WorldWideScience

Sample records for amphiphilic short peptides

  1. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

    Science.gov (United States)

    Ong, Zhan Yuin; Cheng, Junchi; Huang, Yuan; Xu, Kaijin; Ji, Zhongkang; Fan, Weimin; Yang, Yi Yan

    2014-01-01

    In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome conventional mechanisms of drug resistance. Recently, we have reported the design of a series of short synthetic β-sheet folding peptide amphiphiles comprised of recurring (X1Y1X2Y2)n-NH2 sequences where X: hydrophobic amino acids, Y: cationic amino acids and n: number of repeat units. In efforts to investigate the effects of key parameters including stereochemistry, chain length and sequence pattern on antimicrobial effects, systematic d-amino acid substitutions of the lead peptides (IRIK)2-NH2 (IK8-all L) and (IRVK)3-NH2 (IK12-all L) were performed. It was found that the corresponding D-enantiomers exhibited stronger antimicrobial activities with minimal or no change in hemolytic activities, hence translating very high selectivity indices of 407.0 and >9.8 for IK8-all D and IK12-all D respectively. IK8-all D was also demonstrated to be stable to degradation by broad spectrum proteases trypsin and proteinase K. The membrane disrupting bactericidal properties of IK8-all D effectively prevented drug resistance development and inhibited the growth of various clinically isolated MRSA, VRE, Acinetobacter baumanni, Pseudomonas aeruginosa, Cryptococcus. neoformans and Mycobacterium tuberculosis. Significant reduction in intracellular bacteria counts was also observed following treatment with IK8-all D in the Staphylococcus. aureus infected mouse macrophage cell line RAW264.7 (P < 0.01). These results suggest that the d-amino acids substituted β-sheet forming peptide IK8-all D with its enhanced antimicrobial activities and improved protease stability, is a promising therapeutic candidate with potential to combat

  2. Self-assembly and Self-replication of Short Amphiphilic β-sheet Peptides

    Science.gov (United States)

    Bourbo, Valery; Matmor, Maayan; Shtelman, Elina; Rubinov, Boris; Ashkenasy, Nurit; Ashkenasy, Gonen

    2011-12-01

    Most self-replicating peptide systems are made of α-helix forming sequences. However, it has been postulated that shorter and simpler peptides may also serve as templates for replication when arranged into well-defined structures. We describe here the design and characterization of new peptides that form soluble β-sheet aggregates that serve to significantly accelerate their ligation and self-replication. We then discuss the relevance of these phenomena to early molecular evolution, in light of additional functionality associated with β-sheet assemblies.

  3. Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides?

    Science.gov (United States)

    Wang, Meng; Zhou, Peng; Wang, Jiqian; Zhao, Yurong; Ma, Hongchao; Lu, Jian R; Xu, Hai

    2017-03-22

    Peptide and protein fibrils have attracted an enormous amount of interests due to their relevance to many neurodegenerative diseases and their potential applications in nanotechnology. Although twisted fibrils are regarded as the key intermediate structures of thick fibrils or bundles of fibrils, the factors determining their twisting tendency and their handedness development from the molecular to the supramolecular level are still poorly understood. In this study, we have designed three pairs of enantiomeric short amphiphilic peptides: (L)I3(L)K and (D)I3(D)K, (L)I3(D)K and (D)I3(L)K, and (La)I3(L)K and (Da)I3(D)K, and investigated the chirality of their self-assembled nanofibrils through the combined use of atomic force microscopy (AFM), circular dichroism (CD) spectroscopy, scanning electron microscopy (SEM), and molecular dynamic (MD) simulations. The results indicated that the twisted handedness of the supramolecular nanofibrils was dictated by the chirality of the hydrophilic Lys head at the C-terminal, while their characteristic CD signals were determined by the chirality of hydrophobic Ile residues. MD simulations delineated the handedness development from molecular chirality to supramolecular handedness by showing that the β-sheets formed by (L)I3(L)K, (La)I3(L)K, and (D)I3(L)K exhibited a propensity to twist in a left-handed direction, while the ones of (D)I3(D)K, (Da)I3(D)K, and (L)I3(D)K in a right-handed twisting orientation.

  4. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  5. Self-Assembly and Hydrogelation of Peptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Wahyudi Priyono Suwarso

    2012-04-01

    Full Text Available Seven peptide amphiphiles were successfully synthesized using solid phase peptide synthesis method. Peptide amphiphiles were characterized using matrix assisted laser desorption/ionization (MALDI. Atomic force microscopy (AFM study showed that peptide amphiphiles having glycine, valine, or proline as linker, self-assembled into 100-200 nm nanofibers structure. According to our research, both peptide amphiphile with positive and negative charges bear similar self-assembly properties. Peptide amphiphile also showed its capability as low molecular weight gelator (LMWG. Peptide amphiphiles bearing C-16 and C-12 as alkyl showed better hydrogelation properties than C-8 alkyl. Five out of seven peptide amphiphiles have minimum gelation concentration (MGC lower than 1% (w/v.

  6. A Peptide Amphiphile Organogelator of Polar Organic Solvents

    Science.gov (United States)

    Rouse, Charlotte K.; Martin, Adam D.; Easton, Christopher J.; Thordarson, Pall

    2017-01-01

    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents. PMID:28255169

  7. Cellular recognition of synthetic peptide amphiphiles in supported bioartificial membranes

    Science.gov (United States)

    Pakalns, Teika

    The goal of this study was to demonstrate that lipidated cell adhesion peptides could form well-ordered biomimetic surfaces that were capable of influencing cellular behavior in a controlled and specific manner. The first step taken was to covalently link synthetic dialkyl tails to the amino-termini of the collagen-derived peptide IV-H1 (amino acid sequence GVKGDKGNPGWPGAP) and the well-known tripeptide Arg-Gly-Asp (RGD) to produce amino-coupled peptide amphiphiles. Other spatial orientations of RGD were also generated by coupling tails to the carboxyl-terminus to give carboxyl-coupled RGD amphiphiles and to both the amino- and carboxyl-termini to give looped RGD amphiphiles. The next step taken was to let the peptide amphiphile self-assemble along with methyl ester-capped dialkyl tails into mixed films. It was found that all the peptide amphiphiles formed stable monolayers at the air-water interface in a Langmuir trough. IV-H1 amphiphiles and carboxyl-coupled and looped RGD amphiphiles deposited well as Langmuir-Blodgett mixed films on solid surfaces at all peptide concentrations, but aminocoupled RGD amphiphiles did not deposit well at high RGD concentrations. FT-IR studies of films containing RGD amphiphiles showed that amino-coupled RGD head groups formed the strongest lateral hydrogen bonds. The final step was to study cellular response to mixed films containing IV-H1 or RGD amphiphiles. The spreading of melanoma cells was influenced by both the molar concentration and spatial orientation of the amphiphilic peptides. Cells spread on IV-H1 and looped RGD films in a concentration-dependent manner, but spread indiscriminately on carboxyl-coupled RGD films and did not spread at all on well-deposited amino-coupled RGD films. The specificity of the cellular response to looped RGD amphiphiles was investigated. Control films of looped Arg-Gly-Glu (RGE) amphiphiles inhibited the adhesion and spreading of melanoma and endothelial cells, and antibody inhibition of the

  8. Drug release from hydrazone-containing peptide amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Matson, John B.; Stupp, Samuel I. (NWU)

    2012-03-15

    Hydrolytically-labile hydrazones in peptide amphiphiles were studied as degradable tethers for release of the drug nabumetone from nanofiber gels. On-resin addition of the novel compound tri-Boc-hydrazido adipic acid to a lysine E-amine allowed for precise placement of a hydrazide in a peptide sequence.

  9. Peptide amphiphiles and their use in supramolecular chemistry

    NARCIS (Netherlands)

    Versluis, Frank

    2013-01-01

    In this thesis the behavior and functionality of peptide amphiphiles at the surface of bilayer vesicles is examined. By controlling the behavior of the surface bound peptides, I was able to construct assemblies which could: 1) release their content (triggered by pH), 2) fuse in a targeted and contro

  10. Tuning peptide amphiphile supramolecular structure for biomedical applications

    Science.gov (United States)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water

  11. Amphiphilic dendritic peptides: Synthesis and behavior as an organogelator and liquid crystal

    Directory of Open Access Journals (Sweden)

    Xinwu Ba

    2011-02-01

    Full Text Available New amphiphilic dendritic peptides on dendritic polyaspartic acid were designed and synthesized. The organogel and liquid crystal properties of these amphiphilic dendritic peptides were fully studied by field-emission SEM, temperature dependent FT-IR, differential scanning calorimetry, polarization optical microscopy and X-ray diffraction experiments. Amphiphilic dendritic peptides G3 show good organogel properties with a minimum gelation concentration as low as 1 wt %. Furthermore, amphiphilic dendritic peptides G3 can form a hexagonal columnar liquid crystal assembly over a wide temperature range.

  12. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles.

    Science.gov (United States)

    Chen, Cuixia; Chen, Yucan; Yang, Cheng; Zeng, Ping; Xu, Hai; Pan, Fang; Lu, Jian Ren

    2015-08-12

    Short designed peptide amphiphiles are attractive at killing bacteria and inhibiting cancer cell growth, and the flexibility in their structural design offers a great potential for improving their potency and biocompatibility to mammalian host cells. Amino acid sequences such as G(IIKK)nI-NH2 (n≥3) have been shown to be membrane lytic, but terminal amino acid modifications could impose a huge influence on their performance. We report in this work how terminal amino acid modifications to G(IIKK)3I-NH2 influence its α-helical structure, membrane penetrating ability, and selective actions against different cell types. Deletion of an N-terminal Gly or a C-terminal Ile did not affect their antibacterial activity much, an observation consistent with their binding behavior to negatively charged membrane lipid monolayers. However, the cytotoxicity against mammalian cells was much worsened by the N-terminal Gly deletion, consistent with an increase in its helical content. Despite little impact on the antibacterial activity of G(IIKK)3I-NH2, deletion of both terminal amino acids greatly reduced its antitumor activity. Cholesterol present in tumor cell membrane-mimic was thought to constrain (IIKK)3-NH2 from penetrating into the cancerous membranes, evident from its lowest surface physical activity at penetrating model lipid membranes. On the other hand, its low toxicity to normal mammalian cells and high antibacterial activity in vitro and in vivo made it an attractive antibacterial agent. Thus, terminal modifications can help rebalance the different interactions involved and are highly effective at manipulating their selective membrane responses.

  13. Sol-gel transition of charged fibrils composed of a model amphiphilic peptide.

    Science.gov (United States)

    Owczarz, Marta; Bolisetty, Sreenath; Mezzenga, Raffaele; Arosio, Paolo

    2015-01-01

    We characterized the sol-gel transition of positively charged fibrils composed of the model amphiphilic peptide RADARADARADARADA (RADA 16-I) using a combination of microscopy, light scattering, microrheology and rheology techniques, and we investigated the dependence of the hydrogel formation on fibril concentration and ionic strength. The peptide is initially present as a dispersion of short rigid fibrils with average length of about 100 nm. During incubation, the fibrils aggregate irreversibly into longer fibrils and fibrillar aggregates. At peptide concentrations in the range 3-6.5 g/L, the fibrillar aggregates form a weak gel network which can be destroyed upon dilution. Percolation occurs without the formation of a nematic phase at a critical peptide concentration which decreases with increasing ionic strength. The gel structure can be well described in the frame of the fractal gel theory considering the network as a collection of fibrillar aggregates characterized by self-similar structure with a fractal dimension of 1.34.

  14. Self-assembly of peptide-amphiphile nanofibers under physiological conditions

    Science.gov (United States)

    Stupp, Samuel I.; Hartgerink, Jeffrey D.; Beniash, Elia

    2011-11-22

    The present invention provides a method of promoting neuron growth and development by contacting cells with a peptide amphiphile molecule in an aqueous solution in the presence of a metal ion. According to the method, the peptide amphiphile forms a cylindrical micellar nanofiber composed of beta-sheets, which promote neuron growth and development.

  15. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    Science.gov (United States)

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  16. Composition and method for self-assembly and mineralization of peptide amphiphiles

    Science.gov (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  17. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  18. Mimicking cell membrane-like structures on alkylated silicon surfaces by peptide amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Shamsi, Fahimeh, E-mail: neyayesh8@yahoo.com [Biophysics and Bioengineering, School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Coster, Hans G.L. [Biophysics and Bioengineering, School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-11-01

    Highlights: {yields} Lipidated peptide amphiphiles were hydrophobically attached onto an alkylated surface. {yields} Morphology of nanofibres of the peptide amphiles depended on the acyl chain length. {yields} We show that extended 2D analogues of the nanofibre surface can be constructed. {yields} Peptide amphiphiles with shorter acyl chains formed more homogeneous layers. - Abstract: We present a new strategy for flexible attachment of peptide amphiphiles on functionalized silicon surfaces. This method involves the production of an alkylated surface on which a lipidated peptide can then be attached through hydrophobic interaction. We applied this to two derivatives of amphiphilic peptide molecules with the same amino acid sequence (A-A-A-A-G-G-G-E-R-G-D) but different in alkyl chain lengths (palmitic acid, undecanoic acid). The basis of this work was to develop substrates which are more biocompatible and bioactive. The ultra-thin peptide amphiphile films were characterized using electrical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (ATR-FTIR) spectroscopy. The results demonstrated that the length of the alkyl chain in the peptide amphiphile affects the packing and coverage of the peptides on the silicon surface.

  19. Tissue Regeneration through Self-Assembled Peptide Amphiphile Nanofibers

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinkhani

    2006-01-01

    Full Text Available Introduction: In the present study, we hypothesized that a novelapproach to promote vascularization would be to create injectablethree dimensional (3-D scaffolds within growth factor that enhancethe sustained release of growth factor and induce the angiogenesis.Material and Methods: We demonstrate that a 3-D scaffold can beformed by mixing of peptide-amphiphile (PA aqueous solution withhepatocyte growth factor (HGF solution. PA was synthesized bystandard solid phase chemistry that ends with the alkylation of theNH2 terminus of the peptide. The sequence of arginine-glycineasparticacid (RGD was included in peptide design as well. A 3-Dnetwork of nanofibers was formed by mixing HGF suspensions withdilute aqueous solution of PA.Results: Scanning electron microscopy (SEM examination revealedthe formation of fibrous assemblies with an extremely high aspectratio and high surface areas with mean diameter of less than 200 nm.In vitro HGF release profile of 3-D nanofibers was investigated whileangiogenesis induced by the released HGF was being assessed. Invivo potential ability of PA nanofibers to induce angiogenesis wasassessed through subcutaneous injection of PA solution, HGFsolution, and PA in combination with HGF solutions. Injection of PAwith HGF induced significant angiogenesis around the injected site,in marked contrast to HGF injection alone and PA injection alone.Conclusion: The combination of HGF-induced angiogenesis is apromising procedure to improve tissue regeneration.

  20. Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof

    Science.gov (United States)

    Stupp, Samuel I.; Guler, Mustafa O.

    2008-11-18

    Branched peptide amphiphilic compounds incorporating one or residues providing a pendant amino group for coupling one or more epitope sequences thereto, such compounds and related compositions for enhanced epitope presentation.

  1. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    Science.gov (United States)

    Stupp, Samuel I.; Donners, Jack J. J. M.; Silva, Gabriel A.; Behanna, Heather A.; Anthony, Shawn G.

    2009-06-09

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  2. Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles

    OpenAIRE

    Miravet Celades, Juan Felipe; Escuder Gil, Beatriu; Segarra Maset, María Dolores; Tena Solsona, Marta; Hamley, Ian W; Dehsorkhi, Ashkan; Castelletto, Valeria

    2013-01-01

    A thermal transition is observed in the peptide amphiphile C16-KTTKS (TFA salt) from nanotapes at 20 °C to micelles at higher temperature (the transition temperature depending on concentration). The formation of extended nanotapes by the acetate salt of this peptide amphiphile, which incorporates a pentapeptide from type I procollagen, has been studied previously [V. Castelletto et al., Chem. Commun., 2010, 46, 9185]. Here, proton NMR and SAXS provide evidence for the TFA salt spherical micel...

  3. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    Science.gov (United States)

    Sayeh, Naser Ali

    conjugates although one limitation lies in the effort of controlling the rate of drug release. The encapsulated or complexed drugs tend to be released rapidly (before reaching the target site) and in the dendrimer--drug conjugates, it is the chemical linkage that controls the drug release. Thus, future studies in this field are urgently required to create more efficient and stable biomaterials. Peptides are considered as efficient vectors for achieving optimal cellular uptake. The potential use of peptides as drug delivery vectors received much attention by the discovery of several cell-penetrating peptides (CPPs). The first CPPs discovered in 1988, that were sequences from HIV-1 encoded TAT protein, TAT (48--60), and penetrated very efficiently through cell membranes of cultured mammalian cells. CPPs are a class of diverse peptides, typically with 8--25 amino acids, and unlike most peptides, they can cross the cellular membrane with more efficiency. CPPs have also shown to undergo self-assembly and generate nanostructures. The generation of self-assembled peptides and nanostructures occur through various types of interactions between functional groups of amino acid residues, such as electrostatic, hydrophobic, and hydrogen bonding. Appropriate design and functionalization of peptides are critical for generating nanostructures. Chemically CPPs are classified into two major groups: linear and cyclic peptides. It has been previously reported that linear peptides containing hydrophilic and hydrophobic amino acids could act as membrane protein stabilizers. These compounds are short hydrophilic or amphiphilic peptides that have positively charged amino acids, such as arginine, lysine or histidine, which can interact with the negative charge phospholipids layer on the cell membrane and translocate the cargo into the cells. Conjugation to cationic linear CPPs, such as TAT, penetratin, or oligoarginine efficiently improves the cellular uptake of large hydrophilic molecules, but the

  4. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers.

    Science.gov (United States)

    Ghanaati, Shahram; Webber, Matthew J; Unger, Ronald E; Orth, Carina; Hulvat, James F; Kiehna, Sarah E; Barbeck, Mike; Rasic, Angela; Stupp, Samuel I; Kirkpatrick, C James

    2009-10-01

    Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies.

  5. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    Science.gov (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  6. Self-assembling peptide amphiphile nanostructures for cancer therapy

    Science.gov (United States)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  7. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles.

    Science.gov (United States)

    Vincenzi, Marian; Accardo, Antonella; Costantini, Susan; Scala, Stefania; Portella, Luigi; Trotta, Annamaria; Ronga, Luisa; Guillon, Jean; Leone, Marilisa; Colonna, Giovanni; Rossi, Filomena; Tesauro, Diego

    2015-11-01

    Intrinsically disordered proteins/peptides play a crucial role in many physiological and pathological events and may assume a precise conformation upon binding to a specific target. Recently, we have described the conformational and functional properties of two linear ester peptides provided with the following sequences: Y-G-E-C-P-C-K-OAllyl (PepK) and Y-G-E-C-P-C-E-OAllyl (PepE). Both peptides are characterized by the presence of the "CPC" motif together with a few amino acids able to promote disorder. The CPC sequence is a binding motif for the CXCR4 receptor that represents a well-known target for cancer therapies. In this paper, we report on synthetic amphiphilic peptides that consist of lipophilic derivatives of PepE and PepK bearing two stearic alkyl chains and/or an ethoxylic spacer. These peptide amphiphiles form stable supramolecular aggregates; they present conformational features that are typical of intrinsically disordered molecules as shown by CD spectroscopy. Solution fluorescence and DLS studies have been performed to evaluate Critical Micellar Concentrations and the dimension of supramolecular aggregates. Moreover, preliminary in vitro cell-based assays have been conducted to investigate the molecular recognition processes involving the CXCR4 receptor. In the end, the results obtained have been compared with the previous data generated by the corresponding non-amphiphilic peptides (PepE and PepK).

  8. Design of amphiphilic oligopeptides as models for fine tuning peptide assembly with plasmid DNA.

    Science.gov (United States)

    Goparaju, Geetha N; Gupta, Pardeep K

    2014-08-01

    We discuss the design of novel amphiphilic oligopeptides with hydrophobic and cationic amino acids to serve as models to understand peptide-DNA assembly. Biophysical and thermodynamic characterization of interaction of these amphiphilic peptides with plasmid DNA is presented. Peptides with at least +4 charges favor stable complex formation. Surface potential is dependent on the type of hydrophobic amino acid for a certain charge. Thermodynamically it is a spontaneous interaction between most of the peptides and plasmid DNA. Lys(7) and Tyr peptides with +4/+5 charges indicate cooperative binding with pDNA without saturation of interaction while Val(2)-Gly-Lys(4), Val-Gly-Lys(5), and Phe-Gly-Lys(5) lead to saturation of interaction indicating condensed pDNA within the range of N/Ps studied. We show that the biophysical properties of DNA-peptide complexes could be modulated by design and the peptides presented here could be used as building blocks for creating DNA-peptide complexes for various biomedical applications, mainly nucleic acid delivery.

  9. A designed amphiphilic peptide containing the silk fibroin motif as a potential carrier of hydrophobic drugs

    Institute of Scientific and Technical Information of China (English)

    Qinghan Zhou; Juan Lin; Jing Wang; Feng Li; Fushan Tang; Xiaojun Zhao

    2009-01-01

    The amphiphilic peptide is becoming attractive as a potential drug carder to improve the dissolvability of hydrophobic drugs in an aqueous system; thus, facilitating drug uptake by target cells. Here, we report a novel designed amphiphilic peptide, Ac-RADAGAGA-RADAGAGA-NH_2, which was able to stabilize pyrene, a hydrophobic model drug we chose to study in aqueous solution. This designed peptide formed a colloidal suspension by encapsulating pyrene inside the peptide-pyrene complex. Egg phosphatidylcholine (EPC) ves-icles were used to mimic cell bilayer membranes. We found that pyrene was released from the peptide coating into the EPC vesicles by mixing the colloidal suspension with EPC vesicles, which was followed by steady fluorescence spectra as a function of time. A calibration curve for the amount of pyrene released into the EPC vesicles at a given time was used to determine the final concentration of pyrene released into the lipid vesicles from the peptide-pyrene complex. The release rate of the peptide pyrene complex was calculated to quan-tify the transfer of pyrene into EPC vesicles.

  10. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres

    Science.gov (United States)

    da Silva, Ricardo M. P.; van der Zwaag, Daan; Albertazzi, Lorenzo; Lee, Sungsoo S.; Meijer, E. W.; Stupp, Samuel I.

    2016-05-01

    The dynamic behaviour of supramolecular systems is an important dimension of their potential functions. Here, we report on the use of stochastic optical reconstruction microscopy to study the molecular exchange of peptide amphiphile nanofibres, supramolecular systems known to have important biomedical functions. Solutions of nanofibres labelled with different dyes (Cy3 and Cy5) were mixed, and the distribution of dyes inserting into initially single-colour nanofibres was quantified using correlative image analysis. Our observations are consistent with an exchange mechanism involving monomers or small clusters of molecules inserting randomly into a fibre. Different exchange rates are observed within the same fibre, suggesting that local cohesive structures exist on the basis of β-sheet discontinuous domains. The results reported here show that peptide amphiphile supramolecular systems can be dynamic and that their intermolecular interactions affect exchange patterns. This information can be used to generate useful aggregate morphologies for improved biomedical function.

  11. Understanding Peptide Oligomeric State in Langmuir Monolayers of Amphiphilic 3-Helix Bundle-Forming Peptide-PEG Conjugates

    Science.gov (United States)

    Shu, Jessica Y.; Xu, Ting

    2016-01-01

    Coiled-coil peptide–polymer conjugates are an emerging class of biomaterials. Fundamental understanding of the coiled-coil oligomeric state and assembly process of these hybrid building blocks is necessary to exert control over their assembly into well-defined structures. Here, we studied the effect of peptide structure and PEGylation on the self-assembly process and oligomeric state of a Langmuir monolayer of amphiphilic coiled-coil peptide–polymer conjugates using X-ray reflectivity (XR) and grazing-incidence X-ray diffraction (GIXD). Our results show that the oligomeric state of PEGylated amphiphiles based on 3-helix bundle-forming peptide is surface pressure dependent, a mixture of dimers and trimers was formed at intermediate surface pressure but transitions into trimers completely upon increasing surface pressure. Moreover, the interhelical distance within the coiled-coil bundle of 3-helix peptide-PEG conjugate amphiphiles was not perturbed under high surface pressure. Present studies provide valuable insights into the self-assembly process of hybrid peptide–polymer conjugates and guidance to develop biomaterials with controlled multivalency of ligand presentation. PMID:27784156

  12. Effects of mutations in de novo designed synthetic amphiphilic β-sheet peptides on self-assembly of fibrils.

    Science.gov (United States)

    Raz, Yoav; Rubinov, Boris; Matmor, Maayan; Rapaport, Hanna; Ashkenasy, Gonen; Miller, Yifat

    2013-07-25

    The self-assembly of two similar amphiphilic peptides into fibril structures is described. Molecular dynamic simulations show that both can organize similarly in a monolayer, but in the fibril bilayer, one prefers a single organization while the other forms two conformational variants. This assembly difference correlates well with our experimental results.

  13. Cytocompatibility of Self-assembled Hydrogel from IKVAV-containing Peptide Amphiphile with Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    SONG Yulin; ZHENG Qixin; GUO Xiaodong; ZHENG Jianfeng

    2009-01-01

    Neural Stem Cells(NSCs)were incubated with self-assembled hydrogel from IKVAV-containing peptide amphiphile(IKVAV-PA)for one week.The cytocompatibility of hydrogel was evaluated.NSCs were seeded in three-dimensional(3D)hydrogels(Experimental Group,EG)or surface of coverslips(Control Group,CG),double-labeled with Calcein-AM and PI.A growth curve of cells was obtained according to CCK-8.TEM study of hydrogel revealed a network of nanofibers. NSCs began to proliferate after 24 h of incubation,and formed bigger neurospheres at 48 h in EG than in CG.Cell proliferation activity was higher in EG than in CG(P<0.05).The self-assembled Hydrogel had good cytocompatibility and promoted the proliferation of NSCs.

  14. Molecular dynamics simulation of {beta}-sheet formation in self-assembled peptide amphiphile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, One-Sun; Liu Yamei; Schatz, George C., E-mail: schatz@chem.northwestern.edu [Northwestern University, Department of Chemistry (United States)

    2012-08-15

    The influence of amino acid sequence on the secondary structure of peptide amphiphile (PAs) cylindrical micelles and fibers that are self-assembled in solution is studied using molecular dynamics simulations. Simulations for two choices of PAs were performed, starting with structures that have the correct overall shape, but which restructure considerably during the simulation, with one fiber being composed of valine rich PAs and the other of alanine rich PAs. Self-assembly is similar in both simulations, with stable fibers (diameter is 7.7-8 nm) obtained after 40 ns. We find that the valine rich PA fiber has a higher {beta}-sheet population than the alanine rich fiber, and that the number of hydrogen bonds is higher. This behavior of the valine rich fiber is consistent with experimental measurements of higher stiffness, and it shows that stiffness can be varied while still maintaining self-assembly.

  15. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    Science.gov (United States)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  16. Activity and Mechanism of Antimicrobial Peptide-Mimetic Amphiphilic Polymethacrylate Derivatives

    Directory of Open Access Journals (Sweden)

    Kenichi Kuroda

    2011-09-01

    Full Text Available Cationic amphiphilic polymethacrylate derivatives (PMAs have shown potential as a novel class of synthetic antimicrobials. A panel of PMAs with varied ratios of hydrophobic and cationic side chains were synthesized and tested for antimicrobial activity and mechanism of action. The PMAs are shown to be active against a panel of pathogenic bacteria, including a drug-resistant Staphylococcus aureus, compared to the natural antimicrobial peptide magainin which did not display any activity against the same strain. The selected PMAs with 47–63% of methyl groups in the side chains showed minimum inhibitory concentrations of ≤2–31 µg/mL, but cause only minimal harm to human red blood cells. The PMAs also exhibit rapid bactericidal kinetics. Culturing Escherichia coli in the presence of the PMAs did not exhibit any potential to develop resistance against the PMAs. The antibacterial activities of PMAs against E. coli and S. aureus were slightly reduced in the presence of physiological salts. The activity of PMAs showed bactericidal effects against E. coli and S. aureus in both exponential and stationary growth phases. These results demonstrate that PMAs are a new antimicrobial platform with no observed development of resistance in bacteria. In addition, the PMAs permeabilized the E. coli outer membrane at polymer concentrations lower than their MIC values, but they did not show any effect on the bacterial inner membrane. This indicates that mechanisms other than membrane permeabilization may be the primary factors determining their antimicrobial activity.

  17. Self-Assembly of Peptide Amphiphiles Designed as Imaging Probes for 19F and Relaxation-Enhanced 1H imaging

    Science.gov (United States)

    Preslar, Adam Truett

    This work incorporates whole-body imaging functionality into peptide amphiphile (PA) nanostructures used for regenerative medicine to facilitate magnetic resonance imaging (MRI). Two strategies were employed: 1. Conjugation of gadolinium chelates to peptide nanostructures to monitor biomaterial degradation in vivo with MRI and inductively-coupled plasma-mass spectroscopy (ICP-MS) 2. Synthesis of perfluorinated moiety-bearing peptide amphiphiles for 19F-MRI. The Gd(III) chelate gadoteridol was conjugated by copper-catalyzed "click" chemistry to a series of PAs known to form cylindrical nanostructures. By fitting nuclear magnetic resonance dispersion (NMRD) profiles to the Solomon-Bloembergen-Morgan (SBM) equations, it was observed that the water exchange parameter (tauM) depended on thermal annealing or calcium ion cross-linking. The sequence C16V 3A3E3G(Gd) exhibited an acceleration of nearly 100 ns after thermal annealing and calcium addition. These gadolinium-labeled PAs were used to track in vivo degradation of gels within the tibialis anterior muscle in a murine model. The half-life of biomaterial degradation was determined to be 13.5 days by inductively coupled plasma mass spectrometry (ICP-MS) of Gd(III). Gel implants could be monitored by MRI for eight days before the signal dispersed due to implant degradation and dilution. Additionally, nanostructures incorporating highly fluorinated domains were investigated for use as MRI contrast agents. Short, perfluoroalkyane tails of seven or eight carbon atoms in length were grafted to PA sequences containing a V2A2 beta-sheet forming sequence. The V2A2 sequence is known to drive 1D nanostructure assembly. It was found that the sequences C7F13V2A 2E2 and C7F13V2A 2K3 formed 1D assemblies in water which transition from ribbon-like to cylindrical shape as pH increases from 4.5 to 8.0. Ribbon-like nanostructures had reduced magnetic resonance signal by T 2 relaxation quenching, whereas their cylindrical counterparts

  18. Synthetic β-sheet forming peptide amphiphiles for treatment of fungal keratitis.

    Science.gov (United States)

    Wu, Hong; Ong, Zhan Yuin; Liu, Shaoqiong; Li, Yan; Wiradharma, Nikken; Yang, Yi Yan; Ying, Jackie Y

    2015-03-01

    Fungal keratitis is a leading cause of ocular morbidity. It is frequently misdiagnosed as bacterial keratitis, causing a delay in proper treatment. Furthermore, due to the lack of safe and effective anti-fungal agents for clinical use, treatment of fugal keratitis remains a challenge. In recent years, antimicrobial peptides (AMPs) have received considerable attention as potent and broad-spectrum antimicrobial agents with the potential to overcome antibiotics resistance. We previously reported the design of short synthetic β-sheet forming peptides (IKIK)2-NH2 and (IRIK)2-NH2 with excellent antimicrobial activities and selectivities against various clinically relevant microorganisms, including Gram-positive Staphylococcus epidermidis and Staphylococcus aureus, Gram-negative Escherichia coli and Pseudomonas aeruginosa, and yeast Candida albicans (C. albicans). In this study, we evaluated the application of the two most promising synthetic β-sheet forming peptide candidates for in vivo fungal keratitis treatment in comparison with the commercially available amphotericin B. It was found that topical solutions of the designed peptides are safe, and as effective as the clinically used amphotericin B. Compared to the costly and unstable amphotericin B, (IKIK)2-NH2 and (IRIK)2-NH2 are water-soluble, less expensive and stable. Thus, the synthetic β-sheet forming peptides are presented as promising candidates for the treatment of fungal keratitis.

  19. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Jun, Ho-Wook [Department of Biomedical Engineering, University of Alabama at Birmingham, 801 Shelby Building, 1825 University Boulevard, Birmingham, AL 35294 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254, 1150 10th Ave South, Birmingham, AL 35294 (United States)], E-mail: hwjun@uab.edu

    2009-06-01

    Nanofibrous electrospun poly ({epsilon}-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. Transmission electron microscope imaging verified successful PA self-assembly into nanofibers (diameters of 8-10 nm) using a solvent evaporation method. This evaporation method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300-400 nm), to develop hybrid, bioactive scaffolds. Scanning electron microscope characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications.

  20. Antimalarial Activity of Ultra-Short Peptides

    Directory of Open Access Journals (Sweden)

    María Yolanda Rios

    2009-12-01

    Full Text Available Ultra-short peptides 1-9 were designed and synthesized with phenylalanine, ornithine and proline amino acid residues and their effect on antimalarial activity was analyzed. On the basis of the IC50 data for these compounds, the effects of nature, polarity, and amino acid sequence on Plasmodium berghei schizont cultures were analyzed too. Tetrapeptides Phe-Orn-Phe-Orn (4 and Lys-Phe-Phe-Orn (5 showed a very important activity with IC50 values of 3.31 and 2.57 μM, respectively. These two tetrapeptides are candidates for subsequent in vivo assays and SARS investigations.

  1. Antimicrobial potential of lycosin-I, a cationic and amphiphilic peptide from the venom of the spider Lycosa singorensis.

    Science.gov (United States)

    Tan, H; Ding, X; Meng, S; Liu, C; Wang, H; Xia, L; Liu, Z; Liang, S

    2013-07-01

    Antimicrobial peptides (AMPs) are significant components of the innate immune system and play indispensable roles in the resistance to bacterial infection. Here, we investigated the antimicrobial activity of lycosin-I, a 24-residue cationic anticancer peptide derived from Lycosa singorensis with high structural similarity to several cationic and amphiphilic antimicrobial peptides. The antimicrobial activity of lycosin-I against 27 strains of microbes including bacteria and fungi was examined and compared with that of the Xenopus-derived AMP magainin 2 using a microdilution assay. Lycosin-I inhibited the growth of most microorganisms at low micromolar concentrations, and was a more potent inhibitor than magainin 2. Lycosin-I showed rapid, selective and broad-spectrum bactericidal activity and a synergistic effect with traditional antibiotics. In vivo, it showed potent bactericidal activity in a mouse thigh infection model. High Mg2+ concentrations reduced the antibacterial effect of lycosin-I, implying that the peptide might directly interact with the bacterial cell membrane. Uptake of the fluorogenic dye SYTOX and changes in the surface of lycosin-Itreated bacterial cells observed by scanning electron microscopy confirmed that lycosin-I permeabilized the cell membrane, resulting in the rapid bactericidal effect. Taken together, our findings indicate that lycosin-I is a promising peptide with the potential for the development of novel antibacterial agents.

  2. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  3. Short Anabolic Peptides for Bone Growth.

    Science.gov (United States)

    Amso, Zaid; Cornish, Jillian; Brimble, Margaret A

    2016-07-01

    Loss of bone occurs in the age-related skeletal disorder, osteoporosis, leading to bone fragility and increased incidence of fractures, which are associated with enormous costs and substantial morbidity and mortality. Recent data indicate that osteoporotic fractures are more common than other diseases, which usually attract public attention (e.g., heart attack and breast cancer). The prevention and treatment of this skeletal disorder are therefore of paramount importance. Majority of osteoporosis medications restore skeletal balance by reducing osteoclastic activity, thereby reducing bone resorption. These agents, however, do not regenerate damaged bone tissue, leaving limited options for patients once bone loss has occurred. Recently, attention has turned to bone-anabolic agents. Such agents have the ability to increase bone mass and strength, potentially reversing structural damage. To date, only one bone-anabolic drug is available in the market. The discovery of more novel, cost-effective bone anabolic agents is therefore a priority to treat those suffering from this disabling condition. Short peptides offer an important alternative for the development of novel bone-anabolic agents given their high target binding specificity, which translates into potent activity with limited side effects. This review summarizes attempts in the identification of bone-anabolic peptides, and their development for promoting bone growth.

  4. Structures of self-assembled amphiphilic peptide-heterodimers: effects of concentration, pH, temperature and ionic strength

    KAUST Repository

    Luo, Zhongli

    2010-01-01

    The amphiphilic double-tail peptides AXG were studied regarding secondary structure and self-assembly in aqueous solution. The two tails A = Ala 6 and G = Gly6 are connected by a central pair X of hydrophilic residues, X being two aspartic acids in ADG, two lysines in AKG and two arginines in ARG. The peptide AD (Ala6Asp) served as a single-tail reference. The secondary structure of the four peptides was characterized by circular dichroism spectroscopy under a wide range of peptide concentrations (0.01-0.8 mM), temperatures (20-98 °C), pHs (4-9.5) and ionic strengths. In salt-free water both ADG and AD form a β-sheet type of structure at high concentration, low pH and low temperature, in a peptide-peptide driven assembly of individual peptides. The transition has a two-state character for ADG but not for AD, which indicates that the added tail in ADG makes the assembly more cooperative. By comparison the secondary structures of AKG and ARG are comparatively stable over the large range of conditions covered. According to dynamic light scattering the two-tail peptides form supra-molecular aggregates in water, but high-resolution AFM-imaging indicate that ordered (self-assembled) structures are only formed when salt (0.1 M NaCl) is added. Since the CD-studies indicate that the NaCl has only a minor effect on the peptide secondary structure we propose that the main role of the added salt is to screen the electrostatic repulsion between the peptide building blocks. According to the AFM images ADG and AKG support a correlation between nanofibers and a β-sheet or unordered secondary structure, whereas ARG forms fibers in spite of lacking β-sheet structure. Since the AKG and ARG double-tail peptides self-assemble into distinct nanostructures while their secondary structures are resistant to environment factors, these new peptides show potential as robust building blocks for nano-materials in various medical and nanobiotechnical applications. © 2010 The Royal Society

  5. Improvement of pulmonary surfactant activity by introducing D-amino acids into highly hydrophobic amphiphilic α-peptide Hel 13-5.

    Science.gov (United States)

    Nakamura, Yoshihiro; Yukitake, Ko; Nakahara, Hiromichi; Lee, Sooyoung; Shibata, Osamu; Lee, Sannamu

    2014-08-01

    The high costs of artificial pulmonary surfactants, ranging in hundreds per kilogram of body weight, used for treating the respiratory distress syndrome (RDS) premature babies have limited their applications. We have extensively studied soy lecithins and higher alcohols as lipid alternatives to expensive phospholipids such as DPPC and PG. As a substitute for the proteins, we have synthesized the peptide Hel 13-5D3 by introducing D-amino acids into a highly lipid-soluble, basic amphiphilic peptide, Hel 13-5, composed of 18 amino acid residues. Analysis of the surfactant activities of lipid-amphiphilic artificial peptide mixtures using lung-irrigated rat models revealed that a mixture (Murosurf SLPD3) of dehydrogenated soy lecithin, fractionated soy lecithin, palmitic acid (PA), and peptide Hel 13-5D3 (40:40:17.5:2.5, by weight) superior pulmonary surfactant activity than a commercially available pulmonary surfactant (beractant, Surfacten®). Experiments using ovalbumin-sensitized model animals revealed that the lipid-amphiphilic artificial peptide mixtures provided significant control over an increase in the pulmonary resistance induced by premature allergy reaction and reduced the number of acidocytes and neutrophils in lung-irrigated solution. The newly developed low-cost pulmonary surfactant system may be used for treatment of a wide variety of respiratory diseases.

  6. Asymmetric catalysis with short-chain peptides.

    Science.gov (United States)

    Lewandowski, Bartosz; Wennemers, Helma

    2014-10-01

    Within this review article we describe recent developments in asymmetric catalysis with peptides. Numerous peptides have been established in the past two decades that catalyze a wide variety of transformations with high stereoselectivities and yields, as well as broad substrate scope. We highlight here catalytically active peptides, which have addressed challenges that had thus far remained elusive in asymmetric catalysis: enantioselective synthesis of atropoisomers and quaternary stereogenic centers, regioselective transformations of polyfunctional substrates, chemoselective transformations, catalysis in-flow and reactions in aqueous environments.

  7. Short peptides allowing preferential detection of Candida albicans hyphae.

    Science.gov (United States)

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.

  8. Self-assembled or mixed peptide amphiphile micelles from Herpes simplex virus glycoproteins as potential immunomodulatory treatment

    Directory of Open Access Journals (Sweden)

    Accardo A

    2014-05-01

    Full Text Available Antonella Accardo,1 Mariateresa Vitiello,2,3 Diego Tesauro,1 Marilena Galdiero,2 Emiliana Finamore,2 Francesca Martora,2 Rosalba Mansi,1 Paola Ringhieri,1 Giancarlo Morelli11Department of Pharmacy, Interuniversitary Centre for Research on Bioactive peptides, CIRPeB, University of Naples "Federico II", Institute of Biostructures and Bioimaging IBB-CNR, Naples, Italy; 2Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Second University of Naples, Naples, Italy; 3Department of Clinical Pathology and Transfusion Medicine, University Hospital “Ruggi d'Aragona”, Salerno, ItalyAbstract: The use of micelle aggregates formed from peptide amphiphiles (PAs as potential synthetic self-adjuvant vaccines to treat Herpes simplex virus (HSV infection are reported here. The PAs were based on epitopes gB409-505 and gD301-309, selected from HSV envelope glycoprotein B (gB and glycoprotein D (gD, that had their N-terminus modified with hydrophobic moieties containing two C18 hydrocarbon chains. Pure and mixed micelles of gB and/or gD peptide epitopes were easily prepared after starting with the synthesis of corresponding PAs by solid phase methods. Structural characterization of the aggregates confirmed that they were sufficiently stable and compatible with in vivo use: critical micelle concentration values around 4.0 · 10-7 mol · Kg-1; hydrodynamic radii (RH between 50–80 nm, and a zeta potential (ζ around – 40 mV were found for all aggregates. The in vitro results indicate that both peptide epitopes and micelles, at 10 µM, triggered U937 and RAW 264.7 cells to release appreciable levels of cytokines. In particular, interleukin (IL-23-, IL-6-, IL-8- or macrophage inflammatory protein (MIP-2-, and tumor necrosis factor (TNF-α-release increased considerably when cells were treated with the gB-micelles or gD-micelles compared with the production of the same cytokines when the stimulus was the single gB or gD peptide

  9. Membrane analysis with amphiphilic carbon dots.

    Science.gov (United States)

    Nandi, Sukhendu; Malishev, Ravit; Parambath Kootery, Kaviya; Mirsky, Yelena; Kolusheva, Sofiya; Jelinek, Raz

    2014-09-14

    Newly-synthesized amphiphilic carbon dots were used for spectroscopic analysis and multicolour microscopic imaging of membranes and live cells. We show that Förster resonance energy transfer (FRET) occurred from the amphiphilic carbon dots to different membrane-associated fluorescence acceptors. The amphiphilic carbon dots enabled imaging of membrane disruption by the beta-amyloid peptide.

  10. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  11. In vitro and in vivo characterisation of a novel peptide delivery system: amphiphilic polyelectrolyte-salmon calcitonin nanocomplexes.

    Science.gov (United States)

    Cheng, Woei-Ping; Thompson, Colin; Ryan, Sinéad M; Aguirre, Tanira; Tetley, Laurence; Brayden, David J

    2010-10-15

    The cationic peptide, salmon calcitonin (sCT) was complexed with the cationic amphiphilic polyelectrolyte, poly(allyl)amine, grafted with palmitoyl and quaternary ammonium moieties at pH 5.0 and 7.4 to yield particulates (sCT-QPa). The complexes were approximately 200 nm in diameter, had zeta potentials ranging from +20 to +50 mV, and had narrow polydispersity indices (PDIs). Differential scanning calorimetry revealed the presence of an interaction between sCT and QPa in the complexes. Electron microscopy confirmed the zeta-size data and revealed a vesicular bilayer structure with an aqueous core. Tyrosine- and Nile red fluorescence indicated that the complexes retained gross physical stability for up to 7 days, but that the pH 5.0 complexes were more stable. The complexes were more resistant to peptidases, serum and liver homogenates compared to free sCT. In vitro bioactivity was measured by cAMP production in T47D cells and the complexes had EC50 values in the nM range. While free sCT was unable to generate cAMP following storage for 7 days, the complexes retained approximately 33% activity. When the complexes were injected intravenously to rats, free and complexed sCT (pH 5.0 and 7.4) but not QPa reduced serum calcium over 120 min. Free and complexed sCT but not QPa also reduced serum calcium over 240 min following intra-jejunal administration. In conclusion, sCT-QPa nanocomplexes that have been synthesised are stable, bioactive and resistant to a range of peptidases. These enhanced features suggest that they may have the potential for improved efficacy when formulated for injected and oral delivery.

  12. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    Science.gov (United States)

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent.

  13. Design and surface immobilization of short anti-biofilm peptides.

    Science.gov (United States)

    Mishra, Biswajit; Lushnikova, Tamara; Golla, Radha M; Wang, Xiuqing; Wang, Guangshun

    2017-02-01

    Short antimicrobial peptides are essential to keep us healthy and their lasting potency can inspire the design of new types of antibiotics. This study reports the design of a family of eight-residue tryptophan-rich peptides (TetraF2W) obtained by converting the four phenylalanines in temporin-SHf to tryptophans. The temporin-SHf template was identified from the antimicrobial peptide database (http://aps.unmc.edu/AP). Remarkably, the double arginine variant (TetraF2W-RR) was more effective in killing methicillin-resistant Staphylococcus aureus (MRSA) USA300, but less cytotoxic to human skin HaCat and kidney HEK293 cells, than the lysine-containing dibasic combinations (KR, RK and KK). Killing kinetics and fluorescence spectroscopy suggest membrane targeting of TetraF2W-RR, making it more difficult for bacteria to develop resistance. Because established biofilms on medical devices are difficult to remove, we chose to covalently immobilize TetraF2W-RR onto the polyethylene terephthalate (PET) surface to prevent biofilm formation. The successful surface coating of the peptide is supported by FT-IR and XPS spectroscopies, chemical quantification, and antibacterial assays. This peptide-coated surface indeed prevented S. aureus biofilm formation with no cytotoxicity to human cells. In conclusion, TetraF2W-RR is a short Trp-rich peptide with demonstrated antimicrobial and anti-biofilm potency against MRSA in both the free and immobilized forms. Because these short peptides can be synthesized cost effectively, they may be developed into new antimicrobial agents or used as surface coating compounds.

  14. Characterization and performance of short cationic antimicrobial peptide isomers.

    Science.gov (United States)

    Juba, Melanie; Porter, Devin; Dean, Scott; Gillmor, Susan; Bishop, Barney

    2013-07-01

    Cationic antimicrobial peptides (CAMPs) represent an ancient defense mechanism against invading bacteria, with peptides such as the cathelicidins being essential elements of vertebrate innate immunity. CAMPs are typically associated with broad-spectrum antimicrobial potency and limited bacterial resistance. The cathelicidin identified from the elapid snake Naja atra (NA-CATH) contains a semi-conserved repeated 11-residue motif (ATRA motif) with a sequence pattern consistent with formation of an amphipathic helical conformation. Short peptide amides (ATRA-1, -1A, -1P, and -2) generated based on the pair of ATRA motifs in NA-CATH exhibited varied antimicrobial potencies. The small size of the ATRA peptides, coupled with their varied antimicrobial performances, make them interesting models to study the impact various physico-chemical properties have on antimicrobial performance in helical CAMPs. Accordingly, the D- and L-enantiomers of the peptide ATRA-1A, which in earlier studies had shown both good antimicrobial performance and strong helical character, were investigated in order to assess the impact peptide stereochemistry has on antimicrobial performance and interaction with chiral membranes. The ATRA-1A isomers exhibit varied potencies against four bacterial strains, and their conformational properties in the presence of mixed zwitterionic/anionic liposomes are influenced by anionic lipid content. These studies reveal subtle differences in the properties of the peptide isomers. Differences are also seen in the abilities of the ATRA-1A isomers to induce liposome fusion/aggregation, bilayer rearrangement and lysing through turbidity studies and fluorescence microscopy. The similarities and differences in the properties of the ATRA-1A isomers could aid in efforts to develop D-peptide-based therapeutics using high-performing L-peptides as templates.

  15. Molecular mechanical properties of short-sequence peptide enzyme mimics.

    Science.gov (United States)

    Takahashi, Tsukasa; Vo Ngo, Bao C; Xiao, Leyang; Arya, Gaurav; Heller, Michael J

    2016-01-01

    While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman's Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics.

  16. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Silvia [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela (Spain)], E-mail: silvia.barbosa@usc.es; Cheema, Mohammad Arif; Siddiq, Mohammad [Department of Chemistry, Quaid-i-Azam University of Islamabad, 45320 (Pakistan); Taboada, Pablo [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela (Spain); Mosquera, Victor [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela (Spain)], E-mail: victor.mosquera@usc.es

    2009-02-15

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl{sup -} substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V{sub {phi}}, and isentropic apparent molar compressibilities, K{sub {phi}}{sub (S)}, for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, {delta}G{sup 0}, phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles.

  17. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.

    Science.gov (United States)

    Fu, Iris W; Markegard, Cade B; Chu, Brian K; Nguyen, Hung D

    2013-10-01

    Smart biomaterials that are self-assembled from peptide amphiphiles (PA) are known to undergo morphological transitions in response to specific physiological stimuli. The design of such customizable hydrogels is of significant interest due to their potential applications in tissue engineering, biomedical imaging, and drug delivery. Using a novel coarse-grained peptide/polymer model, which has been validated by comparison of equilibrium conformations from atomistic simulations, large-scale molecular dynamics simulations are performed to examine the spontaneous self-assembly process. Starting from initial random configurations, these simulations result in the formation of nanostructures of various sizes and shapes as a function of the electrostatics and temperature. At optimal conditions, the self-assembly mechanism for the formation of cylindrical nanofibers is deciphered involving a series of steps: (1) PA molecules quickly undergo micellization whose driving force is the hydrophobic interactions between alkyl tails; (2) neighboring peptide residues within a micelle engage in a slow ordering process that leads to the formation of β-sheets exposing the hydrophobic core; (3) spherical micelles merge together through an end-to-end mechanism to form cylindrical nanofibers that exhibit high structural fidelity to the proposed structure based on experimental data. As the temperature and electrostatics vary, PA molecules undergo alternative kinetic mechanisms, resulting in the formation of a wide spectrum of nanostructures. A phase diagram in the electrostatics-temperature plane is constructed delineating regions of morphological transitions in response to external stimuli.

  18. The polyproline II conformation in short alanine peptides is noncooperative.

    Science.gov (United States)

    Chen, Kang; Liu, Zhigang; Kallenbach, Neville R

    2004-10-26

    The finding that short alanine peptides possess a high fraction of polyproline II (PII) structure (Phi=-75 degrees, Psi=+145 degrees ) at low temperature has broad implications for unfolded states of proteins. An important question concerns whether or not this structure is locally determined or cooperative. We have monitored the conformation of alanine in a series of model peptides AcGGAnGGNH2 (n=1-3) over a temperature range from -10 degrees C to +80 degrees C. Use of 15N-labeled alanine substitutions makes it possible to measure 3JalphaN coupling constants accurately over the full temperature range. Based on a 1D next-neighbor model, the cooperative parameter sigma of PII nucleation is evaluated from the coupling constant data. The finding that sigma is close to unity (1 +/- 0.2) indicates a noncooperative role for alanine in PII structure formation, consistent with statistical surveys of the Protein Data Bank that suggest that most PII structure occurs in isolated residues. Lack of cooperativity in these models implies that hydration effects that influence PII conformation in water are highly localized. Using a nuclear Overhauser effect ratio strategy to define the alanine Psi angle, we estimate that, at 40 degrees C, the time-averaged alanine conformation (Phi=-80 degrees, Psi=+170 degrees ) deviates from canonical PII structure, indicating that PII melts at high temperature. Thus, the high-temperature state of short alanine peptides seems to be an unfolded ensemble with higher distribution in the extended beta structure basin, but not a coil.

  19. Effects of salt concentrations of the aqueous peptide-amphiphile solutions on the sol-gel transitions, the gelation speed, and the gel characteristics.

    Science.gov (United States)

    Otsuka, Takahiro; Maeda, Tomoki; Hotta, Atsushi

    2014-10-02

    Hydrogels made of peptide amphiphiles (PA) have attracted a lot of interest in biomedical fields. Considering the applications of PA hydrogels, the control of the gelation speed and the gel characteristics is essential to predominantly determine the usefulness and practicability of the hydrogels. In this work, the effects of the salt concentrations using sodium dihydrogenorthophosphate (NaH2PO4) on the sol-gel transition behaviors, especially the gelation speed and the gel characteristics of the designed PA (C16-W3K) hydrogels in aqueous solution were discussed. It was found that the original solution state before rheological testing was independent of the salt concentration, which was confirmed by observing the self-assembly structures and the peptide secondary structures of PA through transmission electron microscopy (TEM) and circular dichroism spectroscopy (CD). The PA solutions with different salt concentrations, however, presented a profound difference in the gelation speed and the gel characteristics: the solution exhibited higher gelation speeds and higher mechanical properties at higher salt concentrations. Concurrently, the density, the length of wormlike micelles, and the conformational ratio of β-sheets to α-helices in the equilibrium PA solutions all increased with the increase in the salt concentrations.

  20. Supramolecular amphiphiles.

    Science.gov (United States)

    Zhang, Xi; Wang, Chao

    2011-01-01

    Supramolecular amphiphiles (SA), also named superamphiphiles, refer to amphiphiles that are formed by non-covalent interactions. This tutorial review focuses on the molecular architectures of SAs, including diversified topologies such as single chain, double chain, bolaform, gemini and rotaxane types. Non-covalent syntheses that have been employed to fabricate SAs are driven by hydrogen bonding, electrostatic attraction, host-guest recognition, charge transfer interaction, metal coordination and so on. It should be noted that SAs can be either small organic molecules or polymers. SAs allow for tuning of their amphiphilicity in a reversible fashion, leading to controlled self-assembly and disassembly. This line of research has been enriching traditional colloid chemistry and current supramolecular chemistry, and the application of SAs in the field of functional supramolecular materials is keenly anticipated.

  1. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    DEFF Research Database (Denmark)

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  2. Engineering Short Preorganized Peptide Sequences for Metal Ion Coordination: Copper(II) a Case Study.

    Science.gov (United States)

    Lima, L M P; Iranzo, O

    2016-01-01

    Peptides are multidentate chiral ligands capable of coordinating different metal ions. Nowadays, they can be obtained with high yield and purity, thanks to the advances on peptide/protein chemistry as well as in equipment (peptide synthesizers). Based on the identity and length of their amino acid sequences, peptides can present different degrees of flexibility and folding. Although short peptide sequences (ion coordination. Based on our experience, we present a general scheme for the design, synthesis, and characterization of these peptidic scaffolds and provide protocols for the study of their metal ion coordination properties.

  3. Multi-Composite Bioactive Osteogenic Sponges Featuring Mesenchymal Stem Cells, Platelet-Rich Plasma, Nanoporous Silicon Enclosures, and Peptide Amphiphiles for Rapid Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Dongmei Fan

    2011-06-01

    Full Text Available A novel bioactive sponge was created with a composite of type I collagen sponges or porous poly(e-caprolactone (PCL scaffolds, platelet-rich plasma (PRP, BMP2-loaded nanoporous silicon enclosure (NSE microparticles, mineralizing peptide amphiphiles (PA, and mesenchymal stem cells (MSC. Primary MSC from cortical bone (CB  tissue proved to form more and larger colony units, as well as produce more mineral matrix under osteogenic differentiation, than MSC from bone marrow (BM. Coating pre-treatments were optimized for maximum cell adhesion and mineralization, while a PRP-based gel carrier was created to efficiently deliver and retain MSC and  microparticles within a porous scaffold while simultaneously promoting cell recruitment, proliferation, and angiogenesis. Components and composite sponges were evaluated for osteogenic differentiation in vitro. Osteogenic sponges were loaded with MSC, PRP, PA, and NSE and implanted subcutaneously in rats to evaluate the formation of bone tissue and angiogenesis in vivo. It was found that the combination of a collagen sponge with CB MSC, PRP, PA, and the BMP2-releasing NSE formed the most bone and was most vascularized by four weeks compared to analogous composites featuring BM MSC or PCL or lacking PRP, PA, and NSE. This study indicates that CB MSC should be considered as an alternative to marrow as a source of stem cells, while the PRP-PA cell and microparticle delivery system may be utilized for diverse tissue engineering applications.

  4. Self-assembly of amphiphilic peptide (AF)6H5K15 derivatives: roles of hydrophilic and hydrophobic residues.

    Science.gov (United States)

    Thota, Naresh; Jiang, Jianwen

    2014-03-13

    A molecular dynamics simulation study is reported to investigate the roles of hydrophilic and hydrophobic residues in the self-assembly of (AF)6H5K15 peptide derivatives. The peptide, as well as water and counterions, are represented by the MARTINI coarse-grained model. The assembly is observed to follow a three-step process: formation of small clusters, large clusters, and micelles. With increasing length of hydrophilic Lys residues in (AF)6H5Kn (n = 10, 15, 20, and 25), assembly capability is found to be reduced with the formation of smaller micelles or the presence of individual peptide chains. Upon replacing Ala by more hydrophobic Phe in AmFnH5K15 (m + n = 12), larger micelles are formed. With increasing length of hydrophobic Phe residues in FnH5K15 (n = 4, 8, 12, and 16), micelle size increases and the morphology shifts from spherical to fiber-like. The simulation study provides mechanistic insight into the crucial roles of hydrophilicity and hydrophobicity in the assembly of (AF)6H5K15 derivatives; it reveals that assembly capability is reduced by increasing hydrophilicity, whereas increasing hydrophobicity leads to morphology transition.

  5. The synthesis of new amphiphilic p-tert-butylthiacalix[4]arenes containing peptide fragments and their interaction with DNA.

    Science.gov (United States)

    Padnya, Pavel L; Andreyko, Elena A; Mostovaya, Olga A; Rizvanov, Ildar Kh; Stoikov, Ivan I

    2015-06-01

    New water-soluble p-tert-butylthiacalix[4]arenes containing peptide and quaternary ammonium fragments in cone and 1,3-alternate conformations were synthesized and characterized. The interaction of the macrocycles with DNA was studied by UV-spectroscopy, DLS and TEM. It was shown that the interaction of the self-associates based on p-tert-butylthiacalix[4]arenes tetrasubstituted at the lower rim with glycine and quaternary ammonium fragments in cone and 1,3-alternate conformations with DNA led to the formation of particles of about 99-192 nm in size.

  6. Design and expression of a short peptide as an HIV detection probe

    Energy Technology Data Exchange (ETDEWEB)

    Lines, Jamie A.; Yu, Zhiqiang; Dedkova, Larisa M.; Chen, Shengxi, E-mail: shengxi.chen.1@asu.edu

    2014-01-03

    Highlights: •We designed a short fusion peptide (FP-50) for in vivo expression. •This peptide is a very promising component for detection of gp120 protein. •The detectable level is about 20–200 times lower than previously published methods. •It is a novel probe to detect HIV-1 gp120 during early stages of HIV infection. -- Abstract: To explore a low-cost novel probe for HIV detection, we designed and prepared a 50-amino acid-length short fusion peptide (FP-50) via Escherichia coli in vivo expression. It was employed as a novel probe to detect HIV-1 gp120 protein. The detectable level of gp120 protein using the FP-50 peptide was approximately 20–200 times lower than previously published methods that used a pair of monoclonal antibodies. Thus, this short peptide is a very promising component for detection of gp120 protein during early stages of HIV infection.

  7. Short Exogenous Peptides Regulate Expression of CLE, KNOX1, and GRF Family Genes in Nicotiana tabacum.

    Science.gov (United States)

    Fedoreyeva, L I; Dilovarova, T A; Ashapkin, V V; Martirosyan, Yu Ts; Khavinson, V Kh; Kharchenko, P N; Vanyushin, B F

    2017-04-01

    Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10(-7)-10(-9) M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.

  8. Role of peptide bond in the realization of biological activity of short peptides.

    Science.gov (United States)

    Khavinson, V Kh; Tarnovskaya, S I; Lin'kova, N S; Chervyakova, N A; Nichik, T E; Elashkina, E V; Chalisova, N I

    2015-02-01

    We performed a comparative analysis of biological activity of Lys-Glu peptide and its amino acid constituents. It was established that Lys-Glu stimulated proliferation of splenic cells in organotypic culture, while the mixture of glutamic acid and lysine inhibited culture growth. Using the method of molecular docking, we showed that glutamic acid, lysine, and Lys-Glu peptide can interact with different DNA sequences. The energy of interaction and the most beneficial localization of glutamic acid, lysine, and Lys-Glu peptide in DNA molecule was calculated. We demonstrated the interaction of the peptide and amino acids with DNA along the minor groove. The energy of DNA interaction with the peptide is higher than with individual amino acids. The peptide bonds increase the interaction of Lys-Glu peptide with DNA, which potentiates the biological effect on cell proliferation in organotypic culture of splenic cells.

  9. Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements.

    Science.gov (United States)

    Azmi, Sarfuddin; Jiang, Keren; Stiles, Michael; Thundat, Thomas; Kaur, Kamaljit

    2015-03-09

    We employed a direct peptide-bacteria binding assay to screen peptide fragments for high and specific binding to Listeria monocytogenes. Peptides were screened from a peptide array library synthesized on cellulose membrane. Twenty four peptide fragments (each a 14-mer) were derived from three potent anti-listerial peptides, Leucocin A, Pediocin PA1, and Curvacin A, that belong to class IIa bacteriocins. Fragment Leu10 (GEAFSAGVHRLANG), derived from the C-terminal region of Leucocin A, displayed the highest binding among all of the library fragments toward several pathogenic Gram-positive bacteria, including L. monocytogenes, Enterococcus faecalis, and Staphylococcus aureus. The specific binding of Leu10 to L. monocytogenes was further validated using microcantilever (MCL) experiments. Microcantilevers coated with gold were functionalized with peptides by chemical conjugation using a cysteamine linker to yield a peptide density of ∼4.8×10(-3) μmol/cm2 for different peptide fragments. Leu10 (14-mer) functionalized MCL was able to detect Listeria with same sensitivity as that of Leucocin A (37-mer) functionalized MCL, validating the use of short peptide fragments in bacterial detection platforms. Fragment Leu10 folded into a helical conformation in solution, like that of native Leucocin A, suggesting that both Leu10 and Leucocin A may employ a similar mechanism for binding target bacteria. The results show that peptide-conjugated microcantilevers can function as highly sensitive platforms for Listeria detection and hold potential to be developed as biosensors for pathogenic bacteria.

  10. Discriminating self from nonself with short peptides from large proteomes

    DEFF Research Database (Denmark)

    Burrouhgs, N.J.; Boer, R.J.; Kesmir, Can

    2004-01-01

    . Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend...

  11. Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaobao; Zhou, Chuncai; Li, Peng [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Xu, Weixin [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Cao, Ye; Ling, Hua; Ning Chen, Wei; Ming Li, Chang; Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Lamrani, Mouad [Menicon Co., Ltd. Immeuble Espace Cordeliers, 2, rue President Carnot, 69002 Lyon (France); Mu, Yuguang, E-mail: ygmu@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore (Singapore); Leong, Susanna Su Jan [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Wook Chang, Matthew, E-mail: matthewchang@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore); Chan-Park, Mary B., E-mail: mbechan@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore (Singapore)

    2010-07-30

    Research highlights: {yields} Short antimicrobial peptides with nine and eleven residues were developed. {yields} These peptides show strong bactericidal activity against clinically important bacterial and fungal pathogens. {yields} These peptides exhibit high stability in the presence of salts, and low cytotoxicity. {yields} These peptides exert their action by disrupting membrane lipids. -- Abstract: Short antimicrobial peptides with nine and eleven residues were developed against several clinically important bacterial and fungal pathogens (specifically Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Fusarium solani). Twelve analogues of previously reported peptides BP76 (KKLFKKILKFL) and Pac-525 (KWRRWVRWI) were designed, synthesized, and tested for their antimicrobial activities. Two of our eleven amino acid peptides, P11-5 (GKLFKKILKIL) and P11-6 (KKLIKKILKIL), have very low MICs of 3.1-12.5 {mu}g ml{sup -1} against all five pathogens. The MICs of these two peptides against S. aureus, C. albicans and F. solani are four to ten times lower than the corresponding MICs of the reference peptide BP76. P9-4 (KWRRWIRWL), our newly designed nine-amino acid analogue, also has particularly low MICs of 3.1-6.2 {mu}g ml{sup -1} against four of the tested pathogens; these MICs are two to eight times lower than those reported for Pac-525 (6.2-50 {mu}g ml{sup -1}).These new peptides (P11-5, P11-6 and P9-4) also exhibit improved stability in the presence of salts, and have low cytotoxicity as shown by the hemolysis and MTT assays. From the results of field-emission scanning electron microscopy, membrane depolarization and dye-leakage assays, we propose that these peptides exert their action by disrupting membrane lipids. Molecular dynamics simulation studies confirm that P11-6 peptide maintains relatively stable helical structure and exerts more perturbation action on the order of acyl tail of lipid bilayer.

  12. Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides.

    Science.gov (United States)

    Fedoreyeva, L I; Smirnova, T A; Kolomijtseva, G Ya; Khavinson, V Kh; Vanyushin, B F

    2013-02-01

    Judging from fluorescence modulation (quenching), short peptides (Ala-Glu-Asp-Gly, Glu-Asp-Arg, Ala-Glu-Asp-Leu, Lys-Glu-Asp-Gly, Ala-Glu-Asp-Arg, and Lys-Glu-Asp-Trp) bind with FITC-labeled wheat histones H1, H2B, H3, and H4. This results from the interaction of the peptides with the N-terminal histone regions that contain respective and seemingly homologous peptide-binding motifs. Because homologous amino acid sequences in wheat core histones were not found, the peptides seem to bind with some core histone regions having specific conformational structure. Peptide binding with histones and histone-deoxyribooligonucleotide complexes depends on the nature of the histone and the primary structures of the peptides and oligonucleotides; thus, it is site specific. Histones H1 bind preferentially with single-stranded oligonucleotides by homologous sites in the C-terminal region of the protein. Unlike histone H1, the core histones bind predominantly with double-stranded methylated oligonucleotides and methylated DNA. Stern-Volmer constants of interaction of histone H1 and core histones with double-stranded hemimethylated oligonucleotides are higher compared with that of binding with unmethylated ones. DNA or deoxyribooligonucleotides in a complex with histones can enhance or inhibit peptide binding. It is suggested that site-specific interactions of short biologically active peptides with histone tails can serve in chromatin as control epigenetic mechanisms of regulation of gene activity and cellular differentiation.

  13. New mechanisms that regulate Saccharomyces cerevisiae short peptide transporter achieve balanced intracellular amino acid concentrations.

    Science.gov (United States)

    Melnykov, Artem V

    2016-01-01

    The budding yeast Saccharomyces cerevisiae is able to take up large quantities of amino acids in the form of di- and tripeptides via a short peptide transporter, Ptr2p. It is known that PTR2 can be induced by certain peptides and amino acids, and the mechanisms governing this upregulation are understood at the molecular level. We describe two new opposing mechanisms of regulation that emphasize potential toxicity of amino acids: the first is upregulation of PTR2 in a population of cells, caused by amino acid secretion that accompanies peptide uptake; the second is loss of Ptr2p activity, due to transporter internalization following peptide uptake. Our findings emphasize the importance of proper amino acid balance in the cell and extend understanding of peptide import regulation in yeast.

  14. A short peptide from frog skin accelerates diabetic wound healing.

    Science.gov (United States)

    Liu, Han; Duan, Zilei; Tang, Jing; Lv, Qiumin; Rong, Mingqiang; Lai, Ren

    2014-10-01

    Delayed wound healing will result in the development of chronic wounds in some diseases, such as diabetes. Amphibian skins possess excellent wound-healing ability and represent a resource for prospective wound-healing promoting compounds. A potential wound-healing promoting peptide (CW49; amino acid sequence APFRMGICTTN) was identified from the frog skin of Odorrana grahami. It promotes wound healing in a murine model with a full-thickness dermal wound in both normal and diabetic animals. In addition to its strong angiogenic ability with respect to the upregulation of some angiogenic proteins, CW49 also showed a significant anti-inflammatory effect in diabetic wounds, which was very important for healing chronic wounds. CW49 had little effect on re-epithelialization, resulting in no significant effect on wound closure rate compared to a vehicle control. Altogether, this indicated that CW49 might accelerate diabetic wound healing by promoting angiogenesis and preventing any excessive inflammatory response. Considering its favorable traits as a small peptide that significantly promotes angiogenesis, CW49 might be an excellent candidate or template for the development of a drug for use in the treatment of diabetic wounds.

  15. Purification of a Novel Antibacterial Short Peptide in Earthworm Eisenia foetida

    Institute of Scientific and Technical Information of China (English)

    Yan-Qin LIU; Zhen-Jun SUN; Chong WANG; Shi-Jie LI; Yu-Zhi LIU

    2004-01-01

    A novel antimicrobial short peptide was purified from earthworm (Eisenia foetida) by a five-step protocol including ammonium sulfate precipitation, ultrafiltration, DE-52 ion exchange chromatography, Sephadex G-10 column chromatography, and C-18 reversed-phase HPLC techniques.The purified peptide was applied to the MALDI-TOP MS to determine the molecular mass and was also subjected to TOF MS-MS analysis to determine the amino acid sequence. As a result, a novel antibacterial peptide, named OEP3121, was obtained, with the molecular mass of 510.8 Da and the sequence being "ACSAG".

  16. Identification of laminin α5 short arm peptides active for endothelial cell attachment and tube formation.

    Science.gov (United States)

    Kikkawa, Yamato; Sugawara, Yumika; Harashima, Nozomi; Fujii, Shogo; Ikari, Kazuki; Kumai, Jun; Katagiri, Fumihiko; Hozumi, Kentaro; Nomizu, Motoyoshi

    2017-02-21

    Laminin-511, a major component of endothelial basement membrane, consists of α5, β1, and γ1 chains. The short arm region of the α5 chain is a structural feature of endothelial laminins. In this study, we identified active sequences for human umbilical vein endothelial cells (HUVECs) using recombinant proteins and synthetic peptides. The short arm of the α5 chain contains three globular domains [laminin N-terminal globular domain, laminin 4 domain a, and laminin 4 domain b (LN, L4a, and L4b)] and three rod-like elements [laminin epidermal growth factor-like domain a, b, and c (LEa, LEb, and LEc)]. The cell attachment assay using recombinant proteins showed that RGD-independent cell attachment sites were localized in the α5LN-LEa domain. Further, we synthesized 70 peptides covering the amino acid sequences of the α5LN-LEa domain. Of the 70 peptides, A5-16 (mouse laminin α5 230-243: LENGEIVVSLVNGR) potently exhibited endothelial cell attachment activity. An active sequence analysis using N-terminally and C-terminally truncated A5-16 peptides showed that the nine-amino acid sequence IVVSLVNGR was critical for the endothelial cell attachment activity. Cell adhesion to the peptides was dependent on both cations and heparan sulfate. Further, the A5-16 peptide inhibited the capillary-like tube formation of HUVECs with the cells forming small clumps with short tubes. The eight-amino acid sequence EIVVSLVN in the A5-16 peptide was critical to inhibit HUVEC tube formation. This amino acid sequence could be useful for grafts and thus modulate endothelial cell behavior for vascular surgery. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  17. Structural conservation of a short, functional, peptide-sequence motif

    OpenAIRE

    Fox-Erlich, Susan; Schiller, Martin R; Gryk, Michael R.

    2009-01-01

    Full length, eukaryotic proteins generally consist of several autonomously folding and functioning domains. Many of these domains are known to function by binding and/or modifying other partner proteins based on the recognition of a short, linear amino sequence contained within the target protein. This article reviews the many bioinformatic tools and resources which discover, define and catalogue the various, known protein domains as well as assist users by identifying domain signatures withi...

  18. Short Peptides Enhance Single Cell Adhesion and Viability onMicroarrays

    Energy Technology Data Exchange (ETDEWEB)

    Veiseh, Mandana; Veiseh, Omid; Martin, Michael C.; Asphahani,Fareid; Zhang, Miqin

    2007-01-19

    Single cell patterning holds important implications forbiology, biochemistry, biotechnology, medicine, and bioinformatics. Thechallenge for single cell patterning is to produce small islands hostingonly single cells and retaining their viability for a prolonged period oftime. This study demonstrated a surface engineering approach that uses acovalently bound short peptide as a mediator to pattern cells withimproved single cell adhesion and prolonged cellular viabilityon goldpatterned SiO2 substrates. The underlying hypothesis is that celladhesion is regulated bythe type, availability, and stability ofeffective cell adhesion peptides, and thus covalently bound shortpeptides would promote cell spreading and, thus, single cell adhesion andviability. The effectiveness of this approach and the underlyingmechanism for the increased probability of single cell adhesion andprolonged cell viability by short peptides were studied by comparingcellular behavior of human umbilical cord vein endothelial cells on threemodelsurfaces whose gold electrodes were immobilized with fibronectin,physically adsorbed Arg-Glu-Asp-Val-Tyr, and covalently boundLys-Arg-Glu-Asp-Val-Tyr, respectively. The surface chemistry and bindingproperties were characterized by reflectance Fourier transform infraredspectroscopy. Both short peptides were superior to fibronectin inproducing adhesion of only single cells, whereas the covalently boundpeptide also reduced apoptosis and necrosisof adhered cells. Controllingcell spreading by peptide binding domains to regulate apoptosis andviability represents a fundamental mechanism in cell-materialsinteraction and provides an effective strategy in engineering arrays ofsingle cells.

  19. Sequential and competitive adsorption of peptides at pendant PEO layers.

    Science.gov (United States)

    Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Snider, Joshua L; Schilke, Karl F

    2015-06-01

    Earlier work provided direction for development of responsive drug delivery systems based on modulation of the structure, amphiphilicity, and surface density of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. In this work, we describe the sequential and competitive adsorption behavior of such peptides at pendant PEO layers. Three cationic peptides were used for this purpose: the arginine-rich, amphiphilic peptide WLBU2, a peptide chemically identical to WLBU2 but of scrambled sequence (S-WLBU2), and the non-amphiphilic peptide poly-L-arginine (PLR). Optical waveguide lightmode spectroscopy (OWLS) was used to quantify the rate and extent of peptide adsorption and elution at surfaces coated with PEO. UV spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to quantify the extent of peptide exchange during the course of sequential and competitive adsorption. Circular dichroism (CD) was used to evaluate conformational changes after adsorption of peptide mixtures at PEO-coated silica nanoparticles. Results indicated that amphiphilic peptides are able to displace adsorbed, non-amphiphilic peptides in PEO layers, while non-amphiphilic peptides were not able to displace more amphiphilic peptides. In addition, peptides of greater amphiphilicity dominated the adsorption at the PEO layer from mixtures with less amphiphilic or non-amphiphilic peptides.

  20. Introducing charge transfer functionality into prebiotically relevant β-sheet peptide fibrils.

    Science.gov (United States)

    Ivnitski, Denis; Amit, Moran; Rubinov, Boris; Cohen-Luria, Rivka; Ashkenasy, Nurit; Ashkenasy, Gonen

    2014-06-28

    Incorporation of naphthalene diimide moieties as side chains of short amphiphilic peptide results in the formation of fibrils that exhibit substantial intermolecular π-stacking interactions. These interactions can be manipulated without affecting the structure. The new system is suggested as a first step towards functional self-synthesizing materials.

  1. Computational Amphiphilic Materials for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naresh eThota

    2015-10-01

    Full Text Available Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.

  2. The role of amphiphiles

    NARCIS (Netherlands)

    Hoekstra, F.A.; Golovina, E.A.

    2002-01-01

    This paper reviews our work on the partitioning of amphiphilic compounds from the cytoplasm into membranes during drying of plant systems, and discusses how relevant this phenomenon might be for anhydrobiosis. Amphiphilic guest molecules do partition into membranes and oil bodies, as demonstrated by

  3. Effects of short elastin-like peptides on filamentous particles and their transition behavior.

    Science.gov (United States)

    Hathorne, Adam P; Bermudez, Harry

    2013-07-01

    While elastin-like polypeptides and peptides (ELPs) have been used for various stimulus-responsive applications, details of their switching remain unclear. We therefore constructed a novel series of filamentous phage particles displaying a high surface density of short ELPs. The surface display of ELPs did not disrupt either particle shape or dimensions, and the resulting ELP-phage particles were colloidally stable over several weeks. However, in spite of a saturating surface density, macroscopic aggregation of ELP-phages cannot be triggered in water. To investigate the underlying mechanisms we examined conformational changes in the secondary structure of the phage proteins by circular dichroism and tryptophan fluorescence, which indicate partial protein unfolding in ELP-phage particles. To gain further insight into the ELP itself, analogous "free" ELP peptides were synthesized and characterized. Circular dichroism of these peptides shows the onset of β-type conformations with increasing temperature, consistent with the accepted view of the microscopic transition that underlies the inverse phase behavior of ELPs. Increased guest residue hydrophobicity was found to depress the microscopic transition temperature of the peptides, also consistent with a previously proposed intramolecular hydrogen-bonding mechanism. Importantly, our results indicate that although the nanoscale presentation state can suppress macroscopic aggregation of ELPs, microscopic transitions of the ELP can still occur. Given the growing use of ELPs within supra-molecular scaffolds, such effects are important design considerations for future applications.

  4. Multilayered Short Peptide-Alginate Blends as New Materials for Potential Applications in Cartilage Tissue Regeneration.

    Science.gov (United States)

    Knoll, Grant A; Romanelli, Steven M; Brown, Alexandra M; Sortino, Rachel M; Banerjee, Ipsita A

    2016-03-01

    Peptide based nanomaterials have been gaining increased prominence due to their ability to form permeable scaffolds that promote growth and regeneration of new tissue. In this work for the first time a short hexapeptide motif VQIVYK, derived from the Tau protein family was conjugated with an organic polyamine linker, putrescine and utilized as a template for developing new materials for cartilage tissue regeneration. Our results showed that the conjugate formed extensive nanofibrous assemblies upon self-assembly under aqueous conditions. We then employed the layer-by-layer (LBL) approach to design the scaffold by first incorporating a short segment of the dentin sialophosphoprotein motif GDASYNSDESK followed by integration with the peptide sequence GSGAGAGSGAGAGSGAGA. This sequence mimics Ala, Gly, Ser repeats seen in the spider silk protein. We then incorporated the polysaccharide alginate which served as a hydrogel. To further enhance binding interactions with chondrocytes, and promote the formation of cartilage in vitro, the bionanocomposites were then attached to the chondrocyte binding peptide sequence HDSQLEALIKFM. The thermal properties as well as biodegradability of the scaffold was examined. To confirm biocompatibility, we examined cell viability, attachment and morphology in the presence of bovine chondrocytes. The cells were found to efficiently adhere to the scaffolds which formed an intricate mesh mimicking the extracellular matrix of cartilage tissue. To evaluate if differentiation occurred in the presence of the scaffolds, we examined in vitro deposition of proteoglycans. Thus, we have developed a new family of nanoscale scaffolds that may be utilized for cartilage tissue regeneration.

  5. Glutathione-triggered formation of a Fmoc-protected short peptide-based supramolecular hydrogel.

    Directory of Open Access Journals (Sweden)

    Yang Shi

    Full Text Available A biocompatible method of glutathione (GSH catalyzed disulfide bond reduction was used to form Fmoc-short peptide-based supramolecular hydrogels. The hydrogels could form in both buffer solution and cell culture medium containing 10% of Fetal Bovine Serum (FBS within minutes. The hydrogel was characterized by rheology, transmission electron microscopy, and fluorescence emission spectra. Their potential in three dimensional (3D cell culture was evaluated and the results indicated that the gel with a low concentration of the peptide (0.1 wt% was suitable for 3D cell culture of 3T3 cells. This study provides an alternative candidate of supramolecular hydrogel for 3D cell culture and cell delivery.

  6. Peptides encoded by short ORFs control development and define a new eukaryotic gene family.

    Directory of Open Access Journals (Sweden)

    Máximo Ibo Galindo

    2007-05-01

    Full Text Available Despite recent advances in developmental biology, and the sequencing and annotation of genomes, key questions regarding the organisation of cells into embryos remain. One possibility is that uncharacterised genes having nonstandard coding arrangements and functions could provide some of the answers. Here we present the characterisation of tarsal-less (tal, a new type of noncanonical gene that had been previously classified as a putative noncoding RNA. We show that tal controls gene expression and tissue folding in Drosophila, thus acting as a link between patterning and morphogenesis. tal function is mediated by several 33-nucleotide-long open reading frames (ORFs, which are translated into 11-amino-acid-long peptides. These are the shortest functional ORFs described to date, and therefore tal defines two novel paradigms in eukaryotic coding genes: the existence of short, unprocessed peptides with key biological functions, and their arrangement in polycistronic messengers. Our discovery of tal-related short ORFs in other species defines an ancient and noncanonical gene family in metazoans that represents a new class of eukaryotic genes. Our results open a new avenue for the annotation and functional analysis of genes and sequenced genomes, in which thousands of short ORFs are still uncharacterised.

  7. 三条两亲性多肽的自组装行为及酸敏特性%Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides

    Institute of Scientific and Technical Information of China (English)

    梁菊; 来丹玉; 吴文澜; 李国芝; 李军波; 方财林

    2015-01-01

    通过固相合成法制备了三条疏水端不同的两亲性多肽VVVVVVKKGRGDS (AP1)、C12KKGRGDS (AP2)、FAFAFAKKGRGDS (AP3).自组装行为研究表明,三条多肽在中性条件下(pH 7.0)均能形成球形纳米胶束,透射电子显微镜(TEM)检测其粒径为~30 nm,动态光散射(DLS)测试其粒径分布均一.当pH下降为5.0时,肽链AP1的胶束结构被破坏, TEM视野中没有发现任何自组装体,而肽链AP2和AP3的胶束结构在pH 5.0时依然存在,但AP2的纳米粒子之间明显发生了部分聚集,表现为团聚样分布, AP3组装体的粒径明显增大,形貌变得不规则. DLS测试结果显示,当pH下降到5.0时,肽链AP1在1-1000 nm范围内没有出现吸收峰, AP2呈多峰分布, AP3呈宽单峰分布. DLS的测试结果很好地印证了TEM的测试结果.为了探究三条多肽组装性能不同的二级结构因素,我们对AP1、AP2和AP3进行了圆二色谱(CD)和傅里叶变换红外(FT-IR)光谱测试.结果表明,三条多肽在中性条件下二级结构中均存在一定含量的β-折叠,当pH下降到5.0时, AP1结构中的β-折叠成分显著下降,出现部分无规卷曲. AP2和AP3的β-折叠成分虽有变化,但其CD主峰依然存在.以姜黄素作为模型药物,进一步确认AP1载药胶束的释药行为也具有优良的酸敏感特性. AP1、AP2和AP3在酸性条件下自组装行为的不同,表明调控两亲性多肽的疏水端组成有可能是调控多肽自组装性能的有效手段. AP1组装体有望成为理想的pH响应性载体材料.%Three amphiphilic peptides containing KKGRGDS as hydrophilic heads and VVVVVV, C12, and FAFAFA as hydrophobic tails (VVVVVVKKGRGDS (AP1), C12KKGRGDS (AP2), FAFAFAKKGRGDS (AP3)) were designed and prepared using the standard solid-phase peptide synthesis (SPPS) technique. Three peptides assembled into spherical micel es under neutral conditions (pH 7.0) with a size of ~30 nm determined by transmission electron microscope (TEM). Dynamic light

  8. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA.

    Science.gov (United States)

    Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F

    2011-11-01

    Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.

  9. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome

    Science.gov (United States)

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our object...

  10. Screening of integrin-binding peptides in a laminin peptide library derived from the mouse laminin β chain short arm regions.

    Science.gov (United States)

    Katagiri, Fumihiko; Takagi, Masaharu; Nakamura, Minako; Tanaka, Yoichiro; Hozumi, Kentaro; Kikkawa, Yamato; Nomizu, Motoyoshi

    2014-05-15

    Laminins, major components of basement membrane, consist of three different subunits, α, β, and γ chains, and so far, five α, three β, and three γ chains have been identified. We have constructed synthetic peptide libraries derived from the laminin sequences and identified various cell-adhesive peptides. Ten active peptides from the laminin α chain sequences (α1-α5) were found to promote integrin-mediated cell adhesion. Previously, we found fourteen cell-adhesive peptides from the β1 chain sequence but their receptors have not been analyzed. Here, we expanded the synthetic peptide library to add peptides from the short arm regions of the laminin β2 and β3 chains and screened for integrin-binding peptides. Twenty-seven peptides promoted human dermal fibroblast (HDF) attachment in a peptide-coated plate assay. The morphological appearance of HDFs on the peptide-coated plates differed depending on the peptides. B34 (REKYYYAVYDMV, mouse laminin β1 chain, 255-266), B67 (IPYSMEYEILIRY, mouse laminin β1 chain, 604-616), B2-105 (APNFWNFTSGRG, mouse laminin β2 chain, 1081-1092), and B3-19 (GHLTGGKVQLNL, mouse laminin β3 chain, 182-193) promoted HDF spreading and HDF attachment was inhibited by EDTA, suggesting that the peptides interact with integrins. Immunostaining analyses revealed that B67 induced well-organized actin stress fibers and focal contacts containing vinculin, however, B34, B2-105, and B3-19 did not exhibit stress fiber formation or focal contacts. The inhibition assay using anti-integrin antibodies indicated that B67 interacts with α3, α6, and β1 integrins, and B34 and B3-19 interact with β1 integrin. Based on adhesion analysis of peptides modified with an alanine scan and on switching analysis with the homologous inactive sequence B2-64 (LPRAMDYDLLLRW, mouse laminin β2 chain, 618-630), the Glu(8) residue in the B67 peptide was critical for HDF adhesion. These findings are useful for identifying an integrin binding motif. The B67 peptide

  11. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    Science.gov (United States)

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  12. Concentration effects on peptide elution from pendant PEO layers.

    Science.gov (United States)

    Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Schilke, Karl F

    2014-06-01

    In earlier work, we have provided direction for development of responsive drug delivery systems based on modulation of structure and amphiphilicity of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. Amphiphilicity promotes retention of the peptides within the hydrophobic inner region of the PEO brush layer. In this work, we describe the effects of peptide surface density on the conformational changes caused by peptide-peptide interactions, and show that this phenomenon substantially affects the rate and extent of peptide elution from PEO brush layers. Three cationic peptides were used in this study: the arginine-rich amphiphilic peptide WLBU2, the chemically identical but scrambled peptide S-WLBU2, and the non-amphiphilic homopolymer poly-l-arginine (PLR). Circular dichroism (CD) was used to evaluate surface density effects on the structure of these peptides at uncoated (hydrophobic) and PEO-coated silica nanoparticles. UV spectroscopy and a quartz crystal microbalance with dissipation monitoring (QCM-D) were used to quantify changes in the extent of peptide elution caused by those conformational changes. For amphiphilic peptides at sufficiently high surface density, peptide-peptide interactions result in conformational changes which compromise their resistance to elution. In contrast, elution of a non-amphiphilic peptide is substantially independent of its surface density, presumably due to the absence of peptide-peptide interactions. The results presented here provide a strategy to control the rate and extent of release of bioactive peptides from PEO layers, based on modulation of their amphiphilicity and surface density.

  13. The role of amphiphiles.

    Science.gov (United States)

    Hoekstra, Folkert A; Golovina, Elena A

    2002-03-01

    This paper reviews our work on the partitioning of amphiphilic compounds from the cytoplasm into membranes during drying of plant systems, and discusses how relevant this phenomenon might be for anhydrobiosis. Amphiphilic guest molecules do partition into membranes and oil bodies, as demonstrated by the results of in vivo electron paramagnetic resonance spectroscopy on incorporated spin probes. Arguments for the likelihood of endogenous cytoplasmic amphiphiles behaving similarly during dehydration and rehydration of plant systems are presented. Negative and positive aspects of the partitioning are summarized. Positive aspects are the automatic insertion of amphiphilic antioxidants into membranes of the dehydrating organism, and the control of membrane fluidity and the phase transition temperature. A negative aspect is the perturbation of membrane structure, leading to increased permeability and loss of function. The finding that after an initial fluidization during dehydration, the membrane surface becomes immobilized in desiccation-tolerant systems and not in desiccation-sensitive systems, is discussed in the light of a strict control of the effect of partitioning. The adaptive significance of amphiphile partitioning into the membranes of anhydrobiotes is discussed.

  14. Short-term administration of glucagon-like peptide-2. Effects on bone mineral density and markers of bone turnover in short-bowel patients with no colon

    DEFF Research Database (Denmark)

    Haderslev, K V; Jeppesen, P B; Hartmann, B

    2002-01-01

    Glucagon-like peptide 2 (GLP-2) is a newly discovered intestinotrophic hormone. We have recently reported that a 5-week GLP-2 treatment improved the intestinal absorptive capacity of short-bowel patients with no colon. Additionally, GLP-2 treatment was associated with changes in body composition ...

  15. Fusion of a Short HA2-Derived Peptide Sequence to Cell-Penetrating Peptides Improves Cytosolic Uptake, but Enhances Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Igor Kitanovic

    2009-09-01

    Full Text Available Cell-penetrating peptides (CPP have become a widely used tool for efficient cargo delivery into cells. However, one limiting fact is their uptake by endocytosis causing the enclosure of the CPP-cargo construct within endosomes. One often used method to enhance the outflow into the cytosol is the fusion of endosome-disruptive peptide or protein sequences to CPP. But, until now, no studies exist investigating the effects of the fusion peptide to the cellular distribution, structural arrangements and cytotoxic behaviour of the CPP. In this study, we attached a short modified sequence of hemagglutinin subunit HA2 to different CPP and analysed the biologic activity of the new designed peptides. Interestingly, we observed an increased cytosolic distribution but also highly toxic activities in the micromolar range against several cell lines. Structural analysis revealed that attachment of the fusion peptide had profound implications on the whole conformation of the peptide, which might be responsible for membrane interaction and endosome disruption.

  16. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Alessandra Bianchin

    Full Text Available The purpose of this study was to investigate the blood stage of the malaria causing parasite, Plasmodium falciparum, to predict potential protein interactions between the parasite merozoite and the host erythrocyte and design peptides that could interrupt these predicted interactions. We screened the P. falciparum and human proteomes for computationally predicted short linear motifs (SLiMs in cytoplasmic portions of transmembrane proteins that could play roles in the invasion of the erythrocyte by the merozoite, an essential step in malarial pathogenesis. We tested thirteen peptides predicted to contain SLiMs, twelve of them palmitoylated to enhance membrane targeting, and found three that blocked parasite growth in culture by inhibiting the initiation of new infections in erythrocytes. Scrambled peptides for two of the most promising peptides suggested that their activity may be reflective of amino acid properties, in particular, positive charge. However, one peptide showed effects which were stronger than those of scrambled peptides. This was derived from human red blood cell glycophorin-B. We concluded that proteome-wide computational screening of the intracellular regions of both host and pathogen adhesion proteins provides potential lead peptides for the development of anti-malarial compounds.

  17. The impact of α-hydrazino acids embedded in short fluorescent peptides on peptide interactions with DNA and RNA.

    Science.gov (United States)

    Suć, Josipa; Tumir, Lidija-Marija; Glavaš-Obrovac, Ljubica; Jukić, Marijana; Piantanida, Ivo; Jerić, Ivanka

    2016-06-01

    A series of novel hydrazino-based peptidomimetics and analogues comprising N-terminal lysine and C-terminal phenanthridinyl-l-alanine were prepared. The presented results demonstrate the up to now unknown possibility to finely modulate peptide interactions with DNA/RNA by α-hydrazino group insertion and how the different positioning of two α-hydrazino groups in peptides controls binding to various double stranded and single stranded DNA and RNA. All peptidomimetics bind with 1-10 micromolar affinity to ds-DNA/RNA, whereby the binding mode is a combination of electrostatic interactions and hydrophobic interactions within DNA/RNA grooves. Insertion of the α-hydrazino group into the peptide systematically decreased its fluorimetric response to DNA/RNA binding in the order: mono-hydrazino peptide sequence. Particularly interesting was the interaction of two sequential α-hydrazino acids-peptidomimetic with poly rG, characterised by a specific strong increase of CD bands, while all other peptide/ssRNA combinations gave only a CD-band decrease. All mentioned interactions could also be reversibly controlled by adjusting the pH, due to the protonation of the fluorophore.

  18. Molecular origin of the self-assembled morphological difference caused by varying the order of charged residues in short peptides.

    Science.gov (United States)

    Deng, Li; Zhou, Peng; Zhao, Yurong; Wang, Yanting; Xu, Hai

    2014-10-30

    In order to understand how microscopic molecular interactions between short peptides determine their mesoscopic self-assembled morphology, we studied the microscopic assembled structures of the short peptides I4K2 and KI4K, which have the same amino acid composition but different sequences, by using all-atom replica exchange molecular dynamics simulation. We found that, at room temperature, the difference in amino acid sequence does not apparently alter their strong propensity of forming β-sheets but does strongly affect their assembled stable structures and their appearance probabilities. These differences result from the competition between the electrostatic and hydrophobic interactions among the side chains of the molecules, which are linked up by hydrogen bonds formed between neighboring peptide backbones. Our simulation results not only reveal the molecular origin of the self-assembled morphological difference between I4K2 and KI4K but also demonstrate in general the subtle balance between electrostatic, hydrophobic, and hydrogen bonding interactions in short-peptide self-assembly.

  19. Stimuli Responsive Amphiphilic Assemblies

    Science.gov (United States)

    2013-11-18

    Amphiphilic Nanocontainers, Angewandte Chemie International Edition , (03 2011): 0. doi: 10.1002/anie.201006193 TOTAL: 4 Number of Papers published in... International Conference on Novel Materials and their Synthesis, Xi An, China, October 14-19, 2012 (Organizers: Anning Zhou, Min Zhang & Yuping Wu, Fudan...University) Plenary Lecture, PolyTech – 2012: International Conference on Advances in Polymeric Materials & Nanotechnology, Pune, India, Dec. 15

  20. Effect of the Peptidic Scaffold in Copper(II) Coordination and the Redox Properties of Short Histidine-Containing Peptides.

    Science.gov (United States)

    Fragoso, Ana; Carvalho, Tiago; Rousselot-Pailley, Pierre; Correia Dos Santos, Margarida M; Delgado, Rita; Iranzo, Olga

    2015-09-07

    A linear decapeptide containing three His and one Asp residues and a β-turn-inducing dProPro unit was synthesised. A detailed potentiometric, mass spectrometric and spectroscopic study showed that at a 1:1 ratio of CCu /Cpeptide this peptide formed a major [CuH(O(dPro)-Asp)](2+) species (pH range 5.5-7.0), in which the Cu(2+) ion was bound to the His and Asp residues in square-planar or square-pyramidal geometries. The stability constant corrected for protonated species (log K* CuH(O dPro-Asp)=9.33) is almost equal to the value obtained for the parent [CuH(OAsp)](2+) species (log K*CuH(O-Asp) =9.28), but lower than that obtained for the cyclic [CuH(C-Asp)](2+) complex (log K*CuH(C-Asp) =10.79) previously published. Thus, the replacement of the ProGly unit by the stronger β-turn-inducing dProPro unit did not generate a more stable copper(II) species, although the O(dPro)-Asp peptide was structured in solution, as shown by circular dichroism (CD) spectroscopy. Interestingly, the calculated value of Keff showed that this peptide behaved similarly to the O-Asp or C-Asp counterparts, depending on the pH value. The cyclic voltammetry data indicated that the most easily reducible species were [CuH(O-Asp)](2+) (E'(0) =262 mV versus a normal hydrogen electrode (NHE)) and [CuH(O(dPro)-Asp)](2+) (E'(0) =294 mV versus NHE) complexes, the peptidic scaffolds of which are open. A lower value was obtained for [CuH(C-Asp)](2+) (E'(0) =24 mV versus NHE). A different degree of non-reversibility was observed for the three copper(II) complexes; this could reflect a different degree of flexibility in their respective peptidic scaffolds.

  1. Competitive Binding of Natural Amphiphiles with Graphene Derivatives

    Science.gov (United States)

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng

    2013-07-01

    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.

  2. Amphiphilic dendronized homopolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of second generation of amphiphilic dendronized homopolymers are efficiently synthesized,and their thermoresponsiveness in aqueous solutions and secondary structures in methanol solutions are described.These polymers are constructed in each repeat unit with various generations of hydrophobic 4-aminoproline and hydrophilic oligoethylene glycol (OEG)-based dendrons,and their over-all hydrophilicity is tuned by varying these dendron generations.Polymers with or without the first generation of proline dendron show good water solubility at room temperature,but exhibit typical thermoresponsive behaviors at elevated temperatures as characterized by turbidity measurements using UV-vis spectroscopy,while the polymer with the secondary generation of proline dendron is not soluble in water.All polymers show ordered secondary structures as evidenced by the optical rotation and circular dichroism experiments.Finally,assembly of these amphiphilic homopolymers into porous films via breath figure (BF) technique is described,and polymer structures are found to show significant influence on the morphology of porous film.

  3. Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution

    Science.gov (United States)

    Deng, Li; Zhao, Yurong; Zhou, Peng; Xu, Hai; Wang, Yanting

    2016-12-01

    Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations. Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 91227115, 11421063

  4. Aggregation properties of a short peptide that mediates amyloid fibril formation in model proteins unrelated to disease

    Indian Academy of Sciences (India)

    Nitin Chaudhary; Shashi Singh; Ramakrishnan Nagaraj

    2011-09-01

    Short peptides have been identified from amyloidogenic proteins that form amyloid fibrils in isolation. The hexapeptide stretch 21DIDLHL26 has been shown to be important in the self-assembly of the Src homology 3 (SH3) domain of p85 subunit of bovine phosphatidylinositol-3-kinase (PI3-SH3). The SH3 domain of chicken brain -spectrin, which is otherwise non-amyloidogenic, is rendered amyloidogenic if 22EVTMKK27 is replaced by DIDLHL. In this article, we describe the aggregation behaviour of DIDLHL-COOH and DIDLHL-CONH2. Our results indicate that DIDLHL-COOH and DIDLHL-CONH2 aggregate to form spherical structures at pH 5 and 6. At pH 5, in the presence of mica, DIDLHL-CONH2 forms short fibrous structures. The presence of NaCl along with mica results in fibrillar structures. At pH 6, DIDLHL-CONH2 forms largely spherical aggregates. Both the peptides are unstructured in solution but adopt -conformation on drying. The aggregates formed by DIDLHL-COOH and DIDLHL-CONH2 are formed during drying process and their structures are modulated by the presence of mica and salt. Our study suggests that a peptide need not have intrinsic amyloidogenic propensity to facilitate the selfassembly of the full-length protein. The propensity of peptides to form self-assembled structures that are non-amyloidogenic could be important in potentiating the self-assembly of full-length proteins into amyloid fibrils.

  5. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    Science.gov (United States)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  6. Short Synthesis of C-terminal Modified Peptides by a Series-connection Procedure

    Institute of Scientific and Technical Information of China (English)

    Gui Jie TIAN; Chuan Liang QIU; Zhe LIU; De Xin WANG

    2005-01-01

    Three peptide alcohols and four peptidyl N-akyl-amides were prepared by a series-connection procedure consisting of n-1 sequencial assembly on solid support followed by ammonolysis with glycinol, benzylamine or n-butylamine, and successive extractionelution through C-18 layer. All products were obtained from this procedure without further purification,in an overall yield of 75-86%.

  7. Rapid phylogenetic and functional classification of short genomic fragments with signature peptides

    Directory of Open Access Journals (Sweden)

    Berendzen Joel

    2012-08-01

    Full Text Available Abstract Background Classification is difficult for shotgun metagenomics data from environments such as soils, where the diversity of sequences is high and where reference sequences from close relatives may not exist. Approaches based on sequence-similarity scores must deal with the confounding effects that inheritance and functional pressures exert on the relation between scores and phylogenetic distance, while approaches based on sequence alignment and tree-building are typically limited to a small fraction of gene families. We describe an approach based on finding one or more exact matches between a read and a precomputed set of peptide 10-mers. Results At even the largest phylogenetic distances, thousands of 10-mer peptide exact matches can be found between pairs of bacterial genomes. Genes that share one or more peptide 10-mers typically have high reciprocal BLAST scores. Among a set of 403 representative bacterial genomes, some 20 million 10-mer peptides were found to be shared. We assign each of these peptides as a signature of a particular node in a phylogenetic reference tree based on the RNA polymerase genes. We classify the phylogeny of a genomic fragment (e.g., read at the most specific node on the reference tree that is consistent with the phylogeny of observed signature peptides it contains. Using both synthetic data from four newly-sequenced soil-bacterium genomes and ten real soil metagenomics data sets, we demonstrate a sensitivity and specificity comparable to that of the MEGAN metagenomics analysis package using BLASTX against the NR database. Phylogenetic and functional similarity metrics applied to real metagenomics data indicates a signal-to-noise ratio of approximately 400 for distinguishing among environments. Our method assigns ~6.6 Gbp/hr on a single CPU, compared with 25 kbp/hr for methods based on BLASTX against the NR database. Conclusions Classification by exact matching against a precomputed list of signature

  8. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide.

    Science.gov (United States)

    Ciumac, Daniela; Campbell, Richard A; Xu, Hai; Clifton, Luke A; Hughes, Arwel V; Webster, John R P; Lu, Jian R

    2017-02-01

    Many antimicrobial peptides (AMPs) target bacterial membranes and they kill bacteria by causing structural disruptions. One of the fundamental issues however lies in the selective responses of AMPs to different cell membranes as a lack of selectivity can elicit toxic side effects to mammalian host cells. A key difference between the outer surfaces of bacterial and mammalian cells is the charge characteristics. We report a careful study of the binding of one of the representative AMPs, with the general sequence G(IIKK)4I-NH2 (G4), to the spread lipid monolayers of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)) mimicking the charge difference between them, using the combined measurements from Langmuir trough, Brewster angle microscopy (BAM) and neutron reflection (NR). The difference in pressure rise upon peptide addition into the subphase clearly demonstrated the different interactions arising from different lipid charge features. Morphological changes from the BAM imaging confirmed the association of the peptide into the lipid monolayers, but there was little difference between them. However, NR studies revealed that the peptide bound 4 times more onto the DPPG monolayer than onto the DPPC monolayer. Importantly, whilst the peptide could only be associated with the head groups of DPPC it was well penetrated into the entire DPPG monolayer, showing that the electrostatic interaction strengthened the hydrophobic interaction and that the combined molecular interactive processes increased the power of G4 in disrupting the charged membranes. The results are discussed in the context of general antibacterial actions as observed from other AMPs and membrane lytic actions.

  9. Fundamental behavior of a model biomolecular amphiphile system

    Science.gov (United States)

    Haverstick, Kraig Leonard

    An interest in the fundamental interactions between protein components, in the form of either single amino acids or peptides, unifies the work represented in this thesis. These fundamental interactions drive protein folding, enzyme-substrate binding, and cell adhesion to extracellular ligands. The technology of lipidation was used to isolate these protein interactions. Lipidation of a water-soluble amino acid or peptide sequence confined the protein component to the air-water interface or to a self-assembled structure in water. Compression of the molecules at the air-water interface ordered them into a solid-like monolayer, and Langmuir-Blodgett deposition produced a surface modification with protein component presented in a controlled, orderly manner. These molecules have potential applications as biomaterials coatings or drug delivery devices. A method for determination of specific hydrogen bonding interactions through cocrystallization of two complementary peptide sequences is also described. In order to understand the effect of lipidation and lipid structure on peptide behavior, a comprehensive study of tail designs was first undertaken. Tail length, linkage group, linker, spacer length, and headgroup chirality, orientation, and terminal group were systematically varied in simple amino acid amphiphiles. Monolayer assembly, thermal stability, and structure were studied with Langmuir isotherms and Fourier transform infrared spectroscopy. Each part of the tail structure was found to affect monolayer behavior. With lipid effects better understood, peptide amphiphiles were designed, synthesized, and studied using peptide sequences of importance for cell adhesion. The sequences [IV-H1] from type IV collagen and Arg-Gly-Asp (RGD) were lipidated and characterized in monolayers by Langmuir isotherms and Fourier transform infrared spectroscopy. Biological functionality was determined by melanoma cell spreading assays. Peptide presentation was found to be critical for

  10. Influence of Amphibian Antimicrobial Peptides and Short Lipopeptides on Bacterial Biofilms Formed on Contact Lenses

    Directory of Open Access Journals (Sweden)

    Magdalena Maciejewska

    2016-10-01

    Full Text Available The widespread use of contact lenses is associated with several complications, including ocular biofilm-related infections. They are very difficult to manage with standard antimicrobial therapies, because bacterial growth in a biofilm is associated with an increased antibiotic resistance. The principal aim of this study was to evaluate the efficacy of antimicrobial peptides (AMPs in eradication of bacterial biofilms formed on commercially available contact lenses. AMPs were synthesized according to Fmoc/tBu chemistry using the solid-phase method. Minimum inhibitory concentration (MIC and minimum biofilm eradication concentration (MBEC of the compounds were determined. Anti-biofilm activity of the antimicrobial peptides determined at different temperatures (25 °C and 37 °C were compared with the effectiveness of commercially available contact lens solutions. All of the tested compounds exhibited stronger anti-biofilm properties as compared to those of the tested lens solutions. The strongest activity of AMPs was noticed against Gram-positive strains at a temperature of 25 °C. Conclusions: The results of our experiments encourage us toward further studies on AMPs and their potential application in the prophylaxis of contact lens-related eye infections.

  11. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  12. Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures

    Science.gov (United States)

    Kumar, Vikas; Gupta, Shradhey; Mishra, Narendra Kumar; Singh, Ramesh; Yadav, Santosh K. S.; Ballabh Joshi, Khashti

    2017-03-01

    This study demonstrates the synthesis of a new class of peptide amphiphiles derived from aleuritic acid. The aleuritic acid was extracted and purified from the natural source shellac, which was later conjugated with tryptophan, leading to a new class of very short peptide amphiphiles. The self-assembling behavior of this compound was studied using spectroscopic and microscopic tools. This shellac-driven peptide was further used to cultivate gold nanoparticles (AuNPs) with the help of continuous wave (CW) laser light, where the AuNPs were encapsulated by peptide nanostructures. Laser irradiation caused nanoscopically confined heating in the AuNPs-peptide hybrid nanostructures. Such confined heating is mainly the result of scattering and simultaneous absorption of subwavelength power which is subjected to enhanced plasmonic resonances of the metal nanostructures. Hence, the generated heat power/photothermal effect of these AuNPs leads to disruption of the AuNP–peptide hybrids. Such light-induced prototype nano-structure hydrid devices have a wide range of thermal-plasmonic applications in the morphological modification of soft metal hybrid nanostructures for photothermal therapy and drug release.

  13. Nasal Levels of Antimicrobial Peptides in Allergic Asthma Patients and Healthy Controls: Differences and Effect of a Short 1,25(OH2 Vitamin D3 Treatment.

    Directory of Open Access Journals (Sweden)

    Willemien Thijs

    Full Text Available Allergy is often accompanied by infections and lower levels of antimicrobial peptides (AMPs. Vitamin D has been shown to increase expression of selected AMPs. In this study we investigated whether antimicrobial peptide levels in nasal secretions of allergic asthma patients are lower than in healthy controls, and whether administration of the active form of vitamin D (1,25(OH2D3 affects these antimicrobial peptide levels.The levels of antimicrobial peptides in nasal secretions were compared between 19 allergic asthma patients and 23 healthy controls. The effect of seven days daily oral treatment with 2 μg 1,25(OH2D3 on antimicrobial peptides in nasal secretions was assessed in a placebo-controlled cross-over clinical study.Levels of neutrophil α-defensins (human neutrophil peptides 1-3; HNP1-3 and lipocalin 2 (LCN2; also known as NGAL were significantly lower in asthmatics, but no differences in LL-37 and SLPI were detected. Treatment with a short-term 1,25(OH2D3 caused a small increase in HNP1-3, but not when the asthma and control groups were analyzed separately. LL-37, LCN2 and SLPI did not change after treatment with 1,25(OH2D3.Levels of the antimicrobial peptides HNP1-3 and LCN2 are lower in nasal secretions in asthmatics and are not substantially affected by a short-term treatment with active vitamin D.

  14. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome.

    Science.gov (United States)

    Thymann, Thomas; Stoll, Barbara; Mecklenburg, Lars; Burrin, Douglas G; Vegge, Andreas; Qvist, Niels; Eriksen, Thomas; Jeppesen, Palle B; Sangild, Per T

    2014-06-01

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our objective was to test the efficacy of the long-acting synthetic human GLP-2 analogue, teduglutide (ALX-0600), in a neonatal piglet jejunostomy model. Two-day-old pigs were subjected to resection of 50% of the small intestine (distal part), and the remnant intestine was exteriorized on the abdominal wall as a jejunostomy. All pigs were given total parenteral nutrition for 7 days and a single daily injection of the following doses of teduglutide: 0.01 (n = 6), 0.02 (n = 6), 0.1 (n = 5), or 0.2 mg · kg · day (n = 6), and compared with placebo (n = 9). Body weight increment was similar for all 4 teduglutide groups but higher than placebo (P short bowel syndrome.

  15. Fibrillar structures formed by covalently bound, short, β-stranded peptides on self-assembled monolayers.

    Science.gov (United States)

    Dugger, Jason W; Webb, Lauren J

    2015-03-24

    The ability to maintain or reproduce biomolecular structures on inorganic substrates has the potential to impact diverse fields such as sensing and molecular electronics, as well as the study of biological self-assembly and structure-function relationships. Because the structure and self-assembly of biomolecules are exquisitely sensitive to their local chemical and electrostatic environment, the goal of reproducing or mimicking biological function in an abiological environment, including at a surface, is challenging. However, simple and well-characterized chemical modifications of prepared surfaces can be used to tune surface chemistry, structure, electrostatics, and reactivity of inorganic materials to facilitate biofunctionalization and function. Here, we describe the covalent attachment of 13-residue β-stranded peptides containing alkyne groups to a flat gold surface functionalized with an azide-terminated self-assembled monolayer through a Huisgen cycloaddition, or "click", reaction. The chemical composition and structural morphology of these surfaces were characterized using X-ray photoelectron spectroscopy, grazing incidence angle reflection-absorption infrared spectroscopy, surface circular dichroism, and atomic force microscopy. The surface-bound β-strands self-assemble into antiparallel β-sheets to form fibrillar structures 24.9 ± 1.6 nm in diameter and 2.83 ± 0.74 nm in height on the reactive surface. The results herein provide a platform for studying and controlling the self-assembly process of biomolecules into larger supermolecular structures while allowing tunable control through chemical functionalization of the surface. Interest in the mechanisms of formation of fibrillar structures has most commonly been associated with neurodegenerative diseases, such as Alzheimer's and Parkinson's, but fibrils may actually represent the thermodynamic low-energy conformation of a much larger class of peptides and proteins. The protocol developed here is an

  16. Residual dipolar couplings in short peptidic foldamers: combined analyses of backbone and side-chain conformations and evaluation of structure coordinates of rigid unnatural amino acids.

    Science.gov (United States)

    Schmid, Markus B; Fleischmann, Matthias; D'Elia, Valerio; Reiser, Oliver; Gronwald, Wolfram; Gschwind, Ruth M

    2009-02-13

    A flexible tool for rigid systems. Residual dipolar couplings (RDCs) have proven to be valuable NMR structural parameters that provide insights into the backbone conformations of short linear peptidic foldamers, as illustrated here. This study demonstrates that RDCs at natural abundance can provide essential structural information even in the case of short linear peptides with unnatural amino acids. In addition, they allow for the detection of proline side-chain conformations and are used as a quality check for the parameterizations of rigid unnatural amino acids.

  17. Short-days induce weight loss in Siberian hamsters despite overexpression of the agouti-related peptide gene.

    Science.gov (United States)

    Jethwa, P H; Warner, A; Fowler, M J; Murphy, M; de Backer, M W; Adan, R A H; Barrett, P; Brameld, J M; Ebling, F J P

    2010-06-01

    Many vertebrates express profound annual cycles of body fattening, although it is not clear whether these represent differential activity of the central pathways known to mediate homeostatic control of food intake and energy expenditure, or whether the recent discovery of a major role for pars tuberalis-ependymal signalling points towards novel mechanisms. We examined this in the Siberian hamster (Phodopus sungorus) by using gene transfection to up-regulate a major orexigenic peptide, agouti-related peptide (AgRP), and then determined whether this increased anabolic drive could prevent the short-day induced winter catabolic state. Infusions of a recombinant adeno-associated virus encoding an AgRP construct into the hypothalamus of hamsters in the long-day obese phase of their seasonal cycle produced a 20% gain in body weight over 6 weeks compared to hamsters receiving a control reporter construct, reflecting a significant increase in food intake and a significant decrease in energy expenditure. However, all hamsters showed a significant, prolonged decrease in body weight when exposed to short photoperiods, despite the hamsters expressing the AgRP construct maintaining a higher food intake and lower energy expenditure relative to the control hamsters. Visualisation of the green fluorescent protein reporter and analysis of AgRP-immunoreactivity confirmed widespread expression of the construct in the hypothalamus, which was maintained for the 21-week duration of the study. In conclusion, the over-expression of AgRP in the hypothalamus produced a profoundly obese state but did not block the seasonal catabolic response, suggesting a separation of rheostatic mechanisms in seasonality from those maintaining homeostasis of energy metabolism.

  18. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  19. Selection of Prebiotic Molecules in Amphiphilic Environments

    Directory of Open Access Journals (Sweden)

    Christian Mayer

    2017-01-01

    Full Text Available A basic problem in all postulated pathways of prebiotic chemistry is the low concentration which generally is expected for interesting reactants in fluid environments. Even though compounds, like nucleobases, sugars or peptides, principally may form spontaneously under environmental conditions, they will always be rapidly diluted in an aqueous environment. In addition, any such reaction leads to side products which often exceed the desired compound and generally hamper the first steps of a subsequent molecular evolution. Therefore, a mechanism of selection and accumulation of relevant prebiotic compounds seems to be crucial for molecular evolution. A very efficient environment for selection and accumulation can be found in the fluid continuum circulating in tectonic fault zones. Vesicles which form spontaneously at a depth of approximately 1 km present a selective trap for amphiphilic molecules, especially for peptides composed of hydrophilic and hydrophobic amino acids in a suitable sequence. The accumulation effect is shown in a numeric simulation on a simplified model. Further, possible mechanisms of a molecular evolution in vesicle membranes are discussed. Altogether, the proposed scenario can be seen as an ideal environment for constant, undisturbed molecular evolution in and on cell-like compartments.

  20. 两性多肽结构影响鲍曼不动杆菌外膜通透性的实验研究*两性多肽结构影响鲍曼不动杆菌外膜通透性的实验研究%Effects of the amphiphilic peptides on membrane permeability of Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    张劼; 陈永; 曾颖; 李秀娟

    2015-01-01

    目的:明确两性多肽结构对鲍曼不动杆菌(AB)外膜通透性的影响。方法 PCR扩增LysAB3基因及删除两性多肽结构的LysAB3-D基因,以pET28a(+)为载体构建重组质粒,在大肠杆菌BL21(DE3)中表达LysAB3及LysAB3-D ,金属离子螯合亲和层析法纯化重组蛋白。将AB分别经LysAB3及LysAB3-D处理后,用扫描电子显微镜观察菌体形态,荧光显微镜观察菌体中是否有绿色荧光的聚集。结果经LysAB3处理后的AB ,在扫描电子显微镜下可见菌体表面粗糙、皱缩,部分裂解为碎片;在荧光显微镜下可见菌体内有绿色荧光聚集。而删除两性多肽结构的LysAB3-D作用AB后,却没有上述现象的发生。结论两性多肽结构可增加AB外膜通透性,有助于裂解酶进入其中,达到抗菌目的。%Objective To investigate effects of the amphiphilic peptides on membrane permeability of acinetobacter bauman-nii .Methods The LysAB3 and LysAB3-D (lack of amphiphilic peptides structure gene) was synthesized and inserted into the vec-tor pET28a(+ ) to construct the recombinant expression plasmid (pET28a-LysAB3 ,pET28a-LysAB3-D) .After expression in E . coli BL21(DE3) and purification with Ni2+-NTA Sepharose .Acinetobacter baumannii was observed by scanning electron microsco-py and fluorescence microscope ,pretreated with LysAB3 and LysAB3-D respectively .Results Under scanning electron microscopy , LysAB3-treated acinetobacter baumannii exhibited not only significant abnormalities ,including deep roughening of the cell surface , but also FITC readily accumulated in bacteria .It was different from LysAB3-D-treated .Conclusion These results indicate that the amphiphilic peptides structure increase membrane permeability of acinetobacter baumannii ,which helps LysAB3 degrade bacteria .

  1. Conformational preference of 'CαNN' short peptide motif towards recognition of anions.

    Directory of Open Access Journals (Sweden)

    Tridip Sheet

    Full Text Available Among several 'anion binding motifs', the recently described 'C(αNN' motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring 'C(αNN' motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the 'C(αNN' segment has an intrinsic affinity for anions. Molecular Dynamics (MD simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the 'C(αNN' segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the 'C(αNN' sequence for anion recognition through "local" interaction.

  2. Short-chain peptides identification of scorpion Buthus martensi Karsch venom by employing high orthogonal 2D-HPLC system and tandem mass spectrometry.

    Science.gov (United States)

    Xu, Junyan; Zhang, Xiuli; Guo, Zhimou; Yan, Jingyu; Yu, Long; Li, Xiuling; Xue, Xingya; Liang, Xinmiao

    2012-10-01

    Scorpion venom contains a considerable variety of neurotoxic peptides that can act on ionic channels. Here, we describe an orthogonal 2D-reversed phase/hydrophilic interaction chromatography system (RPLC/HILIC) and use it to separate short-chain peptides from Asian scorpion Buthus martensi Karsch (BmK) venom in a high throughput format. Due to its high orthogonality and efficiency, 18 homogenous peptides were purified and sequence identified by MS/MS with collision-induced dissociation. Among them, four peptides were discovered, which only have evidence at transcript-level, were first purified from crude venom in this study. Two peptides named BmKK2-b and Martentoxin-b were found the new cleaved chains of known BmKK2 and Martentoxin. In addition, two novel peptides named BmKK12 and BmKK16 in this paper were sequenced by de novo MS/MS, which we predict, are members of potassium channel toxin α-KTx 17 subfamily by homology to other known peptides found in the Swiss-Prot protein database.

  3. Morphogenic Peptides in Regeneration of Load Bearing Tissues.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Jabbari, Esmaiel

    2015-01-01

    Morphogenic proteins due to their short half-life require high doses of growth factors in regeneration of load bearing tissues which leads to undesirable side effects. These side effects include bone overgrowth, tumor formation and immune reaction. An alternative approach to reduce undesirable side effects of proteins in regenerative medicine is to use morphogenic peptides derived from the active domains of morphogenic proteins or soluble and insoluble components of the extracellular matrix of mineralized load bearing tissues to induce differentiation of progenitor cells, mineralization, maturation and bone formation. In that regard, many peptides with osteogenic activity have been discovered. These include peptides derived from bone morphogenic proteins (BMPs), those based on interaction with integrin and heparin-binding receptors, collagen derived peptides, peptides derived from other soluble ECM proteins such as bone sialoprotein and enamel matrix proteins, and those peptides derived from vasculoinductive and neuro-inductive proteins. Although these peptides show significant osteogenic activity in vitro and increase mineralization and bone formation in animal models, they are not widely used in clinical orthopedic applications as an alternative to morphogenic proteins. This is partly due to the limited availability of data on structure and function of morphogenic peptides in physiological medium, particularly in tissue engineered scaffolds. Due to their amphiphilic nature, peptides spontaneously self-assemble and aggregate into micellar structures in physiological medium. Aggregation alters the sequence of amino acids in morphogenic peptides that interact with cell surface receptors thus affecting osteogenic activity of the peptide. Aggregation and micelle formation can dramatically reduce the active concentration of morphogenic peptides with many-fold increase in peptide concentration in physiological medium. Other factors that affect bioactivity are the non

  4. Synergistic effect of supplemental enteral nutrients and exogenous glucagon-like peptide 2 on intestinal adaptation in a rat model of short bowel syndrome

    DEFF Research Database (Denmark)

    Liu, Xiaowen; Nelson, David W; Holst, Jens Juul

    2006-01-01

    BACKGROUND: Short bowel syndrome (SBS) can lead to intestinal failure and require total or supplemental parenteral nutrition (TPN or PN, respectively). Glucagon-like peptide 2 (GLP-2) is a nutrient-dependent, proglucagon-derived gut hormone that stimulates intestinal adaptation. OBJECTIVE: Our...

  5. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients

    OpenAIRE

    Jeppesen, P B; Sanguinetti, E L; A. Buchman; Howard, L; Scolapio, J S; Ziegler, T R; Gregory, J; Tappenden, K A; Holst, J; Mortensen, P. B.

    2005-01-01

    Background and aims: Glucagon-like peptide 2 (GLP-2) may improve intestinal absorption in short bowel syndrome (SBS) patients with an end jejunostomy. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant GLP-2 analogue, prolongs the intestinotrophic properties of GLP-2 in animal models. The safety and effect of teduglutide were investigated in SBS patients with and without a colon in continuity.

  6. Evolutionarily conserved and conformationally constrained short peptides might serve as DNA recognition elements in intrinsically disordered regions.

    Science.gov (United States)

    Tayal, Nitish; Choudhary, Preeti; Pandit, Shashi B; Sandhu, Kuljeet Singh

    2014-06-01

    Despite recent advances, it is yet not clear how intrinsically disordered regions in proteins recognize their targets without any defined structures. Short linear motifs had been proposed to mediate molecular recognition by disordered regions; however, the underlying structural prerequisite remains elusive. Moreover, the role of short linear motifs in DNA recognition has not been studied. We report a repertoire of short evolutionarily Conserved Recognition Elements (CoREs) in long intrinsically disordered regions, which have very distinct amino-acid propensities from those of known motifs, and exhibit a strong tendency to retain their three-dimensional conformations compared to adjacent regions. The majority of CoREs directly interact with the DNA in the available 3D structures, which is further supported by literature evidence, analyses of ΔΔG values of DNA-binding energies and threading-based prediction of DNA binding potential. CoREs were enriched in cancer-associated missense mutations, further strengthening their functional nature. Significant enrichment of glycines in CoREs and the preference of glycyl ϕ-Ψ values within the left-handed bridge range in the l-disallowed region of the Ramachandran plot suggest that Gly-to-nonGly mutations within CoREs might alter the backbone conformation and consequently the function, a hypothesis that we reconciled using available mutation data. We conclude that CoREs might serve as bait for DNA recognition by long disordered regions and that certain mutations in these peptides can disrupt their DNA binding potential and consequently the protein function. We further hypothesize that the preferred conformations of CoREs and of glycyl residues therein might play an important role in DNA binding. The highly ordered nature of CoREs hints at a therapeutic strategy to inhibit malicious molecular interactions using small molecules mimicking CoRE conformations.

  7. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis.

    Science.gov (United States)

    Vesteg, Matej; Vacula, Rostislav; Steiner, Jürgen M; Mateásiková, Bianka; Löffelhardt, Wolfgang; Brejová, Brona; Krajcovic, Juraj

    2010-08-01

    The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41-93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45-50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5'-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.

  8. Phase behavior of an amphiphilic fluid.

    Science.gov (United States)

    Schoen, Martin; Giura, Stefano; Klapp, Sabine H L

    2014-01-01

    We invoke mean-field density functional theory (DFT) to investigate the phase behavior of an amphiphilic fluid composed of a hard-sphere core plus a superimposed anisometric Lennard-Jones perturbation. The orientation dependence of the interactions consists of a contribution analogous to the interaction potential between a pair of "spins" in the classical, three-dimensional Heisenberg fluid and another one reminiscent of the interaction between (electric or magnetic) point dipoles. At fixed orientation both contributions are short-range in nature decaying as r-6 (r being the separation between the centers of mass of a pair of amphiphiles). Based upon two mean-field-like approximations for the pair correlation function that differ in the degree of sophistication we derive expressions for the phase boundaries between various isotropic and polar phases that we solve numerically by the Newton-Raphson method. For sufficiently strong coupling between the Heisenberg "spins" both mean-field approximations generate three topologically different and generic types of phase diagrams that are observed in agreement with earlier work [see, for example, Tavares et al., Phys. Rev. E 52, 1915 (1995)]. Whereas the dipolar contribution alone is incapable of stabilizing polar phases on account of its short-range nature it is nevertheless important for details of the phase diagram such as location of the gas-isotropic liquid critical point, triple, and tricritical points. By tuning the dipolar coupling constant suitably one may, in fact, switch between topologically different phase diagrams. Employing also Monte Carlo simulations in the isothermal-isobaric ensemble the general topology of the DFT phase diagrams is confirmed.

  9. Structure and stability of short beta-peptide nanotubes: a non-natural representative of collagen?

    Science.gov (United States)

    Czajlik, András; Beke, Tamás; Bottoni, Andrea; Perczel, András

    2008-07-03

    complex. Now that, for beta-peptides, collagen-like overall folds with their stability were determined, their POG- or PPG-like sequence specificity has to be revealed.

  10. Thermoresponsive giant biohybrid amphiphiles

    NARCIS (Netherlands)

    Lavigueur, Christine; Gonzalez Garcia, Jordi; Hendriks, Linda; Hoogenboom, Richard; Cornelissen, Jeroen J.L.M.; Nolte, Roeland J.M.

    2011-01-01

    A series of random copolymers of various lengths was prepared by atom transfer radical polymerisation (ATRP) using two acrylate monomers with short pendant ethylene glycol side chains (ethylene glycol methyl ether acrylate, EGMEA, and methoxy ethoxy ethyl acrylate, MEEA). The end group was converted

  11. Teduglutide, a glucagon-like peptide-2 analog for the treatment of gastrointestinal diseases, including short bowel syndrome.

    Science.gov (United States)

    Yazbeck, Roger

    2010-12-01

    Glucagon-like peptide-2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential for the prevention or treatment of an expanding number of gastrointestinal diseases, including short bowel syndrome (SBS). Teduglutide, being developed by NPS Allelix and licensee Nycomed, is a protease-resistant analog of GLP-2 for the potential treatment of gastrointestinal disease. Teduglutide has prolonged biological activity compared with native GLP-2, and preclinical studies demonstrated significant intestinotrophic activity in models of SBS, experimental colitis and chemotherapy-induced intestinal mucositis. Patients with SBS rely on parenteral nutrition (PN) following bowel resection, and in a phase III clinical trial with teduglutide, > 20% reduction in PN was observed in patients with SBS receiving teduglutide. A phase II clinical trial for teduglutide in Crohn's disease observed remission rates of 55.6% in patients. At the time of publication, phase III clinical trials for SBS were ongoing, as were preclinical studies for chemotherapy-induced mucositis and pediatric indications. Teduglutide represents a novel, efficacious drug capable of increasing intestinal growth and improving intestinal function, and may change clinical management of intestinal disease and damage.

  12. Vibrational analysis of amino acids and short peptides in aqueous media. V. The effect of the disulfide bridge on the structural features of the peptide hormone somatostatin-14.

    Science.gov (United States)

    Hernández, Belén; Carelli, Claude; Coïc, Yves-Marie; De Coninck, Joël; Ghomi, Mahmoud

    2009-09-24

    To emphasize the role played by the S-S bridge in the structural features of somatostatin-14 (SST-14), newly recorded CD and Raman spectra of this cyclic peptide and its open analogue obtained by Cys-->Ser substitution are presented. CD spectra of both peptides recorded in aqueous solutions in the 100-500 microM concentration range are strikingly similar. They reveal principally that random conformers constitute the major population in both peptides. Consequently, the S-S bridge has no structuring effect at submillimolar concentrations. In methanol, the CD spectrum of somatostatin-14 keeps globally the same spectral shape as that observed in water, whereas its open analogue presents a major population of helical conformers. Raman spectra recorded as a function of peptide concentration (5-20 mM) and also in the presence of 150 mM NaCl provide valuable conformational information. All Raman spectra present a mixture of random and beta-hairpin structures for both cyclic and open peptides. More importantly, the presence or the absence of the disulfide bridge does not seem to influence considerably different populations of secondary structures within this range of concentrations. CD and Raman data obtained in the submillimolar and millimolar ranges of concentrations, respectively, lead us to accept the idea that SST-14 monomers aggregate upon increasing concentration, thus stabilizing beta-hairpin conformations in solution. However, even at high concentrations, random conformers do not disappear. Raman spectra of SST-14 also reveal a concentration effect on the flexibility of the S-S linkage and consequently on that of its cyclic part. In conclusion, although the disulfide linkage does not seem to markedly influence the SST-14 conformational features in aqueous solutions, its presence seems to be necessary to ensure the flexibility of the cyclic part of this peptide and to maintain its closed structure in lower dielectric constant environments.

  13. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.

    Science.gov (United States)

    Subbalakshmi, Chilukuri; Manorama, Sunkara V; Nagaraj, Ramakrishnan

    2012-05-01

    The morphology of structures formed by the self-assembly of short N-terminal t-butyloxycarbonyl (Boc) and C-terminal methyl ester (OMe) protected and Boc-deprotected hydrophobic peptide esters was investigated. We have observed that Boc-protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc-Ile-Ile-OMe, Boc-Phe-Phe-Phe-Ile-Ile-OMe and Boc-Trp-Ile-Ile-OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc-Leu-Ile-Ile-OMe and H-Leu-Ile-Ile-OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self-assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well-defined tertiary structures, upon removal of the Boc group, only H-Phe-Phe-Phe-Ile-Ile-OMe had the ability to adopt β-structure. Our results indicate that hydrophobic interaction is a very important determinant for self-assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self-assembly.

  14. The effect of Glucagon-Like Peptide-2 on mesenteric blood flow and cardiac parameters in end-jejunostomy short bowel patients

    DEFF Research Database (Denmark)

    Bremholm, Lasse; Hornum, Mads; Andersen, Ulrik B;

    2011-01-01

    Exogenous Glucagon-Like Peptide-2 (GLP-2) treatment improves intestinal wet weight absorption in short bowel syndrome (SBS) patients. In healthy subjects, administration of GLP-2 increases small intestinal blood flow. The aim of the study was to evaluate the effect of GLP-2 on mesenteric blood flow...... and dynamic changes in cardiac parameters in SBS patients with jejunostomy and varying length of remnant small intestine....

  15. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer;

    2010-01-01

    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  16. Short reaction of C-peptide, glucagon-like peptide-1, ghrelin and endomorphin-1 for different style diet in type 2 diabetic patients

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi; WANG Xin; ZHANG Mei-fang; LI Yan-xiang; LI Ying; GU Ting; XIA Fang-zhen; YU Jiao; LU Ying-li

    2011-01-01

    Background Food composition and style is changing dramatically now,which causes inappropriate secretion of hormones from brain,gastrointestinal and endo-pancreas,may be related to unbalance of glucose in blood.The aim of this study was to explore the fast response of C-peptide,glucagon-like peptide-1 (GLP-1),ghrelin and endomorphin-1 (EM-1) to the eastern and western style meals in patients with type 2 diabetes mellitus.Methods The study enrolled 57 patients with type 2 diabetes (20 men and 37 women,mean age (67.05±8.26) years).Eastern style meal (meal A) and western style meal (meal B) were designed to produce the fullness effect.C-peptide,GLP-1,ghrelin and EM-1 were assessed before (0 hour) and after (2 hours) each diet.Results The delta (2h-0h) of C- peptide in meal A was significantly lower than that in meal B (P=0.0004).C-peptide,GLP-1,ghrelin and EM-1 were obviously higher before meal B than those before meal A (P <0.0001,<0.0001,=0.001,=0.0004 respectively).Blood glucose 2 hours and 3 hours after meal B were higher than those after meal A (P=-0.0005,0.0079 respectively).Correlations between GLP-1 and ghrelin were strongly positive before both meals and 2 hours after both meals and also in relation to the delta of meal A and meal B (rA0h=0.7836,rB0h=0.9368,rAsh=0.7615,rB2h=0.9409,rA(2h_0h)=0.7531,rB(2h-0h)=0.9980,respectively,P <0.0001).Conclusion Western style meal (high fat and protein food) could make more response of C-peptide than eastern style meal,and could stimulate more gut hormones (GLP-1,ghrelin) and brain peptide (EM-1) at the first phase of digestion.

  17. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups

    Directory of Open Access Journals (Sweden)

    H. Bauke Albada

    2012-10-01

    Full Text Available A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO and ruthenocene (RcCO was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2–6 µM for RcCO-W(RW2 and 1–11 µM for (RW3 were determined. Interestingly, W(RW2-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW2- and (RW3-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW2-peptide versus killing kinetics of the (RW3 derivative showed faster reduction of the colony forming units for the RcCO-W(RW2-peptide, although MIC values indicated higher activity for the (RW3-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW3 and 250 µg/mL for RcCO-W(RW2. In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7 showed that the (RW3-peptide had an IC50 value of ~140 µM and the RcW(RW2 one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in this work point to a

  18. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups.

    Science.gov (United States)

    Albada, H Bauke; Chiriac, Alina-Iulia; Wenzel, Michaela; Penkova, Maya; Bandow, Julia E; Sahl, Hans-Georg; Metzler-Nolte, Nils

    2012-01-01

    A series of small synthetic arginine and tryptophan containing peptides was prepared and analyzed for their antibacterial activity. The effect of N-terminal substitution with metallocenoyl groups such as ferrocene (FcCO) and ruthenocene (RcCO) was investigated. Antibacterial activity in different media, growth inhibition, and killing kinetics of the most active peptides were determined. The toxicity of selected derivatives was determined against erythrocytes and three human cancer cell lines. It was shown that the replacement of an N-terminal arginine residue with a metallocenoyl moiety modulates the activity of WRWRW-peptides against Gram-positive and Gram-negative bacteria. MIC values of 2-6 µM for RcCO-W(RW)(2) and 1-11 µM for (RW)(3) were determined. Interestingly, W(RW)(2)-peptides derivatized with ferrocene were significantly less active than those derivatized with ruthenocene which have similar structural but different electronic properties, suggesting a major influence of the latter. The high activities observed for the RcCO-W(RW)(2)- and (RW)(3)-peptides led to an investigation of the origin of activity of these peptides using several important activity-related parameters. Firstly, killing kinetics of the RcCO-W(RW)(2)-peptide versus killing kinetics of the (RW)(3) derivative showed faster reduction of the colony forming units for the RcCO-W(RW)(2)-peptide, although MIC values indicated higher activity for the (RW)(3)-peptide. This was confirmed by growth inhibition studies. Secondly, hemolysis studies revealed that both peptides did not lead to significant destruction of erythrocytes, even up to 500 µg/mL for (RW)(3) and 250 µg/mL for RcCO-W(RW)(2). In addition, toxicity against three human cancer cell lines (HepG2, HT29, MCF7) showed that the (RW)(3)-peptide had an IC(50) value of ~140 µM and the RcW(RW)(2) one of ~90 µM, indicating a potentially interesting therapeutic window. Both the killing kinetics and growth inhibition studies presented in

  19. Amphiphilic NO-donor antioxidants.

    Science.gov (United States)

    Chegaev, Konstantin; Lazzarato, Loretta; Rolando, Barbara; Marini, Elisabetta; Lopez, Gloria V; Bertinaria, Massimo; Di Stilo, Antonella; Fruttero, Roberta; Gasco, Alberto

    2007-02-01

    Models of amphiphilic NO-donor antioxidants 24-26 were designed and synthesized. The products were obtained by linking a lipophilic tail (C(6), C(8), C(10)) with a polar head constituted by the 2,6-dimethoxyphenol antioxidant joined to the NO-donor 3-furoxancarboxamide substructure through a bridge containing a quaternary ammonium group. Compound 23, containing the shortest C(2)-alkyl chain, was also studied as a reference. The antioxidant properties (TBARS and LDL oxidation assays) and the vasodilator properties of the compounds were studied in vitro. The ability of these products to interact with phospholipid vesicles was also investigated by NMR techniques. The results indicate that both activities are modulated by the ability of the compounds to accumulate on phospholipid layers.

  20. Amplification of single molecule translocation signal using β-strand peptide functionalized nanopores.

    Science.gov (United States)

    Liebes-Peer, Yael; Rapaport, Hanna; Ashkenasy, Nurit

    2014-07-22

    Changes in ionic current flowing through nanopores due to binding or translocation of single biopolymer molecules enable their detection and characterization. It is, however, much more challenging to detect small molecules due to their rapid and small signal signature. Here we demonstrate the use of de novo designed peptides for functionalization of nanopores that enable the detection of a small analytes at the single molecule level. The detection relies on cooperative peptide conformational change that is induced by the binding of the small molecule to a receptor domain on the peptide. This change results in alteration of the nanopore effective diameter and hence induces current perturbation signal. On the basis of this approach, we demonstrate here the detection of diethyl 4-nitrophenyl phosphate (paraoxon), a poisonous organophosphate molecule. Paraoxon binding is induced by the incorporation of the catalytic triad of acetylcholine esterase in the hydrophilic domain of a short amphiphilic peptide and promotes β-sheet assembly of the peptide both in solution and for peptide molecules immobilized on solid surfaces. Nanopores coated with this peptide allowed the detection of paraoxon at the single molecule level revealing two binding arrangements. This unique approach, hence, provides the ability to study interactions of small molecules with the corresponding engineered receptors at the single molecule level. Furthermore, the suggested versatile platform may be used for the development of highly sensitive small analytes sensors.

  1. A Short Peptide That Mimics the Binding Domain of TGF-β1 Presents Potent Anti-Inflammatory Activity.

    Directory of Open Access Journals (Sweden)

    Emília R Vaz

    Full Text Available The transforming growth factor beta 1 (TGF-β1 is a pleiotropic cytokine with multiple roles in development, wound healing, and immune regulation. TGF-β1-mediated immune dysfunction may lead to pathological conditions, such as inflammation. Chronic inflammatory process is characterized by a continuous release of pro-inflammatory cytokines, and the inhibition or the blockage of these cytokines signaling pathways are considered a target treatment. In this context, despite the high numbers of TGF-β-targeted pathways, the inducible regulatory T cells (iTreg to control inflammation seems to be a promising approach. Our aim was to develop novel peptides through phage display (PhD technology that could mimic TGF-β1 function with higher potency. Specific mimetic peptides were obtained through a PhD subtraction strategy from whole cell binding using TGF-β1 recombinant as a competitor during elution step. We have selected a peptide that seems to play an important role on cellular differentiation and modulation of TNF-α and IL-10 cytokines. The synthetic pm26TGF-β1 peptide tested in PBMC significantly down-modulated TNF-α and up-regulated IL-10 responses, leading to regulatory T cells (Treg phenotype differentiation. Furthermore, the synthetic peptide was able to decrease leukocytes rolling in BALB/C mice and neutrophils migration during inflammatory process in C57BL/6 mice. These data suggest that this peptide may be useful for the treatment of inflammatory diseases, especially because it displays potent anti-inflammatory properties and do not exhibit neutrophils' chemoattraction.

  2. Adsorption, structural alteration and elution of peptides at pendant PEO layers.

    Science.gov (United States)

    Wu, Xiangming; Ryder, Matthew P; McGuire, Joseph; Schilke, Karl F

    2013-12-01

    An experimentally based, quantitative understanding of the entrapment and function of small peptides within PEO brush layers does not currently exist. Earlier work provided a rationale for expecting that an ordered, compact peptide will enter the PEO phase more readily than a peptide of similar size that adopts a less ordered, less compact form, and that amphiphilicity will promote peptide retention within the hydrophobic region of the PEO brush. Here we more deliberately describe criteria for peptide integration and structural change within the PEO brush, and discuss the reversibility of peptide entrapment with changing solvent conditions. For this purpose, circular dichroism (CD) was used to record the adsorption and conformational changes of (amphiphilic) WLBU2 and (non-amphiphilic) polyarginine peptides at uncoated (hydrophobic) and PEO-coated silica nanoparticles. Peptide conformation was controlled between disordered and α-helical forms by varying the concentration of perchlorate ion. We show an initially more ordered (α-helical) structure promotes peptide adsorption into the PEO layer. Further, a partially helical peptide undergoes an increase in helicity after entry, likely due to concomitant loss of capacity for peptide-solvent hydrogen bonding. Peptide interaction with the PEO chains resulted in entrapment and conformational change that was irreversible to elution with changing solution conditions in the case of the amphiphilic peptide. In contrast, the adsorption and conformational change of the non-amphiphilic peptide was reversible. These results indicate that responsive drug delivery systems based on peptide-loaded PEO layers can be controlled by modulation of solution conditions and peptide amphiphilicity.

  3. Preparation and Properties of Vesicles from Condensable Amphiphilic Amino Acids

    Institute of Scientific and Technical Information of China (English)

    熊向源; 何巍; 李子臣; 李福绵

    2001-01-01

    Three double-chain amphiphiles with amino acid groups as hydrphilic moiety were synthesized. These amphiphiles can be easily dispersed in buffer solution to form transparent dispersion. Examination of the dispersion by transmission electron microscopy (TEM) showed the formation of stable vesicular aggregates, which was also confirmed by the ability to encapsulate water-soluble dyes. Since amino acid groups are located on the surface of the vesicles, water-soluble carbodiimide can induce the condensation of these groups to form peptide. The phase transition temperatures of these vesicles were estimated by differential scanning calorimetry (DSC), and a decrease of phase transition temperature was observed after polycondensation due to the disturbance of the ordered arrangement of the hydrophobic chains. The leakage rate of the vesicles before and after condensation was studied by monitoring the increase of fluorescence intensity of water-soluble dye. These vesicles belong to the least permeable ones and the leakage rate can be controlled by varying the degree of condensation or the temperature.

  4. Identification and Optimization of Short Helical Peptides with Novel Reactive Functionality as Catalysts for Acyl Transfer by Reactive Tagging

    Science.gov (United States)

    2014-01-21

    showing the relative positions of i, i + 3, and i + 4 residues in the helix. Fig. 2 Reactive tags RT1–4 for library screening . Fig. 3 Two-step...activity. Library screening identified two high activity peptides (Chart 3), one containing three Aib resi- dues, Hit2a, and a second containing two

  5. Extended molecular dynamics and optimized Rouse-Zimm model studies of a short peptide: Various friction approximations

    Science.gov (United States)

    Hu, Yi; Kostov, Konstantin; Perico, Angelo; Smithline, Shepard; Freed, Karl F.

    1995-11-01

    Developing a theory for the long time dynamics of polypeptides requires not only a proper choice of the relevant dynamic variables, but also a meaningful definition of friction coefficients for the individual atoms or groups of atoms in the reduced system. We test various aspects of the optimized Rouse-Zimm model for describing the long time rotational dynamics of a peptide fragment. The necessary equilibrium input information is constructed from a 1 ns molecular dynamics simulation for the solvated peptide by using a parallel Cray version of CHARMm, whose new features are described here. The simulations also provide time autocorrelation functions for comparisons with both theoretical predictions and with experiment. Two atomic friction models (van der Waals radii and accessible surface area) are chosen, and tests are made of the applicability of two combining rules for calculating the group friction coefficients. While the rotational dynamics of the peptide is insensitive to the friction models used, the combining rules are found to impact profoundly upon the theoretical descriptions for the behavior of the peptide dynamics for the reduced descriptions with fewer variables. The calculations study the role of the memory functions, neglected in this dynamical theory, and the interatomic hydrodynamic interactions in constructing the group friction coefficients. While the 1 ns trajectory is longer than customarily used for very complex systems, there are nontrivial influences of the duration of the molecular dynamics trajectory on the description of the dynamics.

  6. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon

    DEFF Research Database (Denmark)

    Jeppesen, P B; Hartmann, B; Thulesen, J;

    2001-01-01

    Glucagon-like peptide 2 (GLP-2) is intestinotrophic, antisecretory, and transit-modulating in rodents, and it is mainly secreted from the intestinal mucosa of the terminal ileum and colon after food ingestion. We assessed the effect of GLP-2 on the gastrointestinal function in patients without a ...

  7. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Bultinck, Patrick; Kemmink, Johan; Hilbers, Hans W; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    A general approach in drug design is making ligands more rigid in order to avoid loss in conformational entropy (deltaS(conf)) upon receptor binding. We hypothesized that in the high affinity binding of pYEEI peptide ligands to the p56(lck) SH2 domain this loss in deltaS(conf) might be diminished du

  8. Antimicrobial Activity and Stability of Short and Long Based Arachnid Synthetic Peptides in the Presence of Commercial Antibiotics

    Directory of Open Access Journals (Sweden)

    Ivan Arenas

    2016-02-01

    Full Text Available Four antimicrobial peptides (AMPs named Pin2[G], Pin2[14], P18K and FA1 were chemically synthesized and purified. The four peptides were evaluated in the presence of eight commercial antibiotics against four microorganisms of medical importance: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The commercial antibiotics used were amoxicillin, azithromycin, ceftriaxone, gentamicin, levofloxacin, sulfamethoxazole, trimethoprim and vancomycin. The best AMP against P. aeruginosa was the peptide FA1, and the best AMP against S. aureus was Pin2[G]. Both FA1 and Pin2[G] were efficient against E. coli, but they were not effective against K. pneumoniae. As K. pneumoniae was resistant to most of the commercial antibiotics, combinations of the AMPs FA1 and Pin2[G] were prepared with these antibiotics. According to the fractional inhibitory concentration (FIC index, the best antimicrobial combinations were obtained with concomitant applications of mixtures of FA1 with levofloxacin and sulfamethoxazole. However, combinations of FA1 or Pin2[G] with other antibiotics showed that total inhibitory effect of the combinations were greater than the sum of the individual effects of either the antimicrobial peptide or the antibiotic. We also evaluated the stability of the AMPs. The AMP Pin2[G] manifested the best performance in saline buffer, in supernatants of bacterial growth and in human blood plasma. Nevertheless, all AMPs were cleaved using endoproteolytic enzymes. These data show advantages and disadvantages of AMPs for potential clinical treatments of bacterial infections, using them in conjunction with commercial antibiotics.

  9. Helix-helix interconversion rates of short 13C-labeled helical peptides as measured by dynamic NMR spectroscopy.

    Science.gov (United States)

    Kubasik, Matthew; Kotz, James; Szabo, Christopher; Furlong, Theresa; Stace, Justin

    2005-06-05

    The rates at which a peptide hexamer and a peptide octamer interconvert between left- and right-handed helical forms in CD2Cl2 solution have been characterized by 13C dynamic NMR (DNMR) spectroscopy. The peptide esters studied are Fmoc-(Aib)n-OtBu (n = 6 and 8), where Fmoc is 9-fluorenylmethyoxycarbonyl and Aib is the strongly helix-forming residue alpha-aminoisobutyric acid. Because the Aib residue is itself achiral, homooligomers of this residue form a 50/50 mixture of enantiomeric 3(10)-helices in solution. It has been demonstrated (R.-P. Hummel, C. Toniolo, and G. Jung, Angewandte Chemie International Edition, 1987, Vol. 26, pp. 1150-1152) that oligomers of Aib interconvert on the millisecond timescale. We have performed lineshape analysis of 13C-NMR spectra collected for our peptides enriched with 13C at a single residue. Rate constants for the octamer range from 6 s(-1) at 196 K to about 56,500 s(-1) at 320 K. At all temperatures, the hexamer interconverts about three times faster than the octamer. Eyring plots of the data reveal experimentally indistinguishable DeltaH++ values for the hexamer and octamer of 37.8 +/- 0.6 and 37.6 +/- 0.4 kJ mol(-1) respectively. The difference in the rates of interconversion is dictated by entropic factors. The hexamer and octamer exhibit negative DeltaS++ values of -29.0(-1) +/- 2.5 and -37.3 +/- 1.7 J K(-1) mol(-1), respectively. A mechanism for the helix-helix interconversion is proposed. and calculated DeltaG++ values are compared to the estimate for a decamer undergoing a helix-helix interconversion.

  10. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome

    DEFF Research Database (Denmark)

    Gottschalck, I.B.; Jeppesen, Palle Bekker; Hartmann, B.;

    2008-01-01

    OBJECTIVE: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome (...... and therefore precludes treatment of their osteopenia with GLP-2. The anti-resorptive response to GLP-2 seems to require an intact small intestine and may involve suppression of PTH secretion Udgivelsesdato: 2008......OBJECTIVE: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome...... (SBS) and they have reduced bone mineral density (BMD). The aim of the study was to investigate the anti-resorptive effect (assessed by s-CTX) of 14 days of GLP-2 treatment in these patients and to determine whether 56 days of treatment would improve BMD. PTH secretion in response to GLP-2 was also...

  11. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome

    DEFF Research Database (Denmark)

    Gottschalck, Ida B; Jeppesen, Palle B; Hartmann, Bolette;

    2008-01-01

    OBJECTIVE: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome (...... and therefore precludes treatment of their osteopenia with GLP-2. The anti-resorptive response to GLP-2 seems to require an intact small intestine and may involve suppression of PTH secretion.......OBJECTIVE: The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome...... (SBS) and they have reduced bone mineral density (BMD). The aim of the study was to investigate the anti-resorptive effect (assessed by s-CTX) of 14 days of GLP-2 treatment in these patients and to determine whether 56 days of treatment would improve BMD. PTH secretion in response to GLP-2 was also...

  12. Structural characterization of the model amphipathic peptide Ac-LKKLLKLLKKLLKL-NH2 in aqueous solution and with 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Jain, Avijita; Reback, Matthew L.; Shaw, Wendy J.

    2013-06-03

    Short-chain amphiphilic peptides are promising components in the new generation of engineered biomaterials with many potential applications. The 14-residue leucine-lysine peptide Ac-LKKLLKLLKKLLKL-NH2 (LKα) is one such amphiphilic peptide. The periodic distribution of hydrophobic and hydrophilic amino acid residues in the sequence of LKα has been shown to promote α-helix formation in an ionic environment and at high peptide concentrations (> ~0.5 mM, no salt). Here, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy is used to demonstrate that LKα, in the absence of salt and at concentrations < 0.5 mM, readily adopts a helical structure in the presence of the structure stabilizing agents 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Maximal helical character, as monitored by negative bands with double minima at 222 and 208-210 nm in the CD spectrum, was observed in 20% TFE and 10% HFIP (volume percent). The helical character suggested by the CD data was corroborated with amide to alpha proton, long range, 1HN(i) to 1Hα(i-3) NOEs characteristic of an α-helical structure. In unbuffered water in the absence of a flouronated alcohol and at low peptide concentrations, LKα was essentially unstructured in solution. These observations confirm that LKα has a predisposition to adopt a helical structure that may be maximized with minimal amounts of fluorinated alcohol. This characterization of the structural and physical properties of LKα will assist the design of future biomaterials containing amphiphilic peptides.

  13. Sunfish amphiphiles : Conceptually new carriers for DNA delivery

    NARCIS (Netherlands)

    Hulst, R; Muizebelt, [No Value; Oosting, P; van der Pol, C; Wagenaar, A; Smisterova, J; Bulten, E; Driessen, C; Hoekstra, D; Engberts, JBFN; Muizebelt, Inouk; Šmisterová, Jarmila

    2004-01-01

    A conceptually new class of cationic amphiphiles, Sunfish amphiphiles, designed for the delivery of genes into cells is introduced. Sunfish amphiphiles have two hydrophobic tails, connected at the 4- and the N-position to the cationic pyridinium headgroup. Two extreme morphologies visualised by back

  14. Prediction on amphiphilicity of hypocrellin derivatives

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马江华; 赵井泉

    2002-01-01

    Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphiphilicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around 0.22 for optimized amphiphilicity.

  15. Prediction on amphiphilicity of hypocrellin derivatives

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马江华; 赵井泉

    2002-01-01

    Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphi-philicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around C.22 for optimized amphiphilicity.

  16. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome

    DEFF Research Database (Denmark)

    Jeppesen, Palle Bekker

    2012-01-01

    Short bowel syndrome results from surgical resection, congenital defect or disease-associated loss of absorption. Parenteral support (PS) is lifesaving in patients with short bowel syndrome and intestinal failure who are unable to compensate for their malabsorption by metabolic or pharmacologic...... fluid absorption (and the concomitant reduction in diarrhea) and may be used in studies in which metabolic balance assessments are not performed. In studies of up to 24 weeks' duration, teduglutide appears to be safe and well tolerated. Treatment with teduglutide was associated with enhancement...... or restoration of the structural and functional integrity of the remaining intestine with significant intestinotrophic and proabsorptive effects, facilitating a reduction in diarrhea and an equivalent reduction in the need for PS in patients with short bowel syndrome and intestinal failure....

  17. Thermotropic organization of hydrogen-bond-bridged bolaform amphiphiles.

    Science.gov (United States)

    Zhang, Jing; Zhou, Mingjun; Wang, Shan; Carr, Jessica; Li, Wen; Wu, Lixin

    2011-04-05

    A series of quaternary ammonium amphiphiles (A-n) bearing carboxylic acid groups were designed and synthesized. The branched bolaform structures can be constructed by dimerizations of carboxylic acid groups through intermolecular hydrogen bonding, as demonstrated by the Fourier transform infrared (FT-IR) spectra and the temperature-dependent FT-IR spectra. The thermotropic organizations of branched bolaform ammonium dimer complexes were characterized by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. We investigated the influence of the spacer between the cationic group and the benzene ring on the thermotropic organization. A-6 with short lateral alkyl chains formed a simple layered structure at room temperature and exhibited smectic A mesophase above 145 °C, whereas A-8 with intermediate lateral chain length organized into smectic A phase over a wide temperature range. A further increase of the length (n = 10, 12) of the lateral chains resulted in the formation of lamellar structure with in-plane layered periodicity, which is rare in the organization of ionic compounds. A packing model of the quasi-2D lamellar was proposed on the basis of the experimental data of X-ray diffraction results. Notably, the quasi-2D lamellar structure could evolve into a simple layer with the increase of temperature. The present results showed a direct relationship in which the branched architecture can be applied to tune the self-assembly behavior of ionic amphiphiles and is allowed to construct new layered superstructure.

  18. Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy.

    Science.gov (United States)

    Liu, Jing; Zhao, Dujuan; He, Wenxiu; Zhang, Huiyuan; Li, Zhonghao; Luan, Yuxia

    2017-02-01

    The anti-leukemia effect of cytarabine (Ara-C) is severely restricted by its high hydrophilic properties and rapid plasma degradation. Herein, a novel amphiphilic small molecular prodrug of Ara-C was developed by coupling a short aliphatic chain, hexanoic acid (HA) to 4-NH2 of the parent drug. Based on the amphiphilic nature, the resulting bioconjugate (HA-Ara) could spontaneously self-assemble into stable spherical nanoassemblies (NAs) with an extremely high drug loading (∼71wt%). Moreover, folate receptor (FR)-targeting NAs with high grafting efficient folic acid - bovine serum albumin (FA-BSA) conjugate immobilized on the surface (NAs/FA-BSA) was prepared. The results of MTT assays on FR-positive K562 cells and FR-negative A549 cells demonstrated higher cytotoxicity of HA-Ara NAs than the native drug. Especially, the IC50 values revealed that NAs/FA-BSA was 3 and 2-fold effective than non-targeted NAs after 24 and 48h treatment with K562 cells, respectively indicating FR-mediated enhanced anti-tumor efficacy. In vitro cellular uptake, larger accumulation of HA-Ara NAs were observed in comparative with the free FITC and the results further confirmed the selective uptake of NAs/FA-BSA in folate receptor enriched cancer cells. Above all, self-assembled HA-Ara NAs exhibited potential superiority for Ara-C delivery and FA-modified NAs would be an excellent candidate for targeting leukemia therapy.

  19. Short cationic lipopeptides as effective antibacterial agents: Design, physicochemical properties and biological evaluation.

    Science.gov (United States)

    Azmi, Fazren; Elliott, Alysha G; Marasini, Nirmal; Ramu, Soumya; Ziora, Zyta; Kavanagh, Angela M; Blaskovich, Mark A T; Cooper, Matthew A; Skwarczynski, Mariusz; Toth, Istvan

    2016-05-15

    The spread of drug-resistant bacteria has imparted a sense of urgency in the search for new antibiotics. In an effort to develop a new generation of antibacterial agents, we have designed de novo charged lipopeptides inspired by natural antimicrobial peptides. These short lipopeptides are composed of cationic lysine and hydrophobic lipoamino acids that replicate the amphiphilic properties of natural antimicrobial peptides. The resultant lipopeptides were found to self-assemble into nanoparticles. Some were effective against a variety of Gram-positive bacteria, including strains resistant to methicillin, daptomycin and/or vancomycin. The lipopeptides were not toxic to human kidney and liver cell lines and were highly resistant to tryptic degradation. Transmission electron microscopy analysis of bacteria cells treated with lipopeptide showed membrane-damage and lysis with extrusion of cytosolic contents. With such properties in mind, these lipopeptides have the potential to be developed as new antibacterial agents against drug-resistant Gram-positive bacteria.

  20. Gut hormones, and short bowel syndrome: The enigmatic role of glucagon-like peptide-2 in the regulation of intestinal adaptation

    Institute of Scientific and Technical Information of China (English)

    GR Martin; PL Beck; DL Sigalet

    2006-01-01

    Short bowel syndrome (SBS) refers to the malabsorption of nutrients, water, and essential vitamins as a result of disease or surgical removal of parts of the small intestine. The most common reasons for removing part of the small intestine are due to surgical intervention for the treatment of either Crohn's disease or necrotizing enterocolitis. Intestinal adaptation following resection may take weeks to months to be achieved, thus nutritional support requires a variety of therapeutic measures, which include parenteral nutrition. Improper nutrition management can leave the SBS patient malnourished and/or dehydrated, which can be life threatening. The development of therapeutic strategies that reduce both the complications and medical costs associated with SBS/long-term parenteral nutrition while enhancing the intestinal adaptive response would be valuable.Currently, therapeutic options available for the treatment of SBS are limited. There are many potential stimulators of intestinal adaptation including peptide hormones, growth factors, and neuronally-derived components. Glucagon-like peptide-2 (GLP-2) is one potential treatment for gastrointestinal disorders associated with insufficient mucosal function. A significant body of evidence demonstrates that GLP-2is atrophic hormone that plays an important role in controlling intestinal adaptation. Recent data from clinical trials demonstrate that GLP-2 is safe, well-tolerated, and promotes intestinal growth in SBS patients. However,the mechanism of action and the localization of the glucagon-like peptide-2 receptor (GLP-2R) remains an enigma. This review summarizes the role of a number of mucosal-derived factors that might be involved with intestinal adaptation processes; however, this discussion primarily examines the physiology, mechanism of action,and utility of GLP-2 in the regulation of intestinal mucosal growth.

  1. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Directory of Open Access Journals (Sweden)

    Wegener Christian

    2008-09-01

    Full Text Available Abstract Background Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF. To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS of Drosophila in relation to other neuronal markers. Results There are several hundreds of neurons in the larval CNS and several thousands in the adult Drosophila brain expressing snpf transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7. Conclusion It is likely that sNPF has multiple functions as neurohormone as well as

  2. An Amylase-Responsive Bolaform Supra-Amphiphile.

    Science.gov (United States)

    Kang, Yuetong; Cai, Zhengguo; Tang, Xiaoyan; Liu, Kai; Wang, Guangtong; Zhang, Xi

    2016-02-01

    An amylase-responsive bolaform supra-amphiphile was constructed by the complexation between β-cyclodextrin and a bolaform covalent amphiphile on the basis of host-guest interaction. The bolaform covalent amphiphile could self-assemble in solution, forming sheet-like aggregates and displaying weak fluorescence because of aggregation-induced quenching. The addition of β-cyclodextrin led to the formation of the bolaform supra-amphiphile, prohibiting the aggregation of the bolaform covalent amphiphile and accompanying with the significant recovery of fluorescence. Upon the addition of α-amylase, with the degradation β-cyclodextrin, the fluorescence of the supra-amphiphile would quench gradually and significantly, and the quenching rate linearly correlated to the concentration of α-amylase. This study enriches the field of supra-amphiphiles on the basis of noncovalent interactions, and moreover, it may provide a facile way to estimate the activity of α-amylase.

  3. Designing new symmetrical facial oligothiophene amphiphiles

    NARCIS (Netherlands)

    Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H

    2013-01-01

    In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr

  4. Short Stat5-interacting peptide derived from phospholipase C-β3 inhibits hematopoietic cell proliferation and myeloid differentiation.

    Directory of Open Access Journals (Sweden)

    Hiroki Yasudo

    Full Text Available Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN. Our recent study found that phospholipase C (PLC-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998 suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies.

  5. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

    Science.gov (United States)

    Hancock, Robert E W; Sahl, Hans-Georg

    2006-12-01

    Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.

  6. Ratiometric fluorescence sensing of sugars via a reversible disassembly and assembly of the peptide aggregates mediated by sugars.

    Science.gov (United States)

    Neupane, Lok Nath; Han, Song Yee; Lee, Keun-Hyeung

    2014-06-01

    An amphiphilic dipeptide (1) bearing pyrene and phenylboronic acid was demonstrated as a unique example of a ratiometric sensing system for sugars by reversibly converting the peptide aggregates into the monomer form of the complex with sugars in aqueous solutions.

  7. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    Directory of Open Access Journals (Sweden)

    Xiangfang Zeng

    Full Text Available Dietary modulation of the synthesis of endogenous host defense peptides (HDPs represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C, and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  8. A dose-equivalent comparison of the effects of continuous subcutaneous glucagon-like peptide 2 (GLP-2) infusions versus meal related GLP-2 injections in the treatment of short bowel syndrome (SBS) patients

    DEFF Research Database (Denmark)

    Naimi, R M; Madsen, K B; Askov-Hansen, C;

    2013-01-01

    Glucagon-like peptide 2 (GLP-2), secreted endogenously from L-cells in the distal bowel in relation to meals, modulates intestinal absorption by adjusting gastric emptying and secretion and intestinal growth. Short bowel syndrome (SBS) patients with distal intestinal resections have attenuated en...

  9. Quality of life in patients with short bowel syndrome treated with the new glucagon-like peptide-2 analogue teduglutide--analyses from a randomised, placebo-controlled study

    DEFF Research Database (Denmark)

    Jeppesen, P B; Pertkiewicz, M; Forbes, A;

    2013-01-01

    Short bowel syndrome (SBS)-intestinal failure (IF) patients have impaired quality of life (QoL) and suffer from the burden of malabsorption and parenteral support (PS). A phase III study demonstrated that treatment with teduglutide, a glucagon-like peptide 2 analogue, reduces PS volumes by 32% wh...

  10. Short Bowel Patients Treated for Two Years with Glucagon-Like Peptide 2 (GLP-2: Compliance, Safety, and Effects on Quality of Life

    Directory of Open Access Journals (Sweden)

    P. B. Jeppesen

    2009-01-01

    Full Text Available Background and aims. Glucagon-like peptide 2 (GLP-2 has been shown to improve intestinal absorption in short bowel syndrome (SBS patients in a short-term study. This study describes safety, compliance, and changes in quality of life in 11 SBS patients at baseline, week 13, 26, and 52 during two years of subcutaneous GLP-2 treatment, 400 microgram TID, intermitted by an 8-week washout period. Methods. Safety and compliance was evaluated during the admissions. The Sickness Impact Profile (SIP, Short Form 36 (SF 36, and Inflammatory Bowel Disease Questionnaire (IBDQ evaluated quality of life. Results. The predominant adverse event was transient abdominal discomfort in 5 of 11 patients, but in 2, both suffering from Crohns disease, it progressed to abdominal pain and led to discontinuation of GLP-2 treatment. One had a fibrostenotic lesion electively resected at the jejuno-ascendo-anastomosis. The investigator excluded a patient due to unreliable feedback. Stoma nipple enlargement was seen in all 9 jejunostomy patients. Reported GLP-2 compliance was excellent (>93%. GLP-2 improved the overall quality of life VAS-score (4.1±2.8 cm versus 6.0±2.4 cm, <.01, the overall SIP score (10.3±8.9% versus 6.2±9.5%, <.001, the mental component of the SF-36 (45±13% versus 53±11%, <.05, and the overall IBDQ score (5.1±0.9 versus 5.4±0.9, <.007 in the 8 patients completing the study. Conclusions. Long-term treatment with GLP-2 is feasible in SBS patients, although caution must be exercised in patients with a history of abdominal pain. Although conclusions cannot be made in a noncontrolled trial, the high reported compliance might reflect a high treatment satisfaction, where the clinical benefits of GLP-2 may outweigh the discomforts of injections.

  11. N-terminal pro-brain natriuretic peptide levels and short term prognosis in acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Vandanapu Naveen

    2015-01-01

    Full Text Available Background: Sparse published data are available regarding the prognostic importance of plasma N-terminal pro-brain natriuretic peptide (NT-proBNP in patients with acute ischemic stroke. Materials and Methods: We prospectively studied 74 consecutive patients presenting with acute ischemic stroke within 24 hours of onset. All of them underwent laboratory and imaging evaluation and were treated as per guidelines. In all subjects, plasma NT-proBNP levels were measured at initial admission and again on day 7. Results: Their mean age was 54 ± 13.5years; there were 49 males; 18 (24% patients died during the hospital stay. A statistically significant negative correlation between log NT-proBNP and Glasgow coma scale (GCS score (P < 0.001; and a significant positive correlation between log NT-proBNP and National Institutes of Health Stroke Scale (NIHSS score (P < 0.001 were observed. Baseline log NT-proBNP levels were higher among non-survivors compared with survivors (6.7 ± 0.47 vs. 5.37 ± 0.62; P = 0.06; day 7 log NT-proBNP levels were significantly higher in non-survivors compared with survivors (7.3 ± 0.26 vs. 4.5 ± 0.4; P = 0.000. In survivors, there was a statistically significant decline in log NT-proBNP levels from baseline to day 7 (5.3710 ± 0.620 vs. 4.5320 ± 0.451; P < 0.001. In contrast, among non-survivors, log NT-proBNP levels showed a statistically significant increase from baseline to day 7 (4.5322 ± 0.451 vs. 7.2992 ± 0.263; P < 0.001. On receiver operator characteristic curve (ROC analysis, at a cut-off value of ≥ 6.0661, log NT-proBNP had a sensitivity and specificity of 98.2 and 88.9, respectively, in predicting death. Conclusions: Plasma log NT-pro-BNP level appears to be a useful biological marker for predicting in-hospital mortality inpatients presenting with acute ischemic stroke.

  12. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  13. Wet foams hydrophobized by amphiphiles to give Al2O3 porous ceramics

    Science.gov (United States)

    Pokhrel, Ashish; Park, Jung Gyu; Kim, Ik Jin

    2012-05-01

    Wet chemical method to prepare ceramic foams with antecedent stability using inorganic particles (Al2O3,SiO2 etc.) which are in situ hydrophobized upon adsorption of short-chain amphiphilic molecules in the wet state and heightened mechanical property in the sintered state was developed. These wet foams are stable over several days and show no bubble coarsening nor drainage or creaming. This long-term stability is achieved through the irreversible adsorption of partially hydrophobized colloidal particles to the air-water interface using short-chain amphiphiles to in situ modify the wetting behavior of the particle surface based on the observations of Pickering emulsions. As a result, the suspension is foamed homogeneously throughout its entire volume and porous bulk materials can be produced upon drying and sintering. Wet foams featuring average bubble sizes between 30 and 300μm and sintered foams with porosity from 50 to 85% were obtained by adjusting the amphiphile - particle concentration, and additives in the initial suspension. Cells were mostly closed with an average size of approximately 150 μm. Single cells were separated by walls with minimum thicknesses of 1-3 μm.

  14. Priming immunization against cholera toxin and E. coli heat-labile toxin by a cholera toxin short peptide-beta-galactosidase hybrid synthesized in E. coli.

    OpenAIRE

    Jacob, C O; Leitner, M.; Zamir, A.; Salomon, D.; Arnon, R

    1985-01-01

    A synthetic oligodeoxynucleotide encoding for a small peptide was employed for the expression of this peptide in a form suitable for immunization. The encoded peptide, namely, the region 50-64 of the B subunit of cholera toxin (CTP3), had previously been identified as a relevant epitope of cholera toxin. Thus, multiple immunizations with its conjugate to a protein carrier led to an efficient neutralizing response against native cholera toxin. Immunization with the resulting fusion protein of ...

  15. Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli

    NARCIS (Netherlands)

    Rad-Malekshahi, Mazda; Flement, Matthias; Hennink, Wim E.; Mastrobattista, Enrico

    2014-01-01

    Background: Amphiphilic peptides are important building blocks to generate nanostructured biomaterials for drug delivery and tissue engineering applications. We have shown that the self-assembling peptide SA2 (Ac-AAVVLLLWEE) can be recombinantly produced in E. coli when fused to the small ubiquitin-

  16. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide.

    Science.gov (United States)

    Paul, Moushumi; Phillips, John G; Renye, John A

    2016-05-01

    An 8-AA (8mer) fragment (PFPEVFGK) of a known antihypertensive peptide derived from bovine αS1-casein (C12 antihypertensive peptide) was synthesized by microwave-assisted solid-phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit angiotensin-converting enzyme (ACE) was assessed and compared with that of the parent 12mer peptide (FFVAPFPEVFGK) to determine the effect of truncating the sequence on overall hypotensive activity. The activity of the truncated 8mer peptide was found to be almost 1.5 times less active than that of the 12mer, with ACE-inhibiting IC50 (half-maximal inhibitory concentration) values of 108 and 69μM, for the 8mer and 12mer, respectively. Although the 8mer peptide is less active than the original 12mer peptide, its overall activity is comparable to activities reported for other small proteins that elicit physiological responses within humans. These results suggest that microbial degradation of the 12mer peptide would not result in a complete loss of antihypertensive activity if used to supplement fermented foods and that the stable 8mer peptide could have potential as a blood pressure-lowering agent for use in functional foods.

  17. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH

    1996-07-01

    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  18. [Amphiphilic cyclodextrins and their applications. Preparation of nanoparticles based on amphiphilic cyclodextrins for biomedical applications].

    Science.gov (United States)

    Parrot-Lopez, H; Perret, F; Bertino-Ghera, B

    2010-01-01

    Solubilization of hydrophobic drugs at the molecular level as inclusion complexes inside cyclodextrins (CDs) offers a good alternative for improving their stability, solubility and bioavailability, and for preventing against their possible toxicity or controlling secondary effects. Therefore CDs are widely used as solubilizing excipients. However since dissociation takes place too readily upon dilution, inclusion complexes inside simple water-soluble CD appears ineffective for drug delivery applications. Chemical modifications of CDs allow them to self-organize as larger assemblies useful for resolving this lability issue. Depending on the position, the number and the nature of these groups, amphiphilic CDs can form assemblies such as vesicles, solid-lipid nanoparticles, nanospheres, liquid crystals, or micellar systems. This review deals with the synthesis of amphiphilic cyclodextrins leading to supramolecular assemblies and the physical properties of these assemblies. From the first sulfonated amphiphilic cyclodextrins isolated in our laboratory in 2003, to the latest ones being regioselectively functionalized by two or four fluoroalkyl chains, through the persubstituted fluorinated cyclodextrines, all these amphiphilic cyclodextrins have shown good abilities for encapsulation. Complexation of bioactive molecules (acyclovir) by these modified alpha-cyclodextrin derivatives, the encapsulation efficiency and release profile were measured as an assessment of the properties of such nanoparticles regarding drug delivery applications.

  19. Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention

    NARCIS (Netherlands)

    Zhu, X.; Guo, S.; Janczewski, D.; Parra-Velandia, F.J.; Teo, S.L-M.; Vancso, G.J.

    2014-01-01

    Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol (

  20. Confined supramolecular nanostructures of mesogen-bearing amphiphiles.

    Science.gov (United States)

    Zou, Bo; Wang, Mingfeng; Qiu, Dengli; Zhang, Xi; Chi, Lifeng; Fuchs, Harald

    2002-05-07

    Stable surface nanostructures with different morphology have been successfully constructed by modifying the chemical structure of synthetic amphiphiles; by introducing mesogenic groups into bolaform amphiphiles, stable spaghetti-like or stripe-like nanostructures can be obtained; it is believed that such a kind of surface structure could be used for templating synthesis and assembly.

  1. Incorporation of Amphiphilic Cyclodextrins into Liposomes as Artificial Receptor Units

    NARCIS (Netherlands)

    Kauscher, Ulrike; Stuart, Marc C. A.; Druecker, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan

    2013-01-01

    In this article, we describe the introduction of amphiphilic beta-cyclodextrins into liposomes to act as artificial receptor units. Using dynamic light scattering, dye encapsulation, and cryogenic transmission electron microscopy, we show that amphiphilic beta-cyclodextrins can be mixed in any propo

  2. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications.

    Science.gov (United States)

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko

    2013-07-14

    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  3. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    Science.gov (United States)

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways.

  4. Biolabeling and Binding Evaluation of Amphiphilic Nanocrystallopolymers

    Directory of Open Access Journals (Sweden)

    Kwang-Suk Jang

    2016-01-01

    Full Text Available Surfactant-like inorganic-organic hybrid molecules named as nanocrystallopolymers were designed by conjugation of the hydrophilic synthetic poly(amino acid, poly-α,β-(N-(2-hydroxyethyll-aspartamide, with hydrophobic inorganic nanoparticles. In aqueous media, amphiphilic nanocrystallopolymers form self-aggregates with unique morphologies. Here, a simple biolabeling method of nanocrystallopolymers was developed. Biotin was selected as a model biomolecule. The specific binding of biotin-labeled nanocrystallopolymers to the targeted surface was evaluated with a surface plasmon resonance sensor.

  5. Immunotherapy with Allergen Peptides

    OpenAIRE

    Larché Mark

    2007-01-01

    Specific allergen immunotherapy (SIT) is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cro...

  6. Self-assembly of amphiphilic molecules in organic liquids

    Science.gov (United States)

    Tung, Shih-Huang

    2007-12-01

    Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a

  7. Molecular Dynamics of Peptide Folding at Aqueous Interfaces

    Science.gov (United States)

    Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.

  8. Effect of Amphiphiles on the Rheology of Triglyceride Networks

    Science.gov (United States)

    Seth, Jyoti

    2014-11-01

    Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.

  9. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  10. Absence of in vitro innate immunomodulation by insect-derived short proline-rich antimicrobial peptides points to direct antibacterial action in vivo.

    Science.gov (United States)

    Fritsche, Stefanie; Knappe, Daniel; Berthold, Nicole; von Buttlar, Heiner; Hoffmann, Ralf; Alber, Gottfried

    2012-10-01

    Some antimicrobial peptides (AMPs) have been described to exert immunomodulatory effects, which may contribute to their in vivo antibacterial activity. Very recently, we could show that novel oncocin and apidaecin derivatives are potently antibacterially active in vivo. Therefore, we studied oncocin and apidaecin derivatives for their effects on murine dendritic cells (DC) and macrophages and compared them with well-known immunomodulatory activities of murine cathelicidin-related antimicrobial peptide (CRAMP). To characterize the immunomodulatory activity of the peptides on key cells of the innate immune system, we stimulated murine DC and macrophages with the oncocin and apidaecin derivatives alone, or in combination with lipopolysaccharide (LPS). We analyzed the secretion of pro-inflammatory cytokines, the expression of surface activation markers, and the chemotactic activity of the AMPs. In contrast to LPS, none of the oncocin and apidaecin derivatives alone has an influence on cytokine or surface marker expression by DC and macrophages. Furthermore, the tested oncocin and apidaecin derivatives do not modulate the immune response after LPS stimulation, whereas CRAMP shows a reduction of the LPS-mediated immune response as expected. All peptides tested are not chemotactic for DC. Together, lack of in vitro immunomodulatory effects by oncocin and apidaecin derivatives on key cells of the innate murine immune system suggests that their potent in vivo antibacterial activity relies on a direct antibacterial effect. This will simplify further pharmaceutical investigation and development of insect peptides as therapeutic compounds against bacterial infections.

  11. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Shreedhar Bhata; Uday Maitra

    2008-11-01

    A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  12. Mitochondria-acting hexokinase II peptides carried by short-length carbon nanotubes with increased cellular uptake, endosomal evasion, and enhanced bioactivity against cancer cells

    Science.gov (United States)

    Yoong, Sia Lee; Lau, Wei Liang; Liu, Ang Yu; Prendergast, D'arcy; Ho, Han Kiat; Yu, Victor Chun Kong; Lee, Chengkuo; Ang, Wee Han; Pastorin, Giorgia

    2015-08-01

    Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study, multi-walled carbon nanotubes (MWCNTs) were used to effectively deliver HKII(pep) across cellular barriers without compromising their bioactivity. The peptide was conjugated on either oxidized MWCNTs or 2,2'-(ethylenedioxy)bis(ethylamine)-functionalized MWCNTs, yielding MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep), respectively. Both conjugates were shown to be internalized by breast cancer MCF-7 cells using confocal microscopy. Moreover, these nanoconjugates seemed to have escaped from endosomes and be in the vicinity of mitochondria. The WST-1 cytotoxicity assay conducted on MCF-7 and colon carcinoma HCT116 cells revealed that MWCNT-peptide conjugates were significantly more effective in curbing cancer cell growth compared to a commercially available cell permeable HKII fusion peptide. In addition, both nanoconjugates displayed an enhanced ability in eliciting apoptosis and depleting the ATP level in HCT116 cells compared to the mere HKII peptide. Importantly, hexokinase II release from mitochondria was demonstrated in MWCNT-HKII(pep) and MWCNT-TEG-HKII(pep) treated cells, highlighting that the structure and bioactivity of HKII(pep) were not compromised after covalent conjugation to MWCNTs.Type II hexokinase (HKII) has emerged as a viable therapeutic target due to its involvement in metabolic reprogramming and also apoptosis prevention. The peptide derived from the fifteen amino acid sequence in the HKII N-terminal region [HKII(pep)] can compete with endogenous proteins for binding on mitochondria and trigger apoptosis. However, this peptide is not cell-permeable. In this study

  13. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo.

    Science.gov (United States)

    Torchilin, V P; Shtilman, M I; Trubetskoy, V S; Whiteman, K; Milstein, A M

    1994-10-12

    Newly synthesized amphiphilic polyacrylamide and poly(vinyl pyrrolidone), single terminus-modified with long-chain fatty acyl groups, are able to incorporate into the liposomal membrane, and similar to poly(ethylene glycol) prolong liposome circulation in vivo and decrease liposome accumulation in the liver. Protective efficacy of modified polymers increases with the increase in the length of acyl moiety and decreases for higher molecular weight polymers. The data on amphiphilic polymer-modified liposome biodistribution are presented.

  14. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

    Science.gov (United States)

    Nowak, Andrew P.; Breedveld, Victor; Pakstis, Lisa; Ozbas, Bulent; Pine, David J.; Pochan, Darrin; Deming, Timothy J.

    2002-05-01

    Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90°C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations-α-helix, β-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

  15. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress.

    Science.gov (United States)

    Cifelli, Jessica L; Chung, Tim S; Liu, Haiyan; Prangkio, Panchika; Mayer, Michael; Yang, Jerry

    2016-06-15

    Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.

  16. Neomycin-phenolic conjugates: polycationic amphiphiles with broad-spectrum antibacterial activity, low hemolytic activity and weak serum protein binding.

    Science.gov (United States)

    Findlay, Brandon; Zhanel, George G; Schweizer, Frank

    2012-02-15

    Here we present a proof-of-concept study, combining two known antimicrobial agents into a hybrid structure in order to develop an emergent cationic detergent-like interaction with the bacterial membrane. Six amphiphilic conjugates were prepared by copper (I)-catalyzed 1,3-dipolar cycloaddition between a neomycin B-derived azide and three alkyne-modified phenolic disinfectants. Three conjugates displayed good activity against a variety of clinically relevant Gram positive and Gram negative bacteria, including MRSA, without the high level of hemolysis or strong binding to serum proteins commonly observed with other cationic antimicrobial peptides and detergents.

  17. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  18. Polymer-Peptide Nanoparticles: Synthesis and Characterization

    Science.gov (United States)

    Dong, He; Shu, Jessica Y.; Xu, Ting

    2010-03-01

    Conjugation of synthetic polymers to peptides offers an efficient way to produce novel supramolecular structures. Herein, we report an attempt to prepare synthetic micellar nanoparticles using amphiphilic peptide-polymer conjugates as molecular building blocks. Spherical nanoparticles were formed upon dissolution of peptides in PBS buffer through the segregation of hydrophobic and hydrophilic segments. Both molecular and nano- structures were thoroughly investigated by a variety of biophysical techniques, including circular dichroism (CD), dynamic light scattering (DLS), size exclusion chromatography (SEC), transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The results demonstrate that structural properties of these biohybrid materials depend on both the geometry of the hydrophobic domain and the size of synthetic polymers. Given the diversity of functional peptide sequences, hydrophilic polymers and hydrophobic moieties, these materials would be expected to self-assemble into various types of nanostructures to cover a wide range of biological applications.

  19. Increased Secretion of Endogenous GH after Treatment with an Intranasal GH-releasing Peptide-2 Spray Does Not Promote Growth in Short Children with GH Deficiency.

    Science.gov (United States)

    Tanaka, Toshiaki; Hasegawa, Yukihiro; Yokoya, Susumu; Nishi, Yoshikazu

    2014-10-01

    We investigated whether treatment with an intranasal GH-releasing peptide (GHRP)-2 spray, which acts as a potent GH secretagogue that stimulates endogenous GH secretion, promotes growth in patients with GH deficiency (GHD). This study involved 126 prepubertal short children (81 males, 45 females) with a height SD score of -2 SD or less, who had been diagnosed as having GHD based on GH stimulation tests, and in whom the serum GH concentrations increased up to 9 ng/ml after preliminary administration of an intranasal GHRP-2 spray. The subjects included in this study were divided into 3 groups by use of a double-blind method; that is 44 were placed into the placebo group (P group: 30 males, 14 females), 41 were placed into the GHRP-2 low dose group (L group: 25 males, 16 females), and 41 were placed into the GHRP-2 high dose group (H group: 26 males, 15 females). Those with a body wt of less than 20 kg were administered a placebo (P group), 50 μg of GHRP-2 (L group) or 100 μg of GHRP-2 (H group), and those with a body wt of 20 kg or more were administered a placebo (P group), 100 µg of GHRP-2 (L group) or 200 µg of GHRP-2 (H group) twice daily (morning and evening) for 48 continuous wk. Age and height SD scores at baseline were not significantly different among the three groups: 7.5 yr old and -2.26 SD in the P group, 7.3 yr old and -2.38 SD in the L group, and 7.5 yr old and -2.27 SD in the H group. Of the 126 subjects, 44, 40 and 40 subjects in the P, L and H groups, respectively, completed the 48 continuous wk of treatment. The changes in the mean height SD scores (mean growth rate) after 48 wk of treatment in the P, L and H groups were 0.07 SD, 0.03 SD, and 0.02 SD, respectively, and thus no significant differences was observed among the 3 groups. Also no significant changes in blood IGF-I levels at baseline or after 48 wk of treatment were observed among the 3 groups. This study revealed that in patients with GHD, an increase in endogenous GH secretion as a

  20. Glucagon-like peptide-2 stimulates mucosal microcirculation measured by laser Doppler flowmetry in end-jejunostomy short bowel syndrome patients

    DEFF Research Database (Denmark)

    Høyerup, P; Hellström, P M; Schmidt, P T;

    2013-01-01

    In animal and human studies glucagon-like peptide-2 (GLP-2) has been shown to increase blood flow in the superior mesenteric artery and the portal vein. This study describes the effect of GLP-2 measured directly on the intestinal mucosal blood flow by laser Doppler flowmetry (LDF) in end-jejunost...

  1. Characterization of a novel cDNA encoding a short venom peptide derived from venom gland of scorpion Buthus martensii Karsch: trans-splicing may play an important role in the diversification of scorpion venom peptides.

    Science.gov (United States)

    Zeng, Xian-Chun; Luo, Feng; Li, Wen-Xin

    2006-04-01

    A novel cDNA clone (named BmKT-u) which is a hybrid molecule of the 5'-terminal region of BmKT' cDNA and the 3'-terminal region of an undocumented cDNA (named BmKu), was isolated from a cDNA library made from the venom gland of scorpion Buthus martensii Karsch. BmKT-u codes for a 30 amino acid residue precursor peptide composed of a 20-residue signal sequence, and a putative 10-residue novel mature peptide. Northern blot hybridization showed BmKT-u cDNA is generated from a transcript. RT-PCR experiments excluded the possibility that BmKT-u cDNA is an artifact generated during reverse transcription. Genomic amplifications performed with three pairs of BmKT-u gene-specific primers showed the BmKT-u gene does not exist in the genome of the scorpion as a single transcriptional unit. Genomic cloning for BmKT' showed that the BmKT' gene contains an intron of 509 bp inserted into the region encoding the C-terminal region of the signal peptide. A sequence alignment comparison of the cDNA of BmKT-u with genomic BmKT' revealed that the junction site of the hybrid molecule is located at the 5'-splicing site of the intron. The data suggest that the BmKT-u transcript is a naturally occurring mature mRNA that is generated by trans-splicing. Trans-splicing may contribute to the diversity of venom peptides from venomous animals.

  2. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations.

    Science.gov (United States)

    Bocchinfuso, Gianfranco; Palleschi, Antonio; Orioni, Barbara; Grande, Giacinto; Formaggio, Fernando; Toniolo, Claudio; Park, Yoonkyung; Hahm, Kyung-Soo; Stella, Lorenzo

    2009-09-01

    Most antimicrobial peptides exert their activity by interacting with bacterial membranes, thus perturbing their permeability. They are investigated as a possible solution to the insurgence of bacteria resistant to the presently available antibiotic drugs. However, several different models have been proposed for their mechanism of membrane perturbation, and the molecular details of this process are still debated. Here, we compare fluorescence spectroscopy experiments and molecular dynamics (MD) simulations regarding the association with lipid bilayers and lipid perturbation for two different amphiphilic helical antimicrobial peptides, PMAP-23 and trichogin GA IV. PMAP-23, a cationic peptide member of the cathelicidin family, is considered to induce membrane permeability according to the Shai-Matsuzaki-Huang "carpet" model, while trichogin GA IV is a neutral peptide, member of the peptaibol family. Although several lines of evidence suggest a "barrel-stave" mechanism of pore formation for the latter peptide, its length is only half the normal thickness of a lipid bilayer. Both fluorescence spectroscopy experiments and MD simulations indicated that PMAP-23 associates with membranes close to their surface and parallel to it, and in this arrangement it causes a severe perturbation to the bilayer, both regarding its surface tension and lipid order. By contrast, trichogin GA IV can undergo a transition from a surface-bound state to a transmembrane orientation. In the first arrangement, it does not cause any strong membrane perturbation, while in the second orientation it might be able to span the bilayer from one side to the other, despite its relatively short length, by causing a significant thinning of the membrane.

  3. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.

    Science.gov (United States)

    Martin, Chloe; Aibani, Noorjahan; Callan, John F; Callan, Bridgeen

    2016-01-01

    Nanomedicine has evolved with the use of biological compounds such as proteins, peptides and DNA. These hydrophilic and often highly charged compounds require a delivery system to allow effective transport and release at the site of action. These new biological therapeutics have not replaced the more traditional smaller molecule, but instead are working synergistically to the benefit of the end user. To that end, drug delivery systems are now required to encapsulate both larger hydrophilic compounds as well as the smaller and generally more hydrophobic compound. This review highlights the emerging role in drug delivery of amphiphilic polymers that by their very nature can associate with compounds of differing physicochemical properties, in particular the role of micelles, polymersomes and nanocapsules.

  4. Topical peptides as cosmeceuticals

    Directory of Open Access Journals (Sweden)

    Varadraj Vasant Pai

    2017-01-01

    Full Text Available Peptides are known to have diverse biological roles, most prominently as signaling/regulatory molecules in a broad variety of physiological processes including defense, immunity, stress, growth, homeostasis and reproduction. These aspects have been used in the field of dermatology and cosmetology to produce short, stable and synthetic peptides for extracellular matrix synthesis, pigmentation, innate immunity and inflammation. The evolution of peptides over the century, which started with the discovery of penicillin, has now extended to their usage as cosmeceuticals in recent years. Cosmeceutical peptides may act as signal modulators of the extracellular matrix component, as structural peptides, carrier peptides and neurotransmitter function modulators. Transdermal delivery of peptides can be made more effective by penetration enhancers, chemical modification or encapsulation of peptides. The advantages of using peptides as cosmeceuticals include their involvement in many physiological functions of the skin, their selectivity, their lack of immunogenicity and absence of premarket regulatory requirements for their use. However, there are disadvantages: clinical evidence for efficacy is often weak, absorption may be poor due to low lipophilicity, high molecular weight and binding to other ingredients, and prices can be quite high.

  5. Impact on the replacement of Phe by Trp in a short fragment of Aβ amyloid peptide on the formation of fibrils.

    Science.gov (United States)

    Chaudhary, Nitin; Nagaraj, Ramakrishnan

    2011-02-01

    Aβ(16-22) (Ac-KLVFFAE-NH(2) ) is one of the shortest amyloid fibril-forming sequences identified in β-amyloid peptide. At neutral pH, the peptide forms fibrils in the concentration range of 0.2-2.0 mM after ≥ 10 days of incubation. Structures of the fibrils proposed based on solid-state NMR and MD simulations studies suggest antiparallel arrangement of β-strands and aromatic interactions between the Phe residues. In an effort to examine the role of aromatic interactions between two Phe residues in Aβ(16-22) , we have studied the self-assembly of Aβ(16-22) (AβFF) and two of its variants, Ac-KLVFWAE-NH(2) (AβFW) and Ac-KLVWFAE-NH(2) (AβWF). The peptides were dissolved in methanol (MeOH) at a concentration of 1 mM and in water (AβFW and AβWF, 1 mM; AβFF, 330 µM). Peptide solutions (100 µM) were prepared in 50 mM sodium phosphate buffer at pH 7 by diluting from MeOH and water stock solutions. AβFW forms amyloid-like fibrils immediately from MeOH, as indicated by atomic force microscopy. Dilution of AβFW into phosphate buffer from stock solution prepared in MeOH results in fibrils, but with different morphology and dimensions. The secondary structure potentiated by MeOH seems to be important for the self-assembly of AβFW, as fibrils are not formed from water where the peptide is unordered. On the other hand, AβFF and AβWF do not form amyloid fibrils rapidly from any of the solvents used for dissolution. However, drying of AβWF from MeOH on mica surface gives rod-like and fibrous structures. Our study indicates that positioning of the aromatic residues F and W has an important role to play in promoting self-assembly of the Aβ(16-22) peptides.

  6. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    Science.gov (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  7. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard

    2016-07-01

    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  8. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  9. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers.

    Science.gov (United States)

    Goli, Kiran K; Rojas, Orlando J; Genzer, Jan

    2012-11-12

    We describe the formation of amphiphilic polymeric assemblies via a three-step functionalization process applied to polypropylene (PP) nonwovens and to reference hydrophobic self-assembled n-octadecyltrichlorosilane (ODTS) monolayer surfaces. In the first step, denatured proteins (lysozyme or fibrinogen) are adsorbed onto the hydrophobic PP or the ODTS surfaces, followed by cross-linking with glutaraldehyde in the presence of sodium borohydride (NaBH(4)). The hydroxyl and amine functional groups of the proteins permit the attachment of initiator molecules, from which poly (2-hydroxyethyl methacrylate) (PHEMA) polymer grafts are grown directly through "grafting from" atom transfer radical polymerization. The terminal hydroxyls of HEMA's pendent groups are modified with fluorinating moieties of different chain lengths, resulting in amphiphilic brushes. A palette of analytical tools, including ellipsometry, contact angle goniometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy is employed to determine the changes in physicochemical properties of the functionalized surfaces after each modification step. Antifouling properties of the resultant amphiphilic coatings on PP are analyzed by following the adsorption of fluorescein isothiocyanate-labeled bovine serum albumin as a model fouling protein. Our results suggest that amphiphilic coatings suppress significantly adsorption of proteins as compared with PP fibers or PP surfaces coated with PHEMA brushes. The type of fluorinated chain grafted to PHEMA allows modulation of the surface composition of the topmost layer of the amphiphilic coating and its antifouling capability.

  10. Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms.

    Science.gov (United States)

    Dane, Eric L; Ballok, Alicia E; O'Toole, George A; Grinstaff, Mark W

    2014-02-01

    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections.

  11. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  12. Design of a shear-thinning recoverable peptide hydrogel from native sequences and application for influenza H1N1 vaccine adjuvant

    Science.gov (United States)

    Peptide hydrogels are considered injectable materials for drug delivery and tissue engineering applications. Most published hydrogel-forming sequences contain either alternating-charged and noncharged residues or amphiphilic blocks. Here, we report a self-assembling peptide, h9e (FLIVIGSIIGPGGDGPGGD...

  13. Immunotherapy with Allergen Peptides

    Directory of Open Access Journals (Sweden)

    Larché Mark

    2007-06-01

    Full Text Available Specific allergen immunotherapy (SIT is disease-modifying and efficacious. However, the use of whole allergen preparations is associated with frequent allergic adverse events during treatment. Many novel approaches are being designed to reduce the allergenicity of immunotherapy preparations whilst maintaining immunogenicity. One approach is the use of short synthetic peptides which representing dominant T cell epitopes of the allergen. Short peptides exhibit markedly reduced capacity to cross link IgE and activate mast cells and basophils, due to lack of tertiary structure. Murine pre-clinical studies have established the feasibility of this approach and clinical studies are currently in progress in both allergic and autoimmune diseases.

  14. Semisolid meal enriched in oat bran decreases plasma glucose and insulin levels, but does not change gastrointestinal peptide responses or short-term appetite in healthy subjects

    DEFF Research Database (Denmark)

    Juvonen, Kristiina R.; Salmenkallio-Marttila, Marjatta; Lyly, Marika

    2011-01-01

    types and amounts of DF exert are still poorly understood. METHODS AND RESULTS: We investigated the effects of wheat and oat brans alone and as combination in semisolid food matrix on postprandial appetite profile and gastrointestinal (GI) hormonal responses. Twenty healthy, normal-weight subjects (5...... including 5 g wheat bran DF + 5 g oat bran DF. Blood samples were drawn before and 15, 30, 45, 60, 90, 120 and 180 min after the test meals to determine plasma glucose, ghrelin, peptide YY (PYY) and serum insulin concentrations. Subjective profiles of appetite were assessed using visual analogue scales (VAS...

  15. Redox-controllable amphiphilic [2]rotaxanes.

    Science.gov (United States)

    Tseng, Hsian-Rong; Vignon, Scott A; Celestre, Paul C; Perkins, Julie; Jeppesen, Jan O; Di Fabio, Alberto; Ballardini, Roberto; Gandolfi, M Teresa; Venturi, Margherita; Balzani, Vincenzo; Stoddart, J Fraser

    2004-01-01

    With the fabrication of molecular electronic devices (MEDs) and the construction of nanoelectromechanical systems (NEMSs) as incentives, two constitutionally isomeric, redox-controllable [2]rotaxanes have been synthesized and characterized in solution. Therein, they both behave as near-perfect molecular switches, that is, to all intents and purposes, these two rotaxanes can be switched precisely by applying appropriate redox stimuli between two distinct chemomechanical states. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by i) two pi-electron rich recognition sites-a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) moiety-with ii) a rigid terphenylene spacer placed between the two recognition sites, and then terminated by iii) a hydrophobic tetraarylmethane stopper at one end and a hydrophilic dendritic stopper at the other end of the dumbbells, thus conferring amphiphilicity upon these molecules. A template-directed protocol produces a means to introduce the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), which contains two pi-electron accepting bipyridinium units, mechanically interlocked around the dumbbell-shaped components. Both the TTF unit and the DNP moiety are potential stations for CBPQT(4+), since they can establish charge-transfer and hydrogen bonding interactions with the bipyridinium units of the cyclophane, thereby introducing bistability into the [2]rotaxanes. In both constitutional isomers, (1)H NMR and absorption spectroscopies, together with electrochemical investigations, reveal that the CBPQT(4+) ring is predominantly located on the TTF unit, leading to the existence of a single translational isomer (co-conformation) in both cases. In addition, a model [2]rotaxane, incorporating hydrophobic tetraarylmethane stoppers at both ends of its dumbbell-shaped component, has also been synthesized as a point of reference. Molecular synthetic approaches were used to

  16. Rheological and phase behaviour of amphiphilic lipids

    Directory of Open Access Journals (Sweden)

    Alfaro, M. C.

    2000-04-01

    Full Text Available This chapter reviews the different association structures which are likely to be formed by amphiphilic lipids in the liquid-crystalline state and their corresponding shear flow properties. The structure and rheological behaviour of thermotropic liquid crystals, emphasizing the properties of smectic mesophases, and those of lyotropic liquid crystals such as: nematic, lamellar, diluted lamellar, lamellar dispersions, hexagonal and cubic mesophases are described. The importance of a comprehensive rheological characterisation, including rheo-optical techniques, is pointed out for their practical applications, development of formulations and as a useful technique to assist in the determination of phase diagrams. A historical approach has been used to discuss the evolving field of the rheology and structure identification of liquid crystals formed by amphiphilic lipids and surfactants. Non-Newtonian viscous shear flow, thixotropic and antithixotropic phenomena, linear viscoelastic properties -described by dynamic and creep compliance experiments- and non-linear viscoelastic properties - described by the difference of normal stresses and stress relaxation tests are interpreted on the basis of a microstructure-rheology relationship. The polycrystalline nature of liquid crystals turns out to be rather sensitive to shear due to the change of both size and orientation of the liquid-crystalline monodomains under flow.En este capítulo se realiza una revisión de las distintas estructuras coloidales de asociación que pueden formar los lípidos anfifílicos en estado líquido-cristalino y de sus correspondientes propiedades de flujo en cizalla. Se describe la estructura y comportamiento reológico de cristales líquidos termotrópicos, con énfasis en los de tipo esméctico, fases gel, y cristales líquidos liotrópicos: nemáticos, laminares, laminares diluidos, dispersiones de laminares, hexagonales y cúbicos. Se hace hincapié en la importancia de una

  17. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;

    2012-01-01

    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...

  18. Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters

    Directory of Open Access Journals (Sweden)

    Bruno R. S. Lemos

    2012-05-01

    Full Text Available In this work, new magnetic amphiphilic composites were prepared by chemical vapor deposition with ethanol on the surface of hydrophilic natural chrysotile matrix containing Fe catalyst. XRD, Raman, Mössbauer and SEM analyses suggest the formation of a complex nanostructured material composed of hydrophobic carbon nanotubes/nanofibers grown on the hydrophilic surface of the MgSi fiber mineral and the presence of Fe metallic nanoparticles coated by carbon. These nanostructured particles show amphiphilic properties and interact very well with both oil and aqueous phases. When added to emulsions the amphiphilic particles locate on the oil/water interface and, under a magnetic field, the oil droplets collapsed leading to the separation of the aqueous and oil phases. Preliminary work showed excellent results on the use of these particles to break wastewater emulsions in the biodiesel process.

  19. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins

    Science.gov (United States)

    Kuskov, A. N.; Villemson, A. L.; Shtilman, M. I.; Larionova, N. I.; Tsatsakis, A. M.; Tsikalas, I.; Rizos, A. K.

    2007-05-01

    New nanoscaled polymeric carriers have been prepared on the basis of different amphiphilic water-soluble derivatives of poly-N-vinylpyrrolidone (PVP). The polymer self-assembly and interaction with model proteins (Bowman-Birk soybean proteinase inhibitor (BBI) and its hydrophobized derivatives) were studied in aqueous media. The possibility of inclusion of both BBI and hydrophobized oleic acid derivatives of BBI in amphiphilic PVP aggregates was investigated. It was ascertained that polymeric particles of size 50-80 nm were formed in certain concentrations of amphiphilic PVP and poorly soluble dioleic acid derivatives of BBI. Such polymeric aggregates are capable of solubilization of dioleoyl BBI with a concomitant prevention of its inactivation at low pH values.

  20. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kuskov, A N [Department of Polymers, D I Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047 (Russian Federation); Villemson, A L [Department of Chemistry, M V Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Shtilman, M I [Department of Polymers, D I Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047 (Russian Federation); Larionova, N I [Department of Chemistry, M V Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Tsatsakis, A M [Medical School, University of Crete, Voutes, 71409 Heraklion, Crete (Greece); Tsikalas, I [Department of Chemistry and Foundation for Research and Technology-Hellas (FORTH), University of Crete, PO Box 2208, Heraklion 71003, Crete (Greece); Rizos, A K [Department of Chemistry and Foundation for Research and Technology-Hellas (FORTH), University of Crete, PO Box 2208, Heraklion 71003, Crete (Greece)

    2007-05-23

    New nanoscaled polymeric carriers have been prepared on the basis of different amphiphilic water-soluble derivatives of poly-N-vinylpyrrolidone (PVP). The polymer self-assembly and interaction with model proteins (Bowman-Birk soybean proteinase inhibitor (BBI) and its hydrophobized derivatives) were studied in aqueous media. The possibility of inclusion of both BBI and hydrophobized oleic acid derivatives of BBI in amphiphilic PVP aggregates was investigated. It was ascertained that polymeric particles of size 50-80 nm were formed in certain concentrations of amphiphilic PVP and poorly soluble dioleic acid derivatives of BBI. Such polymeric aggregates are capable of solubilization of dioleoyl BBI with a concomitant prevention of its inactivation at low pH values.

  1. Identification of a Short Cell-Penetrating Peptide from Bovine Lactoferricin for Intracellular Delivery of DNA in Human A549 Cells.

    Science.gov (United States)

    Liu, Betty R; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2016-01-01

    Cell-penetrating peptides (CPPs) have been shown to deliver cargos, including protein, DNA, RNA, and nanomaterials, in fully active forms into live cells. Most of the CPP sequences in use today are based on non-native proteins that may be immunogenic. Here we demonstrate that the L5a CPP (RRWQW) from bovine lactoferricin (LFcin), stably and noncovalently complexed with plasmid DNA and prepared at an optimal nitrogen/phosphate ratio of 12, is able to efficiently enter into human lung cancer A549 cells. The L5a CPP delivered a plasmid containing the enhanced green fluorescent protein (EGFP) coding sequence that was subsequently expressed in cells, as revealed by real-time PCR and fluorescent microscopy at the mRNA and protein levels, respectively. Treatment with calcium chloride increased the level of gene expression, without affecting CPP-mediated transfection efficiency. Zeta-potential analysis revealed that positively electrostatic interactions of CPP/DNA complexes correlated with CPP-mediated transport. The L5a and L5a/DNA complexes were not cytotoxic. This biomimetic LFcin L5a represents one of the shortest effective CPPs and could be a promising lead peptide with less immunogenic for DNA delivery in gene therapy.

  2. Multi-domain short peptide molecules for in situ synthesis and biofunctionalization of gold nanoparticles for integrin-targeted cell uptake.

    Science.gov (United States)

    Gulsuner, Hilal Unal; Ceylan, Hakan; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-27

    We describe design and synthesis model of multidomain (modular) peptides (MDPs), which direct a reaction cascade coupling the synthesis and surface functionalization of gold nanoparticles (AuNPs) in a single step. The synthesis is achieved via simple mixing of the aqueous solutions of auric acid and MDPs at room temperature without the addition of any surfactants or toxic intermediate reagents. This method allows facile control over the nanoparticle size between ∼2-15 nm, which opens a practical window for biomedical applications. In contrast to the conventional citrate-mediated methods, peptide-mediated synthesis and stabilization provide increased colloidal stability to AuNPs. As a proof of this concept, we demonstrate active targeting of human breast adenocarcinoma cell line (MCF7) using the one-step-prepared engineered AuNPs. Overall, we propose a single-step, chemically greener, biologically safer method for the synthesis and surface functionalization of gold nanoparticles in a size-controlled manner. The chemical versatility of the MDP design broadens the applicability of this strategy, thereby emerging as a successful alternative for the currently available nanoparticle preparation technologies.

  3. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor. and Glucagon-Like Peptide-1

    NARCIS (Netherlands)

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H.; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that S

  4. The usefulness of brain natriuretic peptide level in diagnosis and prognosis of patients admitted to critical care unit with shortness of breath

    Directory of Open Access Journals (Sweden)

    Yazan Abdeen

    2015-01-01

    Full Text Available Background: Brain Natriuretic Peptide (BNP is a polypeptide secreted by the ventricles as a response to cardio-myocyte stretching. Due to its cardiac origin and correlation with volume overload it has been successfully used for a long time in diagnosing and prognosticating Cardiogenic Pulmonary Edema. Materials and Methods: In this retrospective cohort study, an attempt was made to observe any correlation between admission BNP levels with APACHE II scores and length of ICU stay, in patients admitted with dyspnea to the ICU of a community based hospital. Results/Conclusion: This study showed no significant correlation between length of stay in an ICU and admission BNP levels in dyspneic patients. Independent variables such as age and gender failed to show any coorelation either.

  5. Structural and Dynamic Insights into a Glycine-Mediated Short Analogue of a Designed Peptide in Lipopolysaccharide Micelles: Correlation Between Compact Structure and Anti-Endotoxin Activity.

    Science.gov (United States)

    Datta, Aritreyee; Jaiswal, Nancy; Ilyas, Humaira; Debnath, Shibjyoti; Biswas, Kaushik; Kumar, Dinesh; Bhunia, Anirban

    2017-02-21

    In this study, we report an interaction study of a 13-residue analogue peptide VG13P (VARGWGRKCPLFG), derived from a designed VG16KRKP peptide (VARGWKRKCPLFGKGG), with a Lys6Gly mutation and removal of the last three residues Lys(14)-Gly(15)-Gly(16), in lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria and responsible for sepsis or septic shock. VG13P displays an enhanced anti-endotoxin property as evident from significant reduction in LPS-induced TNF-α gene expression levels in a monocytic cell line, while it retains almost unchanged antimicrobial activity as its parent VG16KRKP against Gram-negative bacterial as well as fungal pathogens. In addition, in vitro LPS binding properties of VG13P in comparison to its parent VG16KRKP also remained unhindered, suggesting that the flexible C-terminal end of VG16KRKP may not play a major role in its observed antibacterial and LPS binding properties. An NMR-resolved solution structure of VG13P in LPS reveals two consecutive β-turns: one at the N-terminus, followed by another at the central region, closely resembling a rocking chair. The crucial Lys6Gly mutation along with C-terminal truncation from VG16KRKP reorients the hydrophobic hub in VG13P in a unique way so as to fold the N-terminal end back on itself, forming a turn and allowing Val1 and Ala2 to interact with Leu11 and Phe12 to bring the hydrophobic residues closer together to form a more compact hub compared to its parent. The hub is further strengthened via CH-π interaction between Gly4 and Phe12. This accounts for its improved anti-endotoxin activity as well as to its uninterrupted antimicrobial activity.

  6. Antimicrobial peptides: natural templates for synthetic membrane-active compounds.

    Science.gov (United States)

    Giuliani, A; Pirri, G; Bozzi, A; Di Giulio, A; Aschi, M; Rinaldi, A C

    2008-08-01

    The innate immunity of multicellular organisms relies in large part on the action of antimicrobial peptides (AMPs) to resist microbial invasion. Crafted by evolution into an extremely diversified array of sequences and folds, AMPs do share a common amphiphilic 3-D arrangement. This feature is directly linked with a common mechanism of action that predominantly (although not exclusively) develops upon interaction of peptides with cell membranes of target cells. This minireview reports on current understanding of the modes of interaction of AMPs with biological and model membranes, especially focusing on recent insights into the folding and oligomerization requirements of peptides to bind and insert into lipid membranes and exert their antibiotic effects. Given the potential of AMPs to be developed into a new class of anti-infective agents, emphasis is placed on how the information on peptide-membrane interactions could direct the design and selection of improved biomimetic synthetic peptides with antibiotic properties.

  7. Nucleic acid amphiphiles : synthesis and self-assembled nanostructures

    NARCIS (Netherlands)

    Kwak, Minseok; Herrmann, Andreas; Clever, Guido; Mao, Chengde; Shionoya, Mitsuhiko; Stulz, Eugen

    2011-01-01

    This review provides an overview of a relatively new class of bio-conjugates, DNA amphiphiles, which consist of oligonucleotides covalently bonded to synthetic hydrophobic units. The reader will find the basic principles for the structural design and preparation methods of the materials. Moreover, t

  8. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles

    Science.gov (United States)

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.

    2016-06-01

    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  9. Reinforcement of latex rubber by the incorporation of amphiphilic nanoparticles

    Science.gov (United States)

    Latex rubbers are fabricated from latex suspensions. During the fabrication process, latex particles are bound together while water is removed from the suspension. This report shows the mechanical properties of latex rubbers can be improved by incorporating a small amount of amphiphilic nanoparticle...

  10. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis

    NARCIS (Netherlands)

    Erne, Petra M.; van Bezouwen, Laura S.; Stacko, Peter; van Dtjken, Derk Jan; Chen, Jiawen; Stuart, Marc C. A.; Boekema, Eghert J.; Feringa, Ben L.

    2015-01-01

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based fl

  11. Blends of Amphiphilic, Hyperbranched Polyesters and Different Polyolefins

    NARCIS (Netherlands)

    Schmaljohann, D.; Pötschke, P.; Hässler, R.; Voit, B.I.; Froehling, P.E.; Mostert, B.; Loontjens, J.A.

    1999-01-01

    A hyperbranched polyester based on 3,5-dihydroxybenzoic acid was completely modified with dodecanoyl chloride to result in an amphiphilic, globular polymer, which has a polar core and a nonpolar outer sphere with the ability both to incorporate an organic dye and to interact with a nonpolar matrix.

  12. Bio-based amphiphilic materials development and applications

    Science.gov (United States)

    Farm-based raw materials are increasingly used in the development of amphiphilic materials that have potential applications in the production of a variety of consumer and industrial products, including lubricants. Raw materials of interest include: starches, proteins, fats, oils, and sugars. These ...

  13. Preparation and self-folding of amphiphilic DNA origami.

    Science.gov (United States)

    Zhou, Chao; Wang, Dianming; Dong, Yuanchen; Xin, Ling; Sun, Yawei; Yang, Zhongqiang; Liu, Dongsheng

    2015-03-01

    Amphiphilic DNA origami is prepared by dressing multiple hydrophobic molecules on a rectangular single layer DNA origami, which is then folded or coupled in sandwich-like structures with two outer DNA origami layer and one inner hydrophobic molecules layer. The preference to form different kinds of structures could be tailored by rational design of DNA origami.

  14. Amphiphiles containing aromatic groups in the hydrophobic part

    NARCIS (Netherlands)

    Visscher, Inge

    2004-01-01

    Aggregation processes are essential for life on this planet. For example, the membranes of all living cells are bilayered aggregates, consisting of lipid molecules, proteins and steroids. In many biological processes, aggregates play a role. The main driving force for aggregation of amphiphiles is h

  15. Cationic amphiphiles as delivery system for genes into eukaryotic cells

    NARCIS (Netherlands)

    Oberle, Volker; Zuhorn, Inge S.; Audouy, Sandrine; Bakowsky, Udo; Smisterová, Jarmila; Engberts, Jan B.F.N.; Hoekstra, Dick; Gregoriadis, G; McCormack, B

    2000-01-01

    Cationic liposomes, consisting of synthetic amphiphiles and a so-called helper lipid, rapidly form complexes with DNA, known as lipoplexes. When incubated with cells in culture, the DNA can be delivered into the cell and becomes expressed. Because of these properties, lipoplexes are considered a use

  16. Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery.

    Science.gov (United States)

    Nadithe, Venkatareddy; Liu, Runhui; Killinger, Bryan A; Movassaghian, Sara; Kim, Na Hyung; Moszczynska, Anna B; Masters, Kristyn S; Gellman, Samuel H; Merkel, Olivia M

    2015-02-02

    Amphiphilic nucleic acid carriers have attracted strong interest. Three groups of nylon-3 copolymers (poly-β-peptides) possessing different cationic/hydrophobic content were evaluated as siRNA delivery agents in this study. Their ability to condense siRNA was determined in SYBR Gold assays. Their cytotoxicity was tested by MTT assays, their efficiency of delivering Alexa Fluor-488-labeled siRNA intracellularly in the presence and absence of uptake inhibitors was assessed by flow cytometry, and their transfection efficacies were studied by luciferase knockdown in a cell line stably expressing luciferase (H1299/Luc). Endosomal release was determined by confocal laser scanning microscopy and colocalization with lysotracker. All polymers efficiently condensed siRNA at nitrogen-to-phosphate (N/P) ratios of 5 or lower, as reflected in hydrodynamic diameters smaller than that at N/P 1. Although several formulations had negative zeta potentials at N/P 1, G2C and G2D polyplexes yielded >80% uptake in H1299/Luc cells, as determined by flow cytometry. Luciferase knockdown (20-65%) was observed after transfection with polyplexes made of the high molecular weight polymers that were the most hydrophobic. The ability of nylon-3 polymers to deliver siRNA intracellularly even at negative zeta potential implies that they mediate transport across cell membranes based on their amphiphilicity. The cellular uptake route was determined to strongly depend on the presence of cholesterol in the cell membrane. These polymers are, therefore, very promising for siRNA delivery at reduced surface charge and toxicity. Our study identified nylon-3 formulations at low N/P ratios for effective gene knockdown, indicating that nylon-3 polymers are a new, promising type of gene delivery agent.

  17. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients' sera using short overlapping peptides and full-length recombinant protein.

    Science.gov (United States)

    Komatsu, Nobukazu; Jackson, Heather M; Chan, Kok-fei; Oveissi, Sara; Cebon, Jonathan; Itoh, Kyogo; Chen, Weisan

    2013-07-01

    The tumor antigen NY-ESO-1 is one of the most antigenic cancer-testis antigens, first identified by serologic analysis of a recombinant cDNA expression library (SEREX). NY-ESO-1 is expressed in different types of cancers including melanoma. NY-ESO-1-specific spontaneous humoral and cellular immune responses are detected in a large proportion of patients with advanced NY-ESO-1-expressing cancers. Therefore NY-ESO-1 is a good candidate antigen for immunotherapy. Although cellular immune responses to NY-ESO-1 are well characterized, much less is known about the humoral immune responses. In this study, we finely mapped linear antibody epitopes using sera from melanoma patients and shorter overlapping peptide sets. We have shown that melanoma patients' humoral immune systems responded to NY-ESO-1 differently in each individual with widely differing antibody specificity, intensity and antibody subtypes. This knowledge will help us further understand anti-tumor immunity and may also help us to monitor cancer progress and cancer vaccine efficacy in the future.

  18. Representing environment-induced helix-coil transitions in a coarse grained peptide model

    Science.gov (United States)

    Dalgicdir, Cahit; Globisch, Christoph; Sayar, Mehmet; Peter, Christine

    2016-10-01

    Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a C α -C α -C α -C α pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that

  19. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  20. Periodically Grafted Amphiphilic Copolymers: Effects of Steric Crowding and Reversal of Amphiphilicity.

    Science.gov (United States)

    Mandal, Joydeb; Ramakrishnan, S

    2015-06-01

    Two series of periodically clickable polyesters were prepared; one of them carries alkylene segments along its backbone, whereas the other carries poly(ethylene glycol) (PEG) segments. These polyesters were clicked with either MPEG-350 azide or docosyl (C22) azide to yield periodically grafted amphiphilic copolymers (PGACs) carrying either flexible hydrophilic or crystallizable hydrophobic backbone segments. The immiscibility between hydrocarbon and PEG segments causes both of these systems to fold in either a zigzag or hairpin-like conformation; the hairpin-like conformation appears to be preferred when flexible PEG segments are present in the backbone. The folded chains further reorganize in the solid state to develop a lamellar morphology that permits the collocation of the PEG and hydrocarbon (HC) segments within alternate domains; evidence for the self-segregation was gained from DSC, SAXS, and AFM studies. SAXS studies revealed the formation of an extended lamellar structure, whereas AFM images showed uniform layered morphology with layer heights that matched reasonably well with the interlamellar spacing obtained from the SAXS study. Labeling one representative PGAC, carrying crystallizable long alkylene segments in the backbone and pendant PEG-350 side chains, with a small mole fraction of pyrene fluorophore permitted the examination of the conformational transition that occurs upon going from a good to a poor solvent; this single-chain folded conformation, we postulate, is the intermediate that organizes into the lamellar morphology.

  1. Delivery of therapeutics and molecules using self-assembled peptides.

    Science.gov (United States)

    Sundar, S; Chen, Y; Tong, Y W

    2014-01-01

    The use of nanobiotechnology in the formulation of drug carriers has been gaining popularity in recent years. Peptide self-assembly technology is a particularly attractive option due to its simplicity and programmability. Selfassembling peptide amphiphiles are surfactant-like molecules that are capable of spontaneous organization into a variety of nanostructures. The structural and functional features of these nanostructures can be designed through alterations to the peptide sequence. With a keen understanding of the supramolecular principles governing the non-covalent interactions involved, drug loading strategies can be customised. Hydrophobic drugs can be hidden within the core via aromatic interactions while gene-based therapeutics can be complexed with a cationic region of lysine residues. This review article focuses on the application of self-assembling peptide amphiphiles to drug delivery in the area of anti-cancer therapeutics, protein- and peptide-based therapeutics and nucleic acid-based therapeutics. Specific examples are used to discuss the various systems available and emphasis is given to the encapsulation and release mechanism.

  2. Perspectives and Peptides of the Next Generation

    Science.gov (United States)

    Brogden, Kim A.

    Shortly after their discovery, antimicrobial peptides from prokaryotes and eukaryotes were recognized as the next potential generation of pharmaceuticals to treat antibiotic-resistant bacterial infections and septic shock, to preserve food, or to sanitize surfaces. Initial research focused on identifying the spectrum of antimicrobial agents, determining the range of antimicrobial activities against bacterial, fungal, and viral pathogens, and assessing the antimicrobial activity of synthetic peptides versus their natural counterparts. Subsequent research then focused on the mechanisms of antimicrobial peptide activity in model membrane systems not only to identify the mechanisms of antimicrobial peptide activity in microorganisms but also to discern differences in cytotoxicity for prokaryotic and eukaryotic cells. Recent, contemporary work now focuses on current and future efforts to construct hybrid peptides, peptide congeners, stabilized peptides, peptide conjugates, and immobilized peptides for unique and specific applications to control the growth of microorganisms in vitro and in vivo.

  3. Solid-supported biomimetic membranes based on amphiphilic block copolymers

    OpenAIRE

    Kowal, Justyna

    2015-01-01

    Planar artificial membranes based on amphiphilic block copolymers are of high interest due to their potential applications in catalysis, drug screening, sensing, etc. Such polymeric membranes can successfully mimic biological membranes, providing high robustness and stability, which makes them good candidates to be developed in direction of applications. Even though solid-supported polymer membranes have been already investigated to a certain extent, it is still an emerging area. This thesis ...

  4. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  5. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    OpenAIRE

    Zhen Wang; Yapei Wang

    2016-01-01

    Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attent...

  6. Interaction of multidrug-resistant Chinese hamster ovary cells with amphiphiles.

    OpenAIRE

    Loe, D. W.; Sharom, F J

    1993-01-01

    The interaction of membrane-active amphiphiles with a series of MDR Chinese hamster ovary (CHO) cell lines was investigated. Cross-resistance to cationic amphiphiles was observed, which was effectively sensitised by verapamil. MDR cells showed collateral sensitivity to polyoxyethylene amphiphiles (Triton X-100/Nonidet P-40), which reached a maximum at 9-10 ethylene oxide units. Resistant lines were also highly collaterally sensitive (17-fold) to dibutylphthalate. mdrl transfectants showed cro...

  7. Dendronized multifunctional amphiphilic polymers as efficient nanocarriers for biomedical applications.

    Science.gov (United States)

    Kumari, Meena; Gupta, Shilpi; Achazi, Katharina; Böttcher, Christoph; Khandare, Jayant; Sharma, Sunil K; Haag, Rainer

    2015-01-01

    To gain insight into the factors that affect stability and transport efficiency under dilution conditions, dendronized and hyperbranched multifunctional amphiphilic polymers are synthesized by following the "grafting to" approach using varied amounts of propargylated alkyl chain with perfect and hyperbranched polyglycerol dendrons on the base copolymer of PEG (Mn: 1000 g mol(-1)) diethylester and 2-azidopropane-1,3-diol following the "bio-catalytic method" and "click approach". The dendronized and hyperbranched polymeric systems form supramolecular aggregates and exhibit an efficient transport potential for the model dye "Nile red" in the low μm range in the core-shell-type architecture provided with distinct amphiphilicity as required for encapsulation. Cytotoxicity studies show the polymeric systems to be non-toxic over a wide concentration range. The cellular internalization of Nile-red-encapsulated supramolecular micellar structures is also studied using cellular fluorescence micro-scopy and fluorescence-activated cell sorting (FACS) measurements. A comparison of the data for the dendronized polymers (PEG Mn: 600/1000 g mol(-1)) with the respective low-molecular-weight amphiphile reveal that these polymeric systems are excellent nanotransporters.

  8. Incorporation of amphiphilic cyclodextrins into liposomes as artificial receptor units.

    Science.gov (United States)

    Kauscher, Ulrike; Stuart, Marc C A; Drücker, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan

    2013-06-18

    In this article, we describe the introduction of amphiphilic β-cyclodextrins into liposomes to act as artificial receptor units. Using dynamic light scattering, dye encapsulation, and cryogenic transmission electron microscopy, we show that amphiphilic β-cyclodextrins can be mixed in any proportion with a typical mixture of phospholipids and cholesterol to provide stable, spherical, and unilamellar mixed vesicles. It is also possible to form giant unilamellar vesicles with mixtures of lipids and cyclodextrin. The permeability of the mixed vesicles increases with the percentage of cyclodextrin. The cyclodextrins can act as host molecules for hydrophobic guest molecules, even when they are dispersed at a low percentage in the vesicle membrane. It is shown that mixed vesicles can be decorated with carbohydrate-functionalized guest molecules, with photoresponsive guest molecules, and with dye-functionalized guest molecules. Taken together, it is demonstrated that the host-guest chemistry of amphiphilic cyclodextrins is fully compatible with a liposomal bilayer membrane and the advantages of each can be combined to give superior nanocontainers.

  9. pH-dependent and pH-independent self-assembling behavior of surfactant-like peptides

    DEFF Research Database (Denmark)

    Gurevich, Leonid; Fojan, Peter

    2012-01-01

    and characterization of two novel families of amphiphilic peptides KAn and KAnW (n=6,5,4) that exhibits clear charge separation controllable by pH of the environment. As the pH changes from acidic to basic, the charge on the ends of the peptide molecule varies eventually leading to reorganization of KAn micelles...... for novel designer pH sensitive materials including drug delivery and controlled release systems....

  10. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  11. Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions.

    Science.gov (United States)

    Yang, Ying; Liu, Zhi; Wu, Dayong; Wu, Man; Tian, Ye; Niu, Zhongwei; Huang, Yong

    2013-11-15

    We investigated the effect of amphiphilic Laponite nano-discs, which were edge-modified by hydrophobic chains, on the properties of Pickering emulsions and Pickering emulsions polymerization. Comparing to unmodified Laponites, these amphiphilic nano-discs can greatly reduce the surface tension, resulting in very stable Pickering emulsions. These particles uniquely combine the Pickering effect with amphiphilic properties similar to the surfactant. Taking advantage of these amphiphilic Pickering emulsifiers, miniemulsion polymerization of styrene was performed. Homogeneous polystyrene nanoparticles with size around 150 nm could thus be prepared.

  12. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties

    OpenAIRE

    Aymonier, Cyril; Schlotterbeck, Ulf; Antonietti, Lydie; Zacharias, Philipp; Thomann, Ralf; Till, Joerg C.; Mecking, Stefan

    2002-01-01

    Hybrids of silver particles of 1 to 2 nm in size with highly branched amphiphilically modified polyethyleneimines adhere effectively to polar substrates providing environmentally friendly antimicrobial coatings.

  13. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung.

    Science.gov (United States)

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda

    2011-03-16

    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  14. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    Science.gov (United States)

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.

  15. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    Directory of Open Access Journals (Sweden)

    Gijs den Besten

    Full Text Available The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs, have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR γ repression and AMP-activated protein kinase (AMPK activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.

  16. Synthesis and characterization of an elastin-mimetic amphiphilic block copolymer protein

    Science.gov (United States)

    Lee, Terrence Anita-Talley

    2000-10-01

    The overall goal in material science is to be able to control the molecular architecture of a material and thus its end properties. There is no method that offers greater control than the biological synthesis of proteins. From the DNA sequence to the final synthesized protein, the entire process is finitely controlled. This present work describes methods developed and used to synthesize protein polymers by manipulating this process. From the initial DNA sequence chosen, the end properties that the protein polymer will have are dictated. An amphiphilic diblock copolymer was designed based on environmentally responsive elastin-mimetic peptide sequences [(Val/Ile)-Pro-Gly-Xaa-Gly] (Xaa = Ala or Glu for the hydrophilic block, Val or Phe for the hydrophobic block) and synthesized using a genetic engineering approach. Differential scanning calorimetry measurements in aqueous solution revealed that reversible hydrophobic folding and assembly of the copolymer occurs above the inverse temperature transition, Tt, of the hydrophobic block. This process results in the formation of 50 nm protein-based micellar aggregates, which were characterized by electron microscopy and temperature-dependent dynamic light scattering techniques. The distribution of micellar aggregates can be altered reproducibly through variation of environmental conditions including pH and temperature. The uniform and defined macromolecular architecture of this protein copolymer permits greater control over the physical properties of the micelles, which therefore may facilitate applications in controlled release of small molecules.

  17. Amphiphilic poly(L-amino acids) - new materials for drug delivery.

    Science.gov (United States)

    Lalatsa, Aikaterini; Schätzlein, Andreas G; Mazza, Mariarosa; Le, Thi Bich Hang; Uchegbu, Ijeoma F

    2012-07-20

    The formulation of drug compounds into medicines will increasingly rely on the use of specially tailored molecules, which fundamentally alter the drug's pharmacokinetics to enable its therapeutic activity. This is particularly true of the more challenging hydrophobic drugs or therapeutic biological molecules. The demand for such enabled medicines will translate into a demand for advanced highly functionalised drug delivery materials. Polymers have been used to formulate medicines for many decades and this is unlikely to change soon. Amphiphilic polymers based on amino acids are the subject of this review. These molecules, which present as either poly(L-amino acid) block copolymers or poly(L-amino acid) backbones with hydrophobic substituents, self assemble into micelles, vesicles, nanofibres and solid nanoparticles and such self assemblies, have drug delivery capabilities. The nature of the self-assembly depends on the chemistry of the constituent molecules, with the more hydrophilic molecules forming nanosized micellar aggregates including peptide nanofibres, molecules of intermediate hydrophobicity forming polymeric vesicles and the more hydrophobic variants forming amorphous polymeric nanoparticles of 100-1000 nm in diameter. The self-assemblies may be loaded with drugs or may present as micelle forming polymer-drug conjugates and the supramolecular aggregates have been employed as drug solubilisers, tumour targeting agents, gene delivery vectors and facilitators of intracellular drug uptake, with a more promising polymer-drug conjugate progressing to clinical testing.

  18. Development of broad-spectrum antimicrobial latex paint surfaces employing active amphiphilic compounds.

    Science.gov (United States)

    Fulmer, Preston A; Wynne, James H

    2011-08-01

    With the increase in antibiotic-resistant microbes, the production of self-decontaminating surfaces has become an area of research that has seen a surge of interest in recent years. Such surfaces, when incorporated into commercial products such as children's toys, medical devices and hospital surfaces could reduce the number of infections caused by pathogenic microorganisms. A number of active components for self-decontaminating surfaces have been investigated, including common antibiotics, metal ions, quaternary ammonium salts (QAS), and antimicrobial peptides (AMP). A recent research focus has been development of a wide range of amphiphilic antimicrobial additives that when combined with modern low volatile organic compound (VOC), water-based paints leads to a surface concentration of the active compounds as the coating cures. Herein we report the development of antimicrobial coatings containing a variety of additives, both QAS and AMP that are active against a broad-spectrum of potentially pathogenic bacteria (1-7 log kill), as well as enveloped viruses (2-7 log kill) and fungi (1-2 log kill). Additionally, these additives were compatible with water-dispersed acrylate coatings (latex paint) which have a broad range of real world applicability, and remained active for multiple challenges and when exposed to various cleaning scenarios in which they might encounter in real world situations.

  19. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds

    NARCIS (Netherlands)

    Buitink, J.; Leprince, O.; Hoekstra, F.A.

    2000-01-01

    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumb

  20. Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening.

    Directory of Open Access Journals (Sweden)

    Arnab Bhattacherjee

    2013-10-01

    Full Text Available The binding of short disordered peptide stretches to globular protein domains is important for a wide range of cellular processes, including signal transduction, protein transport, and immune response. The often promiscuous nature of these interactions and the conformational flexibility of the peptide chain, sometimes even when bound, make the binding specificity of this type of protein interaction a challenge to understand. Here we develop and test a Monte Carlo-based procedure for calculating protein-peptide binding thermodynamics for many sequences in a single run. The method explores both peptide sequence and conformational space simultaneously by simulating a joint probability distribution which, in particular, makes searching through peptide sequence space computationally efficient. To test our method, we apply it to 3 different peptide-binding protein domains and test its ability to capture the experimentally determined specificity profiles. Insight into the molecular underpinnings of the observed specificities is obtained by analyzing the peptide conformational ensembles of a large number of binding-competent sequences. We also explore the possibility of using our method to discover new peptide-binding pockets on protein structures.

  1. H-shaped supra-amphiphiles based on a dynamic covalent bond.

    Science.gov (United States)

    Wang, Guangtong; Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-10-16

    The imine bond, a kind of dynamic covalent bond, is used to bind two bolaform amphiphiles together with spacers, yielding H-shaped supra-amphiphiles. Micellar aggregates formed by the self-assembly of the H-shaped supra-amphiphiles are observed. When pH is tuned down from basic to slightly acidic, the benzoic imine bond can be hydrolyzed, leading to the dissociation of H-shaped supra-amphiphiles. Moreover, H-shaped supra-amphiphiles have a lower critical micelle concentration than their building blocks, which is very helpful in enhancing the stability of the benzoic imine bond being hydrolyzed by acid. The surface tension isotherms of the H-shaped supra-amphiphiles with different spacers indicate their twisty conformation at a gas-water interface. The study of H-shaped supra-amphiphiles can enrich the family of amphiphiles, and moreover, the pH-responsiveness may make them apply to controlled or targetable drug delivery in a biological environment.

  2. Synthesis and characteristics of biodegradable pyridinium amphiphiles used for in vitro DNA delivery

    NARCIS (Netherlands)

    Roosjen, Astrid; Smisterova, Jarmila; Driessen, Cecile; Anders, Joachim T.; Wagenaar, Anno; Hoekstra, Dirk; Hulst, Ron; Engberts, Jan B.F.N.

    2002-01-01

    Pyridinium amphiphiles have found practical application for the delivery of DNA into eukaryotic cells. A general synthetic method starting from (iso)nicotinoyl chloride has been devised for the preparation of pyridinium amphiphiles based on (bio)degradable esters, allowing structural variation both

  3. Shaping quaternary assemblies of water-soluble non-peptide helical foldamers by sequence manipulation

    Science.gov (United States)

    Collie, Gavin W.; Pulka-Ziach, Karolina; Lombardo, Caterina M.; Fremaux, Juliette; Rosu, Frédéric; Decossas, Marion; Mauran, Laura; Lambert, Olivier; Gabelica, Valérie; Mackereth, Cameron D.; Guichard, Gilles

    2015-11-01

    The design and construction of biomimetic self-assembling systems is a challenging yet potentially highly rewarding endeavour that contributes to the development of new biomaterials, catalysts, drug-delivery systems and tools for the manipulation of biological processes. Significant progress has been achieved by engineering self-assembling DNA-, protein- and peptide-based building units. However, the design of entirely new, completely non-natural folded architectures that resemble biopolymers (‘foldamers’) and have the ability to self-assemble into atomically precise nanostructures in aqueous conditions has proved exceptionally challenging. Here we report the modular design, formation and structural elucidation at the atomic level of a series of diverse quaternary arrangements formed by the self-assembly of short amphiphilic α-helicomimetic foldamers that bear proteinaceous side chains. We show that the final quaternary assembly can be controlled at the sequence level, which permits the programmed formation of either discrete helical bundles that contain isolated cavities or pH-responsive water-filled channels with controllable pore diameters.

  4. Adsorption of alkyltriphenylphosphonium amphiphiles on nafion membranes. X-ray photoelectron spectroscopy and static secondary ion mass spectrometry analysis

    NARCIS (Netherlands)

    Straaten-Nijenhuis, van Wilma F.; Sudholter, Ernst J.R.; Jong, de Feike; Reinhoudt, David N.; Mahy, Jan W.G.

    1993-01-01

    Conductivity, UV, and attenuated total reflectance IR measurements show that n-alkyltriphenylphosphonium amphiphiles adsorb on a Ndion 117 membrane. Approximately 20% of the Ndion protons are exchanged for a cationic amphiphile (n-hexadecyltriphenylphoephonium). Diffusion of amphiphile through the m

  5. Peptide identification

    Science.gov (United States)

    Jarman, Kristin H [Richland, WA; Cannon, William R [Richland, WA; Jarman, Kenneth D [Richland, WA; Heredia-Langner, Alejandro [Richland, WA

    2011-07-12

    Peptides are identified from a list of candidates using collision-induced dissociation tandem mass spectrometry data. A probabilistic model for the occurrence of spectral peaks corresponding to frequently observed partial peptide fragment ions is applied. As part of the identification procedure, a probability score is produced that indicates the likelihood of any given candidate being the correct match. The statistical significance of the score is known without necessarily having reference to the actual identity of the peptide. In one form of the invention, a genetic algorithm is applied to candidate peptides using an objective function that takes into account the number of shifted peaks appearing in the candidate spectrum relative to the test spectrum.

  6. Metal-free synthesis of amphiphilic functional polycarbonates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amphiphilic block copolymers of poly(5-benzyloxy trimethylene carbonate) (PBTMC) and poly(ethylene glycol) (PEG) were synthesized through enzymatic polymerization using immobilized porcine pancreas lipase (IPPL). The obtained copolymers with different compositions were characterized by GPC and 1H NMR. The copolymer composition was in agreement with the feed ratio.The molecular weight of the copolymers showed an increasing trend with the decrease of PEG contents. Micelles of the copolymers were formed by dialysis procedure, and characterized by transmission electron microscopy (TEM).

  7. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    Directory of Open Access Journals (Sweden)

    Yuka Sakuma

    2015-03-01

    Full Text Available It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life.

  8. Micellar structure of amphiphilic poly(2-oxazoline) diblock copolymers

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Ivanova, R.; Lüdtke, K.

    2007-01-01

    Amphiphilic diblock copolymers from poly(2-oxazoline)s in aqueous solution can form micelles. By means of small-angle neutron scattering, we have found that poly[(n-nonyl-2-oxazoline)-b-(methyl-2-oxazoline)] {P[(NOx)-b-(MOx)]} diblock copolymers in aqueous solution form micelles of core-shell type....... We have determined the core radius and the shell thickness of the micelles. Comparing the values obtained to the stretched lengths of the blocks leads to the conclusion that the P(NOx) core blocks are stretched, whereas the P(MOx) shell blocks are coiled....

  9. Bolaform supramolecular amphiphiles as a novel concept for the buildup of surface-imprinted films.

    Science.gov (United States)

    Zhang, Jiawei; Liu, Yiliu; Wu, Guanglu; Schönhoff, Monika; Zhang, Xi

    2011-09-06

    Stable multilayer films were fabricated on the basis of the alternating layer-by-layer assembly of a two-component bolaform supramolecular amphiphile and diazoresins, followed by photochemical cross-linking of the structure. UV-visible spectroscopy and atomic force microscopy revealed a uniform deposition process. Moreover, one component of the supramolecular amphiphile can be removed from the multilayer films after cross-linking between the second component and the diazoresin. The release and uptake of the imprinted supramolecular amphiphile component are shown to be reversible. Furthermore, uptake experiments of different molecules show the selectivity of the imprinted sites for the template molecule. Thus, surface-imprinted films can be formed by employing dissociable two-component supramolecular amphiphiles. This research reveals that supramolecular amphiphiles can be used as a novel concept for the construction of multilayer films, and it also provides a new method of generating surface-imprinted multilayers.

  10. A Contact Angle Study of the Interaction between Embedded Amphiphilic Molecules and the PDMS Matrix in an Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Wenjun Qiu

    2014-08-01

    Full Text Available Poly(dimethylsiloxane (PDMS surface modification via gradient-induced transport of embedded amphiphilic molecules is a novel, easy, flexible, and environmentally friendly approach for reducing protein adsorption on PDMS in microfluidic applications. To better understand the processing and the potential use in the viability-sensitive applications such as manipulation and culturing of primary neural cells, we systematically investigate how embedded molecules interact with a PDMS matrix and its surface in aqueous environments by studying the wetting angle over time under various processing conditions, including water exposure time, water exposure temperature, curing master materials, in addition to comparing different embedded amphiphilic molecules. The results indicate that the water exposure time clearly plays an important role in the surface properties. Our interpretation is that molecular rearrangement of the surface-embedded molecules improves surface coverage in the short term; while over a longer period, the transport of molecules embedded in the bulk enhance its coverage. However, this improvement finally terminates when molecules transported from the bulk to the surface are not sufficient to replace the molecules leaching into the water.

  11. Effect of clustered peptide binding on DNA condensation.

    Science.gov (United States)

    Haley, Jennifer; Kabiru, Paul; Geng, Yan

    2010-01-01

    DNA condensation in-vitro has been studied as a model system to reveal common principles underlying gene packaging in biology, and as the critical first step towards the development of non-viral gene delivery vectors. In this study, we use a bio-inspired approach, where small DNA-binding peptides are controllably clustered by an amphiphilic block copolymer scaffold, to reveal the effect of clustered peptide binding on the energetics, size, shape and physical properties of DNA condensation in-vitro. This provides insights into the general architectural effect of gene-binding proteins on DNA condensation process. Moreover, the versatility afforded by regulating the clustering density and composition of peptides may provide a novel design platform for gene delivery applications in the future.

  12. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel

    DEFF Research Database (Denmark)

    Briuglia, Maria-Lucia; Urquhart, Andrew; Lamprou, Dimitrios A.

    2014-01-01

    . In this work, we have investigated the diffusion properties of Pindolol, Quinine and Timolol maleate from RADA16 in PBS and in BSS-PLUS at 37°C. A sustained, controlled, reproducible and efficient drug release has been detected for all the systems, which allows to understand the dependence of release kinetics...

  13. Nanocellulose-based biosensors: design, preparation, and activity of peptide-linked cotton cellulose nanocrystals having fluorimetric and colorimetric elastase detection sensitivity

    Science.gov (United States)

    Nanocrystalline cellulose is an amphiphilic, high surface area material that can be easily functionalized and is biocom-patible and eco-friendly. It has been used singularly and in combination with other nanomaterials to optimize biosensor design. The attachment of peptides and proteins to nanocryst...

  14. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization

    Science.gov (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle

    2003-01-01

    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  15. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties.

    Science.gov (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2016-03-14

    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity.

  16. DEFORMATION OF COPOLYMER MICELLES INDUCED BY AMPHIPHILIC DIMER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2012-01-01

    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  17. Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings.

    Science.gov (United States)

    Han, Hua; Wu, Jianfeng; Avery, Christopher W; Mizutani, Masato; Jiang, Xiaoming; Kamigaito, Masami; Chen, Zhan; Xi, Chuanwu; Kuroda, Kenichi

    2011-04-05

    A new strategy for preparing antimicrobial surfaces by a simple dip-coating procedure is reported. Amphiphilic polycations with different mole ratios of monomers containing dodecyl quaternary ammonium, methoxyethyl, and catechol groups were synthesized by free-radical polymerization. The polymer coatings were prepared by immersing glass slides into a polymer solution and subsequent drying and heating. The quaternary ammonium side chains endow the coatings with potent antibacterial activity, the methoxyethyl side chains enable tuning the hydrophobic/hydrophilic balance, and the catachol groups promote immobilization of the polymers into films. The polymer-coated surfaces displayed bactericidal activity against Escherichia coli and Staphylococcus aureus in a dynamic contact assay and prevented the accumulation of viable E. coli, S. aureus, and Acinetobacter baumannii for up to 96 h. Atomic force microscopy (AFM) images of coating surfaces indicated that the surfaces exhibit virtually the same smoothness for all polymers except the most hydrophobic. The hydrophobic polymer without methoxyethyl side chains showed clear structuring into polymer domains, causing high surface roughness. Sum-frequency generation (SFG) vibrational spectroscopy characterization of the surface structures demonstrated that the dodecyl chains are predominantly localized at the surface-air interface of the coatings. SFG also showed that the phenyl groups of the catechols are oriented on the substrate surface. These results support our hypothesis that the adhesive or cross-linking functionality of catechol groups discourages polymer leaching, allowing the tuning of the amphiphilic balance by incorporating hydrophilic components into the polymer chains to gain potent biocidal activity.

  18. Electron paramagnetic resonance study of amphiphiles partitioning behavior in desiccation-tolerant moss during dehydration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.(C) 2007 Yan Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants.

    Science.gov (United States)

    Albertsen, A N; Duffy, C D; Sutherland, J D; Monnard, P-A

    2014-06-01

    The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks.

  20. Synthesis of Polymerizable Amphiphiles with Systematic Variation of Critical Packing Parameters

    Institute of Scientific and Technical Information of China (English)

    M. H. Li; W. L. Yang; J. Qian; C. C. Wang; S. K. Fu

    2005-01-01

    @@ 1Introduction An amphiphile is a molecule composed of hydrophilic part and hydrophobic part, which are incompatible and tend to separate from each other. The tendency of separation is often promoted by addition of water and sometimes also oil. Under balanced conditions the mixtures form macroscopically homogeneous phases, including isotropic solution phases and liquid crystalline phases. Correlation of the amphiphile structure with its preferred phases could be understood with a simple geometric model[1], which defines a dimensionless Critical Packing Parameter (CPP) to describe the relative bulkiness of the hydrophobic part and the hydrophilic part in an amphiphile. With CPP increasing from a small value to a high value the amphiphile changes from hydrophilic to hydrophobic, its preferred phase structure from direct structures via lamellar structure to reverse structures. This model provides a basis for the molecular design of amphiphiles. To immobilize the microstructure of the phases formed by amphiphiles is a challenge for current material chemists. Techniques of both inorganic polymerization[2] and organic polymerization[3] have been developed. With organic polymerization the molecular design of polymerizable amphiphiles is critical for the successful immobilization of the vulnerable precursor microstructures.

  1. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-01-01

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190

  2. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7.

    Science.gov (United States)

    Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan

    2017-02-06

    Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH₂), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17-29) (FV-LL), FV7-magainin 2 (9-21) (FV-MA) and FV7-cecropin A (1-8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17-29) (LL), magainin 2 (9-21) (MA) and cecropin A (1-8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents.

  3. Asymmetric and symmetric bolaform supra-amphiphiles: formation of imine bond influenced by aggregation.

    Science.gov (United States)

    Wang, Guangtong; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi

    2014-02-18

    A series of bolaform supra-amphilphiles with different symmetries were fabricated through dynamic benzoic imine bond formation. The pH dependence of imine formations of these supra-amphiphiles were characterazied. We found that the extent of the imine formation of these supra-amphiphies were different. The supra-amphiphiles with a poorer symmetry always exhibited a lower imine formation at a given pH. Therefore, the varied extent of imine bond formation indicate the different aggregations of these supra-amphilphiles, which are controlled by the molecular symmetry of the supra-amphiphiles.

  4. Stable Vesicles Composed of Mono- or Dicarboxylic Fatty Acids and Trimethylammonium Amphiphiles

    DEFF Research Database (Denmark)

    Caschera, Filippo; Bernardino de la Serna, Jorge; Löffler, Philipp M. G.

    2011-01-01

    shown to be more stable than those formed by pure fatty acids. Those containing bola-amphiphile even showed encapsulation of a small hydrophilic solute (8-hydroxypyrene-1,3,6-trisulfonic-acid) suggesting a denser packing of the amphiphiles. Compression and kinetics analysis of monolayers composed...... of these amphiphiles mixtures at the air/water interface suggest that the stabilization of the structures can be attributed to two main interactions between headgroups, predominantly the formation of hydrogen bonds between protonated and deprotonated acids and then the additional electrostatic interactions between...

  5. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    Science.gov (United States)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging

  6. Preparation of Chiral 1,4-Phenylene-silicas via Chiral Low-molecular-weight Amphiphiles

    Institute of Scientific and Technical Information of China (English)

    XIAO Min; LIU Xiao-juan; HU Kai; WU Li-min; LI Yi; LI Bao-zong; YANG Yong-gang

    2012-01-01

    Chiral organic-inorganic hybrid silicas can be prepared via the self-assemblies of chiral surfactants and gelators as templates.However,the relationship between the chirality of the hybrid silica and the structure of the surfactant/gelator has not been systemically studied.Herein,a series of chiral low-molecular-weight amphiphiles(LMWAs) derived from L-valine was synthesized.Their alkyl chains were n-butadecyl,n-hexadecyl and n-octadecyl,respectively.They can form viscous liquids in pure water,and physical gels in tetrahydrofuran,cyclohexanone,acetonitrile,acetone,chlorobenzene and nitrobenzenc.Chiral 1,4-phenylene-silicas were prepared via the self-assemblies of these LMWAs as templates.With increasing the alkyl chain length,the 1,4-phenylene-silicas changed from short mesoporous nanorods to long nanotubcs. The circular dichroism spectra of the 1,4-phenylene-silicas indicated that the long nanotubes exhibit the strongest chirality.

  7. Intestinal growth adaptation and glucagon-like peptide 2 in rats with ileal-jejunal transposition or small bowel resection

    DEFF Research Database (Denmark)

    Thulesen, Jesper; Hartmann, B.; Kissow, H.;

    2001-01-01

    Anatomy, glucagon-like peptide 2, small intestine, short bowel, intestinal adaptation, growth factors, rat......Anatomy, glucagon-like peptide 2, small intestine, short bowel, intestinal adaptation, growth factors, rat...

  8. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles.

    Science.gov (United States)

    Zhang, Yue; Zhao, Hanying

    2016-04-19

    In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.

  9. Stabilizing bolaform amphiphile interfacial assemblies by introducing mesogenic groups.

    Science.gov (United States)

    Wang, Mingfeng; Qiu, Dengli; Zou, Bo; Wu, Tao; Zhang, Xi

    2003-04-14

    We describe the synthesis and characterization of the mesogen-bearing bolaform amphiphile 4,4'-dihydroxybiphenylbis(11-pyridinium-N-yl-undecanoic ester) dibromide (BP-10) and its solid/liquid interfacial self-assembly. Cylindrical micelles are directly observed by atomic force microscopy (AFM) at the interface between mica and the aqueous solution above the critical micelle concentration (cmc). In situ and ex situ AFM studies indicate that the cylindrical micelles are stable both at the mica/solution interface and in the dry state. The enhanced stability of the micellar structures enables a detailed investigation of their self-assembly behavior and supramolecular structures at the interface. The adsorption model proposed here is supported by the variation of the interfacial self-assemblies on changing the solution concentration and substrate temperature.

  10. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  11. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Rati Ranjan; Yamada, Tasuku; Matsuoka, Hideki, E-mail: ratiranjan@immt.res.in, E-mail: matsuoka@star.polym.kyoto-u.ac.jp [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2011-09-19

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  12. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer.

  13. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  14. Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites

    Science.gov (United States)

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Yan, Xuehai; Zhao, Xiaoqing; Zhou, Jingxin; Gao, Faming

    2014-01-01

    Self-assembly of hierarchical graphene oxide (GO)-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters. PMID:24983466

  15. Grafting amphiphilic brushes onto halloysite nanotubes via a living RAFT polymerization and their Pickering emulsification behavior.

    Science.gov (United States)

    Hou, Yifan; Jiang, Junqing; Li, Kai; Zhang, Yanwu; Liu, Jindun

    2014-02-20

    Amphiphilic brushes of poly(4-vinylpyridine)-block-polystyrene (P4VP-b-PS) and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) are grafted onto halloysite nanotubes (HNTs) via a surface reversible addition-fragmentation chain transfer (RAFT) living polymerization through anchoring R group in RAFT agent S-1-dodecyl-S'-(R,R'-dimethyl-R″-acetic acid) trithiocarbonates (DDMAT). The characterization of TGA, TEM, and GPC show that amphiphilic brushes are successfully grafted onto HNTs in a living manner. To verify the amphiphilicity of HNTs grafted with block copolymers, their Pickering emulsification behavior in water/soybean oil diphase mixture is studied. The results show that modified HNTs can emulsify water/soybean oil diphase mixture and the emulsification performance is dependent on microstructure of amphiphilic brushes such as hydrophilic/hydrophobic segment size and sequence.

  16. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids.

    Science.gov (United States)

    Brahmachari, Sayanti; Das, Dibyendu; Das, Prasanta Kumar

    2010-11-28

    Stable aqueous SWNT dispersion up to 92% was achieved using amino acid based amphiphiles through a structure-property investigation. The nanohybrids showed remarkable serum stability and biocompatibility to mammalian cells.

  17. Tunable catalysts for solvent-free biphasic systems: pickering interfacial catalysts over amphiphilic silica nanoparticles.

    Science.gov (United States)

    Zhou, Wen-Juan; Fang, Lin; Fan, Zhaoyu; Albela, Belén; Bonneviot, Laurent; De Campo, Floryan; Pera-Titus, Marc; Clacens, Jean-Marc

    2014-04-02

    Stabilization of oil/oil Pickering emulsions using robust and recyclable catalytic amphiphilic silica nanoparticles bearing alkyl and propylsulfonic acid groups allows fast and efficient solvent-free acetalization of immiscible long-chain fatty aldehydes with ethylene glycol.

  18. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    Science.gov (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  19. A molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide

    Science.gov (United States)

    Rodina, N. P.; Yudenko, A. N.; Terterov, I. N.; Eliseev, I. E.

    2013-08-01

    Antimicrobial peptides are a class of small, usually positively charged amphiphilic peptides that are used by the innate immune system to combat bacterial infection in multicellular eukaryotes. Antimicrobial peptides are known for their broad-spectrum antimicrobial activity and thus can be used as a basis for a development of new antibiotics against multidrug-resistant bacteria. The most challengeous task on the way to a therapeutic use of antimicrobial peptides is a rational design of new peptides with enhanced activity and reduced toxicity. Here we report a molecular dynamics and circular dichroism study of a novel synthetic antimicrobial peptide D51. This peptide was earlier designed by Loose et al. using a linguistic model of natural antimicrobial peptides. Molecular dynamics simulation of the peptide folding in explicit solvent shows fast formation of two antiparallel beta strands connected by a beta-turn that is confirmed by circular dichroism measurements. Obtained from simulation amphipatic conformation of the peptide is analysed and possible mechanism of it's interaction with bacterial membranes together with ways to enhance it's antibacterial activity are suggested.

  20. Amphiphilic organoplatinum(II) complexes: Self-assembly in solution and at interfaces

    Science.gov (United States)

    Maran, Umamageswaran

    Organoplatinum(II) gemini amphiphiles with three different chain lengths and a predefined angle of 60° are synthesized. Self-organization at the air-water interface is investigated as a function of chain length and reduction in surface area, by using Langmuir-trough techniques. The atomic force microscopy (AFM) images of the transferred Langmuir-Schaefer (LS) films reveals wormlike aggregates for the organoplatinum(II) gemini amphiphiles, possessing hexyloxy- and dodecyloxy-chains. A neutral crown ether functionalized [1+1] facial amphiphile was self-assembled from a flexible 32-membered dibenzo crown ether and a diplatinum acceptor clip. A homologous series of charged triangle-shaped amphiphilic metallomacrocyles was self-assembled from stoichiometric amounts of organoplatinum(II) gemini amphiphiles and bipyridyl donor molecules in quantitative yields. The amphiphilic triangular scaffolds were characterized by multinuclear NMR and ESI-MS. A new amphiphilic organoplatinum(II) precursor with a predefined angle of 90° was synthesized. The precursor was mixed in stoichiometric ratios with two different 3-substituted pyridines and a rigid bipyridyl ligand to construct three charged amphiphilic metallomacrocyles. The computational calculations on the assemblies constructed from flexible 3-substituted pyridines indicate that the assemblies exist largely as chair isomers. The self-organization of the hexacationic triangular amphiphiles at liquid-liquid, air-water and solid-air interfaces was studied using confocal microscopy, in situ Raman spectroscopy, Langmuir-trough techniques, fluorescence spectroscopy and AFM. The amphiphilic triangle with octadecyloxy-chains was found to form a bicontinuous coacervate with pores in a chloroform/water solvent mixture. The pressure-area isotherms revealed formation of surface aggregates at the air-water interface. Fluid AFM studies on the transferred LS layers reveal ridge-like patterns with a flat top. Models were constructed to

  1. Formation of polymer vesicles by amphiphilic fluorosiloxane graft copolymers in solution

    Institute of Scientific and Technical Information of China (English)

    Rui Gang Hou; Ling Min Yi; He Ming Lin; Jia Wei Li; Chuan Xia Huang

    2011-01-01

    Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reaction in this work. The micellization of amphiphilic graft copolymers in the water/ethanol solvent system was investigated, and vesicles with different size were formed after the self-assembly system was aged for different time.

  2. Platform Approach to Produce Polymer Nanoparticles with Modular Functionality from Amphiphilic Block Copolymer Stabilizers

    Science.gov (United States)

    2014-04-01

    functionality, an amphiphilic BCP scaffold was devised to serve as an emulsion polymerization stabilizer. The PS-b-P(EO-co-AGE) BCP contained a PS...synthesized via emulsion polymerization using an amphiphilic block copolymer (BCP) surfactant. The polystyrene-block-poly(ethylene oxide-co-allyl...glycidyl ether) BCPs with various lengths and functional monomer incorporation were synthesized using anionic polymerization . Modification of the allyl

  3. Self-assembling Characteristics of Amphiphilic Star Block Copolymers with a Polyelectrolyte Shell

    Institute of Scientific and Technical Information of China (English)

    S.Strandman; A.Zarembo; V.Aseyev; S.J.Butcher; H.Tenhu

    2007-01-01

    1 Results Amphiphilic block copolymers are capable of forming supramolecular assemblies resembling those observed in nature,such as spherical micelles,worm micelles,and vesicles.Changing the solvent composition,ionic strength or pH of the polymer solution may induce the self-assembly of block copolymers or trigger the transition between the geometries of noncovalent assemblies.In the current work,we have synthesised starlike amphiphilic block copolymers having hydrophobic poly(methyl methacrylate),PMMA,...

  4. Molecular dynamics simulations of peptides at the air-water interface: influencing factors on peptide-templated mineralization.

    Science.gov (United States)

    Jain, Alok; Jochum, Mara; Peter, Christine

    2014-12-30

    Biomineralization is the intricate, biomedically highly relevant process by which living organisms deposit minerals on biological matrices to stiffen tissues and build skeletal structures and shells. Rapaport and coworkers ( J. Am. Chem. Soc. 2000 , 122 , 12523 ; Adv. Funct. Mater. 2008 , 18 , 2889 ; Acta Biomater. 2012 , 8 , 2466 ) have designed a class of self-assembling amphiphilic peptides that are capable of forming hydrogels and attracting ions from the environment, generating structures akin to the extracellular matrix and promoting bone regeneration. The air-water interface serves both in experiment and in simulations as a model hydrophobic surface to mimic the cell's organic-aqueous interface and to investigate the organization of the peptide matrix into ordered β-pleated monolayers and the subsequent onset of biomineral formation. To obtain insight into the underlying molecular mechanism, we have used molecular dynamics simulations to study the effect of peptide sequence on aggregate stability and ion-peptide interactions. We find-in excellent agreement with experimental observations-that the nature of the peptide termini (proline vs phenylalanine) affect the aggregate order, while the nature of the acidic side chains (aspartic vs glutamic acid) affect the aggregate's stability in the presence of ions. These simulations provide valuable microscopic insight into the way ions and peptide templates mutually affect each other during the early stages of biomineralization preceding nucleation.

  5. Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Ali Adem Bahar

    2013-11-01

    Full Text Available The rapid increase in drug-resistant infections has presented a serious challenge to antimicrobial therapies. The failure of the most potent antibiotics to kill “superbugs” emphasizes the urgent need to develop other control agents. Here we review the history and new development of antimicrobial peptides (AMPs, a growing class of natural and synthetic peptides with a wide spectrum of targets including viruses, bacteria, fungi, and parasites. We summarize the major types of AMPs, their modes of action, and the common mechanisms of AMP resistance. In addition, we discuss the principles for designing effective AMPs and the potential of using AMPs to control biofilms (multicellular structures of bacteria embedded in extracellular matrixes and persister cells (dormant phenotypic variants of bacterial cells that are highly tolerant to antibiotics.

  6. Solvent-free, molecular-level modeling of self-assembling amphiphiles in water

    Science.gov (United States)

    Dey, Somajit; Saha, Jayashree

    2017-02-01

    Aggregation mesophases of self-assembling amphiphiles in water are highly important in the context of biology (biomembranes), therapy (liposomes), industry (polymer surfactants), and condensed-matter physics (lyotropic liquid crystals). Besides helping to increase fundamental understanding of collective molecular behavior, simulations of these lyotropic phases are pivotal to technological and medical developments such as smart drug carriers for gene therapy. Implicit-solvent, coarse-grained, low resolution modeling with a simple pair potential is the key to realizing the larger length and time scales associated with such mesoscopic phenomena during a computer simulation. Modeling amphiphiles by directed, soft, ellipsoidal cores interacting via a computationally simple yet tunable anisotropic pair potential, we have come to such a single-site model amphiphile that can rapidly self-assemble to give diverse lyotropic phases (such as fluid bilayers, micelles, etc.) without requiring the explicit incorporation of solvent particles. The model directly represents a tunable packing parameter that manifests in the spontaneous curvature of the amphiphile aggregates. Besides the all-important hydrophobic interaction, the hydration force is also treated implicitly. Thanks to the efficient solvent-free molecular-level coarse graining, this model is suitable for generic mesoscale studies of phenomena such as self-assembly, amphiphile mixing, domain formation, fusion, elasticity, etc., in amphiphile aggregates.

  7. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes

    Science.gov (United States)

    Song, Jibin; Huang, Peng; Chen, Xiaoyuan

    2016-01-01

    Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624

  8. Bioprospecting open reading frames for peptide effectors.

    Science.gov (United States)

    Xiong, Ling; Scott, Charles

    2014-01-01

    Recent successes in the development of small-molecule antagonists of protein-protein interactions designed based on co-crystal structures of peptides bound to their biological targets confirm that short peptides derived from interacting proteins can be high-value ligands for pharmacologic validation of targets and for identification of druggable sites. Evolved sequence space is likely to be enriched for interacting peptides, but identifying minimal peptide effectors within genomic sequence can be labor intensive. Here we describe the use of incremental truncation to diversify genetic material on the scale of open reading frames into comprehensive libraries of constituent peptides. The approach is capable of generating peptides derived from both continuous and discontinuous sequence elements, and is compatible with the expression of free linear or backbone cyclic peptides, with peptides tethered to amino- or carboxyl-terminal fusion partners or with the expression of peptides displayed within protein scaffolds (peptide aptamers). Incremental truncation affords a valuable source of molecular diversity to interrogate the druggable genome or evaluate the therapeutic potential of candidate genes.

  9. Modern treatment of short bowel syndrome

    DEFF Research Database (Denmark)

    Jeppesen, Palle B

    2013-01-01

    Recently, the US Food and Drug Administration and the European Medicines Agency approved the glucagon-like peptide 2 analogue, teduglutide, for the treatment of short bowel syndrome (SBS), and this review describes the physiological basis for its clinical use.......Recently, the US Food and Drug Administration and the European Medicines Agency approved the glucagon-like peptide 2 analogue, teduglutide, for the treatment of short bowel syndrome (SBS), and this review describes the physiological basis for its clinical use....

  10. Peptide arrays for screening cancer specific peptides.

    Science.gov (United States)

    Ahmed, Sahar; Mathews, Anu Stella; Byeon, Nara; Lavasanifar, Afsaneh; Kaur, Kamaljit

    2010-09-15

    In this paper, we describe a novel method to screen peptides for specific recognition by cancer cells. Seventy peptides were synthesized on a cellulose membrane in an array format, and a direct method to study the peptide-whole cell interaction was developed. The relative binding affinity of the cells for different peptides with respect to a lead 12-mer p160 peptide, identified by phage display, was evaluated using the CyQUANT fluorescence of the bound cells. Screening allowed identification of at least five new peptides that displayed higher affinity (up to 3-fold) for MDA-MB-435 and MCF-7 human cancer cells compared to the p160 peptide. These peptides showed very little binding to the control (noncancerous) human umbilical vein endothelial cells (HUVECs). Three of these peptides were synthesized separately and labeled with fluorescein isothiocyanate (FITC) to study their uptake and interaction with the cancer and control cells using confocal laser scanning microscopy and flow cytometry. The results confirmed the high and specific affinity of an 11-mer peptide 11 (RGDPAYQGRFL) and a 10-mer peptide 18 (WXEAAYQRFL) for the cancer cells versus HUVECs. Peptide 11 binds different receptors on target cancer cells as its sequence contains multiple recognition motifs, whereas peptide 18 binds mainly to the putative p160 receptor. The peptide array-whole cell binding assay reported here is a complementary method to phage display for further screening and optimization of cancer targeting peptides for cancer therapy and diagnosis.

  11. Semi-wet peptide/protein array using supramolecular hydrogel

    Science.gov (United States)

    Kiyonaka, Shigeki; Sada, Kazuki; Yoshimura, Ibuki; Shinkai, Seiji; Kato, Nobuo; Hamachi, Itaru

    2004-01-01

    The protein microarray is a crucial biomaterial for the rapid and high-throughput assay of many biological events where proteins are involved. In contrast to the DNA microarray, it has not been sufficiently established because of protein instability under the conventional dry conditions. Here we report a novel semi-wet peptide/protein microarray using a supramolecular hydrogel composed of glycosylated amino acetate. The spontaneous gel-formation and amphiphilic properties of this supramolecular hydrogel have been applied to a new type of peptide/protein gel array that is compatible with enzyme assays. Aqueous cavities created in the gel matrix are a suitable semi-wet reaction medium for enzymes, whereas the hydrophobic domains of the fibre are useful as a unique site for monitoring the reaction. This array system overcomes several drawbacks of conventional protein chips, and thus can have potential applications in pharmaceutical research and diagnosis.

  12. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    Science.gov (United States)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  13. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition

    Energy Technology Data Exchange (ETDEWEB)

    Keleş, Elif, E-mail: elifkelesh@hotmail.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Hazer, Baki, E-mail: bhazer2@yahoo.com [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Cömert, Füsun B. [Department of Microbiology, Faculty of Medicine, Bülent Ecevit University, 67600 Zonguldak (Turkey)

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene–block-polyisoprene–block-polystyrene (PS–b-PI–b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS–b-PI–b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, {sup 1}H NMR, {sup 13}C NMR, GPC and FTIR. - Graphical abstract: Double bonds of polyisoprene units in polystyrene–block-polyisoprene–block-polystyrene triblock copolymer were partially capped with PEG containing mercapto end group via thiol-ene addition in order to obtain antibacterial amphiphilic elastomer. Nano fibers from amphiphilic graft polymers solution were produced by electrospinning. The PEG grafted copolymer inhibits very effectively bacterial growth. Highlights: ► A commercial synthetic elastomer was grafted with PEG to obtain amphiphilic elastomer. ► Amphiphilic elastomer shows antibacterial properties. ► Electrospun micro fibers of the amphiphilic elastomer tend to globular formation.

  14. Anti-biofouling properties of amphiphilic phosphorylcholine polymer films.

    Science.gov (United States)

    Li, Yan; Liu, Cheng-Mei; Yang, Jin-Ying; Gao, Ya-Hui; Li, Xue-Song; Que, Guo-He; Lu, J R

    2011-07-01

    Surfaces of amphiphilic phosphorylcholine polymer (PC1036) prepared by spin-coating were characterized by spectroscopic ellipsometry, water contact angle and atomic force microscopy. The antifouling properties of the PC1036 films to marine benthic diatom Nitzschia closterium MMDL533 were also investigated. The results showed that the dry PC1036 film promoted the adhesion of N. closterium MMDL533 because the hydrophobic lauryl groups were present in the film surface. The 2 h-swelled PC1036 films had excellent anti-fouling properties with extremely low attachment densities and retention densities no matter what the annealing temperature was. The thickness of the coated films lower than 147 Å had a profound effect on the film anti-fouling properties. Otherwise, when the film thickness was higher than that value, there was no more improvement of diatom cell reduction observed. The annealing temperature had only a little effect on the film resistant to diatom adhesion, which might be attributed to two factors including the PC group packing densities in the outer PC layer and the equilibrated water volume fraction in the 2 h-swelled PC1036 films.

  15. Self-assembly of model amphiphilic Janus particles.

    Science.gov (United States)

    Rosenthal, Gerald; Gubbins, Keith E; Klapp, Sabine H L

    2012-05-07

    We apply molecular dynamics simulations to investigate the structure formation of amphiphilic Janus particles in the bulk phase. The Janus particles are modeled as (soft) spheres composed of a hydrophilic and hydrophobic part. Their orientation is described by a vector representing an internal degree of freedom. Investigating energy fluctuations and cluster size distributions, we determine the aggregation line in a temperature-density-diagram, where the reduced temperature is an inverse measure for the anisotropic coupling. Below this aggregation line clusters of various sizes depending on density and reduced temperature are found. For low densities in the range ρ∗ ≤ 0.3, the cluster size distribution has a broad maximum, indicating simultaneous existence of various cluster sizes between 5 and 10. We find no hint of a condensation transition of these clustered systems. In the case of higher densities (ρ∗ = 0.5 and 0.6), the cluster size distribution shows an extremely narrow peak at clusters of size 13. In these icosahedrons, the particles are arranged in a closed-packed manner, thereby maximizing the number of bonds. Analyzing the translational mean-square displacement we also observe indications of hindered diffusion due to aggregation.

  16. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla

    2016-01-01

    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were synthes...... and 20 μM concentrations. The dendrons showed low cytotoxicity, displaying cell viability well above 80%....... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...... with alkyl chain lengths above C12 are ascribed to intermicellar aggregates stabilized by hydrophobic and electrostatic forces in accordance with the observed pH effect. Finally, the cytotoxicity of the dendrons was evaluated in mouse fibroblast (NIH/3T3) and human embryonic kidney (HEK 293T) cells at 5, 10...

  17. Optimization of hypocrellin B derivative amphiphilicity and biological activity

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; XIE Jie; ZHANG LuYong; CHEN HongXia; GU Ying; ZHAO JingQuan

    2009-01-01

    To satisfy the dual requirements of the fluent transportation in blood and the affinity to the target tissues of vascular diseases, hypocrellin derivatives with optimized amphiphilicity are expected. In this work, 3-amino-1-propanesulfonic acid and 4-amino-1-butanesulfonic acid substituted hypocrellin B,named compounds 1 and 2, were designed, synthesized in high yields and characterized. Besides greatly strengthened red absorption, the maximum solubility of compound 2 in phosphate buffered saline (PBS) is 4.2 mg/mL which is just enough to prepare an aqueous solution for intravenous injection in clinically acceptable concentration, while the partition coefficient between n-octanol and PBS,5.6, benefits the cell-uptake and biological activity as well. Furthermore, EPR measurements reveal that the photosensitization activities of the two compounds to generate semiquinone anion radicals, superoxide anion radicals and singlet oxygen are a little bit higher than those of taurine substituted hypocrellin B (THB), but the photodynamic activities to human lung cancer A549 cells are several times that of THB, mainly due to increases in lipophilicity and cell-uptake.

  18. Amphiphilic organic ion pairs in solution: a theoretical study.

    Science.gov (United States)

    Pradines, Vincent; Poteau, Romuald; Pimienta, Veronique

    2007-07-16

    The macroscopic manifestation of hydrophobic interactions for amphiphilic organic ion pairs (tetraalkylammonium-anion) has been shown experimentally by measuring their association constants and their affinity with the organic phase. Beyond a certain size, there is a direct relation between association constants and chain lengths in tetraalkylammonium ions. We propose to cast a bridge between these results and geometrical properties considered at the level of a single ion pair by means of quantum chemistry calculations performed on model systems: trimethylalkylammonium-pentyl sulfate instead of tetraalkylammonium-dodecyl sulfate. Two limiting cases are considered: head-to-head configurations, which yield an optimal electrostatic interaction between polar heads, and parallel configurations with a balance between electrostatic and hydrophobic interactions. All properties (geometries, complexation energies, and atomic charges) were obtained at the MP2 level of calculation, with water described by a continuum model (CPCM). Dispersion forces link hydrocarbon chains of tetraalkylammonium ions and pentyl sulfate, thus yielding (for the largest ion pairs) parallel configurations favored with respect to head-to-head geometries by solute-solvent electrostatic interactions. Given the small experimental association energies, we probe the accuracy limit of the MP2 and CPCM methods. However, clear trends are obtained as a function of chain length, which agree with the experimental observations. The calculated monotonic stabilization of ion pairs when the hydrocarbon chain increases in length is discussed in terms of electrostatic interactions (between ions and between ion pairs and water), dispersion forces, and cavitation energies.

  19. Photochemical Isomerization and Topochemical Polymerization of the Programmed Asymmetric Amphiphiles

    Science.gov (United States)

    Kim, Dae-Yoon; Lee, Sang-A.; Jung, Daseal; Jeong, Kwang-Un

    2016-06-01

    For the advancement in multi-stimuli responsive optical devices, we report the elaborate molecular engineering of the dual photo-functionalized amphiphile (abbreviated as AZ1DA) containing both a photo-isomerizable azobenzene and a photo-polymerizable diacetylene. To achieve the efficient photochemical reactions in thin solid films, the self-assembly of AZ1DA molecules into the ordered phases should be precisely controlled and efficiently utilized. First, the remote-controllable light shutter is successfully demonstrated based on the reversible trans-cis photo-isomerization of azobenzene group in the smectic A mesophase. Second, the self-organized monoclinic crystal phase allows us to validate the photo-polymerization of diacetylene moiety for the photo-patterned thin films and the thermo-responsible color switches. From the demonstrations of optically tunable thin films, it is realized that the construction of strong relationships between chemical structures, molecular packing structures and physical properties of the programmed molecules is the core research for the development of smart and multifunctional soft materials.

  20. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu

    2009-01-01

    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  1. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids

    Science.gov (United States)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-01-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a

  2. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols).

    Science.gov (United States)

    Diab, C; Winnik, F M; Tribet, C

    2007-03-13

    The interactions in water between short amphiphilic macromomolecules, known as amphipols, and three neutral surfactants (detergents), dodecylmaltoside (DM), n-octylthioglucoside (OTG), and n-octyltetraethyleneoxide (C8E4), have been assessed by static and dynamic light-scattering (SLS and DLS), capillary electrophoresis (CE), and isothermal titration calorimetry (ITC). The amphipols selected are random copolymers of the hydrophobic n-octylacrylamide (25-30 mol %), a charged hydrophilic monomer, either acrylic acid ( approximately 35 mol %) or a phosphorylcholine-modified acrylamide (40-70 mol %), and, optionally, N-isopropylacrylamide (30-40 mol %). In water, the copolymers form micelles of small size (hydrodynamic radius: approximately 5 nm). Neutral surfactants, below their critical micellar concentration (cmc), form mixed micelles with the amphipols irrespective of the chemical structure of the detergent or the polymer. The fraction of detergent in the surfactant/polymer complexes increases significantly (cooperatively) as the surfactant concentration nears the cmc. The ITC data, together with data gathered by CE, were fitted via a regular mixing model, which allowed us to predict the detergent concentration in equilibrium with complexes and the heat evolved upon transfer of detergent from water into a mixed surfactant/polymer complex. The enthalpy of transfer was found to be almost equal to the enthalpy of micellization, and the regular mixing model points to a near-ideal mixing behavior for all systems. Amphipols are promising tools in biochemistry where they are used, together with neutral surfactants, for the stabilization and handling of proteins. This study provides guidelines for the optimization of current protein purification protocols and for the formulations of surfactant/polymer systems used in pharmaceutics, cosmetics, and foodstuffs.

  3. Peptide Vaccine: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Weidang Li

    2014-07-01

    Full Text Available Conventional vaccine strategies have been highly efficacious for several decades in reducing mortality and morbidity due to infectious diseases. The bane of conventional vaccines, such as those that include whole organisms or large proteins, appear to be the inclusion of unnecessary antigenic load that, not only contributes little to the protective immune response, but complicates the situation by inducing allergenic and/or reactogenic responses. Peptide vaccines are an attractive alternative strategy that relies on usage of short peptide fragments to engineer the induction of highly targeted immune responses, consequently avoiding allergenic and/or reactogenic sequences. Conversely, peptide vaccines used in isolation are often weakly immunogenic and require particulate carriers for delivery and adjuvanting. In this article, we discuss the specific advantages and considerations in targeted induction of immune responses by peptide vaccines and progresses in the development of such vaccines against various diseases. Additionally, we also discuss the development of particulate carrier strategies and the inherent challenges with regard to safety when combining such technologies with peptide vaccines.

  4. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    Science.gov (United States)

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction.

  5. Self-assembly of ssDNA-amphiphiles into micelles, nanotapes and nanotubes

    Science.gov (United States)

    Pearce, Timothy R.

    The field of DNA nanotechnology utilizes DNA as a construction material to create functional supramolecular and multi-dimensional structures like two-dimensional periodic lattices and three-dimensional polyhedrons with order on the nanometer scale for many nanotechnology applications including molecular templating, nanosensors, and drug delivery. Single-stranded DNA (ssDNA) is often used to create these nanostructures as the DNA bases provide an intrinsic molecular code that can be exploited to allow for the programmed assembly of structures based upon Watson-Crick base-pairing. However, engineering these complex structures from biopolymers alone requires careful design to ensure that the intrinsic forces responsible for organizing the materials can produce the desired structures. Additional control over supramolecular assembly can be achieved by chemically modifying the ssDNA with hydrophobic moieties to create amphiphilic molecules, which adds the hydrophobic interaction to the list of contributing forces that drive the self-assembly process. We first explored the self-assembly behavior of a set of ssDNA aptamer-amphiphiles composed of the same hydrophobic tail and hydrophilic ssDNA aptamer headgroup but with different spacer molecules linking these groups together. Through the use of cryo-transmission electron microscopy (cryo-TEM), small angle x-ray scattering (SAXS), and circular dichroism (CD) we show that the aptamer-amphiphiles can assemble into a variety of structures depending on the spacer used. We demonstrated, for the first time, the creation of self-assembled aptamer-amphiphile nanotape structures and show that the choice of the spacer used in the design of aptamer-amphiphiles can influence their supramolecular self-assembly as well as the secondary structure of the aptamer headgroup. We next explored the role of the ssDNA headgroup on the amphiphile self-assembly behavior by designing amphiphiles with headgroups of multiple lengths and nucleotides

  6. Current trends in the clinical development of peptide therapeutics.

    Science.gov (United States)

    Saladin, Pauline M; Zhang, Bodi D; Reichert, Janice M

    2009-12-01

    The development of peptides as drugs is attracting increasing attention from the pharmaceutical industry. This interest is at least partially a consequence of the widespread acceptance of therapeutic proteins by physicians and patients, and because of improvements to problems such as a short half-life and delivery issues. The markets for peptide-based compounds can be substantial, with six peptide drugs attaining global sales of more than US $750 million in 2008. To track trends in the clinical development and marketing approval of peptides, Tufts Center for the Study of Drug Development and Ferring Research Institute compiled publically available data for peptides that entered clinical trials sponsored by commercial firms, with a focus on peptide therapeutics, but also including peptide vaccines and diagnostics. The results provide an historical overview of the development of peptide therapeutics, and may inform strategic planning in this area.

  7. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.

    Science.gov (United States)

    Pearce, Timothy R; Kokkoli, Efrosini

    2015-01-07

    DNA nanotubes were created using molecular self-assembly of single-stranded DNA (ssDNA)-amphiphiles composed of a hydrophobic dialkyl tail and polycarbon spacer and a hydrophilic ssDNA headgroup. The nanotube structures were formed by bilayers of amphiphiles, with the hydrophobic components forming an inner layer that was shielded from the aqueous solvent by an outer layer of ssDNA. The nanotubes appeared to form via an assembly process that included transitions from twisted nanotapes to helical nanotapes to nanotubes. Amphiphiles that contained different ssDNA headgroups were created to explore the effect of the length and secondary structure of the ssDNA headgroup on the self-assembly behavior of the amphiphiles in the presence and absence of the polycarbon spacer. It was found that nanotubes could be formed using a variety of headgroup lengths and sequences. The ability to create nanotubes via ssDNA-amphiphile self-assembly offers an alternative to the other purely DNA-based approaches like DNA origami and DNA tile assembly for constructing these structures and may be useful for applications in drug delivery, biosensing, and electronics.

  8. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.; (UIUC)

    2009-06-17

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  9. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-05-21

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  10. Adaptive chemistry of bifunctional gold nanoparticles at the air/water interface. A synchrotron X-ray study of giant amphiphiles

    DEFF Research Database (Denmark)

    Nørgaard, K.; Weygand, M.J.; Kjær, K.

    2004-01-01

    A series of ligand stabilized gold nanoparticles with diameters close to 3 nm were studied as Langmuir monolayers at the air/water interface by synchrotron X-ray diffraction and reflectivity. Alkylthiols with different length and/or terminal functional group (hydrophilic or hydrophobic) were...... of environmental responsiveness, as they adapt to an amphiphilic distribution of ligands around the gold core when spread at the water surface. Likewise nanoparticles of mixed long and short alkyl chains respond to lateral pressure by adopting a structure where the short alkyl chains determine the in-plane nearest...... introduced into the ligand shell by ligand place exchange reactions. Synchrotron grazing incidence X-ray diffraction (GIXD) and specular X-ray reflectivity reveal the well known hexagonally packed monolayers. In addition the mixed hydrophilic/ hydrophobic ligand shell nanoparticles show a high degree...

  11. New cationic amphiphilic compounds as potential antibacterial agents

    NARCIS (Netherlands)

    Visser, Peter Christian de

    2006-01-01

    Het onderwerp van het in dit proefschrift beschreven onderzoek is de ontwikkeling van nieuwe verbindingen met antibacteriële activiteit gericht tegen Gram-negatieve bacteriën. Deze verbindingen zijn afgeleid van kationische antimicrobiële peptides (CAPs), een klasse van antibiotica die volgens ander

  12. Multifunctional hybrid networks based on self assembling peptide sequences

    Science.gov (United States)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  13. Membrane behavior as influenced by partitioning of amphiphiles during drying : a comparative study in anhydrobiotic plant systems

    NARCIS (Netherlands)

    Golovina, E.A.; Hoekstra, F.A.

    2002-01-01

    During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in desiccation-t

  14. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery.

    Science.gov (United States)

    Ma, Shengnan; Zhou, Jie; Wali, Aisha Roshan Mohamed; He, Yiyan; Xu, Xianghui; Tang, James Zhenggui; Gu, Zhongwei

    2015-08-01

    In this study, the amphiphilic fluorinated peptide dendrons functionalized dextran (FPD-HZN-Dex) via an acid-sensitive hydrazone linkage was successfully designed and prepared for the first time. We demonstrated a spontaneous self-assembly of amphiphilic FPD-HZN-Dex into the well-defined nanoparticles with the core-shell architecture in aqueous media, which is attributed to the efficient amphiphilic functionalization of dextran by the hydrophobic fluorinated peptide dendrons. The spherical morphology, uniform particle size and good storage stability of the prepared FPD-HZN-Dex nanoparticles were characterized by dynamic light scattering and transmission electron microscopy, respectively. In vitro drug release studies showed a controlled and pH dependent hydrophobic drug release profile. The cell viability assays show excellent biocompatibility of the FPD-HZN-Dex nanoparticles for both normal cells and tumor cells. Moreover, the FPD-HZN-Dex self-assembled systems based on pH-sensitive hydrazone linkage also can serve as stimulus bioresponsive carriers for on-demand intracellular drug delivery. These self-assembled nanoparticles exhibit a stimulus-induced response to endo/lysosome pH (pH 5.0) that causes their disassembly over time, enabling controlled release of encapsulated DOX. This work has unveiled a unique non-covalent interaction useful for engineering amphiphilic dendrons or dendrimers self-assembled systems.

  15. Antifungal Activity of 14-Helical β-Peptides against Planktonic Cells and Biofilms of Candida Species

    Directory of Open Access Journals (Sweden)

    Namrata Raman

    2015-08-01

    Full Text Available Candida albicans is the most prevalent cause of fungal infections and treatment is further complicated by the formation of drug resistant biofilms, often on the surfaces of implanted medical devices. In recent years, the incidence of fungal infections by other pathogenic Candida species such as C. glabrata, C. parapsilosis and C. tropicalis has increased. Amphiphilic, helical β-peptide structural mimetics of natural antimicrobial α-peptides have been shown to exhibit specific planktonic antifungal and anti-biofilm formation activity against C. albicans in vitro. Here, we demonstrate that β-peptides are also active against clinically isolated and drug resistant strains of C. albicans and against other opportunistic Candida spp. Different Candida species were susceptible to β-peptides to varying degrees, with C. tropicalis being the most and C. glabrata being the least susceptible. β-peptide hydrophobicity directly correlated with antifungal activity against all the Candida clinical strains and species tested. While β-peptides were largely ineffective at disrupting existing Candida biofilms, hydrophobic β-peptides were able to prevent the formation of C. albicans, C. glabrata, C. parapsilosis and C. tropicalis biofilms. The broad-spectrum antifungal activity of β-peptides against planktonic cells and in preventing biofilm formation suggests the promise of this class of molecules as therapeutics.

  16. Amphiphilic phase-transforming catalysts for transesterification of triglycerides

    Science.gov (United States)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  17. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles.

    Science.gov (United States)

    Chang, Hung-Yu; Tu, Sheng-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-08-01

    Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n') motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n'-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered arms perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.

  18. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations

    Science.gov (United States)

    Mazzaglia, Antonino; Ganazzoli, Fabio

    2015-01-01

    Summary Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a “bottom up” approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties. PMID:26734094

  19. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures

    Science.gov (United States)

    Purceno, Aluir D.; Machado, Bruno F.; Teixeira, Ana Paula C.; Medeiros, Tayline V.; Benyounes, Anas; Beausoleil, Julien; Menezes, Helvecio C.; Cardeal, Zenilda L.; Lago, Rochel M.; Serp, Philippe

    2014-11-01

    In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and

  20. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen;

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2...

  1. Potential of acylated peptides to target the influenza A virus

    Directory of Open Access Journals (Sweden)

    Daniel Lauster

    2015-04-01

    Full Text Available For antiviral drug design, especially in the field of influenza virus research, potent multivalent inhibitors raise high expectations for combating epidemics and pandemics. Among a large variety of covalent and non-covalent scaffold systems for a multivalent display of inhibitors, we created a simple supramolecular platform to enhance the antiviral effect of our recently developed antiviral Peptide B (PeBGF, preventing binding of influenza virus to the host cell. By conjugating the peptide with stearic acid to create a higher-order structure with a multivalent display, we could significantly enhance the inhibitory effect against the serotypes of both human pathogenic influenza virus A/Aichi/2/1968 H3N2, and avian pathogenic A/FPV/Rostock/34 H7N1 in the hemagglutination inhibition assay. Further, the inhibitory potential of stearylated PeBGF (C18-PeBGF was investigated by infection inhibition assays, in which we achieved low micromolar inhibition constants against both viral strains. In addition, we compared C18-PeBGF to other published amphiphilic peptide inhibitors, such as the stearylated sugar receptor mimicking peptide (Matsubara et al. 2010, and the “Entry Blocker” (EB (Jones et al. 2006, with respect to their antiviral activity against infection by Influenza A Virus (IAV H3N2. However, while this strategy seems at a first glance promising, the native situation is quite different from our experimental model settings. First, we found a strong potential of those peptides to form large amyloid-like supramolecular assemblies. Second, in vivo, the large excess of cell surface membranes provides an unspecific target for the stearylated peptides. We show that acylated peptides insert into the lipid phase of such membranes. Eventually, our study reveals serious limitations of this type of self-assembling IAV inhibitors.

  2. C-peptide and diabetic kidney disease.

    Science.gov (United States)

    Brunskill, N J

    2017-01-01

    Kidney disease is a serious development in diabetes mellitus and poses an increasing clinical problem. Despite increasing incidence and prevalence of diabetic kidney disease, there have been no new therapies for this condition in the last 20 years. Mounting evidence supports a biological role for C-peptide, and findings from multiple studies now suggest that C-peptide may beneficially affect the disturbed metabolic and pathophysiological pathways leading to the development of diabetic nephropathy. Studies of C-peptide in animal models and in humans with type 1 diabetes all suggest a renoprotective effect for this peptide. In diabetic rodents, C-peptide reduces glomerular hyperfiltration and albuminuria. Cohort studies of diabetic patients with combined islet and kidney transplants suggest that maintained C-peptide secretion is protective of renal graft function. Further, in short-term studies of patients with type 1 diabetes, administration of C-peptide is also associated with a lowered hyperfiltration rate and reduced microalbuminuria. Thus, the available information suggests that type 1 diabetes should be regarded as a dual hormone deficiency disease and that clinical trials of C-peptide in diabetic nephropathy are both justified and urgently required.

  3. Engineered Adhesion Peptides for Improved Silicon Adsorption.

    Science.gov (United States)

    Ramakrishnan, Sathish Kumar; Jebors, Said; Martin, Marta; Cloitre, Thierry; Agarwal, Vivechana; Mehdi, Ahmad; Martinez, Jean; Subra, Gilles; Gergely, Csilla

    2015-11-01

    Engineering peptides that present selective recognition and high affinity for a material is a major challenge for assembly-driven elaboration of complex systems with wide applications in the field of biomaterials, hard-tissue regeneration, and functional materials for therapeutics. Peptide-material interactions are of vital importance in natural processes but less exploited for the design of novel systems for practical applications because of our poor understanding of mechanisms underlying these interactions. Here, we present an approach based on the synthesis of several truncated peptides issued from a silicon-specific peptide recovered via phage display technology. We use the photonic response provided by porous silicon microcavities to evaluate the binding efficiency of 14 different peptide derivatives. We identify and engineer a short peptide sequence (SLVSHMQT), revealing the highest affinity for p(+)-Si. The molecular recognition behavior of the obtained peptide fragment can be revealed through mutations allowing identification of the preferential affinity of certain amino acids toward silicon. These results constitute an advance in both the engineering of peptides that reveal recognition properties for silicon and the understanding of biomolecule-material interactions.

  4. Synthesis of amphiphilic aminated inulin via 'click chemistry' and evaluation for its antibacterial activity.

    Science.gov (United States)

    Dong, Fang; Zhang, Jun; Yu, Chunwei; Li, Qing; Ren, Jianming; Wang, Gang; Gu, Guodong; Guo, Zhanyong

    2014-09-15

    Inulins are a group of abundant, water-soluble, renewable polysaccharides, which exhibit attractive bioactivities and natural properties. Improvement such as chemical modification of inulin is often performed prior to further utilization. We hereby presented a method to modify inulin at its primary hydroxyls to synthesize amphiphilic aminated inulin via 'click chemistry' to facilitate its chemical manipulation. Additionally, its antibacterial property against Staphylococcus aureus (S. aureus) was also evaluated and the best inhibitory index against S. aureus was 58% at 1mg/mL. As the amphiphilic aminated inulin is easy to prepare and exhibits improved bioactivity, this material may represent as an attractive new platform for chemical modifications of inulin.

  5. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    Institute of Scientific and Technical Information of China (English)

    冯莺; 隋家贤; 赵季若; 陈欣方

    2000-01-01

    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  6. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....

  7. Intra-chain organisation of hydrophobic residues controls inter-chain aggregation rates of amphiphilic polymers

    CERN Document Server

    Varilly, Patrick; Kirkegaard, Julius B; Knowles, Tuomas P J; Chandler, David

    2016-01-01

    Aggregation of amphiphiles through the action of hydrophobic interactions is a common feature in soft condensed matter systems and is of particular importance in the context of biophysics as it underlies both the generation of functional biological machinery as well as the formation of pathological misassembled states of proteins. Here we explore the aggregation behaviour of amphiphilic polymers using lattice Monte-Carlo calculations and show that the distribution of hydrophobic residues within the polymer sequence determines the facility with which dry/wet interfaces can be created and that such interfaces drive the aggregation process.

  8. Precisely Controlled 2D Free-Floating Nanosheets of Amphiphilic Molecules through Frame-Guided Assembly.

    Science.gov (United States)

    Zhou, Chao; Zhang, Yiyang; Dong, Yuanchen; Wu, Fen; Wang, Dianming; Xin, Ling; Liu, Dongsheng

    2016-11-01

    2D assembly of amphiphilic molecules in aqueous solution is a challenging and intriguing topic as it is normally thermodynamically unfavorable. However, through frame-guided assembly strategy and using DNA origami as the frame, monodispersed and shape-defined nanosheets are prepared. As leading hydrophobic groups (LHGs) are anchored on the frames, amphiphilic molecules in aqueous solution are guided to assemble in the hydrophobic region. By adjusting the distribution of the LHGs, the size and shape of the assemblies can be controlled precisely.

  9. CAGW Peptide- and PEG-Modified Gene Carrier for Selective Gene Delivery and Promotion of Angiogenesis in HUVECs in Vivo.

    Science.gov (United States)

    Yang, Jing; Hao, Xuefang; Li, Qian; Akpanyung, Mary; Nejjari, Abdelilah; Neve, Agnaldo Luis; Ren, Xiangkui; Guo, Jintang; Feng, Yakai; Shi, Changcan; Zhang, Wencheng

    2017-02-08

    Gene therapy is a promising strategy for angiogenesis, but developing gene carriers with low cytotoxicity and high gene delivery efficiency in vivo is a key issue. In the present study, we synthesized the CAGW peptide- and poly(ethylene glycol) (PEG)-modified amphiphilic copolymers. CAGW peptide serves as a targeting ligand for endothelial cells (ECs). Different amounts of CAGW peptide were effectively conjugated to the amphiphilic copolymer via heterofunctional poly(ethylene glycol). These CAG- and PEG-modified copolymers could form nanoparticles (NPs) by self-assembly method and were used as gene carriers for the pEGFP-ZNF580 (pZNF580) plasmid. CAGW and PEG modification coordinately improved the hemocompatibility and cytocompatibility of NPs. The results of cellular uptake showed significantly enhanced internalization efficiency of pZNF580 after CAGW modification. Gene expression at mRNA and protein levels demonstrated that EC-targeted NPs possessed high gene delivery efficiency, especially the NPs with higher content of CAGW peptide (1.16 wt %). Furthermore, in vitro and in vivo vascularization assays also showed outstanding vascularization ability of human umbilical vein endothelial cells treated by the NP/pZNF580 complexes. This study demonstrates that the CAGW peptide-modified NP is a promising candidate for gene therapy in angiogenesis.

  10. Constraining cyclic peptides to mimic protein structure motifs

    DEFF Research Database (Denmark)

    Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik;

    2014-01-01

    Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable...... protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic...... peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides...

  11. Short tunnels.

    NARCIS (Netherlands)

    Schreuder, D.A.

    1965-01-01

    Before dealing with the question of lighting short tunnels, it is necessary define what is meant by a tunnel and when it should be called 'short'. Confined to motorized road traffic the following is the most apt definition of a tunnel: every form of roofing-over a road section, irrespective of it le

  12. Peptides Regulate Cortical Thymocytes Differentiation, Proliferation, and Apoptosis

    Directory of Open Access Journals (Sweden)

    V. Kh. Khavinson

    2011-01-01

    Full Text Available The processes of differentiation, proliferation, and apoptosis were studied in a cell culture of human cortical thymocytes under the influence of short peptides T-32 (Glu-Asp-Ala and T-38 (Lys-Glu-Asp. Peptides T-32 and T-38 amplified cortical thymocytes differentiation towards regulatory T cells, increased their proliferative activity, and decreased the level of apoptosis. Moreover, peptides under study stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.

  13. Charge-Transfer Supra-Amphiphiles Built by Water-Soluble Tetrathiafulvalenes and Viologen-Containing Amphiphiles: Supramolecular Nanoassemblies with Modifiable Dimensions.

    Science.gov (United States)

    Lv, Zhong-Peng; Chen, Bin; Wang, Hai-Ying; Wu, Yue; Zuo, Jing-Lin

    2015-08-05

    In this study, multidimensional nanoassemblies with various morphologies such as nanosheets, nanorods, and nanofibers are developed via charge-transfer interaction and supra-amphiphile self-assembling in aqueous phase. The charge-transfer interactions between tetrathiafulvalene derivatives (TTFs) and methyl viologen derivatives (MVs) have been confirmed by the characteristic charger-transfer absorption. (1) H NMR and electrospray ionizsation mass spectrometry (ESI-MS) analyses also indicate supra-amphiphiles are formed by the combination of TTFs and MVs head group through charge-transfer interaction and Coulombic force. X-ray single crystal structural studies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) reveal that both linkage pattern of TTFs in hydrophilic part and alkane chain structure in hydrophobic part have significant influence on nanoassemblies morphology and microstructure. Moreover, gold nanoparticles (AuNPs) are introduced in the above supramolecular nanoassemblies to construct a supra-amphiphile-driven organic-AuNPs assembly system. AuNPs could be assembled into 1D-3D structures by adding different amount of MVs.

  14. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  15. Cycloaddition in peptides for high-capacity optical storage

    DEFF Research Database (Denmark)

    Lohse, Brian; Berg, Rolf Henrik; Hvilsted, Søren

    2006-01-01

    Photodimerization of chromophores attached to a short peptide chain is investigated for high-capacity optical digital storage with UV lasers. The length and rigidity of the peptide chain assure an optimal distance and orientation of the chromophores for effective photodimerization. Using a theory...

  16. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal

    2011-12-01

    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  17. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Science.gov (United States)

    Li, Jian-Hua; Li, Mi-Zi; Miao, Jing; Wang, Jia-Bin; Shao, Xi-Sheng; Zhang, Qi-Qing

    2012-06-01

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  18. SYNTHESIS OF AMPHIPHILIC COMB-SHAPED COPOLYMERS USED FOR SURFACE MODIFICATION OF PVDF MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Li; You-yi Xu; Jian-hua Wang; Chun-hui Du

    2009-01-01

    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4-hydroxyphenyl) maleimide) (SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate (PEGMA) side groups was achieved by atom transfer radical polymerization (ATRP). The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC). From thermogravimetric analysis (TGA), the decomposition temperature of SHMI-g-PEGMA is lower than that of SHMI, and the graft ratio of PEGMA in the SHMI is 18.6%. The experimental results of solubilities showed that SHMI, SHMI-Br and SHMI-g-PEGMA had excellent solubility in polar solvents, such as DMF, DMSO and NMP. SHMI-g-PEGMA had higher solubilities in H_2O and methanol, while lower solubility in CHCl_3 than SHMI and SHMI-Br. PVDF blend membranes were prepared via the standard immersion precipitation phase inversion process, using amphiphilic SHMI-g-PEGMA copolymer as additives. The morphology and hydrophilicity of the blend membrane surfaces were characterized by SEM and water contact angle. It is demonstrated that the blend membranes display enhanced hydrophilicity compared to unmodified PVDF membranes. Finally, the permeation and anti-fouling properties were investigated. The result shows that amphiphilic SHMI-g-PEGMA copolymer increases the permeatability and anti-fouling property of PVDF membranes greatly.

  19. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianhua, E-mail: jhli_2005@163.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Zhang Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China) and Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192 (China)

    2012-06-15

    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  20. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes

    NARCIS (Netherlands)

    Kuiper, JM; Engberts, JBFN

    2004-01-01

    Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the b

  1. Synthesis, Characterization, and Aqueous Lubricating Properties of Amphiphilic Graft Copolymers Comprising 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Røn, Troels; Jankova Atanasova, Katja;

    2014-01-01

    of the corresponding monomers followed by deblocking reaction leads to well-defined amphiphiles with narrow molecular weight distributions (PDI ≤ 1.29) and varying content of methacrylic acid. The graft copolymers showed effective surface adsorption and lubrication for self-mated poly(dimethylsiloxane) (PDMS) contacts...

  2. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten

    2010-01-01

    Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function b......-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles....... by altering the energetic cost (Delta G(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in Delta G(bilayer) cannot...... be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net...

  3. Two-dimensional crystallography of amphiphilic molecules at the air-water interface

    DEFF Research Database (Denmark)

    Jacquemain, D.; Grayer Wolf, S.; Leveiller, F.;

    1992-01-01

    , and review recent results obtained from them for Langmuir films. The methods have been successfully applied in the elucidation of the structure of crystalline aggregates of amphiphilic molecules such as alcohols, carboxylic acids and their salts, alpha-amino acids, and phospholipids at the water surface...

  4. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner;

    2008-01-01

    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...

  5. Thermodynamics of micellization of cholic acid based facial amphiphiles carrying three permanent ionic head groups

    NARCIS (Netherlands)

    Willemen, H.M.; Marcelis, A.T.M.; Sudhölter, E.J.R.

    2003-01-01

    This paper describes a series of cholic acid based facial amphiphiles carrying three ionic headgroups. Their micellization behavior in water was studied as a function of spacer length and alkyl tail length: both were found to have a small influence on the critical micellization concentration (cmc).

  6. Aggregation Properties of an Amphiphilic Methanofullerene Derivative in THF-H2O Solvent Mixtures

    Institute of Scientific and Technical Information of China (English)

    Guan Wu WANG; Li Juan JIAO; Er Hong HAO; Yong Ming LU; You Jun YANG

    2004-01-01

    Amphiphilic methanofullerene 1 exhibits strong tendency to form aggregates in THF-H2O solvent mixtures. Two different aggregation processes induced by either varying the solvent composition or upon standing have been found. Concentration has great influence on the aggregation process. Paralleling to the UV-Vis changes, an unusual solvatochromism has been observed in these two different processes.

  7. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H

    1999-01-01

    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a 1

  8. Macroscopic alignment of graphene stacks by Langmuir-Blodgett deposition of amphiphilic hexabenzocoronenes

    DEFF Research Database (Denmark)

    Laursen, B.W.; Nørgaard, K.; Reitzel, N.;

    2004-01-01

    e present structural studies of Langmuir V and Langmuir-Blodgett (LB) films of new amphiphilic hexa-peri-hexabenzocoronene (HBC) discotics, carrying five branched alkyl side chains and one polar group. The polar group is either a carboxylic acid moiety or an electron acceptor moiety (anthraquinone...

  9. Preparation of Vesicles and Nanoparticles of Amphiphilic Cyclodextrins Containing Labile Disulfide Bonds

    NARCIS (Netherlands)

    Nolan, Darren; Darcy, Raphael; Ravoo, Bart Jan

    2003-01-01

    Amphiphilic cyclodextrin derivatives were prepared in which a disulfide bond connects the hydrophobic substituents to the macrocycle. These compounds were obtained by 1,3-dicyclohexylcarbodiimide-mediated coupling reactions of heptakis(6-amino-6-deoxy)-B-cyclodextrins and disulfide-containing carbox

  10. Bilayer Vesicles of Amphiphilic Cyclodextrins: Host Membranes That Recognize Guest Molecules

    NARCIS (Netherlands)

    Falvey, Patrick; Lim, Choon Woo; Darcy, Raphael; Revermann, Tobias; Karst, Uwe; Giesbers, Marcel; Marcelis, Antonius T.M.; Lazar, Adina; Coleman, Anthony W.; Reinhoudt, David N.; Ravoo, Bart Jan

    2005-01-01

    A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of a-, B-, and Y-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueo

  11. Bilayer vesicles of amphiphilic cyclodextrines: host membranes that recognize guest molecules

    NARCIS (Netherlands)

    Falvey, P.; Lim, C.W.; Darcy, R.; Revermann, T.; Karst, U.; Marcelis, A.T.M.; Coleman, A.W.; Reinhoudt, D.N.; Ravoo, B.J.

    2005-01-01

    A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicl

  12. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  13. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Ji-Nian; Zhang, Shi-Lin; Li, Liang; Xu, Zhi-Kang

    2014-11-01

    Amphiphilic molecules have been widely used in surface modification of polymeric materials. Bile acids are natural biological compounds and possess special facial amphiphilic structure with a unusual distribution of hydrophobic and hydrophilic regions. Based on the facial amphiphilicity, cholic acid (CA), one of the bile acids, was utilized for the hydrophilic modification of poly(vinylidene fluoride) (PVDF) microfiltration membranes via the hydrophobic interactions between the hydrophobic face of CA and the membrane surfaces. Ethanol, methanol, and water were respectively used as solvent during CA adsorption procedure. Their polarity affects the CA adsorption amount, as similar to CA concentration and adsorption time. There are no changes on the membrane surface morphology after CA adsorption. The hydrophilicity of PVDF membranes is greatly enhanced and the water drops permeates into the CA modified membranes quickly after modification. All these factors benefit to the permeation flux of membrane for water. When CA concentration is higher than 0.088 M, the water permeation flux is doubled as compared with the nascent PVDF membrane and shows a good stability during filtration procedure. These results reveal the promising potential of facial amphiphilic bile acids for the surface modification of polymeric materials.

  14. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.

    2016-01-01

    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing i

  15. Non-amphiphilic carbohydrate liquid crystals containing an intact monosaccharide moiety

    NARCIS (Netherlands)

    Smits, E; Engberts, J.B.F.N.; Kellogg, R.M; van Doren, H.A.

    1995-01-01

    A chiral rigid moiety which forms the basis of a new class of non-amphiphilic carbohydrate liquid crystals has been developed. This moiety contains a fully intact glucopyranose ring embedded in a trans-decalin structure. The original carbohydrate is substituted so that only two hydroxyl groups are l

  16. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren

    2009-01-01

    Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  17. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution.

    Science.gov (United States)

    Pellach, Michal; Margel, Shlomo

    2011-12-06

    Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character.The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic) tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  18. PARTITION-OPTIMIZED SINGLE EMULSION PARTICLES IMPROVE SUSTAINED RELEASE OF AMPHIPHILIC BUMPED KINASE INHIBITORS TO CONTROL MALARIA TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Christina Yacoob

    2015-11-01

    Full Text Available Amphiphilic molecules are challenging to be incorporatedinto polymeric particles for sustained release due to their significant solubility in both water and organic solvent used in the fabrication process. Here, we investigated an extensive panel of fabrication methods for the incorporation and release of amphiphilic molecules, in particular, novel amphiphilic bumped kinase inhibitors (BKIs. Previously, BKIswere shown to reduce malaria transmission by blocking of gametocyte exflagellation. Prolonged BKI bioavailability for effective transmission blocking is crucial since infectious gametocytes circulate for several weeks inthe mammalian host, well beyond the half-life of BKIs. So far, delivery systems for sustained release of those BKIs have not been successfully formulated yet. Here we demonstrate that out of several delivery vehicles the partition-optimized single emulsion particles are the ideal system for incorporation and sustained release of amphiphilic BKIs. They increased the incorporation greater than 90% through optimized partitioning of amphiphilic molecules to the polymer phase and sustained release of BKIs up to several weeks with a reduction in the initial burst release. Overall this work provides a method for the incorporation and sustained release of amphiphilic BKIs, and can be adapted for other amphiphilic molecules.

  19. [Heterogenous expression of antimicrobial peptides].

    Science.gov (United States)

    Song, Shanshan; Hu, Guobin; Dong, Xianzhi

    2009-12-01

    Antimicrobial peptides (AMPs), a class of short proteins with a broad spectrum of antibacterial activities, are isolated from a wide variety of animals, both vertebrates and invertebrates, and plants as well as from bacteria and fungi. They are a key component of the innate immune response in most multicellular organisms. Owing to their potent, broad-spectrum antibacterial activities and uneasy developing of drug resistance, these peptides are of great clinical significance. However, preparation of AMPs at a large scale is a severe challenge to the development of the commercial products. Undoubtedly, construction of high-level biological expression systems for the production of AMPs is the key in its clinical application process. Herein, we summarize the progress in researches on heterogenous expression of AMPs in prokaryotic expression systems and eukaryotic expression systems.

  20. Construction of Epidermal Growth Factor Receptor Peptide Magnetic Nanovesicles with Lipid Bilayers for Enhanced Capture of Liver Cancer Circulating Tumor Cells.

    Science.gov (United States)

    Ding, Jian; Wang, Kai; Tang, Wen-Jie; Li, Dan; Wei, You-Zhen; Lu, Ying; Li, Zong-Hai; Liang, Xiao-Fei

    2016-09-20

    Highly effective targeted tumor recognition via vectors is crucial for cancer detection. In contrast to antibodies and proteins, peptides are direct targeting ligands with a low molecular weight. In the present study, a peptide magnetic nanovector platform containing a lipid bilayer was designed using a peptide amphiphile (PA) as a skeleton material in a controlled manner without surface modification. Fluorescein isothiocyanate-labeled epidermal growth factor receptor (EGFR) peptide nanoparticles (NPs) could specifically bind to EGFR-positive liver tumor cells. EGFR peptide magnetic vesicles (EPMVs) could efficiently recognize and separate hepatoma carcinoma cells from cell solutions and treated blood samples (ratio of magnetic EPMVs versus anti-EpCAM NPs: 3.5 ± 0.29). Analysis of the circulating tumor cell (CTC) count in blood samples from 32 patients with liver cancer showed that EPMVs could be effectively applied for CTC capture. Thus, this nanoscale, targeted cargo-packaging technology may be useful for designing cancer diagnostic systems.

  1. Creating functional peptide architectures at interfaces

    Science.gov (United States)

    Tirrell, Matthew

    2001-03-01

    Short peptide sequences, derived from whole proteins, can be useful synthetic agents for conferring a specific biological function to a material surface. Their ability to do this depends on delivering them to the surface in a biologically recognizable form, that is in a spatial configuration that is not too different from that adopted by the peptide in the whole protein. Most functional proteins have secondary and tertiary levels of structure that are essential to their activities; peptides have simpler but no less important structures. In our work, we have focussed on peptides derived from extracellular matrix proteins. We have found that attaching synthetic lipid tails to peptides fragments gives them two very useful properties for surface modification. The hydrophobic tails give rise to a self-assembly capacity enabling these molecules to organize into membrane, monolayer and bilayer structures. Less expected is that this level of self-assembly induces a second level in the peptide headgroup. Peptides from alpha-helical and triple-helical regions of protein are induced by the lipid tails to form protein-like secondary structures and therefore to have more effective biological activity.

  2. Study of the Isolation and Purification of Antioxidative Peptides from Short Necked Clam,Ruditapes Philippinarum%菲律宾蛤仔酶解寡肽的分离及体外抗氧化作用研究

    Institute of Scientific and Technical Information of China (English)

    杨永芳; 杨最素; 丁国芳; 郁迪; 黄芳芳

    2011-01-01

    Objective:In order to get products with antioxidant activity from Ruditapes philippinarum.Methods:Four proteases (pepsin, trypsin, papain, alcalase) were applied to hydrolyze the R.philippinarum.The antioxidative activity of the fractions against the hydroxyl radical produced by H2O2/Fe2+ was determined in vitro.Ultrafiltration and anionexchange chromatography and reversed - phase high - performance liquid chromatography ( RP - HPLC) were performed to separate and purify the antioxidant peptides.Results:Hydrolysate with trypsin had the highest antioxidant activity and was fractionated by ultrafiltration.Three fractions ( < 3KDa, 3 ~ 5KDa, and > 5KDa) were separated.Below 3KDa fraction, which exhibited the highest antioxidative activity, was further purified using anion - exchange and reverse phase high performance liquid chromatography.An antioxidative peptide was isolated and its clearance rate of hydroxyl radical and reducing power were higher than vitamin C.The purified peptide sequences with a molecular weight of 607.6Da was identified as Asp - Trp - Pro - His.Conclusion: Products hydrolyzed by trypsin from R.philippinarum exhibited the best antioxidant activity among all proteases selected, and could be isolated and purified by the methods of ultrafiltration and anion.-exchange chromatography and RP- HPLC.%目的:研究菲律宾蛤仔酶解寡肽的制备方法及其抗氧化活性.方法:选用胃蛋白酶、胰蛋白酶、木瓜蛋白酶、碱性蛋白酶等4种蛋白酶分别对菲律宾蛤仔进行酶解,通过对羟自由基的清除作用来考查各酶解物的抗氧化活性;经超滤、DEAE-SepharoseFF阴离子交换、反相高效液相色谱C18分离制备寡肽,并测定其羟自由基清除率和氧化还原力.结果:胰蛋白酶酶解寡肽清除羟自由基能力最强;经超滤后,3KDa以下的组分羟自由基清除率最高;将该组分纯化后,最终得到1个寡肽,该肽的分子量为607.6KDa,氨基

  3. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length

    OpenAIRE

    Rufin, M. A.; Gruetzner, J. A.; Hurley, M. J.; Hawkins, M. L.; Raymond, E. S.; Raymond, J. E.; Grunlan, M. A.

    2015-01-01

    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide)n-OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogu...

  4. Nucleation, growth, and dissolution of Ag nanostructures formed in nanotubular J-aggregates of amphiphilic cyanine dyes

    CERN Document Server

    Polzer, Egon Steeg Frank; Qiao, Yan; Rabe, Jürgen P; Kirstein, Stefan

    2015-01-01

    The nucleation, growth, and dissolution of silver nanowires within tubular aggregates of the dye C8S3 are investigated. The tubular aggregates are formed in aqueous solution from amphiphilic dyes and the silver wires are grown from silver salt. Samples were investigated systematically and in detail using cryo-TEM and TEM at different time steps after addition of silver salt (AgNO3) and short illumination with blue light (420 nm) for production of nuclei. The enhanced concentration of silver ions in proximity of the aggregates surface leads to favoured growth of seeds at or within the aggregates. The early stage of the seed growth is observable by cryo-TEM and shows to be well separated and isolated. There are no indications that nuclei are formed at preferred defect sites at the aggregates which is interpreted as homogeneous nucleation. The spatial position of the majority of initially formed seeds discriminates between growth of particles at the outer surface of the aggregate or wires at the inner space. The...

  5. Effects of tethering alkyl chains for amphiphilic ruthenium complex dyes on their adsorption to titanium oxide and photovoltaic properties.

    Science.gov (United States)

    Ni, Jen-Shyang; Hung, Chun-Yi; Liu, Ken-Yen; Chang, Yu-Hsun; Ho, Kuo-Chuan; Lin, King-Fu

    2012-11-15

    Ruthenium (II) complex dye, Ru(4,4'-dicarboxyl-2,2'-bipyridine)(4-nonyl-2,2'-bipyridine) (NCS)(2), (denoted as RuC9) tethering single alkyl chain was synthesized and well characterized. Its adsorption behavior onto the mesoporous TiO(2) and photovoltaic properties were compared with Z907 which has similar chemical structure but tethers two alkyl chains. RuC9 dyes tend to aggregate into vesicles in the acetonitrile/t-butanol co-solvent as a result of the amphiphilic structure, whereas Z907 dyes aggregate into lamellae. The dye-sensitized solar cell (DSSC) with RuC9 dye showed higher short-circuit photocurrent than that with Z907, attributing to its higher molar optical extinction coefficient and more adsorption amount onto the mesoporous TiO(2). However, the DSSC with Z907 dye has higher open-circuit photovoltage and power conversion efficiency, presumably due to the fact that Z907 with more alkyl chains formed a molecular layer with higher hydrophobicity. It reduced the charge recombination in the interface between the dye-sensitized mesoporous TiO(2) and electrolyte as verified by the electrochemical impedance spectroscopy and intensity modulated photocurrent and photovoltage spectroscopies.

  6. TNYL peptide functional chitosan-g-stearate conjugate micelles for tumor specific targeting

    Directory of Open Access Journals (Sweden)

    Chen FY

    2014-09-01

    Full Text Available Feng-Ying Chen,1 Jing-Jing Yan,1 Han-Xi Yi,2 Fu-Qiang Hu,2 Yong-Zhong Du,2 Hong Yuan,2 Jian You,2 Meng-Dan Zhao1 1Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 2College of Pharmaceutical Science, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Nowadays, a real challenge in cancer therapy is to design drug delivery systems that can achieve high concentrations of drugs at the target site for improved therapeutic effect with reduced side effects. In this research, we designed and synthesized a homing peptide-(TNYLFSPNGPIA, TNYL modified chitosan-g-stearate (CS polymer micelle (named T-CS for targeting delivery. The peptide displayed specific binding affinity to EphB4 which is a member of the Eph family of receptor tyrosine protein kinases. The amphiphilic polymer T-CS can gather into micelles by themselves in an aqueous environment with a low critical micelle concentration value (91.2 µg/L and nano-scaled size (82.1±2.8 nm. The drug encapsulation efficiency reached 86.43% after loading the hydrophobic drug doxorubicin (DOX. The cytotoxicity of T-CS/DOX against SKOV3 cells was enhanced by approximately 2.3-fold when compared with CS/DOX. The quantitative and qualitative analysis for cellular uptake indicated that TNYL modification can markedly increase cellular internalization in the EphB4-overexpressing SKOV3 cell line, especially with a short incubation time. It is interesting that relatively higher uptake of the T-CS/DOX micelles by SKOV3 cells (positive-EphB4 than A549 cells (negative-EphB4 was observed when the two cells were co-incubated. Furthermore, in vivo distribution experiment using a bilateral-tumor model showed that there was more fluorescence accumulation in the SKOV3 tumor than in the A549 tumor over the whole experiment. These results suggest that TNYL-modified CS micelles may be promising drug carriers as targeting therapy for the EphB4-overexpressing

  7. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  8. Large organized surface domains self-assembled from nonpolar amphiphiles.

    Science.gov (United States)

    Krafft, Marie Pierre

    2012-04-17

    For years, researchers had presumed that Langmuir monolayers of small C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblock molecules (such as F8H16) consisted of continuous, featureless films. Recently we have discovered that they instead form ordered arrays of unusually large (~30-60 nm), discrete self-assembled surface domains or hemimicelles both at the surface of water and on solid substrates. These surface micelles differ in several essential ways from all previously reported or predicted molecular surface aggregates. They self-assemble spontaneously, even at zero surface pressure, depending solely on a critical surface concentration. They are very large (~100 times the length of the diblock) and involve thousands of molecules (orders of magnitude more than classical micelles). At the same time, the surface micelles are highly monodisperse and self-organize in close-packed hexagonal patterns (two-dimensional crystals). Their size is essentially independent from pressure, and they do not coalesce and are unexpectedly sturdy for soft matter (persisting even beyond surface film collapse). We and other researchers have observed large surface micelles for numerous diblocks, using Langmuir-Blodgett (LB) transfer, spin-coating and dip-coating techniques, or expulsion from mixed monolayers, and on diverse supports, establishing that hemimicelle formation and ordering are intrinsic properties of (perfluoroalkyl)alkanes. Notably, they involve "incomplete" surfactants with limited amphiphilic character, which further illustrates the outstanding capacity for perfluoroalkyl chains to promote self-assembly and interfacial film structuring. Using X-ray reflectivity, we determined a perfluoroalkyl-chain-up orientation. Theoretical investigations assigned self-assembly and hemimicelle stability to electrostatic dipole-dipole interactions at the interface between Fn- and Hm-sublayers. Grazing-incidence small-angle X-ray scattering (GISAXS) data collected directly on the surface of water

  9. PEPlife: A Repository of the Half-life of Peptides

    Science.gov (United States)

    Mathur, Deepika; Prakash, Satya; Anand, Priya; Kaur, Harpreet; Agrawal, Piyush; Mehta, Ayesha; Kumar, Rajesh; Singh, Sandeep; Raghava, Gajendra P. S.

    2016-11-01

    Short half-life is one of the key challenges in the field of therapeutic peptides. Various studies have reported enhancement in the stability of peptides using methods like chemical modifications, D-amino acid substitution, cyclization, replacement of labile aminos acids, etc. In order to study this scattered data, there is a pressing need for a repository dedicated to the half-life of peptides. To fill this lacuna, we have developed PEPlife (http://crdd.osdd.net/raghava/peplife), a manually curated resource of experimentally determined half-life of peptides. PEPlife contains 2229 entries covering 1193 unique peptides. Each entry provides detailed information of the peptide, like its name, sequence, half-life, modifications, the experimental assay for determining half-life, biological nature and activity of the peptide. We also maintain SMILES and structures of peptides. We have incorporated web-based modules to offer user-friendly data searching and browsing in the database. PEPlife integrates numerous tools to perform various types of analysis such as BLAST, Smith-Waterman algorithm, GGSEARCH, Jalview and MUSTANG. PEPlife would augment the understanding of different factors that affect the half-life of peptides like modifications, sequence, length, route of delivery of the peptide, etc. We anticipate that PEPlife will be useful for the researchers working in the area of peptide-based therapeutics.

  10. Exploitation of peptide motif sequences and their use in nanobiotechnology.

    Science.gov (United States)

    Shiba, Kiyotaka

    2010-08-01

    Short amino acid sequences extracted from natural proteins or created using in vitro evolution systems are sometimes associated with particular biological functions. These peptides, called peptide motifs, can serve as functional units for the creation of various tools for nanobiotechnology. In particular, peptide motifs that have the ability to specifically recognize the surfaces of solid materials and to mineralize certain inorganic materials have been linking biological science to material science. Here, I review how these peptide motifs have been isolated from natural proteins or created using in vitro evolution systems, and how they have been used in the nanobiotechnology field.

  11. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  12. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  14. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  15. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  16. Peptide-Carrier Conjugation

    DEFF Research Database (Denmark)

    Hansen, Paul Robert

    2015-01-01

    To produce antibodies against synthetic peptides it is necessary to couple them to a protein carrier. This chapter provides a nonspecialist overview of peptide-carrier conjugation. Furthermore, a protocol for coupling cysteine-containing peptides to bovine serum albumin is outlined....

  17. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  18. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition.

    Science.gov (United States)

    Keleş, Elif; Hazer, Baki; Cömert, Füsun B

    2013-04-01

    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene-block-polyisoprene-block-polystyrene (PS-b-PI-b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS-b-PI-b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, (1)H NMR, (13)C NMR, GPC and FTIR.

  19. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain.

    Science.gov (United States)

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han

    2014-05-30

    A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application.

  20. From bola-amphiphiles to supra-amphiphiles: the transformation from two-dimensional nanosheets into one-dimensional nanofibers with tunable-packing fashion of n-type chromophores.

    Science.gov (United States)

    Liu, Kai; Yao, Yuxing; Wang, Chao; Liu, Yu; Li, Zhibo; Zhang, Xi

    2012-07-09

    With a rational design of the supra-amphiphiles, we have successfully demonstrated that not only the dimension of the self-assembled nanostructures, but also the packing fashion of the functional naphthalene diimide (a typical n-type chromophore), can be tuned in a noncovalent way in aqueous solution. Naphthalene diimide is incorporated into a bola-amphiphile as the rigid core, whereas viologen derivatives are used as the hydrophilic head. The bola-amphiphile self-assembles into two-dimensional nanosheets, in which naphthalene diimide adopts a "J-type" aggregation. Water-soluble supramolecular complexation between viologen derivatives and the 8-hydroxypyrene-1, 3, 6-trisulfonic acid trisodium salt is used as a driving force for the formation of the supra-amphiphiles. Upon formation of the supra-amphiphiles, the nanosheets transform into ultralong nanofibers with a close packing of naphthalene diimide. Notably, just by mixing the two building blocks of the supra-amphiphiles in aqueous solution, a dimension-controlled evolution of the nanostructures is formed that leads to a different packing fashion of the n-type functional chromophores, which is facile and environmental friendly.

  1. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA.

    Science.gov (United States)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-05

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  2. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA

    Science.gov (United States)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua

    2016-04-01

    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  3. Synthesis of a new generation of amphiphiles with multi-cryptand headgroups: A comparative study at air–water interface

    Indian Academy of Sciences (India)

    B Sarkar; R K Gupta; R A Singh; P K Bharadwaj

    2008-06-01

    A laterally non-symmetric aza cryptand has been derivatized with two hydrophobic chains to afford amphiphiles with one cryptand headgroup and two hydrophobic tails. Three such units readily attach to 1,3,5-benzenetricarbonyl trichloride, to form a new generation of amphiphilic molecules with three cryptand headgroups and six hydrophobic chains. These molecules are studied at the air–water interface in a Langmuir trough. They readily form LB-films on a number of substrates that are characterized.

  4. Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide.

    Science.gov (United States)

    Owczarz, Marta; Casalini, Tommaso; Motta, Anna C; Morbidelli, Massimo; Arosio, Paolo

    2015-12-14

    In this work we quantified the role of electrostatic interactions in the self-assembly of a model amphiphilic peptide (RADA 16-I) into fibrillar structures by a combination of size exclusion chromatography and molecular simulations. For the peptide under investigation, it is found that a net charge of +0.75 represents the ideal condition to promote the formation of regular amyloid fibrils. Lower net charges favor the formation of amorphous precipitates, while larger net charges destabilize the fibrillar aggregates and promote a reversible dissociation of monomers from the ends of the fibrils. By quantifying the dependence of the equilibrium constant of this reversible reaction on the pH value and the peptide net charge, we show that electrostatic interactions contribute largely to the free energy of fibril formation. The addition of both salt and a charged destabilizer (guanidinium hydrochloride) at moderate concentration (0.3-1 M) shifts the monomer-fibril equilibrium toward the fibrillar state. Whereas the first effect can be explained by charge screening of electrostatic repulsion only, the promotion of fibril formation in the presence of guanidinium hydrochloride is also attributed to modifications of the peptide conformation. The results of this work indicate that the global peptide net charge is a key property that correlates well with the fibril stability, although the peptide conformation and the surface charge distribution also contribute to the aggregation propensity.

  5. Polymer-based vehicles for therapeutic peptide delivery.

    Science.gov (United States)

    Zhang, Jinjin; Desale, Swapnil S; Bronich, Tatiana K

    2015-01-01

    During the last decades increasing attention has been paid to peptides as potential therapeutics. However, clinical applications of peptide drugs suffer from susceptibility to degradation, rather short circulation half-life, limited ability to cross physiological barriers and potential immunogenicity. These challenges can be addressed by using polymeric materials as peptide delivery systems, owing to their versatile structures and properties. A number of polymer-based vehicles have been developed to stabilize the peptides and to control their release rates. Unfortunately, no single polymer or formulation strategy has been considered ideal for all types of peptide drugs. In this review, currently used and potential polymer-based systems for the peptide delivery will be discussed.

  6. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length.

    Science.gov (United States)

    Rufin, M A; Gruetzner, J A; Hurley, M J; Hawkins, M L; Raymond, E S; Raymond, J E; Grunlan, M A

    2015-04-14

    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide) n -OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogues (n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance.

  7. SPdb – a signal peptide database

    Directory of Open Access Journals (Sweden)

    Tan Tin

    2005-10-01

    Full Text Available Abstract Background The signal peptide plays an important role in protein targeting and protein translocation in both prokaryotic and eukaryotic cells. This transient, short peptide sequence functions like a postal address on an envelope by targeting proteins for secretion or for transfer to specific organelles for further processing. Understanding how signal peptides function is crucial in predicting where proteins are translocated. To support this understanding, we present SPdb signal peptide database http://proline.bic.nus.edu.sg/spdb, a repository of experimentally determined and computationally predicted signal peptides. Results SPdb integrates information from two sources (a Swiss-Prot protein sequence database which is now part of UniProt and (b EMBL nucleotide sequence database. The database update is semi-automated with human checking and verification of the data to ensure the correctness of the data stored. The latest release SPdb release 3.2 contains 18,146 entries of which 2,584 entries are experimentally verified signal sequences; the remaining 15,562 entries are either signal sequences that fail to meet our filtering criteria or entries that contain unverified signal sequences. Conclusion SPdb is a manually curated database constructed to support the understanding and analysis of signal peptides. SPdb tracks the major updates of the two underlying primary databases thereby ensuring that its information remains up-to-date.

  8. Short Review

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Rühli, Frank

    2015-01-01

    modality in ancient mummy research. The aim of this short review is to address the advantages and pitfalls of this particular technique for such unique samples. We recommend that when results of X-ray examination of mummies are presented, the specific recording data should be listed, and any given finds......, for example, of Paleopathology, should be cross-checked against other sources, for example, CT-scanning, direct inspection (also by endoscopy), and so forth....

  9. Epithelial transport of immunogenic and toxic gliadin peptides in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Zimmermann

    Full Text Available Celiac disease is an autoimmune disorder caused by failure of oral tolerance against gluten in genetically predisposed individuals. The epithelial translocation of gluten-derived gliadin peptides is an important pathogenetic step; the underlying mechanisms, however, are poorly understood. Thus, we investigated the degradation and epithelial translocation of two different gliadin peptides, the toxic P31-43 and the immunogenic P56-68. As the size, and hence, the molecular weight of peptides might have an effect on the transport efficiency we chose two peptides of the same, rather short chain length.Fluorescence labeled P31-43 and P56-68 were synthesized and studied in a transwell system with human enterocytes. Fluorometric measurements were done to reveal antigen translocation and flow cytometry as well as confocal microscopy were used to investigate cellular uptake of peptides. Structural changes of these peptides were analysed by MALDI-TOF-MS. According to fluorescence intensities, significantly more P31-43 compared to P56-68 was transported through the enterocyte layer after 24 h incubation. In contrast to previous reports, however, mass spectrometric data do not only show a time-dependent cleavage of the immunogenic P56-68, but we observed for the first time the degradation of the toxic peptide P31-43 at the apical side of epithelial cells.Considering the degradation of gliadin peptides by enterocytes, measurement of fluorescence signals do not completely represent translocated intact gliadin peptides. From our experiments it is obvious that even short peptides can be digested prior to the translocation across the epithelial barrier. Thus, the chain length and the sensibility to degradations of gliadin peptides as well as the integrity of the epithelial barrier seem to be critical for the uptake of gliadin peptides and the subsequent inflammatory immune response.

  10. Characterization of Fe3O4/P(St-MPEO) Amphiphilic Magnetic Polymer Microspheres

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amphiphilic magnetic microspheres consisting of styrene and poly(ethylene oxide) macromonomer(MPEO) were prepared by dispersion copolymerization in the presence of Fe3O4 magnetic fluid in an ethanol/water medium. The sizes of the magnetic microspheres and their distribution were characterized by means of scanning electron microscopy(SEM). The surface morphology and the average surface roughness of the microspheres were investigated by virtue of atomic force microscopy(AFM). It was found that the microspheres exhibit microscopic phase-separate and the mean square surface roughness of the microspheres increases with increasing MPEO used in the copolymerization. The amphiphilic magnetic microspheres containing 0.4-3.5 mg/g hydroxyl groups could be prepared from MPEO with different concentrations and styrene.

  11. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    Science.gov (United States)

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  12. Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins.

    Science.gov (United States)

    Yoshimura, Shige H; Kumeta, Masahiro; Takeyasu, Kunio

    2014-12-02

    Karyopherin β family proteins mediate the nuclear/cytoplasmic transport of various proteins through the nuclear pore complex (NPC), although they are substantially larger than the size limit of the NPC.To elucidate the molecular mechanism underlying this paradoxical function, we focused on the unique structures called HEAT repeats, which consist of repetitive amphiphilic α helices. An in vitro transport assay and FRAP analyses demonstrated that not only karyopherin β family proteins but also other proteins with HEAT repeats could pass through the NPC by themselves, and serve as transport mediators for their binding partners. Biochemical and spectroscopic analyses and molecular dynamics simulations of purified HEAT-rich proteins revealed that they interact with hydrophobic groups, including phenyl and alkyl groups, and undergo reversible conformational changes in tertiary structures, but not in secondary structures. These results show that conformational changes in the flexible amphiphilic motifs play a critical role in translocation through the NPC.

  13. Monte Carlo study of the self-assembly of achiral bolaform amphiphiles into helical nanofibers.

    Science.gov (United States)

    Wahab, M; Schiller, P; Schmidt, R; Mögel, H-J

    2010-03-02

    It is shown by coarse-grained off-lattice Monte Carlo simulations that a geometrically induced frustration of the parallel arrangement of rigid achiral bolaform amphiphiles can cause chirality in self-assembled nanostructures. The amphiphilic molecules are represented as rigid linear chains of 8 equally sized hydrophobic spheres (tail) and a hydrophilic sphere (head) at each end. The hydrophilic and hydrophobic spheres differ in size. A very simple interaction scheme consisting of only hard-core repulsion between all spheres and square-well attraction between hydrophobic spheres is sufficient for self-assembly into helical fibers for molecules with head/tail diameter ratios ranging from 1.3 to 1.8.

  14. Nose to Brain Delivery: New Trends in Amphiphile-Based "Soft" Nanocarriers.

    Science.gov (United States)

    Marianecci, Carlotta; Rinaldi, Federica; Hanieh, Patrizia N; Paolino, Donatella; Marzio, Luisa Di; Carafa, Maria

    2015-01-01

    The aim of the present paper is to highlight the potential of nasal mucosa as an administration route for targeting the central nervous system, in particular, the brain. Among the formulation strategies for enhance nose to brain drug delivery, the use of colloidal carriers has became a revolutionary approach. These systems should be able to entrap drugs in the desired amount, to penetrate through anatomical barriers, to efficiently release the loaded drugs in the site of action and moreover to show a good physicochemical, biological stability and good biocompatibility. The use of vesicular systems (liposomes and niosomes) together with the use of micelles, in nose to brain delivery are here presented. Vesicle structure is characterized by the presence of a hydrophobic bilayer and an aqueous core that is absent in micelles. Amphiphilic molecules are responsible for soft nanocarriers formation, in particular: liposomes are formed by phospholipids, while niosomes by non-ionic surfactant and micelles by amphiphilic polymers.

  15. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng

    2014-10-27

    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  16. Amphiphilic block copolymers as efficiency boosters in microemulsions a SANS investigation of the role of polymers

    CERN Document Server

    Endo, H; Mihailescu, M; Monkenbusch, M; Gompper, G; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    The effect of amphiphilic block copolymers on ternary microemulsions (water, oil and non-ionic surfactant) is investigated. Small amounts of PEP-PEO block copolymer lead to a dramatic expansion of the one-phase region where water and oil can be solubilized by the mediation of surfactant molecules. Small-angle neutron-scattering experiments employing a high-precision two-dimensional contrast-variation technique demonstrate that the polymer is distributed uniformly on the surfactant membrane, where it modifies the membrane curvature elasticity. Furthermore, a new approach to determine the bending rigidity of an amphiphilic membrane is proposed, which is precise enough to measure the logarithmic scale dependence of the bending rigidity and its universal prefactor in bicontinuous microemulsions. (orig.)

  17. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers.

    Science.gov (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud

    2014-01-13

    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  18. Preparation of Nano-porous Materials(Ⅰ) by Polymerization of Amphiphile Self-assemblies

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The polymerization of amphiphilic self-assemblies is a promising method to synthesize nano-structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self-assemblies to amphiphilic self-assemblies is given in this paper with 49 参考文献. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano-porous materials is briefly described.

  19. Electron spin resonance study of chloroplast photosynthetic activity in the presence of amphiphilic amines.

    Science.gov (United States)

    Sersen, F; Balgavý, P; Devínsky, F

    1990-12-01

    Electron spin resonance spectroscopy (ESR) was used to study the effects of amphiphilic amines of the carbamate, amide, and ester type and amine oxide on the photosynthetic system of spinach chloroplasts. The ESR signal II connected to the photosynthetic center PS II donor side was observed to diminish in the presence of amines, whereas that of PS I remained unchanged. The inhibition of PS II increased with the increasing of amine concentration. In the presence of amines, the light: dark chloroplast ESR signals ratio as well as the intensity of the ESR signal of unbound Mn2+ increased. It is suggested that the amphiphilic amines affect the structure of PS II and the electron transfer to PS I. The effects of the amines tested on the photosynthetic system correlate with their potency to perturb the lipid membrane structure.

  20. AMPHIPHILIC STAR-BLOCK COPOLYMERS BY IODIDE-MEDIATED RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodidemediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.

  1. New synthetic amphiphilic polymers for steric protection of liposomes in vivo.

    Science.gov (United States)

    Torchilin, V P; Trubetskoy, V S; Whiteman, K R; Caliceti, P; Ferruti, P; Veronese, F M

    1995-09-01

    Carboxy group-terminated synthetic polymers--branched poly(ethylene glycol), poly(acryloylmorpholine), and poly(vinylpyrrolidone)--were made amphiphilic by derivatization with phosphatidyl ethanolamine via the terminal carboxy group and then incorporated into lecithin-cholesterol liposomes prepared by the detergent dialysis method. Following the biodistribution of liposomes in mice, all three polymers were shown to be effective steric protectors for liposomes and were able to sharply increase liposome circulation times in a concentration-dependent manner. The accumulation of liposomes in the liver decreases. The effects observed are similar to those found for liposomes modified with linear poly(ethylene glycol). At low polymer concentration, amphiphilic branched poly(ethylene glycol) seems to be the most effective liposome protector, most probably, because at the same molar content of anchoring groups, each attachment point carries two polymeric chains and doubles the quantity of liposome-grafted polymer comparing to linear poly(ethylene glycol).

  2. Chimeric mitochondrial peptides from contiguous regular and swinger RNA

    Directory of Open Access Journals (Sweden)

    Hervé Seligmann

    2016-01-01

    Full Text Available Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A, multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200× rarer than swinger peptides (3/100,000 versus 6/1000. Among 186 peptides with >8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  3. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  4. ANIONIC SYNTHESIS OF A "CLICKABLE" MIDDLE-CHAIN AZIDEFUNCTIONALIZED POLYSTYRENE AND ITS APPLICATION IN SHAPE AMPHIPHILES

    Institute of Scientific and Technical Information of China (English)

    Kan Yue; Jinlin He; Chang Liu; Mingjun Huang; Xue-Hui Dong; Kai Guo; Peihong Ni

    2013-01-01

    "Click chemistry" is,by definition,a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis.This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS).The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide.Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography.The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy.The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS).The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls,resulting in an amphiphilic shape amphiphile,mPS-DPOSS.This synthetic approach is highly efficient and modular.It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.

  5. A synthetic strategy for novel nonsymmetrical bola amphiphiles based on carbohydrates

    NARCIS (Netherlands)

    Schuur, B; Wagenaar, Anno; Heeres, Andre; Heeres, Erik H. J.

    2004-01-01

    A number of novel nonionic bolaform amphiphiles with nonidentical aldityl head groups, 1-(1-deoxy-D-galactitol-l-ylamino)-6-(1-deoxy-D- galactitol-1-ylamino)hexane (4a), 1-(1-deoxy-D-mannitol-1-ylamino)-6-(1-deoxy-D-glucitol-1-ylamino)hexane (4b). and 1-(1-deoxy-D-tialactitol-1-ylamino)-6-(1-deoxy-D

  6. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  7. Langmuir-Blodgett Films and Calcium Ion Coordination of Biliverdin and Its Amphiphilic Derivatives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Monolayer formation and LB film fabrication of amphiphilic derivative of biliverdin 1,diododecyl biliverdinamide [B(CONHC12H25)2,2] at an air-water interface on pure water subphase and subphase containing calcium ion were investigated and compared with 1.The coordination in ordered molecular films is much different from that in bulk solution.The formation of ligand-calcium complex was confirmed by X-ray photoelectron spectroscopy.

  8. A comparative study of the physicochemical properties of perfluorinated and hydrogenated amphiphiles.

    Science.gov (United States)

    Blanco, Elena; González-Pérez, Alfredo; Ruso, Juan M; Pedrido, Rosa; Prieto, Gerardo; Sarmiento, Félix

    2005-08-01

    In this work we studied and compared the physicochemical properties of perfluorinated (sodium perfluoroheptanoate, C7FONa, and perfluorooctanoate, C8FONa) and hydrogenated (sodium octanoate, C8HONa, decanoate, C10HONa, and dodecanoate, C12HONa) amphiphiles. First, we determined their Krafft points to study the solubility and appropriate temperature range of micellization of these compounds. The critical micelle concentration (cmc) and ionization degree of micellization (beta) as a function of temperature (T) were estimated from conductivity data. Plots of cmc vs T appear to follow the typical U-shaped curve with a minimum T(min). The results show that the surfactants with CF2/CH2 ratio of 1.5 between alkyl chains (C12HONa-C8FONa and C10HONa-C7FONa) have nearly the same minimum value for cmc against temperature. The comparison between the cmc of hydrogenated amphiphiles and the corresponding perfluorinated amphiphiles must be done at this point. Thermodynamic functions of micellization were obtained by applying different theoretical models and choosing the one that best fit our experimental data. Although perfluorinated and hydrogenated amphiphiles present similar thermodynamic behavior, we have found a variation of 1.3 to 1.7 in the CF2/CH2 ratio, which did not remain constant with temperature. In the second part of this study the apparent molar volumes and adiabatic compressibilities were determined from density and ultrasound velocity measurements. Apparent molar volumes at infinite dilution presented the ratio 1.5 between alkyl chains again. However, apparent molar volumes upon micellization for sodium perfluoroheptanoate indicated a different aggregation pattern.

  9. Control of structure and growth of polymorphic crystalline thin films of amphiphilic molecules on liquid surfaces

    DEFF Research Database (Denmark)

    Weinbach, S.P.; Kjær, K.; Bouwman, W.G.;

    1994-01-01

    The spontaneous formation and coexistence of crystalline polymorphic trilayer domains in amphiphilic films at air-liquid interfaces is demonstrated by grazing incidence synchrotron x-ray diffraction. These polymorphic crystallites may serve as models for the early stages of crystal nucleation...... and growth, helping to elucidate the manner in which additives influence the progress of crystal nucleation, growth, and polymorphism and suggesting ways of selectively generating and controlling multilayers on liquid surfaces. Auxiliary molecules have been designed to selectively inhibit development...

  10. Structure and Dynamics in Amphiphilic Bilayers: NMR and MD simulation Studies

    OpenAIRE

    2013-01-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations were employed to study molecular structure and dynamics in amphiphilic bilayers. This thesis reports on method development and practical applications to two types of bilayer systems: simple cell membrane models composed of phosphatidylcholine lipids and cholesterol; and liquid crystals composed of ethyleneoxide-based surfactants often used in technological applications and in fundamental studies ...

  11. Novel Amphiphilic Polymer Gel Electrolytes Based on PEG-b-GMA-co-MMA

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Gel polymer electrolytes for lithium battery have been widely investigated recently because of their high ion conductivity at room temperature. We synthesized and characterized novel gel electrolytes based on amphiphilic copolymethacrylates containing different lengths of ethylene oxide (EO) chain as ionophilic units and methyl methacrylate (MMA) chain as ionophobic units[1]. Their electrochemical properties were also measured.1H NMR and FTIR analysis results elucidated that PEG-b-glycidyl met...

  12. Elisapterosin F: a polycyclic gorgonian-derived diterpene with a facially amphiphilic structure

    Science.gov (United States)

    Rodríguez, Ileana I.; Rodríguez, Abimael D.

    2009-01-01

    Analysis of the terpene metabolites of Pseudopterogorgia elisabethae collected in San Andrés island, Colombia has resulted in the discovery of a novel metabolite, elisapterosin F (1). The tangled molecular structure of 1, which was elucidated after extensive spectroscopic data interpretation, possesses hydrophilic and hydrophobic groups located on two opposite faces, rather than at two ends as in the more conventional head/tail amphiphiles. PMID:20161151

  13. Vortex-Induced Alignment of a Water Soluble Supramolecular Nanofiber Composed of an Amphiphilic Dendrimer

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuda

    2013-06-01

    Full Text Available We have synthesized a novel amphiphilic naphthalene imide bearing a cationic dendrimer wedge (NID. NID molecules in water self-assemble to form a two-dimensional ribbon, which further coils to give a linear supramolecular nanofiber. The sample solution showed linear dichroism (LD upon stirring of the solution, where NID nanofibers dominantly align at the center of vortex by hydrodynamic interaction with the downward torsional flows.

  14. Vortex-induced alignment of a water soluble supramolecular nanofiber composed of an amphiphilic dendrimer.

    Science.gov (United States)

    Yamamoto, Taiki; Tsuda, Akihiko

    2013-06-17

    We have synthesized a novel amphiphilic naphthalene imide bearing a cationic dendrimer wedge (NID). NID molecules in water self-assemble to form a two-dimensional ribbon, which further coils to give a linear supramolecular nanofiber. The sample solution showed linear dichroism (LD) upon stirring of the solution, where NID nanofibers dominantly align at the center of vortex by hydrodynamic interaction with the downward torsional flows.

  15. New synthesis of amphiphilic copolymers PE-g-PEO via esterfication

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new series of high molecular weight amphiphilic graft copolymers PE-g-PEO has been prepared. The esterifications between PE-p-MS-g-MA and PEO with OH group at the chain end are carried out under different conditions. The compositions of these graft copolymers are studied by NMR and FTIR. It is found to be a convenient and efficient way to prepare high molecular weight PE-g-PEO graft copolymers.

  16. Exploring single chain amphiphile self-assembly and their possible roles in light transduction

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Self-assembled structures of single-chain amphiphiles have been used as hosts for biochemical, and chemical reactions. Their use as models for protocells (i.e., precursors to the first biological cells) has been extensively researched by various groups because the availability of single chain amp...... network. References 1 Cape, J., et al. (2011) Chem. Sci., 2 (4), 661-667. 2 Maurer, S. E., et al. (2009) Astrobiology, 9, 979-987. 3 Caschera, F., et al. Langmuir, In press....

  17. New Amphiphilic Polypyridyl Ruthenium(Ⅱ) Sensitizer and Its Application in Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    KONG Fan-Tai; DAI Song-Yuan; WANG Kong-Jia

    2007-01-01

    Amphiphilic polypyridyl ruthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'-dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ) (K005) has been synthesized and characterized by cyclic voltammetry, 1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the RuⅡ/Ⅲ couple by cyclic voltammetry.Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.

  18. Langmuir and Langmuir-Blodgett films of hybrid amphiphiles with a polyoxometalate headgroup.

    Science.gov (United States)

    Wang, Xiao-Le; Wang, Yong-Liang; Miao, Wen-Ke; Hu, Min-Biao; Tang, Jing; Yu, Wei; Hou, Zhan-Yao; Zheng, Ping; Wang, Wei

    2013-06-04

    A hybrid was at first synthesized by a postfunctionalization of an aminomethane trisalkoxo-functionalized Anderson-type polyoxometalate (POM) encapsulated by three tetrabutylammonium ions using a 3,5-bis(tetradecyloxy)benzoic acid by amidation. Then the three TBA(+) counter cations were programmatically replaced by protons (H(+)) following a molecule-to-amphiphile conversion. In this way one hybrid and three POM-containing hybrid amphiphiles (PCHAs) were acquired by adjusting the number (n) of TBA(+) ions and number (3 - n) of H(+) ions (n = 3, 2, 1, and 0). These compounds can be spread onto a water surface to form a Langmuir monolayer film at the air-water interface. Surface pressure-molecular area measurements exhibit the TBA(+) (H(+)) number playing an important role in the forming ability and stability of Langmuir monolayer films. Also, the Langmuir-Blodgett (LB) technique has been used to transfer the monolayer film onto solid supports to fabricate solid multilayer films. It was found that the PCHA with three H(+) ions had the best Langmuir film-forming ability and thus formed stable LB films with a two-dimensional ordered structure. Our findings are instructive in fabricating and using solid films of the amphiphiles with POM headgroups.

  19. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  20. Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids.

    Science.gov (United States)

    Kim, Shin-Hyun; Abbaspourrad, Alireza; Weitz, David A

    2011-04-13

    We use a microfluidic device to prepare monodisperse amphiphilic particles in the shape of a crescent-moon and use these particles to stabilize oil droplets in water. The microfluidic device is comprised of a tapered capillary in a theta (θ) shape that injects two oil phases into water in a single receiving capillary. One oil is a fluorocarbon, while the second is a photocurable monomer, which partially wets the first oil drop; silica colloids in the monomer migrate and adsorb to the interface with water but do not protrude into the oil interface. Upon UV-induced polymerization, solid particles with the shape of a crescent moon are formed; removal of fluorocarbon oil yields amphiphilic particles due to the selective adsorption of silica colloids. The resultant amphiphilic microparticles can be used to stabilize oil drops in a mixture of water and ethanol; if they are packed to sufficient surface density on the interface of the oil drop, they become immobilized, preventing direct contact between neighboring drops, thereby providing the stability.

  1. Complexation between a macromolecule and an amphiphile by Monte Carlo technique.

    Science.gov (United States)

    Gharibi, Hussein; Behjatmanesh-Ardakani, Reza; Hashemianzadeh, Majid; Mousavi-Khoshdel, Morteza

    2006-07-13

    Using a simple modified version of Larson's model, we studied the complexation between a macromolecule and an amphiphile in a dilute range of concentrations. The main characteristic of amphiphile molecules, that is, the hydrophobicity of the tails and hydrophilicity of the heads, is used to model the self-assembling process. Contrary to the molecular thermodynamics approaches, no prior shape was considered for the aggregates and the system was allowed to choose the most stable structure. For true ensemble averaging, without any synthetic results, configurational bias Monte Carlo and reptation moves are used to produce a Markov chain of configurations. From the results, it is found that the macromolecule causes the clusters of surfactants to be formed at a concentration much lower than the critical micelle concentration. Furthermore, the shape of the clusters tends to be more spherical, which is in line with theory and experiments. From the results, it is learned how a polymer can change the behavior of an amphiphilic molecule. All of the results are in good qualitative agreement with experimental and molecular thermodynamics results. Furthermore, the model predicts network formation between bound clusters at high concentrations of the surfactant.

  2. The search for new amphiphiles: synthesis of a modular, high-throughput library

    Directory of Open Access Journals (Sweden)

    George C. Feast

    2014-07-01

    Full Text Available Amphiphilic compounds are used in a variety of applications due to their lyotropic liquid-crystalline phase formation, however only a limited number of compounds, in a potentially limitless field, are currently in use. A library of organic amphiphilic compounds was synthesised consisting of glucose, galactose, lactose, xylose and mannose head groups and double and triple-chain hydrophobic tails. A modular, high-throughput approach was developed, whereby head and tail components were conjugated using the copper-catalysed azide–alkyne cycloaddition (CuAAC reaction. The tails were synthesised from two core alkyne-tethered intermediates, which were subsequently functionalised with hydrocarbon chains varying in length and degree of unsaturation and branching, while the five sugar head groups were selected with ranging substitution patterns and anomeric linkages. A library of 80 amphiphiles was subsequently produced, using a 24-vial array, with the majority formed in very good to excellent yields. A preliminary assessment of the liquid-crystalline phase behaviour is also presented.

  3. Binary-component micelle and vesicle: Free energy and asymmetric distributions of amphiphiles between vesicle monolayers

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi-Yi; Xiang Xun

    2013-01-01

    The real-space two-dimensional self-consistent field theory (SCFT) is employed to study the free energies of micelles and vesicles constituted by binary amphiphilic diblock copolymer AB in homopolymer A.With an increasing volume fraction of copolymer AB,there are morphological transitions from circle micelles to oblate circle-like micelles,to a compound structure with inverted micelles in the inner center and micelles outer layer,and to vesicles.Special attention is paid to the role of the copolymer AB in controlling the free energies of the micelles and vesicles by examining the effect of the length ratio of A/B with the fixed whole chain length of the AB copolymer,the length effect of A or B block with the corresponding fixed length of B or A block,for one component of copolymer,and the effect of different amphiphile compositions for a binary-component copolymer system.The quantity η is provided to describe the asymmetric density distribution of amphiphiles between the inner and outer monolayers of vesicles,and to quantify the relative asymmetric extent of the density distribution between two species of copolymers in binary component vesicles.

  4. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.

  5. CONTROLLED SYNTHESIS OF AMPHIPHILIC BLOCK POLYMERS HAVING GLUCOSE RESIDUES AND THEIR STRUCTURE FORMATION

    Institute of Scientific and Technical Information of China (English)

    Takeaki Miyamoto; Masahiko Minoda; Yoshinobu Tsujii

    1999-01-01

    Vinyl ether (VE)-based amphiphilic block copolymers with D-glucose residues as hydrophilic pendants were synthesized by CH3CH(OiBu)Cl/ZnI2-initiated sequential living cationic copolymerization of 3-O-(vinyloxy)ethyl-1, 2:5, 6-di-O-isopropylidene-D-glucofuranose (IGVE) and isobutyl VE (IBVE) and subsequent deprotection. The precursor block copolymers had a narrow molecular weight distribution(Mw/Mn~1.1) and a controlled segmental composition. The solubility characteristics of the amphiphilic copolymer depended strongly on composition. Their solvent-cast thin films were examined, under a transmission electron microscope, and could be seen to exhibit various microphase-separated surface morphologies such as spheres, cylinders, and lamellae, depending on composition. The amphiphilic copolymers with the appropriate segmental composition were found to form a stable monolayer at the airwater interface, which was successfully transferred onto a substrate by the Langmuir-Blodgett (LB)technique. The layered structure of the built-up LB films was controlled by blending the homopolymer.

  6. Short esophagus.

    Science.gov (United States)

    Kunio, Nicholas R; Dolan, James P; Hunter, John G

    2015-06-01

    In the presence of long-standing and severe gastroesophageal reflux disease, patients can develop various complications, including a shortened esophagus. Standard preoperative testing in these patients should include endoscopy, esophagography, and manometry, whereas the objective diagnosis of a short esophagus must be made intraoperatively following adequate mediastinal mobilization. If left untreated, it is a contributing factor to the high recurrence rate following fundoplications or repair of large hiatal hernias. A laparoscopic Collis gastroplasty combined with an antireflux procedure offers safe and effective therapy.

  7. Peptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain

    A short peptide composed of only two amino acid residues, serine and histidine, is here reported to enable oligomerization of RNA monomers. SerHis dipeptide was previously reported to catalyse formation of peptide bonds (Gorlero et al. 2009) as well as possessing broad hydrolytic activities...... – in such environment hydrolysis is thermodynamically favoured over condensation. However, the thermodynamic equilibrium towards condensation can be shifted even in this environment. In this poster we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA...... these conditions, most of the water is in the form of ice crystals and the other reactants are upconcentrated in the remaining liquid micro-inclusions, hence creating an environment with low water activity in which condensation reactions can occur. The ability of simple peptides to catalyse RNA synthesis could...

  8. Lipid-peptide vesicle nanoscale hybrids for triggered drug release by mild hyperthermia in vitro and in vivo.

    Science.gov (United States)

    Al-Ahmady, Zahraa S; Al-Jamal, Wafa' T; Bossche, Jeroen V; Bui, Tam T; Drake, Alex F; Mason, A James; Kostarelos, Kostas

    2012-10-23

    The present study describes leucine zipper peptide-lipid hybrid nanoscale vesicles engineered by self-assembled anchoring of the amphiphilic peptide within the lipid bilayer. These hybrid vesicles aim to combine the advantages of traditional temperature-sensitive liposomes (TSL) with the dissociative, unfolding properties of a temperature-sensitive peptide to optimize drug release under mild hyperthermia, while improving in vivo drug retention. The secondary structure of the peptide and its thermal responsiveness after anchoring onto liposomes were studied with circular dichroism. In addition, the lipid-peptide vesicles (Lp-peptide) showed a reduction in bilayer fluidity at the inner core, as observed with DPH anisotropy studies, while the opposite effect was observed with an ANS probe, indicating peptide interactions with both the headgroup region and the hydrophobic core. A model drug molecule, doxorubicin, was successfully encapsulated in the Lp-peptide vesicles at higher than 90% efficiency following the remote loading, pH-gradient methodology. The release of doxorubicin from Lp-peptide hybrids in vitro indicated superior serum stability at physiological temperatures compared to lysolipid-containing temperature-sensitive liposomes (LTSL) without affecting the overall thermo-responsive nature of the vesicles at 42 °C. A similar stabilizing effect was observed in vivo after intravenous administration of the Lp-peptide vesicles by measuring (14)C-doxorubicin blood kinetics that also led to increased tumor accumulation after 24 h. We conclude that Lp-peptide hybrid vesicles present a promising new class of TSL that can offer previously unexplored opportunities for the development of clinically relevant mild hyperthermia-triggered therapeutic modalities.

  9. Albumin pre-coating enhances intracellular siRNA delivery of multifunctional amphiphile/siRNA nanoparticles

    Directory of Open Access Journals (Sweden)

    Kummitha CM

    2012-10-01

    Full Text Available China M Kummitha, Anthony S Malamas, Zheng-Rong LuDepartment of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USAAbstract: Nonspecific association of serum molecules with short-interfering RNA (siRNA nanoparticles can change their physiochemical characteristics, and results in reduced cellular uptake in the target tissue during the systemic siRNA delivery process. Serum albumin is the most abundant protein in the body and has been used to modify the surface of nanoparticles, to inhibit association of other serum molecules. Here, we hypothesized that surface modification of lipid-based nanoparticular siRNA delivery systems with albumin could prevent their interaction with serum proteins, and improve intracellular uptake. In this study, we investigated the influence of albumin on the stability and intracellular siRNA delivery of the targeted siRNA nanoparticles of a polymerizable and pH-sensitive multifunctional surfactant N-(1-aminoethyliminobis[N-(oleoylcysteinylhistinyl-1-aminoethylpropionamide] (EHCO in serum. Serum resulted in a significant increase in the size of targeted EHCO/siRNA nanoparticles and inhibited cellular uptake of the nanoparticles. Coating of targeted EHCO/siRNA nanoparticles with bovine serum albumin at 9.4 µM prior to cell transfection improved cellular uptake and gene silencing efficacy of EHCO/siRNA targeted nanoparticles in serum-containing media, as compared with the uncoated nanoparticles. At a proper concentration, albumin has the potential to minimize interactions of serum proteins with siRNA nanoparticles for effective systemic in vivo siRNA delivery.Keywords: multifunctional, lipid nanoparticles, RNA interference, pH-sensitive amphiphile, siRNA

  10. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  11. Descriptors for antimicrobial peptides

    DEFF Research Database (Denmark)

    Jenssen, Håvard

    2011-01-01

    of antimicrobial drugs, and computational methods utilizing molecular descriptors can significantly accelerate the development of new peptide drug candidates. Areas covered: This paper gives a broad overview of peptide and amino-acid scale descriptors available for AMP modeling and highlights which...

  12. PNA Peptide chimerae

    DEFF Research Database (Denmark)

    Koch, T.; Næsby, M.; Wittung, P.;

    1995-01-01

    Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields.......Radioactive labelling of PNA has been performed try linking a peptide segment to the PNA which is substrate for protein kinase A. The enzymatic phosphorylation proceeds in almost quantitative yields....

  13. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  14. Bacteriocin Inducer Peptides

    Science.gov (United States)

    Novel peptides produced by bacteriocin-producing bacteria stimulate the production of bacteriocins in vitro. The producer bacteria are cultured in the presence of a novel inducer bacteria and a peptide having a carboxy terminal sequence of VKGLT in order to achieve an increase in bacteriocin produc...

  15. Avian host defense peptides

    NARCIS (Netherlands)

    Cuperus, Tryntsje; Coorens, M.; van Dijk, A.; Haagsman, H.P.

    2013-01-01

    Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense

  16. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    medicine to combat drug-resistant superbugs, fungi, viruses, parasites, or cancer. Alternatively, multiple factors (e.g., albumin, arginine, butyrate, calcium, cyclic AMP, isoleucine, short-chain fatty acids, UV B light, vitamin D, and zinc are able to induce the expression of antimicrobial peptides, opening new avenues to the development of anti-infectious drugs.

  17. APD: the Antimicrobial Peptide Database

    OpenAIRE

    Wang, Zhe; Wang, Guangshun

    2004-01-01

    An antimicrobial peptide database (APD) has been established based on an extensive literature search. It contains detailed information for 525 peptides (498 antibacterial, 155 antifungal, 28 antiviral and 18 antitumor). APD provides interactive interfaces for peptide query, prediction and design. It also provides statistical data for a select group of or all the peptides in the database. Peptide information can be searched using keywords such as peptide name, ID, length, net charge, hydrophob...

  18. Proinsulin C-peptide interferes with insulin fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  19. Analogue peptides for the immunotherapy of human acute myeloid leukemia.

    Science.gov (United States)

    Hofmann, Susanne; Mead, Andrew; Malinovskis, Aleksandrs; Hardwick, Nicola R; Guinn, Barbara-Ann

    2015-11-01

    The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.

  20. Development of Novel Drug and Gene Delivery Carriers Composed of Single-Walled Carbon Nanotubes and Designed Peptides With PEGylation.

    Science.gov (United States)

    Ohta, Takahisa; Hashida, Yasuhiko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2016-09-01

    Single-walled carbon nanotubes (SWCNTs) attract great interest in biomedical applications including drug and gene delivery. In this study, we developed a novel delivery system using SWCNTs associated with designed polycationic and amphiphilic peptides. Wrapping of SWCNTs with H-(-Lys-Trp-Lys-Gly-)7-OH [(KWKG)7] resulted in stable dispersion in water, but the composite aggregated in the buffered solution. This dispersion instability was also evident in a cell culture medium with fetal bovine serum. To improve the aqueous dispersibility, the SWCNTs-(KWKG)7 composite was further modified with polyethylene glycol (PEG) at the lysine residues via amide bond formation and the highest modification extent of 13.3% of the amino groups which corresponded to 2 PEG chains in each peptide molecule was achieved with fluorescein isothiocyanate-labeled carboxyl-PEG12. The uptake of the SWCNTs composite by A549 human lung adenocarcinoma epithelial cells was evaluated by visual observation and fluorescence activated cell sorting analysis for SWCNTs wrapped with a mixture of (KWKG)7 with PEGylation and H-(-Cys-Trp-Lys-Gly-)-OH-(KWKG)6 [CWKG(KWKG)6] labeled with fluorescent boron-dipyrromethene tetramethylrhodamine and 7-fold higher uptake comparing with SWCNTs-peptide composite without PEGylation was obtained suggesting the importance of dispersibility in addition to a cationic charge. The superior potential of SWCNTs composites assisted by polycationic and amphiphilic peptides with PEGylation was thus demonstrated.

  1. Molecular self-assembly using peptide nucleic acids.

    Science.gov (United States)

    Berger, Or; Gazit, Ehud

    2017-01-01

    Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies.

  2. Micellar and vesicular nanoassemblies of triazole-based amphiphilic probes triggered by mercury(II) ions in a 100% aqueous medium.

    Science.gov (United States)

    Kim, Inhye; Lee, Na-Eun; Jeong, Yoo-Jeong; Chung, Young-Ho; Cho, Byoung-Ki; Lee, Eunji

    2014-11-21

    ABA-type amphiphiles bearing a triazole-based aromatic block were easily synthesized using click chemistry, which act as fluorescent turn-off Hg(2+)-chemoprobes in an aqueous solution. Interestingly, the metal-binding process of amphiphiles induced nanoassemblies even below the CMCs, and the binding stoichiometry affected the morphologies of the resultant nanostructures.

  3. Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Wei, Junfu, E-mail: junfuwei1963@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Zhou, Xiangyu [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Nana [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)

    2015-05-15

    Highlights: • The amphiphilic segments on polypropylene nonwoven surface were constructed successfully. • The adsorption behavior for EDCs of the amphiphilic adsorption materials was systematically studied. • The novel amphiphilic adsorption materials have broad application prospects in EDCs removal from aqueous solution. - Abstract: The amphiphilic segments on polypropylene nonwoven (PP nonwoven) surface were constructed using the ultraviolet (UV) irradiation graft polymerization for the removal of endocrine disrupting compounds (EDCs) with different polarity from aqueous solution. The stearyl acrylate (SA) as hydrophobic functional monomer was introduced onto the surface of PP nonwoven fabric at first stage and then the hydroxyethyl acrylate (HEA) as hydrophilic functional monomer was introduced subsequently. The effect of functional monomer concentration and UV irradiation time on grafting ratio was studied and discussed. The novel amphiphilic structure was designed and constructed based on adsorption capacity for the target micropollutants. The structure and composition of the amphiphilic adsorption materials were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle (CA). The adsorption behaviors for EDCs of the amphiphilic adsorption materials were studied and the results indicated that the adsorption capacity and adsorption rate were superior to single SA grafted PP nonwoven (PP-g-SA) and single HEA grafted PP nonwoven (PP-g-HEA). The novel amphiphilic adsorption material was efficient for the removal of EDCs with different polarity and could be utilized as a potential adsorption material for removing EDCs from aqueous solution.

  4. Highly ordered structures of peptides by using molecular scaffolds.

    Science.gov (United States)

    Moriuchi, Toshiyuki; Hirao, Toshikazu

    2004-06-20

    Protein secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in inducing the three-dimensional structure and biological activity of proteins. Designing secondary structure mimics composed of short peptides has attracted much attention not only to gain fundamental insight into the factors affecting protein folding but also to develop pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. In this tutorial review, we focus on molecular scaffolds employed to induce beta-sheet-like structure in attached peptide chains, thereby creating highly ordered molecular structures, and discuss the versatility of these molecular scaffolds to regulate the attached peptide strands in the appropriate dimensions.

  5. Mesomorphous structure change by tail chain number in ionic liquid crystalline complexes of linear polymer and amphiphiles

    Institute of Scientific and Technical Information of China (English)

    Zhi Yu Cheng; Bi Ye Ren; Shu Ying He; Xin Xing Liu; Zhen Tong

    2011-01-01

    Three polymer-amphiphile complexes were prepared by combining poly(allylamine hydrochloride) (PAH) with the potassium salt of mono-, di-, and trisubstituted benzoic acid dendrons (4-octyloxybenzoic acid, 3,5-dioctyloxybenzoic acid, and 3,4,5-trioctyloxybenzoic acid). The solid structure and properties were monitored with FT-IR, XRD, TG, DSC, and polarized optical microscope (POM). Difference in the tail chain number of the dendritic amphiphile induced two different mesomorphous structures: lamella for the mono-, disubstituted dendron containing complexes and hexagonal column for the trisubstituted dendron containing complexes. These corresponded to the ionic thermotropic liquid crystal SmA and φh phases, respectively. This finding is significant for design of functional nanostructures based on the ionic complexation of polymers and amphiphiles.

  6. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    Science.gov (United States)

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  7. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals

    Science.gov (United States)

    Shrestha, Lok Kumar; Strzelczyk, Karolina Maria; Goswami Shrestha, Rekha; Ichikawa, Kotoko; Aramaki, Kenji; Hill, Jonathan P.; Ariga, Katsuhiko

    2015-05-01

    Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

  8. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Kazuharu, E-mail: kzsuga@maebashi-it.ac.jp [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Shinohara, Hiroki; Kadoya, Toshihiko [Maebashi Institute of Technology, Gunma 371-0816 (Japan); Kuramitz, Hideki [Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555 (Japan)

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y{sub 4}). A peptide whereby Y{sub 4}C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH{sub 2}) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY{sub 4}C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. - Highlights: • We constructed a multifunctional peptide probe for the electrochemical sensing of lymphoma cells. • The peptide probe consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. • The electrode response of the peptide probe changes due to selective uptake into the cells.

  9. Hierarchy of Specific Lipid-Peptide Interactions Produces the Activity of Cell-penetrating and Cell-permeating Peptides

    Science.gov (United States)

    Davis, Matthew; Parente, Daniel; Gordon, Vernita; Mishra, Abhijit; Schmidt, Nathan; Yang, Lihua; Coridan, Robert; Som, Abhigyan; Tew, Gregory; Wong, Gerard

    2008-03-01

    Protein transduction domains can cross cell membranes with high efficiency, even when carrying a variety of cargos, and thus has strong biotechnological potential. The molecular mechanism of entry, however, is not well understood. We use small-angle x-ray scattering (SAXS) and confocal microscopy to systematically study the interaction of the TAT and ANTP PTD with model membranes of variable composition. Their membrane transduction activity requires the presence of both PE and PS lipids in the membrane. Antimicrobial peptides (AMP's) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogs of AMP's, such as the family of phenylene ethynylene antimicrobial oligomers (AMO's), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. PE lipid greatly enhances permeating activity of AMO in these membranes, showing the importance of specific lipid composition for the activity of cell-permeating peptides. Since bacterial cell membranes are richer in PE lipids than are eukaryotic cell membranes, this may indicate a mechanism for antimicrobial specificity.

  10. Micelle and bilayer formation of amphiphilic janus particles in a slit-pore.

    Science.gov (United States)

    Rosenthal, Gerald; Klapp, Sabine H L

    2012-01-01

    We employ molecular dynamics simulations to investigate the self-assembly of amphiphilic Janus particles in a slit-pore consisting of two plane-parallel, soft walls. The Janus particles are modeled as soft spheres with an embedded unit vector pointing from the hydrophobic to the hydrophilic hemisphere. The structure formation is analyzed via cluster size distributions, density and polarization profiles, and in-plane correlation functions. At low temperatures and densities, the dominating structures are spherical micelles, whereas at higher densities we also observe wall-induced bilayer formation. Finally, we compare the MD results with those from a previous density functional study.

  11. Micelle and Bilayer Formation of Amphiphilic Janus Particles in a Slit-Pore

    Directory of Open Access Journals (Sweden)

    Sabine H. L. Klapp

    2012-07-01

    Full Text Available We employ molecular dynamics simulations to investigate the self-assembly of amphiphilic Janus particles in a slit-pore consisting of two plane-parallel, soft walls. The Janus particles are modeled as soft spheres with an embedded unit vector pointing from the hydrophobic to the hydrophilic hemisphere. The structure formation is analyzed via cluster size distributions, density and polarization profiles, and in-plane correlation functions. At low temperatures and densities, the dominating structures are spherical micelles, whereas at higher densities we also observe wall-induced bilayer formation. Finally, we compare the MD results with those from a previous density functional study.

  12. Amphiphilic Polyphosphazene with Poly(ethylene oxide) Side Chains Prepared through the Decker-Forster Reaction

    Institute of Scientific and Technical Information of China (English)

    LIU Chengmei; HU Fuzhen; QIU Jinjun; LEI Guofu; BAO Rui

    2006-01-01

    Poly(4-methylphenoxyphosphazene)-graft-poly(ethylene oxide) (PPZ-g-PEO), a novel amphiphilic grafting polymer was prepared via the Decker-Forster reaction. It is found that the graft efficiency increased with extension of reaction time. Low molecular weight of poly(ethylene oxide) favored the grafting reaction. The grafted polymer has two different glass transition temperatures(Tg) with those of pure poly(4-methylphenoxy-phopsphazene) and PEO. The emulsifying ability of grafted polymer was studied with benzene-water mixture. The emulsifying volumes increased with the decreasing of PEO's molecular weight. The contact angle of film forming from grafted polymer decreased after introduction of PEO grafting chain.

  13. Plasmonic Vesicles of Amphiphilic Nanocrystals: Optically Active Multifunctional Platform for Cancer Diagnosis and Therapy.

    Science.gov (United States)

    Song, Jibin; Huang, Peng; Duan, Hongwei; Chen, Xiaoyuan

    2015-09-15

    Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous

  14. Synthesis and Characterization of Amphiphilic Block Copolymer Containing PVP and Poly(5-benzyloxytrimethylene carbonate)

    Institute of Scientific and Technical Information of China (English)

    Ying Xia WANG; Feng HE; Ren Xi ZHUO

    2006-01-01

    Amphiphilic copolymer of 5-benzyloxytrimethylene carbonate (BTMC) with poly (vinyl pyrrolidone) (PVP) was successfully synthesized using immobilized porcine pancreas lipase (IPPL) or SnOct2 as catalyst. Hydroxyl terminated PVP, synthesized with 2-mercaptoethanol as a chain transfer reagent, was employed as a macroinitiator. The resulting copolymers were characterized by GPC, 1H NMR and IR. Increasing the BTMC/PVP-OH feed ratio ([B]/[P])resulted in the increase of Mn of corresponding copolymers and the decrease of Mw/Mn.Immobilized enzyme has comparable catalytic activity to SnOct2 for the copolymerization.

  15. Mobilization and biodegradation of 2-methylnaphthalene by amphiphilic polyurethane nano-particle.

    Science.gov (United States)

    Kim, Young-Bum; Kim, Ju-Young; Kim, Eun-ki

    2009-10-01

    Amphiphilic polyurethane (APU) nano-particle enhanced the mobilization of 2-methylnaphthalene (2-MNPT) in soil. Significant increase in the solubility of 2-MNPT was achieved. The molar solubilization ratio was 0.4 (mole 2-MNPT/mole APU). Simple precipitation of APU particle by 2 N CaCl(2) recovered 95% of APU particle and 92% of 2-MNPT simultaneously. Also, 2-MNPT, which was entrapped inside the APU particle, was directly degraded by Acinetobacter sp. as same efficiency as without APU particle. These results showed the potentials of APU particle in the mobilization and biodegradation of hydrophobic compounds from soil.

  16. Novel self-associative and multiphase nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives

    DEFF Research Database (Denmark)

    Eenschooten, Corinne; Vaccaro, Andrea; Delie, Florence

    2012-01-01

    The purpose of the present study was to investigate the physicochemical properties in aqueous media of amphiphilic hyaluronic acid (HA) derivatives obtained by reaction of HA’s hydroxyl groups with octenyl succinic anhydride (OSA). The self-associative properties of the resulting octenyl succinic...... anhydridemodified hyaluronic acid (OSA-HA) derivatives were studied by fluorescence spectroscopy using Nile Red as fluorophore. The morphology, size and surface charge of the OSA-HA assemblies were determined by transmission electron microscopy, dynamic light scattering and by measuring their electrophoretic...

  17. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery

    Science.gov (United States)

    Song, Jibin; Fang, Zheng; Wang, Chenxu; Zhou, Jiajing; Duan, Bo; Pu, Lu; Duan, Hongwei

    2013-06-01

    We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into hydrophilic poly(acrylic acid) upon photo exposure. Benefiting from the interparticle plasmonic coupling of gold nanoparticles in close proximity, the plasmonic vesicles assembled from amphiphilic gold nanoparticles exhibit distinctively different optical properties from single nanoparticle units, which offer the opportunity to track the photo-triggered disassembly of the vesicles and the associated cargo release by plasmonic imaging. We have shown the dense layer of PEG grafts on the vesicles not only endow plasmonic vesicles with excellent colloidal stability, but also serve as flexible spacers for bioconjugation of targeting ligands to facilitate the specific recognition of cancer cells. The targeted delivery of model anticancer drug doxorubicin, investigated by dual-modality plasmonic and fluorescence imaging and toxicity studies, clearly demonstrated the potential of photolabile plasmonic vesicles as multi-functional drug carriers.We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into

  18. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells.

    Science.gov (United States)

    Checco, James W; Lee, Erinna F; Evangelista, Marco; Sleebs, Nerida J; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J; Eddinger, Geoffrey A; Belair, David G; Wilson, Julia L; Eller, Chelcie H; Raines, Ronald T; Murphy, William L; Smith, Brian J; Gellman, Samuel H; Fairlie, W Douglas

    2015-09-09

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

  19. A short history of neuroendocrine tumours and their peptide hormones

    DEFF Research Database (Denmark)

    de Herder, Wouter W; Rehfeld, Jens F; Kidd, Mark;

    2016-01-01

    The discovery of neuroendocrine tumours of the gastrointestinal tract and pancreas started in 1870, when Rudolf Heidenhain discovered the neuroendocrine cells, which can lead to the development of these tumours. Siegfried Oberndorfer was the first to introduce the term carcinoid in 1907. The panc...

  20. Biological Activity of Aminophosphonic Acids and Their Short Peptides

    Science.gov (United States)

    Lejczak, Barbara; Kafarski, Pawel

    The biological activity and natural occurrence of the aminophosphonic acids were described half a century ago. Since then the chemistry and biology of this class of compounds have developed into the separate field of phosphorus chemistry. Today it is well acknowledged that these compounds possess a wide variety of promising, and in some cases commercially useful, physiological activities. Thus, they have found applications ranging from agrochemical (with the herbicides glyphosate and bialaphos being the most prominent examples) to medicinal (with the potent antihypertensive fosinopril and antiosteoporetic bisphosphonates being examples).

  1. A short history of neuroendocrine tumours and their peptide hormones.

    Science.gov (United States)

    de Herder, Wouter W; Rehfeld, Jens F; Kidd, Mark; Modlin, Irvin M

    2016-01-01

    The discovery of neuroendocrine tumours of the gastrointestinal tract and pancreas started in 1870, when Rudolf Heidenhain discovered the neuroendocrine cells, which can lead to the development of these tumours. Siegfried Oberndorfer was the first to introduce the term carcinoid in 1907. The pancreatic islet cells were first described in 1869 by Paul Langerhans. In 1924, Seale Harris was the first to describe endogenous hyperinsulinism/insulinoma. In 1942 William Becker and colleagues were the first to describe the glucagonoma syndrome. The first description of gastrinoma by Robert Zollinger and Edwin Ellison dates from 1955. The first description of the VIPoma syndrome by John Verner and Ashton Morrison dates from 1958. In 1977, the groups of Lars-Inge Larsson and Jens Rehfeld, and of Om Ganda reported the first cases of somatostatinoma. But only in 2013, Jens Rehfeld and colleagues described the CCK-oma syndrome. The most recently updated WHO classification for gastrointestinal neuroendocrine tumours dates from 2010.

  2. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Science.gov (United States)

    Zhang, Jing; Li, Mengfei; Yuan, Zhefan; Wu, Dan; Chen, Jia-da; Feng, Jie

    2016-10-01

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K10), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K10, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.

  3. Small cationic antimicrobial peptides delocalize peripheral membrane proteins.

    Science.gov (United States)

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-04-08

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions.

  4. Phage Selection of Chemically Stabilized α-Helical Peptide Ligands.

    Science.gov (United States)

    Diderich, Philippe; Bertoldo, Davide; Dessen, Pierre; Khan, Maola M; Pizzitola, Irene; Held, Werner; Huelsken, Joerg; Heinis, Christian

    2016-05-20

    Short α-helical peptides stabilized by linkages between constituent amino acids offer an attractive format for ligand development. In recent years, a range of excellent ligands based on stabilized α-helices were generated by rational design using α-helical peptides of natural proteins as templates. Herein, we developed a method to engineer chemically stabilized α-helical ligands in a combinatorial fashion. In brief, peptides containing cysteines in position i and i + 4 are genetically encoded by phage display, the cysteines are modified with chemical bridges to impose α-helical conformations, and binders are isolated by affinity selection. We applied the strategy to affinity mature an α-helical peptide binding β-catenin. We succeeded in developing ligands with Kd's as low as 5.2 nM, having >200-fold improved affinity. The strategy is generally applicable for affinity maturation of any α-helical peptide. Compared to hydrocarbon stapled peptides, the herein evolved thioether-bridged peptide ligands can be synthesized more easily, as no unnatural amino acids are required and the cyclization reaction is more efficient and yields no stereoisomers. A further advantage of the thioether-bridged peptide ligands is that they can be expressed recombinantly as fusion proteins.

  5. Anti-Mycobacterial Peptides: From Human to Phage

    Directory of Open Access Journals (Sweden)

    Tieshan Teng

    2015-01-01

    Full Text Available Mycobacterium tuberculosis is the major pathogen of tuberculosis (TB. With the growing problem of M. tuberculosis resistant to conventional antibiotics, especially multi-drug resistant tuberculosis (MDR-TB and extensively-drug resistant tuberculosis (XDR-TB, the need for new TB drugs is now more prominent than ever. Among the promising candidates for anti-TB drugs, anti-mycobacterial peptides have a few advantages, such as low immunogenicity, selective affinity to prokaryotic negatively charged cell envelopes, and diverse modes of action. In this review, we summarize the recent progress in the anti-mycobacterial peptides, highlighting the sources, effectiveness and bactericidal mechanisms of these antimicrobial peptides. Most of the current anti-mycobacterial peptides are derived either from host immune cells, bacterial extraction, or mycobacteriophages. Besides trans-membrane pore formation, which is considered to be the common bactericidal mechanism, many of the anti-mycobacterial peptides have the second non-membrane targets within mycobacteria. Additionally, some antimicrobial peptides play critical roles in innate immunity. However, a few obstacles, such as short half-life in vivo and resistance to antimicrobial peptides, need overcoming before clinical applications. Nevertheless, the multiple functions of anti-mycobacterial peptides, especially direct killing of pathogens and immune-modulators in infectious and inflammatory conditions, indicate that they are promising candidates for future drug development.

  6. Glucagon-like peptide 1 receptor agonist (GLP-1 RA)

    DEFF Research Database (Denmark)

    von Scholten, Bernt Johan; Hansen, Tine Willum; Goetze, Jens Peter;

    2015-01-01

    AIMS: In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim was to inve......AIMS: In a short-term study including 31 patients with type 2 diabetes, glucagon-like peptide 1 receptor agonist (GLP-1 RA) treatment was associated with a significant reversible decline in GFR. Twenty-three patients re-initiated GLP-1 RA treatment after the primary study, and the aim...

  7. Anti-antimicrobial Peptides

    Science.gov (United States)

    Ryan, Lloyd; Lamarre, Baptiste; Diu, Ting; Ravi, Jascindra; Judge, Peter J.; Temple, Adam; Carr, Matthew; Cerasoli, Eleonora; Su, Bo; Jenkinson, Howard F.; Martyna, Glenn; Crain, Jason; Watts, Anthony; Ryadnov, Maxim G.

    2013-01-01

    Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance. PMID:23737519

  8. Computational design of peptide ligands for ochratoxin A.

    Science.gov (United States)

    Heurich, Meike; Altintas, Zeynep; Tothill, Ibtisam E

    2013-06-21

    In this paper, we describe a peptide library designed by computational modelling and the selection of two peptide sequences showing affinity towards the mycotoxin, ochratoxin A (OTA). A virtual library of 20 natural amino acids was used as building blocks to design a short peptide library against ochratoxin A template using the de novo design program, LeapFrog, and the dynamic modelling software, FlexiDock. Peptide sequences were ranked according to calculated binding scores in their capacity to bind to ochratoxin A. Two high scoring peptides with the sequences N'-Cys-Ser-Ile-Val-Glu-Asp-Gly-Lys-C' (octapeptide) and N'-Gly-Pro-Ala-Gly-Ile-Asp-Gly-Pro-Ala-Gly-Ile-Arg-Cys-C' (13-mer) were selected for synthesis from the resulting database. These synthesized peptides were characterized using a microtitre plate-based binding assay and a surface plasmon resonance biosensor (Biacore 3000). The binding assay confirmed that both de novo designed peptides did bind to ochratoxin A in vitro. SPR analysis confirmed that the peptides bind to ochratoxin A, with calculated K(D) values of ~15.7 μM (13-mer) and ~11.8 μM (octamer). The affinity of the peptides corresponds well with the molecular modelling results, as the 13-mer peptide affinity is about 1.3-times weaker than the octapeptide; this is in accordance with the binding energy values modelled by FlexiDock. This work illustrates the potential of using computational modelling to design a peptide sequence that exhibits in vitro binding affinity for a small molecular weight toxin.

  9. Computational Design of Peptide Ligands for Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Meike Heurich

    2013-06-01

    Full Text Available In this paper, we describe a peptide library designed by computational modelling and the selection of two peptide sequences showing affinity towards the mycotoxin, ochratoxin A (OTA. A virtual library of 20 natural amino acids was used as building blocks to design a short peptide library against ochratoxin A template using the de novo design program, LeapFrog, and the dynamic modelling software, FlexiDock. Peptide sequences were ranked according to calculated binding scores in their capacity to bind to ochratoxin A. Two high scoring peptides with the sequences N'-Cys-Ser-Ile-Val-Glu-Asp-Gly-Lys-C' (octapeptide and N'-Gly-Pro-Ala-Gly-Ile-Asp-Gly-Pro-Ala-Gly-Ile-Arg-Cys-C' (13-mer were selected for synthesis from the resulting database. These synthesized peptides were characterized using a microtitre plate-based binding assay and a surface plasmon resonance biosensor (Biacore 3000. The binding assay confirmed that both de novo designed peptides did bind to ochratoxin A in vitro. SPR analysis confirmed that the peptides bind to ochratoxin A, with calculated KD values of ~15.7 μM (13-mer and ~11.8 μM (octamer. The affinity of the peptides corresponds well with the molecular modelling results, as the 13-mer peptide affinity is about 1.3-times weaker than the octapeptide; this is in accordance with the binding energy values modelled by FlexiDock. This work illustrates the potential of using computational modelling to design a peptide sequence that exhibits in vitro binding affinity for a small molecular weight toxin.

  10. Tumor penetrating peptides

    Directory of Open Access Journals (Sweden)

    Tambet eTeesalu

    2013-08-01

    Full Text Available Tumor-homing peptides can be used to deliver drugs into tumors. Phage library screening in live mice has recently identified homing peptides that specifically recognize the endothelium of tumor vessels, extravasate, and penetrate deep into the extravascular tumor tissue. The prototypic peptide of this class, iRGD (CRGDKGPDC, contains the integrin-binding RGD motif. RGD mediates tumor homing through binding to αv integrins, which are selectively expressed on various cells in tumors, including tumor endothelial cells. The tumor-penetrating properties of iRGD are mediated by a second sequence motif, R/KXXR/K. This C-end Rule (or CendR motif is active only when the second basic residue is exposed at the C-terminus of the peptide. Proteolytic processing of iRGD in tumors activates the cryptic CendR motif, which then binds to neuropilin-1 activating an endocytic bulk transport pathway through tumor tissue. Phage screening has also yielded tumor-penetrating peptides that function like iRGD in activating the CendR pathway, but bind to a different primary receptor. Moreover, novel tumor-homing peptides can be constructed from tumor-homing motifs, CendR elements and protease cleavage sites. Pathologies other than tumors can be targeted with tissue-penetrating peptides, and the primary receptor can also be a vascular zip code of a normal tissue. The CendR technology provides a solution to a major problem in tumor therapy, poor penetration of drugs into tumors. The tumor-penetrating peptides are capable of taking a payload deep into tumor tissue in mice, and they also penetrate into human tumors ex vivo. Targeting with these peptides specifically increases the accumulation in tumors of a variety of drugs and contrast agents, such as doxorubicin, antibodies and nanoparticle-based compounds. Remarkably the drug to be targeted does not have to be coupled to the peptide; the bulk transport system activated by the peptide sweeps along any compound that is

  11. Selection of a peptide mimicking neutralization epitope of hepatitis E virus with phage peptide display technology

    Institute of Scientific and Technical Information of China (English)

    Ying Gu; Jun Zhang; Ying-Bing Wang; Shao-Wei Li; Hai-Jie Yang; Wen-Xin Luo; Ning-Shao Xia

    2004-01-01

    AIM: To select the peptide mimicking the neutralization epitope of hepatitis E virus which bound to non-type-specific and conformational monoclonal antibodies (mAbs) 8C11 and 8H3 fromed 7-peptide phage display library, and expressed the peptide recombinant with HBcAg in E.coli, and to observe whether the recombinant HBcAg could still form virus like particle (VLP) and to test the activation of the recombinant polyprotein and chemo-synthesized peptide that was selected by mAb 8H3.METHODS: 8C11 and 8H3 were used to screen for binding peptides through a 7-peptide phage display library. After 4rounds of panning, monoclonal phages were selected and sequenced. The obtained dominant peptide coding sequences was then synthesized and inserted into amino acid 78 to 83 of hepatitis B core antigen (HBcAg), and then expressed in E. coli. Activity of the recombinant proteins was detected by Western blotting, VLPs of the recombinant polyproteins were tested by transmission electron microscopy and binding activity of the chemo-synthesized peptide was confirmed by BIAcore biosensor.RESULTS: Twenty-one positive monoclonal phages (10for 8CL1, and 11 for 8H3) were selected and the inserted fragments were sequenced. The DNA sequence coding for the obtained dominant peptides 8C11 (N′-His-Pro-Thr-LeuLeu-Arg-Ile-C′, named 8C11A) and 8H3 (N′-Ser-Ile-LeuPro- Tyr-Pro-Tyr-C′, named 8H3A) were then synthesized and cloned to the HBcAg vector, then expressed in E. coli.The recombinant proteins aggregated into homodimer or polymer on SDS-PAGE, and could bind to mAb 8C11 and 8H3 in Western blotting. At the same time, the recombinant polyprotein could form virus like particles (VLPs), which could be visualized on electron micrograph. The dominant peptide 8H3A selected by mAb 8H3 was further chemosynthesized, and its binding to mAb 8H3 could be detected by BIAcore biosensor.CONCLUSION: These results implicate that conformational neutralizing epitope can be partially modeled by a short

  12. Antimicrobial Peptides in Echinoderms

    OpenAIRE

    Li, C; Haug, T; K Stensvåg

    2010-01-01

    Antimicrobial peptides (AMPs) are important immune effector molecules for invertebrates, including echinoderms, which lack a vertebrate-type adaptive immune system. Here we summarize the knowledge of such peptides in echinoderms. Strongylocins are a novel family of cysteine-rich AMPs, recently identified in the sea urchins, Strongylocentrotus droebachiensis and S. purpuratus. Although these molecules present diverse amino acid sequences, they share an identical cysteine arrangement pattern, d...

  13. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    Directory of Open Access Journals (Sweden)

    Ludmilla Lumholdt

    2014-11-01

    Full Text Available Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1.

  14. A synthetic strategy for novel nonsymmetrical bola amphiphiles based on carbohydrates.

    Science.gov (United States)

    Schuur, Boelo; Wagenaar, Anno; Heeres, André; Heeres, Erik H J

    2004-04-28

    A number of novel nonionic bolaform amphiphiles with nonidentical aldityl head groups, 1-(1-deoxy-D-galactitol-1-ylamino)-6-(1-deoxy-D-glucitol-1-ylamino)hexane, 1-(1-deoxy-D-mannitol-1-ylamino)-6-(1-deoxy-D-glucitol-1-ylamino)hexane, and 1-(1-deoxy-D-galactitol-1-ylamino)-6-(1-deoxy-D-mannitol-1-ylamino)hexane were synthesized by two successive reductive aminations involving 1,6-diaminohexane (1) and the appropriate D-aldohexoses (D-glucose, D-mannose, and D-galactose) using 5% Pd on carbon as the catalyst. Typical reaction conditions were 40 degrees C, 4MPa hydrogen and a reaction time of 4.5 h. The compounds were isolated as white solids in yields ranging from 39% to 72%. The intermediate aminoalditols, 1-(1-deoxy-D-glucitol-1-ylamino)-6-aminohexane and 1-(1-deoxy-D-galactitol-1-ylamino)-6-aminohexane were obtained as off-white solids in 80-85% yield. The bolaform amphiphiles containing 1-deoxy-D-glucitol head group(s) showed markedly lower melting points than the compounds with the 1-deoxy-D-mannitol and 1-deoxy-D-galactitol head groups, due to the presence of 1,3-syn interactions within the carbohydrate moiety. The novel bolaform compounds are potential starting materials for the synthesis of a broad range of gemini surfactants with nonidentical, carbohydrate-based head groups.

  15. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation.

    Science.gov (United States)

    Anderson, David M; Gupta, Maneesh K; Voevodin, Andrey A; Hunter, Chad N; Putnam, Shawn A; Tsukruk, Vladimir V; Fedorov, Andrei G

    2012-04-24

    Controlling coalescence events in a heterogeneous ensemble of condensing droplets on a surface is an outstanding fundamental challenge in surface and interfacial sciences, with a broad practical importance in applications ranging from thermal management of high-performance electronic devices to moisture management in high-humidity environments. Nature-inspired superhydrophobic surfaces have been actively explored to enhance heat and mass transfer rates by achieving favorable dynamics during dropwise condensation; however, the effectiveness of such chemically homogeneous surfaces has been limited because condensing droplets tend to form as pinned Wenzel drops rather than mobile Cassie ones. Here, we introduce an amphiphilic nanostructured surface, consisting of a hydrophilic base with hydrophobic tips, which promotes the periodic regeneration of nucleation sites for small droplets, thus rendering the surface self-rejuvenating. This unique amphiphilic nanointerface generates an arrangement of condensed Wenzel droplets that are fluidically linked by a wetted sublayer, promoting previously unobserved coalescence events where numerous droplets simultaneously merge, without direct contact. Such ensemble coalescences rapidly create fresh nucleation sites, thereby shifting the overall population toward smaller droplets and enhancing the rates of mass and heat transfer during condensation.

  16. Thymine-functionalized amphiphilic biodegradable copolymers for high-efficiency loading and controlled release of methotrexate.

    Science.gov (United States)

    Cheng, Dong-Bing; Li, You-Mei; Cheng, Yin-Jia; Wu, Yan; Chang, Xiu-Peng; He, Feng; Zhuo, Ren-Xi

    2015-12-01

    In this study, a novel thymine-functionalized six-membered cyclic carbonate monomer (TAC) was synthesized by the Michael-addition reaction between thymine and acryloyl carbonate (AC). The corresponding functional amphiphilic block copolymer mPEG-b-PTAC was further successfully synthesized by ring-opening polymerization using immobilized porcine pancreas lipase (IPPL) as the catalyst and mPEG as the macroinitiator. Meanwhile, mPEG-b-P(TAC-co-DTC) and mPEG-b-PDTC were also synthesized by the same enzymatic methods for comparison on different TAC contents. The structures of monomer and copolymers were characterized by (1)H-NMR, (13)C-NMR and FTIR. All the amphiphilic block copolymers could self-assemble to form nano-sized micelles in aqueous solution. Transmission electron microscopy (TEM) observation showed that the micelles dispersed in spherical shape with nano-size before and after MTX loading. (1)H-NMR and FTIR results confirmed the successful formation of multiple hydrogen-bonding interactions between exposed thymine groups of hydrophobic PTAC segments and 2,6-diaminopyridine (DAP) groups of MTX molecules, which resulting in the higher drug loading capacity and the pH-sensitive drug release behavior. MTT assays also indicated lower toxicity of copolymer but higher potent cytotoxic activity of MTX-loaded copolymer against HeLa cells.

  17. THE AMPHIPHILIC MULTIARM COPOLYMERS BASED ON HYPERBRANCHED POLYESTER AND LYSINE: SYNTHESIS AND SELF-ASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Yuan Yao; Bing Ji; Wei Huang; Yong-feng Zhou; De-yue Yan

    2011-01-01

    The amphiphilic multiarm copolymers were synthesized through the modification of commercially available hyperbranched polyesters (Boltom H40) with N-ε-carbobenzoxy-L-Lysine N-carboxyanhydride (ZLys-NCA). After being condensed with N-Boc-phenylalanine (Boc-NPhe) and deprotected the Boc-groups in trifluoroacetic acid (TFA), the original terminal hydroxyl groups were transformed into the amino groups and then initiated the ring-opening polymerization of ZLys-NCA. The hydrophilic poly(L-lysine) was grafted to the surface of Boltorn H40 successfully after the protecting benzyl groups were removed by the HBr solution in glacial acetic acid (33 wt%). The resulting multiarm copolymers were characterized by the 1H-NMR, GPC and FTIR. The arm length calculated by NMR and GPC analysis was about 3 and 13 lysine-units for H40-Phe-PLysl and H40-Phe-PLys2 respectively. Due to the amphiphilic molecular structure, they displayed ability to self-assemble into spherical micelles in aqueous solution with the average diameter in the range from 70 nm to 250 nm. The CMC of H40-Phe-PLysl and H40-Phe-PLys2 was 0.013 mg/mL and 0.028 mg/mL, respectively,indicating that H40-Phe-PLysl with shorter arm length is easier to self-assemble than H40-Phe-PLys2 with longer arm length.

  18. Amphiphilic nanosheet self-assembly at the water/oil interface: computer simulations.

    Science.gov (United States)

    Xiang, Wenjun; Zhao, Shuangliang; Song, Xianyu; Fang, Shenwen; Wang, Fen; Zhong, Cheng; Luo, Zhaoyang

    2017-03-15

    In this paper, dissipative particle dynamics simulations are performed to study the interfacial and emulsion stabilizing properties of various systems of amphiphilic nanosheets (ANs) self-assembled at the oil/water (O/W) interface. The ANs have a dimensional symmetry structure that encompasses a triangular-plate at the center and two soft comb-like shells constructed with hydrophilic and hydrophobic polymers. As the simulation results show, the AN molecules are highly oriented in interfacial films with their triangular nanosheets parallel to the O/W interface, while their hydrophobic and hydrophilic segments attempt to immerse into the oil phase and aqueous phase, respectively. These results reveal that the rotation of ANs at oil/water interfaces is greatly restricted, meanwhile, their nanosheet (or planar) configuration facilitates their favorable orientation thereby, thus making the emulsion more stable. At higher concentrations, a wrapped-like or micelle morphology is observed. The O/W emulsions stabilized by ANs were also simulated, and it is interesting to find AN 'patches' at the O/W interface which resembles the leather patches on a football. By introducing the "amphiphilic nanosheet balance" concept, the hydrophilic-lipophilic balance (HLB) values of ANs were calculated. Due to their properties of two-dimensional symmetry, the HLB values of ANs tend to approximately 1 which reveals a stronger stability for emulsions.

  19. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    Energy Technology Data Exchange (ETDEWEB)

    Khan, I. John [The State Univ. of New Jersey, Piscataway, NJ (United States); Murthy, N. Sanjeeva [The State Univ. of New Jersey, Piscataway, NJ (United States); Kohn, Joachim [The State Univ. of New Jersey, Piscataway, NJ (United States)

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  20. Discriminating binding and positioning of amphiphiles to lipid bilayers by {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Evanics, F. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada); Prosser, R.S. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada)]. E-mail: sprosser@utm.utoronto.ca

    2005-04-04

    The binding and positioning in lipid bilayers of three well-known drugs--imipramine, nicotine, and caffeine--have been studied using {sup 1}H NMR. The membrane model system consisted of 'fast-tumbling' lipid bicelles, in which a bilayered lipid domain, composed of the unsaturated lipid, 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (DMLPC) was surrounded by a rim of deuterated detergent-like lipids, consisting of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC-d22). Binding and immersion depth information was obtained by three experiments. (1) {sup 1}H chemical shift perturbations, upon transfer of the amphiphiles from water to a bicelle mixture, were used to estimate regions of the amphiphiles that interact with the membrane. (2) Water contact to resolvable protons was measured through a Nuclear Overhauser Effect (NOE) between water and resolvable drug and lipid resonances. In the case of both lipids and membrane bound drugs, positive NOEs with large cross-relaxation rates were measured for most resonances originating from the membrane hydrophilic region, while negative NOEs were observed predominantly to resonances in the hydrophobic region of the membrane. (3) {sup 1}H NMR measurements of oxygen-induced (paramagnetic) spin-lattice relaxation rates, which are known to increase with membrane immersion depth, were used to corroborate conclusions based on chemical shift perturbations and water-ligand NOEs.