser⁷²⁷-STAT3 and therefore upregulate AR protein stability and transactivation. Correspondingly, clinical evidence shows that the level of p-Ser⁷²⁷-STAT3 is significantly correlated with Gleason score and the levels of upstream regulators (Cdk5 and p35) as well as downstream protein (AR). In conclusion, this study demonstrates that Cdk5 regulates STAT3 activation through Ser⁷²⁷ phosphorylation and further promotes AR activation by protein-protein interaction in prostate cancer cells.

  6. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Science.gov (United States)

    Habauzit, Denis; Le Quément, Catherine; Zhadobov, Maxim; Martin, Catherine; Aubry, Marc; Sauleau, Ronan; Le Dréan, Yves

    2014-01-01

    Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW) will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2), led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed). Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed). By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  7. Transcriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposure.

    Directory of Open Access Journals (Sweden)

    Denis Habauzit

    Full Text Available Radiofrequency radiations constitute a new form of environmental pollution. Among them, millimeter waves (MMW will be widely used in the near future for high speed communication systems. This study aimed therefore to evaluate the biocompatibility of MMW at 60 GHz. For this purpose, we used a whole gene expression approach to assess the effect of acute 60 GHz exposure on primary cultures of human keratinocytes. Controls were performed to dissociate the electromagnetic from the thermal effect of MMW. Microarray data were validated by RT-PCR, in order to ensure the reproducibility of the results. MMW exposure at 20 mW/cm2, corresponding to the maximum incident power density authorized for public use (local exposure averaged over 1 cm2, led to an increase of temperature and to a strong modification of keratinocyte gene expression (665 genes differentially expressed. Nevertheless, when temperature is artificially maintained constant, no modification in gene expression was observed after MMW exposure. However, a heat shock control did not mimic exactly the MMW effect, suggesting a slight but specific electromagnetic effect under hyperthermia conditions (34 genes differentially expressed. By RT-PCR, we analyzed the time course of the transcriptomic response and 7 genes have been validated as differentially expressed: ADAMTS6, NOG, IL7R, FADD, JUNB, SNAI2 and HIST1H1A. Our data evidenced a specific electromagnetic effect of MMW, which is associated to the cellular response to hyperthermia. This study raises the question of co-exposures associating radiofrequencies and other environmental sources of cellular stress.

  8. Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss).

    Science.gov (United States)

    Quesada-García, Alba; Encinas, Paloma; Valdehita, Ana; Baumann, Lisa; Segner, Helmut; Coll, Julio M; Navas, José M

    2016-05-01

    In mammals, numerous reports describe an immunomodulating effect of thyroid-active compounds. In contrast, only few reports have been published on this subject in fish. We previously demonstrated that immune cells of rainbow trout (Oncorhynchus mykiss) possess thyroid hormone receptors (THRs) and that exposure of trout to the thyroid hormone 3,3',5-triiodo-l-thyronine (T3) or the antithyroid drug propylthiouracil (PTU) alters immune cell transcript levels of THR and several immune genes. The present study aims to further characterize the immunomodulating action of thyroid-active compounds in trout immune cells. We report here the use of a custom-designed 60-mer oligo immune-targeted microarray for rainbow trout to analyze the gene expression profiles induced in the head kidney by T3 and PTU. Morphometric analyses of the thyroid showed that PTU exposure increased the size of the epithelial cells, whereas T3 induced no significant effects. Both T3 and PTU had diverse and partly contrasting effects on immune transcript profiles. The strongest differential effects of T3 and PTU on gene expressions were those targeting the Mitogen Associated Protein Kinase (MAPK), NFkB, Natural Killer (NK) and Toll-Like Receptor (TLR) pathways, a number of multipath genes (MPG) such as those encoding pleiotropic transcription factors (atf1, junb, myc), as well as important pro-inflammatory genes (tnfa, tnf6, il1b) and interferon-related genes (ifng, irf10). With these results we show for the first time in a fish species that the in vivo thyroidal status modulates a diversity of immune genes and pathways. This knowledge provides the basis to investigate both mechanisms and consequences of thyroid hormone- and thyroid disruptor-mediated immunomodulation for the immunocompetence of fish.

  9. Inactivation of Sag/Rbx2/Roc2 E3 Ubiquitin Ligase Triggers Senescence and Inhibits Kras-Induced Immortalization

    Directory of Open Access Journals (Sweden)

    Mingjia Tan

    2015-01-01

    Full Text Available Our recent study showed that SAG/RBX2 E3 ubiquitin ligase regulates apoptosis and vasculogenesis by promoting degradation of NOXA and NF1, and co-operates with Kras to promote lung tumorigenesis by activating NFκB and mTOR pathways via targeted degradation of tumor suppressive substrates including IκB, DEPTOR, p21 and p27. Here we investigated the role of Sag/Rbx2 E3 ligase in cellular senescence and immortalization of mouse embryonic fibroblasts (MEFs and report that Sag is required for proper cell proliferation and KrasG12D-induced immortalization. Sag inactivation by genetic deletion remarkably suppresses cell proliferation by inducing senescence, which is associated with accumulation of p16, but not p53. Mechanistically, Sag deletion caused accumulation of Jun-B, a substrate of Sag-Fbxw7 E3 ligase and a transcription factor that drives p16 transcription. Importantly, senescence triggered by Sag deletion can be largely rescued by simultaneous deletion of Cdkn2a, the p16 encoding gene, indicating its causal role. Furthermore, KrasG12D-induced immortalization can also be abrogated by Sag deletion via senescence induction, which is again rescued by simultaneous deletion of Cdkn2a. Finally, we found that Sag deletion inactivates KrasG12D activity and block the MAPK signaling pathway, together with accumulated p16, to induce senescence. Taken together, our results demonstrated that Sag is a KrasG12D-cooperating oncogene required for KrasG12D-induced immortalization and transformation, and targeting SAG-SCF E3 ligase may, therefore, have therapeutic value for senescence-based cancer treatment.

  10. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  11. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides

    Science.gov (United States)

    Wang, Dongmei; Mitchell, Ellen S.

    2016-01-01

    Brain glucose hypometabolism is a common feature of Alzheimer’s disease (AD). Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT). Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA) suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet) in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612) phosphorylation and decreased S6K phosphorylation (240/244) but only MCT10 increased Akt phosphorylation (473). MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1) were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels. PMID:27517611

  12. A eudesmane-type sesquiterpene isolated from Pluchea odorata (L.) Cass. combats three hallmarks of cancer cells: Unrestricted proliferation, escape from apoptosis and early metastatic outgrowth in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Michael [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); McKinnon, Ruxandra [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Nguyen, Chi Huu [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Holzner, Silvio [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Zehl, Martin [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Atanasov, Atanas Georgiev [Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Schelch, Karin [Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Krieger, Sigurd [Department of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20 (Austria); Diaz, Rene; Frisch, Richard [Institute for Ethnobiology, Playa Diana, San José/Petén (Guatemala); Feistel, Björn [Finzelberg GmbH & Co. KG, Koblenzer Strasse 48-54, D-56626 Andernach (Germany); Jäger, Walter [Department of Clinical Pharmacy and Diagnostics, University of Vienna, Althanstrasse 14, A-1090 Vienna (Austria); Ecker, Gerhard F. [Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna (Austria); and others

    2015-07-15

    Highlights: • PO-1 perturbs cell cycle regulators and progression. • PO-1 inhibits HL-60 cell expansion. • PO-1 and PO-2 attenuate tumour cell intravasation through the endothelial barrier. - Abstract: Pluchea odorata is ethno pharmaceutically used to treat inflammation-associated disorders. The dichloromethane extract (DME) was tested in the carrageenan-induced rat paw oedema assay investigating its effect on inflammation that was inhibited by 37%. Also an in vitro anti-neoplastic potential was reported. However, rather limited information about the bio-activity of purified compounds and their cellular mechanisms are available. Therefore, two of the most abundant eudesmanes in P. odorata were isolated and their anti-neoplastic and anti-intravasative activities were studied. HL-60 cells were treated with P. odorata compounds and metabolic activity, cell number reduction, cell cycle progression and apoptosis induction were correlated with relevant protein expression. Tumour cell intravasation through lymph endothelial monolayers was measured and potential causal mechanisms were analyzed by Western blotting. Compound PO-1 decreased the metabolic activity of HL-60 cells (IC{sub 50} = 8.9 μM after 72 h) and 10 μM PO-1 induced apoptosis, while PO-2 showed just weak anti-neoplastic activities at concentrations beyond 100 μM. PO-1 arrested the cell cycle in G1 and this correlated with induction of JunB expression. Independent of this mechanism 25 μM PO-1 decreased MCF-7 spheroid intravasation through the lymph endothelial barrier. Hence, PO-1 inhibits an early step of metastasis, impairs unrestricted proliferation and induces apoptosis at low micromolar concentrations. These results warrant further testing in vivo to challenge the potential of PO-1 as novel lead compound.

  13. Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer.

    Science.gov (United States)

    Börnigen, Daniela; Tyekucheva, Svitlana; Wang, Xiaodong; Rider, Jennifer R; Lee, Gwo-Shu; Mucci, Lorelei A; Sweeney, Christopher; Huttenhower, Curtis

    2016-04-01

    Molecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members' biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies.

  14. NF-Kβ Activation in U266 Cells on Mesenchymal Stem Cells

    Science.gov (United States)

    Zahedi, Sara; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin

    2016-01-01

    Purpose: Mesenchymal Stem Cells (MSCs) are one of the essential members of Bone Marrow (BM) microenvironment and the cells affect normal and malignant cells in BM milieu. One of the most important hematological malignancies is Multiple Myeloma (MM). Numerous studies reported various effects of MSCs on myeloma cells. MSCs initiate various signaling pathways in myeloma cells, particularly NF-kβ. NF-kβ signaling pathway plays pivotal role in the survival, proliferation and resistance of myeloma cells to the anticancer drugs, therefore this pathway can be said to be a vital target for cancer therapy. This study examined the relationship between U266 cells and MSCs. Methods: U266 cells were cultured with Umbilical Cord Blood derived-MSCs (UCB-MSCs) and Conditioned Medium (C.M). Effect of UCB-MSCs and C.M on proliferation rate and CD54 expression of U266 cells were examined with MTT assay and Flowcytometry respectively. Furthermore, expression of CXCL1, PECAM-1, JUNB, CCL2, CD44, CCL4, IL-6, and IL-8 were analyzed by Real Time-PCR (RT-PCR). Moreover, status of p65 protein in NF-kβ pathway assessed by western blotting. Results: Our findings confirm that UCB-MSCs support U266 cells proliferation and they increase CD54 expression. In addition, we demonstrate that UCB-MSCs alter the expression of CCL4, IL-6, IL-8, CXCL1 and the levels of phosphorylated p65 in U266 cells. Conclusion: Our study provides a novel sight to the role of MSCs in the activation of NF-kβ signaling pathway. So, NF-kβ signaling pathway will be targeted in future therapies against MM.

  15. Quantitative proteomics identifies vasopressin-responsive nuclear proteins in collecting duct cells.

    Science.gov (United States)

    Schenk, Laura K; Bolger, Steven J; Luginbuhl, Kelli; Gonzales, Patricia A; Rinschen, Markus M; Yu, Ming-Jiun; Hoffert, Jason D; Pisitkun, Trairak; Knepper, Mark A

    2012-06-01

    Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (β-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5'-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCβ), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in β-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct.

  16. Lobatin B inhibits NPM/ALK and NF-κB attenuating anaplastic-large-cell-lymphomagenesis and lymphendothelial tumour intravasation.

    Science.gov (United States)

    Kiss, Izabella; Unger, Christine; Huu, Chi Nguyen; Atanasov, Atanas Georgiev; Kramer, Nina; Chatruphonprasert, Waranya; Brenner, Stefan; McKinnon, Ruxandra; Peschel, Andrea; Vasas, Andrea; Lajter, Ildiko; Kain, Renate; Saiko, Philipp; Szekeres, Thomas; Kenner, Lukas; Hassler, Melanie R; Diaz, Rene; Frisch, Richard; Dirsch, Verena M; Jäger, Walter; de Martin, Rainer; Bochkov, Valery N; Passreiter, Claus M; Peter-Vörösmarty, Barbara; Mader, Robert M; Grusch, Michael; Dolznig, Helmut; Kopp, Brigitte; Zupko, Istvan; Hohmann, Judit; Krupitza, Georg

    2015-01-28

    An apolar extract of the traditional medicinal plant Neurolaena lobata inhibited the expression of the NPM/ALK chimera, which is causal for the majority of anaplastic large cell lymphomas (ALCLs). Therefore, an active principle of the extract, the furanoheliangolide sesquiterpene lactone lobatin B, was isolated and tested regarding the inhibition of ALCL expansion and tumour cell intravasation through the lymphendothelium. ALCL cell lines, HL-60 cells and PBMCs were treated with plant compounds and the ALK inhibitor TAE-684 to measure mitochondrial activity, proliferation and cell cycle progression and to correlate the results with protein- and mRNA-expression of selected gene products. Several endpoints indicative for cell death were analysed after lobatin B treatment. Tumour cell intravasation through lymphendothelial monolayers was measured and potential causal mechanisms were investigated analysing NF-κB- and cytochrome P450 activity, and 12(S)-HETE production. Lobatin B inhibited the expression of NPM/ALK, JunB and PDGF-Rβ, and attenuated proliferation of ALCL cells by arresting them in late M phase. Mitochondrial activity remained largely unaffected upon lobatin B treatment. Nevertheless, caspase 3 became activated in ALCL cells. Also HL-60 cell proliferation was attenuated whereas PBMCs of healthy donors were not affected by lobatin B. Additionally, tumour cell intravasation, which partly depends on NF-κB, was significantly suppressed by lobatin B most likely due to its NF-κB-inhibitory property. Lobatin B, which was isolated from a plant used in ethnomedicine, targets malignant cells by at least two properties: I) inhibition of NPM/ALK, thereby providing high specificity in combating this most prevalent fusion protein occurring in ALCL; II) inhibition of NF-κB, thereby not affecting normal cells with low constitutive NF-κB activity. This property also inhibits tumour cell intravasation into the lymphatic system and may provide an option to manage this

  17. Differentiation, early response gene expression, and apoptosis induction in human breast tumor cells by Okadaic Acid and related inhibitors of protein phosphatases 1 and 2A. Okadaic acid effects on human breast tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiguchi, K.; Giometti, C.; Chubb, C.H.; Huberman, E. [Argonne National Lab., IL (United States); Fujiki, H. [National Cancer Center Research Institute, Tokyo (Japan)

    1992-08-20

    Okadaic acid (OA), a tumor promoter and an inhibitor of protein phosphatases (PPH) 1 and 2A, was tested for its ability to induce events associated with differentiation and apoptosis induction in the human MCF-7, AU-565, and MB-231 breast tumor cells. Differentiation in these cells was characterized by inhibition of cell multiplication, reactivity with monoclonal antibodies to {alpha}-lactalbumin and {beta}-casein, and the appearance of large lipid droplets; apoptosis was characterized by the appearance of cells with segmented and fragmented nuclei. In the MCF-7 cell line, OA at nanomolar concentrations elicited within 5 min an increase in the phosphorylation of a set of cellular proteins, within hours expression of the early response genes, junB, c-jun, and c-fos and within days manifestation of differentiation and apoptosis markers. Differentiation and apoptosis were also induced by dinophysistoxin-1 and calyculin A, two other tumor promoters and inhibitors of PPH 1 and 2A, but not by OA tetramethyl ether, an inactive OA derivative, or microcystin LR, a PPH 1 and 2A inhibitor that penetrates epithelial cells poorly. OA induced both differentiation and apoptosis in MB-231 cells and MCF-7, but only differentiation in AU-565 cells. Phorbol 12-myristate 13-acetate (PMA), a tumor promoter that is not an inhibitor of PPH 1 and 2A but rather an activator of protein kinase C, also induced within minutes the phosphorylation of proteins, within hours the expression of early response genes, and within days differentiation, but not apoptosis; yet PMA was able to attenuate apoptosis induced by the okadaic acid class of tumor promoters. These results indicate that OA and related agents can induce processes that result in tumor breast cell differentiation and apoptosis, and this induction is associated with their ability to inhibit PPH 1 and 2A. Yet apoptosis is not necessarily required for differentiation induction by these agents.

  18. Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats.

    Science.gov (United States)

    Pisoni, G; Moroni, P; Genini, S; Stella, A; Boettcher, P J; Cremonesi, P; Scaccabarozzi, L; Giuffra, E; Castiglioni, B

    2010-06-15

    To study gene expression within the mammary glands of dairy goats with mastitis, mRNA was collected from milk somatic cells (MSCs) of left udder halves challenged with Staphylococcus aureus and right udder halves infused with PBS, as control, at different time points (0, 12, 24 and 48h post-infection). Transcriptional profiles were investigated using bovine cDNA microarrays; of the total 288 differentially expressed genes identified with ANOVA analysis (False Discovery Rate=0.05, 1.5-fold change), 26, 36 and 16 genes were down-regulated at 12, 24 and 48h post-infection, respectively, while 60, 141 and 9 genes were up-regulated at the same corresponding time points. The expression profiles clearly changed at 24h post-infection with 177 genes significantly altered, corresponding to a 10-fold increase of S. aureus bacterial count in milk from infected udders. Differential expression of selected genes (CD2BP2, BCAP31, MHCII, FOSL2, MAPK13, ILT5 and JUNB) was also confirmed by real-time PCR at the different time points considered, showing high correlation with the microarray measurements and high reliability of the microarray analyses. The most readily inducible classes of genes in caprine MSCs infected with S. aureus were pro-inflammatory cytokines, chemokines and their receptors; IL-1alpha, lymphotoxin alpha, granulocyte chemotactic protein (CXCL6), and IL-2 receptor gamma were all up-regulated in infected udders versus healthy controls. This study identified a number of differentially expressed genes induced by S. aureus intramammary infection and demonstrates the intricacy of the patterns of gene expression that influence host response to a complex pathogen of significant relevance to both human and veterinary medicine.

  19. Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response

    Directory of Open Access Journals (Sweden)

    Hofmann Sandra L

    2007-11-01

    Full Text Available Abstract Background The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1, and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7–9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. Results A total of 267 genes were significantly (approximately 2-fold up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1 were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF and a negative regulator of neuronal apoptosis (DAP kinase-1 were upregulated late in the course of the disease. Few genes were downregulated; these included the α2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. Conclusion A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy.

  20. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis.

    Science.gov (United States)

    Pang, M-F; Georgoudaki, A-M; Lambut, L; Johansson, J; Tabor, V; Hagikura, K; Jin, Y; Jansson, M; Alexander, J S; Nelson, C M; Jakobsson, L; Betsholtz, C; Sund, M; Karlsson, M C I; Fuxe, J

    2016-02-11

    Tumor cells frequently disseminate through the lymphatic system during metastatic spread of breast cancer and many other types of cancer. Yet it is not clear how tumor cells make their way into the lymphatic system and how they choose between lymphatic and blood vessels for migration. Here we report that mammary tumor cells undergoing epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β1) become activated for targeted migration through the lymphatic system, similar to dendritic cells (DCs) during inflammation. EMT cells preferentially migrated toward lymphatic vessels compared with blood vessels, both in vivo and in 3D cultures. A mechanism of this targeted migration was traced to the capacity of TGF-β1 to promote CCR7/CCL21-mediated crosstalk between tumor cells and lymphatic endothelial cells. On one hand, TGF-β1 promoted CCR7 expression in EMT cells through p38 MAP kinase-mediated activation of the JunB transcription factor. Blockade of CCR7, or treatment with a p38 MAP kinase inhibitor, reduced lymphatic dissemination of EMT cells in syngeneic mice. On the other hand, TGF-β1 promoted CCL21 expression in lymphatic endothelial cells. CCL21 acted in a paracrine fashion to mediate chemotactic migration of EMT cells toward lymphatic endothelial cells. The results identify TGF-β1-induced EMT as a mechanism, which activates tumor cells for targeted, DC-like migration through the lymphatic system. Furthermore, it suggests that p38 MAP kinase inhibition may be a useful strategy to inhibit EMT and lymphogenic spread of tumor cells.

  1. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  2. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  3. RNA-seq Analysis of Clinical-Grade Osteochondral Allografts Reveals Activation of Early Response Genes

    Science.gov (United States)

    Lin, Yang; Lewallen, Eric A.; Camilleri, Emily T.; Bonin, Carolina A.; Jones, Dakota L.; Dudakovic, Amel; Galeano-Garces, Catalina; Wang, Wei; Karperien, Marcel J.; Larson, Annalise N.; Dahm, Diane L.; Stuart, Michael J.; Levy, Bruce A.; Smith, Jay; Ryssman, Daniel B.; Westendorf, Jennifer J.; Im, Hee-Jeong; van Wijnen, Andre J.; Riester, Scott M.; Krych, Aaron J.

    2016-01-01

    Preservation of osteochondral allografts used for transplantation is critical to ensure favorable outcomes for patients after surgical treatment of cartilage defects. To study the biological effects of protocols currently used for cartilage storage, we investigated differences in gene expression between stored allograft cartilage and fresh cartilage from living donors using high throughput molecular screening strategies. We applied next generation RNA sequencing (RNA-seq) and real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) to assess genome-wide differences in mRNA expression between stored allograft cartilage and fresh cartilage tissue from living donors. Gene ontology analysis was used to characterize biological pathways associated with differentially expressed genes. Our studies establish reduced levels of mRNAs encoding cartilage related extracellular matrix (ECM) proteins (i.e., COL1A1, COL2A1, COL10A1, ACAN, DCN, HAPLN1, TNC, and COMP) in stored cartilage. These changes occur concomitantly with increased expression of “early response genes” that encode transcription factors mediating stress/cytoprotective responses (i.e., EGR1, EGR2, EGR3, MYC, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, and JUND). The elevated expression of “early response genes” and reduced levels of ECM-related mRNAs in stored cartilage allografts suggests that tissue viability may be maintained by a cytoprotective program that reduces cell metabolic activity. These findings have potential implications for future studies focused on quality assessment and clinical optimization of osteochondral allografts used for cartilage transplantation. PMID:26909883

  4. Overexpression of AQP3 Modifies the Cell Cycle and the Proliferation Rate of Mammalian Cells in Culture.

    Science.gov (United States)

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Serna, Ana; Echevarría, Miriam

    2015-01-01

    Abnormal AQP3 overexpression in tumor cells of different origins has been reported and a role for this enhanced AQP3 expression in cell proliferation and tumor processess has been indicated. To further understand the role AQP3 plays in cell proliferation we explore the effect that stable over expression of AQP3 produces over the proliferation rate and cell cycle of mammalian cells. The cell cycle was analyzed by flow cytometry with propidium iodide (PI) and the cell proliferation rate measured through cell counting and BrdU staining. Cells with overexpression of AQP3 (AQP3-o) showed higher proliferation rate and larger percentage of cells in phases S and G2/M, than wild type cells (wt). Evaluation of the cell response against arresting the cell cycle with Nocodazole showed that AQP3-o exhibited a less modified cell cycle pattern and lower Annexin V specific staining than wt, consistently with a higher resistance to apoptosis of AQP3-overexpressing cells. The cell volume and complexity were also larger in AQP3-o compared to wt cells. After transcriptomic analysis, RT-qPCR was performed to highlight key molecules implicated in cell proliferation which expression may be altered by overexpression of AQP3 and the comparative analysis between both type of cells showed significant changes in the expression of Zeb2, Jun, JunB, NF-kβ, Cxcl9, Cxcl10, TNF, and TNF receptors. We conclude that the role of AQP3 in cell proliferation seems to be connected to increments in the cell cycle turnover and changes in the expression levels of relevant genes for this process. Larger expression of AQP3 may confer to the cell a more tumor like phenotype and contributes to explain the presence of this protein in many different tumors.

  5. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    Science.gov (United States)

    Cevik, Ozge; Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into

  6. Developmental alcohol exposure leads to a persistent change on astrocyte secretome.

    Science.gov (United States)

    Trindade, Pablo; Hampton, Brian; Manhães, Alex C; Medina, Alexandre E

    2016-06-01

    Fetal alcohol spectrum disorder is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5 g/kg) or saline between postnatal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids. Twenty-four hour conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here, we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as laminin subunits α2, α4, β1, β2, and γ1 and the proteoglycans biglycan, heparan sulfate proteoglycan 2, and lumican. Proteins with trophic function such as insulin-like growth factor binding protein 4, pigment epithelium-derived factor, and clusterin as well as proteins involved on modulation of proteolysis such as metalloproteinase inhibitor 1 and plasminogen activator inhibitor-1 were also reduced. In contrast, pro-synaptogeneic proteins like thrombospondin-1, hevin as well as the modulator of extracelular matrix expression, angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through ingenuity pathway analysis demonstrated that the amyloid beta A4 protein precursor, which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results

  7. Peritoneal Fluid Reduces Angiogenesis-Related MicroRNA Expression in Cell Cultures of Endometrial and Endometriotic Tissues from Women with Endometriosis

    Science.gov (United States)

    Braza-Boïls, Aitana; Gilabert-Estellés, Juan; Ramón, Luis A.; Gilabert, Juan; Marí-Alexandre, Josep; Chirivella, Melitina; España, Francisco; Estellés, Amparo

    2013-01-01

    Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis. Methods Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222) by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively. Results Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion, this “in vitro” study indicates that

  8. BDNF Pretreatment of Human Embryonic-Derived Neural Stem Cells Improves Cell Survival and Functional Recovery After Transplantation in Hypoxic-Ischemic Stroke.

    Science.gov (United States)

    Rosenblum, Sahar; Smith, Tenille N; Wang, Nancy; Chua, Joshua Y; Westbroek, Erick; Wang, Kendrick; Guzman, Raphael

    2015-01-01

    Intra-arterial neural stem cell (NSC) therapy has the potential to improve long-term outcomes after stroke. Here we evaluate if pretreatment of NSCs with brain-derived neurotrophic factor (BDNF) prior to transplantation improves cell engraftment and functional recovery following hypoxic-ischemic (HI) stroke. Human embryonic-derived NSCs with or without BDNF pretreatment (1 h, 100 ng/ml) were transplanted 3 days after HI stroke. Functional recovery was assessed using the horizontal ladder test. Cell engraftment was evaluated using bioluminescence imaging (BLI) and histological counts of SC121(+) cells. Fluoro-Jade C (FJC) and NeuN stains were used to evaluate neuroprotection. The effect of BDNF on NSCs was analyzed using a migration assay, immunocytochemistry, Luminex proteomic assay, and RT-qPCR.BLI analysis demonstrated significantly higher photon flux in the BDNF-treated NSC group compared to untreated NSC (p = 0.049) and control groups (p = 0.0021) at 1 week after transplantation. Immunohistochemistry confirmed increased transplanted cell survival in the cortex (p = 0.0126) and hippocampus (p = 0.0098) of animals injected with BDNF-treated NSCs compared to untreated NSCs. Behavioral testing revealed that the BDNF-treated NSC group demonstrated increased sensorimotor recovery compared to the untreated NSC and control groups (p BDNF-treated NSC group compared to the control group at 14, 21, and 28 (p BDNF-treated NSC group had significantly more SC121(+) NSCs (p = 0.0125, p = 0.0098), fewer FJC(+) neurons (p = 0.0370, p = 0.0285), and a higher percentage of NeuN(+) expression (p = 0.0354) in the cortex compared to the untreated NSC group. BDNF treatment of NSCs resulted in significantly greater migration to SDF-1, secretion of M-CSF, VEGF, and expression of CXCR4, VCAM-1, Thrombospondins 1 and 2, and BDNF. BDNF pretreatment of NSCs results in higher initial NSC engraftment and survival, increased neuroprotection, and greater functional recovery when compared to

  9. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    Directory of Open Access Journals (Sweden)

    Ozge Cevik

    Full Text Available Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics. These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides

  10. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans.

    Directory of Open Access Journals (Sweden)

    Ana-Carolina Martinez-Torres

    2015-03-01

    Full Text Available Chronic lymphocytic leukemia (CLL, the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides.In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1, a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides targeting CD47

  11. Is copper chelation an effective anti-angiogenic strategy for cancer treatment?

    Science.gov (United States)

    Antoniades, V; Sioga, A; Dietrich, E M; Meditskou, S; Ekonomou, L; Antoniades, K

    2013-12-01

    and enhances the expression of angiogenic molecules. Copper chelation may also reduce extracellular matrix degradation and cancer spread, through reduction of MMP-9 production and probably of other collagenases and may inhibit propagation of micrometastases. However, copper chelation therapy may enhance angiogenesis through reduction of thrombospondin-1, that results into an increase in VEGF-VEGFR2 complexes and a high level of active MMP-9. These hypotheses help in understanding of the anti-angiogenic action of copper chelation therapies and of the complex network of interactions between copper and other molecules involved in angiogenesis. It may also stimulate further research regarding differences in copper metabolism, the effects of anti-copper regimens on organs, the development of resistance, and their possible angiogenic action through thrombospondin expression reduction.

  12. Prokaryotic Expression and Purification of sCAR-TSP-1, and Induced Apoptosis in Leukemic Cells k562%融合蛋白sCAR-TSP-1原核表达纯化及诱导白血病细胞K562凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    梁天祥; 谌贺宽子; 陈磊; 武虎; 唐斌

    2012-01-01

    According to thrombospondin-l(TSP-l) amino acid sequence(RFYWMWK), to the ade-novirus receptor sCAR as template, the 8 amino acids corresponding gene nucleotide amplified by PCR from sCAR, sCAR-TSP-1, connected to the expression vector pQE30, is transformed into E. coli M15 obtained after engineering bacteria. The strain induced by IPTG, efficient expression with histidine label in the form of inclusion body of the fusion protein sCAR-TSP-1. Inclusion body after urea denaturation dissolved, PBS dilution refolding, Ni ion affinity chromatography purification, and obtains the target proteia SDS-PAGE analysis shows, there is an obvious specificity protein band. At the same time, the experimental results show that the fusion protein in sCAR-TSP-1 cells of leukemia cell K562 has obvious apoptosis.%根据thrombospondin-1( TSP-1)氨基酸序列(RFYVVMWK),以已有的腺病毒受体sCAR为模板,将8个氨基酸对应基因核苷酸通过PCR扩增于sCAR之后,得到sCAR-TSP-1,连接到表达载体pQE30上,转化大肠杆菌M15后获得工程茵.该菌株经IPTG诱导后,高效表达出带有组氨酸标签以包涵体形式存在的融合蛋白;sARTSP-1.包涵体经过尿素变性溶解、PBS稀释复性、Ni离子亲和层析柱纯化,获得目的蛋白.SDS-PAGE分析表明,有一条明显的特异性蛋白条带.同时细胞实验结果表明融合蛋白sCAR-TSP-1对白血病细胞K562有明显凋亡作用.

  13. Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF).

    Science.gov (United States)

    Dohan Ehrenfest, David M; Bielecki, Tomasz; Jimbo, Ryo; Barbé, Giovanni; Del Corso, Marco; Inchingolo, Francesco; Sammartino, Gilberto

    2012-06-01

    Platelet concentrates for surgical use are tools of regenerative medicine designed for the local release of platelet growth factors into a surgical or wounded site, in order to stimulate tissue healing or regeneration. Leukocyte content and fibrin architecture are 2 key characteristics of all platelet concentrates and allow to classify these technologies in 4 families, but very little is known about the impact of these 2 parameters on the intrinsic biology of these products. In this demonstration, we highlight some outstanding differences in the growth factor and matrix protein release between 2 families of platelet concentrate: Pure Platelet-Rich Plasma (P-PRP, here the Anitua's PRGF - Preparation Rich in Growth Factors - technique) and Leukocyte- and Platelet-Rich Fibrin (L-PRF, here the Choukroun's method). These 2 families are the extreme opposites in terms of fibrin architecture and leukocyte content. The slow release of 3 key growth factors (Transforming Growth Factor β1 (TGFβ1), Platelet-Derived Growth Factor AB (PDGF-AB) and Vascular Endothelial Growth Factor (VEGF)) and matrix proteins (fibronectin, vitronectin and thrombospondin-1) from the L-PRF and P-PRP gel membranes in culture medium is described and discussed. During 7 days, the L-PRF membranes slowly release significantly larger amounts of all these molecules than the P-PRP gel membranes, and the 2 products display different release patterns. In both platelet concentrates, vitronectin is the sole molecule to be released almost completely after only 4 hours, suggesting that this molecule is not trapped in the fibrin matrix and not produced by the leukocytes. Moreover the P-PRP gel membranes completely dissolve in the culture medium after less than 5 days only, while the L-PRF membranes are still intact after 7 days. This simple demonstration shows that the polymerization and final architecture of the fibrin matrix considerably influence the strength and the growth factor trapping/release potential

  14. Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema.

    Science.gov (United States)

    Henriques, Isabela; Padilha, Gisele A; Huhle, Robert; Wierzchon, Caio; Miranda, Paulo J B; Ramos, Isalira P; Rocha, Nazareth; Cruz, Fernanda F; Santos, Raquel S; de Oliveira, Milena V; Souza, Sergio A; Goldenberg, Regina C; Luiz, Ronir R; Pelosi, Paolo; de Abreu, Marcelo G; Silva, Pedro L; Rocco, Patricia R M

    2016-01-01

    Emphysema is characterized by loss of lung tissue elasticity and destruction of structures supporting alveoli and capillaries. The impact of mechanical ventilation strategies on ventilator-induced lung injury (VILI) in emphysema is poorly defined. New ventilator strategies should be developed to minimize VILI in emphysema. The present study was divided into two protocols: (1) characterization of an elastase-induced emphysema model in rats and identification of the time point of greatest cardiorespiratory impairment, defined as a high specific lung elastance associated with large right ventricular end-diastolic area; and (2) comparison between variable (VV) and conventional volume-controlled ventilation (VCV) on lung mechanics and morphometry, biological markers, and cardiac function at that time point. In the first protocol, Wistar rats (n = 62) received saline (SAL) or porcine pancreatic elastase (ELA) intratracheally once weekly for 4 weeks, respectively. Evaluations were performed 1, 3, 5, or 8 weeks after the last intratracheal instillation of saline or elastase. After identifying the time point of greatest cardiorespiratory impairment, an additional 32 Wistar rats were randomized into the SAL and ELA groups and then ventilated with VV or VCV (n = 8/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 3 cmH2O, fraction of inspired oxygen (FiO2) = 0.4] for 2 h. VV was applied on a breath-to-breath basis as a sequence of randomly generated VT values (mean VT = 6 mL/kg), with a 30% coefficient of variation. Non-ventilated (NV) SAL and ELA animals were used for molecular biology analysis. The time point of greatest cardiorespiratory impairment, was observed 5 weeks after the last elastase instillation. At this time point, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant (CINC)-1, amphiregulin, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF) mRNA levels were higher in ELA compared to SAL. In ELA animals

  15. Comparison between Variable and Conventional Volume-Controlled Ventilation on Cardiorespiratory Parameters in Experimental Emphysema

    Science.gov (United States)

    Henriques, Isabela; Padilha, Gisele A.; Huhle, Robert; Wierzchon, Caio; Miranda, Paulo J. B.; Ramos, Isalira P.; Rocha, Nazareth; Cruz, Fernanda F.; Santos, Raquel S.; de Oliveira, Milena V.; Souza, Sergio A.; Goldenberg, Regina C.; Luiz, Ronir R.; Pelosi, Paolo; de Abreu, Marcelo G.; Silva, Pedro L.; Rocco, Patricia R. M.

    2016-01-01

    Emphysema is characterized by loss of lung tissue elasticity and destruction of structures supporting alveoli and capillaries. The impact of mechanical ventilation strategies on ventilator-induced lung injury (VILI) in emphysema is poorly defined. New ventilator strategies should be developed to minimize VILI in emphysema. The present study was divided into two protocols: (1) characterization of an elastase-induced emphysema model in rats and identification of the time point of greatest cardiorespiratory impairment, defined as a high specific lung elastance associated with large right ventricular end-diastolic area; and (2) comparison between variable (VV) and conventional volume-controlled ventilation (VCV) on lung mechanics and morphometry, biological markers, and cardiac function at that time point. In the first protocol, Wistar rats (n = 62) received saline (SAL) or porcine pancreatic elastase (ELA) intratracheally once weekly for 4 weeks, respectively. Evaluations were performed 1, 3, 5, or 8 weeks after the last intratracheal instillation of saline or elastase. After identifying the time point of greatest cardiorespiratory impairment, an additional 32 Wistar rats were randomized into the SAL and ELA groups and then ventilated with VV or VCV (n = 8/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 3 cmH2O, fraction of inspired oxygen (FiO2) = 0.4] for 2 h. VV was applied on a breath-to-breath basis as a sequence of randomly generated VT values (mean VT = 6 mL/kg), with a 30% coefficient of variation. Non-ventilated (NV) SAL and ELA animals were used for molecular biology analysis. The time point of greatest cardiorespiratory impairment, was observed 5 weeks after the last elastase instillation. At this time point, interleukin (IL)-6, cytokine-induced neutrophil chemoattractant (CINC)-1, amphiregulin, angiopoietin (Ang)-2, and vascular endothelial growth factor (VEGF) mRNA levels were higher in ELA compared to SAL. In ELA animals

  16. Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer.

    LENUS (Irish Health Repository)

    Doherty, Glen A

    2009-01-01

    BACKGROUND: Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1-4) to examine the mechanisms by which PGE2 regulates tumour progression. METHODS: Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. RESULTS: EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0\\/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 microM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 microM). G0\\/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1\\/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1\\/CIP1 was also seen with PD153025 (1 microM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. CONCLUSION: COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1\\/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative

  17. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  18. A designated centre for people with disabilities operated by Health Service Executive, Cork

    LENUS (Irish Health Repository)

    Doherty, Glen A

    2009-01-01

    BACKGROUND: Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1-4) to examine the mechanisms by which PGE2 regulates tumour progression. METHODS: Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. RESULTS: EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0\\/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 microM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 microM). G0\\/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1\\/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1\\/CIP1 was also seen with PD153025 (1 microM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. CONCLUSION: COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1\\/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative

  19. Pathway-focused proteomic signatures in HER2-overexpressing breast cancer with a basal-like phenotype: new insights into de novo resistance to trastuzumab (Herceptin).

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Martin-Castilló, Begoña; Pérez-Martínez, Maria Carmen; Cufí, Silvia; Del Barco, Sonia; Bernado, Luis; Brunet, Joan; López-Bonet, Eugeni; Menendez, Javíer A

    2010-09-01

    Pioneering clinical studies in de novo refractoriness to the anti-HER2 monoclonal antibody trastuzumab have suggested that HER2 gene-amplification can take place also in a basal-like molecular background to generate basal/HER2+ tumors intrinsically resistant to trastuzumab. Here, we first investigated the unique histogenesis of the basal/HER2+ phenotype in breast carcinomas. The presence of basal CK5/CK6 cytokeratin expression in HER2+ tumors revealed a significant overlap in the histological features of HER2+/CK5/6+ and basal-like breast carcinomas. Basal/HER2+ tumors were typically poorly differentiated, high-grade invasive ductal carcinomas with large geographic necrosis, pushing margins of invasion, syncytial arrangement of tumor cells, ribbon- or festoon-like architecture, squamous metaplasia, stromal lymphocytic infiltrates, high mitotic index and strong p53 positivity. Secondly, we performed low-scale proteomic approaches in JIMT-1 cells, a unique model of HER2-gene amplified trastuzumab-resistant breast carcinoma with a basal-like phenotype, to develop biomarker signatures that may differentiate trastuzumab-responsive from non-responsive tumors. When applying antibody-based array technology to the extracellular milieu of trastuzumab-refractory JIMT-1 and trastuzumab-sensitive SKBR3 cell cultures, JIMT-1 cells were found to secrete higher amounts of several growth factors including amphiregulin, EGF, IGFBP-6, PDGF-AA, neurotrophins, TGFbeta and VEGF. Semi-quantitative signaling node multi-target sandwich ELISAs revealed that JIMT-1 cells drastically overactivate RelA, the prosurvival subunit of NF-kappaB as compared to trastuzumab-sensitive luminal/HER2+ SKBR3 cells. When simultaneously assessing the activation status of 42 receptor tyrosine kinases (RTK) using a human phospho-RTK array, JIMT-1 cells were found to constitutively display hyperactivation of the insulin-like growth factor-I receptor (IGF-1R). High-content immunofluorescence imaging revealed

  20. EGFR Signaling Regulates Maspin/SerpinB5 Phosphorylation and Nuclear Localization in Mammary Epithelial Cells

    Science.gov (United States)

    Reina, Jeffrey; Morais Freitas, Vanessa

    2016-01-01

    Maspin (SerpinB5) is a non-inhibitory serpin (serine protease inhibitor) with very diverse biological activities including regulation of cell adhesion, migration, death, control of gene expression and oxidative stress response. Initially described as a tumor and metastasis suppressor, clinical data brought controversies to the field, as some studies reported no correlation between SerpinB5 expression and prognosis value. These data underscore the importance of understanding SerpinB5 function in a normal physiological context and the molecular mechanism involved. Several SerpinB5 phosphoforms have been detected in different cell lines, but the signaling pathways involved and the biological significance of this post-translational modification in vivo remains to be explored. In this study we investigated SerpinB5 expression, subcellular localization and phosphorylation in different stages of the mouse mammary gland development and the signaling pathway involved. Here we show that SerpinB5 is first detected in late pregnancy, reaches its highest levels in lactation and remains at constant levels during post-lactational regression (involution). Using high resolution isoelectric focusing followed but immunoblot, we found at least 8 different phosphoforms of SerpinB5 during lactation, which decreases steadily at the onset of involution. In order to investigate the signaling pathway involved in SerpinB5 phosphorylation, we took advantage of the non-transformed MCF-10A model system, as we have previously observed SerpinB5 phosphorylation in these cells. We detected basal levels of SerpinB5 phosphorylation in serum- and growth factor-starved cells, which is due to amphiregulin autocrine activity on MCF-10A cells. EGF and TGF alpha, two other EGFR ligands, promote important SerpinB5 phosphorylation. Interestingly, EGF treatment is followed by SerpinB5 nuclear accumulation. Altogether, these data indicate that SerpinB5 expression and phosphorylation are developmentally

  1. The kinetics of the hydrogen/deuterium exchange of epidermal growth factor receptor ligands.

    Science.gov (United States)

    Iloro, Ibon; Narváez, Daniel; Guillén, Nancy; Camacho, Carlos M; Guillén, Lalisse; Cora, Elsa; Pastrana-Ríos, Belinda

    2008-05-15

    Five highly homologous epidermal growth factor receptor ligands were studied by mass spectral analysis, hydrogen/deuterium (H/D) exchange via attenuated total reflectance Fourier transform-infrared spectroscopy, and two-dimensional correlation analysis. These studies were performed to determine the order of events during the exchange process, the extent of H/D exchange, and associated kinetics of exchange for a comparative analysis of these ligands. Furthermore, the secondary structure composition of amphiregulin (AR) and heparin-binding-epidermal growth factor (HB-EGF) was determined. All ligands were found to have similar contributions of 3(10)-helix and random coil with varying contributions of beta-sheets and beta-turns. The extent of exchange was 40%, 65%, 55%, 65%, and 98% for EGF, transforming growth factor-alpha (TGF-alpha), AR, HB-EGF, and epiregulin (ER), respectively. The rate constants were determined and classified as fast, intermediate, and slow: for EGF the 0.20 min(-1) (Tyr), 0.09 min(-1) (Arg, beta-turns), and 1.88 x 10(-3) min(-1) (beta-sheets and 3(10)-helix); and for TGF-alpha 0.91 min(-1) (Tyr), 0.27 min(-1) (Arg, beta-turns), and 1.41 x 10(-4) min(-1) (beta-sheets). The time constants for AR 0.47 min(-1) (Tyr), 0.04 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (buried 3(10)-helix, beta-turns, and beta-sheets); for HB-EGF 0.89 min(-1) (Tyr), 0.14 min(-1) (Arg and 3(10)-helix), and 1.00 x 10(-3) min(-1) (buried 3(10)-helix, beta-sheets, and beta-turns); and for epiregulin 0.16 min(-1) (Tyr), 0.03 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (3(10)-helix and beta-sheets). These results provide essential information toward understanding secondary structure, H/D exchange kinetics, and solvation of these epidermal growth factor receptor ligands in their unbound state.

  2. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  3. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kyotani, Yoji, E-mail: cd147@naramed-u.ac.jp [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Ota, Hiroyo [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Takasawa, Shin [Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan); Kimura, Hiroshi [Second Department of Internal Medicine, Nara Medical University School of Medicine, Kashihara 634-8522 (Japan); Uno, Masayuki [Department of Pharmacy, Nara Medical University Hospital, Kashihara 634-8522 (Japan); Yoshizumi, Masanori [Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521 (Japan)

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  4. The dysregulation of the monocyte/macrophage effector function induced by isopropanol is mediated by the defective activation of distinct members of the AP-1 family of transcription factors.

    Science.gov (United States)

    Carignan, Damien; Désy, Olivier; de Campos-Lima, Pedro O

    2012-01-01

    Isopropanol is the second most common cause of short-chain alcohol acute intoxication. Nonethanolic short-chain alcohols mediate their immunomodulatory effect by interfering with nuclear factor of activated T cells (NFAT) activation with or without additional activator protein-1 (AP-1) involvement. In the present study, we examined the immunomodulation induced by isopropanol in conditions that are not reliant on NFAT: the inflammatory cytokine response of lipopolysaccharide (LPS)-stimulated monocytes. Our hypothesis was that isopropanol acute exposure would have an attenuated effect or no consequence in this setting. To our surprise, the impairment of AP-1 activation was sufficient to mediate a severe and dose-dependent phenotype in human monocytes in vitro at alcohol concentrations as low as 0.16% (or 26 mM). There were three outcomes: interleukin (IL)-1β/IL-8 were unaltered; IL-6 was upregulated; and tumor necrosis factor alpha (TNF-α)/CCL2 were downregulated. The effector function of human monocyte-derived macrophages was also compromised. Our results showed that Toll-like receptor 4 early signaling was preserved, as isopropanol did not change the kinase activity of the IL-1 receptor-associated kinase 1 in LPS-stimulated cells. The nuclear factor-κB signaling cascade and the p38/c-Jun N-terminal kinase modules of the mitogen-activated protein kinase pathway were alcohol insensitive. Conversely, the activation of extracellular signal-regulated protein kinase and, ultimately, of c-Fos and JunB were impaired. The alcohol-induced cytokine dysregulation was confirmed in a mouse model of isopropanol intoxication in which the production of TNF-α in response to LPS challenge was virtually abolished. The magnitude of this alcohol effect was sufficiently high to rescue animals from LPS-induced toxic shock. Our data contribute to the dismal body of information on the immunotoxicology of isopropanol, one of the most ubiquitous chemicals to which the general population

  5. Striated muscle activator of Rho signalling (STARS) is a PGC-1α/oestrogen-related receptor-α target gene and is upregulated in human skeletal muscle after endurance exercise.

    Science.gov (United States)

    Wallace, Marita A; Hock, M Benjamin; Hazen, Bethany C; Kralli, Anastasia; Snow, Rod J; Russell, Aaron P

    2011-04-15

    The striated muscle activator of Rho signalling (STARS) is an actin-binding protein specifically expressed in cardiac, skeletal and smooth muscle. STARS has been suggested to provide an important link between the transduction of external stress signals to intracellular signalling pathways controlling genes involved in the maintenance of muscle function. The aims of this study were firstly, to establish if STARS, as well as members of its downstream signalling pathway, are upregulated following acute endurance cycling exercise; and secondly, to determine if STARS is a transcriptional target of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). When measured 3 h post-exercise, STARS mRNA and protein levels as well as MRTF-A and serum response factor (SRF) nuclear protein content, were significantly increased by 140, 40, 40 and 40%, respectively. Known SRF target genes, carnitine palmitoyltransferase-1β (CPT-1β) and jun B proto-oncogene (JUNB), as well as the exercise-responsive genes PGC-1α mRNA and ERRα were increased by 2.3-, 1.8-, 4.5- and 2.7-fold, 3 h post-exercise. Infection of C2C12 myotubes with an adenovirus-expressing human PGC-1α resulted in a 3-fold increase in Stars mRNA, a response that was abolished following the suppression of endogenous ERRα. Over-expression of PGC-1α also increased Cpt-1β, Cox4 and Vegf mRNA by 6.2-, 2.0- and 2.0-fold, respectively. Suppression of endogenous STARS reduced basal Cpt-1β levels by 8.2-fold and inhibited the PGC-1α-induced increase in Cpt-1β mRNA. Our results show for the first time that the STARS signalling pathway is upregulated in response to acute endurance exercise. Additionally, we show in C2C12 myotubes that the STARS gene is a PGC-1α/ERRα transcriptional target. Furthermore, our results suggest a novel role of STARS in the co-ordination of PGC-1α-induced upregulation of the fat oxidative gene, CPT-1β.

  6. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    Directory of Open Access Journals (Sweden)

    Llano-Diez Monica

    2011-12-01

    Full Text Available Abstract Background Acute quadriplegic myopathy (AQM or critical illness myopathy (CIM is frequently observed in intensive care unit (ICU patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. Results During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days, intermediate (5-8 days and long (9-14 days durations. A striking early and maintained up-regulation (6 h-14d of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1 was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d. Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C, regulatory (troponin, tropomyosin, developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. Conclusions Novel

  7. An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation.

    Science.gov (United States)

    Sahu, Mousumi; Mallick, Bibekanand

    2016-10-01

    The differentiation of human Embryonic Stem Cells (hESCs) is accompanied by the formation of different intermediary cells, gradually losing its stemness and acquiring differentiation. The precise mechanisms underlying hESCs integrity and its differentiation into fibroblast (Fib) are still elusive. Here, we aimed to assess important genes and co-expression sub-networks responsible for stemness, early differentiation of hESCs into embryoid bodies (EBs) and its lineage specification into Fibs. To achieve this, we compared transcriptional profiles of hESCs-EBs and EBs-Fibs and obtained differentially expressed genes (DEGs) exclusive to hESCs-EBs (early differentiation), EBs-Fibs (late differentiation) and common DEGs in hESCs-EBs and EBs-Fibs. Then, we performed gene set enrichment analysis (GSEA) followed by overrepresentation study and identified key genes for each gene category. The regulations of these genes were studied by integrating ChIP-Seq data of core transcription factors (TFs) and histone methylation marks in hESCs. Finally, we identified co-expression sub-networks from key genes of each gene category using k-clique sub-network extraction method. Our study predicted seven genes edicting core stemness properties forming a co-expression network. From the pathway analysis of sub-networks of hESCs-EBs, we hypothesize that FGF2 is contributing to pluripotent transcription network of hESCs in association with DNMT3B and JARID2 thereby facilitating cell proliferation. On the contrary, FGF2 is found to promote cell migration in Fibs along with DDR2, CAV1, DAB2, and PARVA. Moreover, our study identified three k-clique sub-networks regulating TGF-β signaling pathway thereby promoting EBs to Fibs differentiation by: (i) modulating extracellular matrix involving ITGB1, TGFB1I1 and GBP1, (ii) regulating cell cycle remodeling involving CDKN1A, JUNB and DUSP1 and (iii) helping in epithelial to mesenchymal transition (EMT) involving THBS1, INHBA and LOX. This study put

  8. Reduction in inflammatory gene expression in skeletal muscle from Roux-en-Y gastric bypass patients randomized to omentectomy.

    Directory of Open Access Journals (Sweden)

    Robyn A Tamboli

    Full Text Available To examine the effects of Roux-en-Y gastric bypass (RYGB surgery with and without laparoscopic removal of omental fat (omentectomy on the temporal gene expression profiles of skeletal muscle.Previously reported were the whole-body metabolic effects of a randomized, single-blinded study in patients receiving RYGB surgery stratified to receive or not receive omentectomy. In this follow up study we report on changes in skeletal muscle gene expression in a subset of 21 patients, for whom biopsies were collected preoperatively and at either 6 months or 12 months postoperatively.RNA isolated from skeletal muscle biopsies of 21 subjects (8 without omentectomy and 13 with omentectomy taken before RYGB or at 6 and 12 months postoperatively were subjected to gene expression profiling via Exon 1.0 S/T Array and Taqman Low Density Array. Robust Multichip Analysis and gene enrichment data analysis revealed 84 genes with at least a 4-fold expression difference after surgery. At 6 and 12 months the RYGB with omentectomy group displayed a greater reduction in the expression of genes associated with skeletal muscle inflammation (ANKRD1, CDR1, CH25H, CXCL2, CX3CR1, IL8, LBP, NFIL3, SELE, SOCS3, TNFAIP3, and ZFP36 relative to the RYGB non-omentectomy group. Expressions of IL6 and CCL2 were decreased at all postoperative time points. There was differential expression of genes driving protein turnover (IGFN1, FBXW10 in both groups over time and increased expression of PAAF1 in the non-omentectomy group at 12 months. Evidence for the activation of skeletal muscle satellite cells was inferred from the up-regulation of HOXC10. The elevated post-operative expression of 22 small nucleolar RNAs and the decreased expression of the transcription factors JUNB, FOS, FOSB, ATF3 MYC, EGR1 as well as the orphan nuclear receptors NR4A1, NR4A2, NR4A3 suggest dramatic reorganizations at both the cellular and genetic levels.These data indicate that RYGB reduces skeletal muscle

  9. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins.

    Science.gov (United States)

    Halper, Jaroslava; Kjaer, Michael

    2014-01-01

    -elastic extracellular matrixes, and interact closely with tropoelastin and integrins. Not only do microfibrils provide structural integrity of specific organ systems, but they also provide a scaffold for elastogenesis in elastic tissues. Fibrillin is important for the assembly of elastin into elastic fibers. Mutations in the fibrillin-1 gene are closely associated with Marfan syndrome. Fibulins are tightly connected with basement membranes, elastic fibers and other components of extracellular matrix and participate in formation of elastic fibers. Tenascins are ECM polymorphic glycoproteins found in many connective tissues in the body. Their expression is regulated by mechanical stress both during development and in adulthood. Tenascins mediate both inflammatory and fibrotic processes to enable effective tissue repair and play roles in pathogenesis of Ehlers-Danlos, heart disease, and regeneration and recovery of musculo-tendinous tissue. One of the roles of thrombospondin 1 is activation of TGFβ. Increased expression of thrombospondin and TGFβ activity was observed in fibrotic skin disorders such as keloids and scleroderma. Cartilage oligomeric matrix protein (COMP) or thrombospondin-5 is primarily present in the cartilage. High levels of COMP are present in fibrotic scars and systemic sclerosis of the skin, and in tendon, especially with physical activity, loading and post-injury. It plays a role in vascular wall remodeling and has been found in atherosclerotic plaques as well.

  10. 西洛他唑对糖尿病视网膜病变中血小板反应素表达影响的研究%THE EFFECT OF CILOSTAZOL ON EXPRESSION OF THROMBOS PONDIN-1 IN DIABETIC RETINOPATHY

    Institute of Scientific and Technical Information of China (English)

    王剑勇; 顾扬顺; 严丽萍; 滕晓东; 张晓明

    2008-01-01

    探讨西洛他唑对糖尿病视网膜病变病理生理中的影响及可能的作用机制.用链脲佐菌素(STZ)腹腔注射建立糖尿病模型,用免疫组织化学法、实时荧光定量PCR法观察西洛他唑治疗组、糖尿病对照组和正常对照组视网膜中血小板反应素(TSP-1)的变化.每隔1周测量血糖一次,4周后糖尿病治疗组、糖尿病组与正常组大鼠的体重、血糖有显著性差异(P<0.01);糖尿病治疗组、糖尿病对照组和正常对照组间TSP-1表达有显著性差异(P<0.01).在早期糖尿病大鼠的视网膜神经节细胞层、内核层中均有明显的TSP-1表达,糖尿病西洛他唑治疗组视网膜中TSP-1的表达要低于糖尿病对照组.实验显示西洛他唑可能通过阻止TSP-1的过度表达,在一定程度上延缓其糖尿病视网膜病变的发生.%To explore the effect of cilostazol in the pathophysiology of diabetic retinopathy and its mechanism, we intraperitoneal injection streptozotocin (STZ) to induce rats diabetic model to study the alteration of the thrombospondin-1 (TSP-1) in the retina of diabetic rats, cilostazol treatment diabetic rats and normal rats by immunohistochemistry, real-time quantitative reverse transcription-polymerase chain reaction. The weight, blood sugar and urine sugar were also measured before and after model induction of these three groups. The data of weight, blood sugar and urine sugar indicated no significant difference in these three groups before diabetes induction. Four weeks after the injection of STZ, the weight, blood sugar and urine sugar had significant difference among these three groups (P<0.01). When compared with the normal retina, TSP-1 expression was increased in the diabetic rat's retina, as shown by increased optical density and immunohistochemistry positive cell number but this was not serious in cilostazol treatment rats (P<0.01). Our study confirmed that up-regulation of TSP-1 expression in retina of streptozotocin

  11. Expression and Significance of CD36 on Acute Radiation-induced Lung Injury%急性放射性肺损伤肺组织CD36表达及意义

    Institute of Scientific and Technical Information of China (English)

    曹丽艳; 于洪; 赵俊华; 赵玉霞; 门桐林; 赵娜; 刘丹; 白露

    2011-01-01

    采用健康雄性Wistar大鼠,6 MV X射线单次伞胸野照射15 Gv,于照后不同时间HE和Masson染色观察大鼠肺组织的病理改变,免疫组化方法分析凝血酶敏感蛋白-1受体CD36在肺组织中的表达,以探讨放射性肺损伤大鼠肺组织病理和CD36在不同时间段的表达和意义.结果表明,HE和Masson染色提示照射后的1周肺泡腔有炎性细胞渗出,继之间质水肿,4及8周出现肺泡腔变小甚至结构破坏,局部实变,肺问质出现胶原纤维;CD36免疫组化标记显示:照射组在照后的第1、2、4、8周时间段CD36表达均明显强于对照组(P<0.01).以上结果说明CD36参与了放射性肺损伤的发生发展过程,阻抑其表达可能对放射肺损伤有防治作用.%To investigate the pathology of acute radiation- induced lung injury and expression and significance of thrombospondin-1 (TSP-1) receptor CD36 during different phases in rats, forty Wistar rats were randomly divided into control group (C) and radiation group (R). Both groups were radiated with 6WV X ray linear accelerator at dose of 15 Gy thoracically, 2 Gy/min, with SSD 1 m and radiation area 4.5 cm×4.5 cm. The pathological change of lung tissue and the expression of CD36 were detected with HE, Masson and immunohistochemistry staining, respectively. Result HE and Masson staining showed that only one week after radiation, the alveolar spaces had exudative inflammatory cells,following interstitial edema, and at 4 and 8 weeks, alveolar spaces shrank, even its structure was destroyed with local consol, and pulmonary interstitium appeared collagen fibers. The expression of CD36 was significantly higher in radiation group at all phases (p<0.01) . The expression of CD36 increased significantly in radiation-induced lung injuy. CD36 participated in the process of radation-induced lung injury, and inhibition of CD36 expression may have preventive effect on radation-induced lung injury.

  12. Effects of polypeptide extract from scorpion venom on cell proliferation and protein expression of VEGF and TSP-1 in human ovarian cancer cell line SKOV3%蝎毒多肽提取物对人卵巢癌SKOV3细胞增殖及血管内皮生长因子和凝血酶敏感蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    张妍; 张维东; 张月英; 王兆朋; 贾青; 王朝霞; 王晓慧

    2012-01-01

    目的 观察蝎毒多肽提取物(简称蝎毒多肽)对人卵巢癌SKOV3细胞增殖及血管内皮生长因子(VEGF)、凝血酶敏感蛋白(TSP-1)表达的影响,进一步探讨蝎毒多肽的抗肿瘤作用机制.方法 MTT法检测蝎毒多肽对SKOV3细胞增殖的影响;免疫细胞化学法及Western blotting测定蝎毒多肽对SKOV3细胞VEGF、TSP-1蛋白表达的影响.结果 蝎毒多肽12.5~200 μg/mL对SKOV3细胞增殖有抑制作用,且呈明显的质量浓度相关性,质量浓度大于50 μg/mL时细胞增殖抑制作用显著(P<0.01).随着蝎毒多肽质量浓度的增加,SKOV3细胞TSP-1蛋白表达增加,VEGF蛋白表达下降(P<0.01).结论 蝎毒多肽能显著抑制VEGF的表达,促进TSP-1的表达,其抗肿瘤作用机制可能是通过抑制肿瘤细胞增殖、影响肿瘤细胞血管生成过程中关键因子的表达来实现的.%Objective To observe the effects of polypeptide extract from scorpion venom (PESV) on the cell proliferation and protein expression of vascular endothelial growth factor (VEGF) and thrombospondin-1 (TSP-1) in human ovarian cancer cell line SKOV3 and to investigate the possible mechanism of its antitumor effect. Methods Ovarian cancer cell line SKOV3 was cultured by the routine method, after being treated with PESV at different concentrations, the inhibition of cell proliferation was tested by MTT assay; Immunocytochemistry and Western blotting were applied to detecting the effects of PESV on protein expression of VEGF and TSP-1. Results In a dose-dependent manner, PESV remarkably inhibited the proliferation of SKOV3 at the range of 12.5-200 ug/mL. PESV (> 50 ug/mL) had a significant inhibitory effect on cell proliferation (P < 0.01). Western blotting and immunocytochemistry results showed that with the increasing of PESV concentration, the expression levels of VEGF decreased while TSP-1 increased gradually (P < 0.01). Conclusion PESV could significantly inhibit the expression of VEGF, but improve

  13. Quantitative and semiquantitative immunoassay of growth factors and cytokines in the conditioned medium of STO and CF-1 mouse feeder cells.

    Science.gov (United States)

    Talbot, Neil C; Sparks, Wendy O; Powell, Anne M; Kahl, Stanislaw; Caperna, Thomas J

    2012-01-01

    , sICAM (ICAM-1, CD54), was expressed by CF-1 cells, but not STO cells, and similarly, the cell matrix-associated molecules endocan (endothelial cell-specific molecule 1), endostatin (collagen XVIII), and matrix metalloproteinase 3 were expressed more by CF-1 cells. Tissue inhibitor of metalloproteinases 1 was robustly expressed by both feeder cells. Other proteins primarily detected from CF-1 cells included retinol-binding protein 4 and FGF21, while STO cells secreted more interferon gamma. Both feeder cells produced no or low amounts of LIF, tumor necrosis factor alpha, vascular endothelial growth factor (VEGF), VEGF-B, prolactin, various interleukins, fibroblast growth factor (FGF)-1, FGF-2, FGF-7, EGF, HB-EGF, and amphiregulin. The results may explain some of the cell growth and maintenance responses by various types of cells co-cultured on STO or CF-1 feeder cells.

  14. Molecular biology of the stress response in the early embryo and its stem cells.

    Science.gov (United States)

    Puscheck, Elizabeth E; Awonuga, Awoniyi O; Yang, Yu; Jiang, Zhongliang; Rappolee, Daniel A

    2015-01-01

    to zygotic genome activation, the large mRNA program initiated at compaction, ion pumping required for cavitation, the differentiation of the first lineages, integration with the uterine environment at implantation, rapid proliferation of stem cells, and production of certain lineages which require the highest energy and are most sensitive to mitochondrial inhibition. Stress response mechanisms insure that stem cells for the early embryo and placenta survive at lower stress exposures, and that the organism survives through compensatory and prioritized stem cell differentiation, at higher stress exposures. These servomechanisms include a small set of stress enzymes from the 500 protein kinases in the kinome; the part of the genome coding for protein kinases that hierarchically regulate the activity of other proteins and enzymes. Important protein kinases that mediate the stress response of embryos and their stem cells are SAPK, p38MAPK, AMPK, PI3K, Akt, MEK1/2, MEKK4, PKA, IRE1 and PERK. These stress enzymes have cytosolic function in cell survival at low stress exposures and nuclear function in modifying transcription factor activity at higher stress exposures. Some of the transcription factors (TFs) that are most important in the stress response are JunC, JunB, MAPKAPs, ATF4, XBP1, Oct1, Oct4, HIFs, Nrf2/KEAP, NFKB, MT1, Nfat5, HSF1/2 and potency-maintaining factors Id2, Cdx2, Eomes, Sox2, Nanog, Rex1, and Oct4. Clearly the stress enzymes have a large number of cytosolic and nuclear substrates and the TFs regulate large numbers of genes. The interaction of stress enzymes and TFs in the early embryo and its stem cells are a continuing central focus of research. In vitro regulation of TFs by stress enzymes leads to reprogramming of the stem cell when stress diminishes stem cell accumulation. Since more differentiated product is produced by fewer cells, the process compensates for fewer cells. Coupled with stress-induced compensatory differentiation of stem cells is a

  15. Inhibition of conventional chemotherapy combined with metronomic chemotherapy on breast cancer xenografts in nude mice%常规化疗联合节拍化疗对乳腺癌裸鼠移植瘤的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘星; 陈伶; 史莉莉; 李丽

    2011-01-01

    背景与目的:乳腺癌治疗应从全局出发,将针对肿瘤细胞本身和肿瘤微环境相结合,而研究发现节拍化疗在抗血管生成等改善肿瘤微环境方面有明显优势.本文旨在观察环磷酰胺(cyclophosphamide,CTX)常规化疗联合节拍化疗对乳腺癌裸鼠移植瘤的抑瘤效应,探讨其对血管新生和细胞增殖、凋亡的影响.方法:建立乳腺癌裸鼠原位移植瘤模型,随机分成4组:节拍化疗(LDM)组、常规化疗(MTD)组、联合(LDM+MTD)组和0.9%NaCl溶液对照组,治疗期间观察裸鼠一般状况、隔日称重并测量皮下移植瘤体积,每周尾静脉采血白细胞计数(white blood cell counts,WBC).实验结束后处死小鼠取瘤称重,计算各组抑瘤率.免疫组织化学法检测移植瘤组织中微血管密度(microvessel density,MVD),以及血管内皮细胞生长因子(vascularendothelial growth factor,VEGF)、凝血酶敏感蛋白1(thrombospondin-1,TSP-1)、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)表达,TUNEL检测肿瘤细胞凋亡.结果:CTX 3种化疗方案均可不同程度抑制移植瘤生长,其中LDM组和MTD组移植瘤生长曲线类似,LDM+MTD组移植瘤生长明显缓于其他各组;LDM组、MTD组和LDM+MTD组的抑瘤率分别为32.95%、41.57%和69.15%; LDM组和LDM+MTD组MVD、VEGF相对低表达、TSP-1相对高表达,而组间比较差异无统计学意义(P>0.05),但与其余两组比较差异有统计学意义(P<0.05).MTD组和LDM+MTD组PCNA相对低表达,与其余两组比较差异有统计学意义(P<0.05),LDM+MTD组凋亡指数(apoptosis index,AI)明显高于其他各组,差异有统计学意义(P<0.05).结论:CTX常规化疗联合节拍化疗兼有抗血管生成、抑制细胞增殖、促进肿瘤细胞凋亡作用,抑瘤作用较单一传统化疗和节拍化疗更为明显,不良反应不明显.%Background and purpose: The treatment of breast cancer should aim at tumor cells themselves and tumor

  16. 缬沙坦对尿酸性肾病大鼠肾间质纤维化的干预机制研究%Intervention Mechanism of Valsartan on Renal Interstitial Fibrosis in Uric Acid Nephropathy Rats

    Institute of Scientific and Technical Information of China (English)

    孔翠文; 闫慧; 李靖; 杨堃; 王艳

    2013-01-01

    Objective To investigate the expression of thrombospondin - 1 ( TSP - 1 ) and hypoxia - inducible factor - 1 a ( HIF - 1 a ) in uric acid nephropathy rats and the effect of Valsartan in order to understand the intervention mechanism of Valsartan on renal interstitial fibrosis. Methods 36 male Wistar rats were selected and were randomly divided into normal group, model group and valsartan group with each group 12 rats. Yeast and adenine were used to establish uric acid nephropathy, and meanwhile, valsartan intervention was also performed. After three and five weeks, UA, Scr and renal histological changes were observed. Immunohistochemical method and RT - PCR method was used to detect the expression of TSP - 1 and HIF - la. Results The body weight, UA and Scr between the three groups at three and five weeks all showed statistically significant differences ( P < 0. 05 ) . The body weight of model group and valsartan group at three and five weeks was significantly lower than the normal group, while the UA and Scr were significantly higher than the normal group ( P < 0. 05 ) . The body weight of the model group at three and five weeks was significantly lower than the valsartan group, while the Scr was significantly higher than the valsartan group ( P <0. 01 ) .The expression of TSP - 1 mRNA and HIF - la mRNA detected by RT - PCR at three and five weeks between the three groups showed statistically significant differences ( P < 0. 05 ) . The expression of TSP - 1 mRNA and HIF - 1 a mRNA in model group and valsartan group at three and five weeks were significantly higher than the normal group ( P < 0. 01 ), and the expression of TSP - 1 mRNA and HIF - la mRNA in model group was significantly higher than the valsartan group ( P < 0. 05 ) . The expression of TSP - 1 mRNA and HIF - 1 a mRNA in model group at three and five weeks was positively correlated ( r =0. 821 and 0. 736, P <0. 05 ) . Conclusion The hypoxia condition exists in uric acid nephropathy rats. Valsartan can