WorldWideScience

Sample records for amphiphilic short peptides

  1. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  2. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  3. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  4. Driving forces for adsorption of amphiphilic peptides to the air-water interface.

    Science.gov (United States)

    Engin, Ozge; Villa, Alessandra; Sayar, Mehmet; Hess, Berk

    2010-09-02

    We have studied the partitioning of amphiphilic peptides at the air-water interface. The free energy of adsorption from bulk to interface was calculated by determining the potential of mean force via atomistic molecular dynamics simulations. To this end a method is introduced to restrain or constrain the center of mass of a group of molecules in a periodic system. The model amphiphilic peptides are composed of alternating valine and asparagine residues. The decomposition of the free energy difference between the bulk and interface is studied for different peptide block lengths. Our analysis revealed that for short amphiphilic peptides the surface driving force dominantly stems from the dehydration of hydrophobic side chains. The only opposing force is associated with the loss of orientational freedom of the peptide at the interface. For the peptides studied, the free energy difference scales linearly with the size of the molecule, since the peptides mainly adopt extended conformations both in bulk and at the interface. The free energy difference depends strongly on the water model, which can be rationalized through the hydration thermodynamics of hydrophobic solutes. Finally, we measured the reduction of the surface tension associated with complete coverage of the interface with peptides.

  5. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Amphiphilic cationic peptides mediate cell adhesion to plastic surfaces.

    Science.gov (United States)

    Rideout, D C; Lambert, M; Kendall, D A; Moe, G R; Osterman, D G; Tao, H P; Weinstein, I B; Kaiser, E T

    1985-09-01

    Four amphiphilic peptides, each with net charges of +2 or more at neutrality and molecular weights under 4 kilodaltons, were found to mediate the adhesion of normal rat kidney fibroblasts to polystyrene surfaces. Two of these peptides, a model for calcitonin (peptide 1, MCT) and melittin (peptide 2, MEL), form amphiphilic alpha-helical structures at aqueous/nonpolar interfaces. The other two, a luteinizing hormone-releasing hormone model (peptide 3, LHM) and a platelet factor model (peptide 4, MPF) form beta-strand structures in amphiphilic environments. Although it contains only 10 residues, LHM mediated adhesion to surfaces coated with solutions containing as little as 10 pmoles/ml of peptide. All four of these peptides were capable of forming monolayers at air-buffer interfaces with collapse pressures greater than 20 dynes/cm. None of these four peptides contains the tetrapeptide sequence Arg-Gly-Asp-Ser, which has been associated with fibronectin-mediated cell adhesion. Ten polypeptides that also lacked the sequence Arg-Gly-Asp-Ser but were nonamphiphilic and/or had net charges less than +2 at neutrality were all incapable of mediating cell adhesion (Pierschbacher and Ruoslahti, 1984). The morphologies of NRK cells spread on polystyrene coated with peptide LHM resemble the morphologies on fibronectin-coated surfaces, whereas cells spread on surfaces coated with MCT or MEL exhibit strikingly different morphologies. The adhesiveness of MCT, MEL, LHM, and MPF implies that many amphiphilic cationic peptides could prove useful as well defined adhesive substrata for cell culture and for studies of the mechanism of cell adhesion.

  7. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    Science.gov (United States)

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  8. Tipping the Scale from Disorder to Alpha-helix: Folding of Amphiphilic Peptides in the Presence of Macroscopic and Molecular Interfaces.

    Science.gov (United States)

    Dalgicdir, Cahit; Globisch, Christoph; Peter, Christine; Sayar, Mehmet

    2015-08-01

    Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK) and EAALAEALAEALAE (EALA), with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides' response to macroscopic and molecular interfaces (presented by an aggregation partner) can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides' aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity.

  9. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  10. Tipping the Scale from Disorder to Alpha-helix: Folding of Amphiphilic Peptides in the Presence of Macroscopic and Molecular Interfaces.

    Directory of Open Access Journals (Sweden)

    Cahit Dalgicdir

    2015-08-01

    Full Text Available Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK and EAALAEALAEALAE (EALA, with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides' response to macroscopic and molecular interfaces (presented by an aggregation partner can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides' aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity.

  11. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  12. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    Science.gov (United States)

    Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA

    2009-06-09

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  13. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  14. Tuning peptide amphiphile supramolecular structure for biomedical applications

    Science.gov (United States)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water

  15. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about

  16. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

    Science.gov (United States)

    Ong, Zhan Yuin; Cheng, Junchi; Huang, Yuan; Xu, Kaijin; Ji, Zhongkang; Fan, Weimin; Yang, Yi Yan

    2014-01-01

    In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome conventional mechanisms of drug resistance. Recently, we have reported the design of a series of short synthetic β-sheet folding peptide amphiphiles comprised of recurring (X1Y1X2Y2)n-NH2 sequences where X: hydrophobic amino acids, Y: cationic amino acids and n: number of repeat units. In efforts to investigate the effects of key parameters including stereochemistry, chain length and sequence pattern on antimicrobial effects, systematic d-amino acid substitutions of the lead peptides (IRIK)2-NH2 (IK8-all L) and (IRVK)3-NH2 (IK12-all L) were performed. It was found that the corresponding D-enantiomers exhibited stronger antimicrobial activities with minimal or no change in hemolytic activities, hence translating very high selectivity indices of 407.0 and >9.8 for IK8-all D and IK12-all D respectively. IK8-all D was also demonstrated to be stable to degradation by broad spectrum proteases trypsin and proteinase K. The membrane disrupting bactericidal properties of IK8-all D effectively prevented drug resistance development and inhibited the growth of various clinically isolated MRSA, VRE, Acinetobacter baumanni, Pseudomonas aeruginosa, Cryptococcus. neoformans and Mycobacterium tuberculosis. Significant reduction in intracellular bacteria counts was also observed following treatment with IK8-all D in the Staphylococcus. aureus infected mouse macrophage cell line RAW264.7 (P < 0.01). These results suggest that the d-amino acids substituted β-sheet forming peptide IK8-all D with its enhanced antimicrobial activities and improved protease stability, is a promising therapeutic candidate with potential to combat

  17. Adsorption, folding, and packing of an amphiphilic peptide at the air/water interface.

    Science.gov (United States)

    Engin, Ozge; Sayar, Mehmet

    2012-02-23

    Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a β-hairpin-like structure within the surface layer. Our results reveal that the β-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single β-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer. © 2012 American Chemical Society

  18. Peptide amphiphile nanoparticles enhance the immune response against a CpG-adjuvanted influenza antigen

    NARCIS (Netherlands)

    Zope, H.; Quer, C.B.; Bomans, P.H.H.; Sommerdijk, N.A.J.M.; Kros, A.; Jiskoot, W.

    2014-01-01

    Cationic peptide amphiphile nanoparticles are employed for co-delivery of immune modulator CpG and antigen. This results in better targeting to the antigen presenting cells and eliciting strong Th1 response, which is effective against the intracellular pathogens.

  19. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  20. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  1. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexa-peptide

    International Nuclear Information System (INIS)

    Dejugnat, Ch.; Dufreche, J.F.; Zemb, Th.; Dejugnat, Ch.

    2011-01-01

    An amphiphilic hexa-peptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexa-peptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to 'Hofmeister' but different from volume and valency. (authors)

  2. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.

    Science.gov (United States)

    Kaconis, Yani; Kowalski, Ina; Howe, Jörg; Brauser, Annemarie; Richter, Walter; Razquin-Olazarán, Iosu; Iñigo-Pestaña, Melania; Garidel, Patrick; Rössle, Manfred; Martinez de Tejada, Guillermo; Gutsmann, Thomas; Brandenburg, Klaus

    2011-06-08

    Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity.

    Science.gov (United States)

    Zhang, Rui; Kramer, Jake S; Smith, Josiah D; Allen, Brittany N; Leeper, Caitlin N; Li, Xiaolei; Morton, Logan D; Gallazzi, Fabio; Ulery, Bret D

    2018-06-01

    Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin 319-340 -OVA BT ) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine-Pam 2 C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications. Graphical Abstract.

  4. Investigation of Self-assembly Structure and Properties of a Novel Designed Lego-type Peptide with Double Amphiphilic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [Sichuan University, Sichuan (China); Zhao, Xiao Jun [Massachusetts Institute of Technology, Cambridge (United States)

    2010-12-15

    A typically designed 'Peptide Lego' has two distinct surfaces: a hydrophilic side that contains the complete charge distribution and a hydrophobic side. In this article, we describe the fabrication of a unique lego-type peptide with the AEAEYAKAK sequence. The novel peptide with double amphiphilic surfaces is different from typical peptides due to special arrangement of the residues. The results of CD, FT-IR, AFM and DLS demonstrate that the peptide with the random coil characteristic was able to form stable nanostructures that were mediated by non-covalent interactions in an aqueous solution. The data further indicated that despite its different structure, the peptide was able to undergo self-assembly similar to a typical peptide. In addition, the use of hydrophobic pyrene as a model allowed the peptide to provide a new type of potential nanomaterial for drug delivery. These efforts collectively open up a new direction in the fabrication of nanomaterials that are more perfect and versatile.

  5. Investigation of Self-assembly Structure and Properties of a Novel Designed Lego-type Peptide with Double Amphiphilic Surfaces

    International Nuclear Information System (INIS)

    Wang, Liang; Zhao, Xiao Jun

    2010-01-01

    A typically designed 'Peptide Lego' has two distinct surfaces: a hydrophilic side that contains the complete charge distribution and a hydrophobic side. In this article, we describe the fabrication of a unique lego-type peptide with the AEAEYAKAK sequence. The novel peptide with double amphiphilic surfaces is different from typical peptides due to special arrangement of the residues. The results of CD, FT-IR, AFM and DLS demonstrate that the peptide with the random coil characteristic was able to form stable nanostructures that were mediated by non-covalent interactions in an aqueous solution. The data further indicated that despite its different structure, the peptide was able to undergo self-assembly similar to a typical peptide. In addition, the use of hydrophobic pyrene as a model allowed the peptide to provide a new type of potential nanomaterial for drug delivery. These efforts collectively open up a new direction in the fabrication of nanomaterials that are more perfect and versatile

  6. Electrophysiological Assessment of a Peptide Amphiphile Nanofiber Nerve Graft for Facial Nerve Repair.

    Science.gov (United States)

    Greene, Jacqueline J; McClendon, Mark T; Stephanopoulos, Nicholas; Álvarez, Zaida; Stupp, Samuel I; Richter, Claus-Peter

    2018-04-27

    Facial nerve injury can cause severe long-term physical and psychological morbidity. There are limited repair options for an acutely transected facial nerve not amenable to primary neurorrhaphy. We hypothesize that a peptide amphiphile nanofiber neurograft may provide the nanostructure necessary to guide organized neural regeneration. Five experimental groups were compared, animals with 1) an intact nerve, 2) following resection of a nerve segment, and following resection and immediate repair with either a 3) autograft (using the resected nerve segment), 4) neurograft, or 5) empty conduit. The buccal branch of the rat facial nerve was directly stimulated with charge balanced biphasic electrical current pulses at different current amplitudes while nerve compound action potentials (nCAPs) and electromygraphic (EMG) responses were recorded. After 8 weeks, the proximal buccal branch was surgically re-exposed and electrically evoked nCAPs were recorded for groups 1-5. As expected, the intact nerves required significantly lower current amplitudes to evoke an nCAP than those repaired with the neurograft and autograft nerves. For other electrophysiologic parameters such as latency and maximum nCAP, there was no significant difference between the intact, autograft and neurograft groups. The resected group had variable responses to electrical stimulation, and the empty tube group was electrically silent. Immunohistochemical analysis and TEM confirmed myelinated neural regeneration. This study demonstrates that the neuroregenerative capability of peptide amphiphile nanofiber neurografts is similar to the current clinical gold standard method of repair and holds potential as an off-the-shelf solution for facial reanimation and potentially peripheral nerve repair. This article is protected by copyright. All rights reserved.

  7. Balancing the intermolecular forces in peptide amphiphiles for controlling self-assembly transitions.

    Science.gov (United States)

    Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E

    2017-06-21

    While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.

  8. Acentric 2-D ensembles of D-br-A electron-transfer chromophores via vectorial orientation within amphiphilic n-helix bundle peptides for photovoltaic device applications.

    Science.gov (United States)

    Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H Christopher; Therien, Michael J; Blasie, J Kent

    2012-02-14

    We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrate that densely packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200 Å(2) offer unique potential as active layers in binary heterojunction photovoltaic devices.

  9. Computational Amphiphilic Materials for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naresh eThota

    2015-10-01

    Full Text Available Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.

  10. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.

    Science.gov (United States)

    Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel

    2018-02-01

    Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

  11. Heparin-binding peptide amphiphile supramolecular architectures as platforms for angiogenesis and drug delivery

    Science.gov (United States)

    Chow, Lesleyann W.

    A fascinating phenomenon in nature is the self-assembly of molecules into a functional, hierarchical structure. In the past decade, the Stupp Laboratory has developed several classes of self-assembling biomaterials, one of which is the synthetic peptide amphiphile (PA). Self-assembling PAs are attractive and versatile biomolecules that can be customized for specific applications in regenerative medicine. In particular, a heparin-binding peptide amphiphile (HBPA) containing a specific heparin-binding peptide sequence was used here to induce angiogenesis and serve as a delivery vehicle for growth factors and small hydrophobic molecules. Throughout this dissertation, the HBPA/heparin system is used in different architectures for a variety of regenerative medicine applications. In one aspect of this work, hybrid scaffolds made from HBPA/heparin gelled on a poly(L-lactic acid) (PLLA) fiber mesh were used to promote angiogenesis to facilitate pancreatic islet transplantation for the treatment of type 1 diabetes. Delivery of growth factors with HBPA/PLLA scafflolds increased vessel density in vivo and correlated with improved transplant outcomes in a streptozotocin-induced diabetic mouse model. Soluble HBPA nanofiber architectures were also useful for islet transplantation applications. These nanofibers were used at concentrations below gelation to deliver growth factors into the dense islet cell aggregate, promoting cell survival and angiogenesis in vitro. The nanostructures infiltrated the islets and promoted the retention of heparin and growth factors within the islet. Another interesting growth factor release system discussed here is the HBPA membrane structure. HBPA was found to self-assemble with hyaluronic acid, a large biopolymer found in the body, into macroscopic, hierarchically-ordered membranes. Heparin was incorporated into these membranes and affected the membrane's mechanical properties and growth factor release. Human mesenchymal stem cells were also shown

  12. Amphiphilic block copolymers for biomedical applications

    Science.gov (United States)

    Zupancich, John Andrew

    Amphiphilic block copolymer self-assembly provides a versatile means to prepare nanoscale objects in solution. Control over aggregate shape is granted through manipulation of amphiphile composition and the synthesis of well-defined polymers offers the potential to produce micelles with geometries optimized for specific applications. Currently, polymer micelles are being investigated as vehicles for the delivery of therapeutics and attempts to increase efficacy has motivated efforts to incorporate bioactive ligands and stimuli-responsive character into these structures. This thesis reports the synthesis and self-assembly of biocompatible, degradable polymeric amphiphiles. Spherical, cylindrical, and bilayered vesicle structures were generated spontaneously by the direct dispersion of poly(ethylene oxide)-b-poly(gamma-methyl-ε-caprolactone) block copolymers in water and solutions were characterized with cryogenic transmission electron microscopy (cryo-TEM). The dependence of micelle structure on diblock copolymer composition was examined through the systematic variation of the hydrophobic block molecular weight. A continuous evolution of morphology was observed with coexistence of aggregate structures occurring in windows of composition intermediate to that of pure spheres, cylinders and vesicles. A number of heterobifunctional poly(ethylene oxide) polymers were synthesized for the preparation of ligand-functionalized amphiphilic diblock copolymers. The effect of ligand conjugation on block copolymer self-assembly and micelle morphology was also examined. An RGD-containing peptide sequence was efficiently conjugated to a set of well characterized poly(ethylene oxide)-b-poly(butadiene) copolymers. The reported aggregate morphologies of peptide-functionalized polymeric amphiphiles deviated from canonical structures and the micelle clustering, cylinder fragmentation, network formation, and multilayer vesicle generation documented with cryo-TEM was attributed to

  13. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.

    Science.gov (United States)

    Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-04-17

    The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting

  14. Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength

    KAUST Repository

    Luo, Zhongli

    2010-01-01

    The amphiphilic double-tail peptides AXG were studied regarding secondary structure and self-assembly in aqueous solution. The two tails A = Ala 6 and G = Gly6 are connected by a central pair X of hydrophilic residues, X being two aspartic acids in ADG, two lysines in AKG and two arginines in ARG. The peptide AD (Ala6Asp) served as a single-tail reference. The secondary structure of the four peptides was characterized by circular dichroism spectroscopy under a wide range of peptide concentrations (0.01-0.8 mM), temperatures (20-98 °C), pHs (4-9.5) and ionic strengths. In salt-free water both ADG and AD form a β-sheet type of structure at high concentration, low pH and low temperature, in a peptide-peptide driven assembly of individual peptides. The transition has a two-state character for ADG but not for AD, which indicates that the added tail in ADG makes the assembly more cooperative. By comparison the secondary structures of AKG and ARG are comparatively stable over the large range of conditions covered. According to dynamic light scattering the two-tail peptides form supra-molecular aggregates in water, but high-resolution AFM-imaging indicate that ordered (self-assembled) structures are only formed when salt (0.1 M NaCl) is added. Since the CD-studies indicate that the NaCl has only a minor effect on the peptide secondary structure we propose that the main role of the added salt is to screen the electrostatic repulsion between the peptide building blocks. According to the AFM images ADG and AKG support a correlation between nanofibers and a β-sheet or unordered secondary structure, whereas ARG forms fibers in spite of lacking β-sheet structure. Since the AKG and ARG double-tail peptides self-assemble into distinct nanostructures while their secondary structures are resistant to environment factors, these new peptides show potential as robust building blocks for nano-materials in various medical and nanobiotechnical applications. © 2010 The Royal Society

  15. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  16. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    Science.gov (United States)

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-01-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment. PMID:23881402

  17. Amphiphilic cyclodextrin nanoparticles.

    Science.gov (United States)

    Varan, Gamze; Varan, Cem; Erdoğar, Nazlı; Hıncal, A Atilla; Bilensoy, Erem

    2017-10-15

    Cyclodextrins are cyclic oligosaccharides obtained by enzymatic digestion of starch. The α-, β- and γ- cyclodextrins contain respectively 6, 7 and 8 glucopyranose units, with primary and secondary hydroxyl groups located on the narrow and wider rims of a truncated cone shape structure. Such structure is that of a hydrophobic inner cavity with a hydrophilic outer surface allowing to interact with a wide range of molecules like ions, protein and oligonucleotides to form inclusion complexes. Many cyclodextrin applications in the pharmaceutical area have been widely described in the literature due to their low toxicity and low immunogenicity. The most important is to increase the solubility of hydrophobic drugs in water. Chemically modified cyclodextrin derivatives have been synthesized to enhance their properties and more specifically their pharmacological activity. Among these, amphiphilic derivatives were designed to build organized molecular structures, through selfassembling systems or by incorporation in lipid membranes, expected to improve the vectorization in the organism of the drug-containing cyclodextrin cavities. These derivatives can form a variety of supramolecular structures such as micelles, vesicles and nanoparticles. The purpose of this review is to summarize applications of amphiphilic cyclodextrins in different areas of drug delivery, particularly in protein and peptide drug delivery and gene delivery. The article highlights important amphiphilic cyclodextrin applications in the design of novel delivery systems like nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers.

    Science.gov (United States)

    Dikecoglu, F Begum; Topal, Ahmet E; Ozkan, Alper D; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu

    2018-07-13

    Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.

  19. Affinity study on bovine serum albumin's peptides to amphiphilic gold nanoparticles: A test of epitopes and non-epitopes

    Science.gov (United States)

    Yuan, Ming; Li, Wanrong; Yang, Mingming; Huang, Xiufeng; Bai, Zhijun; Liu, Yushuang; Cai, Weijun; Wang, Yuqin; Zhang, Feng

    2017-09-01

    It is an inevitable event that nanoparticles (NPs) will encounter proteins/peptides in nano-medicine, so it has been significant to know their interaction mechanism before in vivo applications. Previously, a 105-amino-acid sequence had been reported as the binding site between bovine serum albumin (BSA) and amphiphilic polymer coated gold nanoparticles (AP-AuNPs) along with a mortise-tenon joint hypothesis. This article tested the affinity difference between two epitope peptide sequences such as: LGEYGFQNALIVR (S1), DAFLGSFLYEYSR (S2) and one non-epitope peptide sequence as: FDEHVKLVNELTEF (S3). With the photoluminescent amino acid residues, the fluorescence quenching method based on the nanometal surface energy transfer (NSET) principle was able to study the thermodynamics of the current binding system. The binding constants (Ka) were determined and followed the order as: Ka-S1 > Ka-S2 >> Ka-S3. Moreover, Hill constants indicated that cooperativity only presented in the interactions of AP-AuNP with either S1 or S2, but not for S3. Moreover, gel electrophoresis, surface plasmon resonance, atomic force microscopy and three dimensional fluorescence microscopy were all also used to comprehensively analyse the binding interaction mechanism. These results further provided useful information to better understand the mortise-tenon joint, which might find applications to nanofabrication and biomedicine.

  20. Self-Assembly of Peptides at the Air/Water Interface

    Science.gov (United States)

    Sayar, Mehmet

    2013-03-01

    Peptides are commonly used as building blocks for design and development of novel materials with a variety of application areas ranging from drug design to biotechnology. The precise control of molecular architecture and specific nature of the nonbonded interactions among peptides enable aggregates with well defined structural and functional properties. The interaction of peptides with interfaces leads to dramatic changes in their conformational and aggregation behavior. In this talk, I will discuss our research on the interplay of intermolecular forces and influence of interfaces. In the first part the amphiphilic nature of short peptide oligomers and their behavior at the air/water interface will be discussed. The surface driving force and its decomposition will be analyzed. In the second part aggregation of peptides in bulk water and at an interface will be discussed. Different design features which can be tuned to control aggregation behavior will be analyzed.

  1. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Cheema, Mohammad Arif; Siddiq, Mohammad; Taboada, Pablo; Mosquera, Victor

    2009-01-01

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl - substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V φ , and isentropic apparent molar compressibilities, K φ(S) , for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, ΔG 0 , phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles

  2. Aggregation properties of a short peptide that mediates amyloid fibril ...

    Indian Academy of Sciences (India)

    Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The ... proteins. These peptide fibrils have the conformational features of β-structure that .... water and immediately deposited on freshly cleaved surface of mica .... with the peptide via electrostatic interactions. NaCl would.

  3. Unconventional, amphiphilic polymers based on chiral polyethylene oxide derivatives I. Synthesis and Characterization.

    NARCIS (Netherlands)

    Janssen, H.M.; Peeters, E.; Zundert, van M.F.; Genderen, van M.H.P.; Meijer, E.W.

    1997-01-01

    The first representatives of a new class of synthetic, amphiphilic polymers based on poly(ethylene oxide) are introduced. These polymers are constituted in a similar way to that for coiled-coil-forming peptides: the polymers possess a regular repeat of apolar (A) residues in a polar (P) sequence of

  4. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the phospholipid headgroup electrometer concept to phosphatidylserine

    International Nuclear Information System (INIS)

    de Kroon, A.I.P.M.; Killian, J.A.; de Gier, J.; de Kruijff, B.

    1991-01-01

    Deuterium nuclear magnetic resonance ( 2 H NMR) was used to study the interaction of amphiphilic model peptides with model membranes consisting of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine deuterated either at the β-position of the serine moiety ([2- 2 H]DOPS) or at the 11-position of the acyl chains ([11,11- 2 H 2 ]DOPS). The peptides are derived from the sequences H-Ala-Met-Leu-Trp-Ala-OH and H-Arg-Met-Leu-Trp-Ala-OH and contain a positive charge of +1 or +2 at the amino terminus or one positive charge at each end of the molecule. Upon titration of dispersions of DOPS with the peptides, the divalent peptides show a similar extent of binding to the DOPS bilyers, which is larger than that of the single charged peptide. Under these conditions the values of the quadrupolar splitting of both [2- 2 H]DOPS and [11,11- 2 H 2 ]DOPS are decreased, indicating that the peptides reduce the order of both the DOPS headgroup and the acyl chains. The extent of the decrease depends on the amount of peptide bound and on the position of the charged moieties in the peptide molecule. Titrations of DOPS with poly(L-lysine) 100 , which were included for reasons of comparison, reveal increased Δv q values. When the peptide-lipid titrations are carried out without applying a freeze-thaw procedure to achieve full equilibration, two-component 2 H NMR spectra occur. The apparently limited accessibility of the lipid to the peptides under these circumstances is discussed in relation to the ability of the peptides to exhibit transbilayer movement. 2 H spin-lattice relaxation time T1 measurements demonstrate a decrease of the rates of motion of both headgroup and acyl chains of DOPS in the presence of the peptides

  5. Design and expression of a short peptide as an HIV detection probe

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Jamie A.; Yu, Zhiqiang; Dedkova, Larisa M.; Chen, Shengxi, E-mail: shengxi.chen.1@asu.edu

    2014-01-03

    Highlights: •We designed a short fusion peptide (FP-50) for in vivo expression. •This peptide is a very promising component for detection of gp120 protein. •The detectable level is about 20–200 times lower than previously published methods. •It is a novel probe to detect HIV-1 gp120 during early stages of HIV infection. -- Abstract: To explore a low-cost novel probe for HIV detection, we designed and prepared a 50-amino acid-length short fusion peptide (FP-50) via Escherichia coli in vivo expression. It was employed as a novel probe to detect HIV-1 gp120 protein. The detectable level of gp120 protein using the FP-50 peptide was approximately 20–200 times lower than previously published methods that used a pair of monoclonal antibodies. Thus, this short peptide is a very promising component for detection of gp120 protein during early stages of HIV infection.

  6. Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates.

    Science.gov (United States)

    Gouveia, Ricardo M; Hamley, Ian W; Connon, Che J

    2015-10-01

    In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highly-ordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the bio-fabrication and subsequent self-release of natural, bio-prosthetic human tissues depend solely on simple template-tissue feedback interactions.

  7. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  8. Adsorption of different amphiphilic molecules onto polystyrene latices.

    Science.gov (United States)

    Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A

    2005-02-15

    In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.

  9. Biodegradable copolymers carrying cell-adhesion peptide sequences.

    Science.gov (United States)

    Proks, Vladimír; Machová, Lud'ka; Popelka, Stepán; Rypácek, Frantisek

    2003-01-01

    Amphiphilic block copolymers are used to create bioactive surfaces on biodegradable polymer scaffolds for tissue engineering. Cell-selective biomaterials can be prepared using copolymers containing peptide sequences derived from extracellular-matrix proteins (ECM). Here we discuss alternative ways for preparation of amphiphilic block copolymers composed of hydrophobic polylactide (PLA) and hydrophilic poly(ethylene oxide) (PEO) blocks with cell-adhesion peptide sequences. Copolymers PLA-b-PEO were prepared by a living polymerisation of lactide in dioxane with tin(II)2-ethylhexanoate as a catalyst. The following approaches for incorporation of peptides into copolymers were elaborated. (a) First, a side-chain protected Gly-Arg-Gly-Asp-Ser-Gly (GRGDSG) peptide was prepared by solid-phase peptide synthesis (SPPS) and then coupled with delta-hydroxy-Z-amino-PEO in solution. In the second step, the PLA block was grafted to it via a controlled polymerisation of lactide initiated by the hydroxy end-groups of PEO in the side-chain-protected GRGDSG-PEO. Deprotection of the peptide yielded a GRGDSG-b-PEO-b-PLA copolymer, with the peptide attached through its C-end. (b) A protected GRGDSG peptide was built up on a polymer resin and coupled with Z-carboxy-PEO using a solid-phase approach. After cleavage of the delta-hydroxy-PEO-GRGDSG copolymer from the resin, polymerisation of lactide followed by deprotection of the peptide yielded a PLA-b-PEO-b-GRGDSG block copolymer, in which the peptide is linked through its N-terminus.

  10. Short peptides allowing preferential detection of Candida albicans hyphae.

    Science.gov (United States)

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  11. Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies.

    Science.gov (United States)

    Hainline, Kelly M; Fries, Chelsea N; Collier, Joel H

    2018-03-01

    Supramolecular materials composed of proteins and peptides have been receiving considerable attention toward a range of diseases and conditions from vaccines to drug delivery. Owing to the relative newness of this class of materials, the bulk of work to date has been preclinical. However, examples of approved treatments particularly in vaccines, dentistry, and hemostasis demonstrate the translational potential of supramolecular polypeptides. Critical milestones in the clinical development of this class of materials and currently approved supramolecular polypeptide therapies are described in this study. Additional examples of not-yet-approved materials that are steadily advancing toward clinical use are also featured. Spherical assemblies such as virus-like particles, designed protein nanoparticles, and spherical peptide amphiphiles are highlighted, followed by fiber-forming systems such as fibrillizing peptides, fiber-forming peptide-amphiphiles, and filamentous bacteriophages. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Decontamination Of Bacterial Spores by a Peptide-Mimic

    National Research Council Canada - National Science Library

    Nagarajan, R; Muller, Wayne S; Ashley, Rebekah; Mello, Charlene M

    2006-01-01

    .... In this work, we demonstrate that a peptide-mimic (cationic, amphiphilic) chemical agent, dodecylamine is capable of performing the dual functions of germinating the dormant spore as well as deactivating...

  13. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.

    Science.gov (United States)

    Ariga, Katsuhiko; Urakawa, Toshihiro; Michiue, Atsuo; Kikuchi, Jun-ichi

    2004-08-03

    As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.

  14. An Amylase-Responsive Bolaform Supra-Amphiphile.

    Science.gov (United States)

    Kang, Yuetong; Cai, Zhengguo; Tang, Xiaoyan; Liu, Kai; Wang, Guangtong; Zhang, Xi

    2016-02-01

    An amylase-responsive bolaform supra-amphiphile was constructed by the complexation between β-cyclodextrin and a bolaform covalent amphiphile on the basis of host-guest interaction. The bolaform covalent amphiphile could self-assemble in solution, forming sheet-like aggregates and displaying weak fluorescence because of aggregation-induced quenching. The addition of β-cyclodextrin led to the formation of the bolaform supra-amphiphile, prohibiting the aggregation of the bolaform covalent amphiphile and accompanying with the significant recovery of fluorescence. Upon the addition of α-amylase, with the degradation β-cyclodextrin, the fluorescence of the supra-amphiphile would quench gradually and significantly, and the quenching rate linearly correlated to the concentration of α-amylase. This study enriches the field of supra-amphiphiles on the basis of noncovalent interactions, and moreover, it may provide a facile way to estimate the activity of α-amylase.

  15. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.

    Science.gov (United States)

    Fu, Iris W; Markegard, Cade B; Chu, Brian K; Nguyen, Hung D

    2013-10-01

    Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.

    Science.gov (United States)

    Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas

    2011-04-21

    An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.

  17. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    Science.gov (United States)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  18. Inhibition of Plant-Pathogenic Bacteria by Short Synthetic Cecropin A-Melittin Hybrid Peptides

    OpenAIRE

    Ferre, Rafael; Badosa, Esther; Feliu, Lidia; Planas, Marta; Montesinos, Emili; Bardají, Eduard

    2006-01-01

    Short peptides of 11 residues were synthesized and tested against the economically important plant pathogenic bacteria Erwinia amylovora, Pseudomonas syringae, and Xanthomonas vesicatoria and compared to the previously described peptide Pep3 (WKLFKKILKVL-NH2). The antimicrobial activity of Pep3 and 22 analogues was evaluated in terms of the MIC and the 50% effective dose (ED50) for growth. Peptide cytotoxicity against human red blood cells and peptide stability toward protease degradation wer...

  19. Tailorable Exciton Transport in Doped Peptide–Amphiphile Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Lee A. [Center; Sykes, Matthew E. [Center; Wu, Yimin A. [Center; Schaller, Richard D. [Center; Department; Wiederrecht, Gary P. [Center; Fry, H. Christopher [Center

    2017-08-29

    Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.

  20. Short term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals

    OpenAIRE

    Kanaley, Jill A.; Heden, Timothy D.; Liu, Ying; Whaley-Connell, Adam T.; Chockalingam, Anand; Dellsperger, Kevin C.; Fairchild, Timothy J.

    2013-01-01

    Objective Short-term exercise training improves glycemic control, but the effect of short-term training on postprandial satiety peptide responses or perceived satiety remains unknown. We tested the hypothesis that short-term aerobic exercise training (15 days) would alter postprandial pancreatic and gut peptide [pancreatic polypeptide (PP) and peptide YY (PYY)] responses and perceived appetite and satiety in obese individuals. Subjects Thirteen healthy obese men and women (age: 42±2 y; BMI: 3...

  1. Novel Antimicrobial Peptide Dendrimers with Amphiphilic Surface and Their Interactions with Phospholipids — Insights from Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Paulina Zielinska

    2013-06-01

    Full Text Available A series of new peptide dendrimers with amphiphilic surface, designed around a dendronized ornithine (Orn core were synthesized and characterized by ESI-MS, 1H-, 13C- NMR, and CD spectrometry. An improved antimicrobial potency against S. aureus and E. coli was detected as a result of an increased charge, higher branching and variable lipophilicity of the residues located at the C-terminus. Minimal inhibitory concentration (MIC values indicated that the selected dendrimers were not sensitive to the physiological concentration of Na+ and K+ ions (100 mM, but expressed reduced potency at 10 mM concentration of Mg2+ and Ca2+ ions. Circular dichroism (CD curves measured under various conditions revealed structure and solvent-dependent curve evolution. ESI-MS studies of gas-phase interactions between selected dendrimers and both anionic (DMPG and neutral (DMPC phospholipids revealed the presence of variously charged dendrimer/phospholipid aggregates with 1:1 to 1:5 stoichiometry. The collision-induced fragmentation (CID of the most abundant [dendrimer/phospholipid]2+ ions of the 1:1 stoichiometry demonstrated that the studied dendrimers formed stronger complexes with anionic DMPG. Both phospholipids have higher affinity towards dendrimers with a more compact structure. Higher differences in CID energy necessary for dissociation of 50% of the complex formed by dendrimers with DMPG vs. DMPC (DCID50 correlate with a lower hemotoxicity. Mass spectrometry results suggest that for a particular group of compounds the DCID50 might be one of the important factors explaining selectivity of antimicrobial peptides and their branched analogs targeting the bacterial membrane. Both circular dichroism and mass spectrometry studies demonstrated that dendrimers of Nα- and Nε-series possess a different conformation in solution and different affinity to model phospholipids, what might influence their specific microbicidal mechanism.

  2. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chaoyang [Shandong Univ., Jinan (China); Zhang, Pengju [Shandong Univ., Jinan (China); Jiang, Anli [Shandong Univ., Jinan (China); Mao, Jian-Hua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Guangwei [Shandong Univ. School of Medicine, Jinan (China)

    2017-03-30

    C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover, C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.

  3. Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Flement, Matthias; Hennink, Wim E.; Mastrobattista, Enrico

    2014-01-01

    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small

  4. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  5. Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaobao; Zhou, Chuncai; Li, Peng [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Xu, Weixin [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Cao, Ye; Ling, Hua; Ning Chen, Wei; Ming Li, Chang; Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Lamrani, Mouad [Menicon Co., Ltd. Immeuble Espace Cordeliers, 2, rue President Carnot, 69002 Lyon (France); Mu, Yuguang, E-mail: ygmu@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Leong, Susanna Su Jan [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Wook Chang, Matthew, E-mail: matthewchang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Chan-Park, Mary B., E-mail: mbechan@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore)

    2010-07-30

    Research highlights: {yields} Short antimicrobial peptides with nine and eleven residues were developed. {yields} These peptides show strong bactericidal activity against clinically important bacterial and fungal pathogens. {yields} These peptides exhibit high stability in the presence of salts, and low cytotoxicity. {yields} These peptides exert their action by disrupting membrane lipids. -- Abstract: Short antimicrobial peptides with nine and eleven residues were developed against several clinically important bacterial and fungal pathogens (specifically Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Fusarium solani). Twelve analogues of previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were designed, synthesized, and tested for their antimicrobial activities. Two of our eleven amino acid peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1-12.5 {mu}g ml{sup -1} against all five pathogens. The MICs of these two peptides against S. aureus, C. albicans and F. solani are four to ten times lower than the corresponding MICs of the reference peptide BP76. P9-4 (KWRRWIRWL), our newly designed nine-amino acid analogue, also has particularly low MICs of 3.1-6.2 {mu}g ml{sup -1} against four of the tested pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2-50 {mu}g ml{sup -1}).These new peptides (P11-5, P11-6 and P9-4) also exhibit improved stability in the presence of salts, and have low cytotoxicity as shown by the hemolysis and MTT assays. From the results of field-emission scanning electron microscopy, membrane depolarization and dye-leakage assays, we propose that these peptides exert their action by disrupting membrane lipids. Molecular dynamics simulation studies confirm that P11-6 peptide maintains relatively stable helical structure and exerts more perturbation action on the order of acyl tail of lipid bilayer.

  6. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  7. Serum stabilities of short tryptophan- and arginine-rich antimicrobial peptide analogs.

    Directory of Open Access Journals (Sweden)

    Leonard T Nguyen

    2010-09-01

    Full Text Available Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre" of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications.

  8. Short Anabolic Peptides for Bone Growth.

    Science.gov (United States)

    Amso, Zaid; Cornish, Jillian; Brimble, Margaret A

    2016-07-01

    Loss of bone occurs in the age-related skeletal disorder, osteoporosis, leading to bone fragility and increased incidence of fractures, which are associated with enormous costs and substantial morbidity and mortality. Recent data indicate that osteoporotic fractures are more common than other diseases, which usually attract public attention (e.g., heart attack and breast cancer). The prevention and treatment of this skeletal disorder are therefore of paramount importance. Majority of osteoporosis medications restore skeletal balance by reducing osteoclastic activity, thereby reducing bone resorption. These agents, however, do not regenerate damaged bone tissue, leaving limited options for patients once bone loss has occurred. Recently, attention has turned to bone-anabolic agents. Such agents have the ability to increase bone mass and strength, potentially reversing structural damage. To date, only one bone-anabolic drug is available in the market. The discovery of more novel, cost-effective bone anabolic agents is therefore a priority to treat those suffering from this disabling condition. Short peptides offer an important alternative for the development of novel bone-anabolic agents given their high target binding specificity, which translates into potent activity with limited side effects. This review summarizes attempts in the identification of bone-anabolic peptides, and their development for promoting bone growth. © 2016 Wiley Periodicals, Inc.

  9. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    Science.gov (United States)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  10. Serum Stabilities of Short Tryptophan-and Arginine-Rich Antimicrobial Peptide Analogs

    NARCIS (Netherlands)

    Nguyen, L.T.; Chau, J.K.; Perry, N.A.; de Boer, L.; Zaat, S.A.J.; Vogel, H.J.

    2010-01-01

    Background: Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial

  11. Toward Structure Prediction for Short Peptides Using the Improved SAAP Force Field Parameters

    Directory of Open Access Journals (Sweden)

    Kenichi Dedachi

    2013-01-01

    Full Text Available Based on the observation that Ramachandran-type potential energy surfaces of single amino acid units in water are in good agreement with statistical structures of the corresponding amino acid residues in proteins, we recently developed a new all-atom force field called SAAP, in which the total energy function for a polypeptide is expressed basically as a sum of single amino acid potentials and electrostatic and Lennard-Jones potentials between the amino acid units. In this study, the SAAP force field (SAAPFF parameters were improved, and classical canonical Monte Carlo (MC simulation was carried out for short peptide models, that is, Met-enkephalin and chignolin, at 300 K in an implicit water model. Diverse structures were reasonably obtained for Met-enkephalin, while three folded structures, one of which corresponds to a native-like structure with three native hydrogen bonds, were obtained for chignolin. The results suggested that the SAAP-MC method is useful for conformational sampling for the short peptides. A protocol of SAAP-MC simulation followed by structural clustering and examination of the obtained structures by ab initio calculation or simply by the number of the hydrogen bonds (or the hardness was demonstrated to be an effective strategy toward structure prediction for short peptide molecules.

  12. H-shaped supra-amphiphiles based on a dynamic covalent bond.

    Science.gov (United States)

    Wang, Guangtong; Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-10-16

    The imine bond, a kind of dynamic covalent bond, is used to bind two bolaform amphiphiles together with spacers, yielding H-shaped supra-amphiphiles. Micellar aggregates formed by the self-assembly of the H-shaped supra-amphiphiles are observed. When pH is tuned down from basic to slightly acidic, the benzoic imine bond can be hydrolyzed, leading to the dissociation of H-shaped supra-amphiphiles. Moreover, H-shaped supra-amphiphiles have a lower critical micelle concentration than their building blocks, which is very helpful in enhancing the stability of the benzoic imine bond being hydrolyzed by acid. The surface tension isotherms of the H-shaped supra-amphiphiles with different spacers indicate their twisty conformation at a gas-water interface. The study of H-shaped supra-amphiphiles can enrich the family of amphiphiles, and moreover, the pH-responsiveness may make them apply to controlled or targetable drug delivery in a biological environment.

  13. The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Visscher, Koen M.; Rodrigues, João P.G.L.M.; De Vries, Renko; Hennink, Wim E.; Baldus, Marc; Bonvin, Alexandre M.J.J.; Mastrobattista, Enrico; Weingarth, Markus

    2015-01-01

    Nanovesicles self-assembled from amphiphilic peptides are promising candidates for applications in drug delivery. However, complete high-resolution data on the local and supramolecular organization of such materials has been elusive thus far, which is a substantial obstacle to their rational design.

  14. Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion.

    Science.gov (United States)

    Yamada, Taihei; Kokado, Kenta; Sada, Kazuki

    2017-03-14

    According to the design of disassembly using electrostatic repulsion, novel amphiphiles consisting of a lipophilic ion part and a hydrophilic saccharide part were synthesized via the facile copper-catalyzed click reaction, and their molecular assemblies in water and chloroform were studied. The amphiphiles exhibited a molecular orientation opposite to that of the conventional amphiphiles in each case. ζ Potential measurements indicated that the lipophilic ion part is exposed outside in chloroform. The size of a solvophobic part in the amphiphiles dominates the size of an assembling structure; that is, in water, these amphiphiles tethering different lengths of the saccharide part exhibited almost identical assembling size, whereas in chloroform, the size depends on the length of the saccharide part in the amphiphiles.

  15. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  16. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  17. Amphiphilic poly(ether ester amide) multiblock copolymers as biodegradable matrices for the controlled release of proteins

    NARCIS (Netherlands)

    Bezemer, J.M.; Oude Weme, P.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    2000-01-01

    Amphiphilic poly(ether ester amide) (PEEA) multiblock copolymers were synthesized by polycondensation in the melt from hydrophilic poly(ethylene glycol) (PEG), 1,4-dihydroxybutane and short bisester-bisamide blocks. These amide blocks were prepared by reaction of 1,4-diaminobutane with dimethyl

  18. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition.

    Science.gov (United States)

    Lostalé-Seijo, Irene; Louzao, Iria; Juanes, Marisa; Montenegro, Javier

    2017-12-01

    The discovery of RNA guided endonucleases has emerged as one of the most important tools for gene edition and biotechnology. The selectivity and simplicity of the CRISPR/Cas9 strategy allows the straightforward targeting and editing of particular loci in the cell genome without the requirement of protein engineering. However, the transfection of plasmids encoding the Cas9 and the guide RNA could lead to undesired permanent recombination and immunogenic responses. Therefore, the direct delivery of transient Cas9 ribonucleoprotein constitutes an advantageous strategy for gene edition and other potential therapeutic applications of the CRISPR/Cas9 system. The covalent fusion of Cas9 with penetrating peptides requires multiple incubation steps with the target cells to achieve efficient levels of gene edition. These and other recent reports suggested that covalent conjugation of the anionic Cas9 ribonucleoprotein to cationic peptides would be associated with a hindered nuclease activity due to undesired electrostatic interactions. We here report a supramolecular strategy for the direct delivery of Cas9 by an amphiphilic penetrating peptide that was prepared by a hydrazone bond formation between a cationic peptide scaffold and a hydrophobic aldehyde tail. The peptide/protein non-covalent nanoparticles performed with similar efficiency and less toxicity than one of the best methods described to date. To the best of our knowledge this report constitutes the first supramolecular strategy for the direct delivery of Cas9 using a penetrating peptide vehicle. The results reported here confirmed that peptide amphiphilic vectors can deliver Cas9 in a single incubation step, with good efficiency and low toxicity. This work will encourage the search and development of conceptually new synthetic systems for transitory endonucleases direct delivery.

  19. Assembly of Triblock Amphiphilic Peptides into One-Dimensional Aggregates and Network Formation.

    Science.gov (United States)

    Ozgur, Beytullah; Sayar, Mehmet

    2016-10-06

    Peptide assembly plays a key role in both neurological diseases and development of novel biomaterials with well-defined nanostructures. Synthetic model peptides provide a unique platform to explore the role of intermolecular interactions in the assembly process. A triblock peptide architecture designed by the Hartgerink group is a versatile system which relies on Coulomb interactions, hydrogen bonding, and hydrophobicity to guide these peptides' assembly at three different length scales: β-sheets, double-wall ribbon-like aggregates, and finally a highly porous network structure which can support gels with ≤1% by weight peptide concentration. In this study, by using molecular dynamics simulations of a structure based implicit solvent coarse grained model, we analyzed this hierarchical assembly process. Parametrization of our CG model is based on multiple-state points from atomistic simulations, which enables this model to represent the conformational adaptability of the triblock peptide molecule based on the surrounding medium. Our results indicate that emergence of the double-wall β-sheet packing mechanism, proposed in light of the experimental evidence, strongly depends on the subtle balance of the intermolecular forces. We demonstrate that, even though backbone hydrogen bonding dominates the early nucleation stages, depending on the strength of the hydrophobic and Coulomb forces, alternative structures such as zero-dimensional aggregates with two β-sheets oriented orthogonally (which we refer to as a cross-packed structure) and β-sheets with misoriented hydrophobic side chains are also feasible. We discuss the implications of these competing structures for the three different length scales of assembly by systematically investigating the influence of density, counterion valency, and hydrophobicity.

  20. Bioactive self-assembled peptide nanofibers for corneal stroma regeneration.

    Science.gov (United States)

    Uzunalli, G; Soran, Z; Erkal, T S; Dagdas, Y S; Dinc, E; Hondur, A M; Bilgihan, K; Aydin, B; Guler, M O; Tekinay, A B

    2014-03-01

    Defects in the corneal stroma caused by trauma or diseases such as macular corneal dystrophy and keratoconus can be detrimental for vision. Development of therapeutic methods to enhance corneal regeneration is essential for treatment of these defects. This paper describes a bioactive peptide nanofiber scaffold system for corneal tissue regeneration. These nanofibers are formed by self-assembling peptide amphiphile molecules containing laminin and fibronectin inspired sequences. Human corneal keratocyte cells cultured on laminin-mimetic peptide nanofibers retained their characteristic morphology, and their proliferation was enhanced compared with cells cultured on fibronectin-mimetic nanofibers. When these nanofibers were used for damaged rabbit corneas, laminin-mimetic peptide nanofibers increased keratocyte migration and supported stroma regeneration. These results suggest that laminin-mimetic peptide nanofibers provide a promising injectable, synthetic scaffold system for cornea stroma regeneration. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Fluctuations and structure of amphiphilic films

    International Nuclear Information System (INIS)

    Gourier, CH.

    1996-01-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  2. Freezing-induced self-assembly of amphiphilic molecules

    Science.gov (United States)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  3. Lipopolysaccharide interactions of C-terminal peptides from human thrombin.

    Science.gov (United States)

    Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin

    2013-05-13

    Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.

  4. Amphiphilic Peptide Interactions with Complex Biological Membranes : Effect of peptide properties on antimicrobial and anti-inflammatory effects

    OpenAIRE

    Singh, Shalini

    2016-01-01

    With increasing problem of resistance development in bacteria against conventional antibiotics, as well as problems associated with diseases either triggered or enhanced by infection, there is an urgent need to identify new types of effective therapeutics for the treatment of infectious diseases and its consequences. Antimicrobial and anti-inflammatory peptides have attracted considerable interest as potential new antibiotics in this context. While antimicrobial function of such peptides is b...

  5. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  6. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  7. Hypothesis driven development of new adjuvants: short peptides as immunomodulators.

    Science.gov (United States)

    Dong, Jessica C; Kobinger, Gary P

    2013-04-01

    To date, vaccinations have been one of the key strategies in the prevention and protection against infectious pathogens. Traditional vaccines have well-known limitations such as safety and efficacy issues, which consequently deems it inappropriate for particular populations and may not be an effective strategy against all pathogens. This evidence highlights the need to develop more efficacious vaccination regiments. Higher levels of protection can be achieved by the addition of immunostimulating adjuvants. Many adjuvants elicit strong, undefined inflammation, which produces increased immunogenicity but may also lead to undesirable effects. Hypothesis driven development of adjuvants is needed to achieve a more specific and directed immune response required for optimal and safe vaccine-induced immune protection. An example of such hypothesis driven development includes the use of short immunomodulating peptides as adjuvants. These peptides have the ability to influence the immune response and can be extrapolated for adjuvant use, but requires further investigation.

  8. Supra-amphiphiles: a new bridge between colloidal science and supramolecular chemistry.

    Science.gov (United States)

    Kang, Yuetong; Liu, Kai; Zhang, Xi

    2014-06-03

    In addition to conventional amphiphiles, an emerging research area is supra-amphiphiles, which are constructed on the basis of noncovalent interactions and dynamic covalent bonds. In this feature article, we have provided a general introduction to the concept, design principles, and topologies of supra-amphiphiles, starting from some rationally tailored building blocks. In addition, we highlight some progress in the functional assembly of supra-amphiphiles, such as responsive nanoscale carriers, antibacterial and antitumor agents, fluorescent-based chemical sensors, and enzyme mimics. The supra-amphiphile is a new bridge between colloidal science and supramolecular chemistry, and it is a field where we can make full use of our imaginative power.

  9. Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers

    Science.gov (United States)

    Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.

    2014-01-01

    There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766

  10. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  11. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance.

    Science.gov (United States)

    Chou, Shuli; Shao, Changxuan; Wang, Jiajun; Shan, Anshan; Xu, Lin; Dong, Na; Li, Zhongyu

    2016-01-01

    The β-hairpin structure has been proposed to exhibit potent antimicrobial properties with low cytotoxicity, thus, multiple β-hairpin structures have been proved to be highly stable in structures containing tightly packed hydrophobic cores. The aim of this study was to develop peptide-based synthetic strategies for generating short, but effective AMPs as inexpensive antimicrobial agents. Multiple-stranded β-hairpin peptides with the same β-hairpin unit, (WRXxRW)n where n=1, 2, 3, or 4 and Xx represent the turn sequence, were synthesized, and their potential as antimicrobial agents was evaluated. Owning to the tightly packed hydrophobic core and paired Trp of this multiple-stranded β-hairpin structure, all the 12-residues peptides exhibited high cell selectivity towards bacterial cells over human red blood cells (hRBCs), and the peptide W2 exhibited stronger antimicrobial activities with the MIC values of 2-8μM against various tested bacteria. Not only that, but W2 also showed obvious synergy with streptomycin and chloramphenicol against Escherichia coli, and displayed synergy with ciprofloxacin against Staphylococcus aureus with the FICI values ⩽0.5. Fluorescence spectroscopy and electron microscopy analyses indicated that W2 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Collectively, based on the multiple β-hairpin peptides, the ability to develop libraries of short and effective peptides will be a powerful approach to the discovery of novel antimicrobial agents. We successfully screened a peptide W2 ((WRPGRW)2) from a series of multiple-stranded β-hairpin antimicrobial peptides based on the "S-shaped" motif that induced the formation of a globular structure, and Trp zipper was used to replace the disulfide bonds to reduce the cost of production. This novel structure applied to AMPs improved cell selectivity and salt stability. The findings of this study will promote the development of peptide

  12. Tailoring nanostructure and bioactivity of 3D printable hydrogels with self-assemble Peptides Amphiphile (PA) for promoting bile duct formation.

    Science.gov (United States)

    Yan, Ming; Lewis, Phillip L; Shah, Ramille N

    2018-05-31

    3D-printing has expanded our ability to produce reproducible and more complex scaffold architectures for tissue engineering applications. In order to enhance the biological response within these 3D printed scaffolds incorporating nanostructural features and/or specific biological signaling may be an effective means to optimize tissue regeneration. Peptides Amphiphiles (PAs) are a versatile supramolecular biomaterial with tailorable nanostructural and biochemical features. PAs are widely used in tissue engineering applications such as angiogenesis, neurogenesis, and bone regeneration. Thus, the addition of PAs is a potential solution that can greatly expand the utility of 3D bio-printing hydrogels in the field of regenerative medicine. In this paper, we firstly developed a 3D printable thiolated-gelatin bioink supplemented with PAs to tailor the bioactivity and nanostructure which allows for the incorporation of cells. The bioink can be printed at 4 °C and stabilized to last a long time (>1 month) in culture at 37 °C by via a dual secondary cross-linking strategy using calcium ions and homobifunctional maleiminde-poly (ethylene glycol). Rheological properties of inks were characterized and were suitable for printing multi-layered structures. We additionally demonstrated enhanced functionality of ink formulations by utilizing a laminin-mimetic IKVAV-based PA system within a 3D-printable ink containing cholangiocytes. Viability and functional staining showed that the IKVAV PA nanofibers stimulated cholangioctyes to form functional tubular structures, which was not observed in other ink formulations. . © 2018 IOP Publishing Ltd.

  13. Phosphorylation-induced conformational changes in short peptides probed by fluorescence resonance energy transfer in the 10A domain.

    Science.gov (United States)

    Sahoo, Harekrushna; Nau, Werner M

    2007-03-26

    Phosphorylation-induced conformational changes in short polypeptides were probed by a fluorescence resonance energy transfer (FRET) method by employing a short-distance FRET pair (R(0) approximately 10 A) based on tryptophan as natural donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as synthetic acceptor. Two substrates for kinases, LeuArgArgTrpSerLeuGly-Dbo (peptide I) and TrpLysArgThrLeuArgArg-Dbo (peptide II), were investigated, with serine and threonine, respectively, as phosphorylation sites. Steady-state and time-resolved fluorescence experiments in H(2)O revealed a decrease in FRET efficiency for peptide I and an increase for peptide II; this suggested that the effective distances between donor and acceptor increased and decreased, respectively. The same trends and similar absolute variations in effective donor-acceptor distances were observed in propylene glycol, a less polar and highly viscous solvent; this suggested that the variations are due to intrinsic structural preferences. Fitting of the time-resolved decay traces according to a distribution function model (Gaussian distribution) provided the mean donor-acceptor distances, which showed an increase upon phosphorylation for peptide I (from 9.7 to 10.5 A) and a decrease for peptide II (from 10.9 to 9.3 A) in H(2)O. The broadness (half-width) of the distributions, which provides a measure of the rigidity of the peptides, remained similar upon phosphorylation of peptide I (3.0 versus 3.1 A), but decreased for peptide II (from 3.1 to 0.73 A in H(2)O); this suggests a more compact, structured conformation upon phosphorylation of the latter peptide. The elongation of the peptide backbone (by ca. 0.7 A) for peptide I is attributed to an increase in steric demand upon phosphorylation, which favors an extended conformation. The contraction (by ca. 1.4 A) and structural rigidification of peptide II is attributed to attractive Coulombic interactions and hydrogen bonding between the

  14. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  15. Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention

    NARCIS (Netherlands)

    Zhu, X.; Guo, S.; Janczewski, D.; Parra-Velandia, F.J.; Teo, S.L-M.; Vancso, Gyula J.

    2014-01-01

    Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol

  16. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  17. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo ...

  18. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    International Nuclear Information System (INIS)

    Rodina, N P; Yudenko, A N; Terterov, I N; Eliseev, I E

    2013-01-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested

  19. Amphiphilic chitosan derivatives as carrier agents for rotenone

    Science.gov (United States)

    Kamari, Azlan; Aljafree, Nurul Farhana Ahmad

    2017-08-01

    In the present study, the feasibility of amphiphilic chitosan derivatives, namely oleoyl carboxymethyl chitosan (OCMCs), N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) and deoxycholic acid carboxymethyl chitosan (DACMCs) as carrier agents for rotenone in water-insoluble pesticide formulations was investigated. Fourier Transform Infrared (FTIR) Spectrometer, CHN-O Elemental Analyser (CHN-O) and Transmission Electron Microscope (TEM) were used to characterise amphiphilic chitosan derivatives. The critical micelle concentration (CMC) of amphiphilic chitosan derivatives was determined using a Fluorescence Spectrometer. A High Performance Liquid Chromatography (HPLC) was used to determine the ability of OCMCs, DCMCs and DACMCs to load and release rotenone in an in vitro system. Based on TEM analysis, results have shown that amphiphilic chitosan derivatives formed self-assembly and exhibited spherical shape. The CMC values determined for OCMCs, DCMCs and DACMCs were 0.093, 0.098 and 0.468 mg/mL, respectively. The encapsulation efficiency (EE) values for the materials were more than 97.0%, meanwhile the loading capacity (LC) values were greater than 0.90%. OCMCs, DCMCs and DACMCs micelles exhibited an excellent ability to control the release of rotenone, of which 90.0% of rotenone was released within 40 to 52 h. In conclusion, OCMCs, DCMCs and DACMCs possess several key features to act as effective carrier agents for rotenone. Overall, amphiphilic chitosan derivatives produced in this study were successfully increased the solubility of rotenone by 49.0 times higher than free rotenone.

  20. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.

    Science.gov (United States)

    An, Myunggi; Liu, Haipeng

    2017-07-01

    Amphiphilic vaccine based on lipid-polymer conjugates is a new type of vaccine capable of self-delivering to the immune system. When injected subcutaneously, amphiphilic vaccines efficiently target antigen presenting cells in the lymph nodes (LNs) via a unique albumin-mediated transport and uptake mechanism and induce potent humoral and cellular immune responses. However, whether this new type of vaccine can be administrated via a safe, convenient microneedle-based transdermal approach remains unstudied. For such skin barrier-disruption systems, a simple application of microneedle arrays (MNs) is desired to disrupt the stratum corneum, and for rapid and pain-free self-administration of vaccines into the skin, the anatomic place permeates with an intricate mesh of lymphatic vessels draining to LNs. Here the microneedle transdermal approach is combined with amphiphilic vaccines to create a simple delivery approach which efficiently traffic molecular vaccines into lymphatics and draining LNs. The rapid release of amphiphilic vaccines into epidermis upon application of dissolving MNs to the skin of mice generates potent cellular and humoral responses, comparable or superior to those elicited by traditional needle-based immunizations. The results suggest that the amphiphilic vaccines delivered by dissolving MNs can provide a simple and safer vaccination method with enhanced vaccine efficacy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Glucose-neopentyl glycol (GNG) amphiphiles for membrane protein study.

    Science.gov (United States)

    Chae, Pil Seok; Rana, Rohini R; Gotfryd, Kamil; Rasmussen, Søren G F; Kruse, Andrew C; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K; Gellman, Samuel H

    2013-03-21

    The development of a new class of surfactants for membrane protein manipulation, "GNG amphiphiles", is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. (Science, 2012, 337, 473).

  2. Folding very short peptides using molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Bosco K Ho

    2006-04-01

    Full Text Available Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-accessible electrostatic approximation to water implicit solvent. We found that 85 of the peptides have no preferred structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides, the structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained backbone description. In particular, all seven of the beta hairpins in the native structures contain a fragment in the turn that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the assembly of peptide fragments.

  3. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    Science.gov (United States)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly

  4. Folate-targeted amphiphilic cyclodextrin nanoparticles incorporating a fusogenic peptide deliver therapeutic siRNA and inhibit the invasive capacity of 3D prostate cancer tumours.

    Science.gov (United States)

    Evans, James C; Malhotra, Meenakshi; Sweeney, Katrina; Darcy, Raphael; Nelson, Colleen C; Hollier, Brett G; O'Driscoll, Caitriona M

    2017-10-30

    The main barrier to the development of an effective RNA interference (RNAi) therapy is the lack of a suitable delivery vector. Modified cyclodextrins have emerged in recent years for the delivery of siRNA. In the present study, a folate-targeted amphiphilic cyclodextrin was formulated using DSPE-PEG 5000 -folate to target prostate cancer cells. The fusogenic peptide GALA was included in the formulation to aid in the endosomal release of siRNA. Targeted nanoparticles were less than 200nm in size with a neutral surface charge. The complexes were able to bind siRNA and protect it from serum nucleases. Incubation with excess free folate resulted in a significant decrease in the uptake of targeted nanoparticles in LNCaP and PC3 cells, both of which have been reported to have differing pathways of folate uptake. There was a significant reduction in the therapeutic targets, ZEB1 and NRP1 at mRNA and protein level following treatment with targeted complexes. In preliminary functional assays using 3D spheroids, treatment of PC3 tumours with targeted complexes with ZEB1 and NRP1 siRNA resulted in more compact colonies relative to the untargeted controls and inhibited infiltration into the Matrigel™ layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  6. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    Science.gov (United States)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  7. Charge-Transfer Supra-Amphiphiles Built by Water-Soluble Tetrathiafulvalenes and Viologen-Containing Amphiphiles: Supramolecular Nanoassemblies with Modifiable Dimensions.

    Science.gov (United States)

    Lv, Zhong-Peng; Chen, Bin; Wang, Hai-Ying; Wu, Yue; Zuo, Jing-Lin

    2015-08-05

    In this study, multidimensional nanoassemblies with various morphologies such as nanosheets, nanorods, and nanofibers are developed via charge-transfer interaction and supra-amphiphile self-assembling in aqueous phase. The charge-transfer interactions between tetrathiafulvalene derivatives (TTFs) and methyl viologen derivatives (MVs) have been confirmed by the characteristic charger-transfer absorption. (1) H NMR and electrospray ionizsation mass spectrometry (ESI-MS) analyses also indicate supra-amphiphiles are formed by the combination of TTFs and MVs head group through charge-transfer interaction and Coulombic force. X-ray single crystal structural studies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) reveal that both linkage pattern of TTFs in hydrophilic part and alkane chain structure in hydrophobic part have significant influence on nanoassemblies morphology and microstructure. Moreover, gold nanoparticles (AuNPs) are introduced in the above supramolecular nanoassemblies to construct a supra-amphiphile-driven organic-AuNPs assembly system. AuNPs could be assembled into 1D-3D structures by adding different amount of MVs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate.

    Science.gov (United States)

    Wang, Julie T-W; Giuntini, Francesca; Eggleston, Ian M; Bown, Stephen G; MacRobert, Alexander J

    2012-01-30

    Photochemical internalisation (PCI) is a site-specific technique for improving cellular delivery of macromolecular drugs. In this study, a cell penetrating peptide, containing the core HIV-1 Tat 48-57 sequence, conjugated with a porphyrin photosensitiser has been shown to be effective for PCI. Herein we report an investigation of the photophysical and photobiological properties of a water soluble bioconjugate of the cationic Tat peptide with a hydrophobic tetraphenylporphyrin derivative. The cellular uptake and localisation of the amphiphilic bioconjugate was examined in the HN5 human head and neck squamous cell carcinoma cell line. Efficient cellular uptake and localisation in endo/lysosomal vesicles was found using fluorescence detection, and light-induced, rupture of the vesicles resulting in a more diffuse intracellular fluorescence distribution was observed. Conjugation of the Tat sequence with a hydrophobic porphyrin thus enables cellular delivery of an amphiphilic photosensitiser which can then localise in endo/lysosomal membranes, as required for effective PCI treatment. PCI efficacy was tested in combination with a protein toxin, saporin, and a significant reduction in cell viability was measured versus saporin or photosensitiser treatment alone. This study demonstrates that the cell penetrating peptide-photosensitiser bioconjugation strategy is a promising and versatile approach for enhancing the therapeutic potential of bioactive agents through photochemical internalisation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Temperature dependence of looping rates in a short peptide.

    Science.gov (United States)

    Roccatano, Danilo; Sahoo, Harekrushna; Zacharias, Martin; Nau, Werner M

    2007-03-15

    Knowledge of the influence of chain length and amino acid sequence on the structural and dynamic properties of small peptides in solution provides essential information on protein folding pathways. The combination of time-resolved optical spectroscopy and molecular dynamics (MD) simulation methods has become a powerful tool to investigate the kinetics of end-to-end collisions (looping rates) in short peptides, which are relevant in early protein folding events. We applied the combination of both techniques to study temperature-dependent (280-340 K) looping rates of the Dbo-AlaGlyGln-Trp-NH2 peptide, where Dbo represents a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine, which served as a fluorescent probe in the time-resolved spectroscopic experiments. The experimental looping rates increased from 4.8 x 10(7) s(-1) at 283 K to 2.0 x 10(8) s(-1) at 338 K in H2O. The corresponding Arrhenius plot provided as activation parameters Ea = 21.5 +/- 1.0 kJ mol(-1) and ln(A/s-1) = 26.8 +/- 0.2 in H2O. The results in D2O were consistent with a slight solvent viscosity effect, i.e., the looping rates were 10-20% slower. MD simulations were performed with the GROMOS96 force field in a water solvent model, which required first a parametrization of the synthetic amino acid Dbo. After corrections for solvent viscosity effects, the calculated looping rates varied from 1.5 x 10(8) s(-1) at 280 K to 8.2 x 10(8) s(-1) at 340 K in H2O, which was about four times larger than the experimental data. The calculated activation parameters were Ea = 24.7 +/- 1.5 kJ mol(-1) and ln(A/s(-1)) = 29.4 +/- 0.1 in H2O.

  10. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    Science.gov (United States)

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  11. Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity

    Science.gov (United States)

    Nanocrystalline cellulose is an amphiphilic, high surface area material that can be easily functionalized and is biocom-patible and eco-friendly. It has been used singularly and in combination with other nanomaterials to optimize biosensor design. The attachment of peptides and proteins to nanocryst...

  12. Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Dongmei Fan

    2011-06-01

    Full Text Available A novel bioactive sponge was created with a composite of type I collagen sponges or porous poly(e-caprolactone (PCL scaffolds, platelet-rich plasma (PRP, BMP2-loaded nanoporous silicon enclosure (NSE microparticles, mineralizing peptide amphiphiles (PA, and mesenchymal stem cells (MSC. Primary MSC from cortical bone (CB  tissue proved to form more and larger colony units, as well as produce more mineral matrix under osteogenic differentiation, than MSC from bone marrow (BM. Coating pre-treatments were optimized for maximum cell adhesion and mineralization, while a PRP-based gel carrier was created to efficiently deliver and retain MSC and  microparticles within a porous scaffold while simultaneously promoting cell recruitment, proliferation, and angiogenesis. Components and composite sponges were evaluated for osteogenic differentiation in vitro. Osteogenic sponges were loaded with MSC, PRP, PA, and NSE and implanted subcutaneously in rats to evaluate the formation of bone tissue and angiogenesis in vivo. It was found that the combination of a collagen sponge with CB MSC, PRP, PA, and the BMP2-releasing NSE formed the most bone and was most vascularized by four weeks compared to analogous composites featuring BM MSC or PCL or lacking PRP, PA, and NSE. This study indicates that CB MSC should be considered as an alternative to marrow as a source of stem cells, while the PRP-PA cell and microparticle delivery system may be utilized for diverse tissue engineering applications.

  13. Exploring single chain amphiphile self-assembly and their possible roles in light transduction

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Self-assembled structures of single-chain amphiphiles have been used as hosts for biochemical, and chemical reactions. Their use as models for protocells (i.e., precursors to the first biological cells) has been extensively researched by various groups because the availability of single chain......: the medium composition in terms of ionic strengths and the medium physical parameters, such as temperature, significantly influence the formation of structures, as well as their subsequent stability. In addition, membranes composed of a single amphiphile type seem to be implausible as no potential amphiphile...... source studied to date can supply one single type of amphiphile at concentrations conducive to self-assembly. Mixtures of single-chain amphiphiles were therefore proposed to better model primitive membranes and potentially enhance their structural integrity1-3. Recently, we have established that complex...

  14. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles

    Science.gov (United States)

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.

    2016-06-01

    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  15. Biocompatible Amphiphilic Hydrogel-Solid Dimer Particles as Colloidal Surfactants.

    Science.gov (United States)

    Chen, Dong; Amstad, Esther; Zhao, Chun-Xia; Cai, Liheng; Fan, Jing; Chen, Qiushui; Hai, Mingtan; Koehler, Stephan; Zhang, Huidan; Liang, Fuxin; Yang, Zhenzhong; Weitz, David A

    2017-12-26

    Emulsions of two immiscible liquids can slowly coalesce over time when stabilized by surfactant molecules. Pickering emulsions stabilized by colloidal particles can be much more stable. Here, we fabricate biocompatible amphiphilic dimer particles using a hydrogel, a strongly hydrophilic material, and achieve large contrast in the wetting properties of the two bulbs, resulting in enhanced stabilization of emulsions. We generate monodisperse single emulsions of alginate and shellac solution in oil using a flow-focusing microfluidics device. Shellac precipitates from water and forms a solid bulb at the periphery of the droplet when the emulsion is exposed to acid. Molecular interactions result in amphiphilic dimer particles that consist of two joined bulbs: one hydrogel bulb of alginate in water and the other hydrophobic bulb of shellac. Alginate in the hydrogel compartment can be cross-linked using calcium cations to obtain stable particles. Analogous to surfactant molecules at the interface, the resultant amphiphilic particles stand at the water/oil interface with the hydrogel bulb submerged in water and the hydrophobic bulb in oil and are thus able to stabilize both water-in-oil and oil-in-water emulsions, making these amphiphilic hydrogel-solid particles ideal colloidal surfactants for various applications.

  16. Detection of an amphiphilic biosample in a paper microchannel based on length.

    Science.gov (United States)

    Chen, Yu-Tzu; Yang, Jing-Tang

    2015-01-01

    We developed a simple method to achieve semiquantitative detection of an amphiphilic biosample through measuring the length of flow on a microfluidic analytical device (μPAD) based on paper. When an amphiphilic sample was dripped into a straight microchannel defined with a printed wax barrier (hydrophobic) on filter paper (hydrophilic), the length of flow was affected by the reciprocal effect between the sample, the filter-paper channel and the wax barrier. The flow length decreased with increasing concentration of an amphiphilic sample because of adsorption of the sample on the hydrophobic barrier. Measurement of the flow length enabled a determination of the concentration of the amphiphilic sample. The several tested samples included surfactants (Tween 20 and Triton X-100), oligonucleotides (DNA), bovine serum albumin (BSA), human albumin, nitrite, glucose and low-density lipoprotein (LDL). The results show that the measurement of the flow length determined directly the concentration of an amphiphilic sample, whereas a non-amphiphilic sample was not amenable to this method. The proposed method features the advantages of small cost, simplicity, convenience, directness, rapidity (<5 min) and requirement of only a small volume (5 μL) of sample, with prospective applications in developing areas and sites near patients for testing at a point of care (POCT).

  17. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Acute effects of the Glucagon-Like Peptide 2 analogue, teduglutide, on intestinal adaptation in newborn pigs with short bowel syndrome

    DEFF Research Database (Denmark)

    Thymann, Thomas; Stoll, Barbara; Mecklenburg, Lars

    2014-01-01

    Neonatal short bowel syndrome following massive gut resection associates with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult short bowel patients, but its effect in pediatric patients remains unknown. Our objective was to test...

  19. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle...... dynamics simulation of this self-assembly behaviour....

  20. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....

  1. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    Science.gov (United States)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  2. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin; Cho, Daehwan; Park, Jay Hoon; Frey, Margaret W.; Ober, Christopher K.; Joo, Yong Lak

    2012-01-01

    as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers

  3. Short-term administration of glucagon-like peptide-2. Effects on bone mineral density and markers of bone turnover in short-bowel patients with no colon

    DEFF Research Database (Denmark)

    Haderslev, K V; Jeppesen, P B; Hartmann, B

    2002-01-01

    Glucagon-like peptide 2 (GLP-2) is a newly discovered intestinotrophic hormone. We have recently reported that a 5-week GLP-2 treatment improved the intestinal absorptive capacity of short-bowel patients with no colon. Additionally, GLP-2 treatment was associated with changes in body composition ...

  4. Stimuli Responsive Amphiphilic Assemblies

    Science.gov (United States)

    2013-11-18

    Enzyme- Sensitive, Amphiphilic- Dendrimer -Based Nanoparticles through Photochemical Crosslinking, Chemistry - A European Journal, (10 2011): 0. doi...17, 2012 (Organizers: R. P. Singh) 8th International Dendrimer Symposium (IDS-8), Madrid, Spain, June 23-27, 2013 (Organizers: Dr. M’Angeles...investigate the pH-induced changes in surface properties. Nanocarriers that can be effectively transported across cellular membranes have potential in a

  5. Short-term effects of beta-amyloid25-35 peptide aggregates on transmitter release in neuromuscular synapses.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Tomàs, Josep

    2008-03-01

    The beta-amyloid (AB) peptide25-35 contains the functional domain of the AB precursor protein that is both required for neurotrophic effects in normal neural tissues and is involved in the neurotoxic effects in Alzheimer disease. We demonstrated the presence of the amyloid precursor protein/AB peptide in intramuscular axons, presynaptic motor nerve terminals, terminal and myelinating Schwann cells, and the postsynaptic and subsarcolemmal region in the Levator auris longus muscle of adult rats by immunocytochemistry. Using intracellular recording, we investigated possible short-term functional effects of the AB fragment (0.1-10 micromol/L) on acetylcholine release in adult and newborn motor end plates. We found no change in evoked, spontaneous transmitter release or resting membrane potential of the muscle cells. A previous block of the presynaptic muscarinic receptor subtypes and a previous block or stimulation of protein kinase C revealed no masked effect of the peptide on the regulation of transmitter release. The aggregated form of AB peptide25-35, however, interfered acutely with acetylcholine release (quantal content reduction) when synaptic activity was maintained by electric stimulation. The possible relevance of this inhibition of neurotransmission by AB peptide25-35 to the pathogenesis of Alzheimer remains to be determined.

  6. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  7. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2016-11-01

    Full Text Available Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials.

  8. Representing environment-induced helix-coil transitions in a coarse grained peptide model

    Science.gov (United States)

    Dalgicdir, Cahit; Globisch, Christoph; Sayar, Mehmet; Peter, Christine

    2016-10-01

    Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that

  9. Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum

    International Nuclear Information System (INIS)

    Matsubara, Eriko; Harada, Kouji; Inoue, Kayoko; Koizumi, Akio

    2006-01-01

    PFOS and PFOA are ubiquitous contaminants in the environment. We investigated the effects of fluorochemicals on calcium currents in Paramecium caudatum using its behavioral changes. Negatively charged amphiphiles prolonged backward swimming (BWS) of Paramecium. PFOS significantly prolonged BWS, while PFOA was less potent (EC 5 : 29.8 ± 4.1 and 424.1 ± 124.0 μM, respectively). The BWS prolongation was blocked by cadmium, indicating that the cellular calcium conductance had been modified. The positively charged amphiphile FOSAPrTMA shortened BWS (EC 5 : 19.1 ± 17.3). Nonionic amphiphiles did not affect BWS. The longer-chain perfluorinated carboxylates PFNA and PFDA were more potent than PFOA (EC 5 : 98.7 ± 20.1 and 60.4 ± 10.1 μM, respectively). However, 1,8-perfluorooctanedioic acid and 1,10-perfluorodecanedioic acid did not prolong BWS. The critical micelle concentration (CMC) and BWS prolongation for negatively charged amphiphiles showed a clear correlation (r 2 = 0.8008, p < 0.001). In summary, several perfluorochemicals and PFOS and PFOA had similar effects in Paramecium, while chain length, CMC, and electric charge were major determinants of BWS duration

  10. Biogelx: Cell Culture on Self-Assembling Peptide Gels.

    Science.gov (United States)

    Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V

    2018-01-01

    Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.

  11. Hemifluorinated maltose-neopentyl glycol (HF-MNG) amphiphiles for membrane protein stabilisation.

    Science.gov (United States)

    Cho, Kyung Ho; Byrne, Bernadette; Chae, Pil Seok

    2013-03-04

    SOAP OPERA: Fluorinated amphiphile F4-MNG confers greater stability on Rhodobacter capsulatus superassembly relative to conventional detergents and nonfluorinated MNGs. Such amphiphiles are attractive as tools for membrane science because of their ease of preparation and structure variation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Stable Vesicles Composed of Mono- or Dicarboxylic Fatty Acids and Trimethylammonium Amphiphiles

    DEFF Research Database (Denmark)

    Caschera, Filippo; Bernardino de la Serna, Jorge; Löffler, Philipp M. G.

    2011-01-01

    shown to be more stable than those formed by pure fatty acids. Those containing bola-amphiphile even showed encapsulation of a small hydrophilic solute (8-hydroxypyrene-1,3,6-trisulfonic-acid) suggesting a denser packing of the amphiphiles. Compression and kinetics analysis of monolayers composed...... of these amphiphiles mixtures at the air/water interface suggest that the stabilization of the structures can be attributed to two main interactions between headgroups, predominantly the formation of hydrogen bonds between protonated and deprotonated acids and then the additional electrostatic interactions between...

  13. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...... that the new amphiphile, "glyco-diosgenin" (GDN; see figure), confers enhanced stability to a variety of membrane proteins in solution relative to popular conventional detergents, such as dodecylmaltoside (DDM)....

  14. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alessandra Bianchin

    Full Text Available The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.

  15. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  16. Controllable Self-Assembly of Amphiphilic Zwitterionic PBI Towards Tunable Surface Wettability of the Nanostructures.

    Science.gov (United States)

    Ye, Yong; Lü, Baozhong; Cheng, Wenyu; Wu, Zhen; Wei, Jie; Yin, Meizhen

    2017-05-04

    Amphiphilic molecules have received wide attention as they possess both hydrophobic and hydrophilic properties, and can form diverse nanostructures in selective solvents. Herein, we report an asymmetric amphiphilic zwitterionic perylene bisimide (AZP) with an octyl chain and a zwitterionic group on the opposite imide positions of perylene tetracarboxylic dianhydride. The controllable nanostructures of AZP with tunable hydrophilic/hydrophobic surface have been investigated through solvent-dependent amphiphilic self-assembly as confirmed by SEM, TEM, and contact angle measurements. The planar perylene core of AZP contributes to strong π-π stacking, while the amphiphilic balance of asymmetric AZP adjusts the self-assembly property. Additionally, due to intermolecular π-π stacking and solvent-solute interactions, AZP could self-assemble into hydrophilic microtubes in a polar solvent (acetone) and hydrophobic nanofibers in an apolar solvent (hexane). This facile method provides a new pathway for controlling the surface properties based on an asymmetric amphiphilic zwitterionic perylene bisimide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength

    KAUST Repository

    Luo, Zhongli; Å kerman, Bjö rn; Zhang, Shuguang; Nordé n, Bengt

    2010-01-01

    -studies indicate that the NaCl has only a minor effect on the peptide secondary structure we propose that the main role of the added salt is to screen the electrostatic repulsion between the peptide building blocks. According to the AFM images ADG and AKG support a

  18. Effect of positively charged short peptides on stability of cubic phases of monoolein/dioleoylphosphatidic acid mixtures.

    Science.gov (United States)

    Masum, Shah Md; Li, Shu Jie; Awad, Tarek S; Yamazaki, Masahito

    2005-06-07

    To elucidate the stability and phase transition of cubic phases of biomembranes with infinite periodic minimal surface is indispensable from biological and physicochemical aspects. In this report, we investigated the effect of positively charged peptide-3K (LLKKK) and poly(L-lysine) on the phase stability of monoolein (MO) membranes containing negatively charged dioleoylphosphatidic acid (DOPA) (i.e., DOPA/MO membranes) using small-angle X-ray scattering. At first, the effect of peptide-3K on 10% DOPA/90% MO membrane in excess water, which is in the Q229 phase, was investigated. At 3.4 mM peptide-3K, a Q229 to Q230 phase transition occurred, and at >3.4 mM peptide-3K, the membrane was in the Q230 phase. Poly(L-lysine) (M(w) 1K-4K) also induced the Q230 phase, but peptide-2K (LLKK) could not induce it in the same membrane. We also investigated the effect of peptide-3K on the multilamellar vesicle (MLV) of 25% DOPA/75% MO membrane, which is in L(alpha) phase. In the absence of peptide, the spacing of MLV was very large (11.3 nm), but at > or = 8 mM peptide-3K, it greatly decreased to a constant value (5.2 nm), irrespective of the peptide concentration, indicating that peptide-3K and the membranes form an electrostatically stabilized aggregation with low water content. Poly(L-lysine) also decreased greatly the spacing of the 25% DOPA/75% MO MLV, indicating the formation of a similar aggregation. To compare the effects of peptide-3K and poly(L-lysine) with that of osmotic stress on stability of the cubic phase, we investigated the effect of poly(ethylene glycol) with molecular weight 7500 (PEG-6K) on the phase stability of 10% DOPA/90% MO membrane. With an increase in PEG-6K concentration, i.e., with an increase in osmotic stress, the most stable phase changed as follows; Q229 (Schwartz's P surface) --> Q224 (D) --> Q230 (G). On the basis of these results, we discuss the mechanism of the effects of the positively charged short peptides (peptide-3K) and poly

  19. Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters

    Directory of Open Access Journals (Sweden)

    Bruno R. S. Lemos

    2012-05-01

    Full Text Available In this work, new magnetic amphiphilic composites were prepared by chemical vapor deposition with ethanol on the surface of hydrophilic natural chrysotile matrix containing Fe catalyst. XRD, Raman, Mössbauer and SEM analyses suggest the formation of a complex nanostructured material composed of hydrophobic carbon nanotubes/nanofibers grown on the hydrophilic surface of the MgSi fiber mineral and the presence of Fe metallic nanoparticles coated by carbon. These nanostructured particles show amphiphilic properties and interact very well with both oil and aqueous phases. When added to emulsions the amphiphilic particles locate on the oil/water interface and, under a magnetic field, the oil droplets collapsed leading to the separation of the aqueous and oil phases. Preliminary work showed excellent results on the use of these particles to break wastewater emulsions in the biodiesel process.

  20. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.

    Science.gov (United States)

    Clemente, María J; Fitremann, Juliette; Mauzac, Monique; Serrano, José L; Oriol, Luis

    2011-12-20

    Low molecular mass amphiphilic glycolipids have been prepared by linking a maltose polar head and a hydrophobic linear chain either by amidation or copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. The liquid crystalline properties of these amphiphilic materials have been characterized. The influence of the chemical structure of these glycolipids on the gelation properties in water has also been studied. Glycolipids obtained by the click coupling of the two components give rise to stable hydrogels at room temperature. The fibrillar structure of supramolecular hydrogels obtained by the self-assembly of these gelators have been characterized by electron microscopy. Fibers showed some torsion, which could be related with a chiral supramolecular arrangement of amphiphiles, as confirmed by circular dichroism (CD). The sol-gel transition temperature was also determined by differential scanning calorimetry (DSC) and NMR. © 2011 American Chemical Society

  1. Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model.

    Directory of Open Access Journals (Sweden)

    Per Westermark

    Full Text Available BACKGROUND: Mouse AA-amyloidosis is a transmissible disease by a prion-like mechanism where amyloid fibrils act by seeding. Synthetic peptides with no amyloid relationship can assemble into amyloid-like fibrils and these may have seeding capacity for amyloid proteins. PRINCIPAL FINDINGS: Several synthetic peptides, designed for nanotechnology, have been examined for their ability to produce fibrils with Congo red affinity and concomitant green birefringence, affinity for thioflavin S and to accelerate AA-amyloidosis in mice. It is shown that some amphiphilic fibril-forming peptides not only produced Congo red birefringence and showed affinity for thioflavin S, but they also shortened the lag phase for systemic AA-amyloidosis in mice when they were given intravenously at the time of inflammatory induction with silver nitride. Peptides, not forming amyloid-like fibrils, did not have such properties. CONCLUSIONS: These observations should caution researchers and those who work with synthetic peptides and their derivatives to be aware of the potential health concerns.

  2. Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution

    International Nuclear Information System (INIS)

    Deng Li; Zhao Yurong; Zhou Peng; Xu Hai; Wang Yanting

    2016-01-01

    Besides our previous experimental discovery (Zhao Y R, et al . 2015 Langmuir , 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross- β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations. (paper)

  3. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    Science.gov (United States)

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  4. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    2018-02-01

    Full Text Available The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.

  5. Asymmetric and symmetric bolaform supra-amphiphiles: formation of imine bond influenced by aggregation.

    Science.gov (United States)

    Wang, Guangtong; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi

    2014-02-18

    A series of bolaform supra-amphilphiles with different symmetries were fabricated through dynamic benzoic imine bond formation. The pH dependence of imine formations of these supra-amphiphiles were characterazied. We found that the extent of the imine formation of these supra-amphiphies were different. The supra-amphiphiles with a poorer symmetry always exhibited a lower imine formation at a given pH. Therefore, the varied extent of imine bond formation indicate the different aggregations of these supra-amphilphiles, which are controlled by the molecular symmetry of the supra-amphiphiles.

  6. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Memariani, Hamed; Shahbazzadeh, Delavar; Sabatier, Jean-Marc; Memariani, Mojtaba; Karbalaeimahdi, Ali; Bagheri, Kamran Pooshang

    2016-01-01

    Antimicrobial peptides are attractive candidates for developing novel therapeutic agents, since they are lethal to a broad spectrum of pathogens and have a unique low tendency for resistance development. In this study, mechanism of action and in vitro anti-pseudomonal activity of previously designed short hybrid antimicrobial peptide PV3 were investigated. Compared to ceftazidime, PV3 had not only higher antibacterial activity but also faster bactericidal activity. PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. Although the antimicrobial activity of PV3 was reduced in Mueller-Hinton broth (MHB) containing human serum, it was still active enough to eradication of bacteria at low concentrations. Compared with standard condition (MHB only), there was no significant decrease in antibacterial activity of PV3 against P. aeruginosa strains under 150 mM NaCl (p = 0.615) and 1 mM MgCl 2 (p = 0.3466). Fluorescence microscopy and field emission scanning electron microscopy further indicated that PV3 killed bacteria by disrupting the cell membrane. Since PV3 has potent anti-pseudomonal activity and has little cytotoxicity in vitro, it seems plausible that the peptide should be further investigated with animal studies to support future pharmacological formulations and potential topical applications. - Highlights: • PV3 killed Pseudomonas aeruginosa by membrane-disrupting mechanism. • PV3 reduced biofilm biomass and viability of biofilm embedded bacteria in a concentration-dependent manner. • Short hybrid antimicrobial peptide PV3 exhibited higher and faster bactericidal activity comparing to ceftazidime.

  7. NMR investigations of the dual targeting peptide of Thr-tRNA synthetase and its interaction with the mitochondrial Tom20 receptor in Arabidopsis thaliana.

    Science.gov (United States)

    Ye, Weihua; Spånning, Erika; Unnerståle, Sofia; Gotthold, David; Glaser, Elzbieta; Mäler, Lena

    2012-10-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains

    International Nuclear Information System (INIS)

    Krishnan, S.; Ayothi, R.; Hexemer, A.; Finlay, J.; Sohn, K.; Perry, R.; Ober, C.; Kramer, E.; Callow, M.

    2006-01-01

    Surfaces of novel block copolymers with amphiphilic side chains were studied for their ability to influence the adhesion of marine organisms. The surface-active polymer, obtained by grafting fluorinated molecules with hydrophobic and hydrophilic blocks to a block copolymer precursor, showed interesting bioadhesion properties. Two different algal species, one of which adhered strongly to hydrophobic surfaces, and the other, to hydrophilic surfaces, showed notably weak adhesion to the amphiphilic surfaces. Both organisms are known to secrete adhesive macromolecules, with apparently different wetting characteristics, to attach to underwater surfaces. The ability of the amphiphilic surface to undergo an environment-dependent transformation in surface chemistry when in contact with the extracellular polymeric substances is a possible reason for its antifouling nature. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) was used, in a new approach based on angle-resolved X-ray photoelectron spectroscopy (XPS), to determine the variation in chemical composition within the top few nanometers of the surface and also to study the surface segregation of the amphiphilic block. A mathematical model to extract depth-profile information from the normalized NEXAFS partial electron yield is developed

  9. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyan; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China); Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, Shaanxi (China); Li, Hui; Zhu, Chenhui [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China); Hua, Xiufu, E-mail: hua_xiufu@163.com [Department of Scientific Research and Development, Tsinghua University, Beijing 100084 (China); Ma, Haixia, E-mail: mahx@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, Shaanxi (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi' an 710069, Shaanxi, PR China2 (China)

    2017-06-01

    This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp = 1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200 μm reached approximately 3.4 MPa and 5.4 MPa, respectively, and their porosity was 77.35 ± 3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications. - Highlights: • A simple and effective hydrothermal method was developed for preparing uniform HAp nanorods with amphiphilic surfaces. • The synthesized amphiphilic HAp nanorods could be dispersed in water, ethyl alcohol or cyclohexane. • The prepared HLC/HAp porous scaffolds had good mechanical properties, biocompatibility and osteoconductive etc.

  10. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods

    International Nuclear Information System (INIS)

    Zheng, Xiaoyan; Hui, Junfeng; Li, Hui; Zhu, Chenhui; Hua, Xiufu; Ma, Haixia; Fan, Daidi

    2017-01-01

    This paper describes a new synthetic strategy and biological application for novel amphiphilic hydroxyapatite (HAp) nanorods. The prepared HAp nanorods were able to be dispersed in water, ethyl alcohol and cyclohexane. The co-anchoring of the multidentate ligands of PEG 20000 and hydrophobic oleic acid (OA) on the rods' surfaces endowed them with excellent amphibious properties. Utilizing amphiphilic HAp nanorods with excellent biocompatibility as the inorganic phase, human-like collagen (HLC) as the organic phase and natural genipin as the cross-linker, optimal HLC/HAp porous scaffolds (HLC: HAp = 1:4, w/w) were fabricated. The compression stress and three-point bending strength of the scaffolds with pore diameters of 150 to 200 μm reached approximately 3.4 MPa and 5.4 MPa, respectively, and their porosity was 77.35 ± 3.75%. Cytological tests showed that HLC/HAp scaffolds could contribute to cell proliferation and differentiation. The results indicated that these novel amphiphilic HAp nanorods can be expected to become recognized as an excellent inorganic material for the porous scaffolds used in repairing bone and related applications. - Highlights: • A simple and effective hydrothermal method was developed for preparing uniform HAp nanorods with amphiphilic surfaces. • The synthesized amphiphilic HAp nanorods could be dispersed in water, ethyl alcohol or cyclohexane. • The prepared HLC/HAp porous scaffolds had good mechanical properties, biocompatibility and osteoconductive etc.

  11. Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides.

    Science.gov (United States)

    El Shafey, Nelly; Guesnon, Mickaël; Simon, Françoise; Deprez, Eric; Cosette, Jérémie; Stockholm, Daniel; Scherman, Daniel; Bigey, Pascal; Kichler, Antoine

    2016-02-15

    Myostatin, also known as growth differentiation factor 8, is a member of the transforming growth factor-beta superfamily that has been shown to play a key role in the regulation of the skeletal muscle mass. Indeed, while myostatin deletion or loss of function induces muscle hypertrophy, its overexpression or systemic administration causes muscle atrophy. Since myostatin blockade is effective in increasing skeletal muscle mass, myostatin inhibitors have been actively sought after. Decorin, a member of the small leucine-rich proteoglycan family is a metalloprotein that was previously shown to bind and inactivate myostatin in a zinc-dependent manner. Furthermore, the myostatin-binding site has been shown to be located in the decorin N-terminal domain. In the present study, we investigated the anti-myostatin activity of short and soluble fragments of decorin. Our results indicate that the murine decorin peptides DCN48-71 and 42-65 are sufficient for inactivating myostatin in vitro. Moreover, we show that the interaction of mDCN48-71 to myostatin is strictly zinc-dependent. Binding of myostatin to activin type II receptor results in the phosphorylation of Smad2/3. Addition of the decorin peptide 48-71 decreased in a dose-dependent manner the myostatin-induced phosphorylation of Smad2 demonstrating thereby that the peptide inhibits the activation of the Smad signaling pathway. Finally, we found that mDCN48-71 displays a specificity towards myostatin, since it does not inhibit other members of the transforming growth factor-beta family. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Synergistic gene and drug tumor therapy using a chimeric peptide.

    Science.gov (United States)

    Han, Kai; Chen, Si; Chen, Wei-Hai; Lei, Qi; Liu, Yun; Zhuo, Ren-Xi; Zhang, Xian-Zheng

    2013-06-01

    Co-delivery of gene and drug for synergistic therapy has provided a promising strategy to cure devastating diseases. Here, an amphiphilic chimeric peptide (Fmoc)2KH7-TAT with pH-responsibility for gene and drug delivery was designed and fabricated. As a drug carrier, the micelles self-assembled from the peptide exhibited a much faster doxorubicin (DOX) release rate at pH 5.0 than that at pH 7.4. As a non-viral gene vector, (Fmoc)(2)KH(7)-TAT peptide could satisfactorily mediate transfection of pGL-3 reporter plasmid with or without the existence of serum in both 293T and HeLa cell-lines. Besides, the endosome escape capability of peptide/DNA complexes was investigated by confocal laser scanning microscopy (CLSM). To evaluate the co-delivery efficiency and the synergistic anti-tumor effect of gene and drug, p53 plasmid and DOX were simultaneously loaded in the peptide micelles to form micelleplexes during the self-assembly of the peptide. Cellular uptake and intracellular delivery of gene and drug were studied by CLSM and flow cytometry respectively. And p53 protein expression was determined via Western blot analysis. The in vitro cytotoxicity and in vivo tumor inhibition effect were also studied. Results suggest that the co-delivery of gene and drug from peptide micelles resulted in effective cell growth inhibition in vitro and significant tumor growth restraining in vivo. The chimeric peptide-based gene and drug co-delivery system will find great potential for tumor therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.

    Science.gov (United States)

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-06-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as "chemical herder" is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air-sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice.

  14. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  15. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    Science.gov (United States)

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Self-assembly of a triangle-shaped, hexaplatinum-incorporated, supramolecular amphiphile in solution and at interfaces.

    Science.gov (United States)

    Maran, Umamageswaran; Britt, David; Fox, Christopher B; Harris, Joel M; Orendt, Anita M; Conley, Hiram; Davis, Robert; Hlady, Vladamir; Stang, Peter J

    2009-08-24

    The self-assembly and characterization of a novel supramolecular amphiphile built from a new 60 degree amphiphilic precursor that incorporates hydrophilic platinum(II) metals and hydrophobic dioctadecyloxy chains is reported. The amphiphilic macrocycle and its precursor compound have been characterized by multinuclear NMR spectroscopy, ESI-MS, and other standard techniques. The coacervate morphology of the amphiphile at the liquid-liquid interface has been studied by using confocal optical microscopy and in situ Raman spectroscopy. The self-assembly of the amphiphilic macrocycle at the air-water interface has been investigated through Langmuir-trough techniques. The study indicates the possible formation of surface micelle-like aggregates. The disparity between the experimental molecular areas and those derived from molecular models support the idea of aggregation. AFM images of the surface aggregates show the formation of a flat topology with arbitrary ridgelike patterns. Reasonable molecular-packing arrangements are proposed to explain the molecular organization within the observed structures.

  17. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R

    2010-01-01

    proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile...

  18. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  19. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianhua, E-mail: jhli_2005@163.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Zhang Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China) and Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192 (China)

    2012-06-15

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  20. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    International Nuclear Information System (INIS)

    Li Jianhua; Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng; Zhang Qiqing

    2012-01-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  1. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.

    2009-01-01

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  2. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-01-01

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers

  3. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.

    Science.gov (United States)

    Goyal, Bhupesh; Srivastava, Kinshuk Raj; Durani, Susheel

    2017-06-01

    Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine-based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N-terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine-based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac-Pro-Pro-Ala-Lys-Ala-Lys-Ala-Lys-Ala-NH 2 ) is designed to assess the effect of N-terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac-Pro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) and A3 (Ac-dPro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) with N-terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i, i + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1, A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature-dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β-strand conformation, which is consistent with the previous studies. The results illuminate the effect of N-terminal diproline and charged side chains in dictating the preferences for extended-β, semi-extended PPII and helical conformation in alanine-based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide

  4. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    Science.gov (United States)

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal

    2011-12-01

    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  6. Electrostatically Driven Assembly of Charged Amphiphiles Forming Crystallized Membranes, Vesicles and Nanofiber Arrays

    Science.gov (United States)

    Leung, Cheuk Yui Curtis

    Charged amphiphilic molecules can self-assemble into a large variety of objects including membranes, vesicles and fibers. These micro to nano-scale structures have been drawing increasing attention due to their broad applications, especially in biotechnology and biomedicine. In this dissertation, three self-assembled systems were investigated: +3/-1 self-assembled catanionic membranes, +2/-1 self-assembled catanionic membranes and +1 self-assembled nanofibers. Transmission electron microscopy (TEM) combined with synchrotron small and wide angle x-ray scattering (SAXS and WAXS) were used to characterize the coassembled structures from the mesoscopic to nanometer scale. We designed a system of +3 and -1 ionic amphiphiles that coassemble into crystalline ionic bilayer vesicles with large variety of geometries that resemble polyhedral cellular crystalline shells and archaea wall envelopes. The degree of ionization of the amphiphiles and their intermolecular electrostatic interactions can be controlled by varying pH. The molecular packing of these membranes showed a hexagonal to rectangular-C to hexagonal phase transition with increasing pH, resulting in significant changes to the membrane morphology. A similar mixture of +2 and -1 ionic amphiphiles was also investigated. In addition to varying pH, which controls the headgroup attractions, we also adjust the tail length of the amphiphiles to control the van der Waals interactions between the tails. A 2D phase diagram was developed to show how pH and tail length can be used to control the intermolecular packing within the membranes. Another system of self-assembled nanofiber network formed by positively charged amphiphiles was also studied. These highly charged fibers repel each other and are packed in hexagonal lattice with lattice constant at least eight times of the fiber diameter. The d-spacing and the crystal structure can be controlled by varying the solution concentration and temperature.

  7. (CryoTransmission Electron Microscopy of Phospholipid Model Membranes Interacting with Amphiphilic and Polyphilic Molecules

    Directory of Open Access Journals (Sweden)

    Annette Meister

    2017-10-01

    Full Text Available Lipid membranes can incorporate amphiphilic or polyphilic molecules leading to specific functionalities and to adaptable properties of the lipid bilayer host. The insertion of guest molecules into membranes frequently induces changes in the shape of the lipid matrix that can be visualized by transmission electron microscopy (TEM techniques. Here, we review the use of stained and vitrified specimens in (cryoTEM to characterize the morphology of amphiphilic and polyphilic molecules upon insertion into phospholipid model membranes. Special emphasis is placed on the impact of novel synthetic amphiphilic and polyphilic bolalipids and polymers on membrane integrity and shape stability.

  8. Fabrication of Propeller-Shaped Supra-amphiphile for Construction of Enzyme-Responsive Fluorescent Vesicles.

    Science.gov (United States)

    Li, Jie; Liu, Kaerdun; Han, Yuchun; Tang, Ben Zhong; Huang, Jianbin; Yan, Yun

    2016-10-04

    Propeller-shaped molecules have been recognized to display fantastic AIE (aggregation induced emission), but they can hardly self-assemble into nanostructures. Herein, we for the first time report that ionic complexation between a water-soluble tetrapheneyl derivative and an enzyme substrate in aqueous media produces a propeller-shaped supra-amphiphile that self-assembles into enzyme responsive fluorescent vesicles. The supra-amphiphile was fabricated upon complexation between a water-soluble propeller-shaped AIE luminogen TPE-BPA and myristoylcholine chloride (MChCl) in aqueous media. MChCl filled in the intramolecular voids of propeller-shaped TPE-BPA upon supra-amphiphile formation, which endows the supra-amphiphile superior self-assembling ability to the component molecules thus leading to the formation of fluorescent vesicles. Because MChCl is the substrate of cholinesterases, the vesicles dissemble in the presence of cholinesterases, and the fluorescent intensity can be correlated to the level of enzymes. The resulting fluorescent vesicles may be used to recognize the site of Alzheimer's disease, to encapsulate the enzyme inhibitor, and to release the inhibitor at the disease site.

  9. Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery.

    Science.gov (United States)

    Xiong, Xiao-Bing; Binkhathlan, Ziyad; Molavi, Ommoleila; Lavasanifar, Afsaneh

    2012-07-01

    Self-assembly of amphiphilic block co-polymers composed of poly(ethylene oxide) (PEO) as the hydrophilic block and poly(ether)s, poly(amino acid)s, poly(ester)s and polypropyleneoxide (PPO) as the hydrophobic block can lead to the formation of nanoscopic structures of different morphologies. These structures have been the subject of extensive research in the past decade as artificial mimics of lipoproteins and viral vectors for drug and gene delivery. The aim of this review is to provide an overview of the synthesis of commonly used amphiphilic block co-polymers. It will also briefly go over some pharmaceutical applications of amphiphilic block co-polymers as "nanodelivery systems" for small molecules and gene therapeutics. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Amphiphilic brushes from metallo-supramolecular block copolymers

    NARCIS (Netherlands)

    Guillet, P.; Fustin, C.A.; Wouters, D.; Höppener, S.; Schubert, U.S.; Gohy, J.M.W.

    2009-01-01

    A novel strategy to control the formation of amphiphilic brushes from metallo-supramol. block copolymers is described. The investigated copolymer consists of a polystyrene block linked to a poly(ethylene oxide) one via a charged bis-terpyridine ruthenium(ii) complex (PS-[Ru]-PEO). The initial

  11. Diagram of state of stiff amphiphilic macromolecules

    NARCIS (Netherlands)

    Markov, Vladimir A.; Vasilevskaya, Valentina V.; Khalatur, Pavel G.; ten Brinke, Gerrit; Khokhlov, Alexei R.

    2007-01-01

    We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of

  12. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control

    KAUST Repository

    Bucs, Szilard

    2017-05-30

    Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on biofilm formation and biofouling control. The coating was composed of both hydrophilic and hydrophobic monomers hydroxyethyl methacrylate (HEMA) and perfluorodecyl acrylate (PFA), respectively. Commercial RO membranes were coated with HEMA-PFA copolymer film. Long and short term biofouling studies with coated and uncoated membranes and feed spacer were performed using membrane fouling simulators (MFSs) operated in parallel, fed with water containing nutrients. For the long-term studies pressure drop development in time was monitored and after eight days the MFSs were opened and the accumulated biofilm on the membrane and spacer sheets was quantified and characterized. The presence of the membrane coating was determined using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the amphiphilic coating (i) delayed biofouling (a lower pressure drop increase by a factor of 3 and a lower accumulated active biomass amount by a factor of 6), (ii) influenced the biofilm composition (23% lower polysaccharides and 132% higher protein content) and (iii) was still completely present on the membrane at the end of the biofouling study, showing that the coating was strongly attached to the membrane surface. Using coated membranes and feed spacers in combination with advanced cleaning strategies may be a suitable way to control biofouling.

  13. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control

    KAUST Repository

    Bucs, Szilard; Valladares Linares, Rodrigo; Siddiqui, Amber; Matin, Asif; Khan, Zafarullah; van Loosdrecht, Mark C.M.; Yang, Rong; Wang, Minghui; Gleason, Karen K.; Kruithof, Joop C.; Vrouwenvelder, Johannes S.

    2017-01-01

    Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on biofilm formation and biofouling control. The coating was composed of both hydrophilic and hydrophobic monomers hydroxyethyl methacrylate (HEMA) and perfluorodecyl acrylate (PFA), respectively. Commercial RO membranes were coated with HEMA-PFA copolymer film. Long and short term biofouling studies with coated and uncoated membranes and feed spacer were performed using membrane fouling simulators (MFSs) operated in parallel, fed with water containing nutrients. For the long-term studies pressure drop development in time was monitored and after eight days the MFSs were opened and the accumulated biofilm on the membrane and spacer sheets was quantified and characterized. The presence of the membrane coating was determined using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Results showed that the amphiphilic coating (i) delayed biofouling (a lower pressure drop increase by a factor of 3 and a lower accumulated active biomass amount by a factor of 6), (ii) influenced the biofilm composition (23% lower polysaccharides and 132% higher protein content) and (iii) was still completely present on the membrane at the end of the biofouling study, showing that the coating was strongly attached to the membrane surface. Using coated membranes and feed spacers in combination with advanced cleaning strategies may be a suitable way to control biofouling.

  14. Towards the Development of Synthetic Antibiotics: Designs Inspired by Natural Antimicrobial Peptides.

    Science.gov (United States)

    Azmi, Fazren; Skwarczynski, Mariusz; Toth, Istvan

    2016-01-01

    Virtually every living organism produces gene-encoded antimicrobial peptides (AMPs) that provide an immediate defence against pathogen invasion. Many AMPs have been isolated and used as antibiotics that are effective against multidrug-resistant bacteria. Although encouraging, AMPs have such poor drug-like properties that their application for clinical use is restricted. In turn, this has diverted research to the development of synthetic molecules that retain the therapeutic efficacy of AMPs but are endowed with greater biological stability and safety profiles. Most of the synthetic molecules, either based on a peptidic or non-peptidic scaffold, have been designed to mimic the amphiphilic properties of native AMPs, which are widely believed to be the key determinant of their antibacterial activity. In this review, the structural, chemical and biophysical features that govern the biological activities of various synthetic designs are discussed extensively. Recent innovative approaches from the literature that exhibit novel concepts towards the development of new synthetic antibacterial agents, including the engineered delivery platform incorporated with AMP mimetics, are also emphasised.

  15. Systematic discovery of new recognition peptides mediating protein interaction networks

    DEFF Research Database (Denmark)

    Neduva, Victor; Linding, Rune; Su-Angrand, Isabelle

    2005-01-01

    Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains...... by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains are known, though comparatively few linear motifs have been discovered. Their short length...

  16. Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.

    Science.gov (United States)

    Owczarz, Marta; Casalini, Tommaso; Motta, Anna C; Morbidelli, Massimo; Arosio, Paolo

    2015-12-14

    In this work we quantified the role of electrostatic interactions in the self-assembly of a model amphiphilic peptide (RADA 16-I) into fibrillar structures by a combination of size exclusion chromatography and molecular simulations. For the peptide under investigation, it is found that a net charge of +0.75 represents the ideal condition to promote the formation of regular amyloid fibrils. Lower net charges favor the formation of amorphous precipitates, while larger net charges destabilize the fibrillar aggregates and promote a reversible dissociation of monomers from the ends of the fibrils. By quantifying the dependence of the equilibrium constant of this reversible reaction on the pH value and the peptide net charge, we show that electrostatic interactions contribute largely to the free energy of fibril formation. The addition of both salt and a charged destabilizer (guanidinium hydrochloride) at moderate concentration (0.3-1 M) shifts the monomer-fibril equilibrium toward the fibrillar state. Whereas the first effect can be explained by charge screening of electrostatic repulsion only, the promotion of fibril formation in the presence of guanidinium hydrochloride is also attributed to modifications of the peptide conformation. The results of this work indicate that the global peptide net charge is a key property that correlates well with the fibril stability, although the peptide conformation and the surface charge distribution also contribute to the aggregation propensity.

  17. Lysine as helix C-capping residue in a synthetic peptide.

    Science.gov (United States)

    Esposito, G; Dhanapal, B; Dumy, P; Varma, V; Mutter, M; Bodenhausen, G

    1997-01-01

    The structure of the synthetic peptide CH3CO(Leu-Ser-Leu-Leu-Leu-Ser-Leu)3Lys-NH2 in trifluoroethanol/water 60/40 (volume ratio) was characterized by two-dimensional nmr spectroscopy. The peptide, closely related to the amphiphilic helix models designed by W. F. De-Grado and co-workers to mimic protein ion channels [(1988) Science, Vol. 240, p. 1177-1181], folds into a regular helix spanning residues 1-20. Evidence for a helix C-terminal capping conformation, involving the terminal lysine residue, was observed from Overhauser effects and checked for consistency by restrained molecular dynamics simulations. The side-chain amino group of Lys22 forms a hydrogen bond with the carbonyl of Leu18, and the distorted helical geometry of the terminal dipeptide allows the inclusion of a water bridge between the backbone NH of the Lys22 residue and the carbonyls of Leu19 and Ser20.

  18. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Abstract. A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  19. Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes.

    Directory of Open Access Journals (Sweden)

    Juan Mucci

    2017-10-01

    Full Text Available Chagas Disease, caused by the protozoan Trypanosoma cruzi, is a major health and economic problem in Latin America for which no vaccine or appropriate drugs for large-scale public health interventions are yet available. Accurate diagnosis is essential for the early identification and follow up of vector-borne cases and to prevent transmission of the disease by way of blood transfusions and organ transplantation. Diagnosis is routinely performed using serological methods, some of which require the production of parasite lysates, parasite antigenic fractions or purified recombinant antigens. Although available serological tests give satisfactory results, the production of reliable reagents remains laborious and expensive. Short peptides spanning linear B-cell epitopes have proven ideal serodiagnostic reagents in a wide range of diseases. Recently, we have conducted a large-scale screening of T. cruzi linear B-cell epitopes using high-density peptide chips, leading to the identification of several hundred novel sequence signatures associated to chronic Chagas Disease. Here, we performed a serological assessment of 27 selected epitopes and of their use in a novel multipeptide-based diagnostic method. A combination of 7 of these peptides were finally evaluated in ELISA format against a panel of 199 sera samples (Chagas-positive and negative, including sera from Leishmaniasis-positive subjects. The multipeptide formulation displayed a high diagnostic performance, with a sensitivity of 96.3% and a specificity of 99.15%. Therefore, the use of synthetic peptides as diagnostic tools are an attractive alternative in Chagas' disease diagnosis.

  20. Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1

    Science.gov (United States)

    Li, Zhen-Lu

    2018-03-01

    The N-terminal amphiphilic helices of proteins Epsin, Sar1p, and Arf1 play a critical role in initiating membrane deformation. The interactions of these amphiphilic helices with the lipid membranes are investigated in this study by combining the all-atom and coarse-grained simulations. In the all-atom simulations, the amphiphilic helices of Epsin and Sar1p are found to have a shallower insertion depth into the membrane than the amphiphilic helix of Arf1, but remarkably, the amphiphilic helices of Epsin and Sar1p induce higher asymmetry in the lipid packing between the two monolayers of the membrane. The insertion depth of amphiphilic helix into the membrane is determined not only by the overall hydrophobicity but also by the specific distributions of polar and non-polar residues along the helix. To directly compare their ability to deform the membrane, the coarse-grained simulations are performed to investigate the membrane deformation under the insertion of multiple helices. Project supported by the National Natural Science Foundation of China (Grant Nos. 91427302 and 11474155).

  1. A Solid-State Deuterium NMR and SFG Study of the Side Chain Dynamics of Peptides Adsorbed onto Surfaces

    Science.gov (United States)

    Breen, Nicholas F.; Weidner, Tobias; Li, Kun; Castner, David G.; Drobny, Gary P.

    2011-01-01

    The artificial amphiphilic peptide LKα14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d7) permits the use of solid-state deuterium NMR as a site-specific probe of side chain dynamics. In conjunction with SFG as a probe of the peptide binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity. PMID:19764755

  2. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    Science.gov (United States)

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  3. Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.

    Science.gov (United States)

    Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald

    2008-01-28

    A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed

  4. Evolving the use of peptides as biomaterials components

    Science.gov (United States)

    Collier, Joel H.; Segura, Tatiana

    2012-01-01

    This manuscript is part of a debate on the statement that “the use of short synthetic adhesion peptides, like RGD, is the best approach in the design of biomaterials that guide cell behavior for regenerative medicine and tissue engineering”. We take the position that although there are some acknowledged disadvantages of using short peptide ligands within biomaterials, it is not necessary to discard the notion of using peptides within biomaterials entirely, but rather to reinvent and evolve their use. Peptides possess advantageous chemical definition, access to non-native chemistries, amenability to de novo design, and applicability within parallel approaches. Biomaterials development programs that require such aspects may benefit from a peptide-based strategy. PMID:21515167

  5. Morphological changes of monolayers of two polymerizable pyridine amphiphiles upon complexation with Cu(II) ions at the air-water interface

    NARCIS (Netherlands)

    Werkman, P.J.; Schouten, A.J.; Noordegraaf, M.A.; Kimkes, P.; Sudhölter, E.J.R.

    1998-01-01

    The monolayer behavior of two amphiphilic, diacetylenic units containing pyridine Ligands at the air-water interface is studied by measuring the surface pressure-area isotherms and by Brewster angle microscopy(BAM). Both amphiphiles form stable monolayers at the air-water interface. The amphiphile

  6. Effect of ionizing radiation exposure in the morphology of modified HDPE with amphiphilic particles

    International Nuclear Information System (INIS)

    Saldanha, Ana Luiza M.; Vivas, Viviane; Zylberberg, Marcel P.; Silva, Tamara I.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Patricio, Patricia S.O.

    2015-01-01

    One of the techniques used to improve the properties of high performance polymers is the addition of hybrid particles in the polymer. In this context, amphiphilic particles were synthesized in order to provide surface characteristics that enhance the interaction of the interface with the polymeric matrix of high density polyethylene (HDPE). The amphiphilic particles were added to matrix of HDPE and the modified polymer composites were exposed to ionizing radiation (x-rays) for different times. The changes caused by exposure to ionizing radiation in the composite morphology was observed through the small angle x-ray technique. The results suggest that the addition of amphiphilic particles increased the stability of the composite to degradation by radiation. (author)

  7. Short-term glucagon stimulation test of C-peptide effect on glucose utilization in patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Mojto, Viliam; Rausova, Zuzana; Chrenova, Jana; Dedik, Ladislav

    2015-12-01

    This work aimed to evaluate the use of a four-point glucagon stimulation test of C-peptide effect on glucose utilization in type 1 diabetic patients using a new mathematical model. A group of 32 type 1 diabetic patients and a group of 10 healthy control subjects underwent a four-point glucagon stimulation test with blood sampling at 0, 6, 15 and 30 min after 1 mg glucagon bolus intravenous administration. Pharmacokinetic and pharmacokinetic/pharmacodynamic models of C-peptide effect on glucose utilization versus area under curve (AUC) were used. A two-sample t test and ANOVA with Bonferroni correction were used to test the significance of differences between parameters. A significant difference between control and patient groups regarding the coefficient of whole-body glucose utilization and AUC C-peptide/AUC glucose ratio (p ≪ 0.001 and p = 0.002, respectively) was observed. The high correlation (r = 0.97) between modeled coefficient of whole-body glucose utilization and numerically calculated AUC C-peptide/AUC glucose ratio related to entire cohort indicated the stability of used method. The short-term four-point glucagon stimulation test allows the numerically calculated AUC C-peptide/AUC glucose ratio and/or the coefficient of whole-body glucose utilization calculated from model to be used to diagnostically identify type 1 diabetic patients.

  8. Self-Assembly of Amphiphilic Block Copolypeptoids with C 2 -C 5 Side Chains in Aqueous Solution

    KAUST Repository

    Fetsch, Corinna; Flecks, Silvana; Gieseler, Dan; Marschelke, Claudia; Ulbricht, Juliane; van Pé e, Karl-Heinz; Luxenhofer, Robert

    2014-01-01

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nowadays, amphiphilic molecules play an important role in our life. In medical applications, amphiphilic block copolymers have attracted much attention as excipients in drug delivery systems. Here

  9. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    Science.gov (United States)

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-02

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.

  10. Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery

    Science.gov (United States)

    2015-01-01

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20–65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent. PMID:25437915

  11. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    International Nuclear Information System (INIS)

    Pan, Haitao; Hao, Shaofei; Zheng, Qixin; Li, Jingfeng; Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong; Yang, Qin

    2013-01-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability

  12. Bone induction by biomimetic PLGA copolymer loaded with a novel synthetic RADA16-P24 peptide in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Haitao; Hao, Shaofei [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qixin, E-mail: zheng-qx@163.com [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Jingfeng [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zheng, Jin; Hu, Zhilei; Yang, Shuhua; Guo, Xiaodong [Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Yang, Qin [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-08-01

    Bone morphogenetic protein-2 (BMP-2) is a key bone morphogenetic protein, and poly(lactic-co-glycolic acid) (PLGA) has been widely used as scaffold for clinical use to carry treatment protein. In the previous studies, we have synthesized BMP-2-related peptide (P24) and found its capacity of inducing bone regeneration. In this research, we have synthesized a new amphiphilic peptide Ac-RADA RADA RADA RADA S[PO4]KIPKASSVPTELSAISTLYLDDD-CONH2 (RADA16-P24) with an assembly peptide RADA16-Ion the P24 item of BMP2 to form divalent ion-induced gelatin. Two methods of physisorption and chemical cross-linking were used to bind RADA16-P24 onto the surface of the copolymer PLGA to synthesize RADA16-P24–PLGA, and its capacity of attaching bone marrow stromal cells (BMSCs) was evaluated in vitro and inducing ectopic bone formation was examined in vivo. In vitro our results demonstrated that RADA16-P24–PLGA copolymer prepared by physisorbing or prepared by chemical cross-linking had a peptide binding rate of (2.0180 ± 0.5296)% or (10.0820 ± 0.8405)% respectively (P < 0.05). In addition the BMSCs proliferated vigorously in the RADA16-P24–PLGA biomaterials. Significantly the percentage of BMSCs attached to RADA16-P24–PLGA composite prepared by chemical cross-linking and physisorbing were (71.4 ± 7.5) % or (46.7 ± 5.8) % (P < 0.05). The in vivo study showed that RADA16-P24–PLGA chemical cross-linking could better induce ectopic bone formation compared with RADA16-P24–PLGA physisorbing and PLGA. It is concluded that the PLGA copolymer is a good RADA16-P24 carrier. This novel RADA16-P24–PLGA composite has strong osteogenic capability. - Highlights: • We have synthesized a new RADA16-P24 amphiphilic peptide. • It is an assembly peptide RADA16-Ion the P24 to form divalent ion-induced gelatin. • RADA16-P24/PLGA could better induce etopia osteogenesis compared with PLGA. • RADA16-P24–PLGA has strong osteogenic capability.

  13. Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Zhu, Kaizheng; Nyström, Bo

    2013-01-01

    block), a class of ionic supramolecules are successfully synthesized whose molecular architecture consists of a poly(styrene) PS block (Linear block) covalently connected to a strongly amphiphilic comb-like block (AmphComb block), i.e. Linear-b-AmphComb. In the melt state, these ionic supramolecules can.......20 (SLL/C and SBCC/C) and ∼0.28 (C/L). Finally, the specific influences of the strongly amphiphilic nature of the AmphComb blocks on the observed morphological and hierarchical behaviours of our system are discussed. For reference, stoichiometric strongly amphiphilic comb-like (AmphComb) ionic...

  14. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Wintec

    *For correspondence. Also at the Chemical Biology Unit,. Jawaharlal Nehru Centre for Advanced Scientific Research,. Bangalore 560 064. Facially amphiphilic thiol capped gold and silver nanoparticles. †. SHREEDHAR BHAT a and UDAY MAITRA*. Department of Organic Chemistry, Indian Institute of Science, Bangalore ...

  15. Nucleic acid amphiphiles : synthesis and self-assembled nanostructures

    NARCIS (Netherlands)

    Kwak, Minseok; Herrmann, Andreas; Clever, Guido; Mao, Chengde; Shionoya, Mitsuhiko; Stulz, Eugen

    2011-01-01

    This review provides an overview of a relatively new class of bio-conjugates, DNA amphiphiles, which consist of oligonucleotides covalently bonded to synthetic hydrophobic units. The reader will find the basic principles for the structural design and preparation methods of the materials. Moreover,

  16. Ammonium amphiphiles carrying mesogenic units : synthesis, properties, applications

    NARCIS (Netherlands)

    Everaars, M.D.

    1997-01-01

    When the structural characteristics of amphiphiles and thermotropic liquid crystals are combined in one molecule i.e. a polar headgroup with apolar tails and mesogenic units, compounds are obtained which can exhibit both thermotropic and lyotropic mesomorphism. This class of compounds is

  17. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    Science.gov (United States)

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-02-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.

  18. The search for new amphiphiles: synthesis of a modular, high-throughput library

    Directory of Open Access Journals (Sweden)

    George C. Feast

    2014-07-01

    Full Text Available Amphiphilic compounds are used in a variety of applications due to their lyotropic liquid-crystalline phase formation, however only a limited number of compounds, in a potentially limitless field, are currently in use. A library of organic amphiphilic compounds was synthesised consisting of glucose, galactose, lactose, xylose and mannose head groups and double and triple-chain hydrophobic tails. A modular, high-throughput approach was developed, whereby head and tail components were conjugated using the copper-catalysed azide–alkyne cycloaddition (CuAAC reaction. The tails were synthesised from two core alkyne-tethered intermediates, which were subsequently functionalised with hydrocarbon chains varying in length and degree of unsaturation and branching, while the five sugar head groups were selected with ranging substitution patterns and anomeric linkages. A library of 80 amphiphiles was subsequently produced, using a 24-vial array, with the majority formed in very good to excellent yields. A preliminary assessment of the liquid-crystalline phase behaviour is also presented.

  19. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  20. Biomimetic surface coatings from modular amphiphilic proteins

    Science.gov (United States)

    Harden, James; Wan, Fan; Fischer, Stephen; Dick, Scott

    2010-03-01

    Recombinant DNA methods have been used to develop a library of diblock protein polymers for creating designer biofunctional interfaces. These proteins are composed of a surface-active, amphiphilic block joined to a disordered, water soluble block with an end terminal bioactive domain. The amphiphilic block has a strong affinity for many synthetic polymer surfaces, providing a facile means of imparting biological functionality to otherwise bio-neutral materials through physical self-assembly. We have incorporated a series of bioactive end domains into this diblock motif, including sequences that encode specific cell binding and signaling functions of extracellular matrix constituents (e.g. RGD and YIGSR). In this talk, we show that these diblock constructs self-assemble into biofunctional surface coatings on several model synthetic polymer materials. We demonstrate that surface adsorption of the proteins has minimal impacts on the presentation of the bioactive domains in the soluble block, and through the use of microscopic and cell proliferation assays, we show that the resulting biofunctional interfaces are capable of inducing appropriate cellular responses in a variety of human cell types.

  1. Relation between structure and organisation properties of new amphiphilic cyclodextrins

    International Nuclear Information System (INIS)

    Moutard, Stephane

    2003-01-01

    Since a number of years, special attention and efforts have been made to prepare amphiphilic cyclodextrins (CDs) with the objective to use them to obtain supramolecular assemblies as such or in the presence of preformed lipidic structures. The aim of these investigation is in both cases to combine the size specificity of cyclodextrins for guests and the transport properties of phospho-lipidic structures. The final objects could be of importance to transport or target biologically relevant molecules such as drugs using new galenic formulations. In a first step, a new family of amphiphilic CDs was prepared from a pure phospholipids (DMPE) onto cyclodextrins or methylated derivatives through a spacing arm. The afforded compounds (phospholipidyl-cyclodextrins) were fully characterized by high field NMR and high resolution mass spectrometry. The methylated derivatives were shown to self-organize in water with low CMC to form fluctuating micellar fibers retaining the inclusion capacity of the cyclodextrin cavities. The interactions of these compounds with membrane systems were investigated as black films using X-ray reflectivity and by evaluation of their detergent power towards model DMPC liposomes. Their ability to cross over the Blood Brain Barrier was evidenced by a new approach making use of novel immuno-enzymatic assays. In a second step, a new class of amphiphilic cyclodextrins was considered (peptidolipidyl-cyclodextrins). Although they are structurally similar to phospholipidyl-CDs, their preparation overcomes the tedious steps of the later and lead to a considerable versatility in terms of the number of possible molecules to be prepared. Moreover, the stability problems encountered with phospholipids are avoided. Several examples have been prepared, fully characterized and their organization properties investigated by the determination of CMC and by deuterium NMR on a pure and homogeneous mixed peptidolipidyl-CD / DMPC lamellar phase. This novel class of

  2. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  3. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    Science.gov (United States)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  4. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    Science.gov (United States)

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  5. Isolation of biologically active peptides from the venom of Japanese carpenter bee, Xylocopa appendiculata.

    Science.gov (United States)

    Kawakami, Hiroko; Goto, Shin G; Murata, Kazuya; Matsuda, Hideaki; Shigeri, Yasushi; Imura, Tomohiro; Inagaki, Hidetoshi; Shinada, Tetsuro

    2017-01-01

    Mass spectrometry-guided venom peptide profiling is a powerful tool to explore novel substances from venomous animals in a highly sensitive manner. In this study, this peptide profiling approach is successfully applied to explore the venom peptides of a Japanese solitary carpenter bee, Xylocopa appendiculata (Hymenoptera: Apoidea: Apidae: Anthophila: Xylocopinae: Xylocopini). Although interesting biological effects of the crude venom of carpenter bees have been reported, the structure and biological function of the venom peptides have not been elucidated yet. The venom peptide profiling of the crude venom of X. appendiculata was performed by matrix-assisted laser desorption/ionization-time of flight mass spectroscopy. The venom was purified by a reverse-phase HPLC. The purified peptides were subjected to the Edman degradation, MS/MS analysis, and/or molecular cloning methods for peptide sequencing. Biological and functional characterization was performed by circular dichroism analysis, liposome leakage assay, and antimicrobial, histamine releasing and hemolytic activity tests. Three novel peptides with m / z 16508, 1939.3, and 1900.3 were isolated from the venom of X. appendiculata . The peptide with m / z 16508 was characterized as a secretory phospholipase A 2 (PLA 2 ) homolog in which the characteristic cysteine residues as well as the active site residues found in bee PLA 2 s are highly conserved. Two novel peptides with m/z 1939.3 and m/z 1900.3 were named as Xac-1 and Xac-2, respectively. These peptides are found to be amphiphilic and displayed antimicrobial and hemolytic activities. The potency was almost the same as that of mastoparan isolated from the wasp venom. We found three novel biologically active peptides in the venom of X. appendiculata and analyzed their molecular functions, and compared their sequential homology to discuss their molecular diversity. Highly sensitive mass analysis plays an important role in this study.

  6. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    徐又一

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4- hydroxyphenyl) maleimide)(SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate(PEGMA) side groups was achieved by atom transfer radical polymerization(ATRP).The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared(FTIR) spectroscopy and gel permeation chromatography(GPC).From thermogravimetric analysis (TGA),the decomposition temperature of SHMI-g-PEGMA is low...

  7. Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria.

    Science.gov (United States)

    Alam, Shadab; Panda, Jiban Jyoti; Mukherjee, Tapan Kumar; Chauhan, Virander Singh

    2016-04-05

    Curcumin (Ccm) has shown immense potential as an antimalarial agent; however its low solubility and less bioavailability attenuate the in vivo efficacy of this potent compound. In order to increase Ccm's bioavailability, a number of organic/inorganic polymer based nanoparticles have been investigated. However, most of the present day nano based delivery systems pose a conundrum with respect to their complex synthesis procedures, poor in vivo stability and toxicity issues. Peptides due to their high biocompatibility could act as excellent materials for the synthesis of nanoparticulate drug delivery systems. Here, we have investigated dehydrophenylalanine (ΔPhe) di-peptide based self-assembled nanoparticles for the efficient delivery of Ccm as an antimalarial agent. The self-assembly and curcumin loading capacity of different ΔPhe dipeptides, phenylalanine-α,β-dehydrophenylalanine (FΔF), arginine-α,β-dehydrophenylalanine (RΔF), valine-α,β-dehydrophenylalanine (VΔF) and methonine-α,β-dehydrophenylalanine (MΔF) were investigated for achieving enhanced and effective delivery of the compound for potential anti-malarial therapy. FΔF, RΔF, VΔF and MΔF peptides formed different types of nanoparticles like nanotubes and nanovesicles under similar assembling conditions. Out of these, F∆F nanotubes showed maximum curcumin loading capacity of almost 68 % W/W. Ccm loaded F∆F nanotubes (Ccm-F∆F) showed comparatively higher (IC50, 3.0 µM) inhibition of Plasmodium falciparum (Indo strain) as compared to free Ccm (IC50, 13 µM). Ccm-F∆F nano formulation further demonstrated higher inhibition of parasite growth in malaria infected mice as compared to free Ccm. The dipeptide nanoparticles were highly biocompatible and didn't show any toxic effect on mammalian cell lines and normal blood cells. This work provides a proof of principle of using highly biocompatible short peptide based nanoparticles for entrapment and in vivo delivery of Ccm leading to an

  8. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2.

    Science.gov (United States)

    Zerweck, Jonathan; Strandberg, Erik; Kukharenko, Olga; Reichert, Johannes; Bürck, Jochen; Wadhwani, Parvesh; Ulrich, Anne S

    2017-10-13

    PGLa and magainin 2 (MAG2) are amphiphilic α-helical membranolytic peptides from frog skin with known synergistic antimicrobial activity. By systematically mutating residues in the two peptides it was possible to identify the ones crucial for the synergy, as monitored by biological assays, fluorescence vesicle leakage, and solid-state 15 N-NMR. Electrostatic interactions between anionic groups in MAG2 and cationic residues in PGLa enhance synergy but are not necessary for the synergistic effect. Instead, two Gly residues (7 and 11) in a so-called GxxxG motif in PGLa are necessary for synergy. Replacing either of them with Ala or another hydrophobic residue completely abolishes synergy according to all three methods used. The designer-made peptide MSI-103, which has a similar sequence as PGLa, shows no synergy with MAG2, but by introducing two Gly mutations it was possible to make it synergistic. A molecular model is proposed for the functionally active PGLa-MAG2 complex, consisting of a membrane-spanning antiparallel PGLa dimer that is stabilized by intimate Gly-Gly contacts, and where each PGLa monomer is in contact with one MAG2 molecule at its C-terminus.

  9. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.

    Science.gov (United States)

    Dong, Fangyuan; Zhang, Mi; Tang, Wai-Wa; Wang, Yi

    2015-04-23

    Superhydrophobic/hydrophobic surfaces have attracted wide attention because of their broad applications in various regions, including coating, textile, packaging, electronic devices, and bioengineering. Many studies have been focused on the fabrication of superhydrophobic/hydrophobic surfaces using natural materials. In this paper, superhydrophobic/hydrophobic surfaces were formed by an amphiphilic natural protein, zein, using electrospinning. Water contact angle (WCA) and scanning electron microscopy (SEM) were used to characterize the hydrophobicity and surface morphology of the electrospun structures. The highest WCA of the zein electrospun surfaces could reach 155.5 ± 1.4°. To further understand the mechanism of superhydrophobic surface formation from amphiphiles using electrospinning, a synthetic amphiphilic polymer was selected, and also, a method similar to electrospinning, spray drying, was tried. The electrospun amphiphilic polymer surface showed a high hydrophobicity with a WCA of 141.4 ± 0.7°. WCA of the spray-dried zein surface could reach 125.3 ± 2.1°. The secondary structures of the zein in the electrospun film and cast-dried film were studied using ATR-FTIR, showing that α-helix to β-sheet transformation happened during the solvent evaporation in the cast drying process but not in the electrospinning process. A formation mechanism was proposed on the basis of the orientation of the amphiphiles during the solvent evaporation of different fabrication methods. The droplet-based or jet-based evaporation during electrospinning and spray drying led to the formation of the superhydrophobic/hydrophobic surface by the accumulation of the hydrophobic groups of the amphiphiles on the surface, while the surface-based evaporation during cast drying led to the formation of the hydrophilic surface by the accumulation of the hydrophilic groups of the amphiphiles on the surface.

  10. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds

    NARCIS (Netherlands)

    Buitink, J.; Leprince, O.; Hoekstra, F.A.

    2000-01-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and

  11. Importance of lipopolysaccharide aggregate disruption for the anti-endotoxic effects of heparin cofactor II peptides.

    Science.gov (United States)

    Singh, Shalini; Papareddy, Praveen; Kalle, Martina; Schmidtchen, Artur; Malmsten, Martin

    2013-11-01

    Lipid membrane and lipopolysaccharide (LPS) interactions were investigated for a series of amphiphilic and cationic peptides derived from human heparin cofactor II (HCII), using dual polarization interferometry, ellipsometry, circular dichroism (CD), cryoTEM, and z-potential measurements. Antimicrobial effects of these peptides were compared to their ability to disorder bacterial lipid membranes, while their capacity to block endotoxic effects of LPS was correlated to the binding of these peptides to LPS and its lipid A moiety, and to charge, secondary structure, and morphology of peptide/LPS complexes. While the peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR) displayed potent antimicrobial and anti-endotoxic effects, its truncated variants KYE21 (KYEITTIHNLFRKLTHRLFRR) and NLF20 (NLFRKLTHRLFRRNFGYTLR) provide some clues on structure-activity relations, since KYE21 retains both the antimicrobial and anti-endotoxic effects of KYE28 (although both attenuated), while NLF20 retains the antimicrobial but only a fraction of the anti-endotoxic effect, hence locating the anti-endotoxic effects of KYE28 to its N-terminus. The antimicrobial effect, on the other hand, is primarily located at the C-terminus of KYE28. While displaying quite different endotoxic effects, these peptides bind to a similar extent to both LPS and lipid A, and also induce comparable LPS scavenging on model eukaryotic membranes. In contrast, fragmentation and densification of LPS aggregates, in turn dependent on the secondary structure in the peptide/LPS aggregates, correlate to the anti-endotoxic effect of these peptides, thus identifying peptide-induced packing transitions in LPS aggregates as key for anti-endotoxic functionality. This aspect therefore needs to be taken into account in the development of novel anti-endotoxic peptide therapeutics. Copyright © 2013. Published by Elsevier B.V.

  12. Membrane behavior as influenced by partitioning of amphiphiles during drying : a comparative study in anhydrobiotic plant systems

    NARCIS (Netherlands)

    Golovina, E.A.; Hoekstra, F.A.

    2002-01-01

    During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in

  13. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua, E-mail: qhzhang@zju.edu.cn; Zhan, Xiaoli; Chen, Fengqiu

    2017-08-01

    Highlights: • An amphiphilic poly(dimethylsiloxane) (PDMS) based polyurethane (PU) network tethered with carboxybetaine is prepared. • The surface distribution of PDMS and zwitterionic segments produces an obvious amphiphilic heterogeneous surface. • This designed PDMS-based amphiphilic PU network exhibits combined antibacterial and anti-adhesive properties. - Abstract: The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.

  14. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system

    OpenAIRE

    van der Woude, Irene; Willy Visser, H.; ter Beest, Martin B.A.; Wagenaar, Anno; Ruiters, Marcel H.J.; Engberts, Jan B.F.N.; Hoekstra, Dick

    1995-01-01

    Parameters that affect cellular transfection as accomplished by introducing DNA via carriers composed of cationic synthetic amphiphiles, have been investigated with the aim to obtain insight into the mechanism of DNA translocation. Such insight may be exploited in optimizing carrier properties of synthetic amphiphiles for molecules other than nucleic acids. In the present work, the interaction of vesicles composed of the cationic amphiphile dioleyloxy-propyl-trimethylammonium chloride (DOTMA)...

  15. Beta-blockers influence the short-term and long-term prognostic information of natriuretic peptides and catecholamines in chronic heart failure independent from specific agents.

    Science.gov (United States)

    Frankenstein, Lutz; Nelles, Manfred; Slavutsky, Maxim; Schellberg, Dieter; Doesch, Andreas; Katus, Hugo; Remppis, Andrew; Zugck, Christian

    2007-10-01

    In chronic heart failure (CHF), the physiologic effects of natriuretic peptides and catecholamines are interdependent. Furthermore, reports state an agent-dependent effect of individual beta-blockers on biomarkers. Data on the short-term and long-term predictive power comparing these biomarkers as well as accounting for the influence of beta-blocker treatment both on the marker or the resultant prognostic information are scarce. We included 513 consecutive patients with systolic CHF, measured atrial natriuretic peptide (ANP), N-terminal prohormone brain natriuretic peptide (NTproBNP), noradrenaline, and adrenaline, and monitored them for 90 +/- 25 months. Death or the combination of death and cardiac transplantation at 1 year, 5 years, and overall follow-up were considered end points. Compared with patients not taking beta-blockers, patients taking beta-blockers had significantly lower levels of catecholamines but not natriuretic peptides. Only for adrenaline was the amount of this effect related to the specific beta-blocker chosen. Receiver operating characteristic curves demonstrated superior prognostic accuracy for NTproBNP both at the 1- and 5-year follow-up compared with ANP, noradrenaline, and adrenaline. In multivariate analysis including established risk markers (New York Heart Association functional class, left ventricular ejection fraction, peak oxygen uptake, and 6-minute walk test), of all neurohumoral parameters, only NTproBNP remained an independent predictor for both end points. Long-term beta-blocker therapy is associated with decreased levels of plasma catecholamines but not natriuretic peptides. This effect is independent from the actual beta-blocker chosen for natriuretic peptides and noradrenaline. In multivariate analysis, both for short-term and long-term prediction of mortality or the combined end point of death and cardiac transplantation, only NTproBNP remained independent from established clinical risk markers.

  16. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis

    NARCIS (Netherlands)

    Erne, Petra M.; van Bezouwen, Laura S.; Stacko, Peter; van Dtjken, Derk Jan; Chen, Jiawen; Stuart, Marc C. A.; Boekema, Eghert J.; Feringa, Ben L.

    2015-01-01

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based

  17. Cationic Amphiphilic Tris-Cyclometalated Iridium(III) Complexes Induce Cancer Cell Death via Interaction with Ca2+-Calmodulin Complex.

    Science.gov (United States)

    Hisamatsu, Yosuke; Suzuki, Nozomi; Masum, Abdullah-Al; Shibuya, Ai; Abe, Ryo; Sato, Akira; Tanuma, Sei-Ichi; Aoki, Shin

    2017-02-15

    In our previous paper, we reported on the preparation of some cationic amphiphilic Ir complexes (2c, 2d) containing KKGG peptides that induce and detect cell death of Jurkat cells. Mechanistic studies suggest that 2c interacts with anionic molecules and/or membrane receptors on the cell surface to trigger an intracellular Ca 2+ response, resulting in the induction of cell death, accompanied by membrane disruption. We have continued the studies of cell death of Jurkat cells induced by 2c and found that xestospongin C, a selective inhibitor of an inositol 1,4,5-trisphosphate receptor located on the endoplasmic reticulum (ER), reduces the cytotoxicity of 2c, suggesting that 2c triggers the release of Ca 2+ from the ER, leading to an increase in the concentration of cytosolic Ca 2+ , thus inducing cell death. Moreover, we synthesized a series of new amphiphilic cationic Ir complexes 5a-c containing photoreactive 3-trifluoromethyl-3-phenyldiazirine (TFPD) groups, in an attempt to identify the target molecules of 2c. Interestingly, it was discovered that a TFPD group functions as a triplet quencher of Ir complexes. It was also found that 5b is useful as a turn-on phosphorescent probe of acidic proteins such as bovine serum albumin (BSA) (pI = 4.7) and their complexation was confirmed by luminescence titrations and SDS-PAGE of photochemical products between them. These successful results allowed us to carry out photoaffinity labeling of the target biomolecules of 5b (2c and analogues thereof) in Jurkat cells. A proteomic analysis of the products obtained by the photoirradiation of 5b with Jurkat cells suggests that the Ca 2+ -binding protein "calmodulin (CaM)" is one of target proteins of the Ir complexes. Indeed, 5b was found to interact with the Ca 2+ -CaM complex, as evidenced by luminescence titrations and the results of photochemical reactions of 5b with CaM in the presence of Ca 2+ (SDS-PAGE). A plausible mechanism for cell death induced by a cationic amphiphilic Ir

  18. Binding of the fibronectin-mimetic peptide, PR_b, to α5β1 on pig islet cells increases fibronectin production and facilitates internalization of PR_b functionalized liposomes

    Science.gov (United States)

    Atchison, Nicole A.; Fan, Wei; Papas, Klearchos K.; Hering, Bernhard J.; Tsapatsis, Michael; Kokkoli, Efrosini

    2010-01-01

    Islet transplantation is a promising treatment for type 1 diabetes. Recent studies have demonstrated that human islet allografts can restore insulin independence to patients with this disease. As islet isolation and immunotherapeutic techniques improve, the demand for this cell-based therapy will dictate the need for other sources of islets. Pig islets could provide an unlimited supply for xenotransplantation and have shown promise as an alternative to human islet allografts. However, stresses imposed during islet isolation and transplantation decrease islet viability, leading to loss of graft function. In this study, we investigated the ability of a fibronectin-mimetic peptide, PR_b, which specifically binds to the α5β1 integrin, to reestablish lost extracellular matrix (ECM) around isolated pig islets and increase internalization of liposomes. Confocal microscopy and western blotting were used to show the presence of the integrin α5β1 on the pig islets on day 0 (day of isolation), as well as different days of islet culture. Islets cultured in medium supplemented with free PR_b for 48 hours were found to have increased levels of ECM fibronectin secretion compared to islets in normal culture conditions. Using confocal microscopy and flow cytometry we found that PR_b peptide-amphiphile functionalized liposomes delivered to the pig islets internalized into the cells in a PR_b concentration dependent manner, and non-functionalized liposomes showed minimal internalization. These studies proved that the fibronectin-mimetic peptide, PR_b, is an appropriate peptide bullet for applications involving α5β1 expressing pig islet cells. Fibronectin production stimulated through α5β1 PR_b binding may decrease apoptosis and therefore increase islet viability in culture. In addition, PR_b peptide-amphiphile functionalized liposomes may be used for targeted delivery of different agents to pig islet cells. PMID:20704278

  19. RECENT ADVANCES TOWARDS THE RATIONAL DESIGN OF PEPTIDE DRUGS

    OpenAIRE

    YEŞİLADA, Akgül; ÖZKANLI, Fügen

    2004-01-01

    In this review, after a short introduction to definition and physiological roles of regulatory peptides, problems faced during the development of peptide drugs, studies directed to solve these problems and rational design of peptide drugs with special emphesis on peptidomimetics are mentioned

  20. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  1. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  2. Characterization of beta-turn and Asx-turns mimicry in a model peptide: stabilization via C--H . . . O interaction.

    Science.gov (United States)

    Thakur, A K; Kishore, R

    2006-04-15

    The chemical synthesis and single-crystal X-ray diffraction analysis of a model peptide, Boc-Thr-Thr-NH2 (1) comprised of proteinogenic residues bearing an amphiphilic Cbeta -stereogenic center, has been described. Interestingly, the analysis of its molecular structure revealed the existence of a distinct conformation that mimics a typical beta-turn and Asx-turns, i.e., the two Thr residues occupy the left- and right-corner positions. The main-chain torsion angles of the N- and C-terminal residues i.e., semiextended: phi = -68.9 degrees , psi = 128.6 degrees ; semifolded: phi = -138.1 degrees , psi = 2.5 degrees conformations, respectively, in conjunction with a gauche- disposition of the obligatory C-terminus Thr CgammaH3 group, characterize the occurrence of the newly described beta-turn- and Asx-turns-like topology. The preferred molecular structure is suggested to be stabilized by an effective nonconventional main-chain to side-chain Ci=O . . . H--Cgamma(i+2)-type intraturn hydrogen bond. Noteworthy, the observed topology of the resulting 10-membered hydrogen-bonded ring is essentially similar to the one perceived for a classical beta-turn and the Asx-turns, stabilized by a conventional intraturn hydrogen bond. Considering the signs as well as magnitudes of the backbone torsion angles and the orientation of the central peptide bond, the overall mimicked topology resembles the type II beta-turn or type II Asx-turns. An analysis of Xaa-Thr sequences in high-resolution X-ray elucidated protein structures revealed the novel topology prevalence in functional proteins (unpublished). In view of indubitable structural as well as functional importance of nonconventional interactions in bioorganic and biomacromolecules, we intend to highlight the participation of Thr CgammaH in the creation of a short-range C=O . . . H--Cgamma -type interaction in peptides and proteins. Copyright 2006 Wiley Periodicals, Inc.

  3. Effect of Amphiphiles on the Rheology of Triglyceride Networks

    Science.gov (United States)

    Seth, Jyoti

    2014-11-01

    Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.

  4. Synthesis, Characterization, and Aqueous Lubricating Properties of Amphiphilic Graft Copolymers Comprising 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Røn, Troels; Jankova Atanasova, Katja

    2014-01-01

    Amphiphilic anionic and cationic graft copolymers possessing poly(2-hydroxyethyl methacrylate) (PHEMA) backbone and poly(methacrylic acid), poly(2-methoxyethyl acrylate-co-methacrylic acid), and poly(2-methoxyethyl acrylate-co-2-(dimethylamino)ethyl methacrylate) grafts are constructed by merging...... of the corresponding monomers followed by deblocking reaction leads to well-defined amphiphiles with narrow molecular weight distributions (PDI ≤ 1.29) and varying content of methacrylic acid. The graft copolymers showed effective surface adsorption and lubrication for self-mated poly(dimethylsiloxane) (PDMS) contacts...

  5. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    Science.gov (United States)

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Photoperiod Regulates vgf-Derived Peptide Processing in Siberian Hamsters.

    Directory of Open Access Journals (Sweden)

    Barbara Noli

    Full Text Available VGF mRNA is induced in specific hypothalamic areas of the Siberian hamster upon exposure to short photoperiods, which is associated with a seasonal decrease in appetite and weight loss. Processing of VGF generates multiple bioactive peptides, so the objective of this study was to determine the profile of the VGF-derived peptides in the brain, pituitary and plasma from Siberian hamsters, and to establish whether differential processing might occur in the short day lean state versus long day fat. Antisera against short sequences at the C- or N- termini of proVGF, as well as against NERP-1, TPGH and TLQP peptides, were used for analyses of tissues, and both immunohistochemistry and enzyme linked immunosorbent assay (ELISA coupled with high-performance liquid (HPLC or gel chromatography were carried out. VGF peptide immunoreactivity was found within cortex cholinergic perikarya, in multiple hypothalamic nuclei, including those containing vasopressin, and in pituitary gonadotrophs. ELISA revealed that exposure to short day photoperiod led to a down-regulation of VGF immunoreactivity in the cortex, and a less pronounced decrease in the hypothalamus and pituitary, while the plasma VGF levels were not affected by the photoperiod. HPLC and gel chromatography both confirmed the presence of multiple VGF-derived peptides in these tissues, while gel chromatography showed the presence of the VGF precursor in all tissues tested except for the cortex. These observations are consistent with the view that VGF-derived peptides have pleiotropic actions related to changing photoperiod, possibly by regulating cholinergic systems in the cortex, vasopressin hypothalamic pathways, and the reproductive axis.

  7. Fragrance compounds and amphiphilic association structures.

    Science.gov (United States)

    Friberg, S E

    1998-05-01

    Fragrance formulations have traditionally been based on alcohol as the solvent, but the recent legal restrictions on volatile organic solvents have prompted the industry to change to aqueous solubilized systems. The article reviews the fundamental factors in the application of such systems evaluating the influence by different amphiphilic association structures on the vapor pressure of fragrance compounds. This information is subsequently used to estimate the variation of fragrance compound vapor pressures during evaporation. The results reveal that the vapor pressure versus time variation is improved compared to solvent-based formulations.

  8. The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides.

    Science.gov (United States)

    Khalily, Mohammad Aref; Usta, Hakan; Ozdemir, Mehmet; Bakan, Gokhan; Dikecoglu, F Begum; Edwards-Gayle, Charlotte; Hutchinson, Jessica A; Hamley, Ian W; Dana, Aykutlu; Guler, Mustafa O

    2018-05-18

    π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as β-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.

  9. Langmuir monolayer formation of metal complexes from polymerizable amphiphilic ligands

    NARCIS (Netherlands)

    Werkman, P.J; Schouten, A.J.

    1996-01-01

    The monolayer behaviour of 4-(10,12-pentacosadiynoicamidomethyl)-pyridine at the air-water interface was studied by measuring the surface pressure-area isotherms. The amphiphile formed stable monolayers with a clear liquid-expanded (LE) to liquid-condensed phase transition at various temperatures.

  10. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    Science.gov (United States)

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  12. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  13. Intra-chain organisation of hydrophobic residues controls inter-chain aggregation rates of amphiphilic polymers

    Science.gov (United States)

    Varilly, Patrick; Willard, Adam P.; Kirkegaard, Julius B.; Knowles, Tuomas P. J.; Chandler, David

    2017-04-01

    Aggregation of amphiphiles through the action of hydrophobic interactions is a common feature in soft condensed matter systems and is of particular importance in the context of biophysics as it underlies both the generation of functional biological machinery as well as the formation of pathological misassembled states of proteins. Here we explore the aggregation behaviour of amphiphilic polymers using lattice Monte Carlo calculations and show that the distribution of hydrophobic residues within the polymer sequence determines the facility with which dry/wet interfaces can be created and that such interfaces drive the aggregation process.

  14. Physical deposition behavior of stiff amphiphilic polyelectrolytes in an external electric field

    Science.gov (United States)

    Hu, Dongmei; Zuo, Chuncheng; Cao, Qianqian; Chen, Hongli

    2017-08-01

    Coarse-grained molecular dynamics simulations are conducted to study the physical deposition behavior of stiff amphiphilic polyelectrolytes (APEs) in an external electric field. The effects of chain stiffness, the charge distribution of a hydrophilic block, and electric field strength are investigated. Amphiphilic multilayers, which consist of a monolayer of adsorbed hydrophilic monomers (HLMs), a hydrophobic layer, and another hydrophilic layer, are formed in a selective solvent. All cases exhibit locally ordered hydrophilic monolayers. Two kinds of hydrophobic micelles are distinguished based on local structures. Stripe and network hydrophobic patterns are formed in individual cases. Increasing the chain stiffness decreases the thickness of the deposited layer, the lateral size of the hydrophobic micelles, and the amount of deposition. Increasing the number of positively charged HLMs in a single chain has the same effect as increasing chain stiffness. Moreover, when applied normally to the substrate, the electric field compresses the deposited structures and increases the amount of deposition by pulling more PEs toward the substrate. A stronger electric field also facilitates the formation of a thinner and more ordered hydrophilic adsorption layer. These estimates help us explore how to tailor patterned nano-surfaces, nano-interfaces, or amphiphilic nanostructures by physically depositing semi-flexible APEs which is of crucial importance in physical sciences, life sciences and nanotechnology.

  15. Preparation and self-folding of amphiphilic DNA origami.

    Science.gov (United States)

    Zhou, Chao; Wang, Dianming; Dong, Yuanchen; Xin, Ling; Sun, Yawei; Yang, Zhongqiang; Liu, Dongsheng

    2015-03-01

    Amphiphilic DNA origami is prepared by dressing multiple hydrophobic molecules on a rectangular single layer DNA origami, which is then folded or coupled in sandwich-like structures with two outer DNA origami layer and one inner hydrophobic molecules layer. The preference to form different kinds of structures could be tailored by rational design of DNA origami. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. On the slowdown mechanism of water dynamics around small amphiphiles

    NARCIS (Netherlands)

    Homsi Brandeburgo, W.; Thijmen van der Post, S.; Meijer, E.J.; Ensing, B.

    2015-01-01

    Aqueous solvation of small amphiphilic molecules exhibits a unique and complex dynamics, that is only partially understood. A recent series of studies on the hydration of small organic compounds, such as tetramethylurea (TMU), trimethylamine N-oxide (TMAO) and urea, has provided strong evidence of a

  17. Conformational properties of rigid-chain amphiphilic macromolecules : The phase diagram

    NARCIS (Netherlands)

    Markov, V. A.; Vasilevskaya, V. V.; Khalatur, P. G.; ten Brinke, G.; Khokhlov, A. R.

    The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial

  18. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  19. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    Science.gov (United States)

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  20. Host-Guest Interaction between Corona[n]arene and Bisquaternary Ammonium Derivatives for Fabricating Supra-Amphiphile.

    Science.gov (United States)

    Zeng, Lingda; Guo, Qing-Hui; Feng, Yuanning; Xu, Jiang-Fei; Wei, Yuhan; Li, Zhibo; Wang, Mei-Xiang; Zhang, Xi

    2017-06-13

    The interactions between a host, water-soluble corona[n]arene (S6-CAP), and a series of guests, bisquaternary ammonium derivatives (CnDAs), in water, were investigated. The host and guest can form 1:1 host-guest complex. Their binding constants decrease as the alkyl length of CnDAs increases, which can be tunable ranging from 10 3 to 10 6 M -1 . The binding processes are mainly entropy-driven, while the enthalpy changes also play an important role in enhancing the host-guest interactions. In addition, a supra-amphiphile was fabricated with S6-CAP and a normal surfactant bearing bisquaternary ammonium (C4R). The S6-CAP·C4R complex forms micellar aggregates in water, and the system possesses better assembling activity and dilution stability than its building block C4R. This study enriches the families of supra-amphiphiles with a new architecture, and employing such a supra-amphiphile in biofunctional materials is highly anticipated.

  1. Comparison Review of Short-Acting and Long-Acting Glucagon-like Peptide-1 Receptor Agonists.

    Science.gov (United States)

    Uccellatore, Annachiara; Genovese, Stefano; Dicembrini, Ilaria; Mannucci, Edoardo; Ceriello, Antonio

    2015-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs) are useful tools for treating type 2 diabetes mellitus. In their recent position statement, the American Diabetes Association and European Association for the Study of Diabetes recommend GLP1-RAs as add-on to metformin when therapeutic goals are not achieved with monotherapy, particularly for patients who wish to avoid weight gain or hypoglycemia. GLP1-RAs differ substantially in their duration of action, frequency of administration and clinical profile. Members of this class approved for clinical use include exenatide twice-daily, exenatide once-weekly, liraglutide and lixisenatide once-daily. Recently, two new once-weekly GLP1-RAs have been approved: dulaglutide and albiglutide. This article summarizes properties of short- and long-acting GLP-1 analogs, and provides useful information to help choose the most appropriate compound for individual patients.

  2. Modern treatment of short bowel syndrome

    DEFF Research Database (Denmark)

    Jeppesen, Palle B

    2013-01-01

    Recently, the US Food and Drug Administration and the European Medicines Agency approved the glucagon-like peptide 2 analogue, teduglutide, for the treatment of short bowel syndrome (SBS), and this review describes the physiological basis for its clinical use.......Recently, the US Food and Drug Administration and the European Medicines Agency approved the glucagon-like peptide 2 analogue, teduglutide, for the treatment of short bowel syndrome (SBS), and this review describes the physiological basis for its clinical use....

  3. Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification.

    Science.gov (United States)

    Yong, Wai Fen; Ho, Yan Xun; Chung, Tai-Shung

    2017-10-23

    Polymers containing ethylene oxide (EO) groups have gained significant interest as the EO groups have favorable interactions with polar molecules such as H 2 O, quadrupolar molecules such as CO 2 , and metal ions. However, the main challenges of poly(ethylene oxide) (PEO) membranes are their weak mechanical properties and high crystallinity nature. The amphiphilic copolymer made from PEO terephthalate and poly(butylene terephthalate) (PEOT/PBT) comprises both hydrophilic and hydrophobic segments. The hydrophilic PEOT segment is thermosensitive, which facilities gas transports whereas the hydrophobic PBT segment is rigid, which provides mechanical robustness. This work demonstrates a new strategy to design amphiphilic mixed matrix membranes (MMMs) by incorporating zeolitic imidazolate framework, ZIF-71, into the PEOT/PBT copolymer. The resultant membrane shows an enhanced CO 2 permeability with an ideal CO 2 /N 2 selectivity surpassing the original PEOT/PBT and Robeson's Upper bound line. The nanoparticles-embedded amphiphilic membranes exhibit characteristics of high transparency and mechanical robustness. Mechanically strong composite hollow fiber membranes consisting of PEOT/PBT/ZIF-71 as the selective layer were also prepared. The resultant hollow fibers possess an excellent CO 2 permeance of 131 GPU (gas permeation units), CO 2 /N 2 selectivity of 52.6, H 2 O permeance of 9300 GPU and H 2 O/N 2 selectivity of 3700, showing great potential for industrial CO 2 capture and dehumidification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    Science.gov (United States)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na2S and Cd(CH3COO)2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  5. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Kalayc Latin-Small-Letter-Dotless-I , Oezlem A. [Bulent Ecevit University, Department of Physics (Turkey); Duygulu, Oezguer [TUBITAK Marmara Research Center, Materials Institute (Turkey); Hazer, Baki, E-mail: bkhazer@karaelmas.edu.tr [Bulent Ecevit University, Department of Chemistry (Turkey)

    2013-01-15

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na{sub 2}S and Cd(CH{sub 3}COO){sub 2} simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether-THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV-vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV-vis absorbance spectra and fluorescence emission spectra.

  6. Optical characterization of CdS nanoparticles embedded into the comb-type amphiphilic graft copolymer

    International Nuclear Information System (INIS)

    Kalaycı, Özlem A.; Duygulu, Özgür; Hazer, Baki

    2013-01-01

    This study refers to the synthesis and characterization of a novel organic/inorganic hybrid nanocomposite material containing cadmium sulfide (CdS) nanoparticles. For this purpose, a series of polypropylene (PP)-g-polyethylene glycol (PEG), PP-g-PEG comb-type amphiphilic graft copolymers were synthesized. PEGs with Mn = 400, 2000, 3350, and 8000 Da were used and the graft copolymers obtained were coded as PPEG400, PPEG2000, PPEG3350, and PPEG8000. CdS nanoparticles were formed in tetrahydrofuran solution of PP-g-PEG amphiphilic comb-type copolymer by the reaction between aqueous solutions of Na 2 S and Cd(CH 3 COO) 2 simultaneously. Micelle formation of PPEG2000 comb-type amphiphilic graft copolymer in both solvent/non-solvent (petroleum ether–THF) by transmission electron microscopy (TEM). The optical characteristics, size morphology, phase analysis, and dispersion of CdS nanoparticles embedded in PPEG400, PPEG2000, PPEG3350, and PPEG8000 comb-type amphiphilic graft copolymer micelles were determined by high resolution TEM (HRTEM), energy dispersive spectroscopy, UV–vis spectroscopy, and fluorescence emission spectroscopy techniques. The aggregate size of PPEG2000-CdS is between 10 and 50 nm; however, in the case of PPEG400-CdS, PPEG3350-CdS, and PPEG8000-CdS samples, it is up to approximately 100 nm. The size of CdS quantum dots in the aggregates for PPEG2000 and PPEG8000 samples was observed as 5 nm by HRTEM analysis, and this result was also supported by UV–vis absorbance spectra and fluorescence emission spectra.

  7. ANIONIC SYNTHESIS OF A "CLICKABLE" MIDDLE-CHAIN AZIDEFUNCTIONALIZED POLYSTYRENE AND ITS APPLICATION IN SHAPE AMPHIPHILES

    Institute of Scientific and Technical Information of China (English)

    Kan Yue; Jinlin He; Chang Liu; Mingjun Huang; Xue-Hui Dong; Kai Guo; Peihong Ni

    2013-01-01

    "Click chemistry" is,by definition,a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis.This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS).The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide.Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography.The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy.The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS).The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls,resulting in an amphiphilic shape amphiphile,mPS-DPOSS.This synthetic approach is highly efficient and modular.It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.

  8. Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.

    Science.gov (United States)

    Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung

    2018-02-15

    A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

  9. Amphiphilic carbon dots for sensitive detection, intracellular imaging of Al{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Depeng [State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Yan, Fanyong, E-mail: yanfanyong@tjpu.edu.cn [State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Luo, Yunmei [Department of Pharmacology/Key Laboratory for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou 563000 (China); Ye, Qianghua; Zhou, Siyushan [State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Chen, Li, E-mail: Chenlis@tjpu.edu.cn [State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2017-02-08

    In this paper, a simple and effective method was designed to synthesize hydrophobic carbon dots. Subsequently, amphiphilic fluorescent carbon dots (A-CDs) were synthesized by further surface modification. The result A-CDs show excellent optical properties with a quantum yield of 16.9%. It was interestingly found that morin (MR) and its fluorescent metal-ion complex (MR-Al{sup 3+}) can successfully coordinate on the surface of A-CDs, the emission of A-CDs completely overlapped the absorption peak of MR-Al{sup 3+}. Thus, the prepared A-CDs can be used as an effective fluorescent probe for Al{sup 3+} based on a fluorescence resonance energy transfer process. The sensing platform can realize real-time detection of Al{sup 3+} within 0.5 min. The fluorescence signals of the system were linearly correlated with the concentration of Al{sup 3+} over a range of 8–20 μM, with a detection limit of 0.113 μM. The method was also successfully applied to image the distribution of Al{sup 3+} in Human Umbilical Vein Endothelial Cells. - Highlights: • Amphiphilic carbon dots were obtained by simply modifying hydrophobic carbon dots. • Amphiphilic carbon dots/morin-Al{sup 3+} was used as a selective turn-on probe for Al{sup 3+}. • The method was employed to intracellular imaging Al{sup 3+} in living cells.

  10. NMR structure of the Arctic mutation of the Alzheimer's Aβ(1-40) peptide docked to SDS micelles

    Science.gov (United States)

    Usachev, K. S.; Filippov, A. V.; Khairutdinov, B. I.; Antzutkin, O. N.; Klochkov, V. V.

    2014-11-01

    The “Arctic” point mutation of the Alzheimer's amyloid β-peptide is a rare mutation leading to an early onset of Alzheimer's disease. The peptide may interact with neuronal membranes, where it can provide its toxic effects. We used 2D NMR spectroscopy to investigate the conformation of the “Arctic” mutant of Aβ1-40 Alzheimer's amyloid peptide in sodium dodecyl sulfate micelle solutions, which are the type of amphiphilic structures mimicking some properties of biomembranes. The study showed that the Arctic mutant of Aβ1-40 interacts with the surface of SDS micelles mainly through the Leu17-Asn27 310-helical region, while the Ile31-Val40 region is buried in the hydrophobic interior of the micelle. In contrast, wild-type Aβ1-40 interacts with SDS micelles through the Lys16-Asp23 α-helical region and Gly29-Met35. Both the Arctic mutant and the wild-type Aβ1-40 peptides interactions with SDS micelles are hydrophobic in nature. Aβ peptides are thought to be capable of forming pores in biomembranes that can cause changes in neuronal and endothelial cell membrane permeability. It has also been shown that Aβ peptides containing the “Arctic” mutation are more neurotoxic and aggregate more readily than the wild-type Aβ peptides at physiological conditions. Here, we propose that the extension of the helical structure of Leu17-Asn27 and a high aliphaticity (neutrality) of the C-terminal region in the Arctic Aβ peptides are consistent with the idea that formation of ion-permeable pores by Aβ oligomers may be one of prevailing mechanisms of a larger neuronal toxicity of the Arctic Aβ compared to the wild-type Aβ peptides, independent of oxidative damage and lipid peroxidation.

  11. Peptides in headlock ? a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    OpenAIRE

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a ?-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once boun...

  12. Amphiphile Meets Amphiphile: Beyond the Polar-Apolar Dualism in Ionic Liquid/Alcohol Mixtures.

    Science.gov (United States)

    Russina, Olga; Sferrazza, Alessio; Caminiti, Ruggero; Triolo, Alessandro

    2014-05-15

    The mesoscopic morphology of binary mixtures of ethylammonium nitrate (EAN), the protic ionic liquid par excellence, and methanol is explored using neutron/X-ray diffraction and computational techniques. Both compounds are amphiphilic and characterized by an extended hydrogen bonding network: surprisingly, though macroscopically homogeneous, these mixtures turn out to be mesoscopically highly heterogeneous. Our study reveals that even in methanol-rich mixtures, a wide distribution of clusters exists where EAN preserves its bulk, sponge-like morphology. Accordingly methanol does not succeed in fully dissociating the ionic liquid that keeps on organizing in a bulk-like fashion. This behavior represents the premises to the more dramatic phenomenology observed with longer alcohols that eventually phase separate from EAN. These results challenge the commonly accepted polar and apolar moieties segregation in ionic liquids/molecular liquids mixtures and the current understanding of technologically relevant solvation processes.

  13. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors

    Science.gov (United States)

    Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-11-01

    The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.

  14. New penta-saccharide-bearing tripod amphiphiles for membrane protein structure studies

    DEFF Research Database (Denmark)

    Ehsan, Muhammad; Ghani, Lubna; Du, Yang

    2017-01-01

    of detergents, are available, purification and structural characterization of many membrane proteins remain challenging. In the current study, a new class of tripod amphiphiles bearing two different penta-saccharide head groups, designated TPSs, were developed and evaluated for their ability to extract...

  15. Improving pancreatic islet in vitro functionality and transplantation efficiency by using heparin mimetic peptide nanofiber gels.

    Science.gov (United States)

    Uzunalli, Gozde; Tumtas, Yasin; Delibasi, Tuncay; Yasa, Oncay; Mercan, Sercan; Guler, Mustafa O; Tekinay, Ayse B

    2015-08-01

    Pancreatic islet transplantation is a promising treatment for type 1 diabetes. However, viability and functionality of the islets after transplantation are limited due to loss of integrity and destruction of blood vessel networks. Thus, it is important to provide a proper mechanically and biologically supportive environment for enhancing both in vitro islet culture and transplantation efficiency. Here, we demonstrate that heparin mimetic peptide amphiphile (HM-PA) nanofibrous network is a promising platform for these purposes. The islets cultured with peptide nanofiber gel containing growth factors exhibited a similar glucose stimulation index as that of the freshly isolated islets even after 7 days. After transplantation of islets to STZ-induced diabetic rats, 28 day-long monitoring displayed that islets that were transplanted in HM-PA nanofiber gels maintained better blood glucose levels at normal levels compared to the only islet transplantation group. In addition, intraperitoneal glucose tolerance test revealed that animals that were transplanted with islets within peptide gels showed a similar pattern with the healthy control group. Histological assessment showed that islets transplanted within peptide nanofiber gels demonstrated better islet integrity due to increased blood vessel density. This work demonstrates that using the HM-PA nanofiber gel platform enhances the islets function and islet transplantation efficiency both in vitro and in vivo. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Direct investigation of the vectorization properties of amphiphilic cyclodextrins in phospholipid films.

    Science.gov (United States)

    Javierre, Isabelle; Nedyalkov, Mickael; Petkova, Vera; Benattar, Jean Jacques; Weisse, Sandrine; Auzély-Velty, Rachel; Djedaïni-Pilard, Florence; Perly, Bruno

    2002-10-01

    Recently, new cyclodextrin derivatives were synthesized and shown to exhibit strong amphiphilic properties. In this paper, we study the action of these new amphiphilic cyclodextrins on phospholipids. Mixed phospholipid/cyclodextrin derivative films were prepared and studied using X-ray reflectivity for various phospholipid/cyclodextrin ratios. A molar ratio of 3 provides a highly stable film the molecular structure of which has been investigated in detail. The cholesterol tail of the cyclodextrin molecule was found to be anchored into the phospholipid film. The cyclodextrin moieties exposed to the aqueous medium are prone to the addition of the guest molecule Dosulepin, making them of high interest for drug delivery. For this purpose and as an example of a potential application, this cyclodextrin molecular carrier property is also addressed to this complex film architecture.

  17. A Water-Soluble Cyclotriveratrylene-Based Supra-amphiphile: Synthesis, pH-Responsive Self-Assembly in Water, and Its Application in Controlled Drug Release.

    Science.gov (United States)

    Xia, Danyu; Li, Yang; Jie, Kecheng; Shi, Bingbing; Yao, Yong

    2016-06-17

    A new water-soluble cyclotriveratrylene (WCTV) was designed and synthesized, and benzyldimethyldodecylammonium chloride (G) was chosen as the guest molecule to construct a supra-amphiphile by the host-guest interaction between WCTV and G in water, which is pH responsive. The supra-amphiphiles self-assembled into vesicles in water. When the pH of the solution was below 7.0, the supra-amphiphile disassociated, and the vesicles collapsed. Then, the pH-responsive self-assembly system was utilized for controlled drug release.

  18. Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer-Aggregate Equilibrium.

    Science.gov (United States)

    Tao, Yuanyuan; Ma, Xiaoteng; Cai, Yaqian; Liu, Li; Zhao, Hanying

    2018-04-12

    Synthesis and self-assembly of bioconjugates composed of proteins and synthetic molecules have been widely studied because of the potential applications in medicine, biotechnology, and nanotechnology. One of the challenging research studies in this area is to develop organic solvent-free approaches to the synthesis and self-assembly of amphiphilic bioconjugates. In this research, dialysis-assisted approach, a method based on unimer-aggregate equilibrium, was applied in the coassembly of lysozyme and conjugate of cholesterol and glutathione (Ch-GSH). In phosphate buffer solution, amphiphilic Ch-GSH conjugate self-assembles into vesicles, and the vesicle solution is dialyzed against lysozyme solution. Negatively charged Ch-GSH unimers produced in the unimer-vesicle exchange equilibrium, diffuse across the dialysis membrane and have electrostatic interaction with positively charged lysozyme, resulting in the formation of Ch-GSH-lysozyme bioconjugate. Above a critical concentration, the three-component bioconjugate molecules self-assemble into bioactive vesicles.

  19. A theoretical study of colloidal forces near an amphiphilic polymer brush

    Science.gov (United States)

    Wu, Jianzhong

    2011-03-01

    Polymer-based ``non-stick'' coatings are promising as the next generation of effective, environmentally-friendly marine antifouling systems that minimize nonspecific adsorption of extracellular polymeric substances (EPS). However, design and development of such systems are impeded by the poor knowledge of polymer-mediated interactions of biomacromolecules with the protected substrate. In this work, a polymer density functional theory (DFT) is used to predict the potential of mean force between spherical biomacromolecules and amphiphilic copolymer brushes within a coarse-grained model that captures essential nonspecific interactions such as the molecular excluded volume effects and the hydrophobic energies. The relevance of theoretical results for practical control of the EPS adsorption is discussed in terms of the efficiency of different brush configurations to prevent biofouling. It is shown that the most effective antifouling surface may be accomplished by using amphiphilic brushes with a long hydrophilic backbone and a hydrophobic end at moderate grafting density.

  20. HPMA-based block copolymers promote differential drug delivery kinetics for hydrophobic and amphiphilic molecules.

    Science.gov (United States)

    Tomcin, Stephanie; Kelsch, Annette; Staff, Roland H; Landfester, Katharina; Zentel, Rudolf; Mailänder, Volker

    2016-04-15

    We describe a method how polymeric nanoparticles stabilized with (2-hydroxypropyl)methacrylamide (HPMA)-based block copolymers are used as drug delivery systems for a fast release of hydrophobic and a controlled release of an amphiphilic molecule. The versatile method of the miniemulsion solvent-evaporation technique was used to prepare polystyrene (PS) as well as poly-d/l-lactide (PDLLA) nanoparticles. Covalently bound or physically adsorbed fluorescent dyes labeled the particles' core and their block copolymer corona. Confocal laser scanning microscopy (CLSM) in combination with flow cytometry measurements were applied to demonstrate the burst release of a fluorescent hydrophobic drug model without the necessity of nanoparticle uptake. In addition, CLSM studies and quantitative calculations using the image processing program Volocity® show the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake. Our findings offer the possibility to combine the advantages of a fast release for hydrophobic and a controlled release for an amphiphilic molecule therefore pointing to the possibility to a 'multi-step and multi-site' targeting by one nanocarrier. We describe thoroughly how different components of a nanocarrier end up in cells. This enables different cargos of a nanocarrier having a consecutive release and delivery of distinct components. Most interestingly we demonstrate individual kinetics of distinct components of such a system: first the release of a fluorescent hydrophobic drug model at contact with the cell membrane without the necessity of nanoparticle uptake. Secondly, the intracellular detachment of the amphiphilic block copolymer from the particles' core after uptake occurs. This offers the possibility to combine the advantages of a fast release for a hydrophobic substance at the time of interaction of the nanoparticle with the cell surface and a controlled release for an amphiphilic molecule later on therefore

  1. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    International Nuclear Information System (INIS)

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-01

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.

  2. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.

    Science.gov (United States)

    Sabra, Sally; Abdelmoneem, Mona; Abdelwakil, Mahmoud; Mabrouk, Moustafa Taha; Anwar, Doaa; Mohamed, Rania; Khattab, Sherine; Bekhit, Adnan; Elkhodairy, Kadria; Freag, May; Elzoghby, Ahmed

    2017-01-01

    Micellization provides numerous merits for the delivery of water insoluble anti-cancer therapeutic agents including a nanosized 'core-shell' drug delivery system. Recently, hydrophobically-modified polysaccharides and proteins are attracting much attention as micelle forming polymers to entrap poorly soluble anti-cancer drugs. By virtue of their small size, the self-assembled micelles can passively target tumor tissues via enhanced permeation and retention effect (EPR). Moreover, the amphiphilic micelles can be exploited for active-targeted drug delivery by attaching specific targeting ligands to the outer micellar hydrophilic surface. Here, we review the conjugation techniques, drug loading methods, physicochemical characteristics of the most important amphiphilic polysaccharides and proteins used as anti-cancer drug delivery systems. Attention focuses on the mechanisms of tumor-targeting and enhanced anti-tumor efficacy of the encapsulated drugs. This review will highlight the remarkable advances of hydrophobized polysaccharide and protein micelles and their potential applications as anti-cancer drug delivery nanosystems. Micellar nanocarriers fabricated from amphiphilic natural polymers hold great promise as vehicles for anti-cancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning?

    Science.gov (United States)

    Lee, Ernest Y; Lee, Michelle W; Fulan, Benjamin M; Ferguson, Andrew L; Wong, Gerard C L

    2017-12-06

    Antimicrobial peptides (AMPs) are a diverse class of well-studied membrane-permeating peptides with important functions in innate host defense. In this short review, we provide a historical overview of AMPs, summarize previous applications of machine learning to AMPs, and discuss the results of our studies in the context of the latest AMP literature. Much work has been recently done in leveraging computational tools to design new AMP candidates with high therapeutic efficacies for drug-resistant infections. We show that machine learning on AMPs can be used to identify essential physico-chemical determinants of AMP functionality, and identify and design peptide sequences to generate membrane curvature. In a broader scope, we discuss the implications of our findings for the discovery of membrane-active peptides in general, and uncovering membrane activity in new and existing peptide taxonomies.

  4. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  5. New carbon-carbon linked amphiphilic carboranyl-porphyrins as boron neutron capture agents

    International Nuclear Information System (INIS)

    Vicente, M.G.H.; Wickramasinghe, A.; Shetty, S.J.; Smith, K.M.

    2000-01-01

    Novel amphiphilic carboranyl-porphyrins have been synthesized for Boron Neutron Capture Therapy (BNCT). These compounds have carbon-carbon bonds between the carborane residues and the porphyrin meso-phenyl groups, and contain 28-31% boron by weight . (author)

  6. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles.

    Science.gov (United States)

    Guo, Qianqian; Zhang, Tianqi; An, Jinxia; Wu, Zhongming; Zhao, Yu; Dai, Xiaomei; Zhang, Xinge; Li, Chaoxing

    2015-10-12

    To explore the effect of polymer structure on their self-assembled aggregates and their unique characteristics, this study was devoted to developing a series of amphiphilic block and random phenylboronic acid-based glycopolymers by RAFT polymerization. The amphiphilic glycopolymers were successfully self-assembled into spherically shaped nanoparticles with narrow size distribution in aqueous solution. For block and random copolymers with similar monomer compositions, block copolymer nanoparticles exhibited a more regular transmittance change with the increasing glucose level, while a more evident variation of size and quicker decreasing tendency in I/I0 behavior in different glucose media were observed for random copolymer nanoparticles. Cell viability of all the polymer nanoparticles investigated by MTT assay was higher than 80%, indicating that both block and random copolymers had good cytocompatibility. Insulin could be encapsulated into both nanoparticles, and insulin release rate for random glycopolymer was slightly quicker than that for the block ones. We speculate that different chain conformations between block and random glycopolymers play an important role in self-assembled nanoaggregates and underlying glucose-sensitive behavior.

  7. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates.

    Science.gov (United States)

    Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki

    2017-06-01

    Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.

  8. Site-selective modification of peptides: From "customizable units" to novel α-aryl and α-alkyl glycine derivatives, and components of branched peptides.

    Science.gov (United States)

    Romero-Estudillo, Iván; Saavedra, Carlos; Boto, Alicia; Álvarez, Eleuterio

    2015-09-01

    The creation of peptide libraries by site-selective modification of a few peptide substrates would increase the efficiency of discovery processes, but still is a real synthetic challenge. The site-selective modification of small peptides at serine or threonine residues, by using a short scission-addition procedure, allows the preparation of peptides with unnatural α-aryl glycines. In a similar way, the scission of hydroxyproline residues is the key step in the production of optically pure α-alkyl glycines which are precursors or components of branched peptides. With these versatile processes, a single peptide can be transformed into a variety of peptide derivatives. The process takes place under mild conditions, and good global yields are obtained. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 104: 650-662, 2015. © 2015 Wiley Periodicals, Inc.

  9. Well-defined critical association concentration and rapid adsorption at the air/water interface of a short amphiphilic polymer, amphipol A8-35: a study by Förster resonance energy transfer and dynamic surface tension measurements.

    Science.gov (United States)

    Giusti, Fabrice; Popot, Jean-Luc; Tribet, Christophe

    2012-07-17

    Amphipols (APols) are short amphiphilic polymers designed to handle membrane proteins (MPs) in aqueous solutions as an alternative to small surfactants (detergents). APols adsorb onto the transmembrane, hydrophobic surface of MPs, forming small, water-soluble complexes, in which the protein is biochemically stabilized. At variance with MP/detergent complexes, MP/APol ones remain stable even at extreme dilutions. Pure APol solutions self-associate into well-defined micelle-like globules comprising a few APol molecules, a rather unusual behavior for amphiphilic polymers, which typically form ill-defined assemblies. The best characterized APol to date, A8-35, is a random copolymer of acrylic acid, isopropylacrylamide, and octylacrylamide. In the present work, the concentration threshold for self-association of A8-35 in salty buffer (NaCl 100 mM, Tris/HCl 20 mM, pH 8.0) has been studied by Förster resonance energy transfer (FRET) measurements and tensiometry. In a 1:1 mol/mol mixture of APols grafted with either rhodamine or 7-nitro-1,2,3-benzoxadiazole, the FRET signal as a function of A8-35 concentration is essentially zero below a threshold concentration of 0.002 g·L(-1) and increases linearly with concentration above this threshold. This indicates that assembly takes place in a narrow concentration interval around 0.002 g·L(-1). Surface tension measurements decreases regularly with concentration until a threshold of ca. 0.004 g·L(-1), beyond which it reaches a plateau at ca. 30 mN·m(-1). Within experimental uncertainties, the two techniques thus yield a comparable estimate of the critical self-assembly concentration. The kinetics of variation of the surface tension was analyzed by dynamic surface tension measurements in the time window 10 ms-100 s. The rate of surface tension decrease was similar in solutions of A8-35 and of the anionic surfactant sodium dodecylsulfate when both compounds were at a similar molar concentration of n-alkyl moieties. Overall, the

  10. Synthesis of Mikto-Arm Star Peptide Conjugates.

    Science.gov (United States)

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  11. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  12. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    Energy Technology Data Exchange (ETDEWEB)

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  13. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  14. Synthesis of amphiphilic aminated inulin via 'click chemistry' and evaluation for its antibacterial activity.

    Science.gov (United States)

    Dong, Fang; Zhang, Jun; Yu, Chunwei; Li, Qing; Ren, Jianming; Wang, Gang; Gu, Guodong; Guo, Zhanyong

    2014-09-15

    Inulins are a group of abundant, water-soluble, renewable polysaccharides, which exhibit attractive bioactivities and natural properties. Improvement such as chemical modification of inulin is often performed prior to further utilization. We hereby presented a method to modify inulin at its primary hydroxyls to synthesize amphiphilic aminated inulin via 'click chemistry' to facilitate its chemical manipulation. Additionally, its antibacterial property against Staphylococcus aureus (S. aureus) was also evaluated and the best inhibitory index against S. aureus was 58% at 1mg/mL. As the amphiphilic aminated inulin is easy to prepare and exhibits improved bioactivity, this material may represent as an attractive new platform for chemical modifications of inulin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Acylation of Therapeutic Peptides

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Jensen, Simon Bjerregaard

    ) , which promotes intestinal growth and is used to treat bowel disorders such as inflammatory bowel diseases and short bowel syndrome, and the 32 amino acid salmon calcitonin (sCT), which lowers blood calcium and is employed in the treatment of post-menopausal osteoporosis and hypercalcemia. The two...... peptides are similar in size and structure, but oppositely charged at physiological pH. Both peptides were acylated with linear acyl chains of systematically increasing length, where sCT was furthermore acylated at two different positions on the peptide backbone. For GLP-2, we found that increasing acyl...... remained optimal overall. The results indicate that rational acylation of GLP-2 can increase its in vitro intestinal absorption, alone or in combination with permeation enhancers, and are consistent with the initial project hypothesis. For sCT, an unpredicted effect of acylation largely superseded...

  16. Peptide drugs to target G protein-coupled receptors.

    Science.gov (United States)

    Bellmann-Sickert, Kathrin; Beck-Sickinger, Annette G

    2010-09-01

    Major indications for use of peptide-based therapeutics include endocrine functions (especially diabetes mellitus and obesity), infectious diseases, and cancer. Whereas some peptide pharmaceuticals are drugs, acting as agonists or antagonists to directly treat cancer, others (including peptide diagnostics and tumour-targeting pharmaceuticals) use peptides to 'shuttle' a chemotherapeutic agent or a tracer to the tumour and allow sensitive imaging or targeted therapy. Significant progress has been made in the last few years to overcome disadvantages in peptide design such as short half-life, fast proteolytic cleavage, and low oral bioavailability. These advances include peptide PEGylation, lipidisation or multimerisation; the introduction of peptidomimetic elements into the sequences; and innovative uptake strategies such as liposomal, capsule or subcutaneous formulations. This review focuses on peptides targeting G protein-coupled receptors that are promising drug candidates or that have recently entered the pharmaceutical market. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Self-assembly of active amphiphilic Janus particles

    Science.gov (United States)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  18. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    OpenAIRE

    Chae, Pil Seok; Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit; Byrne, Bernadette; Lee, John K.; Gellman, Samuel H.

    2013-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al.

  19. Designing anticancer peptides by constructive machine learning.

    Science.gov (United States)

    Grisoni, Francesca; Neuhaus, Claudia; Gabernet, Gisela; Müller, Alex; Hiss, Jan; Schneider, Gisbert

    2018-04-21

    Constructive machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a generative model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on alpha-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Short bowel patients treated for two years with glucagon-like peptide 2 (GLP-2): compliance, safety, and effects on quality of life

    DEFF Research Database (Denmark)

    Jeppesen, P B; Lund, P; Gottschalck, I B

    2009-01-01

    BACKGROUND AND AIMS: Glucagon-like peptide 2 (GLP-2) has been shown to improve intestinal absorption in short bowel syndrome (SBS) patients in a short-term study. This study describes safety, compliance, and changes in quality of life in 11 SBS patients at baseline, week 13, 26, and 52 during two...... years of subcutaneous GLP-2 treatment, 400 microgram TID, intermitted by an 8-week washout period. METHODS: Safety and compliance was evaluated during the admissions. The Sickness Impact Profile (SIP), Short Form 36 (SF 36), and Inflammatory Bowel Disease Questionnaire (IBDQ) evaluated quality of life......-ascendo-anastomosis. The investigator excluded a patient due to unreliable feedback. Stoma nipple enlargement was seen in all 9 jejunostomy patients. Reported GLP-2 compliance was excellent (>93%). GLP-2 improved the overall quality of life VAS-score (4.1 +/- 2.8 cm versus 6.0 +/- 2.4 cm, P

  1. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    Armstrong, Don L; Zidovetzki, Raphael; Markovitch, Omer; Lancet, Doron

    2011-01-01

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  2. Glucose-Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization, Stabilization and Crystallization

    Science.gov (United States)

    Rana, Rohini R.; Gotfryd, Kamil; Rasmussen, Søren G. F.; Kruse, Andrew C.; Cho, Kyung Ho; Capaldi, Stefano; Carlsson, Emil; Kobilka, Brian; Loland, Claus J.; Gether, Ulrik; Banerjee, Surajit

    2012-01-01

    The development of a new class of surfactants for membrane protein manipulation, “GNG amphiphiles”, is reported. These amphiphiles display promising behavior for membrane proteins, as demonstrated recently by the high resolution structure of a sodium-pumping pyrophosphatase reported by Kellosalo et al. PMID:23165475

  3. Theory of the Flower Micelle Formation of Amphiphilic Random and Periodic Copolymers in Solution

    Directory of Open Access Journals (Sweden)

    Takahiro Sato

    2018-01-01

    Full Text Available The mixing Gibbs energy Δgm for the flower-micelle phase of amphiphilic random and periodic (including alternating copolymers was formulated on the basis of the lattice model. The formulated Δgm predicts (1 the inverse proportionality of the aggregation number to the degree of polymerization of the copolymer, (2 the increase of the critical micelle concentration with decreasing the hydrophobe content, and (3 the crossover from the micellization to the liquid–liquid phase separation as the hydrophobe content increases. The transition from the uni-core flower micelle to the multi-core flower necklace as the degree of polymerization increases was also implicitly indicated by the theory. These theoretical results were compared with experimental results for amphiphilic random and alternating copolymers reported so far.

  4. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  5. Synthesis and Application of a New Amphiphilic Antioxidant.

    Science.gov (United States)

    Soliman, Hanaa M; Arafat, Shaker M; Basuny, Amany M; Shattory, Y El-

    2017-11-01

    A new amphiphilic antioxidant (tannyl stearate) derived from reaction of tannic acid with stearic acid was synthesized in order to improve tannic acid solubility in lipid materials. This reaction gives many products having different degree of esterification (tannyl mono, di, tri, tetra, penta, hexa, hepta……stearate) which were separated using silica gel column chromatography and tentative identification was carried out using thin layer chromatography (TLC). The intrinsic viscosities (η) were used to differentiate between the different molecular weight of the produced esters 1) . Tannyl penta stearate is assumed to be the most suitable amphiphilic antioxidant derivative, where those derivatives with less degree of esterification would be less soluble in fat, and those of higher degree of esterification would exhaust more hydroxyl group that cause decreases of antioxidant activity. The structure of tannyl penta stearate was approved depending on its chemical analysis and spectral data (IR, H 1 NMR,). The emulsification power of tannyl penta stearate was then determined according to method described by El-Sukkary et al. 2) , in order to prove its amphiphilic property. Then tannyl penta stearate was tested for its antioxidant and radical scavenging activities in three different manners, those are, lipid oxidation in sunflower oil using Rancimat, (DPPH) free radical scavenging and total antioxidant activity. {Pure tannic acid (T), butylhydroxyanisol (BHA) and butylhydroxytoluene (BHT) were used as reference antioxidant radical saving compounds}. Then tannyl penta stearate was added to sunflower oil, frying process was carried out and all physicochemical parameters of the oil were considered, and compared to other reference antioxidant in order to study the effect of this new antioxidant toward oil stability. Acute oral toxicity of the tannyl penta stearate was carried out using albino mice of 21-25 g body weight to determine its safety according to the method

  6. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  7. Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA–PEG–PLGA gel

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Ji, Xiaoqing; Shi, Chunhuan; Liu, Jing; Wang, Haiyang; Luan, Yuxia

    2014-01-01

    The amantadine drug and oleic acid surfactant are used to form amantadine-based ion pair amphiphiles based on proton transfer reaction between the drug and the surfactant molecules. The ion pair amphiphiles are characterized by 1 H-nuclear magnetic resonance, Fourier transform infrared spectroscopy, and X-ray diffraction. Self-assembly properties of amantadine-based ion pair amphiphiles are studied by surface tension determination, transmission electron microscopy, zeta potential, and dynamic light scattering. The aggregation behavior studies indicate that the as-prepared ion pair amphiphiles can self-assemble into vesicles with the size of 200–300 nm in aqueous solution. The drug release results show that the amantadine release rate could be well controlled by incorporating the amantadine-based ion pair vesicles in poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA–PEG–PLGA) copolymer hydrogel. The drug release from the AT–OA vesicle-loaded PLGA–PEG–PLGA hydrogel is significantly inhibited in comparison with the AT-loaded PLGA–PEG–PLGA hydrogel. The present work thus demonstrates that the vesicle-loaded hydrogel is a good candidate for the drug delivery system with long-term controlled drug release behavior

  8. Role of nano-range amphiphilic polymers in seed quality enhancement of soybean and imidacloprid retention capacity on seed coatings.

    Science.gov (United States)

    Adak, Totan; Kumar, Jitendra; Shakil, Najam A; Pandey, Sushil

    2016-10-01

    Nano-size and wide-range solubility of amphiphilic polymers (having both hydrophilic and hydrophobic blocks) can improve uniformity in seed coatings. An investigation was carried out to assess the positive effect of amphiphilic polymers over hydrophilic or hydrophobic polymers as seed coating agents and pesticide carriers. Amphiphilic polymers with 127.5-354 nm micelle size were synthesized in the laboratory using polyethylene glycols and aliphatic di-acids. After 6 months of storage, germination of uncoated soybean seeds decreased drastically from 97.80 to 81.55%, while polymer-coated seeds showed 89.44-95.92% germination. Similarly, vigour index-1 was reduced from 3841.10 to 2813.06 for control seeds but ranged from 3375.59 to 3844.60 for polymer-coated seeds after 6 months. The developed imidacloprid formulations retained more pesticide on soybean seed coatings than did a commercial formulation (Gaucho(®) 600 FS). The time taken for 50% release of imidacloprid from seed coatings in water was 7.12-9.11 h for the developed formulations and 0.41 h for the commercial formulation. Nano-range amphiphilic polymers can be used to protect soybean seeds from ageing. Formulations as seed treatments may produce improved and sustained efficacy with minimum environmental contamination. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. How crystallisation of turkey lysozyme is affected by contamination with hen lysozyme

    DEFF Research Database (Denmark)

    Ishøy, T.; Larsen, S.

    In this project, lipid monolayers at air/water interfaces and lipid-bilayer membranes are used as templates for studying the interaction of peptides and amphiphilic proteins with lipid aggregates. This experimental investigation is related to modelstudies of biological membrane structure and -fun......In this project, lipid monolayers at air/water interfaces and lipid-bilayer membranes are used as templates for studying the interaction of peptides and amphiphilic proteins with lipid aggregates. This experimental investigation is related to modelstudies of biological membrane structure...

  10. Development of novel ligands for peptide GPCRs.

    Science.gov (United States)

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Preparation and Microbiological Evaluation of Amphiphilic Kanamycin-Lipoamino Acid Ion-Pairs

    Directory of Open Access Journals (Sweden)

    Rosario Pignatello

    2014-05-01

    Full Text Available Amphiphilic ion-pairs of kanamycin (KAN were prepared by evaporation of a water-ethanol co-solution of KAN base and a lipoamino acid bearing a 12-carbon atoms alkyl side chain (LAA12, at different molar ratios. Infrared spectroscopy confirmed the structure of ion-pairs, while differential scanning calorimetry (DSC and powder X-ray diffractometry (PXRD studies supported the formation of new saline species with a different crystalline structure than the starting components. The solubility pattern shown in a range of both aqueous and organic solvents confirmed that the ion-pairs possess an amphiphilic character. The LAA12 counter-ion showed not to improve the antibacterial activity of KAN, suggesting that such chemical strategy is not able to favor the penetration of this drug inside the bacteria cells. Nevertheless, a slight improving, i.e., a one-fold dilution, was observed in E. coli. The present study can also serve as the basis for a further evaluation of LAA ion-pairing of antibiotics, as a means to improve the loading of hydrophilic drugs into lipid-based nanocarriers.

  12. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Sandeep Chakraborty

    2015-06-01

    Full Text Available The therapeutic potential of α-helical anti-microbial peptides (AH-AMP to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL, we elucidate a search methodology (SCALPEL that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens (Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20, and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25. The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.

  14. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and plasma nanotexturing.

    Science.gov (United States)

    Ellinas, K; Tserepi, A; Gogolides, E

    2011-04-05

    Ordered, hierarchical (triple-scale), superhydrophobic, oleophobic, superoleophobic, and amphiphilic surfaces on poly(methyl methacrylate) PMMA polymer substrates are fabricated using polystyrene (PS) microparticle colloidal lithography, followed by oxygen plasma etching-nanotexturing (for amphiphilic surfaces) and optional subsequent fluorocarbon plasma deposition (for amphiphobic surfaces). The PS colloidal microparticles were assembled by spin-coating. After etching/nanotexturing, the PMMA plates are amphiphilic and exhibit hierarchical (triple-scale) roughness with microscale ordered columns, and dual-scale (hundred nano/ten nano meter) nanoscale texture on the particles (top of the column) and on the etched PMMA surface. The spacing, diameter, height, and reentrant profile of the microcolumns are controlled with the etching process. Following the design requirements for superamphiphobic surfaces, we demonstrate enhancement of both hydrophobicity and oleophobicity as a result of hierarchical (triple-scale) and re-entrant topography. After fluorocarbon film deposition, we demonstrate superhydrophobic surfaces (contact angle for water 168°, compared to 110° for a flat surface), as well as superoleophobic surfaces (153° for diiodomethane, compared to 80° for a flat surface).

  15. A Review of the Role of Amphiphiles in Biomass to Ethanol Conversion

    Directory of Open Access Journals (Sweden)

    William Gibbons

    2013-04-01

    Full Text Available One of the concerns for economical production of ethanol from biomass is the large volume and high cost of the cellulolytic enzymes used to convert biomass into fermentable sugars. The presence of acetyl groups in hemicellulose and lignin in plant cell walls reduces accessibility of biomass to the enzymes and makes conversion a slow process. In addition to low enzyme accessibility, a rapid deactivation of cellulases during biomass hydrolysis can be another factor contributing to the low sugar recovery. As of now, the economical reduction in lignin content of the biomass is considered a bottleneck, and raises issues for several reasons. The presence of lignin in biomass reduces the swelling of cellulose fibrils and accessibility of enzyme to carbohydrate polymers. It also causes an irreversible adsorption of the cellulolytic enzymes that prevents effective enzyme activity and recycling. Amphiphiles, such as surfactants and proteins have been found to improve enzyme activity by several mechanisms of action that are not yet fully understood. Reduction in irreversible adsorption of enzyme to non-specific sites, reduction in viscosity of liquid and surface tension and consequently reduced contact of enzyme with air-liquid interface, and modifications in biomass chemical structure are some of the benefits derived from surface active molecules. Application of some of these amphiphiles could potentially reduce the capital and operating costs of bioethanol production by reducing fermentation time and the amount of enzyme used for saccharification of biomass. In this review article, the benefit of applying amphiphiles at various stages of ethanol production (i.e., pretreatment, hydrolysis and hydrolysis-fermentation is reviewed and the proposed mechanisms of actions are described.

  16. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy.

    Science.gov (United States)

    Braun, Michael B; Traenkle, Bjoern; Koch, Philipp A; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-21

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies.

  17. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    Science.gov (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity.

  18. Tetrazole amphiphile inducing growth of conducting polymers hierarchical nanostructures and their electromagnetic absorption properties

    Science.gov (United States)

    Xie, Aming; Sun, Mengxiao; Zhang, Kun; Xia, Yilu; Wu, Fan

    2018-05-01

    Conducting polymers (CPs) at nano scales endow materials with special optical, electrical, and magnetic properties. The crucial factor to construct and regulate the micro-structures of CPs is the inducing reagent, particular in its chemical structure, such active sites, self-assembling properties. In this paper, we design and synthesize an amphiphile bearing tetrazole moiety on its skeleton, and use this amphiphile as an inducing reagent to prepare and regulate the micro-structures of a series of CPs including polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene) and poly(p-phenylenediamine). Because of the unique electric properties of CPs and size effect, we next explored the electromagnetic absorption performances of these CPs nanostructures. A synergetic combination of electric loss and magnetic loss is used to explain the absorption mechanism of these CPs nano-structures.

  19. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng

    2014-10-27

    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  20. Optimization of antibacterial peptides by genetic algorithms and cheminformatics

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Jenssen, Håvard; Cheung, Warren A.

    2011-01-01

    Pathogens resistant to available drug therapies are a pressing global health problem. Short, cationic peptides represent a novel class of agents that have lower rates of drug resistance than derivatives of current antibiotics. Previously, we created a software system utilizing artificial neural...... 47 of the top rated 50 peptides chosen from an in silico library of nearly 100 000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement...

  1. Anti-Mycobacterial Peptides: From Human to Phage

    Directory of Open Access Journals (Sweden)

    Tieshan Teng

    2015-01-01

    Full Text Available Mycobacterium tuberculosis is the major pathogen of tuberculosis (TB. With the growing problem of M. tuberculosis resistant to conventional antibiotics, especially multi-drug resistant tuberculosis (MDR-TB and extensively-drug resistant tuberculosis (XDR-TB, the need for new TB drugs is now more prominent than ever. Among the promising candidates for anti-TB drugs, anti-mycobacterial peptides have a few advantages, such as low immunogenicity, selective affinity to prokaryotic negatively charged cell envelopes, and diverse modes of action. In this review, we summarize the recent progress in the anti-mycobacterial peptides, highlighting the sources, effectiveness and bactericidal mechanisms of these antimicrobial peptides. Most of the current anti-mycobacterial peptides are derived either from host immune cells, bacterial extraction, or mycobacteriophages. Besides trans-membrane pore formation, which is considered to be the common bactericidal mechanism, many of the anti-mycobacterial peptides have the second non-membrane targets within mycobacteria. Additionally, some antimicrobial peptides play critical roles in innate immunity. However, a few obstacles, such as short half-life in vivo and resistance to antimicrobial peptides, need overcoming before clinical applications. Nevertheless, the multiple functions of anti-mycobacterial peptides, especially direct killing of pathogens and immune-modulators in infectious and inflammatory conditions, indicate that they are promising candidates for future drug development.

  2. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui-Kang [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China)

    2014-08-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior.

  3. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    International Nuclear Information System (INIS)

    Yang, Hui-Kang; Zhang, Li-Ming

    2014-01-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior

  4. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...... developed by Tomlinson, the absorption cross section for the dimerization process in a uracil-ornithine-based hexamer is determined to be 9 x 10(-20) cm(2). A large change in the transmission due to irradiation in the UV area may make it possible to realize multilevel storage in a thin film of the peptides....

  5. Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog towards leukemia cells.

    Science.gov (United States)

    Sang, Ming; Zhang, Jiaxin; Zhuge, Qiang

    2017-05-15

    Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Methotrexate-Loaded Four-Arm Star Amphiphilic Block Copolymer Elicits CD8+ T Cell Response against a Highly Aggressive and Metastatic Experimental Lymphoma.

    Science.gov (United States)

    Hira, Sumit Kumar; Ramesh, Kalyan; Gupta, Uttam; Mitra, Kheyanath; Misra, Nira; Ray, Biswajit; Manna, Partha Pratim

    2015-09-16

    We have synthesized a well-defined four-arm star amphiphilic block copolymer [poly(DLLA)-b-poly(NVP)]4 [star-(PDLLA-b-PNVP)4] that consists of D,L-lactide (DLLA) and N-vinylpyrrolidone (NVP) via the combination of ring-opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthesis of the polymer was verified by 1H NMR spectroscopy and gel permeation chromatography (GPC). The amphiphilic four-arm star block copolymer forms spherical micelles in water as demonstrated by transmission electron microscopy (TEM) and 1H NMR spectroscopy. Pyrene acts as a probe to ascertain the critical micellar concentration (cmc) by using fluorescence spectroscopy. Methotrexate (MTX)-loaded polymeric micelles of star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer were prepared and characterized by fluorescence and TEM studies. Star-(PDLLA15-b-PNVP10)4 copolymer was found to be significantly effective with respect to inhibition of proliferation and lysis of human and murine lymphoma cells. The amphiphilic block copolymer causes cell death in parental and MTX-resistant Dalton lymphoma (DL) and Raji cells. The formulation does not cause hemolysis in red blood cells and is tolerant to lymphocytes compared to free MTX. Therapy with MTX-loaded star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer micelles prolongs the life span of animals with neoplasia by reducing the tumor load, preventing metastasis and augmenting CD8+ T cell-mediated adaptive immune responses.

  8. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a

  9. Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine beta-hydroxylase

    DEFF Research Database (Denmark)

    Bjerrum, Ole Jannik; Helle, K B; Bock, Elisabeth Marianne

    1979-01-01

    . The dopamine beta-hydroxylases of the buffer and membrane fractions were antigenically identical, but differed in their amphiphilicity, as demonstrated by the change in precipitation patterns on removal of Triton X-100 from the gel, on charge-shift crossed immunoelectrophoresis and on crossed hydrophobic...

  10. Multiple cationic amphiphiles induce a Niemann-Pick C phenotype and inhibit Ebola virus entry and infection.

    Directory of Open Access Journals (Sweden)

    Charles J Shoemaker

    Full Text Available Ebola virus (EBOV is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50 1.6 to 8.0 µM at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1, a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.

  11. Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    Science.gov (United States)

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies. PMID:26791954

  12. Nucleation and Growth of Ordered Arrays of Silver Nanoparticles on Peptide Nanofibers: Hybrid Nanostructures with Antimicrobial Properties.

    Science.gov (United States)

    Pazos, Elena; Sleep, Eduard; Rubert Pérez, Charles M; Lee, Sungsoo S; Tantakitti, Faifan; Stupp, Samuel I

    2016-05-04

    Silver nanoparticles have been of great interest as plasmonic substrates for sensing and imaging, catalysts, or antimicrobial systems. Their physical properties are strongly dependent on parameters that remain challenging to control such as size, chemical composition, and spatial distribution. We report here on supramolecular assemblies of a novel peptide amphiphile containing aldehyde functionality in order to reduce silver ions and subsequently nucleate silver metal nanoparticles in water. This system spontaneously generates monodisperse silver particles at fairly regular distances along the length of the filamentous organic assemblies. The metal-organic hybrid structures exhibited antimicrobial activity and significantly less toxicity toward eukaryotic cells. Metallized organic nanofibers of the type described here offer the possibility to create hydrogels, which integrate the useful functions of silver nanoparticles with controllable metallic content.

  13. Amphiphilic block copolymers as efficiency boosters in microemulsions a SANS investigation of the role of polymers

    CERN Document Server

    Endo, H; Mihailescu, M; Monkenbusch, M; Gompper, G; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    The effect of amphiphilic block copolymers on ternary microemulsions (water, oil and non-ionic surfactant) is investigated. Small amounts of PEP-PEO block copolymer lead to a dramatic expansion of the one-phase region where water and oil can be solubilized by the mediation of surfactant molecules. Small-angle neutron-scattering experiments employing a high-precision two-dimensional contrast-variation technique demonstrate that the polymer is distributed uniformly on the surfactant membrane, where it modifies the membrane curvature elasticity. Furthermore, a new approach to determine the bending rigidity of an amphiphilic membrane is proposed, which is precise enough to measure the logarithmic scale dependence of the bending rigidity and its universal prefactor in bicontinuous microemulsions. (orig.)

  14. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Okarvi, S.M. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, Riyadh (Saudi Arabia)

    2001-07-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with {sup 18}F is the laborious and time-consuming preparation of the {sup 18}F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with {sup 18}F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with {sup 18}F. The {sup 18}F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of {sup 18}F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in {sup 18}F-labelled biologically active peptides used in PET. (orig.)

  15. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals

    International Nuclear Information System (INIS)

    Okarvi, S.M.

    2001-01-01

    The application of biologically active peptides labelled with positron-emitting nuclides has emerged as a useful and interesting field in nuclear medicine. Small synthetic receptor-binding peptides are currently the preferred agents over proteins and antibodies for diagnostic imaging of various tumours. Due to the smaller size of peptides, both higher target-to-background ratios and rapid blood clearance can often be achieved with radiolabelled peptides. Hence, short-lived positron emission tomography (PET) isotopes are potential candidates for labelling peptides. Among a number of positron-emitting nuclides, fluorine-18 appears to be the best candidate for labelling bioactive peptides by virtue of its favourable physical and nuclear characteristics. The major disadvantage of labelling peptides with 18 F is the laborious and time-consuming preparation of the 18 F labelling agents. In recent years, various techniques have been developed which allow efficient labelling of peptides with 18 F without affecting their receptor-binding properties. Moreover, the development of a variety of prosthetic groups has facilitated the efficient and site-specific labelling of peptides with 18 F. The 18 F-labelled peptides hold enormous clinical potential owing to their ability to quantitatively detect and characterise a wide variety of human diseases when using PET. Recently, a number of 18 F-labelled bioactive peptides have shown great promise as diagnostic imaging agents. This review presents the recent developments in 18 F-labelled biologically active peptides used in PET. (orig.)

  16. Self-assembly of block copolymer-based ionic supramolecules based upon multi-tail amphiphiles

    DEFF Research Database (Denmark)

    Asad Ayoubi, M.; Almdal, Kristoffer; Zhu, K.

    2015-01-01

    Utilising simple acid-base titration chemistry, a new family of Linear-b-Amphiphilic Comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] featuring multi-tail side-chains have been synthesized and examined by synchrotron SAXS. To three different parent diblock copolymers of poly...

  17. Novel amphiphilic poly(dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property

    Science.gov (United States)

    Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2017-08-01

    The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.

  18. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  19. Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica

    Directory of Open Access Journals (Sweden)

    Ka H. Wong

    2017-06-01

    Full Text Available Hevein and hevein-like peptides are disulfide-constrained chitin-binding cysteine-rich peptides. They are divided into three subfamilies, 6C-, 8C-, and 10C-hevein-like peptides, based on the number of cysteine residues. In addition, hevein-like peptides can exist in two forms, short and long. The long C-terminal form found in hevein and 10C-hevein-like peptides contain a C-terminal protein cargo. In contrast, the short form without a protein cargo is found in all three subfamilies. Here, we report the discovery and characterization of two novel glutamine-rich and protein cargo-free 8C-hevein-like peptides, vaccatides vH1 and vH2, from Vaccaria hispanica of the Caryophyllaceae family. Proteomic analyses showed that the vaccatides are 40–41 amino acids in length and contain a chitin-binding domain. NMR determination revealed that vaccatide vH2 displays a highly compact structure with a N-terminal cystine knot and an addition C-terminal disulfide bond. Stability studies showed that this compact structure renders vaccatide vH2 resistant to thermal, chemical and proteolytic degradation. The chitin-binding vH2 was shown to inhibit the mycelium growth of four phyto-pathogenic fungal strains with IC50 values in the micromolar range. Our findings show that vaccatides represent a new family of 8C-hevein-like peptides, which are protein cargo-free and glutamine-rich, characteristics that differentiate them from the prototypic hevein and the 10C-hevein-like peptides. In summary, this study enriches the existing library of hevein-like peptides and provides insight into their molecular diversity in sequence, structure and biosynthesis. Additionally, their highly disulfide-constrained structure could be used as a scaffold for developing metabolically and orally active peptidyl therapeutics.

  20. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline-based amphiphilic block copolymers prepared by CuAAC click chemistry

    Directory of Open Access Journals (Sweden)

    S. Gulyuz

    2018-02-01

    Full Text Available Synthesis and characterization of well-defined amphiphilic block copolymers containing poly(2-ethyl-2-oxazoline as hydrophilic block and poly(ε-caprolactone or poly(L-lactide as hydrophobic block is achieved by copper-catalyzed azide-alkyne cycloaddition (CuAAC click chemistry. The clickable precursors, α-alkyne-functionalized poly(ε-caprolactone and poly(L-lactide and ω-azido-functionalized poly(2-ethyl-2-oxazoline are simply prepared and joined using copper sulfate/ascorbic acid catalyst system at room temperature. The structures of precursors and amphiphilic block copolymers are characterized by spectroscopic, chromatographic and thermal analyses. The cytotoxic activities of resulting amphiphilic block copolymers and their precursors are investigated in the prostate epithelial and cancer cells under in-vitro conditions. The treatment of the healthy prostate epithelial cell line PNT1A reveals that no significant cytotoxicity, whereas some significant toxic effects on the prostate cancer cell lines are observed.

  1. Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies

    International Nuclear Information System (INIS)

    Fontes, Andre; Prata, M. Isabel M.; Geraldes, Carlos F.G.C.; Andre, Joao P.

    2011-01-01

    In this work, we report on a synthetic strategy using amphiphilic DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelators bearing a variable-sized α-alkyl chain at one of the pendant acetate arms (from 6 to 14 carbon atoms), compatible with their covalent coupling to amine-bearing biomolecules. The amphiphilic behavior of the micelles-forming Ga(III) chelates (critical micellar concentration), their stability in blood serum and their lipophilicity (logP) were investigated. Biodistribution studies with the 67 Ga-labeled chelates were performed in Wistar rats, which showed a predominant liver uptake with almost no traces of the radiochelates in the body after 24 h.

  2. C-terminal peptide extension via gas-phase ion/ion reactions

    Science.gov (United States)

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  3. Antimicrobial Peptides for Therapeutic Applications: A Review

    Directory of Open Access Journals (Sweden)

    Tsogbadrakh Mishig-Ochir

    2012-10-01

    Full Text Available Antimicrobial peptides (AMPs have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.

  4. Recurrent Neural Network Model for Constructive Peptide Design.

    Science.gov (United States)

    Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-02-26

    We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries.

  5. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  6. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR.

    Science.gov (United States)

    Afonin, Sergii; Dürr, Ulrich H N; Glaser, Ralf W; Ulrich, Anne S

    2004-02-01

    Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur. Copyright 2004 John Wiley & Sons, Ltd.

  7. Comprehensive computational design of ordered peptide macrocycles

    Science.gov (United States)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2018-01-01

    Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347

  8. Novel self-associative and multiphase nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives

    DEFF Research Database (Denmark)

    Eenschooten, Corinne; Vaccaro, Andrea; Delie, Florence

    2012-01-01

    The purpose of the present study was to investigate the physicochemical properties in aqueous media of amphiphilic hyaluronic acid (HA) derivatives obtained by reaction of HA’s hydroxyl groups with octenyl succinic anhydride (OSA). The self-associative properties of the resulting octenyl succinic...

  9. Short-acting glucagon-like peptide-1 receptor agonists as add-on to insulin therapy in type 1 diabetes

    DEFF Research Database (Denmark)

    Albèr, Anders; Brønden, Andreas; Knop, Filip K

    2017-01-01

    emptying in patients with type 1 diabetes, which could translate into effective lowering of postprandial glucose excursions; however, these observations regarding short-acting GLP-1RAs are all derived from small open-label trials and should thus be interpreted with caution. In the present paper we review......A large proportion of patients with type 1 diabetes do not reach their glycaemic target of glycated hemoglobin (HbA1c) type 1 diabetes are overweight and obese. Treatment of type 1 diabetes is based on insulin therapy......, which is associated with well-described and unfortunate adverse effects such as hypoglycaemia and increased body weight. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are the focus of increasing interest as a possible adjunctive treatment to insulin in type 1 diabetes because...

  10. Optimization of protein and peptide drugs based on the mechanisms of kidney clearance.

    Science.gov (United States)

    Huang, Jiaguo; Wu, Huizi

    2018-05-30

    Development of proteins and peptides into drugs has been considered as a promising strategy to target certain diseases. However, only few proteins and peptides has been approved as new drugs into the market each year. One major problem is that proteins and peptides often exhibit short plasma half-life times, which limits the application for their clinical use. In most cases a short half-life time is not effective to deliver sufficient amount of drugs to the target organs and tissues, which is generally caused by fast renal clearance and low plasma stability due to proteolytic degradation during systemic circulation, because the most common clearance pathway of small proteins and peptides is through glomerular filtration by the kidneys. In this review, enzymatic degradation of proteins and peptides were discussed. Furthermore, several approaches to lengthen the half-life of peptides and proteins drugs based on the unique structures of glomerular capillary wall and the mechanisms of glomerular filtration were summarized, such as increasing the size and hydrodynamic diameter; increasing the negative charge to delay the filtration; increasing plasma protein binding to decrease plasma clearance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Synthesis of amphiphilic macrocyclic molecules from family of aza-porphyrins and study in Langmuir-Blodgett films; Synthese de molecules macrocycliques amphiphiles de la famille des azaporphyrines et etude en films de Langmuir-Blodgett

    Energy Technology Data Exchange (ETDEWEB)

    Palacin, Serge

    1988-03-04

    The cellular automata, also called formal neurons, directly inspired by the knowledge concerning the nervous system, are able to mimic some basic processes of brain, as shape recognition, connecting memory, information sorting... This work aims to build a molecular structure able to fit the working rules of a bidimensional cellular automata. So, amphiphilic molecules belonging to the aza-porphyrin family are synthesized and organized into a planar paving by the Langmuir-Blodgett technique. The regular structure of the outcoming ultra-thin films is studied by linear dichroism and anisotropic electron spin resonance. The physico-chemical behaviour of the amphiphilic molecules is studied and brings about an explanation of the redox phenomena which are observed on the monomolecular film on the water surface. So are we able to outline the future chemical addressing ways of the bidimensional cellular automata. In the end of this dissertation, different ways likely to insure covalent bindings between the active sites and allow the transfer of information within the cellular network are discussed. (author) [French] Les reseaux d'automates, aussi appeles neurones formels, directement inspires par les connaissances nouvelles concernant le fonctionnement du systeme nerveux, sont a l'heure actuelle capables de reproduire certaines operations fondamentales du cerveau, telles que la reconnaissance de forme, la memoire associative, le tri d'information... Le travail a pour but de realiser une structure moleculaire susceptible d'obeir aux regles de fonctionnement d'un automate cellulaire bi-dimensionnel. Dans ce but, des molecules amphiphiles de la famille des azaporphyrines sont synthetisees et organisees en un pavage plan par la methode de Langmuir-Blodgett. La structure reguliere des films ultraminces obtenus est determinee par dichroisme lineaire et resonance paramagnetique electronique anisotrope. Les caracteristiques physico-chimiques des molecules amphiphiles sont etudiees

  12. Identification of Cyclin A Binders with a Fluorescent Peptide Sensor.

    Science.gov (United States)

    Pazos, Elena; Mascareñas, José L; Vázquez, M Eugenio

    2016-01-01

    A peptide sensor that integrates the 4-dimethylaminophthalimide (4-DMAP) fluorophore in a short cyclin A binding sequence displays a large fluorescence emission increase upon interacting with the cyclin A Binding Groove (CBG). Competitive displacement assays of this probe allow the straightforward identification of peptides that interact with the CBG, which could potentially block the recognition of CDK/cyclin A kinase substrates.

  13. Polymeric peptide pigments with sequence-encoded properties

    Energy Technology Data Exchange (ETDEWEB)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah; Scott, Gary G.; Humagain, Sunita; Hekstra, Doeke R.; Yoo, Barney; Frederix, Pim W. J. M.; Li, Tai-De; Abzalimov, Rinat R.; Greenbaum, Steven G.; Tuttle, Tell; Hu, Chunhua; Bettinger, Christopher J.; Ulijn, Rein V.

    2017-06-08

    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.

  14. A new class of amphiphiles: annelids; Une nouvelle classe d'amphiphiles: les annelides

    Energy Technology Data Exchange (ETDEWEB)

    Markovitsi, Dimitra

    1983-12-14

    This research thesis presents annelids, organometallic compounds which may form into organised phases. The author describes the synthesis of an amphipathic ligand of its cobaltic and cupric complexes. The formation of micelles and of thermotropic and lyotropic liquid crystals is highlighted. The copper (II) annelid environment is studied by electronic paramagnetic resonance spectroscopy. The author demonstrates, in micellar phase, the effect of molecular cooperativity on acid-base balance, on metallic ion complexation, on the photo-sensitized electronic transfer, and on the formation of poly-nuclear complexes [French] Les annelides, composes organometalliques susceptibles de former des phases organisees, sont presentes. La synthese d'un ligand amphipathique et de ses complexes cobaltique et cuivrique est decrite. La formation de micelles et de cristaux liquides, thermotropes et lyotropes, a l'aide de ces amphiphiles, est mise en evidence. L'environnement de l'annelide de cuivre (II) est etudie par spectroscopie de resonance paramagnetique electronique. L'effet de la cooperativite moleculaire sur l'equilibre acidobasique, sur la complexation des ions metalliques, sur le transfert electronique photosensibilise et sur la formation des complexes polynucleaires est demontre en phase micellaire. (auteur)

  15. Proinsulin C-peptide interferes with insulin fibril formation

    International Nuclear Information System (INIS)

    Landreh, Michael; Stukenborg, Jan-Bernd; Willander, Hanna; Söder, Olle; Johansson, Jan; Jörnvall, Hans

    2012-01-01

    Highlights: ► Insulin and C-peptide can interact under insulin fibril forming conditions. ► C-peptide is incorporated into insulin aggregates and alters aggregation lag time. ► C-peptide changes insulin fibril morphology and affects backbone accessibility. ► C-peptide may be a regulator of fibril formation by β-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic β-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  16. Proinsulin C-peptide interferes with insulin fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  17. Structure and reactivity in amphiphile-water micelles

    International Nuclear Information System (INIS)

    Chevalier, Yves

    1985-01-01

    Following a review of the general properties of micelles, this report contains two parts: - A structural study of octylphosphate micelles. Important structural changes have been evidenced by mean of small angle neutron scattering as the electrical charge of the interface is varied. The NMR relaxation study of the conformation of the hydrocarbon chains has shown that the micellar core is disordered in contrast with the interface which is rather structured. The diffusion motions in the interface and the segmental motions of the chains are fast. - Studies on the reactivity in micelles have been carried out. A large micellar effect on the complexation of transition ions by amphiphilic ligands is evidenced. The problem of solute localization in micelles is developed with few examples. (author) [fr

  18. Biocompatible Materials Based on Self-Assembling Peptides on Ti25Nb10Zr Alloy: Molecular Structure and Organization Investigated by Synchrotron Radiation Induced Techniques

    Directory of Open Access Journals (Sweden)

    Valeria Secchi

    2018-03-01

    Full Text Available In this work, we applied advanced Synchrotron Radiation (SR induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel β-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its β-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5–200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS, angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

  19. Differential thermodynamic signature of carbon nanomaterials using amphiphilic micellar probe

    Science.gov (United States)

    Bhattacharyya, Tamoghna; Dasgupta, Anjan Kr

    2018-04-01

    The thermodynamic signature of single-wall carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and reduced graphene oxide (rG-O) using amphiphilic micellar probe has been explored. The study reveals an intricate correlation between nano-surface topology and calorimetric profile of SWCNTs, MWCNTs and rG-O. The critical micelle concentration (CMC) is found to be sensitive to the topological diversity of nanomaterials. The study explores a thermodynamic approach to characterize the nano-surface topology of SWCNTs, MWCNTs and graphene surface.

  20. Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Andre [Centro de Quimica, Campus de Gualtar, Universidade do Minho, 4710-057, Braga (Portugal); Prata, M. Isabel M. [IBILI, Faculdade de Medicina, Universidade de Coimbra, 3548, Coimbra (Portugal); Geraldes, Carlos F.G.C. [Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3001-401, Coimbra (Portugal); Centro de Neurociencias e Biologia Celular, Universidade de Coimbra, 3001-401, Coimbra (Portugal); Andre, Joao P., E-mail: jandre@quimica.uminho.p [Centro de Quimica, Campus de Gualtar, Universidade do Minho, 4710-057, Braga (Portugal)

    2011-04-15

    In this work, we report on a synthetic strategy using amphiphilic DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelators bearing a variable-sized {alpha}-alkyl chain at one of the pendant acetate arms (from 6 to 14 carbon atoms), compatible with their covalent coupling to amine-bearing biomolecules. The amphiphilic behavior of the micelles-forming Ga(III) chelates (critical micellar concentration), their stability in blood serum and their lipophilicity (logP) were investigated. Biodistribution studies with the {sup 67}Ga-labeled chelates were performed in Wistar rats, which showed a predominant liver uptake with almost no traces of the radiochelates in the body after 24 h.

  1. Stable isotope-assisted NMR characterization of interaction between lipid A and sarcotoxin IA, a cecropin-type antibacterial peptide

    Energy Technology Data Exchange (ETDEWEB)

    Yagi-Utsumi, Maho [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787 (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Yamaguchi, Yoshiki [Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Advanced Science Institute, RIKEN, Wako 351-0198 (Japan); Boonsri, Pornthip [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787 (Japan); Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Iguchi, Takeshi [Bioscience Research Laboratory, Fujiya Co., Ltd., Hadano, Kanagawa 257-0031 (Japan); Okemoto, Kazuo [Department of Biochemistry and Cell Biology, National Institute of Infectious Disease, Tokyo 162-8640 (Japan); Natori, Shunji [National Institute of Agrobiological Sciences, Tsukuba 305-8602 (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787 (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); The Glycoscience Institute, Ochanomizu University, Tokyo 135-0064 (Japan); GLYENCE Co., Ltd., Nagoya 474-0858 (Japan)

    2013-02-08

    Highlights: ► Recombinant sarcotoxin IA was successfully produced with {sup 13}C- and {sup 15}N-labeling. ► Sarcotoxin IA adopts an N-terminal α-helix upon binding to lipid A-embedding micelles. ► Two lysine residues are involved in lipid A-mediated antibacterial activities. -- Abstract: Sarcotoxin IA is a 39-residue cecropin-type peptide from Sarcophaga peregrina. This peptide exhibits antibacterial activity against Gram-negative bacteria through its interaction with lipid A, a core component of lipopolysaccharides. To acquire detailed structural information on this specific interaction, we performed NMR analysis using bacterially expressed sarcotoxin IA analogs with {sup 13}C- and {sup 15}N-labeling along with lipid A-embedding micelles composed of dodecylphosphocholine. By inspecting the stable isotope-assisted NMR data, we revealed that the N-terminal segment (Leu3–Arg18) of sarcotoxin IA formed an amphiphilic α-helix upon its interaction with the aqueous micelles. Furthermore, chemical shift perturbation data indicated that the amino acid residues displayed on this α-helix were involved in the specific interaction with lipid A. On the basis of these data, we successfully identified Lys4 and Lys5 as key residues in the interaction with lipid A and the consequent antibacterial activity. Therefore, these results provide unique information for designing chemotherapeutics based on antibacterial peptide structures.

  2. A dose-equivalent comparison of the effects of continuous subcutaneous glucagon-like peptide 2 (GLP-2) infusions versus meal related GLP-2 injections in the treatment of short bowel syndrome (SBS) patients

    DEFF Research Database (Denmark)

    Naimi, R M; Madsen, K B; Askov-Hansen, C

    2013-01-01

    Glucagon-like peptide 2 (GLP-2), secreted endogenously from L-cells in the distal bowel in relation to meals, modulates intestinal absorption by adjusting gastric emptying and secretion and intestinal growth. Short bowel syndrome (SBS) patients with distal intestinal resections have attenuated...

  3. TNYL peptide functional chitosan-g-stearate conjugate micelles for tumor specific targeting

    Directory of Open Access Journals (Sweden)

    Chen FY

    2014-09-01

    Full Text Available Feng-Ying Chen,1 Jing-Jing Yan,1 Han-Xi Yi,2 Fu-Qiang Hu,2 Yong-Zhong Du,2 Hong Yuan,2 Jian You,2 Meng-Dan Zhao1 1Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 2College of Pharmaceutical Science, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Nowadays, a real challenge in cancer therapy is to design drug delivery systems that can achieve high concentrations of drugs at the target site for improved therapeutic effect with reduced side effects. In this research, we designed and synthesized a homing peptide-(TNYLFSPNGPIA, TNYL modified chitosan-g-stearate (CS polymer micelle (named T-CS for targeting delivery. The peptide displayed specific binding affinity to EphB4 which is a member of the Eph family of receptor tyrosine protein kinases. The amphiphilic polymer T-CS can gather into micelles by themselves in an aqueous environment with a low critical micelle concentration value (91.2 µg/L and nano-scaled size (82.1±2.8 nm. The drug encapsulation efficiency reached 86.43% after loading the hydrophobic drug doxorubicin (DOX. The cytotoxicity of T-CS/DOX against SKOV3 cells was enhanced by approximately 2.3-fold when compared with CS/DOX. The quantitative and qualitative analysis for cellular uptake indicated that TNYL modification can markedly increase cellular internalization in the EphB4-overexpressing SKOV3 cell line, especially with a short incubation time. It is interesting that relatively higher uptake of the T-CS/DOX micelles by SKOV3 cells (positive-EphB4 than A549 cells (negative-EphB4 was observed when the two cells were co-incubated. Furthermore, in vivo distribution experiment using a bilateral-tumor model showed that there was more fluorescence accumulation in the SKOV3 tumor than in the A549 tumor over the whole experiment. These results suggest that TNYL-modified CS micelles may be promising drug carriers as targeting therapy for the EphB4-overexpressing

  4. Self-Assembly of Amphiphilic Block Copolypeptoids with C 2 -C 5 Side Chains in Aqueous Solution

    KAUST Repository

    Fetsch, Corinna

    2014-12-22

    © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Nowadays, amphiphilic molecules play an important role in our life. In medical applications, amphiphilic block copolymers have attracted much attention as excipients in drug delivery systems. Here, the polymers are used as emulsifiers, micelles, or polymersomes with a hydrophilic corona block and a hydrophobic core or membrane. The aggregation behavior in aqueous solutions of a series of different amphiphilic block copolypeptoids comprising polysarcosine as a hydrophilic part is here reported. The formation of aggregates is investigated with 1H NMR spectroscopy and dynamic light scattering, and the determination of the critical micelle concentration (cmc) is performed using pyrene fluorescence spectroscopy. For the different block copolypeptoids cmc values ranging from 0.6 × 10-6 M to 0.1 × 10-3 M are found. The tendency to form micelles increases with increasing hydrophobicity at the nitrogen side chain in the hydrophobic moiety. Furthermore, in the case of the same hydrophobic side chain, a decreasing hydrophilic/lipophilic balance leads to the formation of larger aggregates. The aggregates formed in the buffer are able to solubilize the hydrophobic model compounds Reichardt\\'s dye and pyrene, and exhibit versatile microenvironments. Final investigations about the cytotoxicity reveal that the block copolypeptoids are well tolerated by mammalian cells up to high concentrations.

  5. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...... objective was to determine whether supplemental enteral nutrients (SEN) modulate the intestinotrophic response to a low dose of GLP-2 coinfused with PN in a rat model of SBS (60% jejunoileal resection plus cecectomy). DESIGN: Rats were randomly assigned to 8 treatments by using a 2 x 2 x 2 factorial design...

  6. In situ SERS detection of emulsifiers at lipid interfaces using label-free amphiphilic gold nanoparticles.

    Science.gov (United States)

    Li, Yue; Driver, Michael; Winuprasith, Thunnalin; Zheng, Jinkai; McClements, David Julian; He, Lili

    2014-10-21

    Herein, we fabricated amphiphilic gold nanoparticles (GNPs) that can self-assemble at oil-water interfaces. We applied those GNPs for in situ SERS detection of emulsifier molecules within the interfacial region of oil in water (O/W) emulsion systems.

  7. Recognition of GPCRs by peptide ligands and membrane compartments theory: structural studies of endogenous peptide hormones in membrane environment.

    Science.gov (United States)

    Sankararamakrishnan, Ramasubbu

    2006-04-01

    One of the largest family of cell surface proteins, G-protein coupled receptors (GPCRs) regulate virtually all known physiological processes in mammals. With seven transmembrane segments, they respond to diverse range of extracellular stimuli and represent a major class of drug targets. Peptidergic GPCRs use endogenous peptides as ligands. To understand the mechanism of GPCR activation and rational drug design, knowledge of three-dimensional structure of receptor-ligand complex is important. The endogenous peptide hormones are often short, flexible and completely disordered in aqueous solution. According to "Membrane Compartments Theory", the flexible peptide binds to the membrane in the first step before it recognizes its receptor and the membrane-induced conformation is postulated to bind to the receptor in the second step. Structures of several peptide hormones have been determined in membrane-mimetic medium. In these studies, micelles, reverse micelles and bicelles have been used to mimic the cell membrane environment. Recently, conformations of two peptide hormones have also been studied in receptor-bound form. Membrane environment induces stable secondary structures in flexible peptide ligands and membrane-induced peptide structures have been correlated with their bioactivity. Results of site-directed mutagenesis, spectroscopy and other experimental studies along with the conformations determined in membrane medium have been used to interpret the role of individual residues in the peptide ligand. Structural differences of membrane-bound peptides that belong to the same family but differ in selectivity are likely to explain the mechanism of receptor selectivity and specificity of the ligands. Knowledge of peptide 3D structures in membrane environment has potential applications in rational drug design.

  8. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  9. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  10. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents.

    Science.gov (United States)

    Mahlapuu, Margit; Håkansson, Joakim; Ringstad, Lovisa; Björn, Camilla

    2016-01-01

    Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.

  11. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics.

    Science.gov (United States)

    Tan, Jiajia; Deng, Zhengyu; Liu, Guhuan; Hu, Jinming; Liu, Shiyong

    2018-03-21

    Inflammation serves as a natural defense mechanism to protect living organisms from infectious diseases. Nonsteroidal anti-inflammatory drugs (NSAIDs) can help relieve inflammatory reactions and are clinically used to treat pain, fever, and inflammation, whereas long-term use of NSAIDs may lead to severe side effects including gastrointestinal damage and cardiovascular toxicity. Therefore, it is of increasing importance to configure new dosing strategies and alleviate the side effects of NSAIDs. Towards this goal, glutathione (GSH)-responsive disulfide bonds and hydrogen peroxide (H 2 O 2 )-reactive phenylboronic ester linkages were utilized as triggering moieties in this work to design redox-responsive prodrug monomers and polyprodrug amphiphiles based on indomethacin (IND) drug. Note that IND is a widely prescribed NSAID in the clinic. Starting from three types of redox-reactive IND prodrug monomers, redox-responsive polyprodrug amphiphiles were synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerizations of prodrug monomers using poly(ethylene oxide) (PEO)-based macroRAFT agent. The resultant polyprodrug amphiphiles with high IND loading contents (>33 wt%) could self-assemble into polymersomes with PEO shielding coronas and redox-responsive bilayer membranes composed of IND prodrugs. Upon incubation with GSH or H 2 O 2 , controlled release of intact IND in the active form from polyprodrug polymersomes was actuated by GSH-mediated disulfide cleavage reaction and H 2 O 2 -mediated oxidation of phenylboronic ester moieties, respectively, followed by self-immolative degradation events. Furthermore, in vitro studies at the cellular level revealed that redox-responsive polymersomes could efficiently relieve inflammatory responses induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells. Copyright © 2018. Published by Elsevier Ltd.

  12. Self-assembled structures of amphiphilic ionic block copolymers: Theory, self-consistent field modeling and experiment

    NARCIS (Netherlands)

    Borisov, O.V.; Zhulina, E.B.; Leermakers, F.A.M.; Muller, A.H.E.

    2011-01-01

    We present an overview of statistical thermodynamic theories that describe the self-assembly of amphiphilic ionic/hydrophobic diblock copolymers in dilute solution. Block copolymers with both strongly and weakly dissociating (pH-sensitive) ionic blocks are considered. We focus mostly on structural

  13. Simultaneous alignment and clustering of peptide data using a Gibbs sampling approach

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Lund, Ole; Nielsen, Morten

    2013-01-01

    Motivation: Proteins recognizing short peptide fragments play a central role in cellular signaling. As a result of high-throughput technologies, peptide-binding protein specificities can be studied using large peptide libraries at dramatically lower cost and time. Interpretation of such large...... peptide datasets, however, is a complex task, especially when the data contain multiple receptor binding motifs, and/or the motifs are found at different locations within distinct peptides.Results: The algorithm presented in this article, based on Gibbs sampling, identifies multiple specificities...... of unaligned peptide datasets of variable length. Example applications described in this article include mixtures of binders to different MHC class I and class II alleles, distinct classes of ligands for SH3 domains and sub-specificities of the HLA-A*02:01 molecule.Availability: The Gibbs clustering method...

  14. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  15. Micellar Surfactant Association in the Presence of a Glucoside-based Amphiphile Detected via High-Throughput Small Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stanic, Vesna [Brazilian Synchrotron Light Source, Campinas (Brazil); Broadbent, Charlotte [Columbia Univ., New York, NY (United States). Engineering Dept.; DiMasi, Elaine [Brookhaven National Lab. (BNL), Upton, NY (United States). Photon Sciences Division; Galleguillos, Ramiro [Lubrizol Advanced Materials, Cleveland, OH (United States); Woodward, Valerie [Lubrizol Advanced Materials, Cleveland, OH (United States)

    2016-11-14

    The interactions of mixtures of anionic and amphoteric surfactants with sugar amphiphiles were studied via high throughput small angle x-ray scattering (SAXS). The sugar amphiphile was composed of Caprate, Caprylate, and Oleate mixed ester of methyl glucoside, MeGCCO. Optimal surfactant interactions are sought which have desirable physical properties, which must be identified in a cost effective manner that can access the large phase space of possible molecular combinations. X-ray scattering patterns obtained via high throughput SAXS can probe a combinatorial sample space and reveal the incorporation of MeGCCO into the micelles and the molecular associations between surfactant molecules. Such data make it possible to efficiently assess the effects of the new amphiphiles in the formulation. A specific finding of this study is that formulations containing comparatively monodisperse and homogeneous surfactant mixtures can be reliably tuned by addition of NaCl, which swells the surfactant micelles with a monotonic dependence on salt concentration. In contrast, the presence of multiple different surfactants destroys clear correlations with NaCl concentration, even in otherwise similar series of formulations.

  16. Modulation of Cyclodextrin Particle Amphiphilic Properties to Stabilize Pickering Emulsion.

    Science.gov (United States)

    Xi, Yongkang; Luo, Zhigang; Lu, Xuanxuan; Peng, Xichun

    2018-01-10

    Cyclodextrins have been proven to form complexes with linear oil molecules and stabilize emulsions. Amphiphilic properties of cyclodextrin particles were modulated through esterification reaction between β-cyclodextrin (β-CD) and octadecenyl succinic anhydride (ODSA) under alkaline conditions. ODS-β-CD particles with degree of substitution (DS) of 0.003, 0.011, and 0.019 were obtained. The introduced hydrophobic long chain that was linked within β-CD cavity led to the change of ODS-β-CD in terms of morphological structure, surface charge density, size, and contact angle, upon which the properties and stability of the emulsions stabilized by ODS-β-CD were highly dependent. The average diameter of ODS-β-CD particles ranged from 449 to 1484 nm. With the DS increased from 0.003 to 0.019, the contact angle and absolute zeta potential value of these ODS-β-CD particles improved from 25.7° to 47.3° and 48.1 to 62.8 mV, respectively. The cage structure of β-CD crystals was transformed to channel structure, then further to amorphous structure after introduction of the octadecenyl succinylation chain. ODS-β-CD particles exhibited higher emulsifying ability compared to β-CD. The resulting Pickering emulsions formed by ODS-β-CD particles were more stable during storage. This study investigates the ability of these ODS-β-CD particles to stabilize oil-in-water emulsions with respect to their amphiphilic character and structural properties.

  17. A spectroscopic method to estimate the binding potency of amphiphile assemblies

    Czech Academy of Sciences Publication Activity Database

    Gauger, D. R.; Andrushchenko, Valery; Bouř, Petr; Pohle, W.

    2010-01-01

    Roč. 398, č. 2 (2010), s. 1109-1123 ISSN 1618-2642 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA ČR GAP208/10/0559; GA AV ČR IAA400550702; GA AV ČR IAA400550701 Institutional research plan: CEZ:AV0Z40550506 Keywords : miccels * amphiphile assemblies * molecular dynamics * infrared spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.841, year: 2010

  18. Transformable Peptide Nanocarriers for Expeditious Drug Release and Effective Cancer Therapy via Cancer-Associated Fibroblast Activation.

    Science.gov (United States)

    Ji, Tianjiao; Zhao, Ying; Ding, Yanping; Wang, Jing; Zhao, Ruifang; Lang, Jiayan; Qin, Hao; Liu, Xiaoman; Shi, Jian; Tao, Ning; Qin, Zhihai; Nie, Guangjun; Zhao, Yuliang

    2016-01-18

    A novel cleavable amphiphilic peptide (CAP) was designed to be specifically responsive to fibroblast activation protein-α (FAP-α), a protease specifically expressed on the surface of cancer-associated fibroblasts. The CAP self-assembled into fiber-like nanostructures in solution, while the presence of hydrophobic chemotherapeutic drugs readily transformed the assemblies into drug-loaded spherical nanoparticles. The disassembly of these nanoparticles (CAP-NPs) upon FAP-α cleavage resulted in rapid and efficient release of the encapsulated drugs specifically at tumor sites. This Transformers-like drug delivery strategy could allow them to disrupt the stromal barrier and enhance local drug accumulation. Therapeutic results suggested that drug-loaded CAP-NPs hold promising tumor specificity and therapeutic efficacy for various solid tumor models, confirming its potential utility and versatility in antitumor therapy. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Folding Topology of a Short Coiled-Coil Peptide Structure Templated by an Oligonucleotide Triplex

    DEFF Research Database (Denmark)

    Lou, Chenguang; Christensen, Niels Johan; Martos Maldonado, Manuel Cristo

    2017-01-01

    by oligonucleotide duplex and triplex formation. POC synthesis was achieved by copper-free alkyne-azide cycloaddition between three oligonucleotides and a 23-mer peptide, which by itself exhibited multiple oligomeric states in solution. The oligonucleotide domain was designed to furnish a stable parallel triplex......, small-angle X-ray scattering (SAXS), and molecular modeling. Stabilizing cooperativity was observed between the trimeric peptide and the oligonucleotide triplex domains, and the overall molecular size (ca. 12nm) in solution was revealed to be independent of concentration. The topological folding...

  20. A novel peptide nanomedicine for treatment of pancreatogenic diabetes.

    Science.gov (United States)

    Banerjee, Amrita; Onyuksel, Hayat

    2013-08-01

    Pancreatogenic diabetes (PD) is a potentially fatal disease that occurs secondary to pancreatic disorders. The current anti-diabetic therapy for PD is fraught with adverse effects that can increase morbidity. Here we investigated the efficacy of novel peptide nanomedicine: pancreatic polypeptide (PP) in sterically stabilized micelles (SSM) for management of PD. PP exhibits significant anti-diabetic efficacy but its short plasma half-life curtails its therapeutic application. To prolong and improve activity of PP in vivo, we evaluated the delivery of PP in SSM. PP-SSM administered to rats with PD, significantly improved glucose tolerance, insulin sensitivity and hepatic glycogen content compared to peptide in buffer. The studies established the importance of micellar nanocarriers in protecting enzyme-labile peptides in vivo and delivering them to target site, thereby enhancing their therapeutic efficacy. In summary, this study demonstrated that PP-SSM is a promising novel anti-diabetic nanomedicine and therefore should be further developed for management of PD. Pancreatic peptide was earlier demonstrated to address pancreatogenic diabetes, but its short half-life represented major difficulties in further development for therapeutic use. PP-SSM (pancreatic polypeptide in sterically stabilized micelles) is a promising novel anti-diabetic nanomedicine that enables prolonged half-life and increased bioactivity of PP, as shown in this novel study, paving the way toward clinical studies in the near future. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  2. pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides

    DEFF Research Database (Denmark)

    Gurevich, Leonid; Fojan, Peter

    2012-01-01

    formation of ordered aggregates with well-defined secondary structure from short unstructured peptides and provide a simple system where factors responsible for self-assembly can be singled out and studied one by one. The ability to control the shape and structure of peptide aggregates can provide basis...

  3. Coulomb repulsion in short polypeptides.

    Science.gov (United States)

    Norouzy, Amir; Assaf, Khaleel I; Zhang, Shuai; Jacob, Maik H; Nau, Werner M

    2015-01-08

    Coulomb repulsion between like-charged side chains is presently viewed as a major force that impacts the biological activity of intrinsically disordered polypeptides (IDPs) by determining their spatial dimensions. We investigated short synthetic models of IDPs, purely composed of ionizable amino acid residues and therefore expected to display an extreme structural and dynamic response to pH variation. Two synergistic, custom-made, time-resolved fluorescence methods were applied in tandem to study the structure and dynamics of the acidic and basic hexapeptides Asp6, Glu6, Arg6, Lys6, and His6 between pH 1 and 12. (i) End-to-end distances were obtained from the short-distance Förster resonance energy transfer (sdFRET) from N-terminal 5-fluoro-l-tryptophan (FTrp) to C-terminal Dbo. (ii) End-to-end collision rates were obtained for the same peptides from the collision-induced fluorescence quenching (CIFQ) of Dbo by FTrp. Unexpectedly, the very high increase of charge density at elevated pH had no dynamical or conformational consequence in the anionic chains, neither in the absence nor in the presence of salt, in conflict with the common view and in partial conflict with accompanying molecular dynamics simulations. In contrast, the cationic peptides responded to ionization but with surprising patterns that mirrored the rich individual characteristics of each side chain type. The contrasting results had to be interpreted, by considering salt screening experiments, N-terminal acetylation, and simulations, in terms of an interplay of local dielectric constant and peptide-length dependent side chain charge-charge repulsion, side chain functional group solvation, N-terminal and side chain charge-charge repulsion, and side chain-side chain as well as side chain-backbone interactions. The common picture that emerged is that Coulomb repulsion between water-solvated side chains is efficiently quenched in short peptides as long as side chains are not in direct contact with each

  4. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  5. Amphiphilic derivatives of (3β,17β)-3-hydroxyandrost-5-ene-17-carboxylic acid

    Czech Academy of Sciences Publication Activity Database

    Özdemir, Zülal; Bildziukevich, Uladzimir; Šaman, David; Havlíček, Libor; Rárová, L.; Navrátilová, L.; Wimmer, Zdeněk

    2017-01-01

    Roč. 128, DEC (2017), s. 58-67 ISSN 0039-128X R&D Projects: GA MŠk LD15012 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : Amphiphile * Antimicrobial activity * Cytotoxicity * Diamine * Polyamine * Steroid Subject RIV: CC - Organic Chemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Organic chemistry Impact factor: 2.282, year: 2016

  6. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.

    Science.gov (United States)

    Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei

    2017-12-05

    In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.

  7. Sodium effect on self-organization of amphiphilic carboxylates: formation of structured micelles and superlattices.

    Science.gov (United States)

    Rosenlehner, Karin; Schade, Boris; Böttcher, Christoph; Jäger, Christof M; Clark, Timothy; Heinemann, Frank W; Hirsch, Andreas

    2010-08-16

    Not only the self-aggregation of dendritic polycarboxylates into structurally persistent micelles, but also that of the micelles themselves into superlattices is controlled by alkali-metal counterions and shows a pronounced sodium effect. Our combined experimental and computational work has revealed the formation of superlattices for the first time. The behavior of a variety of amphiphilic carboxylates and the different effects of the alkali cations Li(+), Na(+), and K(+) have been investigated by conductivity measurements, cryogenic transmission electron microscopy (cryo-TEM), and molecular-dynamics (MD) simulations. Together, these show that sodium salts of the amphiphiles give the most stable micelles, followed by lithium and potassium. Our results suggest that ion multiplets in bridging positions, rather than contact ion pairs, are responsible for the enhanced stability and the formation of hexagonally ordered superlattices with sodium counterions. Potassium ions do not form such ion multiplets and cannot therefore induce aggregation of the micelles. This sodium effect has far-reaching consequences for a large number of biological and technical systems and sheds new light on the origin of specific-ion effects.

  8. Administration of a dipeptidyl peptidase IV inhibitor enhances the intestinal adaptation in a mouse model of short bowel syndrome

    DEFF Research Database (Denmark)

    Okawada, Manabu; Holst, Jens Juul; Teitelbaum, Daniel H

    2011-01-01

    Glucagon-like peptide-2 induces small intestine mucosal epithelial cell proliferation and may have benefit for patients who suffer from short bowel syndrome. However, glucagon-like peptide-2 is inactivated rapidly in vivo by dipeptidyl peptidase IV. Therefore, we hypothesized that selectively inh...... inhibiting dipeptidyl peptidase IV would prolong the circulating life of glucagon-like peptide-2 and lead to increased intestinal adaptation after development of short bowel syndrome....

  9. Gd-DTPA-Dopamine-Bisphytanyl Amphiphile: Synthesis, Characterisation and Relaxation Parameters of the Nanoassemblies and Their Potential as MRI Contrast Agents.

    Science.gov (United States)

    Gupta, Abhishek; Willis, Scott A; Waddington, Lynne J; Stait-Gardner, Tim; de Campo, Liliana; Hwang, Dennis W; Kirby, Nigel; Price, William S; Moghaddam, Minoo J

    2015-09-28

    Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a Gd(III)-chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd-DTPA-dopamine-bisphytanyl (Gd-DTPA-Dop-Phy), which is readily capable of self-assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature (17)O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by (1)H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari-Szabo "model-free" approach. High payloads of Gd(III) ions in the liposomal nanoassemblies made solely from the Gd-DTPA-Dop-Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Monitoring peptide-surface interaction by means of molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nonella, Marco, E-mail: mnonella@pci.uzh.ch [Physikalisch-Chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Seeger, Stefan, E-mail: sseeger@pci.uzh.ch [Physikalisch-Chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland)

    2010-12-09

    Graphical abstract: Protein-surface interactions play a crucial role in a wide field of research areas like biology, biotechnology, or pharmacology. Only recently, it has been shown that not only peptide adsorption represents an important process but also spreading and clustering of adsorbed proteins. By means of classical molecular dynamics, peptide adsorption as well as the dynamics of adsorbed peptides have been investigated in order to gain deeper insight into such processes. The picture shows a snapshot of an adsorbed peptide on a silica surface showing strong direct hydrogen bonding. Research highlights: {yields} Simulation of peptide surface interaction. {yields} Dynamics of hydrogen bond formation and destruction. {yields} Internal flexibility of adsorbed peptides. - Abstract: Protein adsorption and protein surface interactions have become an important research topic in recent years. Very recently, for example, it has been shown that protein clusters can undergo a surface-induced spreading after adsorption. Such phenomena emphasize the need of a more detailed insight into protein-silica interaction at an atomic level. Therefore, we have studied a model system consisting of a short peptide, a silica slab, and water molecules by means of classical molecular dynamics simulations. The study reveals that, besides of electrostatic interactions caused by the chosen charge distribution, the peptide interacts with the silica surface through formation of direct peptide-surface hydrogen bonds as well as indirect peptide-water-surface hydrogen bonds. The number of created hydrogen bonds varies considerably among the simulated structures. The strength of hydrogen bonding determines the mobility of the peptide on the surface and the internal flexibility of the adsorbed peptide.

  11. Rational design of fiber forming supramolecular structures

    Science.gov (United States)

    Wang, Benjamin K; Kanahara, Satoko M

    2016-01-01

    Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application in bioengineering and medicine. This review focuses on fundamental fiber forming α-helical coiled-coil peptides, peptide amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides with an emphasis on chemical / biological characterization and biomimicry. PMID:27022140

  12. Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

    Science.gov (United States)

    Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung

    2016-04-21

    A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.

  13. Comprehensive computational design of ordered peptide macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram K.; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fatima; Rettie, Stephan A.; Kim, David E.; Silva, Daniel A.; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2017-12-14

    Mixed chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to-date, but there is currently no way to systematically search through the structural space spanned by such compounds for new drug candidates. Natural proteins do not provide a useful guide: peptide macrocycles lack regular secondary structures and hydrophobic cores and have different backbone torsional constraints. Hence the development of new peptide macrocycles has been approached by modifying natural products or using library selection methods; the former is limited by the small number of known structures, and the latter by the limited size and diversity accessible through library-based methods. To overcome these limitations, here we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L and D amino acids. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. We synthesize and characterize by NMR twelve 7-10 residue macrocycles, 9 of which have structures very close to the design models in solution. NMR structures of three 11-14 residue bicyclic designs are also very close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide based macrocycles unparalleled for other molecular systems, and vastly increase the available starting scaffolds for both rational drug design and library selection methods.

  14. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    Science.gov (United States)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica

  15. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  16. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a.

    Science.gov (United States)

    Joshi, Seema; Bisht, Gopal S; Rawat, Diwan S; Maiti, Souvik; Pasha, Santosh

    2012-10-01

    Cell selective, naturally occurring, host defence cationic peptides present a good template for the design of novel peptides with the aim of achieving a short length with improved antimicrobial potency and selectivity. A novel, short peptide CS-1a (14 residues) was derived using a sequence hybridization approach on sarcotoxin I (39 residues) and cecropin B (35 residues). The sequence of CS-1a was rearranged to enhance amphipathicity with the help of a Schiffer-Edmundson diagram to obtain CS-2a. Both peptides showed good antibacterial activity in the concentration range 4-16 μg·mL(-1) against susceptible as well as drug-resistant bacterial strains, including the clinically relevant pathogens Acenatobacter sp. and methicillin-resistant Staphylococcus aureus. The major thrust of these peptides is their nonhaemolytic activity against human red blood cells up to a high concentration of 512 μg·mL(-1). Compared to CS-1a, amphipathic peptide CS-2a showed a more pronounced α-helical conformation, along with a better membrane insertion depth in bacterial mimic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) small unilamellar vesicles. With equivalent lipid-binding affinity, the two peptides assumed different pathways of membrane disruption, as demonstrated by calcein leakage and the results of transmission electron microscopy on model bacterial mimic large unilamellar vesicles. Extending the work from model membranes to intact Escherichia coli cells, differences in membrane perturbation were visible in microscopic images of peptide-treated E. coli. The present study describes two novel short peptides with potent activity, cell selectivity and divergent modes of action that will aid in the future design of peptides with better therapeutic potential. © 2012 The Authors Journal compilation © 2012 FEBS.

  17. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian

    2012-01-01

    In the current study, we applied the Monte Carlo method to study the self-assembly of linear ABC amphiphiles composed of two solvophobic A and B blocks and a solvophilic C block. A great number of multicompartment micelles are discovered from the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between the different block types. When the B block is longer than or as same as the terminal A block, a rich variety of micellar structures can be formed from ABC amphiphiles. By adjusting the solvent quality or incompatibility between the different block types, multiple morphological transitions are observed. These morphological sequences are well explained and consistent with all the previous experimental and theoretical studies. Despite the complexity of the micellar structures and morphological transitions observed for the self-assembly of ABC amphiphiles, two important common features of the phase behavior are obtained. In general, the micellar structures obtained in the current study can be divided into zero-dimensional (sphere-like structures, including bumpy-surfaced spheres and sphere-on-sphere structures), one-dimensional (cylinder-like structures, including rod and ring structures), two-dimensional (layer-like structures, including disk, lamella and worm-like and hamburger structures) and three-dimensional (vesicle) structures. It is found that the micellar structures transform from low- to high- dimensional structures when the solvent quality for the solvophobic blocks is decreased. In contrast, the micellar structures transform from high- to low-dimensional structures as the incompatibility between different block types increases. Furthermore, several novel micellar structures, such as the CBABC five-layer vesicle, hamburger, CBA three-layer ring, wormlike shape with

  18. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  19. Interpretation of Tandem Mass Spectrometry (MSMS) Spectra for Peptide Analysis

    DEFF Research Database (Denmark)

    Hjernø, Karin; Højrup, Peter

    2015-01-01

    The aim of this chapter is to give a short introduction to peptide analysis by mass spectrometry (MS) and interpretation of fragment mass spectra. Through examples and guidelines we demonstrate how to understand and validate search results and how to perform de novo sequencing based on the often...... very complex fragmentation pattern obtained by tandem mass spectrometry (also referred to as MSMS). The focus is on simple rules for interpretation of MSMS spectra of tryptic as well as non-tryptic peptides....

  20. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla

    2016-01-01

    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were...... synthesized in moderate to quantitative yields by divergent solid-phase synthesis (SPS) employing an aldehyde linker. The self-assembling properties of the dendrons in aqueous solutions were studied by small angle neutron scattering (SANS) and dynamic light scattering (DLS). The self-assembling properties...... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...

  1. Biopharmaceuticals: From peptide to drug

    Science.gov (United States)

    Hannappel, Margarete

    2017-08-01

    Biologics are therapeutic proteins or peptides that are produced by means of biological processes within living organisms and cells. They are highly specific molecules and play a crucial role as therapeutics for the treatment of severe and chronic diseases (e.g. cancer, rheumatoid arthritis, diabetes, autoimmune disorders). The development of new biologics and biologics-based drugs gains more and more importance in the fight against various diseases. A short overview on biotherapeutical drug development is given. Cone snails are a large group of poisonous, predatory sea snails with more than 700 species. They use a very powerful venom which rapidly inactivates and paralyzes their prey. Most bioactive venom components are small peptides (conotoxins, conopeptides) which are precisely directed towards a specific target (e.g. ion channel, receptors). Due to their small size, their precision and speed of action, naturally occurring cone snail venom peptides represent an attractive source for the identification and design of novel biological drug entities. The Jagna cone snail project is an encouraging initiative to map the ecological variety of cone snails around the island of Bohol (Philippines) and to conserve the biological information for potential future application.

  2. Effect of ionizing radiation exposure in the morphology of modified HDPE with amphiphilic particles; Efeito da exposicao a radiacao ionizante na morfologia de PEAD modificado com particulas anfifilicas

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Ana Luiza M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Vivas, Viviane; Zylberberg, Marcel P.; Silva, Tamara I.; Cardoso, Andre Luis V.; Pereira, Iaci M., E-mail: iacipere@gmail.com [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Patricio, Patricia S.O. [Centro Federal de Educacao Tecnologica de Minas Gerias (CEFET), Belo Horizonte, MG (Brazil)

    2015-07-01

    One of the techniques used to improve the properties of high performance polymers is the addition of hybrid particles in the polymer. In this context, amphiphilic particles were synthesized in order to provide surface characteristics that enhance the interaction of the interface with the polymeric matrix of high density polyethylene (HDPE). The amphiphilic particles were added to matrix of HDPE and the modified polymer composites were exposed to ionizing radiation (x-rays) for different times. The changes caused by exposure to ionizing radiation in the composite morphology was observed through the small angle x-ray technique. The results suggest that the addition of amphiphilic particles increased the stability of the composite to degradation by radiation. (author)

  3. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    Science.gov (United States)

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  4. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    Directory of Open Access Journals (Sweden)

    Charlotte A.E. Hauser

    2011-09-01

    Full Text Available In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.

  5. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  6. Multicompartment micellar aggregates of linear ABC amphiphiles in solvents selective for the C block: A Monte Carlo simulation

    KAUST Repository

    Zhu, Yutian; Yu, Haizhou; Wang, Yongmei; Cui, Jie; Kong, Weixin; Jiang, Wei

    2012-01-01

    the simulations and the detailed phase diagrams for the ABC amphiphiles with different block lengths are obtained. The simulation results reveal that the micellar structure is largely controlled by block length, solvent quality, and incompatibility between

  7. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    Science.gov (United States)

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  8. Influence of corona structure on binding of an ionic surfactant in oppositely charged amphiphilic polyelectrolyte micelles

    Czech Academy of Sciences Publication Activity Database

    Delisavva, F.; Uchman, M.; Škvarla, J.; Wozniak, E.; Pavlova, Ewa; Šlouf, Miroslav; Garamus, V. M.; Procházka, K.; Štěpánek, M.

    2016-01-01

    Roč. 32, č. 16 (2016), s. 4059-4065 ISSN 0743-7463 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : amphiphilic polymers * polyelectrolyte * corona structure Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.833, year: 2016

  9. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  10. Yolk–shell Fe3O4@SiO2@PMO: amphiphilic magnetic nanocomposites as an adsorbent and a catalyst with high efficiency and recyclability

    KAUST Repository

    Dai, Jinyu

    2017-01-20

    This study describes the preparation of a multifunctional adsorptive catalyst by the incorporation of ligand groups within the channels of magnetic amphiphilic nanocomposites and attached with Pd nanoparticles. It was clearly demonstrated that Pd2+ was adsorbed by ligand-functionalized materials in water, and then Pd2+ was coordinated with ligand groups. Finally, the Pd nanoparticles were produced via an in situ reduction of Pd2+ by ligand groups through a simple hydrothermal process. Moreover, amphiphilic nanomaterials are viewed as excellent collectors of hydrophobic contaminants in water. The immobilized catalytic active sites with ligand-functionalized nanocomposites were allowed for maximal exposure to the reactants with minimal leaching of the Pd nanoparticles. The unique amphiphilic nanocomposites enabled selective oxidation of alcohols to proceed efficiently in water under aerobic conditions. Moreover, this nanocomposite catalyst could be completely recovered using an external magnet due to the superparamagnetic behavior of Fe3O4 and can be recycled with sustained selectivity and activity.

  11. Photoinduced electron transfer through peptide-based self-assembled monolayers chemisorbed on gold electrodes: directing the flow-in and flow-out of electrons through peptide helices.

    Science.gov (United States)

    Venanzi, Mariano; Gatto, Emanuela; Caruso, Mario; Porchetta, Alessandro; Formaggio, Fernando; Toniolo, Claudio

    2014-08-21

    Photoinduced electron transfer (PET) experiments have been carried out on peptide self-assembled monolayers (SAM) chemisorbed on a gold substrate. The oligopeptide building block was exclusively formed by C(α)-tetrasubstituted α-aminoisobutyric residues to attain a helical conformation despite the shortness of the peptide chain. Furthermore, it was functionalized at the C-terminus by a pyrene choromophore to enhance the UV photon capture cross-section of the compound and by a lipoic group at the N-terminus for linking to gold substrates. Electron transfer across the peptide SAM has been studied by photocurrent generation experiments in an electrochemical cell employing a gold substrate modified by chemisorption of a peptide SAM as a working electrode and by steady-state and time-resolved fluorescence experiments in solution and on a gold-coated glass. The results show that the electronic flow through the peptide bridge is strongly asymmetric; i.e., PET from the C-terminus to gold is highly favored with respect to PET in the opposite direction. This effect arises from the polarity of the Au-S linkage (Au(δ+)-S(δ-), junction effect) and from the electrostatic field generated by the peptide helix.

  12. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  13. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    Science.gov (United States)

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we

  14. ARA-PEPs: a repository of putative sORF-encoded peptides in Arabidopsis thaliana.

    Science.gov (United States)

    Hazarika, Rashmi R; De Coninck, Barbara; Yamamoto, Lidia R; Martin, Laura R; Cammue, Bruno P A; van Noort, Vera

    2017-01-17

    Many eukaryotic RNAs have been considered non-coding as they only contain short open reading frames (sORFs). However, there is increasing evidence for the translation of these sORFs into bioactive peptides with potent signaling, antimicrobial, developmental, antioxidant roles etc. Yet only a few peptides encoded by sORFs are annotated in the model organism Arabidopsis thaliana. To aid the functional annotation of these peptides, we have developed ARA-PEPs (available at http://www.biw.kuleuven.be/CSB/ARA-PEPs ), a repository of putative peptides encoded by sORFs in the A. thaliana genome starting from in-house Tiling arrays, RNA-seq data and other publicly available datasets. ARA-PEPs currently lists 13,748 sORF-encoded peptides with transcriptional evidence. In addition to existing data, we have identified 100 novel transcriptionally active regions (TARs) that might encode 341 novel stress-induced peptides (SIPs). To aid in identification of bioactivity, we add functional annotation and sequence conservation to predicted peptides. To our knowledge, this is the largest repository of plant peptides encoded by sORFs with transcript evidence, publicly available and this resource will help scientists to effortlessly navigate the list of experimentally studied peptides, the experimental and computational evidence supporting the activity of these peptides and gain new perspectives for peptide discovery.

  15. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    OpenAIRE

    Chae, Pil Seok; Rasmussen, Søren G. F.; Rana, Rohini; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A.; Kruse, Andrew C.; Nurva, Shailika; Loland, Claus J.; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G.; Guan, Lan

    2010-01-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from...

  16. Peptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    A short peptide composed of only two amino acid residues, serine and histidine, is here reported to enable oligomerization of RNA monomers. SerHis dipeptide was previously reported to catalyse formation of peptide bonds (Gorlero et al. 2009) as well as possessing broad hydrolytic activities...... – in such environment hydrolysis is thermodynamically favoured over condensation. However, the thermodynamic equilibrium towards condensation can be shifted even in this environment. In this poster we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA...... oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water/ice eutectic phase environment (Monnard and Ziock 2008). To obtain such an environment, a reaction solution is cooled below its freezing point, but above the eutectic point. Under...

  17. Meat and fermented meat products as a source of bioactive peptides.

    Science.gov (United States)

    Stadnik, Joanna; Kęska, Paulina

    2015-01-01

    Bioactive peptides are short amino acid sequences, that upon release from the parent protein may play different physiological roles, including antioxidant, antihypertensive, antimicrobial, and other bioactivities. They have been identified from a range of foods, including those of animal origin, e.g., milk and muscle sources (with pork, beef, or chicken and various species of fish and marine organism). Bioactive peptides are encrypted within the sequence of the parent protein molecule and latent until released and activated by enzymatic proteolysis, e.g. during gastrointestinal digestion or food processing. Bioactive peptides derived from food sources have the potential for incorporation into functional foods and nutraceuticals. The aim of this paper is to present an overview of the muscle-derived bioactive peptides, especially those of fermented meats and the potential benefits of these bioactive compounds to human health.

  18. Exciplex emission from amphiphilic polysilanes bearing ammonium moieties

    International Nuclear Information System (INIS)

    Yamaki, T.; Nakashiba, Y.; Asai, K.; Ishigure, K.; Shibata, H.

    1997-01-01

    We were the first to observe two emission bands in the visible region for some kinds of ammonium-type amphiphilic polysilanes both in solutions and in thin films. One, a broad emission band at 400-500 nm not due to a σ * →σ transition, was observed only for methylphenylsilane-based polymer solutions. The appearance of this low-energy emission is reasonably explained by considering the intramolecular exciplex formation between a Si-conjugated main chain and an ammonium site in the same monomer unit. The other, an emission band at the longer wavelength (around 560 nm), was found in the solvent-cast films where each molecule is randomly located, in addition to that observed for the solutions. This emission, which was not observed for the oriented LB films, is considered to originate from an intermolecular interaction. (orig.)

  19. [Effects of introduction of short peptides before carotid artery occlusion on behaviour and caspase-3 activity in the brain of old rats].

    Science.gov (United States)

    Mendzheritskiĭ, A M; Karantysh, G V; Ivonina, K O

    2011-01-01

    The comparative research of effect of Pinealon and Cortexin on behavior and activity of caspase-3 in a brain of old rats in a model of carotid arteries occlusion was conducted. It is shown that introduction of short peptides promotes a survival rate of the animals that have modeled occlusion of carotid arteries. Under Pinealon before occlusion of carotid arteries, behavioral dream has been increased and a position-finding behavior, a motivational behavior and a motor performance have been reduced. The rats that were introduced Cortexin before carotid arteries occlusion demonstrated the raise of behavioral dream time. At introduction of Pinealon activity of caspase-3 moderately raises in false-operated animals and in a model of occlusion of carotid arteries.

  20. Small surfactant-like peptides can drive soluble proteins into active aggregates

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2012-01-01

    Full Text Available Abstract Background Inactive protein inclusion bodies occur commonly in Escherichia coli (E. coli cells expressing heterologous proteins. Previously several independent groups have found that active protein aggregates or pseudo inclusion bodies can be induced by a fusion partner such as a cellulose binding domain from Clostridium cellulovorans (CBDclos when expressed in E. coli. More recently we further showed that a short amphipathic helical octadecapeptide 18A (EWLKAFYEKVLEKLKELF and a short beta structure peptide ELK16 (LELELKLKLELELKLK have a similar property. Results In this work, we explored a third type of peptides, surfactant-like peptides, for performing such a "pulling-down" function. One or more of three such peptides (L6KD, L6K2, DKL6 were fused to the carboxyl termini of model proteins including Aspergillus fumigatus amadoriase II (AMA, all three peptides were used, Bacillus subtilis lipase A (LipA, only L6KD was used, hereinafter the same, Bacillus pumilus xylosidase (XynB, and green fluorescent protein (GFP, and expressed in E. coli. All fusions were found to predominantly accumulate in the insoluble fractions, with specific activities ranging from 25% to 92% of the native counterparts. Transmission electron microscopic (TEM and confocal fluorescence microscopic analyses confirmed the formation of protein aggregates in the cell. Furthermore, binding assays with amyloid-specific dyes (thioflavin T and Cong red to the AMA-L6KD aggregate and the TEM analysis of the aggregate following digestion with protease K suggested that the AMA-L6KD aggregate may contain structures reminiscent of amyloids, including a fibril-like structure core. Conclusions This study shows that the surfactant-like peptides L6KD and it derivatives can act as a pull-down handler for converting soluble proteins into active aggregates, much like 18A and ELK16. These peptide-mediated protein aggregations might have important implications for protein aggregation in

  1. An organosilane-directed growth-induced etching strategy for preparing hollow/yolk–shell mesoporous organosilica nanospheres with perpendicular mesochannels and amphiphilic frameworks

    KAUST Repository

    Zou, Houbing

    2014-06-27

    We have developed an organosilane-directed growth-induced etching strategy to prepare hollow periodic mesoporous organosilica (PMO) nanospheres with perpendicular mesoporous channels and a clear hollow interior as well as an amphiphilic framework. This facile strategy is simple, efficient, and highly controllable. Silica nanospheres were utilized as hard templates to obtain hollow PMO nanospheres through a one-step route, with the structure parameter highly controlled by adjusting the synthesis conditions. Different organosilanes were used to obtain bridged hollow PMO nanospheres of different organic groups and showed different directed capacities. The integrity of the bridged organic group was confirmed by Fourier-transform infrared (FT-IR) spectroscopy and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Transmission electron microscopy (TEM) observations showed that the growth of the PMO shell and the dissolution of the silica nanosphere core occurred simultaneously for each nanosphere, while 29Si NMR spectra revealed that the dissolved silica species from the silica nanospheres transformed into PMO shells by co-condensation with hydrolyzed organosilane oligomers. As a result, the obtained hollow nanospheres were amphiphilic, which can even be used as a particle emulsifier for O-W or W-O emulsion in various systems. These materials can also be served as an efficient sorbent for removal of hydrophobic contaminants in water. Using the proposed formation mechanism, this strategy can be extended to transform silica-coated composite materials into yolk-shell structures with a functional interior core and a perpendicular mesoporous amphiphilic shell. As a nanoreactor, the -Ph- bridged amphiphilic shell showed a faster diffusion rate for organic reactants in water than the hydrophilic silica shell, and thus better catalytic activity for reduction of 4-nitrophenol. This journal is © the Partner Organisations 2014.

  2. A 10-A spectroscopic ruler applied to short polyprolines.

    Science.gov (United States)

    Sahoo, Harekrushna; Roccatano, Danilo; Hennig, Andreas; Nau, Werner M

    2007-08-08

    Fluorescence resonance energy transfer (FRET) from the amino acid tryptophan (Trp) as donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as acceptor in peptides of the general structure Trp-(Pro)n-Dbo-NH2 (n = 1-6) was investigated by steady-state and time-resolved fluorescence, CD, and NMR spectroscopy as well as by molecular dynamics (MD) simulations (GROMOS96 force field). The Trp/Dbo FRET pair is characterized by a very short Förster radius (R0 ca. 9 A), which allowed distance determinations in such short peptides. Water and propylene glycol were investigated as solvents. The peptides were designed to show an early nucleation of the poly(Pro)II (PPII) secondary helix structure for n > or = 2, which was confirmed by their CD spectra. The shortest peptide (n = 1) adopts preferentially the trans conformation about the Trp-Pro bond, as confirmed by NMR spectra. The FRET efficiencies ranged 2-72% and were found to depend sensitively on the peptide length, i.e., the number of intervening proline residues. The analysis of the FRET data at different levels of theory (assuming either a fixed distance or distance distributions according to a wormlike chain or Gaussian model) afforded donor-acceptor distances between ca. 8 A (n = 1) and ca. 16 A (n = 6) in water, which were found to be similar or slightly higher in propylene glycol. The distances afforded by the Trp/Dbo FRET pair were found to be reasonable in comparison to literature data, expectations from the PPII helix structure, and the results from MD simulations. The persistence lengths for the longer peptides were found to lie at 30-70 A in water and 220 +/- 40 A in propylene glycol, suggesting a more rigid PPII helical structure in propylene glycol. A detailed comparison with literature data on FRET in polyprolines demonstrates that the donor-acceptor distances extracted by FRET are correlated with the Förster radii of the employed FRET pairs. This demonstrates the limitations of using FRET

  3. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.

    Science.gov (United States)

    Gu, Li; Faig, Allison; Abdelhamid, Dalia; Uhrich, Kathryn

    2014-10-21

    Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular

  4. Exploring the role of peptides in polymer-based gene delivery.

    Science.gov (United States)

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Peptides and Anti-peptide Antibodies for Small and Medium Scale Peptide and Anti-peptide Affinity Microarrays: Antigenic Peptide Selection, Immobilization, and Processing.

    Science.gov (United States)

    Zhang, Fan; Briones, Andrea; Soloviev, Mikhail

    2016-01-01

    This chapter describes the principles of selection of antigenic peptides for the development of anti-peptide antibodies for use in microarray-based multiplex affinity assays and also with mass-spectrometry detection. The methods described here are mostly applicable to small to medium scale arrays. Although the same principles of peptide selection would be suitable for larger scale arrays (with 100+ features) the actual informatics software and printing methods may well be different. Because of the sheer number of proteins/peptides to be processed and analyzed dedicated software capable of processing all the proteins and an enterprise level array robotics may be necessary for larger scale efforts. This report aims to provide practical advice to those who develop or use arrays with up to ~100 different peptide or protein features.

  6. A non-covalent peptide-based carrier for in vivo delivery of DNA mimics

    OpenAIRE

    Morris, May C.; Gros, Edwige; Aldrian-Herrada, Gudrun; Choob, Michael; Archdeacon, John; Heitz, Frederic; Divita, Gilles

    2007-01-01

    The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficien...

  7. Vortex-Induced Alignment of a Water Soluble Supramolecular Nanofiber Composed of an Amphiphilic Dendrimer

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuda

    2013-06-01

    Full Text Available We have synthesized a novel amphiphilic naphthalene imide bearing a cationic dendrimer wedge (NID. NID molecules in water self-assemble to form a two-dimensional ribbon, which further coils to give a linear supramolecular nanofiber. The sample solution showed linear dichroism (LD upon stirring of the solution, where NID nanofibers dominantly align at the center of vortex by hydrodynamic interaction with the downward torsional flows.

  8. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides.

    Science.gov (United States)

    Raucher, Drazen; Moktan, Shama; Massodi, Iqbal; Bidwell, Gene L

    2009-10-01

    Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.

  9. Silver baits for the "miraculous draught" of amphiphilic lanthanide helicates.

    Science.gov (United States)

    Terazzi, Emmanuel; Guénée, Laure; Varin, Johan; Bocquet, Bernard; Lemonnier, Jean-François; Emery, Daniel; Mareda, Jiri; Piguet, Claude

    2011-01-03

    The axial connection of flexible thioalkyls chains of variable length (n=1-12) within the segmental bis-tridentate 2-benzimidazole-8-hydroxyquinoline ligands [L12(Cn) -2 H](2-) provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of Ag(I) in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D(3) -symmetrical [Ln(2) Ag2(L12(C3) -2 H)(3) ](2+) complexes at millimolar concentration (Ln=La, Eu, Lu). The X-ray crystal structure supports the formation of [La(2) Ag(2) (L12(C3) -2 H)(3) ][OTf](2) , which exists in the solid state as infinite linear polymers bridged by S-Ag-S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the Ag(I) coordination sphere. Turned as a predictive tool, MD suggests that this Ag(I) templating effect is efficient only for n=1-3, while for n>3 very loose interactions occur between Ag(I) and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln(2) Ag(2) (L12(C12) -2 H)(3) ](2+) in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids.

    Science.gov (United States)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-02-07

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO(2)-expanded liquid (CXL), CO(2)-methanol. The phase behavior of the CO(2)-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO(2), forming homogeneous CXL under the experimental conditions. When treated with the CO(2)-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows "thermodynamically restricted" character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.

  11. Preparation of pH-sensitive amphiphilic block star polymers, their self-assembling characteristics and release behavior on encapsulated molecules

    KAUST Repository

    Song, Xiaowan; Cao, Ming; Chen, Peng; Xia, Ru; Zheng, Zhengzhi; Miao, Jibin; Yang, Bin; Su, Lifen; Qian, Jiasheng; Feng, Xiaoshuang

    2016-01-01

    Poly(ethylene glycol) (PEG), a polymer with excellent biocompatibility, was widely used to form nanoparticles for drug delivery applications. In this paper, based on PEG, a series of pH-sensitive amphiphilic block star polymers of poly

  12. Ultrashort peptide nanogels release in situ generated silver manoparticles to combat emerging antimicrobial resistance strains

    KAUST Repository

    Seferji, Kholoud; Susapto, Hepi Hari; Arab, Wafaa Talat Abdullah; Sharip, Ainur; Sundaramurthi, Dhakshinamoorthy; Rauf, Sakandar; Hauser, Charlotte

    2017-01-01

    Nanogels made from self-assembling ultrashort peptides (3-6 amino acids in size) are promising biomaterials for various biomedical applications such as tissue engineering, drug delivery, regenerative medicine, microbiology and biosensing.We have developed silver-releasing peptide nanogels with promising wound care applications. The peptide nanogels allow a precise control of in situ syntesized silver nanoparticles (AgNPs), using soley short UV radiation and no other chemical reducing agent. We propose these silver-releasing nanogels as excellent biomaterial to combat emerging antimicrobial resistant strains.

  13. Ultrashort peptide nanogels release in situ generated silver manoparticles to combat emerging antimicrobial resistance strains

    KAUST Repository

    Seferji, Kholoud

    2017-01-08

    Nanogels made from self-assembling ultrashort peptides (3-6 amino acids in size) are promising biomaterials for various biomedical applications such as tissue engineering, drug delivery, regenerative medicine, microbiology and biosensing.We have developed silver-releasing peptide nanogels with promising wound care applications. The peptide nanogels allow a precise control of in situ syntesized silver nanoparticles (AgNPs), using soley short UV radiation and no other chemical reducing agent. We propose these silver-releasing nanogels as excellent biomaterial to combat emerging antimicrobial resistant strains.

  14. Macroscopic alignment of graphene stacks by Langmuir-Blodgett deposition of amphiphilic hexabenzocoronenes

    DEFF Research Database (Denmark)

    Laursen, B.W.; Nørgaard, K.; Reitzel, N.

    2004-01-01

    ). Grazing-incidence X-ray diffraction (GIXD) and X-ray reflectivity, both utilizing synchrotron radiation, show that these amphiphilic HBCs form well-defined Langmuir monolayers at the air-water interface, with pi-stacked columnar structure where the HBC cores are rotated around the surface normal...... and tilted relative to the water surface. The intercolumnar distance is 20 A. The HBCs are confined to a layer lying on top of the layer of polar groups that are in contact with the water subphase. Efficient transfer of the monolayer of the anthraquinone-substituted HBC derivative to hydrophobic quartz...

  15. Probing the amphiphile micellar to hexagonal phase transition using Positron Annihilation Lifetime Spectroscopy.

    Science.gov (United States)

    Dong, Aurelia W; Fong, Celesta; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2013-07-15

    Positron Annihilation Lifetime Spectroscopy (PALS) has been utilised only sparingly for structural characterisation in self assembled materials. Inconsistencies in approaches to experimental configuration and data analysis between studies has complicated comparisons between studies, meaning that the technique has not provided a cohesive data set across the study of different self assembled systems that advance the technique towards an important tool in soft matter research. In the current work a systematic study was conducted using ionic and non-ionic micellar systems with increasing surfactant concentration to probe positron behaviour on changes between micellar phase structures, and data analysed using contemporary approaches to fit four component spectra. A characteristic orthopositronium lifetime (in the organic regions) of 3.5±0.2 ns was obtained for the hexagonal phase for surfactants with C12 alkyl chains. Chemical quenching of the positron species was also observed for systems with ionic amphiphiles. The application of PALS has also highlighted an inconsistency in the published phase diagram for the octa(ethylene oxide) monododecyl ether (C12EO8) system. These results provide new insight into how the physical properties of micellar systems can be related to PALS parameters and means that the PALS technique can be applied to other more complex self-assembled amphiphile systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  17. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    International Nuclear Information System (INIS)

    Varanasi, S. R.; John, A.; Guskova, O. A.; Sommer, J.-U.

    2015-01-01

    Fullerene C 60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C 60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C 60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  18. Synthesis and properties of amphiphilic hyperbranched polyethers as pigment dispersant

    Science.gov (United States)

    Xu, Q.; Zhou, Y. J.; Long, S. J.; Liu, Y. G.; Li, J. H.

    2018-01-01

    Hyperbranched polymers possess prominent properties such as low viscosity, good solubility, high rheological property, environmental non-toxic, and so on, which have potential applications in coatings. In this study, the amphiphilic hyperbranched polyethers (AHPs) consisting of hydrophobic hyperbranched polyethers core and hydrophilic poly (ethylene glycol) arms with different degree of branching (DB) under various reaction temperatures was prepared by the cation ring-opening polymerization. Their structures were characterized by IR, 13CNMR and GPC. Their dispersion properties for pigment particles were investigated. The AHP47 with 0.47 DB was found to have good dispersion properties for Yellow HGR. This work would provide experimental data and theoretical foundation for the application of hyperbranched polyethers in environmental protection coating.

  19. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  20. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.

    Science.gov (United States)

    Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G

    2012-04-24

    Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.

  1. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage.

    Science.gov (United States)

    Huang, Yanshan; Wu, Dongqing; Wang, Jinzuan; Han, Sheng; Lv, Lu; Zhang, Fan; Feng, Xinliang

    2014-06-12

    3D macroporous graphene/SnO2 frameworks (MGTFs) are fabricated by amphiphilic polymer-promoted assembly method, which exhibit controllable macroporous structure and outstanding lithium storage performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  3. An Experimental and Molecular Dynamics Investigation into the Amphiphilic Nature of Sulforhodamine B

    OpenAIRE

    Polat, Baris E.; Lin, Shangchao; Mendenhall, Jonathan D.; VanVeller, Brett; Langer, Robert; Blankschtein, Daniel

    2011-01-01

    Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the...

  4. Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.

    Science.gov (United States)

    Chae, Pil Seok; Bae, Hyoung Eun; Das, Manabendra

    2014-10-21

    We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.

  5. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    Science.gov (United States)

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  6. Can Natural Proteins Designed with ‘Inverted’ Peptide Sequences Adopt Native-Like Protein Folds?

    Science.gov (United States)

    Sridhar, Settu; Guruprasad, Kunchur

    2014-01-01

    We have carried out a systematic computational analysis on a representative dataset of proteins of known three-dimensional structure, in order to evaluate whether it would possible to ‘swap’ certain short peptide sequences in naturally occurring proteins with their corresponding ‘inverted’ peptides and generate ‘artificial’ proteins that are predicted to retain native-like protein fold. The analysis of 3,967 representative proteins from the Protein Data Bank revealed 102,677 unique identical inverted peptide sequence pairs that vary in sequence length between 5–12 and 18 amino acid residues. Our analysis illustrates with examples that such ‘artificial’ proteins may be generated by identifying peptides with ‘similar structural environment’ and by using comparative protein modeling and validation studies. Our analysis suggests that natural proteins may be tolerant to accommodating such peptides. PMID:25210740

  7. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer

    Science.gov (United States)

    Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang

    2014-05-01

    Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.

  8. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  9. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    Science.gov (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  10. Nanoparticles based on novel amphiphilic polyaspartamide copolymers

    International Nuclear Information System (INIS)

    Craparo, Emanuela Fabiola; Teresi, Girolamo; Ognibene, Maria Chiara; Casaletto, Maria Pia; Bondi, Maria Luisa; Cavallaro, Gennara

    2010-01-01

    In this article, the synthesis of two amphiphilic polyaspartamide copolymers, useful to obtain polymeric nanoparticles without using surfactants or stabilizing agents, is described. These copolymers were obtained starting from α,β-poly-(N-2-hydroxyethyl)-dl-aspartamide (PHEA) by following a novel synthetic strategy. In particular, PHEA and its pegylated derivative (PHEA-PEG 2000 ) were functionalized with poly(lactic acid) (PLA) through 1,1'-carbonyldiimidazole (CDI) activation to obtain PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers, respectively. These copolymers were properly purified and characterized by 1 H-NMR, FT-IR, and Size Exclusion Chromatography (SEC) analyses, which confirmed that derivatization reactions occurred. Nanoparticles were obtained from PHEA-PLA and PHEA-PEG 2000 -PLA graft copolymers by using the high pressure homogenization-solvent evaporation method, avoiding the use of surfactants or stabilizing agents. Polymeric nanoparticles were characterized by dimensional analysis, before and after freeze-drying process, and Scanning Electron Microscopy (SEM). Zeta potential measurements and X-ray Photoelectron Spectroscopy (XPS) analysis demonstrated the presence of PEG and/or PHEA onto the PHEA-PEG 2000 -PLA and PHEA-PLA nanoparticle surface, respectively.

  11. Teduglutide for the treatment of short bowel syndrome

    DEFF Research Database (Denmark)

    Jeppesen, P B

    2013-01-01

    Glucagon-like peptide 2 (GLP-2) decreases gastric and intestinal motility, reduces gastric secretions, promotes intestinal growth and improves post-resection structural and functional adaptation in short bowel syndrome (SBS). Teduglutide, an analogue of GLP-2, has a prolonged half-life and provides...

  12. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays.

    Science.gov (United States)

    Puiu, Mihaela; Bala, Camelia

    2018-04-01

    Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Antibacterial activity of novel cationic peptides against clinical isolates of multi-drug resistant Staphylococcus pseudintermedius from infected dogs.

    Directory of Open Access Journals (Sweden)

    Mohamed F Mohamed

    Full Text Available Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan with minimum inhibitory concentration50 (MIC50 of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide and IK8 "D isoform" demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF3K (two cell penetrating peptides were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin

  14. Protein interaction networks by proteome peptide scanning.

    Directory of Open Access Journals (Sweden)

    Christiane Landgraf

    2004-01-01

    Full Text Available A substantial proportion of protein interactions relies on small domains binding to short peptides in the partner proteins. Many of these interactions are relatively low affinity and transient, and they impact on signal transduction. However, neither the number of potential interactions mediated by each domain nor the degree of promiscuity at a whole proteome level has been investigated. We have used a combination of phage display and SPOT synthesis to discover all the peptides in the yeast proteome that have the potential to bind to eight SH3 domains. We first identified the peptides that match a relaxed consensus, as deduced from peptides selected by phage display experiments. Next, we synthesized all the matching peptides at high density on a cellulose membrane, and we probed them directly with the SH3 domains. The domains that we have studied were grouped by this approach into five classes with partially overlapping specificity. Within the classes, however, the domains display a high promiscuity and bind to a large number of common targets with comparable affinity. We estimate that the yeast proteome contains as few as six peptides that bind to the Abp1 SH3 domain with a dissociation constant lower than 100 microM, while it contains as many as 50-80 peptides with corresponding affinity for the SH3 domain of Yfr024c. All the targets of the Abp1 SH3 domain, identified by this approach, bind to the native protein in vivo, as shown by coimmunoprecipitation experiments. Finally, we demonstrate that this strategy can be extended to the analysis of the entire human proteome. We have developed an approach, named WISE (whole interactome scanning experiment, that permits rapid and reliable identification of the partners of any peptide recognition module by peptide scanning of a proteome. Since the SPOT synthesis approach is semiquantitative and provides an approximation of the dissociation constants of the several thousands of interactions that are

  15. Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures

    Directory of Open Access Journals (Sweden)

    Casscells S Ward

    2007-08-01

    Full Text Available Abstract Background The amphiphilic fullerene monomer (AF-1 consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM, transmission electron microscopy (TEM, and dynamic light scattering (DLS studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions. Results Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates. Conclusion In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.

  16. Fall in C-Peptide During First 2 Years From Diagnosis

    Science.gov (United States)

    Greenbaum, Carla J.; Beam, Craig A.; Boulware, David; Gitelman, Stephen E.; Gottlieb, Peter A.; Herold, Kevan C.; Lachin, John M.; McGee, Paula; Palmer, Jerry P.; Pescovitz, Mark D.; Krause-Steinrauf, Heidi; Skyler, Jay S.; Sosenko, Jay M.

    2012-01-01

    Interpretation of clinical trials to alter the decline in β-cell function after diagnosis of type 1 diabetes depends on a robust understanding of the natural history of disease. Combining data from the Type 1 Diabetes TrialNet studies, we describe the natural history of β-cell function from shortly after diagnosis through 2 years post study randomization, assess the degree of variability between patients, and investigate factors that may be related to C-peptide preservation or loss. We found that 93% of individuals have detectable C-peptide 2 years from diagnosis. In 11% of subjects, there was no significant fall from baseline by 2 years. There was a biphasic decline in C-peptide; the C-peptide slope was −0.0245 pmol/mL/month (95% CI −0.0271 to −0.0215) through the first 12 months and −0.0079 (−0.0113 to −0.0050) from 12 to 24 months (P < 0.001). This pattern of fall in C-peptide over time has implications for understanding trial results in which effects of therapy are most pronounced early and raises the possibility that there are time-dependent differences in pathophysiology. The robust data on the C-peptide obtained under clinical trial conditions should be used in planning and interpretation of clinical trials. PMID:22688329

  17. Amphiphilic hollow porous shell encapsulated Au@Pd bimetal nanoparticles for aerobic oxidation of alcohols in water

    KAUST Repository

    Zou, Houbing

    2015-01-01

    © The Royal Society of Chemistry 2015. This work describes the design, synthesis and analysis of an amphiphilic hollow mesoporous shell encapsulating catalytically active Au@Pd bimetal nanoparticles. The particles exhibited excellent catalytic activity and stability in the aerobic oxidation of primary and secondary alcohols to their corresponding aldehydes or ketones in water when using air as an oxidizing agent under atmospheric pressure.

  18. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers : Towards new potential systems for enhanced oil recovery

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene

  19. Recovery and redispersion of gold nanoparticles using the self-assembly of a pH sensitive zwitterionic amphiphile.

    Science.gov (United States)

    Morita-Imura, Clara; Imura, Yoshiro; Kawai, Takeshi; Shindo, Hitoshi

    2014-11-04

    The pH-responsive self-assembly of zwitterionic amphiphile C16CA was expanded to the recovery of gold (Au) nanoparticles for environmentally friendly chemistry applications. Multilayered lamellae at pH ∼ 4 were successfully incorporated into nanoparticles by dispersion. Redispersion of nanoparticles was achieved under basic conditions by the transition of self-assembly.

  20. Molding a peptide into an RNA site by in vivo peptide evolution

    OpenAIRE

    Harada, Kazuo; Martin, Shelley S.; Tan, Ruoying; Frankel, Alan D.

    1997-01-01

    Short peptides corresponding to the arginine-rich domains of several RNA-binding proteins are able to bind to their specific RNA sites with high affinities and specificities. In the case of the HIV-1 Rev-Rev response element (RRE) complex, the peptide forms a single α-helix that binds deeply in a widened, distorted RNA major groove and makes a substantial set of base-specific and backbone contacts. Using a reporter system based on antitermination by the bacteriophage λ N protein, it has been ...

  1. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics

    Science.gov (United States)

    Gul, Ahmet; Erman, Burak

    2018-03-01

    Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.

  2. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications.

    Science.gov (United States)

    Koutsopoulos, Sotirios

    2016-04-01

    Until the mid-1980s, mainly biologists were conducting peptide research. This changed with discoveries that opened new paths of research involving the use of peptides in bioengineering, biotechnology, biomedicine, nanotechnology, and bioelectronics. Peptide engineering and rational design of novel peptide sequences with unique and tailor-made properties further expanded the field. The discovery of short self-assembling peptides, which upon association form well-defined supramolecular architectures, created new and exciting areas of research. Depending on the amino acid sequence, the pH, and the type of the electrolyte in the medium, peptide self-assembly leads to the formation of nanofibers, which are further organized to form a hydrogel. In this review, the application of ionic complementary peptides which self-assemble to form nanofiber hydrogels for tissue engineering and regenerative medicine will be discussed through a selective presentation of the most important work performed during the last 25 years. © 2016 Wiley Periodicals, Inc.

  3. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. influence of preparation techniques on particle characteristics and protein delivery

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    2000-01-01

    The entrapment of lysozyme in amphiphilic multiblock copolymer microspheres by emulsification and subsequent solvent removal processes was studied. The copolymers are composed of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks. Direct solvent

  4. Catanionic mixtures forming gemini-like amphiphiles.

    Science.gov (United States)

    Sakai, Hideki; Okabe, Yuji; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko

    2011-01-01

    The properties of aqueous mixtures of cationic species with alkyl dicarboxylic acid compounds have been studied. The cationic compounds used in this study were tertiary amine-type N-methyl-N-(2,3-dioxypropyl)hexadecylamine (C16amine) and quaternary ammonium-type N,N-dimethyl-N-(2,3-dioxypropyl)hexadecylammonium chloride (C16Q). The alkyl dicarboxylic acid compounds used were HOOC(CH(2))(10)COOH (C12H) and its sodium salt (C12Na). Three aqueous mixtures were examined in this study: (System I) C16amine + C12H, (System II) C16Q + C12Na, and (System III) C16Q + C12H. The solution pH was set at 12 for System III. The combination of (1)H-NMR and mass spectroscopy data has suggested that a stoichiometric complex is formed in the aqueous solutions at a mole fraction of C12H (or C12Na) = 0.33. Here, the C12H (or C12Na) molecule added to the system bridges two cationic molecules, like a spacer of gemini surfactants. In fact, the static surface tensiometry has demonstrated that the stoichiometric complex behaves as gemini-like amphiphiles in aqueous solutions. Our current study offers a possible way for easily preparing gemini surfactant systems.

  5. Self-consistent field theoretic simulations of amphiphilic triblock copolymer solutions: Polymer concentration and chain length effects

    Directory of Open Access Journals (Sweden)

    X.-G. Han

    2014-06-01

    Full Text Available Using the self-consistent field lattice model, polymer concentration φP and chain length N (keeping the length ratio of hydrophobic to hydrophilic blocks constant the effects on temperature-dependent behavior of micelles are studied, in amphiphilic symmetric ABA triblock copolymer solutions. When chain length is increased, at fixed φP, micelles occur at higher temperature. The variations of average volume fraction of stickers φcos and the lattice site numbers Ncols at the micellar cores with temperature are dependent on N and φP, which demonstrates that the aggregation of micelles depends on N and φP. Moreover, when φP is increased, firstly a peak appears on the curve of specific heat CV for unimer-micelle transition, and then in addition a primary peak, the secondary peak, which results from the remicellization, is observed on the curve of CV. For a long chain, in intermediate and high concentration regimes, the shape of specific heat peak markedly changes, and the peak tends to be a more broad peak. Finally, the aggregation behavior of micelles is explained by the aggregation way of amphiphilic triblock copolymer. The obtained results are helpful in understanding the micellar aggregation process.

  6. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Energy Technology Data Exchange (ETDEWEB)

    Khan, I. John [The State Univ. of New Jersey, Piscataway, NJ (United States); Murthy, N. Sanjeeva [The State Univ. of New Jersey, Piscataway, NJ (United States); Kohn, Joachim [The State Univ. of New Jersey, Piscataway, NJ (United States)

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  7. Photo-switching of a non-ionic azobenzene amphiphile in Langmuir and Langmuir-Blodgett films.

    Science.gov (United States)

    Piosik, Emilia; Kotkowiak, Michał; Korbecka, Izabela; Galewski, Zbigniew; Martyński, Tomasz

    2017-08-30

    The concept of programmable and reconfigurable soft matter has emerged in science in the last few decades and can be realized by photoisomerization of azobenzene derivatives. This possibility results in great application potential of these compounds in optical storage devices, molecular junctions of electronic devices, command layers of liquid crystal displays or holographic gratings. In this paper, we present the results of a study on the organization and isomerization of the non-ionic and amphiphilic methyl 4-[(E)-2-[4-(nonyloxy)phenyl]diazen-1-yl]benzoate (LCA) in a 2D layer architecture of Langmuir and Langmuir-Blodgett (LB) films supported by spectroscopic studies on LCA chloroform solutions. Our investigation has shown a significantly different molecular organization of LCA depending on the ratio of trans and cis isomers in the monolayers. Taking advantage of a relatively low packing density and aggregation strength in the cis-LCA monolayer, we demonstrated the reversible isomerization in the LB film initially formed of LCA molecules in the cis form, while in the trans-LCA monolayer this effect was not observed. Our approach allows the formation of a switchable monolayer made of the amphiphilic LCA showing liquid crystalline properties without introducing an ionic group into the molecule structure, mixing with another compound or changing the subphase pH to provide free space for the molecules' isomerization.

  8. Discriminating binding and positioning of amphiphiles to lipid bilayers by {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Evanics, F. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada); Prosser, R.S. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada)]. E-mail: sprosser@utm.utoronto.ca

    2005-04-04

    The binding and positioning in lipid bilayers of three well-known drugs--imipramine, nicotine, and caffeine--have been studied using {sup 1}H NMR. The membrane model system consisted of 'fast-tumbling' lipid bicelles, in which a bilayered lipid domain, composed of the unsaturated lipid, 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (DMLPC) was surrounded by a rim of deuterated detergent-like lipids, consisting of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC-d22). Binding and immersion depth information was obtained by three experiments. (1) {sup 1}H chemical shift perturbations, upon transfer of the amphiphiles from water to a bicelle mixture, were used to estimate regions of the amphiphiles that interact with the membrane. (2) Water contact to resolvable protons was measured through a Nuclear Overhauser Effect (NOE) between water and resolvable drug and lipid resonances. In the case of both lipids and membrane bound drugs, positive NOEs with large cross-relaxation rates were measured for most resonances originating from the membrane hydrophilic region, while negative NOEs were observed predominantly to resonances in the hydrophobic region of the membrane. (3) {sup 1}H NMR measurements of oxygen-induced (paramagnetic) spin-lattice relaxation rates, which are known to increase with membrane immersion depth, were used to corroborate conclusions based on chemical shift perturbations and water-ligand NOEs.

  9. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Directory of Open Access Journals (Sweden)

    Joachim Kohn

    2012-10-01

    Full Text Available Voclosporin is a highly potent, new cyclosporine-A derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. We therefore selected it as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE and desaminotyrosyl-tyrosine (DT, and the hydrophilic component is poly(ethylene glycol (PEG. Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide (PLGA, which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  10. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    International Nuclear Information System (INIS)

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-01-01

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y_4). A peptide whereby Y_4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH_2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY_4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  11. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Shinohara, Hiroki; Kadoya, Toshihiko [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y{sub 4}). A peptide whereby Y{sub 4}C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH{sub 2}) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY{sub 4}C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  12. Affinity Purification and Comparative Biosensor Analysis of Citrulline-Peptide-Specific Antibodies in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Eszter Szarka

    2018-01-01

    Full Text Available Background: In rheumatoid arthritis (RA, anti-citrullinated protein/peptide antibodies (ACPAs are responsible for disease onset and progression, however, our knowledge is limited on ligand binding affinities of autoantibodies with different citrulline-peptide specificity. Methods: Citrulline-peptide-specific ACPA IgGs were affinity purified and tested by ELISA. Binding affinities of ACPA IgGs and serum antibodies were compared by surface plasmon resonance (SPR analysis. Bifunctional nanoparticles harboring a multi-epitope citrulline-peptide and a complement-activating peptide were used to induce selective depletion of ACPA-producing B cells. Results: KD values of affinity-purified ACPA IgGs varied between 10−6 and 10−8 M and inversely correlated with disease activity. Based on their cross-reaction with citrulline-peptides, we designed a novel multi-epitope peptide, containing Cit-Gly and Ala-Cit motifs in two–two copies, separated with a short, neutral spacer. This peptide detected antibodies in RA sera with 66% sensitivity and 98% specificity in ELISA and was recognized by 90% of RA sera, while none of the healthy samples in SPR. When coupled to nanoparticles, the multi-epitope peptide specifically targeted and depleted ACPA-producing B cells ex vivo. Conclusions: The unique multi-epitope peptide designed based on ACPA cross-reactivity might be suitable to develop better diagnostics and novel therapies for RA.

  13. Synthesis of an amphiphilic rhodamine derivative and characterization of its solution and thin film properties

    International Nuclear Information System (INIS)

    Aviv, Hagit; Harazi, Sivan; Schiff, Dillon; Ramon, Yoni; Tischler, Yaakov R.

    2014-01-01

    Here we present characterization of solution and thin film properties of Lissamine rhodamine B sulfonyl didodecyl amine (LRSD), an amphiphilic derivative of rhodamine. LRSD was synthesized by functionalizing Lissamine rhodamine B sulfonyl chloride (LRSC) with didodecylamine via a straightforward sulfonylation reaction. LRSD's long alkane chains make it highly soluble in chloroform, with a marked increase in brightness compared to the starting material. LRSD is shown to form well-defined robust micelles in water, without the addition of a co-surfactant and stable monolayers at the air–water interface. The greater lipophilicity of LRSD also enables doping into non-polar polymeric host matrices such as polystyrene with less aggregation and hence higher fluorescence quantum yield than LRSC or even rhodamine B. The monolayers of LRSD were prepared via Langmuir–Blodgett deposition and showed shifts in the photoluminescence peak from 575 nm to 595 nm, as the surface pressure is varied from 3 mN/m to 11 mN/m. - Highlights: • Lissamine rhodamine B sulfonyl didodecyl amine (LRSD) is soluble in chloroform. • LRSD shows robust quantum yield in solution and as a dopant in thin film. • LRSD is an amphiphilic rhodamine dye that forms compact fluorescent micelles. • LRSD forms a stable isotherm when spread at the air–water interface

  14. Highly ordered self-assembly of one-dimensional nanoparticles in amphiphilic molecular systems

    International Nuclear Information System (INIS)

    Kim, Tae Hwan

    2009-02-01

    Two kinds of one-dimensional (1D) nanoparticles, stable rod-like nanoparticles with highly controlled surface charge density (cROD) and non-covalently functionalized isolated single wall carbon nanotubes (p-SWNT) that were readily redispersible in water, have been developed. Using these 1D nanoparticles, various highly ordered superstructures of 1D nanoparticles by molecular self-assembling based on electrostatic interaction in amphiphilic molecular systems (two different cationic liposome systems) have been investigated. To our knowledge, this is the first demonstration of highly ordered self-assembly of 1D nanoparticles based on electrostatic interaction between 1D nanoparticles and amphiphilic molecules. The cRODs have been developed by free radical polymerization of a mixture of polymerizable cationic surfactant, cetyltrimethylammonium 4-vinylbenzoate (CTVB), and hydrotropic salt sodium 4-styrenesulfonate (NaSS) in aqueous solution. The surface charge of the cROD was controlled by varying the NaSS concentration during the polymerization process and the charge variation was interpreted in terms of the overcharging effect in colloidal systems. The small angle neutron scattering (SANS) measurements showed that the diameter of cROD is constant at 4 nm and the particle length ranges from 20 nm to 85 nm, depending on the NaSS concentration. The cRODs are longest when the NaSS concentration is 5 mol % which corresponds to the charge inversion or neutral point. The SANS and zeta potential measurements showed that the Coulomb interactions between the particles are strongly dependent on the NaSS concentration and the zeta potential of the cRODs changes from positive to negative (+ 12.8 mV ∼ - 44.2 mV) as the concentration of NaSS increases from 0 mol % to 40 mol %. As the NaSS concentration is further increased, the zeta potential is saturated at approximately - 50 mV. The p-SWNTs have been developed by 1) dispersing single wall carbon nanotubes (SWNTs) in water using

  15. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles.

    Science.gov (United States)

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K

    2014-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly em- ployed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transder mal, and ocular administrations.

  16. PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm.

    Science.gov (United States)

    Zaidman, Daniel; Wolfson, Haim J

    2016-08-01

    Design of protein-protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5-15 amino acid long), are natural candidates for inhibition of protein-protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations. In this article we present PinaColada, a novel computational method for the design of peptide inhibitors for protein-protein interactions. We employ a version of the ant colony optimization heuristic, which is used to explore the exponential space ([Formula: see text]) of length n peptide sequences, in combination with our fast robotics motivated PepCrawler algorithm, which explores the conformational space for each candidate sequence. PinaColada is being run in parallel, on a DELL PowerEdge 2.8 GHZ computer with 20 cores and 256 GB memory, and takes up to 24 h to design a peptide of 5-15 amino acids length. An online server available at: http://bioinfo3d.cs.tau.ac.il/PinaColada/. danielza@post.tau.ac.il; wolfson@tau.ac.il. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. A novel monoclonal antibody to a defined peptide epitope in MUC16

    DEFF Research Database (Denmark)

    Marcos-Silva, Lara; Ricardo, Sara; Chen, Kowa

    2015-01-01

    with the tandem-repeat region, their epitopes appear to be conformational dependent and not definable by a short peptide. Aberrant glycoforms of MUC16 may constitute promising targets for diagnostic and immunotherapeutic intervention, and it is important to develop well-defined immunogens for induction of potent...... immunodominant linear peptide epitopes within the tandem repeat. We developed one monoclonal antibody, 5E11, reactive with a minimum epitope with the sequence FNTTER. This sequence contains potential N- and O-glycosylation sites and, interestingly, glycosylation blocked binding of 5E11. In immunochemistry...

  18. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  19. Synthesis of Fluorinated Amphiphilic Block Copolymers Based on PEGMA, HEMA, and MMA via ATRP and CuAAC Click Chemistry

    Directory of Open Access Journals (Sweden)

    Fatime Eren Erol

    2014-01-01

    Full Text Available Synthesis of fluorinated amphiphilic block copolymers via atom transfer radical polymerization (ATRP and Cu(I catalyzed Huisgen 1,3-dipolar cycloaddition (CuAAC was demonstrated. First, a PEGMA and MMA based block copolymer carrying multiple side-chain acetylene moieties on the hydrophobic segment for postfunctionalization was carried out. This involves the synthesis of a series of P(HEMA-co-MMA random copolymers to be employed as macroinitiators in the controlled synthesis of P(HEMA-co-MMA-block-PPEGMA block copolymers by using ATRP, followed by a modification step on the hydroxyl side groups of HEMA via Steglich esterification to afford propargyl side-functional polymer, alkyne-P(HEMA-co-MMA-block-PPEGMA. Finally, click coupling between side-chain acetylene functionalities and 2,3,4,5,6-pentafluorobenzyl azide yielded fluorinated amphiphilic block copolymers. The obtained polymers were structurally characterized by 1H-NMR, 19F-NMR, FT-IR, and GPC. Their thermal characterizations were performed using DSC and TGA.

  20. One-Pot Synthesis of (+-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    Directory of Open Access Journals (Sweden)

    Bing Hong

    2016-11-01

    Full Text Available Efficient one-pot catalytic synthesis of (+-nootkatone was performed from (+-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i singlet oxygenation of valencene according to the ene reaction; (ii Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii dehydration of the hydroperoxide into the desired (+-nootkatone. The solvent effect on the hydroperoxide rearrangement is herein discussed. The amphiphilic dimethyldioctyl ammonium molybdate, which is also a balanced surfactant, played a triple role in this process, as molybdate ions catalyzed at both Step 1 and Step 3 and it allowed the rapid formation of a three-phase microemulsion system that highly facilitates product recovery. Preparative synthesis of the high added value (+-nootkatone was thus performed at room temperature with an isolated yield of 46.5%. This is also the first example of a conversion of allylic hydroperoxides into ketones catalyzed by molybdate ions.

  1. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers

    Science.gov (United States)

    Chuah, Jo-Ann; Yoshizumi, Takeshi; Kodama, Yutaka; Numata, Keiji

    2015-01-01

    Available methods in plant genetic transformation are nuclear and plastid transformations because similar procedures have not yet been established for the mitochondria. The double membrane and small size of the organelle, in addition to its large population in cells, are major obstacles in mitochondrial transfection. Here we report the intracellular delivery of exogenous DNA localized to the mitochondria of Arabidopsis thaliana using a combination of mitochondria-targeting peptide and cell-penetrating peptide. Low concentrations of peptides were sufficient to deliver DNA into the mitochondria and expression of imported DNA reached detectable levels within a short incubation period (12 h). We found that electrostatic interaction with the cell membrane is not a critical factor for complex internalization, instead, improved intracellular penetration of mitochondria-targeted complexes significantly enhanced gene transfer efficiency. Our results delineate a simple and effective peptide-based method, as a starting point for the development of more sophisticated plant mitochondrial transfection strategies.

  2. A non-covalent peptide-based strategy for ex vivo and in vivo oligonucleotide delivery.

    Science.gov (United States)

    Crombez, Laurence; Morris, May C; Heitz, Frederic; Divita, Gilles

    2011-01-01

    The dramatic acceleration in identification of new nucleic acid-based therapeutic molecules such as short interfering RNA (siRNA) and peptide-nucleic acid (PNA) analogues has provided new perspectives for therapeutic targeting of specific genes responsible for pathological disorders. However, the poor cellular uptake of nucleic acids together with the low permeability of the cell membrane to negatively charged molecules remain major obstacles to their clinical development. Several non-viral strategies have been proposed to improve the delivery of synthetic short oligonucleotides both in cultured cells and in vivo. Cell-penetrating peptides constitute very promising tools for non-invasive cellular import of oligonucleotides and analogs. We recently described a non-covalent strategy based on short amphiphatic peptides (MPG8/PEP3) that have been successfully applied ex vivo and in vivo for the delivery of therapeutic siRNA and PNA molecules. PEP3 and MPG8 form stable nanoparticles with PNA analogues and siRNA, respectively, and promote their efficient cellular uptake, independently of the endosomal pathway, into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. This chapter describes easy-to-handle protocols for the use of MPG-8 or PEP-3-nanoparticle technologies for PNA and siRNA delivery into adherent and suspension cell lines as well as in vivo into cancer mouse models.

  3. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides

    International Nuclear Information System (INIS)

    Vegt, Erik; Eek, Annemarie; Oyen, Wim J.G.; Gotthardt, Martin; Boerman, Otto C.; Jong, Marion de

    2010-01-01

    In peptide-receptor radionuclide therapy (PRRT), the maximum activity dose that can safely be administered is limited by high renal uptake and retention of radiolabelled peptides. The kidney radiation dose can be reduced by coinfusion of agents that competitively inhibit the reabsorption of radiolabelled peptides, such as positively charged amino acids, Gelofusine, or trypsinised albumin. The aim of this study was to identify more specific and potent inhibitors of the kidney reabsorption of radiolabelled peptides, based on albumin. Albumin was fragmented using cyanogen bromide and six albumin-derived peptides with different numbers of electric charges were selected and synthesised. The effect of albumin fragments (FRALB-C) and selected albumin-derived peptides on the internalisation of 111 In-albumin, 111 In-minigastrin, 111 In-exendin and 111 In-octreotide by megalin-expressing cells was assessed. In rats, the effect of Gelofusine and albumin-derived peptides on the renal uptake and biodistribution of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide was determined. FRALB-C significantly reduced the uptake of all radiolabelled peptides in vitro. The albumin-derived peptides showed different potencies in reducing the uptake of 111 In-albumin, 111 In-exendin and 111 In-minigastrin in vitro. The most efficient albumin-derived peptide (peptide 6), was selected for in vivo testing. In rats, 5 mg of peptide 6 very efficiently inhibited the renal uptake of 111 In-minigastrin, by 88%. Uptake of 111 In-exendin and 111 In-octreotide was reduced by 26 and 33%, respectively. The albumin-derived peptide 6 efficiently inhibited the renal reabsorption of 111 In-minigastrin, 111 In-exendin and 111 In-octreotide and is a promising candidate for kidney protection in PRRT. (orig.)

  4. Evaluation of chromatographic conditions in reversed phase liquid chromatography-mass spectrometry systems for fingerprinting of polar and amphiphilic plant metabolites

    DEFF Research Database (Denmark)

    Nielsen, Nikoline Juul; Tomasi, Giorgio; Christensen, Jan H.

    2016-01-01

    Metabolic fingerprinting is a relatively young scientific discipline requiring robust, yet flexible and fit-for-purpose analytical methods. Here, we introduce a simple approach to select reversed phase LC systems with electrospray MS detection for fingerprinting of polar and amphiphilic plant met...

  5. Hormone-like peptides in the venoms of marine cone snails

    Science.gov (United States)

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T.; Purcell, Anthony W.; Norton, Raymond S.; Safavi-Hemami, Helena

    2015-01-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey’s nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. PMID:26301480

  6. Hormone-like peptides in the venoms of marine cone snails.

    Science.gov (United States)

    Robinson, Samuel D; Li, Qing; Bandyopadhyay, Pradip K; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T; Purcell, Anthony W; Norton, Raymond S; Safavi-Hemami, Helena

    2017-04-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer.

    Science.gov (United States)

    Yi, Fangping; Zheng, Sixun; Liu, Tianxi

    2009-02-19

    Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.

  8. Artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP): preparation and immunological analysis of vaccine efficacy.

    Science.gov (United States)

    Masuko, Kazutaka; Wakita, Daiko; Togashi, Yuji; Kita, Toshiyuki; Kitamura, Hidemitsu; Nishimura, Takashi

    2015-01-01

    To elucidate the immunologic mechanisms of artificially synthesized helper/killer-hybrid epitope long peptide (H/K-HELP), which indicated a great vaccine efficacy in human cancers, we prepared ovalbumin (OVA)-H/K-HELP by conjugating killer and helper epitopes of OVA-model tumor antigen via a glycine-linker. Vaccination of C57BL/6 mice with OVA-H/K-HELP (30 amino acids) but not with short peptides mixture of class I-binding peptide (8 amino-acids) and class II-binding peptide (17 amino-acids) combined with adjuvant CpG-ODN (cytosine-phosphorothioate-guanine oligodeoxynucleotides), induced higher numbers of OVA-tetramer-positive CTL with concomitant activation of IFN-γ-producing CD4(+) Th1 cells. However, replacement of glycine-linker of OVA-H/K-HELP with other peptide-linker caused a significant decrease of vaccine efficacy of OVA-H/K-HELP. In combination with adjuvant CpG-ODN, OVA-H/KHELP exhibited greater vaccine efficacy compared with short peptides vaccine, in both preventive and therapeutic vaccine models against OVA-expressing EG-7 tumor. The elevated vaccine efficacy of OVAH/K-HELP might be derived from the following mechanisms: (i) selective presentation by only professional dendritic cells (DC) in vaccinated draining lymph node (dLN); (ii) a long-term sustained antigen presentation exerted by DC to stimulate both CTL and Th1 cells; (iii) formation of three cells interaction among DC, Th and CTL. In comparative study, H/K-HELP indicated stronger therapeutic vaccine efficacy compared with that of extended class I synthetic long peptide, indicating that both the length of peptide and the presence of Th epitope peptide were crucial aspects for preparing artificially synthesized H/K-HELP vaccine. Copyright © 2014 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Antimicrobial Peptides: a promising class of antimicrobial compounds against BWA and multi-drug resistant bacteria: in the spotlight: the lactoferrin chimera

    NARCIS (Netherlands)

    Bikker, F.J.; Sijbrandij, T.; Nazmi, K.; Bolscher, J.G.M.; Veerman, E.C.I.; Jansen, H-J.

    2014-01-01

    Anti-Microbial Peptides (AMPs) are part of the innate immune defense system and considered as promising lead compounds for the development of novel anti-bacterial agents. In general, AMPs are simple, short peptides with broad-spectrum activity against Gram-negative and Gram-positive bacteria, fungi,

  10. Residual DNA-bound proteins are a source of in vitro transcription inhibitor peptides

    International Nuclear Information System (INIS)

    Venanzi, F.M.

    1989-01-01

    Enzymatic breakdown of residual proteins occurs at mild alkaline pH (pH optimum 8.5) as monitored by using radioiodinated, purified genomic DNA from calf thymus. These DNA fibers also possess a differential ability to hydrolyze added exogenous small and linker histones. The results described argue strongly that a putative protease activity, co-purified with DNA, is the source of short chain peptides which inhibit transcription in vitro. Therefore, we propose that RNA repressor peptides must be of higher molecular weight than previously reported

  11. [Plant signaling peptides. Cysteine-rich peptides].

    Science.gov (United States)

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  12. Sequence dependent aggregation of peptides and fibril formation

    Science.gov (United States)

    Hung, Nguyen Ba; Le, Duy-Manh; Hoang, Trinh X.

    2017-09-01

    Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.

  13. Controlled Synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization

    OpenAIRE

    Petrova, Svetla; Riva, Raphaël; Jérôme, Christine; Lecomte, Philippe; Mateva, Rosa

    2009-01-01

    This paper describes the synthesis of a novel amphiphilic AB2 triarm star-shaped copolymer with A = non-toxic and biocompatible hydrophilic poly(ethylene oxide) (PEO) and B = biodegradable and hydrophobic poly(ε-caprolactone) (PCL). A series of AB2 triarm star-shaped copolymers with different molecular weights for the PCL block were successfully synthesized by a three-step procedure. α-methoxy-ω-epoxy-poly(ethylene oxide) (PEO-epoxide) was first synthesized by the nucleophilic substitution of...

  14. Glucagon-like peptide-1 analogues: An overview

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2013-01-01

    Full Text Available Abnormalities of the incretin axis have been implicated in the pathogenesis of type 2 diabetes mellitus. Glucagon-like peptide-1 (GLP-1 and gastroinhibitory intestinal peptide constitutes >90% of all the incretin function. Augmentation of GLP-1 results in improvement of beta cell health in a glucose-dependant manner (post-prandial hyperglycemia and suppression of glucagon (fasting hyperglycemia, amongst other beneficial pleiotropic effects. Native GLP-1 has a very short plasma half-life and novel methods have been developed to augment its half life, such that its anti-hyperglycemic effects can be exploited. They can be broadly classified as exendin-based therapies (exenatide, exenatide once weekly, DPP-4-resistant analogues (lixisenatide, albiglutide, and analogues of human GLP-1 (liraglutide, taspoglutide. Currently, commercially available analogues are exenatide, exenatide once weekly, and liraglutide. This review aims to provide an overview of most GLP-1 analogues.

  15. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  16. Peptide dendrimers

    Czech Academy of Sciences Publication Activity Database

    Niederhafner, Petr; Šebestík, Jaroslav; Ježek, Jan

    2005-01-01

    Roč. 11, - (2005), 757-788 ISSN 1075-2617 R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : multiple antigen peptides * peptide dendrimers * synthetic vaccine * multipleantigenic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.803, year: 2005

  17. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers.

    Science.gov (United States)

    Zielińska, Paulina; Staniszewska, Monika; Bondaryk, Małgorzata; Koronkiewicz, Mirosława; Urbańczyk-Lipkowska, Zofia

    2015-11-13

    Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Development of a new LDL-based transport system for hydrophobic/amphiphilic drug delivery to cancer cells.

    Science.gov (United States)

    Huntosova, Veronika; Buzova, Diana; Petrovajova, Dana; Kasak, Peter; Nadova, Zuzana; Jancura, Daniel; Sureau, Franck; Miskovsky, Pavol

    2012-10-15

    Low-density lipoproteins (LDL), a natural in vivo carrier of cholesterol in the vascular system, play a key role in the delivery of hydrophobic/amphiphilic photosensitizers to tumor cells in photodynamic therapy of cancer. To make this delivery system even more efficient, we have constructed a nano-delivery system by coating of LDL surface by dextran. Fluorescence spectroscopy, confocal fluorescence imaging, stopped-flow experiments and flow-cytometry were used to characterize redistribution of hypericin (Hyp), a natural occurring potent photosensitizer, loaded in LDL/dextran complex to free LDL molecules as well as to monitor cellular uptake of Hyp by U87-MG cells. It is shown that the redistribution process of Hyp between LDL molecules is significantly suppressed by dextran coating of LDL surface. The modification of LDL molecules by dextran does not inhibit their recognition by cellular LDL receptors and U-87 MG cellular uptake of Hyp loaded in LDL/dextran complex appears to be similar to that one observed for Hyp transported by unmodified LDL particles. Thus, it is proposed that dextran modified LDL molecules could be used as a basis for construction of a drug transport system for targeted delivery of hydrophobic/amphiphilic drugs to cancer cells expressing high level of LDL receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R; Goktekin, E; Wang, MH; Gleason, KK

    2014-08-08

    Biofouling is a universal problem in various applications ranging from water purification to implantable biomedical devices. Recent advances in surface modification have created a rich library of antifouling surface chemistries, many of which can be categorized into one of the two groups: hydrophilic surfaces or amphiphilic surfaces. We report the straightforward preparation of antifouling thin film coatings in both categories via initiated chemical vapor deposition. A molecular force spectroscopy-based method is demonstrated as a rapid and quantitative assessment tool for comparing the differences in antifouling characteristics. The fouling propensity of single molecules, as opposed to bulk protein solution or bacterial culture, is assessed. This method allows for the interrogation of molecular interaction without the complication resulted from protein conformational change or micro-organism group interactions. The molecular interaction follows the same trend as bacterial adhesion results obtained previously, demonstrating that molecular force probe is a valid method for the quantification and mechanistic examination of fouling. In addition, the molecular force spectroscopy-based method is able to distinguish differences in antifouling capability that is not resolvable by traditional static protein adsorption tests. To lend further insight into the intrinsic fouling resistance of zwitterionic and amphiphilic surface chemistries, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, advancing and receding water contact angles, and atomic force microscopy are used to elucidate the film properties that are relevant to their antifouling capabilities.

  20. Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of Micelle-forming amphiphiles and cholesterol

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Birn, Pia; Hansen, Anker J

    2004-01-01

    , Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change...

  1. Development and use of engineered peptide deformylase in chemoenzymatic peptide synthesis

    NARCIS (Netherlands)

    Di Toma, Claudia

    2012-01-01

    Deze thesis beschrijft het onderzoek naar potentieel van het gebruik van het peptide deformylase (PDF) in chemo enzymatische peptide synthese. PDF is geschikt voor selective N terminale deformylatie van bepaalde N-formyl-peptides zonder gelijktijdige hydrolyse van de peptide binding. Door de

  2. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Solarte, Víctor A; Rosas, Jaiver E; Rivera, Zuly J; Arango-Rodríguez, Martha L; García, Javier E; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20-25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  3. Clicked bis-PEG-peptide conjugates for studying calmodulin-Kv7.2 channel binding.

    Science.gov (United States)

    Bonache, M Angeles; Alaimo, Alessandro; Malo, Covadonga; Millet, Oscar; Villarroel, Alvaro; González-Muñiz, Rosario

    2014-11-28

    The recombinant Kv7.2 calmodulin (CaM) binding site (Q2AB CaMBD) shows a high tendency to aggregate, thus complicating biochemical and structural studies. To facilitate these studies we have conceived bis-PEG-peptide CaMBD-mimetics linking helices A and B in single, easy to handle molecules. Short PEG chains were selected as spacers between the two peptide molecules, and a Cu(i)-catalyzed cycloaddition (CuAAC) protocol was used to assemble the final bis-PEG-peptide conjugate, by the convenient functionalization of PEG arms with azide and alkyne groups. The resulting conjugates, with a certain helical character in TFE solutions (CD), showed nanomolar affinity in a fluorescence CaM binding in vitro assay, higher than just the sum of the precursor PEG-peptide affinities, thus validating our design. The approach to these first described examples of Kv7.2 CaMBD-mimetics could pave the way to chimeric conjugates merging helices A and B from different Kv7 subunits.

  4. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Travelet, Christophe, E-mail: Christophe.Travelet@cermav.cnrs.fr [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Stemmelen, Mylene; Lapinte, Vincent [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); Dubreuil, Frederic [Universite Joseph Fourier (UJF), Institut de Chimie Moleculaire de Grenoble (ICMG-FR 2607 CNRS), PolyNat Carnot institute, Arcane LabEx, domaine universitaire de Grenoble, Centre de Recherches sur les Macromolecules Vegetales - CERMAV-UPR 5301 CNRS (France); Robin, Jean-Jacques [Universite de Montpellier II, Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-UM1-ENSCM), equipe ingenierie et architectures macromoleculaires (France); and others

    2013-06-15

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D{sub h}) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C{sub 19} to 19.2 nm for C{sub 57}). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D{sub h}-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].Graphical AbstractAmphiphilic

  5. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    International Nuclear Information System (INIS)

    Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques

    2013-01-01

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters (D h ) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C 19 to 19.2 nm for C 57 ). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h -values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445–1458, 2013)].Graphical AbstractAmphiphilic copolymers based

  6. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    Science.gov (United States)

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  7. Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs.

    Science.gov (United States)

    Bauchart, Caroline; Morzel, Martine; Chambon, Christophe; Mirand, Philippe Patureau; Reynès, Christelle; Buffière, Caroline; Rémond, Didier

    2007-12-01

    Characterisation and identification of peptides (800 to 5000 Da) generated by intestinal digestion of fish or meat were performed using MS analyses (matrix-assisted laser desorption ionisation time of flight and nano-liquid chromatography electrospray-ionisation ion trap MS/MS). Four pigs fitted with cannulas at the duodenum and jejunum received a meal exclusively made of cooked Pectoralis profundus beef meat or cooked trout fillets. A protein-free meal, made of free amino acids, starch and fat, was used to identify peptides of endogenous origin. Peptides reproducibly detected in digesta (i.e. from at least three pigs) were evidenced predominantly in the first 3 h after the meal. In the duodenum, most of the fish- and meat-derived peptides were characteristic of a peptic digestion. In the jejunum, the majority of peptides appeared to result from digestion by chymotrypsin and trypsin. Despite slight differences in gastric emptying kinetics and overall peptide production, possibly in relation to food structure and texture, six and four similar peptides were released after ingestion of fish or meat in the duodenum and jejunum. A total of twenty-six different peptides were identified in digesta. All were fragments of major structural (actin, myosin) or sarcoplasmic (creatine kinase, glyceraldehyde-3-phosphate dehydrogenase and myoglobin) muscle proteins. Peptides were short ( digestion, some of them can be reproducibly observed in intestinal digesta.

  8. How To Tackle the Issues in Free Energy Simulations of Long Amphiphiles Interacting with Lipid Membranes: Convergence and Local Membrane Deformations

    DEFF Research Database (Denmark)

    Filipe, H. A. L.; Moreno, M. J.; Rog, T.

    2014-01-01

    One of the great challenges in membrane biophysics is to find a means to foster the transport of drugs across complex membrane structures. In this spirit, we elucidate methodological challenges associated with free energy computations of complex chainlike molecules across lipid membranes....... As an appropriate standard molecule to this end, we consider 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled fatty amine, NBD-C-n, which is here dealt with as a homologous series with varying chain lengths. We found the membrane-water interface region to be highly sensitive to details in free energy computations. Despite...... of radius 1.7 nm from the amphiphile. Importantly, the free energy results given by PGC were found to be qualitatively consistent with experimental data, while the PGD results were not. We conclude that with long amphiphiles there is reason for concern with regard to computations of their free energy...

  9. Inclusion Complexes of a New Family of Non-Ionic Amphiphilic Dendrocalix[4]arene and Poorly Water-Soluble Drugs Naproxen and Ibuprofen

    Directory of Open Access Journals (Sweden)

    Khalid Khan

    2017-05-01

    Full Text Available The inclusion complexes of a new family of nonionic amphiphilic calix[4]arenes with the anti-inflammatory hydrophobic drugs naproxen (NAP and ibuprofen (IBP were investigated. The effects of the alkyl chain’s length and the inner core of calix[4]arenes on the interaction of the two drugs with the calix[4]arenes were explored. The inclusion complexes of Amphiphiles 1a–c with NAP and IBP increased the solubility of these drugs in aqueous media. The interaction of 1a–c with the drugs in aqueous media was investigated through fluorescence, molecular modeling, and 1H-NMR analysis. TEM studies further supported the formation of inclusion complexes. The length of lipophilic alkyl chains and the intrinsic cyclic nature of cailx[4]arene derivatives 1a–c were found to have a significant impact on the solubility of NAP and IBP in pure water.

  10. Rapid discovery of peptide capture candidates with demonstrated specificity for structurally similar toxins

    Science.gov (United States)

    Sarkes, Deborah A.; Hurley, Margaret M.; Coppock, Matthew B.; Farrell, Mikella E.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2016-05-01

    Peptides have emerged as viable alternatives to antibodies for molecular-based sensing due to their similarity in recognition ability despite their relative structural simplicity. Various methods for peptide capture reagent discovery exist, including phage display, yeast display, and bacterial display. One of the primary advantages of peptide discovery by bacterial display technology is the speed to candidate peptide capture agent, due to both rapid growth of bacteria and direct utilization of the sorted cells displaying each individual peptide for the subsequent round of biopanning. We have previously isolated peptide affinity reagents towards protective antigen of Bacillus anthracis using a commercially available automated magnetic sorting platform with improved enrichment as compared to manual magnetic sorting. In this work, we focus on adapting our automated biopanning method to a more challenging sort, to demonstrate the specificity possible with peptide capture agents. This was achieved using non-toxic, recombinant variants of ricin and abrin, RiVax and abrax, respectively, which are structurally similar Type II ribosomal inactivating proteins with significant sequence homology. After only two rounds of biopanning, enrichment of peptide capture candidates binding abrax but not RiVax was achieved as demonstrated by Fluorescence Activated Cell Sorting (FACS) studies. Further sorting optimization included negative sorting against RiVax, proper selection of autoMACS programs for specific sorting rounds, and using freshly made buffer and freshly thawed protein target for each round of biopanning for continued enrichment over all four rounds. Most of the resulting candidates from biopanning for abrax binding peptides were able to bind abrax but not RiVax, demonstrating that short peptide sequences can be highly specific even at this early discovery stage.

  11. New dendrimer - Peptide host - Guest complexes: Towards dendrimers as peptide carriers

    DEFF Research Database (Denmark)

    Boas, Ulrik; Sontjens, S.H.M.; Jensen, Knud Jørgen

    2002-01-01

    Adamantyl urea and adamantyl thiourea modified poly(propylene imine) dendrimers act as hosts for N-terminal tert-butoxycarbonyl (Boc)-protected peptides and form chloroform-soluble complexes. investigations with NMR spectroscopy show that the peptide is bound to the dendrimer by ionic interactions...... between the dendrimer outer shell tertiary amines and the C-terminal carboxylic acid of the peptide, and also through host-urea to peptide-amide hydrogen bonding. The hydrogen-bonding nature of the peptide dendrimer interactions was further confirmed by using Fourier transform IR spectroscopy, for which...... the NH- and CO-stretch signals of the peptide amide moieties shift towards lower wave-numbers upon complexation with the dendrimer. Spatial analysis of the complexes with NOESY spectroscopy generally shows close proximity of the N-terminal Boc group of the peptide to the peripheral adamantyl groups...

  12. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.

  13. Peptide aptamers: The versatile role of specific protein function inhibitors in plant biotechnology.

    Science.gov (United States)

    Colombo, Monica; Mizzotti, Chiara; Masiero, Simona; Kater, Martin M; Pesaresi, Paolo

    2015-11-01

    In recent years, peptide aptamers have emerged as novel molecular tools that have attracted the attention of researchers in various fields of basic and applied science, ranging from medicine to analytical chemistry. These artificial short peptides are able to specifically bind, track, and inhibit a given target molecule with high affinity, even molecules with poor immunogenicity or high toxicity, and represent a remarkable alternative to antibodies in many different applications. Their use is on the rise, driven mainly by the medical and pharmaceutical sector. Here we discuss the enormous potential of peptide aptamers in both basic and applied aspects of plant biotechnology and food safety. The different peptide aptamer selection methods available both in vivo and in vitro are introduced, and the most important possible applications in plant biotechnology are illustrated. In particular, we discuss the generation of broad-based virus resistance in crops, "reverse genetics" and aptasensors in bioassays for detecting contaminations in food and feed. Furthermore, we suggest an alternative to the transfer of peptide aptamers into plant cells via genetic transformation, based on the use of cell-penetrating peptides that overcome the limits imposed by both crop transformation and Genetically Modified Organism commercialization. © 2015 Institute of Botany, Chinese Academy of Sciences.

  14. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.

    Science.gov (United States)

    Makam, Pandeeswar; Gazit, Ehud

    2018-05-21

    Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.

  15. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying; Donovan, Alexander J.; Zhang, Pin; Liu, Chang; Shang, Weifeng; Irving, Thomas; Herrera-Alonso, Margarita; Liu, Ying (JHU); (IIT); (UIC)

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  16. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena [Department; Kalkowski, Joseph [Department; Luo, Hanying [Department; Donovan, Alexander J. [Department; Zhang, Pin [Department; Liu, Chang [Department; Shang, Weifeng [Department; Irving, Thomas [Department; Herrera-Alonso, Margarita [Department; Liu, Ying [Department; Department

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  17. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.

    Science.gov (United States)

    Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori

    2016-01-01

    Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  18. Next-generation ELISA diagnostic assay for Chagas Disease based on the combination of short peptidic epitopes

    DEFF Research Database (Denmark)

    Mucci, Juan; Carmona, Santiago J.; Volcovich, Romina

    2017-01-01

    Chagas Disease, caused by the protozoan Trypanosoma cruzi, is a major health and economic problem in Latin America for which no vaccine or appropriate drugs for large-scale public health interventions are yet available. Accurate diagnosis is essential for the early identification and follow up....... cruzi linear B-cell epitopes using high-density peptide chips, leading to the identification of several hundred novel sequence signatures associated to chronic Chagas Disease. Here, we performed a serological assessment of 27 selected epitopes and of their use in a novel multipeptide-based diagnostic...... method. A combination of 7 of these peptides were finally evaluated in ELISA format against a panel of 199 sera samples (Chagas-positive and negative, including sera from Leishmaniasis-positive subjects). The multipeptide formulation displayed a high diagnostic performance, with a sensitivity of 96...

  19. In Situ Mapping of the Molecular Arrangement of Amphiphilic Dye Molecules at the TiO 2 Surface of Dye-Sensitized Solar Cells

    KAUST Repository

    Voï tchovsky, Kislon; Ashari-Astani, Negar; Tavernelli, Ivano; Té treault, Nicolas; Rothlisberger, Ursula; Stellacci, Francesco; Grä tzel, Michael; Harms, Hauke A.

    2015-01-01

    © 2015 American Chemical Society. Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell's performance depends on the molecular arrangement and the density of the dye on the semiconductor surface

  20. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing.

    Science.gov (United States)

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud

    2015-04-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.