Sample records for amphiphilic acryl sucrose

  1. Synthesis of Hydrophilic and Amphiphilic Acryl Sucrose Monomers and Their Copolymerisation with Styrene, Methylmethacrylate and α- and β-Pinenes

    Directory of Open Access Journals (Sweden)

    Maria Teresa Barros


    Full Text Available Herein, we report the synthesis of monomethacryloyl sucrose esters, and their successful free radical homo- and co-polymerisation with styrene, methylmethacrylate, α- and β-pinene. The chemical, physical, structural and surface chemical properties of these polymers, containing a hydrophobic olefin backbone and hydrophilic sugar moieties as side chains, have been investigated. Biodegradation tests of the copolymer samples by a microbial fungal culture (Aspergillus niger method showed good biodegradability. The chemical structure and surface chemistry of the synthesized homo- and co-polymers demonstrate their potential technological relevance as amphiphilic and biodegradable polymers.

  2. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren


    Amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid) (HS-PCL-b-PAA) with a thiol functionality in the PCL terminal has been prepared in a novel synthetic cascade. Initially, living anionic ring-opening polymerization (ROP) of epsilon-caprolactone (epsilon-CL) employing the difunctional...

  3. Real-time monitoring of the penetration of amphiphilic acrylate copolymer in leather using a fluorescent copolymer as tracer. (United States)

    Du, Jin-Xia; Shi, Lu; Peng, Bi-Yu


    A fluorescent tracer, poly (acrylic-co-stearyl acrylate-co-3-acryloyl fluorescein) [poly (AA-co-SA-co-Ac-Flu)], used for real-time monitoring the penetration of amphiphilic acrylate copolymer, poly (acrylic-co-stearyl acrylate) [poly (AA-co-SA)], in leather was synthesized by radical polymerization of acrylic, stearyl acrylate and fluorescent monomer, 3-acryloyl fluorescein (Ac-Flu). The structure, molecular weight, introduced fluorescent group content and fluorescent characteristics of the fluorescent tracer and target copolymer, amphiphilic acrylate copolymer, were also characterized. The results show that the tracer presents the similar structural characteristics to the target and enough fluorescence intensity with 1.68 wt % of the fluorescent monomer introduced amount. The vertical section of the leather treated with the target copolymer mixing with 7% of the tracer exhibits evident fluorescence, and the change of fluorescence intensity along with the vertical section with treating time increasing can reflect the penetration depth of the target copolymer. The introduction of the fluorescent group in polymer structure through copolymerization with a limited amount of fluorescent monomer, Ac-Flu, is an effective way to make a tracer to monitor the penetration of the target in leather, which provides a new thought for the penetration research of syntans such as vinyl copolymer materials in leather manufacture.

  4. Synthesis, Characterization, and Aqueous Lubricating Properties of Amphiphilic Graft Copolymers Comprising 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Røn, Troels; Jankova Atanasova, Katja;


    of the corresponding monomers followed by deblocking reaction leads to well-defined amphiphiles with narrow molecular weight distributions (PDI ≤ 1.29) and varying content of methacrylic acid. The graft copolymers showed effective surface adsorption and lubrication for self-mated poly(dimethylsiloxane) (PDMS) contacts...

  5. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo, E-mail:


    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  6. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution (United States)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo


    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  7. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. (United States)

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David


    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  8. Supramolecular amphiphiles. (United States)

    Zhang, Xi; Wang, Chao


    Supramolecular amphiphiles (SA), also named superamphiphiles, refer to amphiphiles that are formed by non-covalent interactions. This tutorial review focuses on the molecular architectures of SAs, including diversified topologies such as single chain, double chain, bolaform, gemini and rotaxane types. Non-covalent syntheses that have been employed to fabricate SAs are driven by hydrogen bonding, electrostatic attraction, host-guest recognition, charge transfer interaction, metal coordination and so on. It should be noted that SAs can be either small organic molecules or polymers. SAs allow for tuning of their amphiphilicity in a reversible fashion, leading to controlled self-assembly and disassembly. This line of research has been enriching traditional colloid chemistry and current supramolecular chemistry, and the application of SAs in the field of functional supramolecular materials is keenly anticipated.

  9. Synthesis of 4-O- and 6-O-monoacryloyl derivatives of sucrose by selective hydrolysis of 4,6-O-(1-ethoxy-2-propenylidene) sucrose. Polymerization and copolymerization with styrene. (United States)

    Fanton, E; Fayet, C; Gelas, J; Deffieux, A; Fontanille, M; Jhurry, D


    The synthesis of an ethylenic orthoester of sucrose by transorthoesterification of an acrylic reagent with sucrose is described. Mild hydrolysis of this orthoester gave sucrose selectively monosubstituted by an acryloyl group at either the 4-O- or the 6-O-position. These acrylates were homopolymerized and copolymerized with styrene, and the corresponding polymers were characterized.

  10. Rare linking hydrogels based on acrylic acid and carbohydrate esters

    Directory of Open Access Journals (Sweden)

    U. Akhmedov


    Full Text Available The process of copolymerization of acrylic acid and esters poliallil sucrose; pentaerythritol and sorbitol, some of its laws are identified. The kinetic regularities of copolymerization and the optimum conditions of synthesis was established.


    Institute of Scientific and Technical Information of China (English)


    Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodidemediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.

  12. Neutral, anionic, cationic, and zwitterionic diblock copolymers featuring poly(2-methoxyethyl acrylate) hydrophobic segments

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Hvilsted, Søren


    Amphiphilic diblock copolymers incorporating hydrophobic poly(2-methoxyethyl acrylate) (PMEA) and hydrophilic neutral poly(ethylene glycol) monomethyl ether (mPEG), anionic poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA), cationic poly(2-dimethylaminoethyl methacrylate) (PDMAEMA), and ...

  13. Thermoresponsive giant biohybrid amphiphiles

    NARCIS (Netherlands)

    Lavigueur, Christine; Gonzalez Garcia, Jordi; Hendriks, Linda; Hoogenboom, Richard; Cornelissen, Jeroen J.L.M.; Nolte, Roeland J.M.


    A series of random copolymers of various lengths was prepared by atom transfer radical polymerisation (ATRP) using two acrylate monomers with short pendant ethylene glycol side chains (ethylene glycol methyl ether acrylate, EGMEA, and methoxy ethoxy ethyl acrylate, MEEA). The end group was converted

  14. The role of amphiphiles

    NARCIS (Netherlands)

    Hoekstra, F.A.; Golovina, E.A.


    This paper reviews our work on the partitioning of amphiphilic compounds from the cytoplasm into membranes during drying of plant systems, and discusses how relevant this phenomenon might be for anhydrobiosis. Amphiphilic guest molecules do partition into membranes and oil bodies, as demonstrated by

  15. The role of amphiphiles. (United States)

    Hoekstra, Folkert A; Golovina, Elena A


    This paper reviews our work on the partitioning of amphiphilic compounds from the cytoplasm into membranes during drying of plant systems, and discusses how relevant this phenomenon might be for anhydrobiosis. Amphiphilic guest molecules do partition into membranes and oil bodies, as demonstrated by the results of in vivo electron paramagnetic resonance spectroscopy on incorporated spin probes. Arguments for the likelihood of endogenous cytoplasmic amphiphiles behaving similarly during dehydration and rehydration of plant systems are presented. Negative and positive aspects of the partitioning are summarized. Positive aspects are the automatic insertion of amphiphilic antioxidants into membranes of the dehydrating organism, and the control of membrane fluidity and the phase transition temperature. A negative aspect is the perturbation of membrane structure, leading to increased permeability and loss of function. The finding that after an initial fluidization during dehydration, the membrane surface becomes immobilized in desiccation-tolerant systems and not in desiccation-sensitive systems, is discussed in the light of a strict control of the effect of partitioning. The adaptive significance of amphiphile partitioning into the membranes of anhydrobiotes is discussed.

  16. Iron Sucrose Injection (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... and may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called iron ...

  17. Preparation of amphiphilic acrylic block copolymer by DPE method and application as pigment dispersant%DPE法合成双亲性丙烯酸酯嵌段共聚物及用于颜料分散剂的研究

    Institute of Scientific and Technical Information of China (English)

    任强; 王莉莉; 李坚; 邓健; 方建波; 汪称意; 陈建海


    Controlled free radical polymerization of butyl methacrylate (BMA) was performed by using DPE as molecular weight regulator and AIBN as initiator. The influence of solvent, dosage of DPE and reaction time on polymerization kinetics were studied. Poly (butyl methacrylate) (PBMA) with terminal DPE semiquinoid structure and polydispersity less than 1.43 was obtained. Amphiphilic block copolymer PBMA-b-PDMAEMA with polydispersity of 2.0 was prepared by using PBMA as macroinitiator. The composition of copolymer determined by hydrogen proton nuclear resonance (1H NMR) was similar to that calculated from gel permeation chromatography (GPC). Two glass transition temperatures of the prepared block copolymer at 11℃ and 35℃could be detected by differential scanning calorimetry (DSC). Rheological investigation, laser particle size analysis of pigment paste and performance of coating film revealed that dispersing efficiency of phthalocyanine blue pigment in acrylic resin was enhanced greatly by using the prepared PBMA-b-PDMAEMA as dispersant.%以1,1-二苯基乙烯(DPE)为分子量调节剂,偶氮二异丁腈(AIBN)为引发剂进行甲基丙烯酸丁酯(BMA)的可控自由基聚合(DPE法)。研究了溶剂、DPE用量及反应温度对于聚合的影响,得到分子量分布较窄(PDI=1.43)的含有DPE半醌式休眠种结构的聚甲基丙烯酸丁酯(PBMA)。以PBMA为引发剂引发甲基丙烯酸二甲氨基乙酯(DMAEMA)聚合,得到分子量分布较窄的(PDI=2.0)双亲性嵌段共聚物(PBMA-b-PDMAEMA)。核磁共振氢谱(1H NMR)测得共聚物组成与GPC测试结果相近。差示扫描量热分析(DSC)测试表明嵌段共聚物在11℃和35℃处有两个玻璃化转变温度。色浆的流变和粒径测试及漆膜性能测试表明,将所得双亲性嵌段共聚物作为酞菁蓝颜料分散剂,可以明显提高酞菁蓝颜料在丙烯酸酯树脂中的分散效率。

  18. Stimuli Responsive Amphiphilic Assemblies (United States)


    Amphiphilic Nanocontainers, Angewandte Chemie International Edition , (03 2011): 0. doi: 10.1002/anie.201006193 TOTAL: 4 Number of Papers published in... International Conference on Novel Materials and their Synthesis, Xi An, China, October 14-19, 2012 (Organizers: Anning Zhou, Min Zhang & Yuping Wu, Fudan...University) Plenary Lecture, PolyTech – 2012: International Conference on Advances in Polymeric Materials & Nanotechnology, Pune, India, Dec. 15

  19. Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Wei, Junfu, E-mail: [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Zhou, Xiangyu [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Nana [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)


    Highlights: • The amphiphilic segments on polypropylene nonwoven surface were constructed successfully. • The adsorption behavior for EDCs of the amphiphilic adsorption materials was systematically studied. • The novel amphiphilic adsorption materials have broad application prospects in EDCs removal from aqueous solution. - Abstract: The amphiphilic segments on polypropylene nonwoven (PP nonwoven) surface were constructed using the ultraviolet (UV) irradiation graft polymerization for the removal of endocrine disrupting compounds (EDCs) with different polarity from aqueous solution. The stearyl acrylate (SA) as hydrophobic functional monomer was introduced onto the surface of PP nonwoven fabric at first stage and then the hydroxyethyl acrylate (HEA) as hydrophilic functional monomer was introduced subsequently. The effect of functional monomer concentration and UV irradiation time on grafting ratio was studied and discussed. The novel amphiphilic structure was designed and constructed based on adsorption capacity for the target micropollutants. The structure and composition of the amphiphilic adsorption materials were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle (CA). The adsorption behaviors for EDCs of the amphiphilic adsorption materials were studied and the results indicated that the adsorption capacity and adsorption rate were superior to single SA grafted PP nonwoven (PP-g-SA) and single HEA grafted PP nonwoven (PP-g-HEA). The novel amphiphilic adsorption material was efficient for the removal of EDCs with different polarity and could be utilized as a potential adsorption material for removing EDCs from aqueous solution.

  20. Acrylate Systemic Contact Dermatitis. (United States)

    Sauder, Maxwell B; Pratt, Melanie D


    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  1. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu


    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  2. Amphiphilic dendronized homopolymers

    Institute of Scientific and Technical Information of China (English)


    A series of second generation of amphiphilic dendronized homopolymers are efficiently synthesized,and their thermoresponsiveness in aqueous solutions and secondary structures in methanol solutions are described.These polymers are constructed in each repeat unit with various generations of hydrophobic 4-aminoproline and hydrophilic oligoethylene glycol (OEG)-based dendrons,and their over-all hydrophilicity is tuned by varying these dendron generations.Polymers with or without the first generation of proline dendron show good water solubility at room temperature,but exhibit typical thermoresponsive behaviors at elevated temperatures as characterized by turbidity measurements using UV-vis spectroscopy,while the polymer with the secondary generation of proline dendron is not soluble in water.All polymers show ordered secondary structures as evidenced by the optical rotation and circular dichroism experiments.Finally,assembly of these amphiphilic homopolymers into porous films via breath figure (BF) technique is described,and polymer structures are found to show significant influence on the morphology of porous film.

  3. Membrane analysis with amphiphilic carbon dots. (United States)

    Nandi, Sukhendu; Malishev, Ravit; Parambath Kootery, Kaviya; Mirsky, Yelena; Kolusheva, Sofiya; Jelinek, Raz


    Newly-synthesized amphiphilic carbon dots were used for spectroscopic analysis and multicolour microscopic imaging of membranes and live cells. We show that Förster resonance energy transfer (FRET) occurred from the amphiphilic carbon dots to different membrane-associated fluorescence acceptors. The amphiphilic carbon dots enabled imaging of membrane disruption by the beta-amyloid peptide.

  4. Sucrose Metabolism in Plastids

    NARCIS (Netherlands)

    Gerrits, N.; Turk, S.C.H.J.; Dun, van K.P.M.; Hulleman, H.D.; Visser, R.G.F.; Weisbeek, P.J.; Smeekens, S.C.M.


    The question whether sucrose (Suc) is present inside plastids has been long debated. Low Suc levels were reported to be present inside isolated chloroplasts, but these were argued to be artifacts of the isolation procedures used. We have introduced Suc-metabolizing enzymes in plastids and our experi

  5. Sugar (sucrose) holograms (United States)

    Ponce-Lee, E. L.; Olivares-Pérez, A.; Fuentes-Tapia, I.


    Computer holograms made with sugar crystals are reported. This material is well known as a good sweetener; the sugar from sugar cane or sugar beet (sucrose). These sweetener can be applied as honey "water and diluted sugar" easily on any substrate such as plastics or glasses without critical conditions for developed process. This step corresponds only to the cured sucrose as a photopolymer process. The maximum absorption spectra is localized at UV region λ=240 nm. We record with lithographic techniques some gratings, showing a good diffraction efficiency around 45%. This material has good resolution to make diffraction gratings. These properties are attractive because they open the possibility to make phase holograms on candies. Mainly the phase modulation is by refraction index.

  6. Acrylic mechanical bond tests

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J.


    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  7. Synthesis of insecticidal sucrose esters

    Institute of Scientific and Technical Information of China (English)

    Song Zi-juan; Li Shu-jun; Chen Xi; Liu Li-mei; Song Zhan-qian


    Some synthetic sucrose esters (SE) are a relatively new class of insecticidal compounds produced by reacting sugars with fatty acids, which are safe for the environment. Especially, sucrose esters composed of C6-C12 fatty acids have desirable insecticidal properties against many soft-bodied arthropod pests. In our study, sucrose octanoate which has the highest activity against a range of arthropod species was synthesized by a trans-esterification method and proved its insecticidal property. Under the condition of a homogeneous liquid, sucrose octanoate was prepared by reacting ethyl octanoate with sucrose at reduced pressure; the yield was 79.11%. Sucrose octanoate synthesized was identified and its property analyzed by IR, TLC and spectrophotometric analysis. It was shown that the ratio of monoester to polyester in sucrose octanoate was 1.48:1. The insecticidal activity of the synthetic sucrose octanoate was evaluated at a concentration of 4 and 8 mg·mL-1. The mortality of first-instar larvae ofLymantria dispar from its contact toxicity was 72.5% after 36 hours, the revision insect reduced rate of Aphis glycines reached above 80% at 4 and 8 mg·mL-1 after being treated for 5 days. Since the SE products are nontoxic to humans and higher animals, fully biodegradable and hydrolyzed to readily metabolizable sucrose and fatty acid, they are not harmful to crops and appear to be good insecticide candidates.

  8. Photolabile plasmonic vesicles assembled from amphiphilic gold nanoparticles for remote-controlled traceable drug delivery (United States)

    Song, Jibin; Fang, Zheng; Wang, Chenxu; Zhou, Jiajing; Duan, Bo; Pu, Lu; Duan, Hongwei


    We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into hydrophilic poly(acrylic acid) upon photo exposure. Benefiting from the interparticle plasmonic coupling of gold nanoparticles in close proximity, the plasmonic vesicles assembled from amphiphilic gold nanoparticles exhibit distinctively different optical properties from single nanoparticle units, which offer the opportunity to track the photo-triggered disassembly of the vesicles and the associated cargo release by plasmonic imaging. We have shown the dense layer of PEG grafts on the vesicles not only endow plasmonic vesicles with excellent colloidal stability, but also serve as flexible spacers for bioconjugation of targeting ligands to facilitate the specific recognition of cancer cells. The targeted delivery of model anticancer drug doxorubicin, investigated by dual-modality plasmonic and fluorescence imaging and toxicity studies, clearly demonstrated the potential of photolabile plasmonic vesicles as multi-functional drug carriers.We have developed a new type of photo-responsive plasmonic vesicles that allow for active delivery of anticancer payloads to specific cancer cells and personalized drug release regulated by external photo-irradiation. Our results show that amphiphilic gold nanoparticles carrying hydrophilic poly(ethylene glycol) (PEG) and photo-responsive hydrophobic poly(2-nitrobenzyl acrylate) (PNBA) can assemble into plasmonic vesicles with gold nanoparticles embedded in the hydrophobic shell of PNBA, which can be converted into

  9. Tandem Facial Amphiphiles for Membrane Protein Stabilization

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Gotfryd, Kamil; Pacyna, Jennifer;


    We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles....

  10. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.


    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  11. Acrylic Acid and Esters Will Be Oversupply

    Institute of Scientific and Technical Information of China (English)

    Zheng Chengwang


    @@ Drastic capacity growth The production capacity of acrylic acid in China has grown drastically in recent years. With the completion of the 80 thousand t/a acrylic acid and 130 thous and t/a acrylic ester project in Shenyang Paraffin Chemical Industrial Co., Ltd., (CCR2006,No. 31) the capacity of acrylic acid in China has reached 882 thousand t/a.

  12. The Effect of Nano-Morphology Modification Using an Amphiphilic Polymer on the Proton Conductivity of Composite Membrane for a Polymer Membrane-Based Fuel Cell. (United States)

    Roh, Sung-Hee; Rho, Seon-Gyun; Kim, Sang-Chai; Kim, Ju-Young; Jung, Ho-Young


    The effect of morphology modification using an amphiphilic polymer on the proton conductivity of composite membrane for a polymer membrane-based fuel cell was investigated. The proton conductivity of each composite membrane was analyzed by the electrochemical impedance spectroscopy (EIS). The morphological change was confirmed by scanning electron microscope (SEM). In the composite membrane, the proton conductive component was sulfonated poly(ether ether ketone) (sPEEK), while the nonconductive component was poly(vinylidenedifluoride) and the amphiphilic polymer as a compatibilizer was urethane acrylate non-ionomer (UAN). UAN as a compatibilizer improved the interfacial stability between sPEEK and PVdF polymers, even though two polymers were apparently immiscible. The homogeneous distribution of sPEEK and PVdF domains in the composite membrane was obtained with the introduction of UAN due to the amphiphilicity. Therefore, it was found that the proton conductivity of the composite membrane increased with the incorporation of UAN as a compatibilizer.

  13. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    M Jacquin; P Muller; H Cottet; O Theodoly


    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  14. 27 CFR 21.131 - Sucrose octaacetate. (United States)


    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sucrose octaacetate. 21....131 Sucrose octaacetate. (a) Sucrose octaacetate is an organic acetylation product occurring as a.... Sucrose octaacetate 98 percent minimum by weight when determined by the following procedure: Transfer...

  15. 21 CFR 172.869 - Sucrose oligoesters. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose oligoesters. 172.869 Section 172.869 Food... Multipurpose Additives § 172.869 Sucrose oligoesters. Sucrose oligoesters, as identified in this section, may be safely used in accordance with the following conditions: (a) Sucrose oligoesters consist...

  16. Amphiphilic NO-donor antioxidants. (United States)

    Chegaev, Konstantin; Lazzarato, Loretta; Rolando, Barbara; Marini, Elisabetta; Lopez, Gloria V; Bertinaria, Massimo; Di Stilo, Antonella; Fruttero, Roberta; Gasco, Alberto


    Models of amphiphilic NO-donor antioxidants 24-26 were designed and synthesized. The products were obtained by linking a lipophilic tail (C(6), C(8), C(10)) with a polar head constituted by the 2,6-dimethoxyphenol antioxidant joined to the NO-donor 3-furoxancarboxamide substructure through a bridge containing a quaternary ammonium group. Compound 23, containing the shortest C(2)-alkyl chain, was also studied as a reference. The antioxidant properties (TBARS and LDL oxidation assays) and the vasodilator properties of the compounds were studied in vitro. The ability of these products to interact with phospholipid vesicles was also investigated by NMR techniques. The results indicate that both activities are modulated by the ability of the compounds to accumulate on phospholipid layers.

  17. Two decades of occupational (meth)acrylate patch test results and focus on isobornyl acrylate

    NARCIS (Netherlands)

    Christoffers, Wietske A; Coenraads, Pieter Jan; Schuttelaar, Marie-Louise A


    BACKGROUND: Acrylates constitute an important cause of occupational contact dermatitis. Isobornyl acrylate sensitization has been reported in only 2 cases. We encountered an industrial process operator with occupational contact dermatitis caused by isobornyl acrylate. OBJECTIVES: (i) To investigate

  18. Synthesis and characterization of amphiphilc block copolymer poly(methyl acrylic acid)-block-polytetrahydrofuran

    Institute of Scientific and Technical Information of China (English)


    Under the specially designated condition the polymerization of both tetrahydrofuran (THF) and tert-butyl methacrylate (tBMA) is a living one. The diblock copolymer, poly(tert-butyl methacrylate)-block-polytetrahydrofuran (PtBMA-b-PTHF), was successfully synthesized by means of the coupling reaction of living cationic PTHF+, SbF6- with living anionic PtBMA-, Li+. LiCl, which has a beneficial effect on the molecular weight distribution (MWD) in the anionic polymerization of (meth)acrylates, hinders the coupling reaction of living chains and cannot be used in the preparation of tBMA precursor. The hydrolysis of the aforementioned diblock copolymer under acid condition results in the amphiphilic diblock copolymer, i.e. poly(methyl acrylic acid)-block-polytetra- hydrofuran (PMAA-b-PTHF). The diblock copolymers were characterized with GPC and IR.

  19. Sucrose release from polysaccharide gels. (United States)

    Nishinari, Katsuyoshi; Fang, Yapeng


    Sucrose release from polysaccharide gels has been studied extensively because it is expected to be useful in understanding flavour release from solid foods and to find a new processing method which produces more palatable and healthier foods. We provide an overview of the release of sucrose and other sugars from gels of agar and related polysaccharides. The addition of sucrose to agar solutions leads to the increase in transparency of the resulting gels and the decrease in syneresis, which is attributed to the decrease in mesh size in gels. The syneresis occurring in the quiescent condition and fluid release induced by compression is discussed. The relationship between the sugar release and the structural, rheological and thermal properties of gels is also discussed. Finally, the future research direction is proposed.

  20. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    LENUS (Irish Health Repository)

    Nagle, Susan


    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and\\/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength.

  1. Sucrose compared with artificial sweeteners

    DEFF Research Database (Denmark)

    Sørensen, Lone Brinkmann; Vasilaras, Tatjana H; Astrup, Arne;


    There is a lack of appetite studies in free-living subjects supplying the habitual diet with either sucrose or artificially sweetened beverages and foods. Furthermore, the focus of artificial sweeteners has only been on the energy intake (EI) side of the energy-balance equation. The data are from...

  2. 21 CFR 184.1854 - Sucrose. (United States)


    ... Substances Affirmed as GRAS § 184.1854 Sucrose. (a) Sucrose (C12H22O11, CAS Reg. No. 57-50-11-1) sugar, cane sugar, or beet sugar is the chemical β-D-fructofuranosyl-α-D-glucopyranoside. Sucrose is obtained by... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose. 184.1854 Section 184.1854 Food and...

  3. Sunfish amphiphiles : Conceptually new carriers for DNA delivery

    NARCIS (Netherlands)

    Hulst, R; Muizebelt, [No Value; Oosting, P; van der Pol, C; Wagenaar, A; Smisterova, J; Bulten, E; Driessen, C; Hoekstra, D; Engberts, JBFN; Muizebelt, Inouk; Šmisterová, Jarmila


    A conceptually new class of cationic amphiphiles, Sunfish amphiphiles, designed for the delivery of genes into cells is introduced. Sunfish amphiphiles have two hydrophobic tails, connected at the 4- and the N-position to the cationic pyridinium headgroup. Two extreme morphologies visualised by back

  4. Isobornyl acrylate contact allergy: Rare or underdiagnosed?

    NARCIS (Netherlands)

    Christoffers, W.A.; Coenraads, P.J.; Schuttelaar, M.L.A.


    Background: Allergic contact dermatitis to isobornyl acrylate has been reported in only two cases in literature. Therefore, isobornyl acrylate is not part of a (meth) acrylates patch test series. At our department an industrial worker presented with therapy-resistant hand eczema and sensitizations f

  5. 40 CFR 721.2805 - Acrylate ester. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  6. Prediction on amphiphilicity of hypocrellin derivatives

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马江华; 赵井泉


    Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphiphilicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around 0.22 for optimized amphiphilicity.

  7. Prediction on amphiphilicity of hypocrellin derivatives

    Institute of Scientific and Technical Information of China (English)

    谢杰; 马江华; 赵井泉


    Hypocrellins are most suitable for photodynamic therapy (PDT) of the diseases occurring in the superficial layer, such as microvascular diseases, because of their special absorption spectral properties. However, hypocrellins and most of their derivatives are basically lipophilic, while the hydrophilic derivatives lose the PDT activity in vivo. Therefore, the key problem for practical application of PDT of microvascular diseases focuses on finding the derivatives which possess optimized amphiphilicity. Herein, we developed a theoretical method to estimate the amphi-philicity of a molecule by the calculated average polarity. Compared with the experimentally measured results, the method is proved to be applicable. Based on the computation and available experimental results, it can be concluded that the derivative must have the polarities around C.22 for optimized amphiphilicity.

  8. Computational Amphiphilic Materials for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Naresh eThota


    Full Text Available Amphiphilic materials can assemble into a wide variety of morphologies and have emerged as a novel class of candidates for drug delivery. Along with a large number of experiments reported, computational studies have been also conducted in this field. At an atomistic/molecular level, computations can facilitate quantitative understanding of experimental observations and secure fundamental interpretation of underlying phenomena. This review summarizes the recent computational efforts on amphiphilic copolymers and peptides for drug delivery. Atom-resolution and time-resolved insights are provided from bottom-up to microscopically elucidate the mechanisms of drug loading/release, which are indispensable in the rational screening and design of new amphiphiles for high-efficacy drug delivery.


    Institute of Scientific and Technical Information of China (English)

    Li Jia; Zong-hui Liu; De-qing Wei


    Poly(methyl methacrylate/ethyl acrylate/acrylic acid) hydrosols were prepared by employing soap-freepolymerization, and (acrylic acid/butyl acrylate) oligomer was used as the polymeric surfactant. The effect of reactioncondition on the morphology and particle size of the hydrosols was investigated. The minimum amount of acrylic acid in thehydrosols is 2%. The maximum weight average molecular weight (Mw) of polymer that assures soap-free emulsionconversion into hydrosol is about 1.2 × 105-1.3 × 105. The particle transforming process was investigated, and an obviouschange of particle diameter and morphology was observed.

  10. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly( -caprolactone)-b-poly(acrylic acid)

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Hvilsted, Søren


    chromatography (SEC), nuclear magnetic resonance eR NMR) and infrared (FT IR) spectroscopy. The capacity of the resulting block copolymer in preparation of monolayer-protected gold nanoparticles has been examined by reduction of a gold salt in the presence of this macroligand under thiol-deficient conditions...

  11. An Amylase-Responsive Bolaform Supra-Amphiphile. (United States)

    Kang, Yuetong; Cai, Zhengguo; Tang, Xiaoyan; Liu, Kai; Wang, Guangtong; Zhang, Xi


    An amylase-responsive bolaform supra-amphiphile was constructed by the complexation between β-cyclodextrin and a bolaform covalent amphiphile on the basis of host-guest interaction. The bolaform covalent amphiphile could self-assemble in solution, forming sheet-like aggregates and displaying weak fluorescence because of aggregation-induced quenching. The addition of β-cyclodextrin led to the formation of the bolaform supra-amphiphile, prohibiting the aggregation of the bolaform covalent amphiphile and accompanying with the significant recovery of fluorescence. Upon the addition of α-amylase, with the degradation β-cyclodextrin, the fluorescence of the supra-amphiphile would quench gradually and significantly, and the quenching rate linearly correlated to the concentration of α-amylase. This study enriches the field of supra-amphiphiles on the basis of noncovalent interactions, and moreover, it may provide a facile way to estimate the activity of α-amylase.

  12. Self-Assembly and Hydrogelation of Peptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Wahyudi Priyono Suwarso


    Full Text Available Seven peptide amphiphiles were successfully synthesized using solid phase peptide synthesis method. Peptide amphiphiles were characterized using matrix assisted laser desorption/ionization (MALDI. Atomic force microscopy (AFM study showed that peptide amphiphiles having glycine, valine, or proline as linker, self-assembled into 100-200 nm nanofibers structure. According to our research, both peptide amphiphile with positive and negative charges bear similar self-assembly properties. Peptide amphiphile also showed its capability as low molecular weight gelator (LMWG. Peptide amphiphiles bearing C-16 and C-12 as alkyl showed better hydrogelation properties than C-8 alkyl. Five out of seven peptide amphiphiles have minimum gelation concentration (MGC lower than 1% (w/v.

  13. Designing new symmetrical facial oligothiophene amphiphiles

    NARCIS (Netherlands)

    Janeliunas, Dainius; Eelkema, Rienk; Nieto-Ortega, Belén; Ramírez Aguilar, Francisco J; López Navarrete, Juan T; van der Mee, Lars; Stuart, Marc C A; Casado, Juan; van Esch, Jan H


    In this study we designed a new class of symmetrical facial oligothiophene amphiphiles, which could be obtained in fewer steps than for previously reported analogues, but still possess the specific substituent sequence to control their backbone curvature. This novel design allows the late-stage intr

  14. Bionanoparticles of amphiphilic copolymers polyacrylate bearing cholesterol and ascorbate for drug delivery. (United States)

    Liu, Yijiang; Wang, Yanzhai; Zhuang, Dequan; Yang, Junjiao; Yang, Jing


    In this study, a series of amphiphilic polymers with poly(ascorbyl acrylate) (PAAA) as hydrophilic blocks and polyacrylate bearing side-chain cholesteryl mesogens (PCholDEGA) as hydrophobic blocks were prepared using a combination of four-step reactions consisting of two consecutive reversible addition-fragmentation chain transfer (RAFT), desulfurization, and hydrogenolysis under normal pressure. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) as well as wide-angle X-ray diffraction (WAXD) studies showed that the copolymers with PCholDEGA as major block had relatively high stability and clear isotropization temperature (T(i)). Small-angle X-ray diffraction (SAXD) investigation exhibited that the copolymers had bilayer smectic A structure. Their self-assembly behavior was monitored by turbidity change using UV-vis spectrometer, and the morphology and size of the nanoparticles via self-assembly were detected using transmission electron microscopy (TEM) and dynamic light scattering (DLS). The entrapment efficiency and loading capacity of these amphiphilic copolymers were investigated using nile red and drug molecule Ibuprofen. These polymeric micelles with PAAA shell extending into the aqueous solution and strong hydrophobic PCholDEGA core have potential abilities to act as promising nanovehicles with high loading and targeting delivery.

  15. Amphiphilic conetworks as activating carriers for the enhancement of enzymatic activity in supercritical CO2. (United States)

    Bruns, Nico; Bannwarth, Willi; Tiller, Joerg C


    Enzymatic reactions in supercritical carbon dioxide (scCO2) represent a way of combining the advantages of biocatalysis with the environmental benign nature of scCO2 as a solvent. Here we demonstrate that activities of enzymes in scCO2 can be greatly enhanced by incorporating them into amphiphilic conetworks (APCNs), a novel type of enzyme support. Two sets of hydrophilic/scCO2-philic APCNs, poly(2-hydroxyethyl acrylate)-linked by-poly(dimethylsiloxane) (PHEA-l-PDMS) and poly(2-hydroxyethyl acrylate)-linked by-perfluoropolyether (PHEA-l-PFPE), were prepared and loaded with the synthetically relevant lipase from Rhizomucor miehei. The effect of the APCNs' composition on the amount of the absorbed lipase was studied. It is observed that both sets of lipase-loaded APCNs enhance the catalytic activity of the enzyme in scCO2. The chemical nature of the scCO2-philic phase as well as the conetworkscomposition greatly influences the activity of the lipase in the conetworks. Activities obtained with PFPE-basedAPCNS were up to 10-fold higher than those obtained with PDMS-based conetworks. The highest specific activity measured corresponds to a 2,000-fold activation compared to the lyophilized enzyme powder. This activity is 10 times higher than the specific activity of the lipase immobilized on an optimized commercial carrier.

  16. Amphiphile dependency of the monomeric and dimeric forms of acetylcholinesterase from human erythrocyte membrane. (United States)

    Ott, P; Brodbeck, U


    Human erythrocyte membrane-bound acetylcholinesterase was converted to a monomeric species by treatment of ghosts with 2-mercaptoethanol and iodoacetic acid. After solubilization with Triton X-100, the reduced and alkylated enzyme was partially purified by affinity chromatography and separated from residual dimeric enzyme by sucrose density gradient centrifugation in a zonal rotor. Monomeric and dimeric acetylcholinesterase showed full enzymatic activity in presence of Triton X-100 whereas in the absence of detergent, activity was decreased to approx. 20% and 15%, respectively. Preformed egg phosphatidylcholine vesicles fully sustained activity of the monomeric species whereas the dimer was only 80% active. The results suggest that a dimeric structure is not required for manifestation of amphiphile dependency of membrane-bound acetylcholinesterase from human erythrocytes. Furthermore, monomeric enzyme appears to be more easily inserted into phospholipid bilayers than the dimeric species.

  17. Vinyl Acetate/butyl acrylate/acrylate Research of Ternary Soap-free Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang


    Full Text Available Through the vinyl acetate/butyl acrylate/acrylic acrylic emulsion preparation without soap vinegar, with solid content, gel, emulsion stability and film forming properties and tensile strength as the main index to study the effect of raw materials on the properties of emulsion. Through the infrared spectrometer soap-free emulsion for microscopic analysis research. Study of the ternary soap-free vinegar acrylic emulsion with good performance.

  18. Sucrose induces vesicle accumulation and autophagy. (United States)

    Higuchi, Takahiro; Nishikawa, Jun; Inoue, Hiroko


    It has been shown that the treatment of mammalian cells with sucrose leads to vacuole accumulation associated with lysosomes and upregulation of lysosomal enzyme expression and activity. Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes, thus it is probable that sucrose affects the autophagic activity. The role of sucrose in autophagy is unknown; however, another disaccharide, trehalose has been shown to induce autophagy. In the current study, we used mouse embryonic fibroblasts to investigate whether sucrose induces autophagy and whether vesicle formation is associated with autophagy. The results showed that sucrose induces autophagy while being accumulated within the endosomes/lysosomes. These vesicles were swollen and packed within the cytoplasm. Furthermore, trehalose and the trisaccharide raffinose, which are not hydrolyzed in mammalian cells, increased the rate of vesicles accumulation and LC3-II level (a protein marker of autophagy). However, fructose and maltose did not show the same effects. The correlation between the two processes, vesicle accumulation and autophagy induction, was confirmed by treatment of cells with sucrose plus invertase, or maltose plus acarbose-the α-glucosidase inhibitor-and by sucrose deprivation. Results also showed that vesicle accumulation was not affected by autophagy inhibition. Therefore, the data suggest that sucrose-induced autophagy through accumulation of sucrose-containing vesicles is caused by the absence of hydrolysis enzymes.

  19. A Peptide Amphiphile Organogelator of Polar Organic Solvents (United States)

    Rouse, Charlotte K.; Martin, Adam D.; Easton, Christopher J.; Thordarson, Pall


    A peptide amphiphile is reported, that gelates a range of polar organic solvents including acetonitrile/water, N,N-dimethylformamide and acetone, in a process dictated by β-sheet interactions and facilitated by the presence of an alkyl chain. Similarities with previously reported peptide amphiphile hydrogelators indicate analogous underlying mechanisms of gelation and structure-property relationships, suggesting that peptide amphiphile organogel design may be predictably based on hydrogel precedents. PMID:28255169

  20. Sucrose accumulation in mature sweet melon fruits. [Cucumis melo

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, A.A.; Aloni, B.


    Mesocarp tissue from sucrose-accumulating sweet melon (Cucumis melo cv. Galia) showed sucrose synthase activity (ca 1 nkat/gfw) while soluble acid invertase and sucrose phosphate synthase activities were not observed. Sucrose uptake into mesocarp discs was linear with sucrose concentration (1-500 mM) and unaffected by PCMBS and CCCP. Sucrose compartmentation into the vacuole also increased linearly with sucrose concentration as indicated by compartmental efflux kinetics. Mesocarp discs incubated in /sup 14/C-fructose + UDP-glu synthesized /sup 14/C-sucrose and efflux kinetics indicated that the /sup 14/C-sucrose was compartmentalized. These data support the hypothesis that two mechanisms are involved in sucrose accumulation in sweet melon: (1) compartmentation of intact sucrose and (2) synthesis of sucrose via sucrose synthase and subsequent compartmentation in the vacuole.

  1. Sugarcane genes associated with sucrose content

    Directory of Open Access Journals (Sweden)

    Vincentz Michel GA


    Full Text Available Abstract Background - Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. Results - We have evaluated thirty genotypes that have different Brix (sugar levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. Conclusion - Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and

  2. From the N-Heterocyclic Carbene-Catalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates. (United States)

    Ottou, Winnie Nzahou; Bourichon, Damien; Vignolle, Joan; Wirotius, Anne-Laure; Robert, Fredéric; Landais, Yannick; Sotiropoulos, Jean-Marc; Miqueu, Karinne; Taton, Daniel


    Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) .

  3. 21 CFR 172.859 - Sucrose fatty acid esters. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  4. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem.

    Energy Technology Data Exchange (ETDEWEB)

    Matt Vaughn Greg Harrington Daniel R Bush


    This project was based on our discovery that sucrose acts as a signaling molecule that regulates the activity of a proton-sucrose symporter in sugar beet leaf tissue. A major objective here was determining how sucrose transporter activity is being regulated. When sucrose accumulates in the phloem sucrose transport activity drops dramatically. Western blots of plasma membrane proteins isolated from sucrose treated leaves showed that the loss of sucrose transport activity was proportional to a decline in symporter abundance, demonstrating that sucrose transport is regulated by changes in the amount of BvSUT1 protein. BvSUT1 transcript levels decreased in parallel with the loss of sucrose transport activity. Nuclear run-on experiments demonstrated that BvSUT1 gene transcription was repressed significantly in nuclei from leaves fed 100 mM exogenous sucrose, showing that sucrose-dependent modulation of BvSUT1 mRNA levels is mediated by changes in transcription. To identify which secondary messenger systems might be involved in regulating symporter activity, we used a variety of pharmacological agents to probe for a role of calcium or protein phosphorylation in sucrose signaling. In a detailed analysis, only okadaic acid altered sucrose transport activity. These results suggest a protein phosphatase is involved. We hypothesized that protein kinase inhibitors would have a neutral affect or increase symporter transcription. Transpirational feeding of the protein kinase inhibitor staurosporine had no impact on sucrose transport while calphostin C, an inhibitor of protein kinase C, caused a 60% increase. These data provided good evidence that protein phosphorylation plays a central role in regulating sucrose symporter expression and sucrose transport activity. To determine whether protein phosphorylation is involved in sucrose regulation of proton-sucrose symporter activity, we pre-fed leaves with staurosporine for 4 h and then fed the treated leaves water or 100 mM sucrose

  5. Cellular recognition of synthetic peptide amphiphiles in supported bioartificial membranes (United States)

    Pakalns, Teika

    The goal of this study was to demonstrate that lipidated cell adhesion peptides could form well-ordered biomimetic surfaces that were capable of influencing cellular behavior in a controlled and specific manner. The first step taken was to covalently link synthetic dialkyl tails to the amino-termini of the collagen-derived peptide IV-H1 (amino acid sequence GVKGDKGNPGWPGAP) and the well-known tripeptide Arg-Gly-Asp (RGD) to produce amino-coupled peptide amphiphiles. Other spatial orientations of RGD were also generated by coupling tails to the carboxyl-terminus to give carboxyl-coupled RGD amphiphiles and to both the amino- and carboxyl-termini to give looped RGD amphiphiles. The next step taken was to let the peptide amphiphile self-assemble along with methyl ester-capped dialkyl tails into mixed films. It was found that all the peptide amphiphiles formed stable monolayers at the air-water interface in a Langmuir trough. IV-H1 amphiphiles and carboxyl-coupled and looped RGD amphiphiles deposited well as Langmuir-Blodgett mixed films on solid surfaces at all peptide concentrations, but aminocoupled RGD amphiphiles did not deposit well at high RGD concentrations. FT-IR studies of films containing RGD amphiphiles showed that amino-coupled RGD head groups formed the strongest lateral hydrogen bonds. The final step was to study cellular response to mixed films containing IV-H1 or RGD amphiphiles. The spreading of melanoma cells was influenced by both the molar concentration and spatial orientation of the amphiphilic peptides. Cells spread on IV-H1 and looped RGD films in a concentration-dependent manner, but spread indiscriminately on carboxyl-coupled RGD films and did not spread at all on well-deposited amino-coupled RGD films. The specificity of the cellular response to looped RGD amphiphiles was investigated. Control films of looped Arg-Gly-Glu (RGE) amphiphiles inhibited the adhesion and spreading of melanoma and endothelial cells, and antibody inhibition of the

  6. Fluctuations and structure of amphiphilic films; Fluctuations et structure de films d`amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Gourier, CH


    This thesis is divided in three parts.The first part exposes in a theoretical point of view, how the fluctuations spectrum of an amphiphilic film is governed by its properties and its bidimensional characteristics.The measurements of fluctuations spectra of an interface are accessible with the measurement of intensity that interface diffuses out of the specular angle, we present in the second chapter the principles of the X rays diffusion by a real interface and see how the diffuse diffusion experiments allow to determine the fluctuations spectrum of an amphiphilic film. The second part is devoted to the different experimental techniques that have allowed to realize the study of fluctuation as well as the structural study.The third part is devoted to experimental results concerning the measurements of fluctuations spectra and to the study of the structure of amphiphilic films. We show that it is possible by using an intense source of X rays (ESRF: European Synchrotron Radiation Facility) to measure the water and amphiphilic films fluctuations spectra until molecular scales. The last chapter is devoted to the structural study and film fluctuations made of di-acetylenic molecules. (N.C.)

  7. [Amphiphilic cyclodextrins and their applications. Preparation of nanoparticles based on amphiphilic cyclodextrins for biomedical applications]. (United States)

    Parrot-Lopez, H; Perret, F; Bertino-Ghera, B


    Solubilization of hydrophobic drugs at the molecular level as inclusion complexes inside cyclodextrins (CDs) offers a good alternative for improving their stability, solubility and bioavailability, and for preventing against their possible toxicity or controlling secondary effects. Therefore CDs are widely used as solubilizing excipients. However since dissociation takes place too readily upon dilution, inclusion complexes inside simple water-soluble CD appears ineffective for drug delivery applications. Chemical modifications of CDs allow them to self-organize as larger assemblies useful for resolving this lability issue. Depending on the position, the number and the nature of these groups, amphiphilic CDs can form assemblies such as vesicles, solid-lipid nanoparticles, nanospheres, liquid crystals, or micellar systems. This review deals with the synthesis of amphiphilic cyclodextrins leading to supramolecular assemblies and the physical properties of these assemblies. From the first sulfonated amphiphilic cyclodextrins isolated in our laboratory in 2003, to the latest ones being regioselectively functionalized by two or four fluoroalkyl chains, through the persubstituted fluorinated cyclodextrines, all these amphiphilic cyclodextrins have shown good abilities for encapsulation. Complexation of bioactive molecules (acyclovir) by these modified alpha-cyclodextrin derivatives, the encapsulation efficiency and release profile were measured as an assessment of the properties of such nanoparticles regarding drug delivery applications.

  8. Multilayers of Fluorinated Amphiphilic Polyions for Marine Fouling Prevention

    NARCIS (Netherlands)

    Zhu, X.; Guo, S.; Janczewski, D.; Parra-Velandia, F.J.; Teo, S.L-M.; Vancso, G.J.


    Sequential layer-by-layer (LbL) deposition of polyelectrolytes followed by chemical cross-linking was investigated as a method to fabricate functional amphiphilic surfaces for marine biofouling prevention applications. A novel polyanion, grafted with amphiphilic perfluoroalkyl polyethylene glycol (

  9. Confined supramolecular nanostructures of mesogen-bearing amphiphiles. (United States)

    Zou, Bo; Wang, Mingfeng; Qiu, Dengli; Zhang, Xi; Chi, Lifeng; Fuchs, Harald


    Stable surface nanostructures with different morphology have been successfully constructed by modifying the chemical structure of synthetic amphiphiles; by introducing mesogenic groups into bolaform amphiphiles, stable spaghetti-like or stripe-like nanostructures can be obtained; it is believed that such a kind of surface structure could be used for templating synthesis and assembly.

  10. Incorporation of Amphiphilic Cyclodextrins into Liposomes as Artificial Receptor Units

    NARCIS (Netherlands)

    Kauscher, Ulrike; Stuart, Marc C. A.; Druecker, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan


    In this article, we describe the introduction of amphiphilic beta-cyclodextrins into liposomes to act as artificial receptor units. Using dynamic light scattering, dye encapsulation, and cryogenic transmission electron microscopy, we show that amphiphilic beta-cyclodextrins can be mixed in any propo

  11. Amphiphile nanoarchitectonics: from basic physical chemistry to advanced applications. (United States)

    Ramanathan, Muruganathan; Shrestha, Lok Kumar; Mori, Taizo; Ji, Qingmin; Hill, Jonathan P; Ariga, Katsuhiko


    Amphiphiles, either synthetic or natural, are structurally simple molecules with the unprecedented capacity to self-assemble into complex, hierarchical geometries in nanospace. Effective self-assembly processes of amphiphiles are often used to mimic biological systems, such as assembly of lipids and proteins, which has paved a way for bottom-up nanotechnology with bio-like advanced functions. Recent developments in nanostructure formation combine simple processes of assembly with the more advanced concept of nanoarchitectonics. In this perspective, we summarize research on self-assembly of amphiphilic molecules such as lipids, surfactants or block copolymers that are a focus of interest for many colloid, polymer, and materials scientists and which have become increasingly important in emerging nanotechnology and practical applications, latter of which are often accomplished by amphiphile-like polymers. Because the fundamental science of amphiphiles was initially developed for their solution assembly then transferred to assemblies on surfaces as a development of nanotechnological techniques, this perspective attempts to mirror this development by introducing solution systems and progressing to interfacial systems, which are roughly categorized as (i) basic properties of amphiphiles, (ii) self-assembly of amphiphiles in bulk phases, (iii) assembly on static surfaces, (iv) assembly at dynamic interfaces, and (v) advanced topics from simulation to application. This progression also represents the evolution of amphiphile science and technology from simple assemblies to advanced assemblies to nanoarchitectonics.

  12. Sucrose ingestion induces rapid AMPA receptor trafficking. (United States)

    Tukey, David S; Ferreira, Jainne M; Antoine, Shannon O; D'amour, James A; Ninan, Ipe; Cabeza de Vaca, Soledad; Incontro, Salvatore; Wincott, Charlotte; Horwitz, Julian K; Hartner, Diana T; Guarini, Carlo B; Khatri, Latika; Goffer, Yossef; Xu, Duo; Titcombe, Roseann F; Khatri, Megna; Marzan, Dave S; Mahajan, Shahana S; Wang, Jing; Froemke, Robert C; Carr, Kenneth D; Aoki, Chiye; Ziff, Edward B


    The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.

  13. Functional Analysis of Arabidopsis Sucrose Transporters

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ward


    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter from companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.

  14. Well-Defined Triblock Copolymer Containing Perfluoro- cyclobutyl Aryl Ether and Poly(acrylic acid) Segments

    Institute of Scientific and Technical Information of China (English)

    陆国林; 张森; 李永军; 黄晓宇


    A novel well-defined triblock copolymer containing perfluorocyclobutyl group was prepared by the combination of mechanism transformation strategy, thermal cycloaddition [2π+2π] polymerization and atom transfer radical polymerization (ATRP). Firstly, a macroinitiator with two ATRP initiating end groups was synthesized by thermal polymerization of 4,4'-bis-(trifluorovinyloxy)biphenyl (BTFVBP) and sequential end-capping with a difunctional compound containing trifluorovinyl and ATRP initiation group. Secondly, this macroinitiator initiated ATRP of t-butyl acrylate to synthesize PtBA-b-PBTFVBP-b-PtBA triblock copolymer. This copolymer was hydrolyzed to afford PAA-b-PBTFVBP-b-PAA amphiphilic triblock copolymer. This kind of fluorine-containing well-defined structure should benefit the study of self-assembly behaviors.

  15. Sucrose consumption in Thai undergraduate students. (United States)

    Promdee, Limthong; Trakulthong, Jindara; Kangwantrakul, Wisut


    Highly added sugar diets have been associated with various health problems such as dental caries, dyslipidemia, obesity and poor quality of life. Unfortunately, sugar consumption, especially sucrose, has increased continuously worldwide. The purpose of the study was to examine sources of sugar consumption and amount of added sucrose consumed in Thai undergraduate students. This study was carried out at Khon Kaen University, Thailand, between the years 2004-2005. A complete 3-day record of items and amounts of sweet consumption were obtained from 202 individuals--38 male and 164 female students. Added sucrose content of each sweetened food and drinks referred to in the record was determined by an enzymatic method. Mean intakes of sucrose were calculated from the sucrose content. The average of sucrose consumption in all subjects was 69+/-38 g/day, ranged from 4 to 182 g/day or 17 teaspoons of added sucrose per day. This amount accounted for 13.8% of total daily energy intake. There was a record of 337 kinds of sweetened foods and drinks found. The major source of added sucrose consumption was sweetened beverage, which was consumed 118 g/day averagely, or 60% of daily sugar consumption. Intake of sucrose per day in both male and female was not statistically difference, neither among different BMI groups. Intake of added sugar in the students was higher than the recommendation of the World Health Organization. These data would be helpful in a health promotion campaign aimed at a reduction of sugar consumption in Thai undergraduate students.

  16. Biolabeling and Binding Evaluation of Amphiphilic Nanocrystallopolymers

    Directory of Open Access Journals (Sweden)

    Kwang-Suk Jang


    Full Text Available Surfactant-like inorganic-organic hybrid molecules named as nanocrystallopolymers were designed by conjugation of the hydrophilic synthetic poly(amino acid, poly-α,β-(N-(2-hydroxyethyll-aspartamide, with hydrophobic inorganic nanoparticles. In aqueous media, amphiphilic nanocrystallopolymers form self-aggregates with unique morphologies. Here, a simple biolabeling method of nanocrystallopolymers was developed. Biotin was selected as a model biomolecule. The specific binding of biotin-labeled nanocrystallopolymers to the targeted surface was evaluated with a surface plasmon resonance sensor.

  17. Assessment of preconscious sucrose perception using EEG

    DEFF Research Database (Denmark)

    Rotvel, Camilla Arndal; Møller, Stine; Nielsen, Rene R.

    to the brain cortex. The method complements sensory panel assessment by providing insight to pre-conscious taste perception. In the empirical study the subject was stimulated with an aqueous sucrose solution at two concentrations: 1 mL 0.1g/L sucrose (below detection threshold) and 100g/L sucrose, respectively...... is known to be involved in sensory integration. The proposed method demonstrates promising results in assessing pre-conscious taste perception, suggesting its viability complementing conventional taste panels....

  18. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  19. Monolithic F-16 Uniform Thickness Stretched Acrylic Canopy Transparency Program (United States)


    Thermoforming Finite Strain Analysis Finite Element Modeling Mooney Formulation Tensile Testing Acrylic Material Properties F-16 Transparency Thinning Uniform...OF ACRYLIC TENSILE SPECIMEN ...... 8 MARC ANALYSIS OF ACRYLIC HEMISPHERE ............ 12 IV ACRYLIC MATERIAL PROPERTIES AT THERMOFORMING (necessary for finite element stress analysis work) were generated at temperatures in the range of thermoforming . A finite element code

  20. Occupational respiratory disease caused by acrylates. (United States)

    Savonius, B; Keskinen, H; Tuppurainen, M; Kanerva, L


    Acrylates are compounds used in a variety of industrial fields and their use is increasing. They have many features which make them superior to formerly used chemicals, regarding both their industrial use and their possible health effects. Contact sensitization is, however, one of their well known adverse health effects but they may also cause respiratory symptoms. We report on 18 cases of respiratory disease, mainly asthma, caused by different acrylates, 10 cases caused by cyanoacrylates, four by methacrylates and two cases by other acrylates.

  1. Poly(meth)acrylate-based coatings. (United States)

    Nollenberger, Kathrin; Albers, Jessica


    Poly(meth)acrylate coatings for pharmaceutical applications were introduced in 1955 with the launch of EUDRAGIT(®) L and EUDRAGIT(®) S, two types of anionic polymers. Since then, by introducing various monomers into their polymer chains and thus altering their properties, diverse forms with specific characteristics have become available. Today, poly(meth)acrylates function in different parts of the gastrointestinal tract and/or release the drug in a time-controlled manner. This article reviews the properties of various poly(meth)acrylates and discusses formulation issues as well as application possibilities.

  2. Sucrose dependent translational dynamics in Arabidopsis thaliana

    NARCIS (Netherlands)

    Hummel, M.


    Sucrose dependent translational dynamics Gene expression is regulated at several different levels starting from chromatin remodeling and transcription in the nucleus to translation and post-translational modifications in the cytosol. Depending on the gene and circumstances, different regulatory mech

  3. Intracellular sucrose communicates metabolic demand to sucrose transporters in developing pea cotyledons. (United States)

    Zhou, Yuchan; Chan, Katie; Wang, Trevor L; Hedley, Cliff L; Offler, Christina E; Patrick, John W


    Mechanistic inter-relationships in sinks between sucrose compartmentation/metabolism and phloem unloading/translocation are poorly understood. Developing grain legume seeds provide tractable experimental systems to explore this question. Metabolic demand by cotyledons is communicated to phloem unloading and ultimately import by sucrose withdrawal from the seed apoplasmic space via a turgor-homeostat mechanism. What is unknown is how metabolic demand is communicated to cotyledon sucrose transporters responsible for withdrawing sucrose from the apoplasmic space. This question was explored here using a pea rugosus mutant (rrRbRb) compromised in starch biosynthesis compared with its wild-type counterpart (RRRbRb). Sucrose influx into cotyledons was found to account for 90% of developmental variations in their absolute growth and hence starch biosynthetic rates. Furthermore, rr and RR cotyledons shared identical response surfaces, indicating that control of transporter activity was likely to be similar for both lines. In this context, sucrose influx was correlated positively with expression of a sucrose/H(+) symporter (PsSUT1) and negatively with two sucrose facilitators (PsSUF1 and PsSUF4). Sucrose influx exhibited a negative curvilinear relationship with cotyledon concentrations of sucrose and hexoses. In contrast, the impact of intracellular sugars on transporter expression was transporter dependent, with expression of PsSUT1 inhibited, PsSUF1 unaffected, and PsSUF4 enhanced by sugars. Sugar supply to, and sugar concentrations of, RR cotyledons were manipulated using in vitro pod and cotyledon culture. Collectively the results obtained showed that intracellular sucrose was the physiologically active sugar signal that communicated metabolic demand to sucrose influx and this transport function was primarily determined by PsSUT1 regulated at the transcriptional level.

  4. Structural development of sucrose-sweetened and sucrose-free sponge cakes during baking. (United States)

    Baeva, Marianna Rousseva; Terzieva, Vesselina Velichkova; Panchev, Ivan Nedelchev


    The influence of sucrose, wheat starch and sorbitol upon the heat- and mass-exchanging processes forming the structure of sponge cake was studied. Under the influence of wheat starch and sorbitol the structure of the sucrose-free sponge cake was formed at more uniform total moisture release. This process was done at lower temperatures and smoother change of the sponge cake height with respect to the sucrose-sweetened sponge cake. The porous and steady structure of both cakes was finally formed at identical time--between 18th and 19th minute, at the applied conditions for baking of each batter (metal pan with diameter 15.4 cm and depth 6.2 cm containing 300 g of batter and placed in an electric oven "Rahovetz-02", Bulgaria for 30 min at 180 degrees C). The water-losses at the end of baking (10.30% and 10.40% for the sucrose-sweetened cake and sucrose-free cake, respectively) and the final temperatures reached in the crumb central layers (96.6 degrees C and 96.3 degrees C for the sucrose-sweetened cake and sucrose-free cake, respectively) during baking of both samples were not statistically different. The addition of wheat starch and sorbitol in sucrose-free sponge cake lead to the statistically different values for the porosity (76.15% and 72.98%) and the volume (1014.17 cm3 and 984.25 cm3) of the sucrose-sweetened and sucrose-free sponge cakes, respectively. As a result, the sucrose-free sponge cake formed during baking had a more homogeneous and finer microstructure with respect to that ofthe sucrose-sweetened one.

  5. Effect of High Temperature on Sucrose Content and Sucrose Cleaving Enzyme Activity in Rice Grain During the Filling Stage

    Institute of Scientific and Technical Information of China (English)

    LI Tian; LIU Qi-hua; Ryu OHSUGI; Tohru YAMAGISHI; Haruto SASAKI


    Dynamic changes of sucrose, fructose, glucose contents and differences in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase in rice grain after flowering stage were studied under natural and high temperatures by using two japonica rice varieties Koshihikari and Sasanishiki. In rice grains, the sucrose synthase activity was higher than that of invertase, which was significantly correlated with starch accumulation rate, indicating that the sucrose synthase played an important role in sucrose degradation and starch synthesis. Under high temperature, the significant increase in grain sucrose content without any increase in fructose and glucose contents, suggested that the high temperature treatment enhanced sucrose accumulation, while diminished sucrose degradation in rice grains. Compared with the control plants, the decrease in activities of sucrose synthase, vacuolar invertase, and cell wall bound invertase with high temperature treated plants indicated that the deceleration of sucrose-degradation was related to the decrease in activities of sucrose synthase and invertase.

  6. Identification of sucrose binding, membrane proteins using a photolyzable sucrose analog. [P. saccharophila

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, K.G.; Liu, D.F.; Viitanen, P.; Hitz, W.D.


    The sucrose derivative 6'-deoxy-6'-(2-hydroxy-4-azido)benzamidosucrose (6'-HABS) was prepared from sucrose (via 6'-deoxy-6'-aminosucrose) and 4-amino-salicylic acid. 6'-HABS is a competitive inhibitor of sucrose influx into protoplasts from developing soybean cotyledons and of sucrose binding to membranes from the bacteria P. saccharophila. The Ki for inhibition in the soybean protoplasts was 6'-Deoxy-6'-(2-hydroxy-3-/sup 125/Iodo-4-azido)benzamidosucrose was prepared by lactoperoxidase iodination of 6'-HABS. Upon photolysis in the presence of membranes from P saccharophila, label from the photoprobe is incorporated into a sucrose inducible polypeptide of mass 84 KD in SDS-PAGE. The polypeptide is protected from labeling by the inclusion of sucrose in the photolysis mixture. Photolysis conditions which lead to specific labeling of the sucrose protectable polypeptide in bacterial membranes also give sucrose protectable labeling of a 66 KD polypeptide in microsomal preparations made from developing soybeans. The possibility that this is a sucrose transporting protein is being tested.

  7. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation. (United States)

    Uppu, Divakara S S M; Haldar, Jayanta


    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  8. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis.

    NARCIS (Netherlands)

    Sprogoe, D.; Broek, van den L.A.M.; Mirza, O.; Kastrup, J.S.; Voragen, A.G.J.; Gajhede, M.; Skov, L.K.


    Around 80 enzymes are implicated in the generic starch and sucrose pathways. One of these enzymes is sucrose phosphorylase, which reversibly catalyzes the conversion of sucrose and orthophosphate to d-Fructose and a-d-glucose 1-phosphate. Here, we present the crystal structure of sucrose phosphoryla

  9. Rapid Output Growth of Special Acrylic Esters

    Institute of Scientific and Technical Information of China (English)

    Wang Lianzhi


    @@ Acrylic esters are usually classified into general-purpose varieties and special varieties. The production and application of general-purpose varieties is already quite matured in the world and their output growth tends to be flat. Owing to the development of coatings, electronics, automobiles,textiles, printing and construction sectors, especially the application of radiation curing technology in various sectors, special acrylic esters have developed rapidly.

  10. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)



    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula.

  11. Gel time of calcium acrylate grouting material

    Institute of Scientific and Technical Information of China (English)



    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerizationreaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reactionkinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time ofcalcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and anexample is provided to verify the proposed formula.

  12. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization. (United States)

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori


    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth.

  13. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery. (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang


    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.


    Institute of Scientific and Technical Information of China (English)

    Hong-quan Xie; Gui-ying Liao; Yu Gao


    An amphiphilic graft polymer, (PAM-g-PBA), polyacrylamide (PAM) having poly(n-butyl acrylate) (PBA) side chains, was obtained by radical copolymerization of acrylamide with PBA macromer in solution. The macromer was synthesized by free radical polymerization of butyl acrylate in the presence of different amounts of thioglycolic acid as the chain transfer agent, followed by termination with glycidyl methacrylate. The reactivity ratio and effects of copolymerization conditions on the conversion of macromer or grafting efficiency were studied. The crude products were purified by extraction with toluene and water successively. Thc purified graft copolymer was characterized by IR, DSC and TEM. PAM-g-PBA can bring about microphase separation and exhibits good emulsifying properties and water absorbency. PAM-g-PBA exhibits a very good compatibilizing effect on the acrylic rubber/poly(vinyl chloride) blends. 2%-3% of the graft copolymer is enough for enhancing the tensile strength of the blends. The tensile strength of the blends is more than twice that without the compatibilizer. DSC and SEM demonstrated the enhancement of compatibility in the presence of the graft copolymer.

  15. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.;


    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  16. Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion

    DEFF Research Database (Denmark)

    Mirza, Osman; Henriksen, Lars Skov; Sprogøe, Desiree


    The reaction mechanism of sucrose phosphorylase from Bifidobacterium adolescentis (BiSP) was studied by site-directed mutagenesis and x-ray crystallography. An inactive mutant of BiSP (E232Q) was co-crystallized with sucrose. The structure revealed a substrate-binding mode comparable with that seen...

  17. Phase behavior of an amphiphilic fluid. (United States)

    Schoen, Martin; Giura, Stefano; Klapp, Sabine H L


    We invoke mean-field density functional theory (DFT) to investigate the phase behavior of an amphiphilic fluid composed of a hard-sphere core plus a superimposed anisometric Lennard-Jones perturbation. The orientation dependence of the interactions consists of a contribution analogous to the interaction potential between a pair of "spins" in the classical, three-dimensional Heisenberg fluid and another one reminiscent of the interaction between (electric or magnetic) point dipoles. At fixed orientation both contributions are short-range in nature decaying as r-6 (r being the separation between the centers of mass of a pair of amphiphiles). Based upon two mean-field-like approximations for the pair correlation function that differ in the degree of sophistication we derive expressions for the phase boundaries between various isotropic and polar phases that we solve numerically by the Newton-Raphson method. For sufficiently strong coupling between the Heisenberg "spins" both mean-field approximations generate three topologically different and generic types of phase diagrams that are observed in agreement with earlier work [see, for example, Tavares et al., Phys. Rev. E 52, 1915 (1995)]. Whereas the dipolar contribution alone is incapable of stabilizing polar phases on account of its short-range nature it is nevertheless important for details of the phase diagram such as location of the gas-isotropic liquid critical point, triple, and tricritical points. By tuning the dipolar coupling constant suitably one may, in fact, switch between topologically different phase diagrams. Employing also Monte Carlo simulations in the isothermal-isobaric ensemble the general topology of the DFT phase diagrams is confirmed.

  18. Facially amphiphilic thiol capped gold and silver nanoparticles

    Indian Academy of Sciences (India)

    Shreedhar Bhata; Uday Maitra


    A series of bile acid-derived facially amphiphilic thiols have been used to cap sliver and gold nanoparticles. The self-assembling properties of these steroid-capped nanoparticles have been investigated and reported in this article.

  19. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. (United States)

    Huber, S C; Akazawa, T


    Enzymes of sucrose degradation and glycolysis in cultured sycamore (Acer pseudoplatanus L.) cells were assayed and characterized in crude extracts and after partial purification, in an attempt to identify pathways for sucrose catabolism. Desalted cell extracts contained similar activities (20-40 nanomoles per milligram protein per minute) of sucrose synthase, neutral invertase, glucokinase, fructokinase, phosphofructokinase, and UDPglucose pyrophosphorylase (assayed with 2 micromolar pyrophosphate (PPi). PPi-linked phosphofructokinase activity was virtually dependent upon fructose 2,6-bisphosphate, and the maximum activity exceeded that of ATP-linked phosphofructokinase. Hexokinase activity, with glucose as substrate, was highly specific for ATP, whereas fructokinase activity was relatively nonspecific. At 1 millimolar nucleoside triphosphate, fructokinase activity decreased in the order: UTP > ATP > CTP > GTP. We propose two pathways for sucrose degradation. One involves invertase action, followed by classical glycolysis of hexose sugars, and the other is a novel pathway initiated by sucrose synthase. The K(m) for sucrose of sucrose synthase was severalfold lower than that of neutral invertase (15 versus 65 millimolar), which may determine carbon partitioning between the two pathways. The sucrose synthase pathway proposed involves cycling of uridylates and PPi. UDPglucose pyrophosphorylase, which is shown to be an effective ;PPi-scavenger,' would consume PPi and form UTP. The UTP could be then utilized in the UTP-linked fructokinase reaction, thereby forming UDP for sucrose synthase. The source of PPi is postulated to arise from the back reaction of PPi-linked phosphofructokinase. Sycamore cells contained a substantial endogenous pool of PPi (about 3 nanomoles per gram fresh weight, roughly 1/10 the amount of ATP in these cells), and sufficient fructose 2,6-bisphosphate (0.09 nanomole per gram fresh weight) to activate the PPi-linked phosphofructokinase. Possible

  20. Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. (United States)

    Torchilin, V P; Shtilman, M I; Trubetskoy, V S; Whiteman, K; Milstein, A M


    Newly synthesized amphiphilic polyacrylamide and poly(vinyl pyrrolidone), single terminus-modified with long-chain fatty acyl groups, are able to incorporate into the liposomal membrane, and similar to poly(ethylene glycol) prolong liposome circulation in vivo and decrease liposome accumulation in the liver. Protective efficacy of modified polymers increases with the increase in the length of acyl moiety and decreases for higher molecular weight polymers. The data on amphiphilic polymer-modified liposome biodistribution are presented.

  1. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies. (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie


    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  2. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S


    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  3. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH. (United States)

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L


    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film.

  4. Development of broad-spectrum antimicrobial latex paint surfaces employing active amphiphilic compounds. (United States)

    Fulmer, Preston A; Wynne, James H


    With the increase in antibiotic-resistant microbes, the production of self-decontaminating surfaces has become an area of research that has seen a surge of interest in recent years. Such surfaces, when incorporated into commercial products such as children's toys, medical devices and hospital surfaces could reduce the number of infections caused by pathogenic microorganisms. A number of active components for self-decontaminating surfaces have been investigated, including common antibiotics, metal ions, quaternary ammonium salts (QAS), and antimicrobial peptides (AMP). A recent research focus has been development of a wide range of amphiphilic antimicrobial additives that when combined with modern low volatile organic compound (VOC), water-based paints leads to a surface concentration of the active compounds as the coating cures. Herein we report the development of antimicrobial coatings containing a variety of additives, both QAS and AMP that are active against a broad-spectrum of potentially pathogenic bacteria (1-7 log kill), as well as enveloped viruses (2-7 log kill) and fungi (1-2 log kill). Additionally, these additives were compatible with water-dispersed acrylate coatings (latex paint) which have a broad range of real world applicability, and remained active for multiple challenges and when exposed to various cleaning scenarios in which they might encounter in real world situations.

  5. Plant Sucrose Transporters from a Biophysical Point of View

    Institute of Scientific and Technical Information of China (English)

    Dietmar Geiger


    T The majority of higher plants use sucrose as their main mobile carbohydrate. Proton-driven sucrose transporters play a crucial role in cell-to-cell and long-distance distribution of sucrose throughout the plant. A very negative plant membrane potential and the ability of sucrose transporters to accumulate sucrose concentrations of more than 1 M indicate that plants evolved transporters with unique structural and functional features. The knowledge about the transport mechanism and structural/functional domains of these nano-machines is, however, still fragmentary. In this review,the current knowledge about the biophysical properties of plant sucrose transporters is summarized and discussed.

  6. Photochemistry of acrylates at 222 nm (United States)

    Knolle, Wolfgang; Naumov, Sergej; Madani, Mohamed; von Sonntag, Clemens


    Excimer lamps as monochromatic UV sources with an intense short-wavelength emission (especially KrCl∗, 222 nm) allow a photoinitiator-free initiation of the acrylate polymerisation. Laser photolysis (KrCl∗ excimer laser, pulse width 20 ns, up to 5 mJ per pulse) gives rise to similar transient spectra (λmax ≈ 280 nm) for all acrylates studied. As the rather unspecific spectra do not allow conclusions as to the main reaction channel, a product study has been performed by GC-MS following steady-state photolysis of acrylate solutions in acetonitrile, methanol and n-hexane. Somewhat unexpected, α-cleavage seems to be a main reaction channel, and quantum chemical calculations show that such a reaction can occur from either the excited singlet state or the unrelaxed triplet state, but not from the relaxed triplet state that is observed spectroscopically. A reaction scheme accounting for the observed products is presented.

  7. Concepts for stereoselective acrylate insertion

    KAUST Repository

    Neuwald, Boris


    Various phosphinesulfonato ligands and the corresponding palladium complexes [{((PaO)PdMeCl)-μ-M}n] ([{( X1-Cl)-μ-M}n], (PaO) = κ2- P,O-Ar2PC6H4SO2O) with symmetric (Ar = 2-MeOC6H4, 2-CF3C6H4, 2,6-(MeO)2C6H3, 2,6-(iPrO)2C 6H3, 2-(2′,6′-(MeO)2C 6H3)C6H4) and asymmetric substituted phosphorus atoms (Ar1 = 2,6-(MeO)2C6H 3, Ar2 = 2′-(2,6-(MeO)2C 6H3)C6H4; Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2-cHexOC 6H4) were synthesized. Analyses of molecular motions and dynamics by variable temperature NMR studies and line shape analysis were performed for the free ligands and the complexes. The highest barriers of ΔGa = 44-64 kJ/mol were assigned to an aryl rotation process, and the flexibility of the ligand framework was found to be a key obstacle to a more effective stereocontrol. An increase of steric bulk at the aryl substituents raises the motional barriers but diminishes insertion rates and regioselectivity. The stereoselectivity of the first and the second methyl acrylate (MA) insertion into the Pd-Me bond of in situ generated complexes X1 was investigated by NMR and DFT methods. The substitution pattern of the ligand clearly affects the first MA insertion, resulting in a stereoselectivity of up to 6:1 for complexes with an asymmetric substituted phosphorus. In the consecutive insertion, the stereoselectivity is diminished in all cases. DFT analysis of the corresponding insertion transition states revealed that a selectivity for the first insertion with asymmetric (P aO) complexes is diminished in the consecutive insertions due to uncooperatively working enantiomorphic and chain end stereocontrol. From these observations, further concepts are developed. © 2012 American Chemical Society.

  8. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic). (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  9. 21 CFR 573.120 - Acrylamide-acrylic acid resin. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573.120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid...

  10. 21 CFR 176.110 - Acrylamide-acrylic acid resins. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  11. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic). (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  12. 40 CFR 721.10180 - Trifunctional acrylic ester (generic). (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  13. 21 CFR 175.210 - Acrylate ester copolymer coating. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...


    Institute of Scientific and Technical Information of China (English)

    LI Fumian; GU Zhongwei; FENG Xinde(S. T. Voong)


    Several new monomers, β-(acetylsalicylyloxy)ethyl methacrylate, β-(acetylsalicylyloxy)propyl methacrylate, β-(acetylsalicylyloxy)ethyl acrylate, β-hydroxy-γ-(acetylsalicylyloxy)propyl methacrylate, β-hydroxy-γ-(acetylsalicylyloxy)propyl acrylate have been synthesized from aspirin with corresponding hydroxyalkyl or glycidyl acrylates, and then polymerized by free radical initiator.

  15. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction

    DEFF Research Database (Denmark)

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon


    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a n...

  16. Selection of Prebiotic Molecules in Amphiphilic Environments

    Directory of Open Access Journals (Sweden)

    Christian Mayer


    Full Text Available A basic problem in all postulated pathways of prebiotic chemistry is the low concentration which generally is expected for interesting reactants in fluid environments. Even though compounds, like nucleobases, sugars or peptides, principally may form spontaneously under environmental conditions, they will always be rapidly diluted in an aqueous environment. In addition, any such reaction leads to side products which often exceed the desired compound and generally hamper the first steps of a subsequent molecular evolution. Therefore, a mechanism of selection and accumulation of relevant prebiotic compounds seems to be crucial for molecular evolution. A very efficient environment for selection and accumulation can be found in the fluid continuum circulating in tectonic fault zones. Vesicles which form spontaneously at a depth of approximately 1 km present a selective trap for amphiphilic molecules, especially for peptides composed of hydrophilic and hydrophobic amino acids in a suitable sequence. The accumulation effect is shown in a numeric simulation on a simplified model. Further, possible mechanisms of a molecular evolution in vesicle membranes are discussed. Altogether, the proposed scenario can be seen as an ideal environment for constant, undisturbed molecular evolution in and on cell-like compartments.

  17. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers. (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike


    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  18. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard


    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  19. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring. (United States)

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V


    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.

  20. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers. (United States)

    Goli, Kiran K; Rojas, Orlando J; Genzer, Jan


    We describe the formation of amphiphilic polymeric assemblies via a three-step functionalization process applied to polypropylene (PP) nonwovens and to reference hydrophobic self-assembled n-octadecyltrichlorosilane (ODTS) monolayer surfaces. In the first step, denatured proteins (lysozyme or fibrinogen) are adsorbed onto the hydrophobic PP or the ODTS surfaces, followed by cross-linking with glutaraldehyde in the presence of sodium borohydride (NaBH(4)). The hydroxyl and amine functional groups of the proteins permit the attachment of initiator molecules, from which poly (2-hydroxyethyl methacrylate) (PHEMA) polymer grafts are grown directly through "grafting from" atom transfer radical polymerization. The terminal hydroxyls of HEMA's pendent groups are modified with fluorinating moieties of different chain lengths, resulting in amphiphilic brushes. A palette of analytical tools, including ellipsometry, contact angle goniometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy is employed to determine the changes in physicochemical properties of the functionalized surfaces after each modification step. Antifouling properties of the resultant amphiphilic coatings on PP are analyzed by following the adsorption of fluorescein isothiocyanate-labeled bovine serum albumin as a model fouling protein. Our results suggest that amphiphilic coatings suppress significantly adsorption of proteins as compared with PP fibers or PP surfaces coated with PHEMA brushes. The type of fluorinated chain grafted to PHEMA allows modulation of the surface composition of the topmost layer of the amphiphilic coating and its antifouling capability.

  1. Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms. (United States)

    Dane, Eric L; Ballok, Alicia E; O'Toole, George A; Grinstaff, Mark W


    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections.

  2. Effect of sucrose on adventitious root regeneration in apple

    NARCIS (Netherlands)

    Calamar, A.; Klerk, de G.J.M.


    We have examined the effect of sucrose on adventitious root formation in apple microcuttings and in 1-mm stem slices cut from apple microcuttings. The sucrose concentration influenced the number of adventitious roots, but at a broad range of sucrose concentrations (1¿9%) the effect was small. In add

  3. Sham-feeding response of rats to Polycose and sucrose. (United States)

    Nissenbaum, J W; Sclafani, A


    Adult female rats were fitted with gastric fistulas and maintained at 85% of their ad lib body weight. Their real-feeding (fistula closed) and sham-feeding (fistula open) responses to polysaccharide (Polycose) and sucrose solutions were measured during 30 min/day one-bottle tests. The rats consumed similar amounts of a 1% Polycose solution during real- and sham-feeding tests, but their sham-intakes of 4%, 16% and 32% Polycose solutions greatly exceeded their real-intakes of these solutions. Similar results were obtained with sucrose solutions. The rats sham-fed more Polycose than sucrose at the 1% and 4% concentrations, while their sham-intakes of the 16% and 32% Polycose and sucrose solutions were comparable. In subsequent two-solution sham-feeding tests, the rats preferred 1% Polycose to 1% sucrose, but preferred sucrose to Polycose at 4%, 16% and 32% concentrations. These preference results indicate that rats find Polycose more palatable than sucrose at low concentrations, but sucrose more palatable at high concentrations. In addition, the findings that the rats preferred 4% sucrose to 4% Polycose in the two-bottle test, but sham-fed more 4% Polycose than 4% sucrose in the one-bottle tests, suggest that sucrose is more "orally-satiating" than is Polycose. These results provide further evidence for qualitative differences in the tastes of sucrose and polysaccharide. They also indicate that the amount of solution sham-fed does not necessarily reflect the palatability of the solution.

  4. Acrylic Tanks for Stunning Chemical Demonstrations (United States)

    Mirholm, Alexander; Ellervik, Ulf


    We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)


    thoracic and abdominal aorta. The use of a composite construction utilizing acrylate-amide foam is being evaluated in prostheses for mitral valve ...bleeding. The success of the initial experimental work has led to a clinical trial in which 99 replacement , bypass, or patch-angioplasty procedures... replacement , superior vena cava patch venoplasty, and esophageal replacement . (Author)

  6. Redox-controllable amphiphilic [2]rotaxanes. (United States)

    Tseng, Hsian-Rong; Vignon, Scott A; Celestre, Paul C; Perkins, Julie; Jeppesen, Jan O; Di Fabio, Alberto; Ballardini, Roberto; Gandolfi, M Teresa; Venturi, Margherita; Balzani, Vincenzo; Stoddart, J Fraser


    With the fabrication of molecular electronic devices (MEDs) and the construction of nanoelectromechanical systems (NEMSs) as incentives, two constitutionally isomeric, redox-controllable [2]rotaxanes have been synthesized and characterized in solution. Therein, they both behave as near-perfect molecular switches, that is, to all intents and purposes, these two rotaxanes can be switched precisely by applying appropriate redox stimuli between two distinct chemomechanical states. Their dumbbell-shaped components are composed of polyether chains interrupted along their lengths by i) two pi-electron rich recognition sites-a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) moiety-with ii) a rigid terphenylene spacer placed between the two recognition sites, and then terminated by iii) a hydrophobic tetraarylmethane stopper at one end and a hydrophilic dendritic stopper at the other end of the dumbbells, thus conferring amphiphilicity upon these molecules. A template-directed protocol produces a means to introduce the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), which contains two pi-electron accepting bipyridinium units, mechanically interlocked around the dumbbell-shaped components. Both the TTF unit and the DNP moiety are potential stations for CBPQT(4+), since they can establish charge-transfer and hydrogen bonding interactions with the bipyridinium units of the cyclophane, thereby introducing bistability into the [2]rotaxanes. In both constitutional isomers, (1)H NMR and absorption spectroscopies, together with electrochemical investigations, reveal that the CBPQT(4+) ring is predominantly located on the TTF unit, leading to the existence of a single translational isomer (co-conformation) in both cases. In addition, a model [2]rotaxane, incorporating hydrophobic tetraarylmethane stoppers at both ends of its dumbbell-shaped component, has also been synthesized as a point of reference. Molecular synthetic approaches were used to

  7. Rheological and phase behaviour of amphiphilic lipids

    Directory of Open Access Journals (Sweden)

    Alfaro, M. C.


    Full Text Available This chapter reviews the different association structures which are likely to be formed by amphiphilic lipids in the liquid-crystalline state and their corresponding shear flow properties. The structure and rheological behaviour of thermotropic liquid crystals, emphasizing the properties of smectic mesophases, and those of lyotropic liquid crystals such as: nematic, lamellar, diluted lamellar, lamellar dispersions, hexagonal and cubic mesophases are described. The importance of a comprehensive rheological characterisation, including rheo-optical techniques, is pointed out for their practical applications, development of formulations and as a useful technique to assist in the determination of phase diagrams. A historical approach has been used to discuss the evolving field of the rheology and structure identification of liquid crystals formed by amphiphilic lipids and surfactants. Non-Newtonian viscous shear flow, thixotropic and antithixotropic phenomena, linear viscoelastic properties -described by dynamic and creep compliance experiments- and non-linear viscoelastic properties - described by the difference of normal stresses and stress relaxation tests are interpreted on the basis of a microstructure-rheology relationship. The polycrystalline nature of liquid crystals turns out to be rather sensitive to shear due to the change of both size and orientation of the liquid-crystalline monodomains under flow.En este capítulo se realiza una revisión de las distintas estructuras coloidales de asociación que pueden formar los lípidos anfifílicos en estado líquido-cristalino y de sus correspondientes propiedades de flujo en cizalla. Se describe la estructura y comportamiento reológico de cristales líquidos termotrópicos, con énfasis en los de tipo esméctico, fases gel, y cristales líquidos liotrópicos: nemáticos, laminares, laminares diluidos, dispersiones de laminares, hexagonales y cúbicos. Se hace hincapié en la importancia de una

  8. A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R;


    Non-traditional amphiphiles: Conferring aqueous solubility on membrane proteins generally requires the use of a detergent or other amphiphilic agent. A new class of amphiphiles was synthesized, based on steroidal lipophilic groups, and evaluated with several membrane proteins. The results show th...

  9. Competitive Binding of Natural Amphiphiles with Graphene Derivatives (United States)

    Radic, Slaven; Geitner, Nicholas K.; Podila, Ramakrishna; Käkinen, Aleksandr; Chen, Pengyu; Ke, Pu Chun; Ding, Feng


    Understanding the transformation of graphene derivatives by natural amphiphiles is essential for elucidating the biological and environmental implications of this emerging class of engineered nanomaterials. Using rapid discrete-molecular-dynamics simulations, we examined the binding of graphene and graphene oxide with peptides, fatty acids, and cellulose, and complemented our simulations by experimental studies of Raman spectroscopy, FTIR, and UV-Vis spectrophotometry. Specifically, we established a connection between the differential binding and the conformational flexibility, molecular geometry, and hydrocarbon content of the amphiphiles. Importantly, our dynamics simulations revealed a Vroman-like competitive binding of the amphiphiles for the graphene oxide substrate. This study provides a mechanistic basis for addressing the transformation, evolution, transport, biocompatibility, and toxicity of graphene derivatives in living systems and the natural environment.

  10. Magnetic Amphiphilic Composites Applied for the Treatment of Biodiesel Wastewaters

    Directory of Open Access Journals (Sweden)

    Bruno R. S. Lemos


    Full Text Available In this work, new magnetic amphiphilic composites were prepared by chemical vapor deposition with ethanol on the surface of hydrophilic natural chrysotile matrix containing Fe catalyst. XRD, Raman, Mössbauer and SEM analyses suggest the formation of a complex nanostructured material composed of hydrophobic carbon nanotubes/nanofibers grown on the hydrophilic surface of the MgSi fiber mineral and the presence of Fe metallic nanoparticles coated by carbon. These nanostructured particles show amphiphilic properties and interact very well with both oil and aqueous phases. When added to emulsions the amphiphilic particles locate on the oil/water interface and, under a magnetic field, the oil droplets collapsed leading to the separation of the aqueous and oil phases. Preliminary work showed excellent results on the use of these particles to break wastewater emulsions in the biodiesel process.

  11. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins (United States)

    Kuskov, A. N.; Villemson, A. L.; Shtilman, M. I.; Larionova, N. I.; Tsatsakis, A. M.; Tsikalas, I.; Rizos, A. K.


    New nanoscaled polymeric carriers have been prepared on the basis of different amphiphilic water-soluble derivatives of poly-N-vinylpyrrolidone (PVP). The polymer self-assembly and interaction with model proteins (Bowman-Birk soybean proteinase inhibitor (BBI) and its hydrophobized derivatives) were studied in aqueous media. The possibility of inclusion of both BBI and hydrophobized oleic acid derivatives of BBI in amphiphilic PVP aggregates was investigated. It was ascertained that polymeric particles of size 50-80 nm were formed in certain concentrations of amphiphilic PVP and poorly soluble dioleic acid derivatives of BBI. Such polymeric aggregates are capable of solubilization of dioleoyl BBI with a concomitant prevention of its inactivation at low pH values.

  12. Amphiphilic poly-N-vinylpyrrolidone nanocarriers with incorporated model proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kuskov, A N [Department of Polymers, D I Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047 (Russian Federation); Villemson, A L [Department of Chemistry, M V Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Shtilman, M I [Department of Polymers, D I Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047 (Russian Federation); Larionova, N I [Department of Chemistry, M V Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Tsatsakis, A M [Medical School, University of Crete, Voutes, 71409 Heraklion, Crete (Greece); Tsikalas, I [Department of Chemistry and Foundation for Research and Technology-Hellas (FORTH), University of Crete, PO Box 2208, Heraklion 71003, Crete (Greece); Rizos, A K [Department of Chemistry and Foundation for Research and Technology-Hellas (FORTH), University of Crete, PO Box 2208, Heraklion 71003, Crete (Greece)


    New nanoscaled polymeric carriers have been prepared on the basis of different amphiphilic water-soluble derivatives of poly-N-vinylpyrrolidone (PVP). The polymer self-assembly and interaction with model proteins (Bowman-Birk soybean proteinase inhibitor (BBI) and its hydrophobized derivatives) were studied in aqueous media. The possibility of inclusion of both BBI and hydrophobized oleic acid derivatives of BBI in amphiphilic PVP aggregates was investigated. It was ascertained that polymeric particles of size 50-80 nm were formed in certain concentrations of amphiphilic PVP and poorly soluble dioleic acid derivatives of BBI. Such polymeric aggregates are capable of solubilization of dioleoyl BBI with a concomitant prevention of its inactivation at low pH values.

  13. Large Acrylic Spherical Windows In Hyperbaric Underwater Photography (United States)

    Lones, Joe J.; Stachiw, Jerry D.


    Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.

  14. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose. (United States)

    Culleré, Marcela Elena; Spear, Norman E; Molina, Juan Carlos


    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy.

  15. Withanolides and Sucrose Esters from Physalis neomexicana. (United States)

    Cao, Cong-Mei; Wu, Xiaoqing; Kindscher, Kelly; Xu, Liang; Timmermann, Barbara N


    Four withanolides (1-4) and two sucrose esters (5, 6) were isolated from the aerial parts of Physalis neomexicana. The structures of 1-6 were elucidated through a variety of spectroscopic techniques. Cytotoxicity studies of the isolates revealed that 2 inhibited human breast cancer cell lines (MDA-MB-231 and MCF-7) with IC50 values of 1.7 and 6.3 μM, respectively.


    Institute of Scientific and Technical Information of China (English)

    LIU Zhongdong; LIU Huihua; LUO Peng; LIU Peng; Xiao Fugang


    Orthogonal test was used to evaluate the effects of synthetic such as temperature (120~140 ℃), reaction time (4-6) and substrate molar ratio of methyl oleate to sucrose (8:1-12:1) on the percent quantity conversion to sucrose polyester. Sucrose polyester was synthesized by a solvent-free one-stage interesterification. The optimum reaction conditions are as follows: methyl oleate/sucrose = 10∶1 (mol/mol); reaction temperature is 140 ℃;yield reaches 88.15%, and the degree of esterification (DE) is over 7 in the conditions. Thin layer chromatography (TLC), column chromatography (CC), High-performance liquid chromatography (HPLC) were used to analyze the product, the results show that the percent of sucrose polyoleate is over 70% in the product. The physicochemical properties of sucrose polyesters were compared with cooking oil. The results show that the qualities of sucrose polyesters are all up to the triglyceride.

  17. Crystallization inhibition of an amorphous sucrose system using raffinose

    Institute of Scientific and Technical Information of China (English)



    The shelf life of pure amorphous sucrose systems, such as cotton candy, can be very short. Previous studies have shown that amorphous sucrose systems held above the glass transition temperature will collapse and crystallize. One study,however, showed that adding a small percent of another type of sugar, such as trehalose, to sucrose can extend the shelf life of the amorphous system by slowing crystallization. This study explores the hypothesis that raffinose increases the stability of an amorphous sucrose system. Cotton candy at 5 wt% raffinose and 95 wt% sucrose was made and stored at room temperature and three different relative humidities (%RH) 11%RH, 33%RH, and 43%RH. XRD patterns, and glass transition temperatures were obtained to determine the stability as a function of %RH. The data collected showed that raffinose slows sucrose crystallization in a low moisture amorphous state above the glass transition temperature and therefore improves the stability of amorphous sucrose systems.


    Directory of Open Access Journals (Sweden)

    Maya Lyapina


    Full Text Available A multitude of acrylic monomers is used in dentistry, and when dental personnel, patients or students of dental medicine become sensitized, it is of great importance to identify the dental ;acrylic preparations to which the sensitized individual can be exposed. Numerous studies confirm high incidence of sensitization to (meth acrylates in dentatal professionals, as well as in patients undergoing dental treatment and exposed to resin-based materials. Quite a few studies are available aiming to evaluate the incidence of sensitization in students of dental medicineThe purpose of the study is to evaluate the incidence of contact sensitization to some (meth acrylates in students of dental medicine at the time of their education, in dental professionals (dentists, nurses and attendants and in patients, the manifestation of co-reactivity.A total of 139 participants were included in the study, divided into four groups: occupationally exposed to (methacrylates and acrylic monomers dental professionals, 3-4 year-of-education students of dental medicine, 6th year–of-education students of dental medicine and patients with suspected or established sensitization to acrylates, without occupational exposure. All of them were patch-tested with methyl methacrylate (MMA, triethyleneglycol dimethacrylate (TREGDMA, ethyleneglycol dimethacrylate (EGDMA, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy phenyl]propane (bis-GMA, 2-hydroxyethyl methacrylate (2-HEMA, and tetrahidrofurfuril metacrylate. The overall sensitization rates to methacrylates in the studied population are comparative high – from 25.9% for MMA to 31.7% for TREGDMA. Significantly higher incidence of sensitization in the group of 3-4 course students compared to the one in the group of dental professionals for MMA and TREGDMA was observed. Highest was the incidence of sensitization to ethyleneglycol dimethacrylate, BIS-GMA, 2-HEMA and tetrahydrofurfuryl methacrylate in the group of patients, with

  19. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. (United States)

    Payyavula, Raja S; Singh, Rajesh K; Navarre, Duroy A


    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids.

  20. Sucrose secreted by the engineered cyanobacterium and its fermentability (United States)

    Duan, Yangkai; Luo, Quan; Liang, Feiyan; Lu, Xuefeng


    The unicellular cyanobacterium, Synechococcus elongatus PCC 7942 (Syn7942), synthesizes sucrose as the only compatible solute under salt stress. A series of engineered Syn7942 strains for sucrose production were constructed. The overexpression of the native sps (encoding a natively fused protein of sucrose phosphate synthase SPS and sucrose phosphate phosphatase SPP) in Syn7942 wild type caused a 93% improvement of sucrose productivity. The strain FL130 co-overexpressing sps and cscB (encoding a sucrose transporter) exhibited a 74% higher extracellular sucrose production than that overexpressing cscB only. Both results showed the significant improvement of sucrose productivity by the double functional protein SPS-SPP. Afterwards, FL130 was cultivated under a modified condition, and the cell-free culture medium containing 1.5 g L-1 sucrose was pre-treated with an acid hydrolysis technique. Cultivated with the neutralized hydrolysates as the starting media, two widely used microorganisms, Escherichia coli and Saccharomyces cerevisiae, showed a comparable growth with that in the control media supplemented with glucose. These results clearly demonstrated that the cell-free culture of sucrose-secreting cyanobacteria can be applied as starting media in microbial cultivation.

  1. Drug release from hydrazone-containing peptide amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Matson, John B.; Stupp, Samuel I. (NWU)


    Hydrolytically-labile hydrazones in peptide amphiphiles were studied as degradable tethers for release of the drug nabumetone from nanofiber gels. On-resin addition of the novel compound tri-Boc-hydrazido adipic acid to a lysine E-amine allowed for precise placement of a hydrazide in a peptide sequence.

  2. Nucleic acid amphiphiles : synthesis and self-assembled nanostructures

    NARCIS (Netherlands)

    Kwak, Minseok; Herrmann, Andreas; Clever, Guido; Mao, Chengde; Shionoya, Mitsuhiko; Stulz, Eugen


    This review provides an overview of a relatively new class of bio-conjugates, DNA amphiphiles, which consist of oligonucleotides covalently bonded to synthetic hydrophobic units. The reader will find the basic principles for the structural design and preparation methods of the materials. Moreover, t

  3. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles (United States)

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.


    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  4. Reinforcement of latex rubber by the incorporation of amphiphilic nanoparticles (United States)

    Latex rubbers are fabricated from latex suspensions. During the fabrication process, latex particles are bound together while water is removed from the suspension. This report shows the mechanical properties of latex rubbers can be improved by incorporating a small amount of amphiphilic nanoparticle...

  5. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis

    NARCIS (Netherlands)

    Erne, Petra M.; van Bezouwen, Laura S.; Stacko, Peter; van Dtjken, Derk Jan; Chen, Jiawen; Stuart, Marc C. A.; Boekema, Eghert J.; Feringa, Ben L.


    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based fl

  6. Blends of Amphiphilic, Hyperbranched Polyesters and Different Polyolefins

    NARCIS (Netherlands)

    Schmaljohann, D.; Pötschke, P.; Hässler, R.; Voit, B.I.; Froehling, P.E.; Mostert, B.; Loontjens, J.A.


    A hyperbranched polyester based on 3,5-dihydroxybenzoic acid was completely modified with dodecanoyl chloride to result in an amphiphilic, globular polymer, which has a polar core and a nonpolar outer sphere with the ability both to incorporate an organic dye and to interact with a nonpolar matrix.

  7. Peptide amphiphiles and their use in supramolecular chemistry

    NARCIS (Netherlands)

    Versluis, Frank


    In this thesis the behavior and functionality of peptide amphiphiles at the surface of bilayer vesicles is examined. By controlling the behavior of the surface bound peptides, I was able to construct assemblies which could: 1) release their content (triggered by pH), 2) fuse in a targeted and contro

  8. Bio-based amphiphilic materials development and applications (United States)

    Farm-based raw materials are increasingly used in the development of amphiphilic materials that have potential applications in the production of a variety of consumer and industrial products, including lubricants. Raw materials of interest include: starches, proteins, fats, oils, and sugars. These ...

  9. Preparation and self-folding of amphiphilic DNA origami. (United States)

    Zhou, Chao; Wang, Dianming; Dong, Yuanchen; Xin, Ling; Sun, Yawei; Yang, Zhongqiang; Liu, Dongsheng


    Amphiphilic DNA origami is prepared by dressing multiple hydrophobic molecules on a rectangular single layer DNA origami, which is then folded or coupled in sandwich-like structures with two outer DNA origami layer and one inner hydrophobic molecules layer. The preference to form different kinds of structures could be tailored by rational design of DNA origami.

  10. Amphiphiles containing aromatic groups in the hydrophobic part

    NARCIS (Netherlands)

    Visscher, Inge


    Aggregation processes are essential for life on this planet. For example, the membranes of all living cells are bilayered aggregates, consisting of lipid molecules, proteins and steroids. In many biological processes, aggregates play a role. The main driving force for aggregation of amphiphiles is h

  11. Cationic amphiphiles as delivery system for genes into eukaryotic cells

    NARCIS (Netherlands)

    Oberle, Volker; Zuhorn, Inge S.; Audouy, Sandrine; Bakowsky, Udo; Smisterová, Jarmila; Engberts, Jan B.F.N.; Hoekstra, Dick; Gregoriadis, G; McCormack, B


    Cationic liposomes, consisting of synthetic amphiphiles and a so-called helper lipid, rapidly form complexes with DNA, known as lipoplexes. When incubated with cells in culture, the DNA can be delivered into the cell and becomes expressed. Because of these properties, lipoplexes are considered a use

  12. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  13. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). (United States)

    Diab, C; Winnik, F M; Tribet, C


    The interactions in water between short amphiphilic macromomolecules, known as amphipols, and three neutral surfactants (detergents), dodecylmaltoside (DM), n-octylthioglucoside (OTG), and n-octyltetraethyleneoxide (C8E4), have been assessed by static and dynamic light-scattering (SLS and DLS), capillary electrophoresis (CE), and isothermal titration calorimetry (ITC). The amphipols selected are random copolymers of the hydrophobic n-octylacrylamide (25-30 mol %), a charged hydrophilic monomer, either acrylic acid ( approximately 35 mol %) or a phosphorylcholine-modified acrylamide (40-70 mol %), and, optionally, N-isopropylacrylamide (30-40 mol %). In water, the copolymers form micelles of small size (hydrodynamic radius: approximately 5 nm). Neutral surfactants, below their critical micellar concentration (cmc), form mixed micelles with the amphipols irrespective of the chemical structure of the detergent or the polymer. The fraction of detergent in the surfactant/polymer complexes increases significantly (cooperatively) as the surfactant concentration nears the cmc. The ITC data, together with data gathered by CE, were fitted via a regular mixing model, which allowed us to predict the detergent concentration in equilibrium with complexes and the heat evolved upon transfer of detergent from water into a mixed surfactant/polymer complex. The enthalpy of transfer was found to be almost equal to the enthalpy of micellization, and the regular mixing model points to a near-ideal mixing behavior for all systems. Amphipols are promising tools in biochemistry where they are used, together with neutral surfactants, for the stabilization and handling of proteins. This study provides guidelines for the optimization of current protein purification protocols and for the formulations of surfactant/polymer systems used in pharmaceutics, cosmetics, and foodstuffs.

  14. Preparation of amphiphilic block copolymer containing triazene moieties and fluorescence study

    Indian Academy of Sciences (India)

    Emil C Buruiana; Andreea L Chibac; Violeta Melinte; Tinca Buruiana


    The present study describes the synthesis via microwave accelerated reversible additionfragmentation chain transfer (RAFT) polymerization of an amphiphilic block copolymer poly(acrylic acid)-b-poly(dodecylacrylamide-co-1-(phenyl)-3-(2-methacryloyloxyethyl carbamoyloxyethyl)-3-methyltriazene-1) [PAA-b-(PDA-co-PUMA-T)]. The structure and the chemical composition of the block copolymer were confirmed by spectral/thermal analysis. The photoreactivity of the triazene sequences from PAA-b-(PDA-co-PUMA-T) was quantified by UV/vis irradiation in chloroform/dimethylformamide solutions and in thin film, indicating that the solvent polarity modifies with an order of magnitude the rate constant values. The lower rate constant in film state (film = 1.3 × 10−3 s-1), shows that the higher mobility of polymeric chains in solution allow a more rapid orientation, favourable to the triazene bond cleavage. The capability of block copolymer to form micelles in aqueous environment and implicitly, its critical micelle concentration (CMC) was evidenced through fluorescence measurements using pyrene probe (10-6 M), the CMC value being of 4.64 × 10−3 g L-1 PAA--(PDA--PUMA-T) (3.27 × 10−7 M). Experiments of fluorescence quenching with various metal cations (UO$^{2+}_{2}$, Fe2+, Fe3+, Ni2+, Cu2+, Co2+, Pb2+ and Hg2+) suggested that such a block copolymer could find applications as fluorescence-based chemosensor for the detection of iron cations in homogeneous organic solutions or aqueous environments by thin films.

  15. Amphiphilic star block copolymers as gene carrier Part I: Synthesis via ATRP using calix[4]resorcinarene-based initiators and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Anna; Xue, Yan; Wei, Dafu [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Guan, Yong, E-mail: [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xiao, Huining [Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3 (Canada)


    In this work, a cationic star polymer [poly(2-dimethylamino)ethyl methacrylate (PDMAEMA)] was prepared via atom transfer radical polymerization (ATRP), using brominated calix[4]resorcinarene as an initiator. Hydrophobic moieties, methyl methacrylate (MMA) and butyl acrylate (BA), were further incorporated via 'one-pot' method. Well-defined eight-armed star block copolymers bearing hydrophilic blocks inside and hydrophobic blocks outside were synthesized. The molecular weight, particle size, electrophoretic mobility and apparent charge density were determined by gel permeation chromatography (GPC), dynamic light scattering (DLS), phase analysis light scattering (PALS) and colloidal titration, respectively. The zeta potentials and apparent charge densities of the products exhibited the characteristics of polyelectrolyte. The incorporation of hydrophobic moieties generated electrostatic screening effect. The as-synthesized amphiphilic star copolymer is promising as a thermo-sensitive gene carrier for gene therapy. Highlights: Black-Right-Pointing-Pointer Amphiphilic cationic star block copolymers with well-controlled structures were prepared via ATRP. Black-Right-Pointing-Pointer The molecular structures and properties of the initiator and copolymers were systematically characterized. Black-Right-Pointing-Pointer The products exhibited the positive charged character, and hydrophobic moieties generated electrostatic screening effect.

  16. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye. (United States)

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar


    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  17. Pulse radiolysis of aqueous solutions of ethyl acrylate and hydroxy ethyl acrylate (United States)

    Safrany, A.; Biro, A.; Wojnarovits, L.


    Ethyl- and hydroxy ethyl acrylate show high reactivities with hydrated electron and hydroxyl radical intermediates of water radiolysis. The electron adduct reversibly protonate with pK values of 5.7 and 7.3. The adducts may take part in irreversible protonation at the β carbon atom forming α-carboxyl alkyl radicals. Same type of radical forms in reaction of acrylates with OH: at low concentration the adduct mainly disappear in self termination reactions. Above 5 mmol dm -1 the signals showed the startup of oligomerization.

  18. Analysis and protease-catalysed synthesis of sucrose alkanoate regioisomers

    DEFF Research Database (Denmark)

    Lie, Aleksander


    The aims of the presented research were to develop quantifiable methods for reversed-phase high-performance liquid chromatography analysis of sucrose alkanoate regioisomers and to investigate the activity and regioisomeric distribution in the biocatalytic esterification of sucrose with vinyl...... formulations. Differences in regioisomeric distribution after 48 hours appeared partly to stem from differences in overall reaction rates, as the different reaction conditions resulted in similar distributions after different reaction times. The esterification of sucrose with vinyl laurate with no protein...

  19. Effect of salt on the response of birds to sucrose (United States)

    Rogers, J.G.; Maller, O.


    The preference of male red-winged blackbirds for solutions of sucrose and sucrose with 0.03 M sodium chloride was tested, using a two-bottle choice test. Preliminary experiments demonstrated that the birds were indifferent to 0.03 M NaCl in water. Both control and experimental animals exhibited indifference to the solutions at the lowest concentration and aversion at the highest. The data suggest that the added sodium chloride makes the sucrose stimulus more discriminable.

  20. Enhancing fermentative hydrogen production from sucrose. (United States)

    Perera, Karnayakage Rasika J; Nirmalakhandan, Nagamany


    This study evaluated the hypothesis that fermentative hydrogen production from organic-rich feedstock could be enhanced by supplementing with waste materials such as cattle manure that could provide nutritional needs, buffering capacity, and native hydrogen-producing organisms. This hypothesis was tested in batch reactors fed with sucrose blended with cattle manure run at 25 degrees C without any nutrient supplements, pH adjustments, buffering, or gas-sparging. Hydrogen production rates in these reactors ranged 16-30 mL H(2)/g DeltaCOD-day, while hydrogen content in the biogases ranged 50-59%. Compared to literature studies conducted at higher temperatures, hydrogen yields found in this study at 25 degrees C were higher in the range of 3.8-4.7 mol H(2)/mol sucrose added, with higher positive net energy yields (>14 kJ/L). This study demonstrated that cattle manure as a supplement could not only provide hydrogen-producing seed, nutritional needs, and buffering capacity, but also increase hydrogen yield by approximately 10%, improving the economic viability of fermentative biohydrogen production from sugary wastes.

  1. Linear sucrose transport in protoplasts from developing soybean cotyledons. (United States)

    Lin, W


    Previous studies with isolated soybean cotyledon protoplasts revealed the presence of a saturable, simple diffusion, and nonsaturating carrier-mediated uptake of sucrose into soybean cotyledon cells. A proton/sucrose cotransport may be involved in the saturable sucrose uptake (Lin et al. 1984 Plant Physiol 75: 936-940 and Schmitt et al. 1984 Plant Physiol 75: 941-946). In this study, we investigated the linear sucrose uptake mechanism by treating isolated protoplasts with 15 micromolar p-trifluoromethoxy-carbonylcyanide phenylhydrazone (FCCP) or 100 micromolar p-chloromecuribenzenesulfonic acid to eliminate the saturable uptake. We found: (a) increasing external pH decreases the linear sucrose uptake; (b) fusicoccin at 20 micromolar stimulates and FCCP at 15 micromolar inhibits this linear sucrose uptake; and (c) the ratio of the initial influx of proton to sucrose is close to one in both saturable and nondiffusive linear (difference between the total linear and diffusive components) uptakes. The results suggest that a proton/sucrose cotransport is also involved in the nondiffusive linear sucrose uptake into soybean cotyledon cells.

  2. Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. (United States)

    But, Sergey Y; Khmelenina, Valentina N; Reshetnikov, Alexander S; Mustakhimov, Ildar I; Kalyuzhnaya, Marina G; Trotsenko, Yuri A


    Sucrose accumulation has been observed in some methylotrophic bacteria utilizing methane, methanol, or methylated amines as a carbon and energy source. In this work, we have investigated the biochemical pathways for sucrose metabolism in the model halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. The genes encoding sucrose-phosphate synthase (Sps), sucrose-phosphate phosphatase (Spp), fructokinase (FruK), and amylosucrase (Ams) were co-transcribed and displayed similar expression levels. Functional Spp and Ams were purified after heterologous expression in Escherichia coli. Recombinant Spp exhibited high affinity for sucrose-6-phosphate and stayed active at very high levels of sucrose (K i  = 1.0 ± 0.6 M). The recombinant amylosucrase obeyed the classical Michaelis-Menten kinetics in the reactions of sucrose hydrolysis and transglycosylation. As a result, the complete metabolic network for sucrose biosynthesis and re-utilization in the non-phototrophic organism was reconstructed for the first time. Comparative genomic studies revealed analogous gene clusters in various Proteobacteria, thus indicating that the ability to produce and metabolize sucrose is widespread among prokaryotes.

  3. Sucrose-mediated giant cell formation in the genus Neisseria. (United States)

    Johnson, K G; McDonald, I J


    Growth of Neisseria perflava, Neisseria cinerea, and Neisseria sicca strain Kirkland in media supplemented with sucrose (0.5 to 5.0% w/v) resulted in the formation of giant cells. Response to sucrose was specific in that a variety of other carbohydrates did not mediate giant cell formation. Giant cells appeared only under growth conditions and did not lyse upon transfer to medium lacking sucrose or upon resuspension in hypotonic media. Reversion of giant to normal cells occurred when giant cells were used as inocula and allowed to multiply in media lacking sucrose.

  4. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin


    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  5. Periodically Grafted Amphiphilic Copolymers: Effects of Steric Crowding and Reversal of Amphiphilicity. (United States)

    Mandal, Joydeb; Ramakrishnan, S


    Two series of periodically clickable polyesters were prepared; one of them carries alkylene segments along its backbone, whereas the other carries poly(ethylene glycol) (PEG) segments. These polyesters were clicked with either MPEG-350 azide or docosyl (C22) azide to yield periodically grafted amphiphilic copolymers (PGACs) carrying either flexible hydrophilic or crystallizable hydrophobic backbone segments. The immiscibility between hydrocarbon and PEG segments causes both of these systems to fold in either a zigzag or hairpin-like conformation; the hairpin-like conformation appears to be preferred when flexible PEG segments are present in the backbone. The folded chains further reorganize in the solid state to develop a lamellar morphology that permits the collocation of the PEG and hydrocarbon (HC) segments within alternate domains; evidence for the self-segregation was gained from DSC, SAXS, and AFM studies. SAXS studies revealed the formation of an extended lamellar structure, whereas AFM images showed uniform layered morphology with layer heights that matched reasonably well with the interlamellar spacing obtained from the SAXS study. Labeling one representative PGAC, carrying crystallizable long alkylene segments in the backbone and pendant PEG-350 side chains, with a small mole fraction of pyrene fluorophore permitted the examination of the conformational transition that occurs upon going from a good to a poor solvent; this single-chain folded conformation, we postulate, is the intermediate that organizes into the lamellar morphology.

  6. Compartmentation of sucrose during radial transfer in mature sorghum culm

    Directory of Open Access Journals (Sweden)

    Vietor Donald M


    Full Text Available Abstract Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L. Moench and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening culm tissue was probably less (about 3/4's than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81% recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis and primarily through a path that includes an

  7. 78 FR 66743 - Draft Guidance for Industry on Bioequivalence Recommendations for Iron Sucrose; Availability (United States)


    ... iron sucrose injection. The draft guidance is a revised version of a previously issued draft guidance... sucrose injection (Draft Iron Sucrose Injection BE Recommendations of 2013). Venofer (iron sucrose... the Agency's recommendations for BE studies to support ANDAs for iron sucrose injection (Draft......

  8. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials

    Directory of Open Access Journals (Sweden)

    Masoomeh Aslanimehr


    Full Text Available Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103 comparing to injection molding acrylic resins (6×103 were statistically significant (p<0.001. Conclusion: Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis.

  9. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials (United States)

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh


    Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103) comparing to injection molding acrylic resins (6×103) were statistically significant (pcandida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis. PMID:28280761

  10. The synthesis of spherical calcium carbonate composite in amphiphilic PS-b-PAA solution and its thermal dynamic characteristic

    Institute of Scientific and Technical Information of China (English)

    YUE Linhai; JIN Dalai


    Spherical calcium carbonate composite is synthesized in the solution of amphiphilic block copolymer of polystyrene(PS) and poly(acrylic acid)(PAA). SEM and XRD measurements show that the diameter of the particulates decreases with the augment of the PS-b-PAA concentration, crystalline in the composite is calcite and its morphology as well as the structure is changed too. TG-DTA together with IR analysis is applied to investigating the thermal dynamic behavior of the composite. The results show that the composite is mainly composed of two phases, that is, the nano- crystalline calcium carbonate and the PS-b-PA-Ca composites. PS phase decomposes first with a large heat release at about 330℃. However, the PAA chains have relatively high thermal stability, probably due to the structural Ca-O bond, and decomposes at above 400℃. Matching opinions are used to explain the possible reasons for the regular as well as the particular characteristics of the composite corresponding to a certain copolymer concentration.

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers. (United States)


    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310...

  12. Artificial saliva effect on toxic substances release from acrylic resins

    Directory of Open Access Journals (Sweden)

    Kostić Milena


    Full Text Available Background/Aim. Acrylic-based resins are intensively used in dentistry practice as restorative or denture-base materials. The purpose of this study was to analyze the surface structure of denture base resins and the amount of released potentially toxic substances (PTS immediately upon polymerization and incubation in different types of artificial saliva. Methods. Storage of acrylic samples in two models of artificial saliva were performed in a water bath at the temperature of 37 ± 1°C. Analysis of the surface structure of samples was carried out using scanning electronic microscopy analysis immediately after polymerization and after the 30-day incubation. The amounts of PTS per day, week and month extracts were measured using high-pressure liquid chromatography. Results. Surface design and amount of PTS in acrylic materials were different and depended on the types and duration of polymerization. The surfaces of tested acrylates became flatter after immersing in solutions of artificial saliva. The degree of acrylic materials release was not dependent on the applied model of artificial saliva. Conclusion. In order to improve biological features of acrylic resin materials, it was recommended that dentures lined with soft or hard coldpolymerized acrylates should be kept at least 1 to 7 days in water before being given to a patient. So, as to reach high degree of biocompatibility preparation of prosthetic restorations from heat-polymerized acrylate was unnecessary. [Projekat Ministarstva nauke Republike Srbije, br. 41017

  13. 40 CFR 721.8082 - Polyester polyurethane acrylate. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  14. Solid-supported biomimetic membranes based on amphiphilic block copolymers


    Kowal, Justyna


    Planar artificial membranes based on amphiphilic block copolymers are of high interest due to their potential applications in catalysis, drug screening, sensing, etc. Such polymeric membranes can successfully mimic biological membranes, providing high robustness and stability, which makes them good candidates to be developed in direction of applications. Even though solid-supported polymer membranes have been already investigated to a certain extent, it is still an emerging area. This thesis ...

  15. A defect mediated lamellar to isotropic transition of amphiphile bilayers


    Pal, Antara; Pabst, Georg; Raghunathan, V. A.


    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  16. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion


    Zhen Wang; Yapei Wang


    Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attent...

  17. Functionality of Inulin as a Sucrose Replacer in Cookie Baking (United States)

    Inulin was evaluated as a sucrose replacer for healthy cookie production with benefits of low glycemic impact and prebiotic soluble fiber. Sucrose (as a reference) and three inulin products of different concentrations (as soluble fibers) were used to explore the effects of sugar-replacer type on so...

  18. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.


    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the well-s

  19. Sucrose and Saccharomyces cerevisiae: a relationship most sweet. (United States)

    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk, Boris Ugarte; Gombert, Andreas Karoly


    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering.

  20. Comparative sucrose responsiveness in Apis mellifera and A. cerana foragers. (United States)

    Yang, Wenchao; Kuang, Haiou; Wang, Shanshan; Wang, Jie; Liu, Wei; Wu, Zhenhong; Tian, Yuanyuan; Huang, Zachary Y; Miao, Xiaoqing


    In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.

  1. Interaction of multidrug-resistant Chinese hamster ovary cells with amphiphiles.


    Loe, D. W.; Sharom, F J


    The interaction of membrane-active amphiphiles with a series of MDR Chinese hamster ovary (CHO) cell lines was investigated. Cross-resistance to cationic amphiphiles was observed, which was effectively sensitised by verapamil. MDR cells showed collateral sensitivity to polyoxyethylene amphiphiles (Triton X-100/Nonidet P-40), which reached a maximum at 9-10 ethylene oxide units. Resistant lines were also highly collaterally sensitive (17-fold) to dibutylphthalate. mdrl transfectants showed cro...

  2. Dendronized multifunctional amphiphilic polymers as efficient nanocarriers for biomedical applications. (United States)

    Kumari, Meena; Gupta, Shilpi; Achazi, Katharina; Böttcher, Christoph; Khandare, Jayant; Sharma, Sunil K; Haag, Rainer


    To gain insight into the factors that affect stability and transport efficiency under dilution conditions, dendronized and hyperbranched multifunctional amphiphilic polymers are synthesized by following the "grafting to" approach using varied amounts of propargylated alkyl chain with perfect and hyperbranched polyglycerol dendrons on the base copolymer of PEG (Mn: 1000 g mol(-1)) diethylester and 2-azidopropane-1,3-diol following the "bio-catalytic method" and "click approach". The dendronized and hyperbranched polymeric systems form supramolecular aggregates and exhibit an efficient transport potential for the model dye "Nile red" in the low μm range in the core-shell-type architecture provided with distinct amphiphilicity as required for encapsulation. Cytotoxicity studies show the polymeric systems to be non-toxic over a wide concentration range. The cellular internalization of Nile-red-encapsulated supramolecular micellar structures is also studied using cellular fluorescence micro-scopy and fluorescence-activated cell sorting (FACS) measurements. A comparison of the data for the dendronized polymers (PEG Mn: 600/1000 g mol(-1)) with the respective low-molecular-weight amphiphile reveal that these polymeric systems are excellent nanotransporters.

  3. Incorporation of amphiphilic cyclodextrins into liposomes as artificial receptor units. (United States)

    Kauscher, Ulrike; Stuart, Marc C A; Drücker, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan


    In this article, we describe the introduction of amphiphilic β-cyclodextrins into liposomes to act as artificial receptor units. Using dynamic light scattering, dye encapsulation, and cryogenic transmission electron microscopy, we show that amphiphilic β-cyclodextrins can be mixed in any proportion with a typical mixture of phospholipids and cholesterol to provide stable, spherical, and unilamellar mixed vesicles. It is also possible to form giant unilamellar vesicles with mixtures of lipids and cyclodextrin. The permeability of the mixed vesicles increases with the percentage of cyclodextrin. The cyclodextrins can act as host molecules for hydrophobic guest molecules, even when they are dispersed at a low percentage in the vesicle membrane. It is shown that mixed vesicles can be decorated with carbohydrate-functionalized guest molecules, with photoresponsive guest molecules, and with dye-functionalized guest molecules. Taken together, it is demonstrated that the host-guest chemistry of amphiphilic cyclodextrins is fully compatible with a liposomal bilayer membrane and the advantages of each can be combined to give superior nanocontainers.

  4. Switching the mode of sucrose utilization by Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Miletti Luiz C


    Full Text Available Abstract Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by

  5. Occupational fingertip eczema from acrylates in a manicurist

    Directory of Open Access Journals (Sweden)

    Denitza Zheleva


    Full Text Available Occupational hand eczema due to acrylates present in the workplace is a disease frequently reported among dentists, printers, and fiberglass workers. Acrylate monomers are used in the production of a great variety of polymers, including nail cosmetics. Our case report demonstrates a rare clinical presentations of allergic contact dermatitis from acrylic nails. Our patient was working as a manicurist and the diagnostic analyses revealed sensitation to some of the (meth acrylate compounds of her new nail cosmetics. Sculptured artificial acrylic and UV-hardened nails s are widely used in developed countries and they are gaining more and more popularity. We expect an increase in the number of cases of contact allergic dermatitis among manicurists and customers.

  6. Sucrose behenate as a crystallization enhancer for soft fats. (United States)

    Domingues, Maria Aliciane Fontenele; da Silva, Thaís Lomonaco Teodoro; Ribeiro, Ana Paula Badan; Chiu, Ming Chih; Gonçalves, Lireny Aparecida Guaraldo


    The addition of sucrose behenate for the modification of the physical properties of soft fats, such as soybean oil-based interesterified fat, refined palm oil, and palm mid fraction was studied. The addition of sucrose behenate was verified to affect the crystalline network of fats, changing the hardness and solids profile. The isothermal crystallization behaviors of the fat blends with 1% sucrose behenate were analyzed at 20 and 25 °C. Temperature had a greater effect on the speed of crystallization (k) than the presence of the emulsifier. Sucrose behenate did, however, influence the crystallization mechanism, with changes observed in the Avrami exponent (n). These changes were also observed in the microstructure of the fats. Changes in the polymorphic behavior were observed with the addition of sucrose behenate, such as a possible delay in the α → β transition for interesterified fat, and the initial formation of the β polymorph in palm oil.

  7. Antibiotic-loaded acrylic cement: current concepts. (United States)

    Buchholz, H W; Elson, R A; Heinert, K


    Antibiotic-loaded acrylic cement has been used routinely since 1972 at the authors' hospitals, where a series of some 22,000 joint arthroplasty operations was performed from 1964-1983. The current status of the material is presented with up-to-date follow-up statistics on prophylactic therapy and on established deep infections. The results of 869 exchange arthroplasties are compared with results published in 1981. In the future, results will be presented in the form of survival curves. The method by which survival tables and curves are constructed is critical. Investigators should use survival curves for ease of comparison and because of the wide range of possibilities in an analysis of covariable factors. A retrospective actuarial analysis was made of 825 one-stage reimplantations in which antibiotic-loaded acrylic cement was used for infected total hip arthroplasties. Staphylococcus aureus was the most commonly encountered organism. Failure rates of prostheses infected by S. aureus, S. species, and anaerobic corynebacteria did not differ statistically. A factor that significantly contributed to failure of this method of treatment was Pseudomonas infection. By actuarial analysis five years after operation, a success (survival) rate of 77% was calculated.

  8. Amphiphilic dendritic peptides: Synthesis and behavior as an organogelator and liquid crystal

    Directory of Open Access Journals (Sweden)

    Xinwu Ba


    Full Text Available New amphiphilic dendritic peptides on dendritic polyaspartic acid were designed and synthesized. The organogel and liquid crystal properties of these amphiphilic dendritic peptides were fully studied by field-emission SEM, temperature dependent FT-IR, differential scanning calorimetry, polarization optical microscopy and X-ray diffraction experiments. Amphiphilic dendritic peptides G3 show good organogel properties with a minimum gelation concentration as low as 1 wt %. Furthermore, amphiphilic dendritic peptides G3 can form a hexagonal columnar liquid crystal assembly over a wide temperature range.

  9. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo


    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  10. Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions. (United States)

    Yang, Ying; Liu, Zhi; Wu, Dayong; Wu, Man; Tian, Ye; Niu, Zhongwei; Huang, Yong


    We investigated the effect of amphiphilic Laponite nano-discs, which were edge-modified by hydrophobic chains, on the properties of Pickering emulsions and Pickering emulsions polymerization. Comparing to unmodified Laponites, these amphiphilic nano-discs can greatly reduce the surface tension, resulting in very stable Pickering emulsions. These particles uniquely combine the Pickering effect with amphiphilic properties similar to the surfactant. Taking advantage of these amphiphilic Pickering emulsifiers, miniemulsion polymerization of styrene was performed. Homogeneous polystyrene nanoparticles with size around 150 nm could thus be prepared.

  11. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties


    Aymonier, Cyril; Schlotterbeck, Ulf; Antonietti, Lydie; Zacharias, Philipp; Thomann, Ralf; Till, Joerg C.; Mecking, Stefan


    Hybrids of silver particles of 1 to 2 nm in size with highly branched amphiphilically modified polyethyleneimines adhere effectively to polar substrates providing environmentally friendly antimicrobial coatings.

  12. Cationic amphiphiles with fatty acyl chain asymmetry of coconut oil deliver genes selectively to mouse lung. (United States)

    Chandrashekhar, Voshavar; Srujan, Marepally; Prabhakar, Rairala; Reddy, Rakesh C; Sreedhar, Bojja; Rentam, Kiran K R; Kanjilal, Sanjit; Chaudhuri, Arabinda


    Recent structure-activity studies have revealed a dramatic influence of hydrophobic chain asymmetry in enhancing gene delivery efficacies of synthetic cationic amphiphiles (Nantz, M. H. et al. Mol. Pharmaceutics2010, 7, 786-794; Koynova, R. et al. Mol. Pharmaceutics2009, 6, 951-958). The present findings demonstrate for the first time that such a transfection enhancing influence of asymmetric hydrocarbon chains observed in pure synthetic cationic amphiphiles also works for cationic amphiphiles designed with natural, asymmetric fatty acyl chains of a food-grade oil. Herein, we demonstrate that cationic amphiphiles designed with the natural fatty acyl chain asymmetry of food-grade coconut oil are less cytotoxic and deliver genes selectively to mouse lung. Despite lauroyl chains being the major fatty acyl chains of coconut oil, both the in vitro and In vivo gene transfer efficiencies of such cationic amphiphiles were found to be remarkably superior (>4-fold) to those of their pure dilauroyl analogue. Mechanistic studies involving the technique of fluorescence resonance energy transfer (FRET) revealed higher biomembrane fusibility of the cationic liposomes of the coconut amphiphiles than that of the symmetric dilauroyl analogue. AFM study revealed pronounced fusogenic nonlamellar structures of the liposomes of coconut amphiphiles. Findings in the FRET and cellular uptake study, taken together, support the notion that the higher cellular uptake resulting from the more fusogenic nature of the liposomes of coconut amphiphiles 1 are likely to play a dominant role in making the coconut amphiphiles transfection competent.

  13. Biocompatibility of acrylic resin after being soaked in sodium hypochlorite

    Directory of Open Access Journals (Sweden)

    Nike Hendrijatini


    Full Text Available Background: Acrylic resin as basic material for denture will stay on oral mucosa for a very long time. The polymerization of acrylic resin can be performed by conventional method and microwave, both produce different residual monomer at different toxicity. Acrylic resin can absorb solution, porous and possibly absorb disinfectantt as well, that may have toxic reaction with the tissue. Sodium Hypochlorite as removable denture disinfectant can be expected to be biocompatible to human body. The problem is how biocompatible acrylic resin which has been processed by conventional method and microwave method after being soaked in sodium hypochlorite solution. Purpose: The aim of this study was to understand in vitro biocompatibility of acrylic resin which has polimerated by conventional method and microwave after being soaked in sodium hypochlorite using tissue culture. Methods: Four groups of acrylic resin plate were produced, the first group was acrylic resin plate with microwave polymeration and soaked in sodium hypochlorite, the second group was acrylic resin plate with microwave polymeration but not soaked, the thirdwas one with conventional method and soaked and the last group was one with conventional method but not soaked, and in 1 control group. Each group consists of 7 plates. Biocompatibility test was performed in-vitro on each material using fibroblast tissue culture (BHK-21 cell-line. Result: The percentage between living cells and dead cells from materials which was given acrylic plate was wounted. The data was analyzed statistically with T test. Conclusion: The average value of living cells is higher in acrylic resin poimerization using microwave method compared to conventional method, in both soaked and non soaked (by sodium hypochlorite group. This means that sodium hypochlorite 0.5% was biocompatible to the mouth mucosa as removable denture disinfectant for 10 minutes soaking and washing afterwards.

  14. Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1.

    Directory of Open Access Journals (Sweden)

    Armando Carpaneto

    Full Text Available BACKGROUND: In contrast to man the majority of higher plants use sucrose as mobile carbohydrate. Accordingly proton-driven sucrose transporters are crucial for cell-to-cell and long-distance distribution within the plant body. Generally very negative plant membrane potentials and the ability to accumulate sucrose quantities of more than 1 M document that plants must have evolved transporters with unique structural and functional features. METHODOLOGY/PRINCIPAL FINDINGS: To unravel the functional properties of one specific high capacity plasma membrane sucrose transporter in detail, we expressed the sucrose/H(+ co-transporter from maize ZmSUT1 in Xenopus oocytes. Application of sucrose in an acidic pH environment elicited inward proton currents. Interestingly the sucrose-dependent H(+ transport was associated with a decrease in membrane capacitance (C(m. In addition to sucrose C(m was modulated by the membrane potential and external protons. In order to explore the molecular mechanism underlying these C(m changes, presteady-state currents (I(pre of ZmSUT1 transport were analyzed. Decay of I(pre could be best fitted by double exponentials. When plotted against the voltage the charge Q, associated to I(pre, was dependent on sucrose and protons. The mathematical derivative of the charge Q versus voltage was well in line with the observed C(m changes. Based on these parameters a turnover rate of 500 molecules sucrose/s was calculated. In contrast to gating currents of voltage dependent-potassium channels the analysis of ZmSUT1-derived presteady-state currents in the absence of sucrose (I =  Q/τ was sufficient to predict ZmSUT1 transport-associated currents. CONCLUSIONS: Taken together our results indicate that in the absence of sucrose, 'trapped' protons move back and forth between an outer and an inner site within the transmembrane domains of ZmSUT1. This movement of protons in the electric field of the membrane gives rise to the presteady

  15. Comparison of the Retinal Straylight in Pseudophakic Eyes with PMMA, Hydrophobic Acrylic, and Hydrophilic Acrylic Spherical Intraocular Lens

    Directory of Open Access Journals (Sweden)

    Ya-wen Guo


    Full Text Available Purpose. To investigate the intraocular straylight value after cataract surgery. Methods. In this study, 76 eyes from 62 patients were subdivided into three groups. A hydrophobic acrylic, a hydrophilic acrylic, and a PMMA IOL were respectively, implanted in 24 eyes, 28 eyes, and 24 eyes. Straylight was measured using C-Quant at 1 week and 1 month postoperatively in natural and dilated pupils. Results. The hydrophilic acrylic IOLs showed significantly lower straylight values than those of the hydrophobic acrylic IOLs in dilated pupils at 1 week and 1 month after surgery (P0.05. Moreover, no significant difference was found in straylight between natural and dilated pupils in each group at 1 week and 1 month postoperatively (P>0.05. Conclusions. Although the hydrophobic acrylic IOL induced more intraocular straylight, straylight differences among the 3 IOLs were minimal. Pupil size showed no effect on intraocular straylight; the intraocular straylight was stable 1 week after surgery.

  16. Self-assembling linear and star shaped poly(ϵ-caprolactone)/poly[(meth)acrylic acid] block copolymers as carriers of indomethacin and quercetin. (United States)

    Bury, Katarzyna; Du Prez, Filip; Neugebauer, Dorota


    A amphiphilic linear AB, BAB, and star shaped (AB)3 block copolymers of poly(ϵ-caprolactone) (PCL)/poly(meth)acrylic acid (P(M)AA) are used for the preparation of nanoparticles and drug entrapment, where indomethacin and quercetin are employed as model drugs. Drug loading experiments with the nanoparticles based on PAA block copolymers demonstrate a higher efficiency for the star structure, whereas the PMAA star copolymer presents the lowest entrapment ability. The release properties are studied at room temperature and 37 °C in phosphate buffer solutions with pH equal to 5 and 7.4. The kinetic profiles show a strong relation to the copolymer's topology, indicating the lowest release rates from the star based superstructures, while the PMAA particles are less stable than those containing PAA segment(s).

  17. Hyperbranched Acrylated Aromatic Polyester Used as a Modifier in UV-Curable Epoxy Acrylate Resins

    Institute of Scientific and Technical Information of China (English)

    KOU,Hui-Guang; ASIF,Anila; SHI,Wen-Fang


    The viscosity, the shrinkage degree and the photoplymerization rate of the epoxy acrylate (EB600 ) blended with hyperbranched acrylated aromatic polyester ( HAAPE ) were investigated. The addition of HAAPE into EB600 largely reduces the viscosity of the blend formulation and the shrinkage degree. For example, EB600resin with 50% weight fraction of HAAPE has the 1250 cps of the viscosity and 2.0% of shrinkage degree, while the pure EB600 resin has 3000 cps of the viscosity and 10.5% of shrinkage degree. The photopolymerization rate of the rein is also promoted by HAAPE addition. The good miscibility between HAAPE and EB600 was also observed from the dynamic mechanical analysis. The tensile, flexural and compressive strength, and the thermal properties of the UVcured films are greatly improved.

  18. Viscous properties of microparticulated dairy proteins and sucrose. (United States)

    Onwulata, C I; Konstance, R P; Tomasula, P M


    Slurries of whey protein concentrate (WPC) or sodium caseinate (Na-CN) mixed with sucrose (36% T.S.) were subjected to microparticulation by a high shear homogenizer operated at 27,000 rpm for 2, 4, and 6 min to facilitate gel formation. After microparticulation treatment, the milk protein and sucrose slurries were evaporated at 85 degrees C for 60 min under a partial vacuum (20 to 45 mm of Hg) to form composite gels. Particle sizes and viscoelastic properties were determined before microparticulation treatment. Microparticulation reduced the particle size of WPC-sucrose slurries from an average size of 330 to 188 nm after 4 min and NaCN-sucrose slurries from 270 to 35 nm after 2 min. The WPC-sucrose composites were gel-like, but NaCN-sucrose composites did not gel. Viscoelastic properties of heated WPC-sucrose composites were liquid-like, exhibiting significant reduction in storage modulus and complex viscosity. Microparticulation reduced particle sizes, which resulted in softer gels as time of shearing increased.

  19. Cariogenic Potential of Sucrose Associated with Maltodextrin on Dental Enamel. (United States)

    Rezende, Gabriela; Arthur, Rodrigo A; Grando, Debora; Hashizume, Lina N


    Maltodextrin is a hydrolysate of cornstarch and has been widely used in the food industry associated with sucrose. The addition of starch can increase the cariogenic potential of sucrose; however, there are sparse data regarding the cariogenicity of sucrose associated with maltodextrin. Therefore, the aim of this study was to test in situ if maltodextrin could increase the cariogenic potential of sucrose. This was an in situ, randomized, crossover, split-mouth, and double-blind study. Volunteers wore palatal appliances containing bovine enamel blocks for 2 periods of 14 days. They dripped the following solutions on the enamel blocks 8 times per day: deionized distilled water (DDW), maltodextrin (M), sucrose + maltodextrin (S+M), or sucrose (S). At the end of each experimental period, biofilms were collected and analyzed for microbiological (mutans streptococci, lactobacilli, and total microorganisms counts) and biochemical (calcium, inorganic phosphate, fluoride, and insoluble extracellular polysaccharides concentrations) compositions. The enamel demineralization was assessed by microhardness. Treatments S and S+M resulted in a lower inorganic composition and higher concentration of insoluble extracellular polysaccharides in the biofilms, and higher enamel mineral loss compared to DDW and M. It can be concluded that the cariogenic potential of sucrose is not changed when this carbohydrate is associated with maltodextrin (dextrose equivalent 13-17).

  20. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru


    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  1. Sucrose and IQ induced mutations in rat colon by independent

    DEFF Research Database (Denmark)

    Hansen, Max; Hald, M. T.; Autrup, H.


    Sucrose-rich diets have repeatedly been observed to have co-carcinogenic actions in colon and liver of rats and to increase the number of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) induced aberrant crypt foci in rat colon. To investigate a possible interaction between sucrose and IQ...... on the genotoxicity in rat liver and colon, we gave Big Blue rats(TM) a diet containing sucrose (0%, 3.45% or 13.4% w/w) and/or IQ (70 ppm) for a period of 3 weeks. Sucrose and IQ increased the mutation frequency in the colon. The effect of combined treatments with IQ and sucrose on the mutation frequencies...... was additive indicating that sucrose and IQ act independently. This was supported by the mutation spectra where sucrose expands the background mutations in the colon, whereas IQ, in other studies, more specifically has induced G:C --> T:A transversions. In the liver IQ increased the mutation frequency, whereas...

  2. Use of Acrylic Acid Sodium Acrylate Polymer to Maintain Cocoa Seed Viability

    Directory of Open Access Journals (Sweden)

    Pudji Rahardjo


    Full Text Available The main problem of cocoa seed storage is moisture content of the seeds because cocoa seeds will germinate if cocoa seeds moisture content is high. The objective of this research is to maintain the cocoa seeds viability in storage using acrylic acid sodium acrylate polymer (AASAP. The function of AASAP is to absorb humidity in storage due to their ability to retain water and to prevent water loss. The experiment was conducted in a laboratory of Indonesian Coffee and Cocoa Research Institute and in Kaliwining Experimental Garden. This experiment was arranged by factorial randomized complete design, in wich AASAP dosages 0%; 0.1% (0.1 g/100 seeds; 0.2% (0.2 g/100 seeds, 0.3% (0.3 g/100 seeds, 0,4% (0,4g/100 seeds, combined with seeds storage period 1, 2, 3 and 4 weeks. The experiment used 3 replications and each repli cation used 100 seeds. Parameter of observation consisted of percentage of seeds germinated in storage, percentage of seeds infected by fungi in storage, seeds moisture content, percentage of seeds germination after storage, and early growth of cocoa seedlings. The results of the experiment showed that AASAP application with some dosages cocoa seeds storage cause to germinate in storage during 2 weeks. AASAP application with some dosages in cocoa seeds storage for 2 weeks would not result in infection by fungi and did not significantly affect seed germination after storage for 1, 2 and 4 weeks, and percentage of germination of cocoa seed after storage for 3 weeks decreased with increase dosage of AASAP. Higher dosage of AASAP would reduce early growth of cocoa seedling. Key words : Theobroma cacao, seed, acrylic acid sodium acrylate, seed storage, viabilty.

  3. Poly(lauryl acrylate) and poly(stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Hvilsted, Søren


    in loading after 12 h of polymerization. The modified nanomaterials were melt mixed into polypropylene composites with very low filler loading (0.3 wt%), whereafter both the thermal and electrical properties were investigated by DSC and dielectric resonance spectroscopy. The electrical properties were found...... to be substantially improved, where poly(lauryl acrylate) was found to be the superior surface modification, resulting in a conductive composite....

  4. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Jian-Na Cai

    Full Text Available Sucrose is an important dietary factor in cariogenic biofilm formation and subsequent initiation of dental caries. This study investigated the functional relationships between sucrose concentration and Streptococcus mutans adherence and biofilm formation. Changes in morphological characteristics of the biofilms with increasing sucrose concentration were also evaluated. S. mutans biofilms were formed on saliva-coated hydroxyapatite discs in culture medium containing 0, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, or 40% (w/v sucrose. The adherence (in 4-hour biofilms and biofilm composition (in 46-hour biofilms of the biofilms were analyzed using microbiological, biochemical, laser scanning confocal fluorescence microscopic, and scanning electron microscopic methods. To determine the relationships, 2nd order polynomial curve fitting was performed. In this study, the influence of sucrose on bacterial adhesion, biofilm composition (dry weight, bacterial counts, and water-insoluble extracellular polysaccharide (EPS content, and acidogenicity followed a 2nd order polynomial curve with concentration dependence, and the maximum effective concentrations (MECs of sucrose ranged from 0.45 to 2.4%. The bacterial and EPS bio-volume and thickness in the biofilms also gradually increased and then decreased as sucrose concentration increased. Furthermore, the size and shape of the micro-colonies of the biofilms depended on the sucrose concentration. Around the MECs, the micro-colonies were bigger and more homogeneous than those at 0 and 40%, and were surrounded by enough EPSs to support their structure. These results suggest that the relationship between sucrose concentration and cariogenic biofilm formation in the oral cavity could be described by a functional relationship.

  5. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds

    NARCIS (Netherlands)

    Buitink, J.; Leprince, O.; Hoekstra, F.A.


    This study establishes a relationship between desiccation tolerance and the transfer of amphiphilic molecules from the cytoplasm into lipids during drying, using electron paramagnetic resonance spectroscopy of amphiphilic spin probes introduced into imbibed radicles of pea (Pisum sativum) and cucumb

  6. Electrochemical characterization of aminated acrylic conducting polymer

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Norma Mohammad [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Heng, Lee Yook [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ling, Tan Ling [Southeast Asia Disaster Prevention Research Initiative, Lestari Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan (Malaysia)


    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  7. Flexible, stretchable electroadhesives based on acrylic elastomers (United States)

    Duduta, Mihai; Wood, Robert J.; Clarke, David R.


    Controllable adhesion is a requirement for a wide variety of applications including robotic manipulation, as well as locomotion including walking, crawling and perching. Electroadhesives have several advantages such as reversibility, low power consumption and controllability based on applied voltage. Most demonstrations of electroadhesive devices rely on fairly rigid materials, which cannot be stretched reversibly, as needed in some applications. We have developed a fast and reliable method for building soft, stretchable electroadhesive pads based on acrylic elastomers and electrodes made of carbon nanotubes. The devices produced were tested pre-deformation and in a stretched configuration. The adhesive force was determined to be in the 0.1 - 3.0 N/cm2 range, depending on the adhering surface. The electroadhesive devices were integrated with pre-stretched dielectric elastomer actuators to create a device in which the adhesion force could be tuned by changes in either the applied voltage or total area.

  8. Poly(amide-graft-acrylate) interfacial compounds (United States)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  9. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Thomas [Archer Daniels Midland Company, Decatur, IL (United States); Erpelding, Michael [Archer Daniels Midland Company, Decatur, IL (United States); Schmid, Josef [Archer Daniels Midland Company, Decatur, IL (United States); Chin, Andrew [Archer Daniels Midland Company, Decatur, IL (United States); Sammons, Rhea [Archer Daniels Midland Company, Decatur, IL (United States); Rockafellow, Erin [Archer Daniels Midland Company, Decatur, IL (United States)


    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  10. Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Liping eSun


    Full Text Available Sucrose-specific porin (ScrY is a transmembrane protein that allows for the uptake of sucrose under growth-limiting conditions. The crystal structure of ScrY was resolved before by X-ray crystallography, both in its uncomplexed form and with bound sucrose. However, little is known about the molecular characteristics of the transport mechanism of ScrY. To date, there has not yet been any clear demonstration for sucrose transport through the ScrY.Here, the dynamics of the ScrY trimer embedded in a phospholipid bilayer as well as the characteristics of sucrose translocation were investigated by means of atomistic molecular dynamics (MD simulations. The potential of mean force (PMF for sucrose translocation through the pore showed two main energy barriers within the constriction region of ScrY. Energy decomposition allowed to pinpoint three aspartic acids as key residues opposing the passage of sucrose, all located within the L3 loop. Mutation of two aspartic acids to uncharged residues resulted in an accordingly modified electrostatics and decreased PMF barrier. The chosen methodology and results will aid in the design of porins with modified transport specificities.

  11. H-shaped supra-amphiphiles based on a dynamic covalent bond. (United States)

    Wang, Guangtong; Wang, Chao; Wang, Zhiqiang; Zhang, Xi


    The imine bond, a kind of dynamic covalent bond, is used to bind two bolaform amphiphiles together with spacers, yielding H-shaped supra-amphiphiles. Micellar aggregates formed by the self-assembly of the H-shaped supra-amphiphiles are observed. When pH is tuned down from basic to slightly acidic, the benzoic imine bond can be hydrolyzed, leading to the dissociation of H-shaped supra-amphiphiles. Moreover, H-shaped supra-amphiphiles have a lower critical micelle concentration than their building blocks, which is very helpful in enhancing the stability of the benzoic imine bond being hydrolyzed by acid. The surface tension isotherms of the H-shaped supra-amphiphiles with different spacers indicate their twisty conformation at a gas-water interface. The study of H-shaped supra-amphiphiles can enrich the family of amphiphiles, and moreover, the pH-responsiveness may make them apply to controlled or targetable drug delivery in a biological environment.

  12. Synthesis and characteristics of biodegradable pyridinium amphiphiles used for in vitro DNA delivery

    NARCIS (Netherlands)

    Roosjen, Astrid; Smisterova, Jarmila; Driessen, Cecile; Anders, Joachim T.; Wagenaar, Anno; Hoekstra, Dirk; Hulst, Ron; Engberts, Jan B.F.N.


    Pyridinium amphiphiles have found practical application for the delivery of DNA into eukaryotic cells. A general synthetic method starting from (iso)nicotinoyl chloride has been devised for the preparation of pyridinium amphiphiles based on (bio)degradable esters, allowing structural variation both

  13. Self-assembly of peptide-amphiphile nanofibers under physiological conditions (United States)

    Stupp, Samuel I.; Hartgerink, Jeffrey D.; Beniash, Elia


    The present invention provides a method of promoting neuron growth and development by contacting cells with a peptide amphiphile molecule in an aqueous solution in the presence of a metal ion. According to the method, the peptide amphiphile forms a cylindrical micellar nanofiber composed of beta-sheets, which promote neuron growth and development.

  14. Composition and method for self-assembly and mineralization of peptide-amphiphiles (United States)

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX


    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  15. Composition and method for self-assembly and mineralization of peptide amphiphiles (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.


    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  16. Adsorption of alkyltriphenylphosphonium amphiphiles on nafion membranes. X-ray photoelectron spectroscopy and static secondary ion mass spectrometry analysis

    NARCIS (Netherlands)

    Straaten-Nijenhuis, van Wilma F.; Sudholter, Ernst J.R.; Jong, de Feike; Reinhoudt, David N.; Mahy, Jan W.G.


    Conductivity, UV, and attenuated total reflectance IR measurements show that n-alkyltriphenylphosphonium amphiphiles adsorb on a Ndion 117 membrane. Approximately 20% of the Ndion protons are exchanged for a cationic amphiphile (n-hexadecyltriphenylphoephonium). Diffusion of amphiphile through the m

  17. Metal-free synthesis of amphiphilic functional polycarbonates

    Institute of Scientific and Technical Information of China (English)


    Amphiphilic block copolymers of poly(5-benzyloxy trimethylene carbonate) (PBTMC) and poly(ethylene glycol) (PEG) were synthesized through enzymatic polymerization using immobilized porcine pancreas lipase (IPPL). The obtained copolymers with different compositions were characterized by GPC and 1H NMR. The copolymer composition was in agreement with the feed ratio.The molecular weight of the copolymers showed an increasing trend with the decrease of PEG contents. Micelles of the copolymers were formed by dialysis procedure, and characterized by transmission electron microscopy (TEM).

  18. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    Directory of Open Access Journals (Sweden)

    Yuka Sakuma


    Full Text Available It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life.

  19. Micellar structure of amphiphilic poly(2-oxazoline) diblock copolymers

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Ivanova, R.; Lüdtke, K.


    Amphiphilic diblock copolymers from poly(2-oxazoline)s in aqueous solution can form micelles. By means of small-angle neutron scattering, we have found that poly[(n-nonyl-2-oxazoline)-b-(methyl-2-oxazoline)] {P[(NOx)-b-(MOx)]} diblock copolymers in aqueous solution form micelles of core-shell type....... We have determined the core radius and the shell thickness of the micelles. Comparing the values obtained to the stretched lengths of the blocks leads to the conclusion that the P(NOx) core blocks are stretched, whereas the P(MOx) shell blocks are coiled....

  20. Bolaform supramolecular amphiphiles as a novel concept for the buildup of surface-imprinted films. (United States)

    Zhang, Jiawei; Liu, Yiliu; Wu, Guanglu; Schönhoff, Monika; Zhang, Xi


    Stable multilayer films were fabricated on the basis of the alternating layer-by-layer assembly of a two-component bolaform supramolecular amphiphile and diazoresins, followed by photochemical cross-linking of the structure. UV-visible spectroscopy and atomic force microscopy revealed a uniform deposition process. Moreover, one component of the supramolecular amphiphile can be removed from the multilayer films after cross-linking between the second component and the diazoresin. The release and uptake of the imprinted supramolecular amphiphile component are shown to be reversible. Furthermore, uptake experiments of different molecules show the selectivity of the imprinted sites for the template molecule. Thus, surface-imprinted films can be formed by employing dissociable two-component supramolecular amphiphiles. This research reveals that supramolecular amphiphiles can be used as a novel concept for the construction of multilayer films, and it also provides a new method of generating surface-imprinted multilayers.

  1. New sucrose esters from the fruits of Physalis solanaceus. (United States)

    Pérez-Castorena, Ana-Lidia; Luna, Minerva; Martínez, Mahinda; Maldonado, Emma


    Three new sucrose esters (1-3) along with several known compounds were isolated from the fruits of Physalis solanaceus. The structural elucidation of the isolates was based on their spectroscopic characteristics mainly those of MS and NMR.

  2. Sucrose And Saccharomyces Cerevisiae: A Relationship Most Sweet.


    Marques, Wesley Leoricy; Raghavendran, Vijayendran; Stambuk,Boris Ugarte; Gombert, Andreas Karoly


    Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is f...

  3. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae). (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P


    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%.


    Institute of Scientific and Technical Information of China (English)

    YANG Zhenghua; LI Yuesheng


    A series of acrylonitrile (AN) copolymers with methyl acrylate (MA) or ethyl acrylate (EA) as comonomer (5-23 wt%) was prepared by free-radical copolymerization. The permeability coefficients of the copolymers to oxygen and carbon dioxide were measured at 1.0 MPa and at 30 ℃, and those to water vapor also measured at 100% relative humidity and at 30 ℃. All the AN/acrylic copolymers are semicrystalline. As the acrylate content increase, the permeability coefficients of the copolymers to oxygen and carbon dioxide are increased progressively, but those to water vapor are decreased progressively. The gas permeability coefficients of the polymers were correlated with free-volume fractions or the ratio of free volume to cohesive energy.

  5. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer. (United States)

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan


    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  6. Altered sucrose metabolism impacts plant biomass production and flower development. (United States)

    Coleman, Heather D; Beamish, Leigh; Reid, Anya; Park, Ji-Young; Mansfield, Shawn D


    Nicotiana tabacum (tobacco) was transformed with three genes involved in sucrose metabolism, UDP-glucose pyrophosphorylase (UGPase, EC, sucrose synthase (SuSy, EC and sucrose phosphate synthase (SPS, EC Plants harbouring the single transgenes were subsequently crossed to produce double and triple transgenic lines, including: 2 x 35S::UGPase x SPS, 4CL::UGPase x SPS, 2 x 35S::SuSy x SPS, 4CL::SuSy x SPS, 2 x 35S::UGPase x SuSy x SPS, and 4CL::UGPase x SuSy x SPS. The ultimate aim of the study was to examine whether it is possible to alter cellulose production through the manipulation of sucrose metabolism genes. While altering sucrose metabolism using UGPase, SuSy and SPS does not have an end effect on cellulose production, their simultaneous overexpression resulted in enhanced primary growth as seen in an increase in height growth, in some cases over 50%. Furthermore, the pyramiding strategy of simultaneously altering the expression of multiple genes in combination resulted in increased time to reproductive bud formation as well as altered flower morphology and foliar stipule formation in 4CL lines. Upregulation of these sucrose metabolism genes appears to directly impact primary growth and therefore biomass production in tobacco.

  7. Effects of Soil Salinity on Sucrose Metabolism in Cotton Leaves.

    Directory of Open Access Journals (Sweden)

    Jun Peng

    Full Text Available This study investigated sucrose metabolism of the youngest fully expanded main-stem leaf (MSL and the subtending leaf of cotton (Gossypium hirsutum L. boll (LSCB of salt-tolerant (CCRI-79 and salt-sensitive (Simian 3 cultivars and its relationship to boll weight under low, medium and high soil salinity stress in Dafeng, China, in 2013 and 2014. The results showed that with increased soil salinity, 1 both the chlorophyll content and net photosynthetic rate (Pn decreased, while the internal CO2 concentration firstly declined, and then increased in the MSL and LSCB; 2 carbohydrate contents in the MSL reduced significantly, while sucrose and starch contents in the LSCB increased, as did the activities of sucrose phosphate synthase (SPS and sucrose synthase (SuSy in both the MSL and LSCB; 3 but invertase activity in both the MSL and LSCB did not change significantly. Our study also showed that the LSCB was more sensitive to soil salinity than was the MSL. Of the measured physiological indices, higher SPS activity, mainly controlled by sps3, may contribute to adaption of the LSCB to soil salinity stress because SPS is beneficial for efficiently sucrose synthesis, reduction of cellular osmotic potential and combined actions of Pn, and sucrose transformation rate and SPS may contribute to the reduction in boll weight under soil salinity stress.

  8. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics



    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophi...

  9. Stabilizing effects of estertins mercaptide (methyl acrylate) for PVC degradation (United States)

    Zhang, S. H.; Liu, T. M.; Li, J. L.; Wang, C. R.; Li, C.; Wang, Z. Q.


    The thermal and UV light (ultraviolet light) stability of PVC films with estertins mercaptide (methyl acrylate), methyltins mercaptide and the compound consisted of estertins mercaptide (methyl acrylate) and hydrotalcite (2:2.5) were investigated by ageing in a circulation oven at 190 °C and irradiating with 72W UV light for 96h, respectively, and then the yellowness and transmission rate were tested by Color Quest XE. Hydrotalcite was proved to have good synergies with estertins mercaptide (methyl acrylate) on improving the thermal stability and UV light stability. The retarding effects of the heat stabilizers to PVC degradation were tested by TGA from 50°C to 600°C. The results show that temperature of HCl evolution from PVC film was improved obviously by compounding with estertins mercaptide(methyl acrylate) and hydrotalcite and estertins mercaptide(methyl acrylate) was found to have a better long term stability. Sn4+ consistence of water and seawater in which films before and after UV light irradiation were soaked for 60 days was analyzed by ICP; the results indicate that the Sn4+ consistence from the films with estertins mercaptide(methyl acrylate) as thermal stabilizer was lower than that from the film with methyltins mercaptide. The crosslink moderately by UV irradiation for PVC films can hold back the dissolution of organotin heat stabilizers from PVC products into water and seawater.

  10. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)


    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  11. Poly(meth)acrylates obtained by cascade reaction. (United States)

    Popescu, Dragos; Keul, Helmut; Moeller, Martin


    Preparation, purification, and stabilization of functional (meth)acrylates with a high dipole moment are complex, laborious, and expensive processes. In order to avoid purification and stabilization of the highly reactive functional monomers, a concept of cascade reactions was developed comprising enzymatic monomer synthesis and radical polymerization. Transacylation of methyl acrylate (MA) and methyl methacrylate (MMA) with different functional alcohols, diols, and triols (1,2,6-hexanetriol and glycerol) in the presence of Novozyme 435 led to functional (meth)acrylates. After the removal of the enzyme by means of filtration, removal of excess (meth)acrylate and/or addition of a new monomer, e.g., 2-hydroxyethyl (meth)acrylate the (co)polymerization via free radical (FRP) or nitroxide mediated radical polymerization (NMP) resulted in poly[(meth)acrylate]s with predefined functionalities. Hydrophilic, hydrophobic as well as ionic repeating units were assembled within the copolymer. The transacylation of MA and MMA with diols and triols carried out under mild conditions is an easy and rapid process and is suitable for the preparation of sensitive monomers.

  12. Application of reactive acrylate microgels in water-base coatings

    Institute of Scientific and Technical Information of China (English)

    SA Sheng-shu; ZHANG Bao-hua; YANG Qing; WANG Xia-qin; MAO Zhi-ping


    Reactive acrylate microgels with different reactive groups such as carboxyl, hydroxide groups had excellent prop-erties such as quick-dry, low viscosity, high adhesion and hardness, which made them extensively used in preparing paints or in coating-modification. Reactive acrylate microgels were prepared by emulsion co-polymerization with zwitterions surfactant, anionic surfactant and nonionic surfactant as co-emulsifier. The water-base baking paints made from reactive acrylate micro-gels and melamine-formaldehyde resin had excellent combination properties. The aluminium powder can be well-dispersed in the paints. The influences of monomer components on the properties of the water-base baking paints were discussed in this paper. And the baking paints were also compared with the marketing solvent acrylate baking paints. It was found that the water-base acrylate amino baking paints had better combination properties than the organic solvent acrylate baking paints, which means that the water-base baking paints had a bright marketing future.

  13. Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization (United States)

    Duval-Terrié, Caroline; Cosette, Pascal; Molle, Gérard; Muller, Guy; Dé, Emmanuelle


    The aim of this study was to develop new surfactants for membrane protein solubilization, from a natural, biodegradable polymer: the polysaccharide pullulan. A set of amphiphilic pullulans (HMCMPs), differing in hydrophobic modification ratio, charge ratio, and the nature of the hydrophobic chains introduced, were synthesized and tested in solubilization experiments with outer membranes of Pseudomonas fluorescens. The membrane proteins were precipitated, and then resolubilized with various HMCMPs. The decyl alkyl chain (C10) was the hydrophobic graft that gave the highest level of solubilization. Decyl alkyl chain-bearing HMCMPs were also able to extract integral membrane proteins from their lipid environment. The best results were obtained with an amphiphilic pullulan bearing 18% decyl groups (18C10). Circular dichroism spectroscopy and membrane reconstitution experiments were used to test the structural and functional integrity of 18C10-solubilized proteins (OmpF from Escherichia coli and bacteriorhodopsin from Halobacterium halobium). Whatever their structure type (α or β), 18C10 did not alter either the structure or the function of the proteins analyzed. Thus, HMCMPs appear to constitute a promising new class of polymeric surfactants for membrane protein studies. PMID:12649425

  14. Lipophosphoramidate-based bipolar amphiphiles: their syntheses and transfection properties. (United States)

    Berchel, Mathieu; Le Gall, Tony; Lozach, Olivier; Haelters, Jean-Pierre; Montier, Tristan; Jaffrès, Paul-Alain


    Six new cationic bolaamphiphiles (also called bipolar amphiphiles, bolaform amphiphiles, or bolalipids) were readily prepared by a thiol-ene click reaction that engaged a mercapto-alcohol (mercapto-ethanol or mercapto-hexanol) and a cationic based lipophosphoramidate. The cationic lipophosphoramidates contain two lipid chains that end in an alkene group and a selected cationic polar head group (trimethylammonium, dimethyl hydroxyethyl ammonium, or methylimidazolium). These compounds were formulated in water (with or without DOPE as a colipid) to produce supramolecular aggregates. These aggregates, before (i.e. bolasomes) and after (i.e. bolaplexes) mixing with plasmid DNA (pDNA) at various charge ratios, were characterized with regard to their sizes and zeta potentials. In the case of bolasomes, the suspensions were unstable since precipitation occurred after only a few hours at room temperature. On the other hand, bolaplex formulations exhibited clearly a better colloidal stability. Then, the gene delivery properties of the cationic bolasomes were investigated using two human-derived epithelial cell lines (A549 and 16HBE). Compared to the commercially available lipofection reagent (Lipofectamine), most of the cationic bolaamphiphiles were able to efficiently transfect these cells when they were formulated with DOPE in a 1 : 1 molar ratio. We report herein that bolaamphiphiles possessing a trimethylammonium or a dimethyl hydroxyethyl ammonium head group were the most efficient in terms of transfection efficiency while exhibiting no significant cytotoxicity.

  15. Thermotropic organization of hydrogen-bond-bridged bolaform amphiphiles. (United States)

    Zhang, Jing; Zhou, Mingjun; Wang, Shan; Carr, Jessica; Li, Wen; Wu, Lixin


    A series of quaternary ammonium amphiphiles (A-n) bearing carboxylic acid groups were designed and synthesized. The branched bolaform structures can be constructed by dimerizations of carboxylic acid groups through intermolecular hydrogen bonding, as demonstrated by the Fourier transform infrared (FT-IR) spectra and the temperature-dependent FT-IR spectra. The thermotropic organizations of branched bolaform ammonium dimer complexes were characterized by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. We investigated the influence of the spacer between the cationic group and the benzene ring on the thermotropic organization. A-6 with short lateral alkyl chains formed a simple layered structure at room temperature and exhibited smectic A mesophase above 145 °C, whereas A-8 with intermediate lateral chain length organized into smectic A phase over a wide temperature range. A further increase of the length (n = 10, 12) of the lateral chains resulted in the formation of lamellar structure with in-plane layered periodicity, which is rare in the organization of ionic compounds. A packing model of the quasi-2D lamellar was proposed on the basis of the experimental data of X-ray diffraction results. Notably, the quasi-2D lamellar structure could evolve into a simple layer with the increase of temperature. The present results showed a direct relationship in which the branched architecture can be applied to tune the self-assembly behavior of ionic amphiphiles and is allowed to construct new layered superstructure.

  16. Preparation and Properties of Vesicles from Condensable Amphiphilic Amino Acids

    Institute of Scientific and Technical Information of China (English)

    熊向源; 何巍; 李子臣; 李福绵


    Three double-chain amphiphiles with amino acid groups as hydrphilic moiety were synthesized. These amphiphiles can be easily dispersed in buffer solution to form transparent dispersion. Examination of the dispersion by transmission electron microscopy (TEM) showed the formation of stable vesicular aggregates, which was also confirmed by the ability to encapsulate water-soluble dyes. Since amino acid groups are located on the surface of the vesicles, water-soluble carbodiimide can induce the condensation of these groups to form peptide. The phase transition temperatures of these vesicles were estimated by differential scanning calorimetry (DSC), and a decrease of phase transition temperature was observed after polycondensation due to the disturbance of the ordered arrangement of the hydrophobic chains. The leakage rate of the vesicles before and after condensation was studied by monitoring the increase of fluorescence intensity of water-soluble dye. These vesicles belong to the least permeable ones and the leakage rate can be controlled by varying the degree of condensation or the temperature.

  17. Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy. (United States)

    Liu, Jing; Zhao, Dujuan; He, Wenxiu; Zhang, Huiyuan; Li, Zhonghao; Luan, Yuxia


    The anti-leukemia effect of cytarabine (Ara-C) is severely restricted by its high hydrophilic properties and rapid plasma degradation. Herein, a novel amphiphilic small molecular prodrug of Ara-C was developed by coupling a short aliphatic chain, hexanoic acid (HA) to 4-NH2 of the parent drug. Based on the amphiphilic nature, the resulting bioconjugate (HA-Ara) could spontaneously self-assemble into stable spherical nanoassemblies (NAs) with an extremely high drug loading (∼71wt%). Moreover, folate receptor (FR)-targeting NAs with high grafting efficient folic acid - bovine serum albumin (FA-BSA) conjugate immobilized on the surface (NAs/FA-BSA) was prepared. The results of MTT assays on FR-positive K562 cells and FR-negative A549 cells demonstrated higher cytotoxicity of HA-Ara NAs than the native drug. Especially, the IC50 values revealed that NAs/FA-BSA was 3 and 2-fold effective than non-targeted NAs after 24 and 48h treatment with K562 cells, respectively indicating FR-mediated enhanced anti-tumor efficacy. In vitro cellular uptake, larger accumulation of HA-Ara NAs were observed in comparative with the free FITC and the results further confirmed the selective uptake of NAs/FA-BSA in folate receptor enriched cancer cells. Above all, self-assembled HA-Ara NAs exhibited potential superiority for Ara-C delivery and FA-modified NAs would be an excellent candidate for targeting leukemia therapy.


    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren


    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  19. Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings. (United States)

    Han, Hua; Wu, Jianfeng; Avery, Christopher W; Mizutani, Masato; Jiang, Xiaoming; Kamigaito, Masami; Chen, Zhan; Xi, Chuanwu; Kuroda, Kenichi


    A new strategy for preparing antimicrobial surfaces by a simple dip-coating procedure is reported. Amphiphilic polycations with different mole ratios of monomers containing dodecyl quaternary ammonium, methoxyethyl, and catechol groups were synthesized by free-radical polymerization. The polymer coatings were prepared by immersing glass slides into a polymer solution and subsequent drying and heating. The quaternary ammonium side chains endow the coatings with potent antibacterial activity, the methoxyethyl side chains enable tuning the hydrophobic/hydrophilic balance, and the catachol groups promote immobilization of the polymers into films. The polymer-coated surfaces displayed bactericidal activity against Escherichia coli and Staphylococcus aureus in a dynamic contact assay and prevented the accumulation of viable E. coli, S. aureus, and Acinetobacter baumannii for up to 96 h. Atomic force microscopy (AFM) images of coating surfaces indicated that the surfaces exhibit virtually the same smoothness for all polymers except the most hydrophobic. The hydrophobic polymer without methoxyethyl side chains showed clear structuring into polymer domains, causing high surface roughness. Sum-frequency generation (SFG) vibrational spectroscopy characterization of the surface structures demonstrated that the dodecyl chains are predominantly localized at the surface-air interface of the coatings. SFG also showed that the phenyl groups of the catechols are oriented on the substrate surface. These results support our hypothesis that the adhesive or cross-linking functionality of catechol groups discourages polymer leaching, allowing the tuning of the amphiphilic balance by incorporating hydrophilic components into the polymer chains to gain potent biocidal activity.

  20. Advances in acrylic-alkyd hybrid synthesis and characterization (United States)

    Dziczkowski, Jamie


    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  1. Electron paramagnetic resonance study of amphiphiles partitioning behavior in desiccation-tolerant moss during dehydration

    Institute of Scientific and Technical Information of China (English)


    Desiccation tolerance is a crucial characteristic for desert moss surviving in arid regions. Desiccation procedure always induces amphiphiles transferring from the polar cytoplasm into lipid bodies. The behavior of amphiphiles transferring can contribute to the enhancement of desiccation tolerance and the reduction of plasma membrane integrity simultaneously. The effects of amphiphiles partitioning into the lipid phase during water loss has been studied for pollen and seeds using electron paramagnetic resonance (EPR) spectroscopy. However, desiccation-tolerant high plants occur among mosses, several angiosperms and higher plants seeds or pollens. They have different strategies for survival in dehydration and rehydration. A desiccation-tolerant moss Tortula desertorurn was used to investigate the behaviors of amphiphilic molecules during drying by spin label technology. There are small amount of amphiphilic probes partitioning into membrane during moss leaves dehydration, comparing with that in higher plants. Cytoplasm viscosity changed from 1.14 into glass state only dehydration less than 60 min. Moss leaves lost plasma membrane integrity slightly,from 0.115 to 0.237, occurred simultaneously with amphiphiles partition. The results showed the more advantages of mosses than higher plants in adapting fast dehydration. We propose that EPR spin label is feasible for studying the amphiphiles partitioning mechanisms in membrane protection and damage for desiccation-tolerant mosses.(C) 2007 Yan Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  2. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants. (United States)

    Albertsen, A N; Duffy, C D; Sutherland, J D; Monnard, P-A


    The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks.

  3. Synthesis of Polymerizable Amphiphiles with Systematic Variation of Critical Packing Parameters

    Institute of Scientific and Technical Information of China (English)

    M. H. Li; W. L. Yang; J. Qian; C. C. Wang; S. K. Fu


    @@ 1Introduction An amphiphile is a molecule composed of hydrophilic part and hydrophobic part, which are incompatible and tend to separate from each other. The tendency of separation is often promoted by addition of water and sometimes also oil. Under balanced conditions the mixtures form macroscopically homogeneous phases, including isotropic solution phases and liquid crystalline phases. Correlation of the amphiphile structure with its preferred phases could be understood with a simple geometric model[1], which defines a dimensionless Critical Packing Parameter (CPP) to describe the relative bulkiness of the hydrophobic part and the hydrophilic part in an amphiphile. With CPP increasing from a small value to a high value the amphiphile changes from hydrophilic to hydrophobic, its preferred phase structure from direct structures via lamellar structure to reverse structures. This model provides a basis for the molecular design of amphiphiles. To immobilize the microstructure of the phases formed by amphiphiles is a challenge for current material chemists. Techniques of both inorganic polymerization[2] and organic polymerization[3] have been developed. With organic polymerization the molecular design of polymerizable amphiphiles is critical for the successful immobilization of the vulnerable precursor microstructures.

  4. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery. (United States)

    Han, Shangcong; Wan, Haiying; Lin, Daoshu; Guo, Shutao; Dong, Hongxu; Zhang, Jianhua; Deng, Liandong; Liu, Ruming; Tang, Hua; Dong, Anjie


    Nanoparticles (NPs) assembled from amphiphilic polycations have been certified as potential carriers for gene delivery. Structural modification of polycation moieties may be an efficient route to further enhance gene delivery efficiency. In this study two electroneutral monomers with different hydrophobicities, 2-hydroxyethyl methacrylate (HEMA) and 2-hydroxyethyl acrylate (HEA), were incorporated into the cationic poly(dimethylamino ethyl methacrylate) (PDMAEMA) side-chains of amphiphilic poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) (PCD) by random co-polymerization, to obtain poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl methacrylate) (PCD-HEMA) and poly(ε-caprolactone)-graft-poly(dimethylamino ethyl methacrylate-co-2-hydroxyethyl acrylate) (PCD-HEA). Minimal HEA or HEMA moieties in PDMAEMA do not lead to statistically significant changes in particle size, zeta potential, DNA condensation properties and buffering capacity of the naked NPs. However, the incorporation of HEMA and HEA lead to reductions and increases, respectively, in the surface hydrophilicity of the naked NPs and NPs/DNA complexes, which was confirmed by water contact angle assay. These simple modifications of PDMAEMA with HEA and HEMA moieties significantly affect the gene transfection efficiency on HeLa cells in vitro: PCD-HEMA NP/DNA complexes show a much higher transfection efficiency than PCD NPs/DNA complexes, while PCD-HEA NPs/DNA complexes show a lower transfection efficiency than PCD NP/DNA complexes. Fluorescence activated cell sorter and confocal laser scanning microscope results indicate that the incorporation of hydrophobic HEMA moieties facilitates an enhancement in both cellular uptake and endosomal/lysosomal escape, leading to a higher transfection efficiency. Moreover, the process of endosomal/lysosomal escape confirmed in our research that PCD and its derivatives do not just rely on the proton sponge mechanism, but also

  5. Asymmetric and symmetric bolaform supra-amphiphiles: formation of imine bond influenced by aggregation. (United States)

    Wang, Guangtong; Wu, Guanglu; Wang, Zhiqiang; Zhang, Xi


    A series of bolaform supra-amphilphiles with different symmetries were fabricated through dynamic benzoic imine bond formation. The pH dependence of imine formations of these supra-amphiphiles were characterazied. We found that the extent of the imine formation of these supra-amphiphies were different. The supra-amphiphiles with a poorer symmetry always exhibited a lower imine formation at a given pH. Therefore, the varied extent of imine bond formation indicate the different aggregations of these supra-amphilphiles, which are controlled by the molecular symmetry of the supra-amphiphiles.

  6. Stable Vesicles Composed of Mono- or Dicarboxylic Fatty Acids and Trimethylammonium Amphiphiles

    DEFF Research Database (Denmark)

    Caschera, Filippo; Bernardino de la Serna, Jorge; Löffler, Philipp M. G.


    shown to be more stable than those formed by pure fatty acids. Those containing bola-amphiphile even showed encapsulation of a small hydrophilic solute (8-hydroxypyrene-1,3,6-trisulfonic-acid) suggesting a denser packing of the amphiphiles. Compression and kinetics analysis of monolayers composed...... of these amphiphiles mixtures at the air/water interface suggest that the stabilization of the structures can be attributed to two main interactions between headgroups, predominantly the formation of hydrogen bonds between protonated and deprotonated acids and then the additional electrostatic interactions between...

  7. Textural and sensory properties of spreads with sucrose and maltitol

    Directory of Open Access Journals (Sweden)

    Šoronja-Simović Dragana M.


    Full Text Available Spreads are confectionery products based on sugar, vegetable fat, cocoa powder, milk powder and other ingredients. Basic properties of these products are good spreadability in wide temperature range (from ambience to fridge temperature, rich creamy chocolate taste, and homogenous smooth structure without oil phase migration. Undesirable attribute of these products is their relatively high energy value (2300 kJ/100 g. In recent years, cocoa cream products with reduced energy values have become very popular among consumers and today they are present in the assortment of many confectionery manufacturers. One way to produce spreads with reduced energy value is the replacement of sugar (sucrose with adequate sweetener. Maltitol is a low-energy poliol capable to qualitatively and quantitatively replace sucrose. Cocoa spreads with maltitol and with the combination of maltitol and sucrose (produced at different temperatures and mixer rotation speeds have similar texture and rheological properties compared to the spreads with sucrose. The spreads with maltitol have about 15% lower energy value in comparison to the same product with sucrose.

  8. Sucrose metabolism gene families and their biological functions. (United States)

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan


    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.


    Energy Technology Data Exchange (ETDEWEB)

    Steven C. Huber


    Studies have focused on the enzyme sucrose synthase, which plays an important role in the metabolism of sucrose in seeds and tubers. There are three isoforms of SUS in maize, referred to as SUS1, SUS-SH1, and SUS2. SUS is generally considered to be tetrameric protein but recent evidence suggests that SUS can also occur as a dimeric protein. The formation of tetrameric SUS is regulated by sucrose concentration in vitro and this could also be an important factor in the cellular localization of the protein. We found that high sucrose concentrations, which promote tetramer formation, also inhibit the binding of SUS1 to actin filaments in vitro. Previously, high sucrose concentrations were shown to promote SUS association with the plasma membrane. The specific regions of the SUS molecule involved in oligomerization are not known, but we identified a region of the SUS1 moelcule by bioinformatic analysis that was predicted to form a coiled coil. We demonstrated that this sequence could, in fact, self-associate as predicted for a coiled coil, but truncation analysis with the full-length recombinant protein suggested that it was not responsible for formation of dimers or tetramers. However, the coiled coil may function in binding of other proteins to SUS1. Overall, sugar availability may differentially influence the binding of SUS to cellular structures, and these effects may be mediated by changes in the oligomeric nature of the enzyme.

  10. Synthesis and self-assembly of amphiphilic poly(acrylicacid)-poly(ɛ-caprolactone)-poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin. (United States)

    Djurdjic, Beti; Dimchevska, Simona; Geskovski, Nikola; Petrusevska, Marija; Gancheva, Valerya; Georgiev, Georgi; Petrov, Petar; Goracinova, Katerina


    The process of molecular self-assembly plays a crucial role in formulation of polymeric nanoparticulated drug delivery carriers as it creates the possibility for enhanced drug encapsulation and carrier surface engineering. This study aimed to develop a novel self-assembled polymeric micelles for targeted delivery in tumor cells in order to overcome not only various drawbacks of 7-ethyl-10-hydroxy camptothecin (SN-38) but also various reported limitations of other drug delivery systems, especially low drug loading and premature release. Custom synthesized amphiphilic triblock copolymer poly(acrylic acid)-poly(ɛ-caprolactone)-poly(acrylic acid) (PAA(13)-PCL(35)-PAA(13)) was used to prepare kinetically stable micelles by nanoprecipitation and modified nanoprecipitation procedure. Core-shell micelles with diameter of 120-140 nm, negative zeta potential and satisfactory drug loading were produced. The prepared formulations were stable in pH range of 3-12 and in media with NaCl concentration <1 mol/l. Screening mixed level factorial 3 × 2(2) design identified that the process temperature as well as the type of organic solvent has influence upon the efficacy of encapsulation, particle size, dissolution rate and burst release. Fourier transform infrared and differential scanning calorimetry analyses confirmed the entrapment of the active substance into the micelles. The kinetic analysis of dissolution studies revealed that the main mechanism of drug release from the prepared formulations is Fickian diffusion. Growth inhibition studies as well as DNA fragmentation assay performed on SW-480 cell lines clearly demonstrated increased growth inhibition effect and presence of fragmented DNA in cells treated with loaded micelles compared to SN-38 solution. Altogether, these results point out to potential biomedical and clinical application of PAA-PCL-PAA systems in the future.

  11. Large deformation micromechanics of particle filled acrylics at elevated temperatures (United States)

    Gunel, Eray Mustafa

    The main aim of this study is to investigate stress whitening and associated micro-deformation mechanism in thermoformed particle filled acrylic sheets. For stress whitening quantification, a new index was developed based on image histograms in logarithmic scale of gray level. Stress whitening levels in thermoformed acrylic composites was observed to increase with increasing deformation limit, decreasing forming rate and increasing forming temperatures below glass transition. Decrease in stress whitening levels above glass transition with increasing forming temperature was attributed to change in micro-deformation behavior. Surface deformation feature investigated with scanning electron microscopy showed that source of stress whitening in thermoformed samples was a combination of particle failure and particle disintegration depending on forming rate and temperature. Stress whitening level was strongly correlated to intensity of micro-deformation features. On the other hand, thermoformed neat acrylics displayed no surface discoloration which was attributed to absence of micro-void formation on the surface of neat acrylics. Experimental damage measures (degradation in initial, secant, unloading modulus and strain energy density) have been inadequate in describing damage evolution in successive thermoforming applications on the same sample at different levels of deformation. An improved version of dual-mechanism viscoplastic material model was proposed to predict thermomechanical behavior of neat acrylics under non-isothermal conditions. Simulation results and experimental results were in good agreement and failure of neat acrylics under non-isothermal conditions ar low forming temperatures were succesfully predicted based on entropic damage model. Particle and interphase failure observed in acrylic composites was studied in a multi-particle unit cell model with different volume fractions. Damage evolution due to particle failure and interphase failure was simulated

  12. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates (United States)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)


    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  13. Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles. (United States)

    Zhang, Yue; Zhao, Hanying


    In recent years, an emerging research area has been the surfactant behavior of polymer-tethered nanoparticles. In this feature article, we have provided a general introduction to the synthesis, self-assembly, and interfacial activity of polymer-tethered inorganic nanoparticles, polymer-tethered organic nanoparticles, and polymer-tethered natural nanoparticles. In addition, applications of the polymer-tethered nanoparticles in colloidal and materials science are briefly reviewed. All research demonstrates that amphiphilic polymer-tethered nanoparticles exhibit surfactant behavior and can be used as elemental building blocks for the fabrication of advanced structures by the self-assembly approach. The polymer-tethered nanoparticles provide new opportunities to engineer materials and biomaterials possessing specific functionality and physical properties.

  14. Stabilizing bolaform amphiphile interfacial assemblies by introducing mesogenic groups. (United States)

    Wang, Mingfeng; Qiu, Dengli; Zou, Bo; Wu, Tao; Zhang, Xi


    We describe the synthesis and characterization of the mesogen-bearing bolaform amphiphile 4,4'-dihydroxybiphenylbis(11-pyridinium-N-yl-undecanoic ester) dibromide (BP-10) and its solid/liquid interfacial self-assembly. Cylindrical micelles are directly observed by atomic force microscopy (AFM) at the interface between mica and the aqueous solution above the critical micelle concentration (cmc). In situ and ex situ AFM studies indicate that the cylindrical micelles are stable both at the mica/solution interface and in the dry state. The enhanced stability of the micellar structures enables a detailed investigation of their self-assembly behavior and supramolecular structures at the interface. The adsorption model proposed here is supported by the variation of the interfacial self-assemblies on changing the solution concentration and substrate temperature.

  15. Bulk modification of PDMS microchips by an amphiphilic copolymer. (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan


    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  16. Taste preference thresholds for Polycose, maltose, and sucrose in rats. (United States)

    Sclafani, A; Nissenbaum, J W


    The taste preference thresholds of adult female rats for polysaccharide (Polycose), maltose, and sucrose were compared. The nondeprived animals were given 24-hr two-bottle preference tests (saccharide solution vs. water) and, starting at 0.008%, the saccharide concentration was increased daily. The rats first preferred the Polycose solution to water at 0.01% (0.0001 M), the maltose solution to water at 0.09% (0.0025 M), and the sucrose solution to water at 0.09% (0.0026 M). Thus, on a molar basis the rats' Polycose threshold was 25 to 26 times lower than their maltose and sucrose threshold. It was postulated that the low taste threshold for polysaccharides allows the rat to detect starch which, unlike sugar, is very low in solubility.

  17. Fatal anaphylactic reaction to iron sucrose in pregnancy

    Directory of Open Access Journals (Sweden)

    Ajay Mishra


    Full Text Available Iron-deficiency anemia in pregnancy can have serious deleterious effects for both mother and fetus. Parenteral iron therapy in iron-deficiency anemia is recommended in patients where oral iron therapy is ineffective due to malabsorption states and non-compliance. Compared to oral iron therapy, intravenous iron results in much more rapid resolution of iron-deficiency anemia with minimal adverse reactions. Iron sucrose has a favorable safety profile and is an alternative to other forms of parenteral iron therapy in correction of iron stores depletion. Immune mechanisms and iron agent releasing bioactive, partially unbound iron into the circulation, resulting in oxidative stress appears to cause severe adverse reactions. Although iron sucrose has a favorable safety profile in comparison to other parenteral iron preparations, this report highlights a fatal anaphylactic shock to iron sucrose in a pregnant woman with severe iron deficiency non-compliant to oral iron therapy.

  18. Fundamental behavior of a model biomolecular amphiphile system (United States)

    Haverstick, Kraig Leonard

    An interest in the fundamental interactions between protein components, in the form of either single amino acids or peptides, unifies the work represented in this thesis. These fundamental interactions drive protein folding, enzyme-substrate binding, and cell adhesion to extracellular ligands. The technology of lipidation was used to isolate these protein interactions. Lipidation of a water-soluble amino acid or peptide sequence confined the protein component to the air-water interface or to a self-assembled structure in water. Compression of the molecules at the air-water interface ordered them into a solid-like monolayer, and Langmuir-Blodgett deposition produced a surface modification with protein component presented in a controlled, orderly manner. These molecules have potential applications as biomaterials coatings or drug delivery devices. A method for determination of specific hydrogen bonding interactions through cocrystallization of two complementary peptide sequences is also described. In order to understand the effect of lipidation and lipid structure on peptide behavior, a comprehensive study of tail designs was first undertaken. Tail length, linkage group, linker, spacer length, and headgroup chirality, orientation, and terminal group were systematically varied in simple amino acid amphiphiles. Monolayer assembly, thermal stability, and structure were studied with Langmuir isotherms and Fourier transform infrared spectroscopy. Each part of the tail structure was found to affect monolayer behavior. With lipid effects better understood, peptide amphiphiles were designed, synthesized, and studied using peptide sequences of importance for cell adhesion. The sequences [IV-H1] from type IV collagen and Arg-Gly-Asp (RGD) were lipidated and characterized in monolayers by Langmuir isotherms and Fourier transform infrared spectroscopy. Biological functionality was determined by melanoma cell spreading assays. Peptide presentation was found to be critical for

  19. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Rati Ranjan; Yamada, Tasuku; Matsuoka, Hideki, E-mail:, E-mail: [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)


    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  20. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery. (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal


    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer.

  1. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha


    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  2. The Structure of Sucrose Synthase-1 from Arabidopsis thaliana and Its Functional Implications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi; Anderson, Spencer; Zhang, Yanfeng; Garavito, R. Michael (MSU); (NWU)


    Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-{angstrom} resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.

  3. Deregulation of sucrose-controlled translation of a bZIP-type transcription factor results in sucrose accumulation in leaves.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Thalor

    Full Text Available Sucrose is known to repress the translation of Arabidopsis thaliana AtbZIP11 transcript which encodes a protein belonging to the group of S (S--stands for small basic region-leucine zipper (bZIP-type transcription factor. This repression is called sucrose-induced repression of translation (SIRT. It is mediated through the sucrose-controlled upstream open reading frame (SC-uORF found in the AtbZIP11 transcript. The SIRT is reported for 4 other genes belonging to the group of S bZIP in Arabidopsis. Tobacco tbz17 is phylogenetically closely related to AtbZIP11 and carries a putative SC-uORF in its 5'-leader region. Here we demonstrate that tbz17 exhibits SIRT mediated by its SC-uORF in a manner similar to genes belonging to the S bZIP group of the Arabidopsis genus. Furthermore, constitutive transgenic expression of tbz17 lacking its 5'-leader region containing the SC-uORF leads to production of tobacco plants with thicker leaves composed of enlarged cells with 3-4 times higher sucrose content compared to wild type plants. Our finding provides a novel strategy to generate plants with high sucrose content.

  4. New rat models of iron sucrose-induced iron overload. (United States)

    Vu'o'ng Lê, Bá; Khorsi-Cauet, Hafida; Villegier, Anne-Sophie; Bach, Véronique; Gay-Quéheillard, Jérôme


    The majority of murine models of iron sucrose-induced iron overload were carried out in adult subjects. This cannot reflect the high risk of iron overload in children who have an increased need for iron. In this study, we developed four experimental iron overload models in young rats using iron sucrose and evaluated different markers of iron overload, tissue oxidative stress and inflammation as its consequences. Iron overload was observed in all iron-treated rats, as evidenced by significant increases in serum iron indices, expression of liver hepcidin gene and total tissue iron content compared with control rats. We also showed that total tissue iron content was mainly associated with the dose of iron whereas serum iron indices depended essentially on the duration of iron administration. However, no differences in tissue inflammatory and antioxidant parameters from controls were observed. Furthermore, only rats exposed to daily iron injection at a dose of 75 mg/kg body weight for one week revealed a significant increase in lipid peroxidation in iron-treated rats compared with their controls. The present results suggest a correlation between iron overload levels and the dose of iron, as well as the duration and frequency of iron injection and confirm that iron sucrose may not play a crucial role in inflammation and oxidative stress. This study provides important information about iron sucrose-induced iron overload in rats and may be useful for iron sucrose therapy for iron deficiency anemia as well as for the prevention and diagnosis of iron sucrose-induced iron overload in pediatric patients.

  5. Sucrose: A Prospering and Sustainable Organic Raw Material (United States)

    Peters, Siegfried; Rose, Thomas; Moser, Matthias

    Sucrose (α-d-glucopyranosyl-(1→2)-β-d-fructofuranoside) is an inexpensive chemical produced by sugar cane and sugar beet cultivation. Chemical and/or biochemical transformations convert it into highly valuable synthetic intermediates such as 5-hydroxymethylfurfural (HMF), bioethylene, 1,2-propylene glycol and levulinic acid. Sucrose can also be converted into biodegradable polymers such as polyesters and polyurethanes, as well as into novel carbohydrates such as isomaltulose, trehalulose, inulin, levan, Neo-amylose, and dextran, highly valuable additives for food and cosmetics and materials for separation and purification technologies.

  6. Anharmonicity and hydrogen bonding in electrooptic sucrose crystal (United States)

    Szostak, M. M.; Giermańska, J.


    The polarized absorption spectra of the sucrose crystal in the 5300 - 7300 cm -1 region have been measured. The assignments of all the eight OH stretching overtones are proposed and their mechanical anharmonicities are estimated. The discrepancies from the oriented gas model (OGM) in the observed relative band intensities, especially of the -CH vibrations, are assumed to be connected with vibronic couplings enhanced by the helical arrangement of molecules joined by hydrogen bondings. It seems that this kind of interactions might be important for the second harmonic generation (SHG) by the sucrose crystal.

  7. Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites (United States)

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Yan, Xuehai; Zhao, Xiaoqing; Zhou, Jingxin; Gao, Faming


    Self-assembly of hierarchical graphene oxide (GO)-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters. PMID:24983466

  8. Grafting amphiphilic brushes onto halloysite nanotubes via a living RAFT polymerization and their Pickering emulsification behavior. (United States)

    Hou, Yifan; Jiang, Junqing; Li, Kai; Zhang, Yanwu; Liu, Jindun


    Amphiphilic brushes of poly(4-vinylpyridine)-block-polystyrene (P4VP-b-PS) and polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) are grafted onto halloysite nanotubes (HNTs) via a surface reversible addition-fragmentation chain transfer (RAFT) living polymerization through anchoring R group in RAFT agent S-1-dodecyl-S'-(R,R'-dimethyl-R″-acetic acid) trithiocarbonates (DDMAT). The characterization of TGA, TEM, and GPC show that amphiphilic brushes are successfully grafted onto HNTs in a living manner. To verify the amphiphilicity of HNTs grafted with block copolymers, their Pickering emulsification behavior in water/soybean oil diphase mixture is studied. The results show that modified HNTs can emulsify water/soybean oil diphase mixture and the emulsification performance is dependent on microstructure of amphiphilic brushes such as hydrophilic/hydrophobic segment size and sequence.

  9. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids. (United States)

    Brahmachari, Sayanti; Das, Dibyendu; Das, Prasanta Kumar


    Stable aqueous SWNT dispersion up to 92% was achieved using amino acid based amphiphiles through a structure-property investigation. The nanohybrids showed remarkable serum stability and biocompatibility to mammalian cells.

  10. Tunable catalysts for solvent-free biphasic systems: pickering interfacial catalysts over amphiphilic silica nanoparticles. (United States)

    Zhou, Wen-Juan; Fang, Lin; Fan, Zhaoyu; Albela, Belén; Bonneviot, Laurent; De Campo, Floryan; Pera-Titus, Marc; Clacens, Jean-Marc


    Stabilization of oil/oil Pickering emulsions using robust and recyclable catalytic amphiphilic silica nanoparticles bearing alkyl and propylsulfonic acid groups allows fast and efficient solvent-free acetalization of immiscible long-chain fatty aldehydes with ethylene glycol.

  11. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids. (United States)

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe


    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  12. Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof (United States)

    Stupp, Samuel I.; Guler, Mustafa O.


    Branched peptide amphiphilic compounds incorporating one or residues providing a pendant amino group for coupling one or more epitope sequences thereto, such compounds and related compositions for enhanced epitope presentation.

  13. Self-assembling peptide amphiphiles and related methods for growth factor delivery (United States)

    Stupp, Samuel I.; Donners, Jack J. J. M.; Silva, Gabriel A.; Behanna, Heather A.; Anthony, Shawn G.


    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  14. Elastic modulus and flexural strength comparisons of high-impact and traditional denture base acrylic resins

    Directory of Open Access Journals (Sweden)

    Nour M. Ajaj-ALKordy


    Conclusion: Within the limitations of this study, it can be concluded that the high-impact acrylic resin is a suitable denture base material for patients with clinical fracture of the acrylic denture.

  15. Amphiphilic organoplatinum(II) complexes: Self-assembly in solution and at interfaces (United States)

    Maran, Umamageswaran

    Organoplatinum(II) gemini amphiphiles with three different chain lengths and a predefined angle of 60° are synthesized. Self-organization at the air-water interface is investigated as a function of chain length and reduction in surface area, by using Langmuir-trough techniques. The atomic force microscopy (AFM) images of the transferred Langmuir-Schaefer (LS) films reveals wormlike aggregates for the organoplatinum(II) gemini amphiphiles, possessing hexyloxy- and dodecyloxy-chains. A neutral crown ether functionalized [1+1] facial amphiphile was self-assembled from a flexible 32-membered dibenzo crown ether and a diplatinum acceptor clip. A homologous series of charged triangle-shaped amphiphilic metallomacrocyles was self-assembled from stoichiometric amounts of organoplatinum(II) gemini amphiphiles and bipyridyl donor molecules in quantitative yields. The amphiphilic triangular scaffolds were characterized by multinuclear NMR and ESI-MS. A new amphiphilic organoplatinum(II) precursor with a predefined angle of 90° was synthesized. The precursor was mixed in stoichiometric ratios with two different 3-substituted pyridines and a rigid bipyridyl ligand to construct three charged amphiphilic metallomacrocyles. The computational calculations on the assemblies constructed from flexible 3-substituted pyridines indicate that the assemblies exist largely as chair isomers. The self-organization of the hexacationic triangular amphiphiles at liquid-liquid, air-water and solid-air interfaces was studied using confocal microscopy, in situ Raman spectroscopy, Langmuir-trough techniques, fluorescence spectroscopy and AFM. The amphiphilic triangle with octadecyloxy-chains was found to form a bicontinuous coacervate with pores in a chloroform/water solvent mixture. The pressure-area isotherms revealed formation of surface aggregates at the air-water interface. Fluid AFM studies on the transferred LS layers reveal ridge-like patterns with a flat top. Models were constructed to

  16. Synthesis and Demulsibility of the Terpolymer Demulsifier of Acryl Resin

    Institute of Scientific and Technical Information of China (English)

    KANG,Wan-Li; MENG,Ling-Wei; ZHANG,Hong-Yan; LIU,Shu-Ren


    Terpolymer demulsifier of acryl resin has been synthesized through solution polymerization with water as a dissolvent,potassium persulfate as an initiator and the monomers of methyl methacrylate,butyl acrylate and acrylic acid as starting materials.The effects of the reaction temperature,dripping time,the amount of monomers and initiator on the dehydration rate of the demulsifier were investigated by an orthogonal experiment.It shows that the stronger influence on the dehydration rate among six factors is reaction temperature,dripping time,and amount of catalyst,while monomer has weak influence.The performance of the demulsifier was evaluated under different demulsification time,temperatures and concentrations of the screened demulsifiers.The result shows that the dehydration rate of the demulsifier can reach over 67%,which is better than that by the emulsion polymerization way.

  17. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy


    Full Text Available Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  18. Nucleophilic addition of reactive dyes on amidoximated acrylic fabrics. (United States)

    El-Shishtawy, Reda M; El-Zawahry, Manal M; Abdelghaffar, Fatma; Ahmed, Nahed S E


    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% of of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics.

  19. Lightweight bonded acrylic facing at the Vitra VSL Factory

    Directory of Open Access Journals (Sweden)



    Full Text Available Corresponding author: Matthias Michel, E-mail: Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the path toward the digital era, the authors were in the fortunate position to be involved in several unconventional glass and acrylic glass projects. On the basis of their most recent project, the facade of the Vitra VSL Factory by SANAA Architekten, they describe the development of a facade for which they chose acrylic glass not as a substitute for glass but rather as a conscious material choice. Since the entire facade is it was possible to apply the manufacturing technology of deep-drawing, allowing for very thin wall thicknesses.

  20. Lightweight bonded acrylic facing at the Vitra VSL Factory

    Directory of Open Access Journals (Sweden)

    Matthias Michel


    Full Text Available Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the path toward the digital era, the authors were in the fortunate position to be involved in several unconventional glass and acrylic glass projects.On the basis of their most recent project, the  facade of the Vitra VSL Factory by SANAA Architekten, they describe the development of a facade for which they chose acrylic glass not as a substitute for glass but rather as a conscious material choice. Since the entire facade is it was possible to apply the manufacturing technology of deep-drawing, allowing for very thin wall thicknesses.


    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhenfeng; HU Xingzhou; YAN Qing


    Photoinduced grafting of acrylic and allyl monomers on polyethylene surface was generally studied by using benzophenone (BP) as a photoinitiator. The grafting process was carried out either in vapor-phase or in solution of the monomers. In the vapor-phase reaction with a filter used to cut off the short wavelength UV light, allyl amine is the most reactive of the four monomers used and acrylic amide is comparatively more reactive than acrylic acid and allyl alcohol. Acetone, as a solvent and carrier for initiator and monomers, however, shows its reactivity to participate the reaction. The solution grafting with a filter is much faster than the corresponding vapor-phase reaction, and a fully covered surface by the grafted polymer can be achieved in this way.

  2. Formation of polymer vesicles by amphiphilic fluorosiloxane graft copolymers in solution

    Institute of Scientific and Technical Information of China (English)

    Rui Gang Hou; Ling Min Yi; He Ming Lin; Jia Wei Li; Chuan Xia Huang


    Amphiphilic fluorosiloxane graft copolymers with a poly(dimethylsiloxane) (PDMS) backbone, a hydrophobic fluorosiloxane side-chain and three hydrophilic polyether side-chains were synthesized by hydrosilation reaction in this work. The micellization of amphiphilic graft copolymers in the water/ethanol solvent system was investigated, and vesicles with different size were formed after the self-assembly system was aged for different time.

  3. Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles


    Miravet Celades, Juan Felipe; Escuder Gil, Beatriu; Segarra Maset, María Dolores; Tena Solsona, Marta; Hamley, Ian W; Dehsorkhi, Ashkan; Castelletto, Valeria


    A thermal transition is observed in the peptide amphiphile C16-KTTKS (TFA salt) from nanotapes at 20 °C to micelles at higher temperature (the transition temperature depending on concentration). The formation of extended nanotapes by the acetate salt of this peptide amphiphile, which incorporates a pentapeptide from type I procollagen, has been studied previously [V. Castelletto et al., Chem. Commun., 2010, 46, 9185]. Here, proton NMR and SAXS provide evidence for the TFA salt spherical micel...

  4. Platform Approach to Produce Polymer Nanoparticles with Modular Functionality from Amphiphilic Block Copolymer Stabilizers (United States)


    functionality, an amphiphilic BCP scaffold was devised to serve as an emulsion polymerization stabilizer. The PS-b-P(EO-co-AGE) BCP contained a PS...synthesized via emulsion polymerization using an amphiphilic block copolymer (BCP) surfactant. The polystyrene-block-poly(ethylene oxide-co-allyl...glycidyl ether) BCPs with various lengths and functional monomer incorporation were synthesized using anionic polymerization . Modification of the allyl

  5. Self-assembling Characteristics of Amphiphilic Star Block Copolymers with a Polyelectrolyte Shell

    Institute of Scientific and Technical Information of China (English)

    S.Strandman; A.Zarembo; V.Aseyev; S.J.Butcher; H.Tenhu


    1 Results Amphiphilic block copolymers are capable of forming supramolecular assemblies resembling those observed in nature,such as spherical micelles,worm micelles,and vesicles.Changing the solvent composition,ionic strength or pH of the polymer solution may induce the self-assembly of block copolymers or trigger the transition between the geometries of noncovalent assemblies.In the current work,we have synthesised starlike amphiphilic block copolymers having hydrophobic poly(methyl methacrylate),PMMA,...

  6. The effect of sucrose on unfrozen water and syneresis of acidified sodium caseinate-xanthan gels. (United States)

    Braga, A L M; Cunha, R L


    The influence of the ingredients of acidified Na caseinate-xanthan-sucrose gels on thermophysical properties and syneresis of the gels was studied. Sucrose concentration affected all of the gel equilibrium properties and the rate of syneresis. The positive effect of sucrose on syneresis and unfrozen water (UFW) values was attributed to different effects. The amount of UFW was governed mainly by the colligative properties of sucrose whereas the equilibrium syneresis behaviour was associated with the changes in network dynamics caused by the kosmotropic properties of sucrose. The latter could enhance xanthan-sucrose association or favour xanthan-protein interactions.

  7. Ultrasonic velocities, densities, and excess molar volumes of binary mixtures of N,N-dimethyl formamide with methyl acrylate, or ethyl acrylate, or butyl acrylate, or 2-ethyl hexyl acrylate at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Kondaiah, M. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Sravana Kumar, D. [Dr. V.S. Krishna Govt. Degree College, Visakhapatnam, Andhra Pradesh (India); Sreekanth, K. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India); Krishna Rao, D., E-mail: [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Andhra Pradesh (India)


    Highlights: > Positive values of V{sub m}{sup E}, indicate dispersion forces between acrylic esters and DMF. > V{sub m}{sup E} values compared with Redlich-Kister polynomial. > Partial molar volumes data conclude that weak interactions exist in the systems. > Measured velocity values compared with theoretical values obtained by polynomials. - Abstract: Ultrasonic velocities, u, densities, {rho}, of binary mixtures of N,N-dimethyl formamide (DMF) with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA), and 2-ethyl hexyl acrylate (EHA), including pure liquids, over the entire composition range have been measured at T = 308.15 K. Using the experimental results, the excess molar volume, V{sub m}{sup E}, partial molar volumes, V-bar {sub m,1}, V-bar{sub m,2}, and excess partial molar volumes, V-bar{sub m,1}{sup E}, V-bar{sub m,2}{sup E} have been calculated. Molecular interactions in the systems have been studied in the light of variation of excess values of calculated properties. The excess properties have been fitted to Redlich-Kister type polynomial and the corresponding standard deviations have been calculated. The positive values of V{sub m}{sup E} indicate the presence of dispersion forces between the DMF and acrylic ester molecules. Further theoretical values of sound velocity in the mixtures have been evaluated using various theories and have been compared with experimental sound velocities to verify the applicability of such theories to the systems studied. Theoretical ultrasonic velocity data have been used to study molecular interactions in the binary systems investigated.

  8. Mimicking cell membrane-like structures on alkylated silicon surfaces by peptide amphiphiles

    Energy Technology Data Exchange (ETDEWEB)

    Shamsi, Fahimeh, E-mail: [Biophysics and Bioengineering, School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006 (Australia); Coster, Hans G.L. [Biophysics and Bioengineering, School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006 (Australia)


    Highlights: {yields} Lipidated peptide amphiphiles were hydrophobically attached onto an alkylated surface. {yields} Morphology of nanofibres of the peptide amphiles depended on the acyl chain length. {yields} We show that extended 2D analogues of the nanofibre surface can be constructed. {yields} Peptide amphiphiles with shorter acyl chains formed more homogeneous layers. - Abstract: We present a new strategy for flexible attachment of peptide amphiphiles on functionalized silicon surfaces. This method involves the production of an alkylated surface on which a lipidated peptide can then be attached through hydrophobic interaction. We applied this to two derivatives of amphiphilic peptide molecules with the same amino acid sequence (A-A-A-A-G-G-G-E-R-G-D) but different in alkyl chain lengths (palmitic acid, undecanoic acid). The basis of this work was to develop substrates which are more biocompatible and bioactive. The ultra-thin peptide amphiphile films were characterized using electrical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (ATR-FTIR) spectroscopy. The results demonstrated that the length of the alkyl chain in the peptide amphiphile affects the packing and coverage of the peptides on the silicon surface.

  9. Solvent-free, molecular-level modeling of self-assembling amphiphiles in water (United States)

    Dey, Somajit; Saha, Jayashree


    Aggregation mesophases of self-assembling amphiphiles in water are highly important in the context of biology (biomembranes), therapy (liposomes), industry (polymer surfactants), and condensed-matter physics (lyotropic liquid crystals). Besides helping to increase fundamental understanding of collective molecular behavior, simulations of these lyotropic phases are pivotal to technological and medical developments such as smart drug carriers for gene therapy. Implicit-solvent, coarse-grained, low resolution modeling with a simple pair potential is the key to realizing the larger length and time scales associated with such mesoscopic phenomena during a computer simulation. Modeling amphiphiles by directed, soft, ellipsoidal cores interacting via a computationally simple yet tunable anisotropic pair potential, we have come to such a single-site model amphiphile that can rapidly self-assemble to give diverse lyotropic phases (such as fluid bilayers, micelles, etc.) without requiring the explicit incorporation of solvent particles. The model directly represents a tunable packing parameter that manifests in the spontaneous curvature of the amphiphile aggregates. Besides the all-important hydrophobic interaction, the hydration force is also treated implicitly. Thanks to the efficient solvent-free molecular-level coarse graining, this model is suitable for generic mesoscale studies of phenomena such as self-assembly, amphiphile mixing, domain formation, fusion, elasticity, etc., in amphiphile aggregates.

  10. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes (United States)

    Song, Jibin; Huang, Peng; Chen, Xiaoyuan


    Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624

  11. Comparison of classical dermatoscopy and acrylic globe magnifier dermatoscopy

    DEFF Research Database (Denmark)

    Lorentzen, Henrik F; Eefsen, Rikke Løvendahl; Weismann, Kaare


    Dermatoscopic asymmetry of melanocytic skin lesion is pivotal in most algorithms assessing the probability of melanoma. Larger lesions cannot be assessed by dermatoscopy and the Dermaphot in a single field of vision, but this can be performed using the acrylic globe magnifier. We examined......% confidence interval 83-97%). Sensitivity for melanoma, benign melanocytic naevi and basal cell carcinoma was 100%, 98% and 85%, respectively. Specificity was 95%, 94% and 100% for melanoma, naevi and basal cell carcinoma. Acrylic globe dermatoscopy enables a diagnostic accuracy similar to epiluminescence...


    Institute of Scientific and Technical Information of China (English)

    ZHOU Maotang; LI Qian; XU Jiping


    Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques.Two different methods have been used to introduce -COONa groups into polymer chains of the gels: (1) by partial hydrolysis of acrylamide homopolymer gel; (2) by direct copolymerization and crosslinking of acrylamide and sodium acrylate in aqueous solutions. It was found that the gels obtained in different ways had different properties, the swelling character of the gels obtained by partial hydrolysis were more sensitive to pH of swelling aqueous media. In order to explain these differences,13 C-NMR techniques were used to investigate the sequence distribution of monomer units of both gels.

  13. Evaluation of Cellular Toxicity of Three Denture Base Acrylic Resins


    Ebrahimi Saravi, M.; M. Vojdani; Bahrani, F


    Objective This study aimed to evaluate the cellular toxicity of two newly-released acrylic resins (Futura Gen and GC Reline Hard) in comparison with the conventional heat-cure resin (Meliodent). Materials and Methods: Sample discs from each acrylic resin were placed in 24-well culture plates along with L929 mouse fibroblast cell line. A mixture of the RPMI 1640 medium, antibiotics and 10% FBS was added to the plates and the specimens were incubated in a CO2 incubator. The amount of light abso...

  14. The creep behavior of acrylic denture base resins. (United States)

    Sadiku, E R; Biotidara, F O


    The creep behavior of acrylic dental base resins, at room temperature and at different loading conditions, has been examined. The behaviors of these resins are similar to that of "commercial perspex" at room temperature over a period of 1000 seconds. The pseudo-elastic moduli of the blends of PMMA VC show a significant increase compared with PMMA alone. The addition of the PVC powder to the heat-cured acrylic resin increased the time-dependent elastic modulus. This increase in elastic modulus is advantageous in the production of denture based resins of improv mechanical properties.

  15. Triphenylphosphine-Catalyzed Michael Addition of Alcohols to Acrylic Compounds

    Institute of Scientific and Technical Information of China (English)

    LIU, Hai-Ling; JIANG, Huan-Feng; WANG, Yu-Gang


    A facile triphenylphosphine-catalyzed Michael addition of alcohols to acrylic compounds was described. The reaction was carried out in open air at refluxing temperature in the presence of 10 mol% PPh3. Michael addition of saturated and unsaturated alcohols to acrylonitrile or acrylates has been examined. The reaction gaveβ-alkoxy derivatives with isolated yields of 5%-79%. PPh3 is cheaper and more stable than those trialkylphosphines previously used for the similar reactions, and the products can be easily separated from the reaction mixture via distillation.

  16. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (United States)


    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  17. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic). (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  18. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (United States)


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...


    DEFF Research Database (Denmark)

    Clemmensen, S.


    The cross-reaction patterns of selected acrylate and methacrylate esters were investigated using the guinea pig maximization test. Methacrylates were less potent sensitizers than acrylates. Cross-sensitization was found between (meth)acrylates with closely related core structures, most extensively...

  20. The effect of acrylic resin functionality on the curing process and properties of acrylic-hexamethoxymethylmelamine coatings

    Directory of Open Access Journals (Sweden)

    Prendžov Slobodan J.


    Full Text Available In this paper the effect of the functionality of synthesized thermosetting acrylic resins (with hydroxy and carboxy groups and the cure temperature on the process of crosslinking and properties of the coatings was investigated. Methylated melamine resin, characterized by 1H and C NMR was used as the crosslinking agent. The degree of crosslinking was studied by infrared spectroscopy by determining the conversion of functional groups and the sol fraction. On the basis of the results obtained it was found that compositions with lower functionality of the acrylic resin had a higher conversion of functional groups, during which cocondensation reactions occurred (acrylic melamine crosslinks in a wide temperature crosslinking range. Consequently better control of the coating properties was achieved. The degree of crosslinking was in good correlation to the sol fraction content and the resin hardness.

  1. Enzymatic synthesis and NMR studies of acylated sucrose acetates

    NARCIS (Netherlands)

    Steverink-De Zoete, M.C.; Kneepkens, M.F.M.; Waard, de P.; Woudenberg-van Oosterom, M.; Gotlieb, K.F.; Slaghek, T.


    The lipase-catalyzed esterification of partially acetylated sucrose has been studied. It was shown that the chemical acetylation increased the reaction rate of the subsequent enzymatic acylation. Thus it was possible to perform the enzymatic acylation in the absence of solvents while underivatized s

  2. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis

    DEFF Research Database (Denmark)

    Sprogøe, Desiree; van den Broek, Lambertus A M; Mirza, Osman


    phosphorylase from Bifidobacterium adolescentis (BiSP) refined at 1.77 A resolution. It represents the first 3D structure of a sucrose phosphorylase and is the first structure of a phosphate-dependent enzyme from the glycoside hydrolase family 13. The structure of BiSP is composed of the four domains A, B, B...

  3. Sucrose Responsiveness, Learning Success, and Task Specialization in Ants (United States)

    Perez, Margot; Rolland, Uther; Giurfa,, Martin; d'Ettorre, Patrizia


    Social insects possess remarkable learning capabilities, which are crucial for their ecological success. They also exhibit interindividual differences in responsiveness to environmental stimuli, which underlie task specialization and division of labor. Here we investigated for the first time the relationships between sucrose responsiveness,…

  4. [The applicability of sucrose laurate in hot-melt technology]. (United States)

    Lang, Péter; Szuts, Angéla; Ambrus, Rita; Szabóné, Révész Piroska


    Nowadays, one of the most important task of the pharmaceutical technology is to optimize the dissolution of active ingredients, because most of the drug candidates have a poorly water solubility and hence a slow absorption. According to the latest examinations, the bioavailability of poorly water soluble drugs can be increased significantly by using surfactants or the mixture of surfactants and polymers. Nowadays, surfactants (like polysorbates) are generally used in the production of solid dispersions, so the use of surface-active sucrose esters can be resulted an innovative solution in the pharmaceutical technology. The aim of our investigation was to examine the applicability of sucrose laurate in hot-melt technology in order to influence the crystalline structure and dissolution rate of a poorly water soluble drug (gemfibrosil) having low-melting point. The results of the X-ray powder diffractometry have showed that the sucrose laurate had no significant effect on the crystallization degree of the drug which is important in case of the stability. On the bases of the results of in-vitro dissolution studies, it can be concluded that the sucrose laurate (using minimum 5%) can be well applied in hot-melt technology with carriers having characteristic melting point (e.g. Macrogol) to increase the dissolution rate of poorly soluble drugs.

  5. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution (United States)


    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  6. 腈纶基牛奶纤维与腈纶纤维性能比较%Comparison of the performance of acrylic milk fiber and acrylic fiber

    Institute of Scientific and Technical Information of China (English)

    耿琴玉; 吴佩云


    为了比较腈纶基牛奶纤维与腈纶纤维的基本性能,对腈纶基牛奶纤维的表观形态、力学性能、摩擦性能、卷曲弹性等进行了试验.结果表明,腈纶基牛奶纤维的纵向形态有隐条纹和不规则斑点,截面近似圆形并有明显的海岛状凹凸结构和细微孔隙;红外吸收光谱具有羊毛纤维典型的酰胺吸收谱带和腈纶纤维丙烯腈特征谱带;回潮率为4.34%,干、湿态下的断裂强度是腈纶纤维的67%~69%,断裂伸长率是腈纶纤维的1.26~1.27倍;干、湿态初始模量小于腈纶纤维;静、动态摩擦因数也小于腈纶纤维,而卷曲弹性回复率和残留卷曲率均大于腈纶纤维.%In order to compare the basic performance of acrylic milk fiber and acrylic fiber, surface morphology, mechanical properties, friction properties and crimp elasticity of acrylic milk fiber were tested. The results showed that the longitudinal morphology of acrylic milk fiber had hidden stripe and irregular spots, and the section of acrylic milk fiber was nearly circular and had obvious insular concave-convex structure and fine pores. The infrared absorption spectroscopy of acrylic milk fiber had typical amide absorption bands of wool fiber and acrylonitrile absorption bands of acrylic fiber. Moisture regain of acrylic milk fiber was 4.34%, the dry and wet breaking strength of acrylic milk fiber was 67%-69% of acrylic fiber; the elongation of acrylic milk fiber was 1.26-1.27 times of acrylic fiber. Dry and wet initial modulus of acrylic milk fiber were less than those of acrylic fiber. Static and dynamic friction factor of acrylic milk fiber were less than those of acrylic fiber, and the crimp recovery rate and residual crimp rate were larger than acrylic fiber.

  7. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms. (United States)

    Durso, S C; Vieira, L M; Cruz, J N S; Azevedo, C S; Rodrigues, P H; Simionato, M R L


    Streptococcus mutans is considered the primary etiologic agent of dental caries and contributes significantly to the virulence of dental plaque, especially in the presence of sucrose. To avoid the role of sucrose on the virulence factors of S. mutans, sugar substitutes are commonly consumed because they lead to lower or no production of acids and interfere with biofilm formation. This study aimed to investigate the contribution of sugar substitutes in the cariogenic potential of S. mutans biofilms. Thus, in the presence of sucrose, glucose, sucralose and sorbitol, the biofilm mass was quantified up to 96 h, the pH of the spent culture media was measured, the expression of biofilm-related genes was determined, and demineralization challenge experiments were conduct in enamel fragments. The presence of sugars or sugar substitutes profoundly affected the expression of spaP, gtfB, gtfC, gbpB, ftf, vicR and vicX in either biofilm or planktonic cells. The substitution of sucrose induced a down-regulation of most genes involved in sucrose-dependent colonization in biofilm cells. When the ratio between the expression of biofilm and planktonic cells was considered, most of those genes were down-regulated in biofilm cells in the presence of sugars and up-regulated in the presence of sugar substitutes. However, sucralose but not sorbitol fulfilled the purpose of reducing the cariogenic potential of the diet since it induced the biofilm formation with the lowest biomass, did not change the pH of the medium and led to the lowest lesion depth in the cariogenic challenge.

  8. New insight into the catalytic properties of rice sucrose synthase. (United States)

    Huang, Yu-Chiao; Hsiang, Erh-Chieh; Yang, Chien-Chih; Wang, Ai-Yu


    Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

  9. Sucrose Diffusion in Decellularized Heart Valves for Freeze-Drying. (United States)

    Wang, Shangping; Oldenhof, Harriëtte; Goecke, Tobias; Ramm, Robert; Harder, Michael; Haverich, Axel; Hilfiker, Andres; Wolkers, Willem Frederik


    Decellularized heart valves can be used as starter matrix implants for heart valve replacement therapies in terms of guided tissue regeneration. Decellularized matrices ideally need to be long-term storable to assure off-the-shelf availability. Freeze-drying is an attractive preservation method, allowing storage at room temperature in a dried state. However, the two inherent processing steps, freezing and drying, can cause severe damage to extracellular matrix (ECM) proteins and the overall tissue histoarchitecture and thus impair biomechanical characteristics of resulting matrices. Freeze-drying therefore requires a lyoprotective agent that stabilizes endogenous structural proteins during both substeps and that forms a protective glassy state at room temperature. To estimate incubation times needed to infiltrate decellularized heart valves with the lyoprotectant sucrose, temperature-dependent diffusion studies were done using Fourier transform infrared spectroscopy. Glycerol, a cryoprotective agent, was studied for comparison. Diffusion of both protectants was found to exhibit Arrhenius behavior. The activation energies of sucrose and glycerol diffusion were found to be 15.9 and 37.7 kJ·mol(-1), respectively. It was estimated that 4 h of incubation at 37°C is sufficient to infiltrate heart valves with sucrose before freeze-drying. Application of a 5% sucrose solution was shown to stabilize acellular valve scaffolds during freeze-drying. Such freeze-dried tissues, however, displayed pores, which were attributed to ice crystal damage, whereas vacuum-dried scaffolds in comparison revealed no pores after drying and rehydration. Exposure to a hygroscopic sucrose solution (80%) before freeze-drying was shown to be an effective method to diminish pore formation in freeze-dried ECMs: matrix structures closely resembled those of control samples that were not freeze-dried. Heart valve matrices were shown to be in a glassy state after drying, suggesting that they can

  10. Self-assembly of amphiphilic molecules in organic liquids (United States)

    Tung, Shih-Huang


    Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a

  11. Healing effect of Sodium-Sucrose-Octasulfate and EGF on epithelial corneal abrasions in rabbits

    DEFF Research Database (Denmark)

    Johansen, Sven; Heegaard, Steffen; Bjerrum, Kirsten Birgitte;


    ophthalmology, Sjögrens syndrome, cornea, abrasion, epidermal growth factor, sodium-sucrose-octasulfate......ophthalmology, Sjögrens syndrome, cornea, abrasion, epidermal growth factor, sodium-sucrose-octasulfate...

  12. The Path of Carbon in Photosynthesis XIX. The Identification of Sucrose Phosphate in Sugar Beet Leaves (United States)

    Buchanan, J. G.


    The recognition and characterization of a sucrose phosphate as an intermediate in sucrose by synthesis by green plants is described. A tentative structure for this phosphate is proposed and its mode of formation suggested.

  13. Solvent effects on the formation of nanoparticles and multilayered coatings based on hydrogen-bonded interpolymer complexes of poly(acrylic acid) with homo- and copolymers of N-vinyl pyrrolidone. (United States)

    Zhunuspayev, Daulet E; Mun, Grigoriy A; Hole, Patrick; Khutoryanskiy, Vitaliy V


    The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

  14. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition

    Energy Technology Data Exchange (ETDEWEB)

    Keleş, Elif, E-mail: [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Hazer, Baki, E-mail: [Department of Chemistry, Bülent Ecevit University, Zonguldak 67100 (Turkey); Cömert, Füsun B. [Department of Microbiology, Faculty of Medicine, Bülent Ecevit University, 67600 Zonguldak (Turkey)


    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene–block-polyisoprene–block-polystyrene (PS–b-PI–b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS–b-PI–b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, {sup 1}H NMR, {sup 13}C NMR, GPC and FTIR. - Graphical abstract: Double bonds of polyisoprene units in polystyrene–block-polyisoprene–block-polystyrene triblock copolymer were partially capped with PEG containing mercapto end group via thiol-ene addition in order to obtain antibacterial amphiphilic elastomer. Nano fibers from amphiphilic graft polymers solution were produced by electrospinning. The PEG grafted copolymer inhibits very effectively bacterial growth. Highlights: ► A commercial synthetic elastomer was grafted with PEG to obtain amphiphilic elastomer. ► Amphiphilic elastomer shows antibacterial properties. ► Electrospun micro fibers of the amphiphilic elastomer tend to globular formation.

  15. Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor

    NARCIS (Netherlands)

    Renirie, R.; Pukin, A.; Lagen, van B.; Franssen, M.C.R.


    Previously it has been shown that glycerol can be regioselectively glucosylated by sucrose phosphorylase from Leuconostoc mesenteroides to form 2-O-alpha-D-glucopyranosyl-glycerol (Coedl et al., Angew. Chem. Int. Ed. 47 (2008) 10086-10089). A series of compounds related to glycerol were investigated

  16. Acrylic acid and electric power cogeneration in an SOFC reactor. (United States)

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu


    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  17. Design and Synthesis of Novel Fluorine-containing Acrylates

    Institute of Scientific and Technical Information of China (English)


    A series of novel fluorine-containing acrylates 6a-6g were synthesized via the condensation of ethyl cyanoacetate and trifluoroacetic anhydride, followed by chloridization and the coupling reaction with amines. These new compounds exhibited some biological activity as preliminary bioassay indicated. A plausible reaction mechanism was outlined and discussed.

  18. Decarboxylation-based traceless linking with aroyl acrylic acids

    DEFF Research Database (Denmark)

    Nielsen, John


    beta-Keto carboxylic acids are known to decarboxylate readily. In our pursuit to synthesize beta-indolinyl propiophenones, we have exploited this chemistry as a mean of establishing a traceless handle. 2-Aroyl acrylic acids have been esterified to a trityl resin, after which Michael-type addition...

  19. Oil-acrylic hybrid latexes as binders for waterborne coatings

    NARCIS (Netherlands)

    Hamersveld, van E.M.S.; Es, van J.; German, A.L.; Cuperus, F.P.; Weissenborn, P.; Hellgren, A.C.


    The combination of the characteristics of oil, or alkyd, emulsions and acrylic latexes in a waterborne binder has been the object of various studies in the past. Strategies for combining the positive properties of alkyds, e.g. autoxidative curing, gloss and penetration in wood, with the fast drying

  20. Lightweight bonded acrylic facing at the Vitra VSL Factory

    NARCIS (Netherlands)

    Michel, M.T.; Techen, H.


    Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the

  1. 21 CFR 173.5 - Acrylate-acrylamide resins. (United States)


    ... additive consists of one of the following: (1) Acrylamide-acrylic acid resin (hydrolyzed polyacrylamide) is... or cane sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of the juice or 10 parts per million by weight of the liquor or the corn...

  2. Nanopigmented Acrylic Resin Cured Indistinctively by Water Bath or Microwave Energy for Dentures

    Directory of Open Access Journals (Sweden)

    L. S. Acosta-Torres


    Full Text Available The highlight of this study was the synthesis of nanopigmented poly(methyl methacrylate nanoparticles that were further processed using a water bath and/or microwave energy for dentures. The experimental acrylic resins were physicochemically characterized, and the adherence of Candida albicans and biocompatibility were assessed. A nanopigmented acrylic resin cured by a water bath or by microwave energy was obtained. The acrylic specimens possess similar properties to commercial acrylic resins, but the transverse strength and porosity were slightly improved. The acrylic resins cured with microwave energy exhibited reduced C. albicans adherence. These results demonstrate an improved noncytotoxic material for the manufacturing of denture bases in dentistry.

  3. Sensitization capacity of acrylated prepolymers in ultraviolet curing inks tested in the guinea pig. (United States)

    Björkner, B


    One commonly used prepolymer in ultraviolet (UV) curing inks is epoxy acrylate. Of 6 men with dermatitis contracted from UV-curing inks, 2 had positive patch test reaction to epoxy acrylate. None reacted to the chemically related bisphenol A dimethacrylate. The sensitization capacity of epoxy acrylate and bisphenol A dimethacrylate performed with the "Guinea pig maximization test" (GPM) shows epoxy acrylate to be an extreme sensitizer and bisphenol A dimethacrylate a moderate sensitizer. Cross-reaction between the two substances occurs. The epoxy resin oligomer MW 340 present in the epoxy acrylate also sensitized some animals.

  4. 77 FR 18827 - Draft Guidance for Industry on Bioequivalence Recommendations for Iron Sucrose Injection... (United States)


    ... Recommendations for Iron Sucrose Injection; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice...) for iron sucrose injection. DATES: Although you can comment on any guidance at any time (see 21 CFR 10... recommendations. This notice announces the availability of draft BE recommendations for iron sucrose......

  5. Reinforcement Value and Substitutability of Sucrose and Wheel Running: Implications for Activity Anorexia (United States)

    Belke, Terry W.; Duncan, Ian D.; Pierce, W. David


    Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior…

  6. Anti-biofouling properties of amphiphilic phosphorylcholine polymer films. (United States)

    Li, Yan; Liu, Cheng-Mei; Yang, Jin-Ying; Gao, Ya-Hui; Li, Xue-Song; Que, Guo-He; Lu, J R


    Surfaces of amphiphilic phosphorylcholine polymer (PC1036) prepared by spin-coating were characterized by spectroscopic ellipsometry, water contact angle and atomic force microscopy. The antifouling properties of the PC1036 films to marine benthic diatom Nitzschia closterium MMDL533 were also investigated. The results showed that the dry PC1036 film promoted the adhesion of N. closterium MMDL533 because the hydrophobic lauryl groups were present in the film surface. The 2 h-swelled PC1036 films had excellent anti-fouling properties with extremely low attachment densities and retention densities no matter what the annealing temperature was. The thickness of the coated films lower than 147 Å had a profound effect on the film anti-fouling properties. Otherwise, when the film thickness was higher than that value, there was no more improvement of diatom cell reduction observed. The annealing temperature had only a little effect on the film resistant to diatom adhesion, which might be attributed to two factors including the PC group packing densities in the outer PC layer and the equilibrated water volume fraction in the 2 h-swelled PC1036 films.

  7. Effect of Amphiphiles on the Rheology of Triglyceride Networks (United States)

    Seth, Jyoti


    Networks of aggregated crystallites form the structural backbone of many products from the food, cosmetic and pharmaceutical industries. Such materials are generally formulated by cooling a saturated solution to yield the desired solid fraction. Crystal nucleation and growth followed by aggregation leads to formation of a space percolating fractal-network. It is understood that microstructural hierarchy and particle-particle interactions determine material behavior during processing, storage and use. In this talk, rheology of suspensions of triglycerides (TAG, like tristearin) will be explored. TAGs exhibit a rich assortment of polymorphs and form suspensions that are evidently sensitive to surface modifying additives like surfactants and polymers. Here, a theoretical framework will be presented for suspensions containing TAG crystals interacting via pairwise potentials. The work builds on existing models of fractal aggregates to understand microstructure and its correlation with material rheology. Effect of amphiphilic additives is derived through variation of particle-particle interactions. Theoretical predictions for storage modulus will be compared against experimental observations and data from the literature and micro structural predictions against microscopy. Such a theory may serve as a step towards predicting short and long-term behavior of aggregated suspensions formulated via crystallization.

  8. Self-assembly of model amphiphilic Janus particles. (United States)

    Rosenthal, Gerald; Gubbins, Keith E; Klapp, Sabine H L


    We apply molecular dynamics simulations to investigate the structure formation of amphiphilic Janus particles in the bulk phase. The Janus particles are modeled as (soft) spheres composed of a hydrophilic and hydrophobic part. Their orientation is described by a vector representing an internal degree of freedom. Investigating energy fluctuations and cluster size distributions, we determine the aggregation line in a temperature-density-diagram, where the reduced temperature is an inverse measure for the anisotropic coupling. Below this aggregation line clusters of various sizes depending on density and reduced temperature are found. For low densities in the range ρ∗ ≤ 0.3, the cluster size distribution has a broad maximum, indicating simultaneous existence of various cluster sizes between 5 and 10. We find no hint of a condensation transition of these clustered systems. In the case of higher densities (ρ∗ = 0.5 and 0.6), the cluster size distribution shows an extremely narrow peak at clusters of size 13. In these icosahedrons, the particles are arranged in a closed-packed manner, thereby maximizing the number of bonds. Analyzing the translational mean-square displacement we also observe indications of hindered diffusion due to aggregation.

  9. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla


    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were synthes...... and 20 μM concentrations. The dendrons showed low cytotoxicity, displaying cell viability well above 80%....... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...... with alkyl chain lengths above C12 are ascribed to intermicellar aggregates stabilized by hydrophobic and electrostatic forces in accordance with the observed pH effect. Finally, the cytotoxicity of the dendrons was evaluated in mouse fibroblast (NIH/3T3) and human embryonic kidney (HEK 293T) cells at 5, 10...

  10. Tissue Regeneration through Self-Assembled Peptide Amphiphile Nanofibers

    Directory of Open Access Journals (Sweden)

    Hossein Hosseinkhani


    Full Text Available Introduction: In the present study, we hypothesized that a novelapproach to promote vascularization would be to create injectablethree dimensional (3-D scaffolds within growth factor that enhancethe sustained release of growth factor and induce the angiogenesis.Material and Methods: We demonstrate that a 3-D scaffold can beformed by mixing of peptide-amphiphile (PA aqueous solution withhepatocyte growth factor (HGF solution. PA was synthesized bystandard solid phase chemistry that ends with the alkylation of theNH2 terminus of the peptide. The sequence of arginine-glycineasparticacid (RGD was included in peptide design as well. A 3-Dnetwork of nanofibers was formed by mixing HGF suspensions withdilute aqueous solution of PA.Results: Scanning electron microscopy (SEM examination revealedthe formation of fibrous assemblies with an extremely high aspectratio and high surface areas with mean diameter of less than 200 nm.In vitro HGF release profile of 3-D nanofibers was investigated whileangiogenesis induced by the released HGF was being assessed. Invivo potential ability of PA nanofibers to induce angiogenesis wasassessed through subcutaneous injection of PA solution, HGFsolution, and PA in combination with HGF solutions. Injection of PAwith HGF induced significant angiogenesis around the injected site,in marked contrast to HGF injection alone and PA injection alone.Conclusion: The combination of HGF-induced angiogenesis is apromising procedure to improve tissue regeneration.

  11. Optimization of hypocrellin B derivative amphiphilicity and biological activity

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; XIE Jie; ZHANG LuYong; CHEN HongXia; GU Ying; ZHAO JingQuan


    To satisfy the dual requirements of the fluent transportation in blood and the affinity to the target tissues of vascular diseases, hypocrellin derivatives with optimized amphiphilicity are expected. In this work, 3-amino-1-propanesulfonic acid and 4-amino-1-butanesulfonic acid substituted hypocrellin B,named compounds 1 and 2, were designed, synthesized in high yields and characterized. Besides greatly strengthened red absorption, the maximum solubility of compound 2 in phosphate buffered saline (PBS) is 4.2 mg/mL which is just enough to prepare an aqueous solution for intravenous injection in clinically acceptable concentration, while the partition coefficient between n-octanol and PBS,5.6, benefits the cell-uptake and biological activity as well. Furthermore, EPR measurements reveal that the photosensitization activities of the two compounds to generate semiquinone anion radicals, superoxide anion radicals and singlet oxygen are a little bit higher than those of taurine substituted hypocrellin B (THB), but the photodynamic activities to human lung cancer A549 cells are several times that of THB, mainly due to increases in lipophilicity and cell-uptake.

  12. Amphiphilic organic ion pairs in solution: a theoretical study. (United States)

    Pradines, Vincent; Poteau, Romuald; Pimienta, Veronique


    The macroscopic manifestation of hydrophobic interactions for amphiphilic organic ion pairs (tetraalkylammonium-anion) has been shown experimentally by measuring their association constants and their affinity with the organic phase. Beyond a certain size, there is a direct relation between association constants and chain lengths in tetraalkylammonium ions. We propose to cast a bridge between these results and geometrical properties considered at the level of a single ion pair by means of quantum chemistry calculations performed on model systems: trimethylalkylammonium-pentyl sulfate instead of tetraalkylammonium-dodecyl sulfate. Two limiting cases are considered: head-to-head configurations, which yield an optimal electrostatic interaction between polar heads, and parallel configurations with a balance between electrostatic and hydrophobic interactions. All properties (geometries, complexation energies, and atomic charges) were obtained at the MP2 level of calculation, with water described by a continuum model (CPCM). Dispersion forces link hydrocarbon chains of tetraalkylammonium ions and pentyl sulfate, thus yielding (for the largest ion pairs) parallel configurations favored with respect to head-to-head geometries by solute-solvent electrostatic interactions. Given the small experimental association energies, we probe the accuracy limit of the MP2 and CPCM methods. However, clear trends are obtained as a function of chain length, which agree with the experimental observations. The calculated monotonic stabilization of ion pairs when the hydrocarbon chain increases in length is discussed in terms of electrostatic interactions (between ions and between ion pairs and water), dispersion forces, and cavitation energies.

  13. Photochemical Isomerization and Topochemical Polymerization of the Programmed Asymmetric Amphiphiles (United States)

    Kim, Dae-Yoon; Lee, Sang-A.; Jung, Daseal; Jeong, Kwang-Un


    For the advancement in multi-stimuli responsive optical devices, we report the elaborate molecular engineering of the dual photo-functionalized amphiphile (abbreviated as AZ1DA) containing both a photo-isomerizable azobenzene and a photo-polymerizable diacetylene. To achieve the efficient photochemical reactions in thin solid films, the self-assembly of AZ1DA molecules into the ordered phases should be precisely controlled and efficiently utilized. First, the remote-controllable light shutter is successfully demonstrated based on the reversible trans-cis photo-isomerization of azobenzene group in the smectic A mesophase. Second, the self-organized monoclinic crystal phase allows us to validate the photo-polymerization of diacetylene moiety for the photo-patterned thin films and the thermo-responsible color switches. From the demonstrations of optically tunable thin films, it is realized that the construction of strong relationships between chemical structures, molecular packing structures and physical properties of the programmed molecules is the core research for the development of smart and multifunctional soft materials.

  14. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. (United States)

    Ghanaati, Shahram; Webber, Matthew J; Unger, Ronald E; Orth, Carina; Hulvat, James F; Kiehna, Sarah E; Barbeck, Mike; Rasic, Angela; Stupp, Samuel I; Kirkpatrick, C James


    Biomaterials that promote angiogenesis have great potential in regenerative medicine for rapid revascularization of damaged tissue, survival of transplanted cells, and healing of chronic wounds. Supramolecular nanofibers formed by self-assembly of a heparin-binding peptide amphiphile and heparan sulfate-like glycosaminoglycans were evaluated here using a dorsal skinfold chamber model to dynamically monitor the interaction between the nanofiber gel and the microcirculation, representing a novel application of this model. We paired this model with a conventional subcutaneous implantation model for static histological assessment of the interactions between the gel and host tissue. In the static analysis, the heparan sulfate-containing nanofiber gels were found to persist in the tissue for up to 30 days and revealed excellent biocompatibility. Strikingly, as the nanofiber gel biodegraded, we observed the formation of a de novo vascularized connective tissue. In the dynamic experiments using the dorsal skinfold chamber, the material again demonstrated good biocompatibility, with minimal dilation of the microcirculation and only a few adherent leukocytes, monitored through intravital fluorescence microscopy. The new application of the dorsal skinfold model corroborated our findings from the traditional static histology, demonstrating the potential use of this technique to dynamically evaluate the biocompatibility of materials. The observed biocompatibility and development of new vascularized tissue using both techniques demonstrates the potential of these angiogenesis-promoting materials for a host of regenerative strategies.

  15. Effects of composition and layer thickness of a butyl acrylate/acrylic acid copolymer on the adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, Deoukchen; Kim, Jung Hyeun [University of Seoul, Seoul (Korea, Republic of)


    Acrylic pressure-sensitive adhesives are synthesized by solution copolymerization using n-butyl acrylate and acrylic acid (AA) in ethyl acetate anhydrous. The copolymer composition is controlled for good adhesive properties by varying AA content. The monomer conversion is measured by the gravimetric method and FTIR technique. The adhesive layer thickness is measured by scanning electron microscopy, and the adhesive properties are evaluated with loop tack, 180 .deg. peel, and holding time measurements. The peel force increases with increasing the AA content up to 3 wt% and decreases at the AA content higher than 3 wt%, but the tack force decreases with increasing the AA content. The holding time increases with increasing the AA content, and it shows a similar trend with the T{sub g} of adhesives. The increase of layer thickness improves tack and peel forces, but it weakens the holding power. A tape thickness of about 20 μm shows well-balanced properties at 3 wt% AA content in the acrylic copolymer system.

  16. Efficient microwave assisted synthesis of novel 1,2,3-triazole-sucrose derivatives by cycloaddition reaction of sucrose azides and terminal alkynes. (United States)

    Potewar, Taterao M; Petrova, Krasimira T; Barros, M Teresa


    Novel 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-substituted-1,2,3-triazoles were synthesized by microwave assisted copper catalyzed 1,3-dipolar cycloaddition of sucrose derived azides with terminal alkynes in excellent yields and in short reaction times. The compound 1',2,3,3',4,4',6-hepta-O-acetyl-6'-azido-6'-deoxy-sucrose was regioselectively synthesized from sucrose by improved procedure and used for the cycloadditions. By combining carbohydrate and 1,2,3-triazole structural motifs, a library of 1,2,3-triazole-sucrose conjugates have been obtained.

  17. Effects of a high sucrose diet and intragastric sucrose feeding on the dentinogenesis, dental caries, and mineral excretion of the young rat. (United States)

    Pekkala, E; Hietala, E L; Puukka, M; Larmas, M


    Previous studies show that a high sucrose diet reduces the rate of primary dentinogenesis and increases dental caries, although their cause-effect relationship is still obscure. The purpose of this study was to explore whether the effect of sucrose load on the dentinogenesis and dental caries of young rat molars is mediated by systemic (intragastric) or by systemic and local (dietary) factors. At weaning (19 days), animals were randomized into the control, intragastric sucrose, and dietary sucrose groups for 4 weeks. The areas of dentin appositions and dentinal caries lesions were measured planimetrically. Caries was also determined with Shiffs staining and the width of predentin by histology. Urinary Ca, K, and Na levels were measured by flame photometry, urinary P levels using an UV method, and serum insulin levels using radioimmunoassay. Systemic and local sucrose load reduced dentin appositions and intragastric sucrose increased urinary Ca excretion. No differences in the width of predentin were noticed. Only dietary sucrose enhanced the occurrence and progression of caries. The present findings show that sucrose load reduces dentinogenesis by impairing the synthesis of dentin matrix, but also point out the crucial importance of the local sucrose challenge in the initiation of dental caries.

  18. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases. (United States)

    Vollhardt, D


    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction.

  19. Self-assembly of ssDNA-amphiphiles into micelles, nanotapes and nanotubes (United States)

    Pearce, Timothy R.

    The field of DNA nanotechnology utilizes DNA as a construction material to create functional supramolecular and multi-dimensional structures like two-dimensional periodic lattices and three-dimensional polyhedrons with order on the nanometer scale for many nanotechnology applications including molecular templating, nanosensors, and drug delivery. Single-stranded DNA (ssDNA) is often used to create these nanostructures as the DNA bases provide an intrinsic molecular code that can be exploited to allow for the programmed assembly of structures based upon Watson-Crick base-pairing. However, engineering these complex structures from biopolymers alone requires careful design to ensure that the intrinsic forces responsible for organizing the materials can produce the desired structures. Additional control over supramolecular assembly can be achieved by chemically modifying the ssDNA with hydrophobic moieties to create amphiphilic molecules, which adds the hydrophobic interaction to the list of contributing forces that drive the self-assembly process. We first explored the self-assembly behavior of a set of ssDNA aptamer-amphiphiles composed of the same hydrophobic tail and hydrophilic ssDNA aptamer headgroup but with different spacer molecules linking these groups together. Through the use of cryo-transmission electron microscopy (cryo-TEM), small angle x-ray scattering (SAXS), and circular dichroism (CD) we show that the aptamer-amphiphiles can assemble into a variety of structures depending on the spacer used. We demonstrated, for the first time, the creation of self-assembled aptamer-amphiphile nanotape structures and show that the choice of the spacer used in the design of aptamer-amphiphiles can influence their supramolecular self-assembly as well as the secondary structure of the aptamer headgroup. We next explored the role of the ssDNA headgroup on the amphiphile self-assembly behavior by designing amphiphiles with headgroups of multiple lengths and nucleotides

  20. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate. (United States)

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu


    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  1. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles. (United States)

    Pearce, Timothy R; Kokkoli, Efrosini


    DNA nanotubes were created using molecular self-assembly of single-stranded DNA (ssDNA)-amphiphiles composed of a hydrophobic dialkyl tail and polycarbon spacer and a hydrophilic ssDNA headgroup. The nanotube structures were formed by bilayers of amphiphiles, with the hydrophobic components forming an inner layer that was shielded from the aqueous solvent by an outer layer of ssDNA. The nanotubes appeared to form via an assembly process that included transitions from twisted nanotapes to helical nanotapes to nanotubes. Amphiphiles that contained different ssDNA headgroups were created to explore the effect of the length and secondary structure of the ssDNA headgroup on the self-assembly behavior of the amphiphiles in the presence and absence of the polycarbon spacer. It was found that nanotubes could be formed using a variety of headgroup lengths and sequences. The ability to create nanotubes via ssDNA-amphiphile self-assembly offers an alternative to the other purely DNA-based approaches like DNA origami and DNA tile assembly for constructing these structures and may be useful for applications in drug delivery, biosensing, and electronics.

  2. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.; (UIUC)


    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  3. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.


    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  4. A Sucrose Solution Application to the Study of Model Biological Membranes

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Lombardo, D; Killany, M; Lesieur, S; Ollivon, M


    The small-angle X-ray and neutron scattering, time resolved X-ray small-angle and wide-angle diffraction coupled with differential scanning calorimetry have been applied to the investigation of unilamellar and multilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose buffers with sucrose concentrations from 0 to 60%. Sucrose buffer decreased vesicle size and polydispersity and increased an X-ray contrast between phospholipid membrane and bulk solvent sufficiently. No influence of sucrose on the membrane thickness or mutual packing of hydrocarbon chains has been detected. The region of sucrose concentrations 30%-40% created the best experimental conditions for X-ray small-angle experiments with phospholipid vesicles.

  5. Susceptibility of Adult Mosquitoes to Insecticides in Aqueous Sucrose Baits (United States)


    of the lack of ingestion as a result of repellency due to high survival of water-deprived control mosquitoes at 24 hr and the abundance of abdomens...Vol. 36, no. 1 Journal of Vector Ecology 59 Susceptibility of adult mosquitoes to insecticides in aqueous sucrose baits Sandra A. Allan Center for...2010 ABSTRACT: Mosquitoes characteristically feed on plant-derived carbohydrates and honeydew just after emergence and intermittently during their

  6. Low phytic acid, low stachyose, high sucrose soybean lines



    The present invention provides novel soybean lines having high sucrose content and low phytic acid and low stachyose content. The soybeans are easily digested and provide high energy content for animals and humans. The low phytic acid content permits animal feed to be produced that does not require phytase, yet does not result in significant production of pollution to the environment from excretion by farm animals.

  7. Sucrose polyesters from poultry fat as non-ionic emulsifiers

    Directory of Open Access Journals (Sweden)

    Megahed, Mohamed G.


    Full Text Available Poultry fats are rich in palmitic and oleic acids are produced as by-products from poultry industries. These fats can be utilized in the preparation of emulsifiers. Sucrose esters of poultry fat are prepared from low-cost poultry fat and sucrose by esterification. The yield of sucrose esters prepared in this work exceeds than 85%. The hydrophilic-lipophilic balance (HLB, surface tension, interfacial tension and stability index (SI were evaluated and compared with standard emulsifiers prepared from pure palmitate and oleate esters. Concerning the stability of emulsions, the values of interfacial tension and HLB were higher for the sucrose esters of poultry fat.Las grasas de aves de corral son ricas en ácidos palmítico y oleico y son producidas como subproductos de las industrias avícolas. Estas grasas pueden ser utilizadas en la preparación de emulsionantes. Los ésteres de sacarosa de grasas de aves de corral fueron preparadas a partir de grasas de bajo coste y sacarosa por esterificación. El rendimiento de los ésteres de sacarosa preparados en este trabajo superó el 85%. El balance hidrofílicolipofílico (HLB, tensión superficial, tensión interfacial e índice de estabilidad (SI fueron evaluados y comparados con emulsionantes estandar preparados de ésteres de palmitato y oleato puros. Los valores de tensión interfacial y el HLB fueron más altos en los poliésteres de sacarosa de las grasas de aves de corral.

  8. Central melanocortins regulate the motivation for sucrose reward.

    Directory of Open Access Journals (Sweden)

    Rahul Pandit

    Full Text Available The role of the melanocortin (MC system in feeding behavior is well established. Food intake is potently suppressed by central infusion of the MC 3/4 receptor agonist α-melanocyte stimulating hormone (α-MSH, whereas the MC 3/4 receptor inverse-agonist Agouti Related Peptide (AGRP has the opposite effect. MC receptors are widely expressed in both hypothalamic and extra-hypothalamic brain regions, including nuclei involved in food reward and motivation, such as the nucleus accumbens (NAc and the ventral tegmental area. This suggests that MCs modulate motivational aspects of food intake. To test this hypothesis, rats were injected intracerebroventricularly with α-MSH or AGRP and their motivation for sucrose was tested under a progressive ratio schedule of reinforcement. Food motivated behavior was dose-dependently decreased by α-MSH. Conversely, AGRP increased responding for sucrose, an effect that was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. In contrast to progressive ratio responding, free intake of sucrose remained unaltered upon α-MSH or AGRP infusion. In addition, we investigated whether the effects of α-MSH and AGRP on food motivation were mediated by the NAc shell. In situ hybridization of MC3 and MC4 receptor expression confirmed that the MC4 receptor was expressed throughout the NAc, and injection of α-MSH and AGRP into the NAc shell caused a decrease and an increase in motivation for sucrose, respectively. These data show that the motivation for palatable food is modulated by MC4 receptors in the NAc shell, and demonstrate cross-talk between the MC and dopamine system in the modulation of food motivation.

  9. Structural analyses of sucrose laurate regioisomers by mass spectrometry techniques

    DEFF Research Database (Denmark)

    Lie, Aleksander; Stensballe, Allan; Pedersen, Lars Haastrup


    6- And 6′-O-lauroyl sucrose were isolated and analyzed by matrix-assisted laser desorption/ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS), Orbitrap high-resolution (HR) MS, and electrospray-ionization (ESI) tandem mass spectrometry (MS/MS). The analyses aimed to explore.......8, respectively, and Orbitrap HRMS confirmed the mass of [M+Na]+ (m/z 547.2712). ESI-MS/MS on the precursor ion [M+Na]+ resulted in product ion mass spectra showing two high-intensity signals for each sample. 6-O-Lauroyl sucrose produced signals located at m/z 547.27 and m/z 385.21, corresponding to the 6-O......-lauroyl glucose sodium adduct ions, while the signals for 6′-O-lauroyl sucrose were located at m/z 385.22 and 367.20, respectively corresponding to the sodium adduct ions with 6-O-lauroyl fructose and 6-O-lauroyl fructosyl. The mass spectra of the two regioisomers were clearly different, and the investigation...

  10. Sucrose-replacement by rebaudioside a in a model beverage. (United States)

    Majchrzak, Dorota; Ipsen, Annika; Koenig, Juergen


    Rebaudioside A (RA), a component of Stevia rebaudiana, is a non-caloric sweetener of natural origin, suitable to meet consumers' demand for sweet taste, but undesirable flavors were reported at high concentrations. Aim of this study was to create a model beverage (ice-tea) in which sucrose was replaced increasingly by RA to identify optimal sensory profile for consumer acceptance. Samples with 20 % and 40 % sucrose replacement by RA, respectively, showed very similar sensory profiles but were significantly higher in some flavor attributes, such as artificial sweetness, licorice-like and metallic, as well as in sweet and bitter aftertaste (p < 0.05) compared to the reference ice-tea. In both hedonic tests, preference and acceptance samples with RA have been judged as comparable to the reference despite perception of some undesirable notes. In view of the results of our study it can be stated that a replacement of 20 % or 40 % sucrose by RA in an ice-tea is achievable.

  11. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding. (United States)

    Peng, X-X; Lister, A; Rabinowitsch, A; Kolaric, R; Cabeza de Vaca, S; Ziff, E B; Carr, K D


    Weight-loss dieting often leads to loss of control, rebound weight gain, and is a risk factor for binge pathology. Based on findings that food restriction (FR) upregulates sucrose-induced trafficking of glutamatergic AMPA receptors to the nucleus accumbens (NAc) postsynaptic density (PSD), this study was an initial test of the hypothesis that episodic "breakthrough" intake of forbidden food during dieting interacts with upregulated mechanisms of synaptic plasticity to increase reward-driven feeding. Ad libitum (AL) fed and FR subjects consumed a limited amount of 10% sucrose, or had access to water, every other day for 10 occasions. Beginning three weeks after return of FR rats to AL feeding, when 24-h chow intake and rate of body weight gain had normalized, subjects with a history of sucrose intake during FR consumed more sucrose during a four week intermittent access protocol than the two AL groups and the group that had access to water during FR. In an experiment that substituted noncontingent administration of d-amphetamine for sucrose, FR subjects displayed an enhanced locomotor response during active FR but a blunted response, relative to AL subjects, during recovery from FR. This result suggests that the enduring increase in sucrose consumption is unlikely to be explained by residual enhancing effects of FR on dopamine signaling. In a biochemical experiment which paralleled the sucrose behavioral experiment, rats with a history of sucrose intake during FR displayed increased abundance of pSer845-GluA1, GluA2, and GluA3 in the NAc PSD relative to rats with a history of FR without sucrose access and rats that had been AL throughout, whether they had a history of episodic sucrose intake or not. A history of FR, with or without a history of sucrose intake, was associated with increased abundance of GluA1. A terminal 15-min bout of sucrose intake produced a further increase in pSer845-GluA1 and GluA2 in subjects with a history of sucrose intake during FR

  12. Membrane behavior as influenced by partitioning of amphiphiles during drying : a comparative study in anhydrobiotic plant systems

    NARCIS (Netherlands)

    Golovina, E.A.; Hoekstra, F.A.


    During cellular desiccation, reduction in volume can in principle cause amphiphilic compounds to partition from the cytoplasm into membranes, with structural perturbance as the result. Here, we studied the effect of partitioning of endogenous amphiphiles on membrane surface dynamics in desiccation-t

  13. Tuning peptide amphiphile supramolecular structure for biomedical applications (United States)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water

  14. Amphiphilic phase-transforming catalysts for transesterification of triglycerides (United States)

    Nawaratna, Gayan Ivantha

    Heterogeneous catalytic reactions that involve immiscible liquid-phase reactants are challenging to conduct due to limitations associated with mass transport. Nevertheless, there are numerous reactions such as esterification, transesterification, etherification, and hydrolysis where two immiscible liquid reactants (such as polar and non-polar liquids) need to be brought into contact with a catalyst. With the intention of alleviating mass transport issues associated with such systems but affording the ability to separate the catalyst once the reaction is complete, the overall goal of this study is geared toward developing a catalyst that has emulsification properties as well as the ability to phase-transfer (from liquid-phase to solid-phase) while the reaction is ongoing and evaluating the effectiveness of such a catalytic process in a practical reaction. To elucidate this concept, the transesterification reaction was selected. Metal-alkoxides that possess acidic and basic properties (to catalyze the reaction), amphiphilic properties (to stabilize the alcohol/oil emulsion) and that can undergo condensation polymerization when heated (to separate as a solid subsequent to the completion of the reaction) were used to test the concept. Studies included elucidating the effect of metal sites and alkoxide sites and their concentration effects on transesterification reaction, effect of various metal alkoxide groups on the phase stability of the reactant system, and kinetic effects of the reaction system. The studies revealed that several transition-metal alkoxides, especially, titanium and yttrium based, responded positively to this reaction system. These alkoxides were able to be added to the reaction medium in liquid phase and were able to stabilize the alcohol/oil system. The alkoxides were selective to the transesterification reaction giving a range of ester yields (depending on the catalyst used). It was also observed that transition-metal alkoxides were able to be

  15. Colloidosomes formed by nonpolar/polar/nonpolar nanoball amphiphiles. (United States)

    Chang, Hung-Yu; Tu, Sheng-Hung; Sheng, Yu-Jane; Tsao, Heng-Kwong


    Fullerene-based amphiphiles are able to form bilayer vesicles in aqueous solution. In this study, the self-assembly behavior of polymer-tethered nanoballs (NBs) with nonpolar/polar/nonpolar (n-p-n') motif in a selective solvent is investigated by dissipative particle dynamics. A model NB bears two hydrophobic polymeric arms (n'-part) tethered on an extremely hydrophobic NB (n-part) with hydrophilic patch (p-part) patterned on its surface. Dependent on the hydrophobicity and length of tethered arms, three types of aggregates are exhibited, including NB vesicle, core-shell micelle, and segmented-worm. NB vesicles are developed for a wide range of hydrophobic arm lengths. The presence of tethered arms perturbs the bilayer structure formed by NBs. The structural properties including the order parameter, membrane thickness, and area density of the inner leaflet decrease with increasing the arm length. These results indicate that for NBs with longer arms, the extent of interdigitation in the membrane rises so that the overcrowded arms in the inner corona are relaxed. The transport and mechanical properties are evaluated as well. As the arm length grows, the permeability increases significantly because the steric bulk of tethered arms loosens the packing of NBs. By contrast, the membrane tension decreases owing to the reduction of NB/solvent contacts by the polymer corona. Although fusion can reduce membrane tension, NB vesicles show strong resistance to fusion. Moreover, the size-dependent behavior observed in small liposomes is not significant for NB vesicles due to isotropic geometry of NB. Our simulation results are consistent with the experimental findings.

  16. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles. (United States)

    Chen, Cuixia; Chen, Yucan; Yang, Cheng; Zeng, Ping; Xu, Hai; Pan, Fang; Lu, Jian Ren


    Short designed peptide amphiphiles are attractive at killing bacteria and inhibiting cancer cell growth, and the flexibility in their structural design offers a great potential for improving their potency and biocompatibility to mammalian host cells. Amino acid sequences such as G(IIKK)nI-NH2 (n≥3) have been shown to be membrane lytic, but terminal amino acid modifications could impose a huge influence on their performance. We report in this work how terminal amino acid modifications to G(IIKK)3I-NH2 influence its α-helical structure, membrane penetrating ability, and selective actions against different cell types. Deletion of an N-terminal Gly or a C-terminal Ile did not affect their antibacterial activity much, an observation consistent with their binding behavior to negatively charged membrane lipid monolayers. However, the cytotoxicity against mammalian cells was much worsened by the N-terminal Gly deletion, consistent with an increase in its helical content. Despite little impact on the antibacterial activity of G(IIKK)3I-NH2, deletion of both terminal amino acids greatly reduced its antitumor activity. Cholesterol present in tumor cell membrane-mimic was thought to constrain (IIKK)3-NH2 from penetrating into the cancerous membranes, evident from its lowest surface physical activity at penetrating model lipid membranes. On the other hand, its low toxicity to normal mammalian cells and high antibacterial activity in vitro and in vivo made it an attractive antibacterial agent. Thus, terminal modifications can help rebalance the different interactions involved and are highly effective at manipulating their selective membrane responses.

  17. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. (United States)

    Basso, Thiago O; de Kok, Stefan; Dario, Marcelo; do Espirito-Santo, Júlio Cézar A; Müller, Gabriela; Schlölg, Paulo S; Silva, Carlos P; Tonso, Aldo; Daran, Jean-Marc; Gombert, Andreas K; van Maris, Antonius J A; Pronk, Jack T; Stambuk, Boris U


    Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.

  18. Intermittent access to a sucrose solution for rats causes long-term increases in consumption. (United States)

    Eikelboom, Roelof; Hewitt, Randelle


    Intermittent access to palatable food can elevate consumption beyond an animal's immediate needs. If adult male rats (with ad lib access to food and water) are provided with a 4% sucrose solution, daily sucrose consumption is determined by the sucrose access schedule: access that is intermittent leads to high levels of consumption. In Experiment 1, sucrose solutions were first provided continuously or every second, third, or fourth day for 23.5h over 49days. Continuous-access sucrose consumption averaged 102g per day, while that for access every fourth day averaged 294g. Daily consumption averages for access every second and third day fell between these two extremes. When all rats were then given alternate-day access to sucrose for 24days in Phase II, the previously established consumption differences were maintained. Body weight was unaffected by sucrose access; rats adjusted their food consumption so that total calorie intake remained constant. In Experiment 2, compared to continuous 4% sucrose solution access, access every third day markedly elevated daily sucrose consumption after only four sucrose exposures. With this shorter Phase I, sucrose intake in the continuous group increased markedly when in Phase II all rats were given alternate day access. In Experiment 3, a lick-by-lick analysis of the difference in sucrose consumption between access every third day and continuous access revealed that all rats were consuming a similar number of sucrose meals; however, the meals were larger both in the first hour and over the whole 24h with intermittent access. This suggests a change in satiety as a mechanism underlying sucrose consumption difference.

  19. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations (United States)

    Mazzaglia, Antonino; Ganazzoli, Fabio


    Summary Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a “bottom up” approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties. PMID:26734094

  20. Nitrosative stress and apoptosis in non-anemic healthy rats induced by intravenous iron sucrose similars versus iron sucrose originator. (United States)

    Toblli, Jorge E; Cao, Gabriel; Angerosa, Margarita


    Iron can both induce and inhibit nitrosative stress. Intracellular iron levels play an important role in nitric oxide (NO(•)) signaling mechanisms. Depending on various factors, such as the cell's redox state and transition metal levels, NO(•) generation may lead to lipid peroxidation and DNA damage as well as both anti- and pro-apoptotic effects. Administration of intravenous iron sucrose originator (IS(ORIG)) has been shown not to cause significant tyrosine nitration or significantly increased caspase 3 levels in non-anemic rats. In this study, the potential of several marketed iron sucrose similars (ISSs) to induce tyrosine nitration and caspase 3 expression in non-anemic rats was assessed. Although the physico-chemical properties of most of the analyzed ISSs complied with the United States Pharmacopeia for iron sucrose injection, all ISSs resulted in higher levels of tyrosine nitration and increased the expression of caspase 3 versus IS(ORIG). Moreover, significant differences were detected in tissue iron distribution between IS(ORIG)- and ISS-treated animals. In general, ISORIG resulted in higher levels of ferritin deposits versus ISSs whereas ISSs showed higher Prussian blue-stainable iron(III) deposits than IS(ORIG). This result suggests that some iron from ISSs bypassed the tightly regulated pathway through resident macrophages of the liver, spleen and bone marrow thus, ending up in the cellular compartment that favors oxidative and or nitrosative stress as well as apoptosis. The results also confirm that polynuclear iron(III)-oxyhydroxide carbohydrates, such as iron sucrose, cannot be fully characterized by physico-chemical methods alone.

  1. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet (United States)

    Bashir, M.; Bashir, S.


    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  2. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings (United States)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan


    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  3. Study on Tough Blends of Polylactide and Acrylic Impact Modifier

    Directory of Open Access Journals (Sweden)

    Xiaoli Song


    Full Text Available Acrylic impact modifiers (ACRs with different soft/hard monomer ratios (mass ratios were prepared by semi-continuous seed emulsion copolymerization using the soft monomer butyl acrylate and the hard monomer methyl methacrylate, which were used to toughen polylactide (PLA. The effect of soft/hard ACR monomer ratio on the mechanical properties of PLA/ACR blends was investigated. The results showed that the impact strength and the elongation at break of PLA/ACR blends increased with increasing soft/hard ACR monomer ratio, while the tensile and flexural strengths of PLA had little change. The impact strength of PLA/ACR blends could be increased about 4 times more than that of pure PLA when the soft/hard monomer ratio of ACR was 90/10, which was the optimal ratio for good mechanical properties of PLA. Additionally, the possible mechanism of ACR toughening in PLA was discussed through impact fracture phase morphology analysis.

  4. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto


    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  5. Reactivity Ratios of Diethyldiallylammonium Chloride with Acrylamide or Acrylic Acid

    Institute of Scientific and Technical Information of China (English)

    Li Hua LIU; Zhi Qiang LIU; Zhu Qing GONG


    The compositions of copolymers of diethyldiallylammonium chloride (DEDAAC) with acrylamide (AM), acrylic acid (AA) or sodium acrylic acid (NaAA) at low conversion were determined by elemental analysis, and the reactivity ratios of monomers in copolymerization were obtained by Kelen-Tudos method. The results showed that the reactivity ratios rDE and rAM are 0.31 and 5.27 for DEDAAC with AM, rDE and rAA are 0.28 and 5.15 for DEDAAC with AA, and rDE and rNaAA are 0.40 and 3.97 for DEDAAC with NaAA, respectively. The copolymerizations for DEDAAC with AM, AA or NaAA are non-ideal copolymerization and the products are random copolymers.

  6. Rheological behavior of acrylic paint blends based on polyaniline

    Directory of Open Access Journals (Sweden)

    Alex da Silva Sirqueira

    Full Text Available Abstract The rheological properties of acrylic paints and polyaniline (PAni blends, with different contents of PAni doped by dodecyl benzene sulphonic acid (DBSA and, dispersed by mechanical stirrer and ultrasonic, were investigated by controlled shear rate testing ramps. The results showed that the commercial acrylic paint had tended to deliver the required stability on the blends, in order to avoid sedimentation process. All samples exhibited non-Newtonian flow behavior (shear thinning, increasing PAni content the flow behavior index (n decreased (0.41 to 0.11 and power law model were used to fitted the experimental curves. The results showed that the addition of PAni-DBSA affects the viscoelastic behavior of the mixtures due to the interactions between the components in the mixture. The best properties were obtained for samples 90/10 wt % dispersed by ultrasonic, indicating the feasibility of the usage as a conducting paint.

  7. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures (United States)

    Purceno, Aluir D.; Machado, Bruno F.; Teixeira, Ana Paula C.; Medeiros, Tayline V.; Benyounes, Anas; Beausoleil, Julien; Menezes, Helvecio C.; Cardeal, Zenilda L.; Lago, Rochel M.; Serp, Philippe


    In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and

  8. Electrical Properties of n-Butyl Acrylate-Grafted Polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.R.; Oh, W.J.; Suh, K.S. [Korea University (Korea, Republic of)


    The electrical properties of n-butyl acrylate-grafted polyethylene (PE-g-nBA) were investigated. In PE-g-nBA, hetero charge founded in LDPE slightly increased due to the nBA grafting. Conduction currents decreased with the increase of nBA graft ratio. AC breakdown strength increased and water treeing length decreased with the increase of graft ratio in PE-g-nBA. (author). 4 refs., 6 figs.

  9. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing


    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J.; Eckmann, David M.


    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tu...

  10. Late opacification of a hydrophilic acrylic intraocular lens

    Directory of Open Access Journals (Sweden)

    Al-Bdour Muawyah


    Full Text Available Cataract extraction and intraocular lens implantation is considered to be a safe procedure in most cases. However, the new advances in the surgical technique namely phacoemulsification and hence the increased use of foldable intraocular lenses have given rise to new complications including late opacification of intraocular lenses. In this case we report late opacification of a foldable hydrophilic acrylic intraocular lens and the surgical technique for its exchange.

  11. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision


    Ladan Espandar; Shameema Sikder; Majid Moshirfar


    Ladan Espandar1, Shameema Sikder2, Majid Moshirfar31Department of Ophthalmology, Tulane University, New Orleans, LA, USA; 2Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA; 3John A Moran Eye Center, University of Utah, Salt Lake City, UT, USAAbstract: Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular le...

  12. Insights on the biodegradation of acrylic reline resins


    Neves, Maria Cristina Bettencourt, 1976-


    Tese de doutoramento, Medicina Dentária (Reabilitação Oral), Universidade de Lisboa, Faculdade de Medicina Dentária, 2012 Acrylic reline resins are extensively used in dentistry, since they readapt dentures to the continuous reabsorbed underlying tissues. Since present in the oral cavity for long periods of time, these materials are objective of the biodegradation phenomena, which represents the change on their chemical, physical and mechanical properties due to the oral environment condit...

  13. Synthesis of amphiphilic aminated inulin via 'click chemistry' and evaluation for its antibacterial activity. (United States)

    Dong, Fang; Zhang, Jun; Yu, Chunwei; Li, Qing; Ren, Jianming; Wang, Gang; Gu, Guodong; Guo, Zhanyong


    Inulins are a group of abundant, water-soluble, renewable polysaccharides, which exhibit attractive bioactivities and natural properties. Improvement such as chemical modification of inulin is often performed prior to further utilization. We hereby presented a method to modify inulin at its primary hydroxyls to synthesize amphiphilic aminated inulin via 'click chemistry' to facilitate its chemical manipulation. Additionally, its antibacterial property against Staphylococcus aureus (S. aureus) was also evaluated and the best inhibitory index against S. aureus was 58% at 1mg/mL. As the amphiphilic aminated inulin is easy to prepare and exhibits improved bioactivity, this material may represent as an attractive new platform for chemical modifications of inulin.

  14. Monte Carlo simulation for the micellar behavior of amphiphilic comb-like copolymers

    Institute of Scientific and Technical Information of China (English)

    冯莺; 隋家贤; 赵季若; 陈欣方


    Micellar behaviors in 2D and 3D lattice models for amphiphilic comb-like copolymers in water phase and in water/oil mixtures were simulated. A dynamical algorithm together with chain reptation movements was used in the simulation. Three-dimension displaying program was pro-grammed and free energy was estimated by Monte Carlo technigue. The results demonstrate that reduced interaction energy influences morphological structures of micelle and emulsion ??stems greatly; 3D simulation showing can display more direct images of morphological structures; the amphiphilic comb-like polymers with a hydrophobic main chain and hydrophilic side chains have lower energy in water than in oil.

  15. Trapping of polycyclic aromatic hydrocarbons by amphiphilic cyclodextrin functionalized polypropylene nonwovens

    DEFF Research Database (Denmark)

    Lumholdt, Ludmilla; Nielsen, Ronnie Bo Højstrup; Larsen, Kim Lambertsen

    Recently, there has been an augmented focus on the increasing amount of pesticides, drug residues and endocrine disruptors present in waste and drinking water1. These pollutants represent a challenge in water purification since they may be hazardous to human health even in low doses2. Cyclodextrins...... of the textile fibers. In this study we present the ability of amphiphilic CD coated polypropylene nonwovens to trap 8 different polycyclic aromatic hydrocarbons/endocrine disruptors from aqueous solutions thus demonstrating the potential of using the amphiphilic cyclodextrins for water purification....

  16. Intra-chain organisation of hydrophobic residues controls inter-chain aggregation rates of amphiphilic polymers

    CERN Document Server

    Varilly, Patrick; Kirkegaard, Julius B; Knowles, Tuomas P J; Chandler, David


    Aggregation of amphiphiles through the action of hydrophobic interactions is a common feature in soft condensed matter systems and is of particular importance in the context of biophysics as it underlies both the generation of functional biological machinery as well as the formation of pathological misassembled states of proteins. Here we explore the aggregation behaviour of amphiphilic polymers using lattice Monte-Carlo calculations and show that the distribution of hydrophobic residues within the polymer sequence determines the facility with which dry/wet interfaces can be created and that such interfaces drive the aggregation process.

  17. Precisely Controlled 2D Free-Floating Nanosheets of Amphiphilic Molecules through Frame-Guided Assembly. (United States)

    Zhou, Chao; Zhang, Yiyang; Dong, Yuanchen; Wu, Fen; Wang, Dianming; Xin, Ling; Liu, Dongsheng


    2D assembly of amphiphilic molecules in aqueous solution is a challenging and intriguing topic as it is normally thermodynamically unfavorable. However, through frame-guided assembly strategy and using DNA origami as the frame, monodispersed and shape-defined nanosheets are prepared. As leading hydrophobic groups (LHGs) are anchored on the frames, amphiphilic molecules in aqueous solution are guided to assemble in the hydrophobic region. By adjusting the distribution of the LHGs, the size and shape of the assemblies can be controlled precisely.

  18. Acrylic microspheres-based optosensor for visual detection of nitrite. (United States)

    Noor, Nur Syarmim Mohamed; Tan, Ling Ling; Heng, Lee Yook; Chong, Kwok Feng; Tajuddin, Saiful Nizam


    A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.6 μm up to 1.8 μm. The uniform size distribution of the acrylic microspheres promoted homogeneity of the immobilized SO reagent molecules on the microspheres' surfaces, thereby enhanced the sensing response reproducibility (<5% RSD) with a linear range obtained from 10 to 100 ppm NO2(-) ion. The micro-sized acrylic immobilization matrix demonstrated no significant barrier for diffusion of reactant and product, and served as a good solid state ion transport medium for reflectometric nitrite determination in food samples.

  19. Acrylate Functionalized Tetraalkylammonium Salts with Ionic Liquid Properties

    Directory of Open Access Journals (Sweden)

    Silvia Janietz


    Full Text Available Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF6], [OTf] or [TFSI] reduces the melting points significantly and leads to an ion conductivity of about 10−4 S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10−3 S/cm was observed.

  20. Synthesis and properties of acrylic copolymers for ocular implants (United States)

    Reboul, Adam C.

    There is a need for flexible polymers with higher refractive index and extended UV absorbing properties for improved intraocular lenses (IOLs). This research was devoted to the synthesis of new acrylic copolymers for foldable IOLs and to studies concerning IOL polymer properties. New polymers were synthesized from phenylated acrylates copolymerized with N-vinyl carbazole derivatives using bulk free radical addition methods. The copolymers had low Tg values, high refractive index, and were flexible. The N-vinyl carbazole derivatives were characterized by NMR and copolymers were characterized by DSC, UV-Vis, and refractometry. New phenothiazine based UV absorbers with high extinction coefficients were also synthesized for incorporation into ocular materials. Patent disclosures on UV absorbers and high refractive index polymers were prepared. A so called "glistening" phenomenon that occurs in all foldable intraocular lenses currently in clinical use is poorly understood and was studied. Research on this microvoid forming behavior included studies and development of methods to inhibit glistening in low Tg acrylic based copolymers. Glistenings were characterized using SEM and optical microscopy. A novel technique for inhibiting glistening was found and a patent disclosure was prepared.

  1. Epoxy-acrylic core-shell particles by seeded emulsion polymerization. (United States)

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael


    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.


    Institute of Scientific and Technical Information of China (English)

    Kun Xu; Shu-xue Zhou; Li-min Wu


    Thermosetting acrylic coatings were prepared by using carboxyl acid group-containing acrylic oligomer and curing with titanium-oxo-clusters which were first pre-hydrolyzed from titanium n-butoxide. The curing ability of the titanium-oxo-cluster was examined using a microdielectric analytical (DEA) curing monitor, Fourier transformed infrared spectroscopy (FTIR), and Soxhlet extraction experiments, and the properties of the resulted coatings were investigated with pendulum hardness tester, dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA) and ultraviolet-visible spectrometer. The effect of titania-oxo-cluster in leading acrylic oligomers to form thermosetting acrylic coatings was confirmed. An increasing pendulum hardness and modulus of acrylic coatings with increasing titania content was observed, which resulted from the increment of crosslinking degree rather than of the titania content. The thermosetting acrylic/titania coatings also showed better thermal stability and higher UV-blocking properties than those coatings using organic curing agent.

  3. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. (United States)

    Rovenko, Bohdana M; Kubrak, Olga I; Gospodaryov, Dmytro V; Perkhulyn, Natalia V; Yurkevych, Ihor S; Sanz, Alberto; Lushchak, Oleh V; Lushchak, Volodymyr I


    The effects of sucrose in varied concentrations (0.25-20%) with constant amount of yeasts in larval diet on development and metabolic parameters of adult fruit fly Drosophila melanogaster were studied. Larvae consumed more food at low sucrose diet, overeating with yeast. On high sucrose diet, larvae ingested more carbohydrates, despite consuming less food and obtaining less protein derived from yeast. High sucrose diet slowed down pupation and increased pupa mortality, enhanced levels of lipids and glycogen, increased dry body mass, decreased water content, i.e. resulted in obese phenotype. Furthermore, it suppressed reactive oxygen species-induced oxidation of lipids and proteins as well as the activity of superoxide dismutase. The activity of catalase was gender-related. In males, at all sucrose concentrations used catalase activity was higher than at its concentration of 0.25%, whereas in females sucrose concentration virtually did not influence the activity. High sucrose diet increased content of protein thiols and the activity of glucose-6-phosphate dehydrogenase. The increase in sucrose concentration also enhanced uric acid level in females, but caused opposite effects in males. Development on high sucrose diets was accompanied by elevated steady-state insulin-like peptide 3 mRNA level. Finally, carbohydrate starvation at yeast overfeeding on low sucrose diets resulted in oxidative stress reflected by higher levels of oxidized lipids and proteins accompanied by increased superoxide dismutase activity. Potential mechanisms involved in regulation of redox processes by carbohydrates are discussed.

  4. Expression profiling of sucrose metabolizing genes in Saccharum, Sorghum and their hybrids. (United States)

    Ramalashmi, K; Prathima, P T; Mohanraj, K; Nair, N V


    Sucrose phosphate synthase (SPS; EC, sucrose synthase (SuSy; EC and soluble acid invertase (SAI; EC are key enzymes that regulate sucrose fluxes in sink tissues for sucrose accumulation in sugarcane and sorghum. In this study, the expression profiling of sucrose-related genes, i.e. SPS, SuSy and SAI in two sets of hybrids viz., one from a Sorghum × Saccharum cross and the other from a Saccharum × Sorghum cross, high- and low-sucrose varieties, sweet and grain sorghum lines was carried out using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) at monthly intervals. The results indicated differential expression of the three genes in high- and low-sucrose forms. Expression of SPS and SuSy genes was high in high-sucrose varieties, Saccharum × Sorghum hybrids and sweet sorghum and lower in low-sucrose varieties, Sorghum × Saccharum hybrids and grain sorghum. SAI showed a lower expression in high-sucrose varieties, Saccharum × Sorghum hybrids and sweet sorghum and higher expression in low-sucrose varieties, Sorghum × Saccharum hybrids and the grain sorghum. This study describes the positive association of SPS and SuSy and negative association of SAI on sucrose accumulation. This is the first report of differential expression profiling of SPS, SuSy and SAI in intergeneric hybrids involving sugarcane and sorghum, which opens the possibility for production of novel hybrids with improved sucrose content and with early maturity.

  5. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang, Selangor (Malaysia); Ibrahim, Mohammad Izzat [Faculty of Science, University of Malaya (UM), 50603 Kuala Lumpur (Malaysia); Yunus, Nurulhuda Mohd [Faculty of Science and Technology, National University Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)


    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  6. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application (United States)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik


    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  7. Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO{sub 2} thin films for quasi-solid-state dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Jung, Ye Eun; Kim, Dong Jun; Kim, Sang Jin; Kim, Jong Hak, E-mail:


    An amphiphilic graft copolymer, poly(ethylene-co-acrylic acid)-graft-poly(ethylene glycol) (PEAA-g-PEG), consisting of a PEAA backbone and PEG side chains was synthesized via an esterification reaction. {sup 1}H nuclear magnetic resonance and Fourier-transformed infrared analysis demonstrated esterification between carboxylic acid of PEAA and hydroxyl group of PEG. Small angle X-ray scattering results revealed that the crystalline domain spacing of PEAA increased from 11.3 to 12.8 nm upon using a more polar solvent with a higher affinity for poly(acrylic acid), while the crystalline domain spacing of PEAA disappeared with PEG grafting, indicating structural change to an amorphous state. Mesoporous TiO{sub 2} thin films were synthesized via a sol–gel reaction using PEAA-g-PEG graft copolymer as a structure-directing agent. The hydrophilically-preformed TiO{sub 2} nanoparticles were selectively confined in the hydrophilic PEG domains of the graft copolymer, and mesoporous TiO{sub 2} thin films were formed, as confirmed by scanning electron microscopy. The morphology of TiO{sub 2} films was tunable by varying the concentrations of polymer solutions and the amount of preformed TiO{sub 2}. A quasi-solid-state dye-sensitized solar cell fabricated with PEAA-g-PEG templated TiO{sub 2} film exhibited an energy conversion efficiency of 3.8% at 100 mW/cm{sup 2}, which was greater than that of commercially-available paste (2.6%) at a similar film thickness (3 μm). The improved performance was due to the larger surface area for high dye loading and organized structure with good interconnectivity. - Highlights: • Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) (PEAA-g-PEG) graft copolymer is synthesized. • Amphiphilic PEAA-g-PEG acts as a structure directing agent. • Mesoporous TiO{sub 2} thin films are prepared by sol–gel reaction using PEAA-g-PEG template. • Efficiency of DSSC with templated TiO{sub 2} is greater than with commercial TiO{sub 2} paste.

  8. Effect of Atmospheric Pressure Glow Discharge Treatment on Polymerization of Acrylic Fabric and Its Printing Behavior

    Directory of Open Access Journals (Sweden)

    D M El-Zeer


    Full Text Available Acrylic fibers have been treated by atmospheric pressure glow discharge (APGD plasma in open air to enhance surface antistatic properties. The treated surfaces are investigated by scanning electron microscopy (SEM, Fourier-Transition Infrared Spectroscopy (FTIR and Atomic Force Microscope (AFM. Plasma treatment of acrylic fabric has been found to increase the surface roughness, modify the nature and density of surface functionalities, and drastically improve the wettability and antistatic ability of acrylic fibers.

  9. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture


    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae; Son, Mee-Kyoung


    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study...

  10. Studies on the hydrolysis of biocompatible acrylic polymers having aspirin-moieties. (United States)

    Gu, Z W; Li, F M; Feng, X D; Voong, S T


    Both the homogeneous and heterogeneous hydrolysis of five new acrylic polymers having aspirin-moieties, i.e. polymers of beta-(acetylsalicylyloxy)ethyl methacrylate, beta-(acetylsalicylyloxy) propyl methacrylate,beta-(acetylsalicylyloxy) ethyl acrylate, beta-hydroxy-gamma-(acetylsalicylyloxy) propyl methacrylate, beta-hydroxy-gamma-(acetylsalicylyloxy) propyl acrylate were investigated in acidic or alkaline medium at 30 degrees C or 60 degrees C, respectively. It was observed that the chief hydrolyzed product is always aspirin with minor amount of salicylic acid.

  11. Preparation of Poly(acrylic acid) Hydrogel by Radiation Crosslinking and Its Application for Mucoadhesives


    Young-Chang Nho; Jong-Seok Park; Youn-Mook Lim


    A mucoadhesive drug delivery system can improve the effectiveness of a drug by maintaining the drug concentration and allowing targeting and localization of the drug at a specific site. Acrylic-based hydrogels have been used extensively as a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, poly(acrylic acid) was selected to prepare the bioadhesive hydrogel adhering to mucosal surfaces using a radiation process. Poly(acrylic acid) was dissolved in ...

  12. Charge-Transfer Supra-Amphiphiles Built by Water-Soluble Tetrathiafulvalenes and Viologen-Containing Amphiphiles: Supramolecular Nanoassemblies with Modifiable Dimensions. (United States)

    Lv, Zhong-Peng; Chen, Bin; Wang, Hai-Ying; Wu, Yue; Zuo, Jing-Lin


    In this study, multidimensional nanoassemblies with various morphologies such as nanosheets, nanorods, and nanofibers are developed via charge-transfer interaction and supra-amphiphile self-assembling in aqueous phase. The charge-transfer interactions between tetrathiafulvalene derivatives (TTFs) and methyl viologen derivatives (MVs) have been confirmed by the characteristic charger-transfer absorption. (1) H NMR and electrospray ionizsation mass spectrometry (ESI-MS) analyses also indicate supra-amphiphiles are formed by the combination of TTFs and MVs head group through charge-transfer interaction and Coulombic force. X-ray single crystal structural studies, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) reveal that both linkage pattern of TTFs in hydrophilic part and alkane chain structure in hydrophobic part have significant influence on nanoassemblies morphology and microstructure. Moreover, gold nanoparticles (AuNPs) are introduced in the above supramolecular nanoassemblies to construct a supra-amphiphile-driven organic-AuNPs assembly system. AuNPs could be assembled into 1D-3D structures by adding different amount of MVs.

  13. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  14. Self-assembling peptide amphiphile nanostructures for cancer therapy (United States)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  15. Star polymers by ATRP of styrene and acrylates employing multifunctional initiators

    DEFF Research Database (Denmark)

    Jankova, Katja Atanassova; Bednarek, Melania; Hvilsted, Søren


    scission of the ester linkages and the second step corresponds to the normal PS degradation. Star poly(methyl acrylates) with various cores are likewise prepared in a controlled manner by ATRP of methyl acrylate in bulk and in solution at 6080 degrees C with the 1,1,4,7,7-pentamethyldiethylene triamine...... ligand. Under these conditions, higher conversions were possible still maintaining low PDI signaling controlled star growth. Multiarm stars of poly(n-butyl acrylate) and poly(n-hexyl acrylate) with controlled characteristics have also been prepared....

  16. The effects of sympathectomy and dexamethasone in rats ingesting sucrose

    Directory of Open Access Journals (Sweden)


    Full Text Available Both high-sucrose diet and dexamethasone (D treatment increase plasma insulin and glucose levels and induce insulin resistance. We showed in a previous work (Franco-Colin, et al. Metabolism 2000; 49:1289-1294 that combining both protocols for 7 weeks induced less body weight gain in treated rats without affecting mean daily food intake. Since such an effect may be explained by an increase in caloric expenditure, possibly due to activation of the sympathetic nervous system by sucrose ingestion, in this work, and using 10% sucrose in the drinking water, male Wistar rats were divided into 4 groups. Two groups were sympathectomized using guanethidine (Gu treatment for 3 weeks. One of these groups of rats received D in the drinking water. Of the 2 groups not receiving Gu, one was the control (C and the other received D. After 8 weeks a glucose tolerance test was done. The rats were sacrificed and liver triglyceride (TG, perifemoral muscle lipid, and norepinephrine (NE levels in the liver spleen, pancreas, and heart were determined. Gu-treated rats (Gu and Gu+D groups showed less than 10% NE concentration compared to C and D rats, less daily caloric intake and body-weight gain, more sucrose intake, and better glucose tolerance. The area under the curve after glucose administration correlated significantly with the mean body weight gain of the rats, except for D group. Groups D (D and Gu+D also showed less caloric intake and body-weight gain but higher liver weight and TG concentration and lower peripheral muscle mass. The combination of Gu+D treatments showed some peculiar results: negative body weight gain, a fatty liver, and low muscle mass. Though the glucose tolerance test had the worst results for the D group, it showed the best results in the Gu+D group. There were significant interactions for Guan X Dex by two-way ANOVA test for the area under the curve in the glucose tolerance test, muscle mass, and muscle lipids. The results suggest that

  17. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid). (United States)

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua


    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

  18. Imaging and Chemotherapeutic Comparisons of Iron Oxide Nanoparticles Chemically and Physically Coated with Poly(ethylene glycol)-b-Poly(ε-caprolactone)-g-Poly(acrylic acid). (United States)

    Chen, Guo-Jing; Hsu, Chin; Ke, Jyun-Han; Wang, Li-Fang


    We designed a new copolymer, poly(ethylene glycol)-block-poly(ε-caprolactone)-graft-poly(acrylic acid) (PAA-PEC), which could be chemically and physically coated onto iron oxide (Fe3O4) nanoparticles for theranostic applications. The chemically PAA-PEC-coated Fe3O4 nanoparticles (PAA-PEC-IO) were prepared using the carboxylic groups of PAA-PEC to bind the Fe3O4 nanoparticles during a co-precipitation reaction. Because of the amphiphilic properties of PAA-PEC, the compound self-assembled into a core-shell structure. The hydrophobic oleic acid-coated Fe3O4 nanoparticles could then be physically encapsulated inside the hydrophobic core of PAA-PEC (PAA-PEC-OA-IO) using an emulsion technique. A similar amount of iron content was controlled in both the PAA-PEC-IO and PAA-PEC-OA-IO (-23%). The particle diameters, morphologies, superparamagnetism, drug loading efficiency, and transversal relaxivity (r2) were studied and compared between the two magnetic nanoparticles. All results displayed the chemically-synthesized PAA-PEC-IO nanoparticles had higher potential than did the physically-synthesized PAA-PEC-OA-IO as an MRI contrast agent and a drug delivery carrier. Rodamine123-linked PAA-PEC-IO (PAA-PEC-IO-Rh123) was used as a molecular probe. Flow cytometric diagrams indicated that cellular internalization of PAA-PEC-IO occurred primarily through clathrin-mediated endocytosis.

  19. Tonoplast Sugar Transporters (SbTSTs) putatively control sucrose accumulation in sweet sorghum stems. (United States)

    Bihmidine, Saadia; Julius, Benjamin T; Dweikat, Ismail; Braun, David M


    Carbohydrates are differentially partitioned in sweet versus grain sorghums. While the latter preferentially accumulate starch in the grain, the former primarily store large amounts of sucrose in the stem. Previous work determined that neither sucrose metabolizing enzymes nor changes in Sucrose transporter (SUT) gene expression accounted for the carbohydrate partitioning differences. Recently, 2 additional classes of sucrose transport proteins, Tonoplast Sugar Transporters (TSTs) and SWEETs, were identified; thus, we examined whether their expression tracked sucrose accumulation in sweet sorghum stems. We determined 2 TSTs were differentially expressed in sweet vs. grain sorghum stems, likely underlying the massive difference in sucrose accumulation. A model illustrating potential roles for different classes of sugar transport proteins in sorghum sugar partitioning is discussed.

  20. Effect of sucrose starvation on sycamore (Acer pseudoplatanus) cell carbohydrate and Pi status. (United States)

    Rébeillé, F; Bligny, R; Martin, J B; Douce, R


    The mobilization of stored carbohydrates during sucrose starvation was studied with sycamore (Acer pseudoplatanus) cells. When sucrose was omitted from the nutrient medium, the intracellular sucrose pool decreased rapidly during the first hours of the experiment, whereas the starch content remained practically unchanged. After 10h of sucrose starvation, starch hydrolysis replaced sucrose breakdown. From this moment, the phosphate-ester pool and respiration rate decreased with time. Conversely, the intracellular Pi concentration increased. 31P n.m.r. of intact sycamore cells indicated that, under these conditions, most of the Pi accumulated in the vacuole. These results strongly suggest that starch breakdown, in contrast with sucrose hydrolysis, is not rapid enough to maintain a high cellular metabolism.

  1. Effect of sucrose on physical properties of spray-dried whole milk powder. (United States)

    Ma, U V Lay; Ziegler, G R; Floros, J D


    Spray-dried whole milk powders were prepared from whole condensed milk with various sucrose concentrations (0%, 2.5%, 5%, 7.5%, and 10% w/w), and their glass transition temperature and some physical properties of importance in chocolate manufacture were evaluated. In milk powder samples, the glass transition temperature and free-fat content decreased in a nonlinear manner with sucrose addition. Moreover, increasing sucrose concentration reduced the formation of dents on the particle surface. Addition of sucrose in whole condensed milk increased linearly the apparent particle density and in a nonlinear manner the particle size of spray-dried milk powders. The particle size volume distribution of milk powders with the highest sucrose concentration differed from the log-normal distribution of the other samples due to the formation of large agglomerates. Neither vacuole volume, nor the amorphous state of milk powders was affected by sucrose addition.

  2. Mechanisms of Sucrose and Non-Nutritive Sucking in Procedural Pain Management in Infants

    Directory of Open Access Journals (Sweden)

    Sharyn Gibbins


    Full Text Available The administration of sucrose with and without non-nutritive sucking (NNS has been examined for relieving procedural pain in newborn infants. The calming and pain-relieving effects of sucrose are thought to be mediated by endogenous opioid pathways activated by sweet taste. The orogustatory effects of sucrose have been demonstrated in animal newborns, and in preterm and full term human infants during painful procedures. In contrast to sucrose, the analgesic effects of NNS are hypothesized to be activated through nonopioid pathways by stimulation of orotactile and mechanoreceptor mechanisms. Although there is uncertainty as to whether the effects of sucrose and NNS are synergistic or additive, there is sufficient evidence to support the efficacy of combining the two interventions for procedural pain relief in infants. In this review article, the underlying mechanisms of sucrose and NNS, separately and in combination for relieving procedural pain in preterm and full term infants, are examined. Clinical and research implications are addressed.

  3. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution

    Directory of Open Access Journals (Sweden)

    Pellach Michal


    Full Text Available Abstract Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character. The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  4. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive (United States)

    Li, Jian-Hua; Li, Mi-Zi; Miao, Jing; Wang, Jia-Bin; Shao, Xi-Sheng; Zhang, Qi-Qing


    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.


    Institute of Scientific and Technical Information of China (English)

    Jian-hua Li; You-yi Xu; Jian-hua Wang; Chun-hui Du


    The synthesis of a novel amphiphilic comb-shaped copolymer consisting of a main chain of styrene-(N-(4-hydroxyphenyl) maleimide) (SHMI) copolymer and poly(ethylene glycol) methyl ether methacrylate (PEGMA) side groups was achieved by atom transfer radical polymerization (ATRP). The amphiphilic copolymers were characterized by ~1H-NMR, Fourier transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC). From thermogravimetric analysis (TGA), the decomposition temperature of SHMI-g-PEGMA is lower than that of SHMI, and the graft ratio of PEGMA in the SHMI is 18.6%. The experimental results of solubilities showed that SHMI, SHMI-Br and SHMI-g-PEGMA had excellent solubility in polar solvents, such as DMF, DMSO and NMP. SHMI-g-PEGMA had higher solubilities in H_2O and methanol, while lower solubility in CHCl_3 than SHMI and SHMI-Br. PVDF blend membranes were prepared via the standard immersion precipitation phase inversion process, using amphiphilic SHMI-g-PEGMA copolymer as additives. The morphology and hydrophilicity of the blend membrane surfaces were characterized by SEM and water contact angle. It is demonstrated that the blend membranes display enhanced hydrophilicity compared to unmodified PVDF membranes. Finally, the permeation and anti-fouling properties were investigated. The result shows that amphiphilic SHMI-g-PEGMA copolymer increases the permeatability and anti-fouling property of PVDF membranes greatly.

  6. Improved surface property of PVDF membrane with amphiphilic zwitterionic copolymer as membrane additive

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianhua, E-mail: [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Li Mizi; Miao Jing; Wang Jiabin; Shao Xisheng [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China); Zhang Qiqing, E-mail: [Institute of Biomedical and Pharmaceutical Technology and College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350001 (China) and Institute of Biomedical Engineering, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192 (China)


    An attempt to improve hydrophilicity and anti-fouling properties of PVDF membranes, a novel amphiphilic zwitterionic copolymer poly(vinylidene fluoride)-graft-poly(sulfobetaine methacrylate) (PVDF-g-PSBMA) was firstly synthesized by atom transfer radical polymerization (ATRP) and used as amphiphilic copolymer additive in the preparation of PVDF membranes. The PVDF-g-PSBMA/PVDF blend membranes were prepared by immersion precipitation process. Fourier transform infrared attenuated reflection spectroscopy (FTIR-ATR) and X-ray photoelectronic spectroscopy (XPS) measurements confirmed that PSBMA brushes from amphiphilic additives were preferentially segregated to membrane-coagulant interface during membrane formation. The morphology of membranes was characterized by scanning electron microscopy (SEM). Water contact angle measurements showed that the surface hydrophilicity of PVDF membranes was improved significantly with the increasing of amphiphilic copolymer PVDF-g-PSBMA in cast solution. Protein static adsorption experiment and dynamic fouling resistance experiment revealed that the surface enrichment of PSBMA brush endowed PVDF blend membrane great improvement of surface anti-fouling ability.

  7. H-aggregation of azobenzene-substituted amphiphiles in vesicular membranes

    NARCIS (Netherlands)

    Kuiper, JM; Engberts, JBFN


    Photochemical switching has been studied of double-tailed phosphate amphiphiles containing azobenzene units in both tails in aqueous vesicular dispersions and in mixed vesicular systems with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Since the ease of switching depends on the strength of the b

  8. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten


    Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function b......-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles....... by altering the energetic cost (Delta G(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in Delta G(bilayer) cannot...... be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net...

  9. Two-dimensional crystallography of amphiphilic molecules at the air-water interface

    DEFF Research Database (Denmark)

    Jacquemain, D.; Grayer Wolf, S.; Leveiller, F.;


    , and review recent results obtained from them for Langmuir films. The methods have been successfully applied in the elucidation of the structure of crystalline aggregates of amphiphilic molecules such as alcohols, carboxylic acids and their salts, alpha-amino acids, and phospholipids at the water surface...

  10. Synthesis of Novel Amphiphilic Azobenzenes and X-ray Scattering Studies of Their Langmuir Monolayers

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Kjær, Kristian; Breiby, Dag Werner;


    . At the air-water interface, the amphiphilic azobenzenes form noncrystalline but stable Langmuir films that display an unusual reversible monolayer collapse close to 35 mN/m. The structures and phase transitions were studied by X-ray reflectivity (XR) and grazing-incidence X-ray diffraction, both utilizing...

  11. Thermodynamics of micellization of cholic acid based facial amphiphiles carrying three permanent ionic head groups

    NARCIS (Netherlands)

    Willemen, H.M.; Marcelis, A.T.M.; Sudhölter, E.J.R.


    This paper describes a series of cholic acid based facial amphiphiles carrying three ionic headgroups. Their micellization behavior in water was studied as a function of spacer length and alkyl tail length: both were found to have a small influence on the critical micellization concentration (cmc).

  12. Aggregation Properties of an Amphiphilic Methanofullerene Derivative in THF-H2O Solvent Mixtures

    Institute of Scientific and Technical Information of China (English)

    Guan Wu WANG; Li Juan JIAO; Er Hong HAO; Yong Ming LU; You Jun YANG


    Amphiphilic methanofullerene 1 exhibits strong tendency to form aggregates in THF-H2O solvent mixtures. Two different aggregation processes induced by either varying the solvent composition or upon standing have been found. Concentration has great influence on the aggregation process. Paralleling to the UV-Vis changes, an unusual solvatochromism has been observed in these two different processes.

  13. Transfection of small numbers of human endothelial cells by electroporation and synthetic amphiphiles

    NARCIS (Netherlands)

    van Leeuwen, E B; van der Veen, A Y; Hoekstra, D; Engberts, J B; Halie, M R; van der Meer, J; Ruiters, M H


    OBJECTIVES: This study compared the efficiency of electroporation and synthetic amphiphiles. (SAINT-2pp/DOPE) in transfecting small numbers of human endothelial cells. METHODS AND RESULTS: Optimal transfection conditions were tested and appeared to be 400 V and 960 microF for electroporation and a 1

  14. Macroscopic alignment of graphene stacks by Langmuir-Blodgett deposition of amphiphilic hexabenzocoronenes

    DEFF Research Database (Denmark)

    Laursen, B.W.; Nørgaard, K.; Reitzel, N.;


    e present structural studies of Langmuir V and Langmuir-Blodgett (LB) films of new amphiphilic hexa-peri-hexabenzocoronene (HBC) discotics, carrying five branched alkyl side chains and one polar group. The polar group is either a carboxylic acid moiety or an electron acceptor moiety (anthraquinone...

  15. Preparation of Vesicles and Nanoparticles of Amphiphilic Cyclodextrins Containing Labile Disulfide Bonds

    NARCIS (Netherlands)

    Nolan, Darren; Darcy, Raphael; Ravoo, Bart Jan


    Amphiphilic cyclodextrin derivatives were prepared in which a disulfide bond connects the hydrophobic substituents to the macrocycle. These compounds were obtained by 1,3-dicyclohexylcarbodiimide-mediated coupling reactions of heptakis(6-amino-6-deoxy)-B-cyclodextrins and disulfide-containing carbox

  16. Bilayer Vesicles of Amphiphilic Cyclodextrins: Host Membranes That Recognize Guest Molecules

    NARCIS (Netherlands)

    Falvey, Patrick; Lim, Choon Woo; Darcy, Raphael; Revermann, Tobias; Karst, Uwe; Giesbers, Marcel; Marcelis, Antonius T.M.; Lazar, Adina; Coleman, Anthony W.; Reinhoudt, David N.; Ravoo, Bart Jan


    A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of a-, B-, and Y-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicles in aqueo

  17. Bilayer vesicles of amphiphilic cyclodextrines: host membranes that recognize guest molecules

    NARCIS (Netherlands)

    Falvey, P.; Lim, C.W.; Darcy, R.; Revermann, T.; Karst, U.; Marcelis, A.T.M.; Coleman, A.W.; Reinhoudt, D.N.; Ravoo, B.J.


    A family of amphiphilic cyclodextrins (6, 7) has been prepared through 6-S-alkylation (alkyl=n-dodecyl and n-hexadecyl) of the primary side and 2-O-PEGylation of the secondary side of alpha-, beta-, and gamma-cyclodextrins (PEG=poly(ethylene glycol)). These cyclodextrins form nonionic bilayer vesicl

  18. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus


    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  19. Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. (United States)

    Hu, Meng-Xin; Li, Ji-Nian; Zhang, Shi-Lin; Li, Liang; Xu, Zhi-Kang


    Amphiphilic molecules have been widely used in surface modification of polymeric materials. Bile acids are natural biological compounds and possess special facial amphiphilic structure with a unusual distribution of hydrophobic and hydrophilic regions. Based on the facial amphiphilicity, cholic acid (CA), one of the bile acids, was utilized for the hydrophilic modification of poly(vinylidene fluoride) (PVDF) microfiltration membranes via the hydrophobic interactions between the hydrophobic face of CA and the membrane surfaces. Ethanol, methanol, and water were respectively used as solvent during CA adsorption procedure. Their polarity affects the CA adsorption amount, as similar to CA concentration and adsorption time. There are no changes on the membrane surface morphology after CA adsorption. The hydrophilicity of PVDF membranes is greatly enhanced and the water drops permeates into the CA modified membranes quickly after modification. All these factors benefit to the permeation flux of membrane for water. When CA concentration is higher than 0.088 M, the water permeation flux is doubled as compared with the nascent PVDF membrane and shows a good stability during filtration procedure. These results reveal the promising potential of facial amphiphilic bile acids for the surface modification of polymeric materials.

  20. Oxidized potato starch based thermoplastic films : Effect of combination of hydrophilic and amphiphilic plasticizers

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Broekhuis, Antonius A.


    Different combinations of hydrophilic (glycerol and water) and amphiphilic (isoleucine) plasticizers were studied in the production of thermoplastic starch (TPS) powders and films from oxidized potato starch. All powder samples had an irregular and shrivelled morphology. In all mixtures containing i

  1. Non-amphiphilic carbohydrate liquid crystals containing an intact monosaccharide moiety

    NARCIS (Netherlands)

    Smits, E; Engberts, J.B.F.N.; Kellogg, R.M; van Doren, H.A.


    A chiral rigid moiety which forms the basis of a new class of non-amphiphilic carbohydrate liquid crystals has been developed. This moiety contains a fully intact glucopyranose ring embedded in a trans-decalin structure. The original carbohydrate is substituted so that only two hydroxyl groups are l

  2. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution. (United States)

    Pellach, Michal; Margel, Shlomo


    Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character.The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic) tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.


    Directory of Open Access Journals (Sweden)

    Christina Yacoob


    Full Text Available Amphiphilic molecules are challenging to be incorporatedinto polymeric particles for sustained release due to their significant solubility in both water and organic solvent used in the fabrication process. Here, we investigated an extensive panel of fabrication methods for the incorporation and release of amphiphilic molecules, in particular, novel amphiphilic bumped kinase inhibitors (BKIs. Previously, BKIswere shown to reduce malaria transmission by blocking of gametocyte exflagellation. Prolonged BKI bioavailability for effective transmission blocking is crucial since infectious gametocytes circulate for several weeks inthe mammalian host, well beyond the half-life of BKIs. So far, delivery systems for sustained release of those BKIs have not been successfully formulated yet. Here we demonstrate that out of several delivery vehicles the partition-optimized single emulsion particles are the ideal system for incorporation and sustained release of amphiphilic BKIs. They increased the incorporation greater than 90% through optimized partitioning of amphiphilic molecules to the polymer phase and sustained release of BKIs up to several weeks with a reduction in the initial burst release. Overall this work provides a method for the incorporation and sustained release of amphiphilic BKIs, and can be adapted for other amphiphilic molecules.

  4. Effect of sucrose concentration on sucrose-dependent adhesion and glucosyltransferase expression of S. mutans in children with severe early-childhood caries (S-ECC). (United States)

    Zhao, Wei; Li, Wenqing; Lin, Jiacheng; Chen, Zhuoyu; Yu, Dongsheng


    Sucrose, extracellular polysaccharide, and glucosyltransferases (GTFs) are key factors in sucrose-dependent adhesion and play important roles in the process of severe early-childhood caries (S-ECC). However, whether sucrose concentration regulates gtf expression, extracellular polysaccharide synthesis, and sucrose-dependent adhesion is related to the different genotypes of S. mutans isolated from ECC in children and still needs to be investigated. In this study, 52 strains of S. mutans were isolated from children with S-ECC and caries-free (CF) children. Water-insoluble glucan (WIG) synthesis was detected by the anthrone method, adhesion capacity by the turbidimetric method, and expression of gtf by RT-PCR in an in vitro model containing 1%-20% sucrose. The genotypes of S. mutans were analyzed by AP-PCR. The results showed that WIG synthesis, adhesion capacity, and gtf expression increased significantly when the sucrose concentration was from 1% to 10%. WIG synthesis and gtfB as well as gtfC expression of the 1% and 5% groups were significantly lower than those of the 10% and 20% groups (p S. mutans detected from individuals in the S-ECC group exhibited a significant difference in diversity compared with those from CF individuals (p S. mutans, and the 10% sucrose level can be seen as a "turning point" and essential factor for the prevention of S-ECC.

  5. Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor

    Directory of Open Access Journals (Sweden)

    Filipe Carvalho


    Full Text Available Microscale technology has been increasingly used in chemical synthesis up to production scale, but in biocatalysis the implementation has been proceeding at a slower pace. In this work, the design of a low cost and versatile continuous flow enzyme microreactor is described that illustrates the potential of microfluidic reactors for both the development and characterization of biocatalytic processes. The core structure of the developed reactor consists of an array of capillaries with 450 μm of inner diameter with their inner surface functionalized with (3-aminopropyltriethoxysilane (APTES and glutaraldehyde where Saccharomyces cerevisiae invertase was covalently bound. The production of invert sugar syrup through enzymatic sucrose hydrolysis was used as model system. Once the microreactor assembly reproducibility and the immobilized enzyme behavior were established, the evaluation of the immobilized enzyme kinetic parameters was carried out at flow rates ranging from 20.8 to 219.0 μL·min−1 and substrate concentrations within 2.0%–10.0% (w/v. Despite the impact of immobilization on the kinetic parameters, viz. Km(app was increased two fold and Kcat showed a 14-fold decrease when compared to solution phase invertase, the immobilization proved highly robust. For a mean residence time of 48.8 min, full conversion of 5.0% (w/v sucrose was observed over 20 days.

  6. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method (United States)

    Lv, Wei; Wei, Bo; Xu, Lingling; Zhao, Yan; Gao, Hong; Liu, Jia


    In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. The thermogravimetric analysis/differential thermal analysis (TGA-DTA) and Fourier transform infrared spectra (FTIR) showed that sucrose acted as a complexing agent in the synthesis process and assisted combustion during annealing. Photocatalytic activity was evaluated using the degradation of organic dye methyl orange. The sucrose added ZnO flowers showed improved activity, which was mainly attributed to the better crystallinity as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The effect of sucrose amount on photocatalytic activity was also studied.

  7. Sucrose in bloom-forming cyanobacteria: loss and gain of genes involved in its biosynthesis. (United States)

    Kolman, María A; Salerno, Graciela L


    Bloom-forming cyanobacteria are widely distributed in freshwater ecosystems. To cope with salinity fluctuations, cyanobacteria synthesize compatible solutes, such as sucrose, to maintain the intracellular osmotic balance. The screening of cyanobacterial genomes revealed that homologues to sucrose metabolism-related genes only occur in few bloom-forming strains, mostly belonging to Nostocales and Stigonematales orders. Remarkably, among Chroococcales and Oscillatoriales strains, homologues were only found in M. aeruginosa PCC 7806 and Leptolyngbya boryana PCC 6306, suggesting a massive loss of sucrose metabolism in bloom-forming strains of these orders. After a complete functional characterization of sucrose genes in M. aeruginosa PCC 7806, we showed that sucrose metabolism depends on the expression of a gene cluster that defines a transcriptional unit, unique among all sucrose-containing cyanobacteria. It was also demonstrated that the expression of the encoding genes of sucrose-related proteins is stimulated by salt. In view of its ancestral origin in cyanobacteria, the fact that most bloom-forming strains lack sucrose metabolism indicates that the genes involved might have been lost during evolution. However, in a particular strain, like M. aeruginosa PCC 7806, sucrose synthesis genes were probably regained by horizontal gene transfer, which could be hypothesized as a response to salinity fluctuations.

  8. Sucrose produces withdrawal and dopamine-sensitive reinforcing effects in planarians. (United States)

    Zhang, Charlie; Tallarida, Christopher S; Raffa, Robert B; Rawls, Scott M


    Sucrose produces physical dependence and reinforcing effects in rats. We hypothesized that similar effects could be demonstrated in planarians, the earliest animal with a centralized nervous system. We used two assays, one that quantifies withdrawal responses during drug absence as a reduction in motility and another that quantifies reinforcing effects using a conditioned place preference (CPP) design. In withdrawal experiments, planarians exposed to sucrose (1%) for 60 min and then tested in water for 5 min displayed reduced motility compared to water controls. Acute or continuous sucrose (1%) exposure did not affect motility. CPP experiments used a biased design to capitalize upon planarians' natural preference for the dark (pretest, sucrose conditioning in the light, posttest). Planarians conditioned with sucrose (1%) displayed a greater preference shift than sucrose-naïve planarians. Glucose (0.1, 1%), but not the non-digestible disaccharide lactulose (0.1, 1%), also produced a greater preference shift than water-exposed planarians. Development of sucrose-induced CPP was inhibited when sucrose (1%) conditioning was conducted in combination with dopamine receptor antagonists SCH 23390 (1 μM) or sulpiride (1 μM). These results suggest that the rewarding and reinforcing effects of sugar are highly conserved across species and that planarians offer an invertebrate model to provide insight into the pharmacological effects of sucrose and related sweeteners.

  9. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli]. (United States)

    Li, Feng; Ma, Jiangfeng; Wu, Mingke; Ji, Yaliang; Chen, Wufang; Ren, Xinyi; Jiang, Min


    Sugarcane molasses containing large amounts of sucrose is an economical substrate for succinic acid production. However, Escherichia coli AFP111 cannot metabolize sucrose although it is a promising candidate for succinic acid production. To achieve sucrose utilizing ability, we cloned and expressed cscBKA genes encoding sucrose permease, fructokinase and invertase of non-PTS sucrose-utilization system from E. coli W in E. coli AFP111 to generate a recombinant strain AFP111/pMD19T-cscBKA. After 72 h of anaerobic fermentation of the recombinant in serum bottles, 20 g/L sucrose was consumed and 12 g/L succinic acid was produced. During dual-phase fermentation comprised of initial aerobic growth phase followed by anaerobic fermentation phase, the concentration of succinic acid from sucrose and sugarcane molasses was 34 g/L and 30 g/L, respectively, at 30 h of anaerobic phase in a 3 L fermentor. The results show that the introduction of non-PTS sucrose-utilization system has sucrose-metabolizing capability for cell growth and succinic acid production, and can use cheap sugarcane molasses to produce succinic acid.

  10. Differential regulation of two sucrose transporters by defoliation and light conditions in perennial ryegrass. (United States)

    Furet, Pierre-Maxime; Berthier, Alexandre; Decau, Marie-Laure; Morvan-Bertrand, Annette; Prud'homme, Marie-Pascale; Noiraud-Romy, Nathalie; Meuriot, Frédéric


    Sucrose transport between source and sink tissues is supposed to be a key-step for an efficient regrowth of perennial rye-grass after defoliation and might be altered by light conditions. We assessed the effect of different light regimes (high vs low light applied before or after defoliation) on growth, fructans and sucrose mobilization, as well as on sucrose transporter expression during 14 days of regrowth. Our results reported that defoliation led to a mobilization of C reserves (first sucrose and then fructans), which was parallel to an induction of LpSUT1 sucrose transporter expression in source and sink tissues (i.e. leaf sheaths and elongating leaf bases, respectively) irrespective to light conditions. Light regime (high or low light) had little effects on regrowth and on C reserves mobilization during the first 48 h of regrowth after defoliation. Thereafter, low light conditions, delaying the recovery of photosynthetic capacities, had a negative effect on C reserves re-accumulation (especially sucrose). Surprisingly, high light did not enhance sucrose transporter expression. Indeed, while light conditions had no effect on LpSUT1 expression, LpSUT2 transcripts levels were enhanced for low light grown plants. These results indicate that two sucrose transporter currently identified in Lolium perenne L. are differentially regulated by light and sucrose.

  11. Sucrose-induced hypocotyl elongation of Arabidopsis seedlings in darkness depends on the presence of gibberellins. (United States)

    Zhang, Yongqiang; Liu, Zhongjuan; Wang, Liguang; Zheng, Sheng; Xie, Jiping; Bi, Yurong


    In this study, the effects of sucrose on hypocotyl elongation of Arabidopsis seedlings in light and in dark were investigated. Sucrose suppressed the hypocotyl elongation of Arabidopsis seedlings in light, but stimulated elongation in dark. Application of paclobutrazol (PAC, a gibberellin biosynthesis inhibitor) impaired the effects of sucrose on hypocotyl elongation, suggesting that endogenous GAs is required for sucrose-induced hypocotyl elongation in the dark. Exogenous GA(3) application reversed the repression caused by PAC application, indicating that exogenous GA(3) could substitute, at least partially, for endogenous GAs in sucrose-induced hypocotyl elongation. In addition, we found that GA 3-oxidase 1 (GA3ox1), encoding a key enzyme involved in endogenous bioactive GA biosynthesis, was up-regulated by sucrose in the dark, whereas GIBBERELLIN INSENSITIVE DWARF 1a (AtGID1a), encoding a GA receptor and playing an important role during GAs degradation to DELLA proteins (DELLAs, repressors of GA-induced plant growth), was down-regulated. These results imply that endogenous bioactive GA levels are expected to be enhanced, but the degradation of DELLAs was inhibited by sucrose in dark. Thus, our data suggest that the sucrose-induced hypocotyl elongation in the dark does not result from GA-induced degradation of DELLAs. We conclude that sucrose can stimulate hypocotyl elongation of Arabidopsis seedlings in the dark in a GA-dependent manner.

  12. Neohesperidin dihydrochalcone is not a taste enhancer in aqueous sucrose solutions. (United States)

    Kroeze, J H


    Neohesperidin dihydrochalcone (NHDC) is an intensive sweetener, obtained by alkaline hydrogenation of neohesperidin. In this investigation a supposed taste enhancing effect of this substance was tested. A three-step procedure was used. In the first experiment, using a pool of 31 subjects, NHDC and sucrose detection thresholds were measured. In the second experiment, psychophysical functions for both tastants were determined. Then, 15 participants closest to the group threshold who, in addition, had produced monotonic psychophysical taste functions were selected to participate in the next two experiments. In the third experiment, taste enhancement was tested. Three psychophysical sucrose functions were constructed, one with a near-threshold amount of NHDC added to each of seven sucrose concentrations, one with a near-threshold amount of sucrose added (control 1) and one without any addition (control 2). No difference was found between the NHDC-enriched sucrose function and the sucrose-enriched sucrose function. Finally, in experiment 4, differential threshold functions were constructed with either NHDC or sucrose added. Neither the overall shape of the functions nor a comparison of the points of subjective equality showed enhancement. It was concluded that weak NHDC does not enhance the taste of aqueous sucrose solutions.

  13. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length


    Rufin, M. A.; Gruetzner, J. A.; Hurley, M. J.; Hawkins, M. L.; Raymond, E. S.; Raymond, J. E.; Grunlan, M. A.


    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide)n-OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogu...

  14. Scientific Opinion on the safety evaluation of the active substance, acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked for use in active food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF


    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of the acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked (CAS No. 117675-55-5, FCM Substance No 1022, to be used as liquid absorber in the form of fibres in absorbent pads for the packaging of fresh or frozen meat, poultry, and fish as well as fresh fruits and vegetables. The Panel considered that migration is not expected when the absorption capacity of the pads is not exceeded. Therefore no exposure from the consumption of the packed food is expected. The Panel also considered that none of these starting substances and the cross-linked polymer gives rise to concern for genotoxicity. Therefore the CEF Panel concluded that the use of the substance acrylic acid, sodium salt, co-polymer with acrylic acid, methyl ester, methacrylic acid, 2 hydroxypropylester, and acrylic acid cross-linked does not raise a safety concern when used as fibres in absorber pads for the packaging of fresh or frozen meat, poultry, fish, fruits and vegetables under conditions under which the absorption capacity of the pads is not exceeded and mechanical release of the fibres from the pads is excluded.

  15. Large organized surface domains self-assembled from nonpolar amphiphiles. (United States)

    Krafft, Marie Pierre


    For years, researchers had presumed that Langmuir monolayers of small C(n)F(2n+1)C(m)H(2m+1) (FnHm) diblock molecules (such as F8H16) consisted of continuous, featureless films. Recently we have discovered that they instead form ordered arrays of unusually large (~30-60 nm), discrete self-assembled surface domains or hemimicelles both at the surface of water and on solid substrates. These surface micelles differ in several essential ways from all previously reported or predicted molecular surface aggregates. They self-assemble spontaneously, even at zero surface pressure, depending solely on a critical surface concentration. They are very large (~100 times the length of the diblock) and involve thousands of molecules (orders of magnitude more than classical micelles). At the same time, the surface micelles are highly monodisperse and self-organize in close-packed hexagonal patterns (two-dimensional crystals). Their size is essentially independent from pressure, and they do not coalesce and are unexpectedly sturdy for soft matter (persisting even beyond surface film collapse). We and other researchers have observed large surface micelles for numerous diblocks, using Langmuir-Blodgett (LB) transfer, spin-coating and dip-coating techniques, or expulsion from mixed monolayers, and on diverse supports, establishing that hemimicelle formation and ordering are intrinsic properties of (perfluoroalkyl)alkanes. Notably, they involve "incomplete" surfactants with limited amphiphilic character, which further illustrates the outstanding capacity for perfluoroalkyl chains to promote self-assembly and interfacial film structuring. Using X-ray reflectivity, we determined a perfluoroalkyl-chain-up orientation. Theoretical investigations assigned self-assembly and hemimicelle stability to electrostatic dipole-dipole interactions at the interface between Fn- and Hm-sublayers. Grazing-incidence small-angle X-ray scattering (GISAXS) data collected directly on the surface of water

  16. Conformational Transition of Poly (Acrylic Acid) Detected by Microcantilever Sensing

    Institute of Scientific and Technical Information of China (English)

    LI Kai; LIU Hong; ZHANG Qing-Chuan; XUE Chang-Guo; WU Xiao-Ping


    Poly (acrylic acid) (PAA) chains are grafted on one side of a microcantilever by the self-assembled method and the deflections of the microcantilever are detected as a function of medium pH from 3 to 11. It is found that when the pH varies, the microcantilever deflects because of the changing surface stress. By analysing the electrostatic repulsive effect, the surface stress change is related to the conformation transition of PAA from a collapse state to a swelling state. This method offers the interaction information among the polymer chains during the conformational transition and affords an alternative way to study conformational change of polymers.

  17. Dimensional accuracy and stability of acrylic resin denture bases. (United States)

    Huggett, R; Zissis, A; Harrison, A; Dennis, A


    Proponents of injection molding systems have claimed a number of benefits over conventional press-pack dough molding systems. The aim of this study was to evaluate a recently developed injection (dry heat) procedure of processing compared with press-pack dough molding utilizing three curing cycles. The dimensional accuracy and stability of acrylic resin bases produced by the two molding procedures were compared. Dimensional changes were assessed over a period of 4 months using an optical comparator. The results demonstrate that baseplates produced by the injection molding procedure exhibit less shrinkage than those produced by the conventional press-pack procedures.


    Institute of Scientific and Technical Information of China (English)

    Mu-jie Yang; Wei Zhang


    Silicone-acrylate copolymer latex was prepared through three different polymerization processes, i.e., the batch process, preemulsified monomer addition and the monomer addition process. The results revealed that the monomer addition process is a desirable approach to produce narrow particle size distribution latex with higher polymerization conversion and less amount of coagulum. The effect of silicone content on the glossiness and water absorption of latex film was investigated and the results showed that the glossiness of latex film is improved up to a silicone content of 10% of total monomers, but becomes impaired thereafter, whereas water absorption is reduced accordingly.

  19. Poly(styrene-acrylic acid) magnetic polymer microspheres

    Institute of Scientific and Technical Information of China (English)

    Yanling CHENG; Liuqiang MA; Ruohui LI


    Magnetic polymer microspheres have been considered as a kind of new biopolymer materials with great advantages in bioseparation engineering and biome-dicine engineering because they have not only polymer functional groups but also magnetic characteristics. Styrene-acrylic acid copolymer (p(S-AA)) magnetic microspheres were synthesized by dispersion polymeriza-tion with Fe3O4 as core and p(S-AA) as shell. The micro-spheres were characterized by SEM, size analysis, molecular weight and solid content measurement. All of them indicate that the microspheres are small in size, nar-row in distribution, stable in chemistry and rich in func-tional groups on their surface.

  20. Mass spectrometry-based method to investigate the natural selectivity of sucrose as the sugar transport form for plants. (United States)

    Yuan, Hang; Wu, Yile; Liu, Wu; Liu, Yan; Gao, Xiang; Lin, Jinming; Zhao, Yufen


    Sucrose is the carbon skeletons and energy vector for plants, which is important for plants growth. Among thousands of disaccharides in Nature, why chose sucrose for plants? In this paper, we analyzed the intrinsic structural characteristics of four sucrose isomers with different glycosidic linkage by mass spectrometry (MS) technique. Our results show that sucrose has the most labile glycosidic bond compared with other three isomers, which is helpful for releasing glucose and fructose unit. Besides, sucrose has the most stable integral structure, which is hard to dehydrate and degrade into fragments through losing one or three even four-carbon units, just as its three isomers. In other words, sucrose is more easily holds an integral structure during the transport process, whenever it is necessary, and sucrose can be cleaved into glucose and fructose easily. Besides, we also investigate the internal relationship of sucrose with K(+) by tandem mass spectrometry and viscosity measurement. The related results have shown that the K(+) can stabilize sucrose to a greater extent than the Na(+). Furthermore, under the same conditions, K(+) ions reduce the viscosity of sucrose-water system much more than Na(+). These results suggest that K(+) is a better co-transporter for sucrose. Of course, the transport of sucrose in plants is a very complicated process, which is involved in many proteins. This paper directly accounts for the basic structure feature of sucrose, and the results discovered could provide the novel insight for the answer why Nature chose sucrose for plants.

  1. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins. (United States)


    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as... no more than 25 weight percent of polymer units derived from methyl acrylate. (b) The finished food... ethylene-methyl acrylate copolymer resins used in food-packaging adhesives complying with § 175.105 of...

  2. Biocatalytic Synthesis of Maltodextrin-Based Acrylates from Starch and alpha-Cyclodextrin

    NARCIS (Netherlands)

    Kloosterman, Wouter M. J.; Spoelstra-van Dijk, Gerda; Loos, Katja


    Novel 2-(beta-maltooligooxy)-ethyl (meth) acrylate monomers are successfully synthesized by CGTase from Bacillus macerans catalyzed coupling of 2-(beta-glucosyloxy)-ethyl acrylate and methacrylate with a-cyclodextrin or starch. HPLC-UV analysis shows that the CGTase catalyzed reaction yields 2-(beta

  3. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by...

  4. 40 CFR 721.465 - Alkoxylated alkylpolyol acrylates, adduct with alkylamine (generic). (United States)


    ..., adduct with alkylamine (generic). 721.465 Section 721.465 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.465 Alkoxylated alkylpolyol acrylates, adduct with... substances identified generically as alkoxylated alkylpolyol acrylates, adduct with alkylamine (PMNs...

  5. Formation of Methyl Acrylate from CO 2 and Ethylene via Methylation of Nickelalactones

    KAUST Repository

    Bruckmeier, Christian


    The nickel-induced coupling of ethylene and CO2 represents a promising pathway toward acrylates. To overcome the high bond dissociation energies of the M-O moieties, we worked out an in situ methylation of nickelalactones to realize the β-hydride elimination and the liberation of the acrylate species. © 2010 American Chemical Society.


    Institute of Scientific and Technical Information of China (English)

    SHI Youheng; NIE Xuzong


    In this paper, a series of interpenetrating polymer networks (IPNs) based on polyurethane acrylate and epoxy resin was prepared by simultaneous photoinitiating by both free-radical and cationic polymerization.The effects of the polyurethane acrylate prepolymer's molecular weight, various components ratio and polymerization methods on IPN's dynamic mechanical and mechanical properties were investigated.

  7. Use of an acrylic mold for mortise view improvement in ankle fractures: a feasibility study

    NARCIS (Netherlands)

    Donken, C.C.; Verhofstad, M.H.J.; Edwards, M.J.R.; Schoemaker, M.C.; Laarhoven, C.J.H.M. van


    We investigated an acrylic mold for use in obtaining ankle radiographs in 31 consecutive patients with ankle fracture. The radiologic examination consisted of routine lateral and mortise views, with the same views procured with the use of the acrylic mold to position the ankle. Radiographic evidence


    Directory of Open Access Journals (Sweden)

    N. G. Kulneva


    Full Text Available Summary. Application of slanted diffusers is accompanied with irregular heating of juice- and chips mixture in the unit length, which reduces the degree of extraction of sucrose from chips and microorganisms intensive growth inside the apparatuses, increases the sucrose loss during the extraction and the time of the whole process. A method for preprocessing of beet chips prior to extraction with hot solutions of chemical agents was suggested. It was experimentally found out that the best quality indicators are inherent to the juice obtained from chips treated with a solution of 0.05 % aluminum sulfate or with 0.10% bleach solution. Thermal processing of beet chips with the solutions of Al2(SO43 with a concentration of 0.05% and bleach with a concentration of 0.10 % results in a gradual beet chips uniform heating and denaturation of the proteins, which increases the mass transfer coefficient of sugarbeet tissue, increasing its permeability. Beet chips surface washing aluminum sulfate solution reduces the solubility of the protein and pectin substances, increasing the strength and elasticity of beet chips. pH of the medium is stabilized, which reduces the transition of non-sugars from beet chips into the diffusion juice in the process of sucrose extraction. Combination of thermal and chemical treatment allows to stabilize the colloids of sugarbeet tissue and to heat beet chips to the optimum temperature of the diffusion process of 70-72 °C before entering the diffusion apparatus and to improve its structural and mechanical properties. The use of preliminary heat treatment of beet chips: improves the efficiency of diffusion processes; blocks the transition of substances of protein-pectin complex of beet chips into the raw juice, whereby their content in the diffusion juice is reduced; reduces the color of purified juice by 15.1 %, the content of calcium salts by 31.3 % in comparison with the standard method; -improves the purity of the purified

  9. Effect of Beverages on the Hardness and Tensile Bond Strength of Temporary Acrylic Soft Liners to Acrylic Resin Denture Base

    Directory of Open Access Journals (Sweden)

    Safari A.


    Full Text Available Statement of Problem: Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials.Purpose: The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin.Materials and Method: For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers’ instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10 and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37oC for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA.Results: There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748 and bond strength (p= 0.902. There were statistically signifi-cant differences between all drinks for both hardness (p< 0.001 and bond strength (p< 0.05.Conclusion: Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary

  10. The transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion

    Directory of Open Access Journals (Sweden)

    Devi Rianti


    Full Text Available A laboratoric experimental study was conducted on the transverse strength of acrylic resin after Coleus amboinicus, Lour extract solution immersion. The aim of this study is to know the difference of acrylic resin transverse strengths caused by immersion time variations in a concentrate solution. The study was carried out on unpolished acrylic resin plates with 65 × 10 × 2,5 mm dimension; solution with 15% Coleus amboinicus, Lour extract, and 30, 60, 90 days immersion times to measure the transverse strength and sterilized aquadest was used as control. Acrylic resin plates transverse strength was measured using Autograph AG-10 TE. The data was analyzed using One-Way Anova and LSD with 5% degree of significance. The result showed that longer immersion time will decrease the transverse strength of the acrylic resin plates. After 90 days immersion time, the transverse strength decrease is still above the recommended standard transverse strength.

  11. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure (United States)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun


    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  12. UV-crosslinkable photoreactive self-adhesive hydrogels based on acrylics

    Directory of Open Access Journals (Sweden)

    Czech Zbigniew


    Full Text Available Hydrogels are a unique class of macromolecular networks that can hold a large fraction of an aqueous solvent within their structure. They are suitable for biomedical area including controlled drug delivery and for technical applications as self-adhesive materials for bonding of wet surfaces. This paper describes photoreactive self-adhesive hydrogels based on acrylics crosslinked using UV radiation. They are prepared in ethyl acetate through radical polymerization of monomers mixture containing 2-ethylhexyl acrylate (2-EHA, butyl acrylate (BA, acrylic acid (AA and copolymerizable photoinitiator 4-acryloyloxy benzophenone (ABP at presence of radical starter 2.2’-azobis-diisobutyronitrile AIBN. The synthesized acrylic copolymers were determined by viscosity and GPC analysis and later modified using ethoxylated amines. 4-acryloyloxy benzophenone (ABP was used as crosslinking monomer. After UV crosslinking the properties of these novel synthesized hydrogels, such as tack, peel adhesion, shears strength, elongation and water adsorption were also studied.

  13. Influence of Solvent Conditons on Average Relative Molecular Weight of Polyoctadecyl Acrylate

    Institute of Scientific and Technical Information of China (English)

    JiangQingzhe; SongZhaozheng; KeMing; ZhaoMifu


    Polymerization of octodecyl acrylate is studied in four solvents -- carbon tetrachloride, chloroform,methylbenzene and tetrachloroethane. Experimental results indicate that the sequence of chain transfer constants in solvents is: carbon tetrachloride>chloroform>methylbenzene>tetrachloroethane in the polymerization of octadecyl acrylate. Influences of four solvents on solubility of polyoctadecyl acrylate prove not the same. In chloroform,polyoctadecyl acrylate shows the highest relative viscosity and the lowest chain termination rate constant. In higher conversion, the average relative molecular weight of polyoctadecyl acrylate depends mainly on the chain transfer constant of the solvent. Under the circumstance of monomer conversion higher than 30%, the viscosity effect induced by polymeric molecular shape in the solvents have a strong influence on the relative molecular weight of the polymer obtained.

  14. The Influence of the Constitution of Acrylate Copolymers on Electrochromic Properties of Their Pan Composite Coatings

    Institute of Scientific and Technical Information of China (English)


    Several polyacrylate matrixes were prepared with monomers such as methyl methacrylate,KH-570,acrylic acid and butyl acrylate,and the electrochromic behavior of their soluble Pan composite coatings was also studied by electrochemical analysis and spectrophotometry.It shows that the constitution of the polymer matrixes have great effects on the electrochromic process and the color change of the composite coatings.When the matrix consists of acrylic acid unit,Pan of both interior and exterior composite possesses the same electrochemical reactivity,shorter responding time and wider color-changing range.But it is contrary when matrixes contain no acrylic acid.Furthermore,the composite containing acrylic acid units has still electrochemical reactivity in distilled water instead of LiClO4-PC electrolyte.

  15. Effect of Sucrose Concentration on Sucrose-Dependent Adhesion and Glucosyltransferase Expression of S. mutans in Children with Severe Early-Childhood Caries (S-ECC

    Directory of Open Access Journals (Sweden)

    Wei Zhao


    Full Text Available Sucrose, extracellular polysaccharide, and glucosyltransferases (GTFs are key factors in sucrose-dependent adhesion and play important roles in the process of severe early-childhood caries (S-ECC. However, whether sucrose concentration regulates gtf expression, extracellular polysaccharide synthesis, and sucrose-dependent adhesion is related to the different genotypes of S. mutans isolated from ECC in children and still needs to be investigated. In this study, 52 strains of S. mutans were isolated from children with S-ECC and caries-free (CF children. Water-insoluble glucan (WIG synthesis was detected by the anthrone method, adhesion capacity by the turbidimetric method, and expression of gtf by RT-PCR in an in vitro model containing 1%–20% sucrose. The genotypes of S. mutans were analyzed by AP-PCR. The results showed that WIG synthesis, adhesion capacity, and gtf expression increased significantly when the sucrose concentration was from 1% to 10%. WIG synthesis and gtfB as well as gtfC expression of the 1% and 5% groups were significantly lower than those of the 10% and 20% groups (p < 0.05. There were no significant differences between the 10% and 20% groups. The fingerprints of S. mutans detected from individuals in the S-ECC group exhibited a significant difference in diversity compared with those from CF individuals (p < 0.05. Further, the expression of gtfB and gtfC in the S-ECC group was significantly different among the 1- to 5-genotype groups (p < 0.05. It can be concluded that sucrose-dependent adhesion might be related to the diversity of genotypes of S. mutans, and the 10% sucrose level can be seen as a “turning point” and essential factor for the prevention of S-ECC.

  16. Inverse pH regulation of plant and fungal sucrose transporters: a mechanism to regulate competition for sucrose at the host/pathogen interface?

    Directory of Open Access Journals (Sweden)

    Kathrin Wippel

    Full Text Available BACKGROUND: Plant sucrose transporter activities were shown to respond to changes in the extracellular pH and redox status, and oxidizing compounds like glutathione (GSSG or H(2O(2 were reported to effect the subcellular targeting of these proteins. We hypothesized that changes in both parameters might be used to modulate the activities of competing sucrose transporters at a plant/pathogen interface. We, therefore, compared the effects of redox-active compounds and of extracellular pH on the sucrose transporters UmSRT1 and ZmSUT1 known to compete for extracellular sucrose in the Ustilago maydis (corn smut/Zea mays (maize pathosystem. METHODOLOGY/PRINCIPAL FINDINGS: We present functional analyses of the U. maydis sucrose transporter UmSRT1 and of the plant sucrose transporters ZmSUT1 and StSUT1 in Saccharomyces cerevisiae or in Xenopus laevis oocytes in the presence of different extracellular pH-values and redox systems, and study the possible effects of these treatments on the subcellular targeting. We observed an inverse regulation of host and pathogen sucrose transporters by changes in the apoplastic pH. Under none of the conditions analyzed, we could confirm the reported effects of redox-active compounds. CONCLUSIONS/SIGNIFICANCE: Our data suggest that changes in the extracellular pH but not of the extracellular redox status might be used to oppositely adjust the transport activities of plant and fungal sucrose transporters at the host/pathogen interface.

  17. Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition. (United States)

    Keleş, Elif; Hazer, Baki; Cömert, Füsun B


    A new type of amphiphilic antibacterial elastomer has been described. Thermoplastic elastomer, polystyrene-block-polyisoprene-block-polystyrene (PS-b-PI-b-PS) triblock copolymer was functionalized in toluene solution by free radical mercaptan addition in order to obtain an amphiphilic antibacterial elastomer. Thiol terminated PEG was grafted through the double bonds of PS-b-PI-b-PS via free radical thiol-ene coupling reaction. The antibacterial properties of the amphiphilic graft copolymers were observed. The original and the modified polymers were used to create microfibers in an electro-spinning process. Topology of the electrospun micro/nanofibers were studied by using scanning electron microscopy (SEM). The chemical structures of the amphiphilic comb type graft copolymers were elucidated by the combination of elemental analysis, (1)H NMR, (13)C NMR, GPC and FTIR.

  18. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain. (United States)

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han


    A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application.

  19. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling

    NARCIS (Netherlands)

    Saavedra, Guilherme; Valandro, Luz Felipe; Leite, Fabiola Pessoa; Amaral, Regina; Oezcan, Mutlu; Bottino, Marco A.; Kimpara, Estevao T.


    This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol)

  20. From bola-amphiphiles to supra-amphiphiles: the transformation from two-dimensional nanosheets into one-dimensional nanofibers with tunable-packing fashion of n-type chromophores. (United States)

    Liu, Kai; Yao, Yuxing; Wang, Chao; Liu, Yu; Li, Zhibo; Zhang, Xi


    With a rational design of the supra-amphiphiles, we have successfully demonstrated that not only the dimension of the self-assembled nanostructures, but also the packing fashion of the functional naphthalene diimide (a typical n-type chromophore), can be tuned in a noncovalent way in aqueous solution. Naphthalene diimide is incorporated into a bola-amphiphile as the rigid core, whereas viologen derivatives are used as the hydrophilic head. The bola-amphiphile self-assembles into two-dimensional nanosheets, in which naphthalene diimide adopts a "J-type" aggregation. Water-soluble supramolecular complexation between viologen derivatives and the 8-hydroxypyrene-1, 3, 6-trisulfonic acid trisodium salt is used as a driving force for the formation of the supra-amphiphiles. Upon formation of the supra-amphiphiles, the nanosheets transform into ultralong nanofibers with a close packing of naphthalene diimide. Notably, just by mixing the two building blocks of the supra-amphiphiles in aqueous solution, a dimension-controlled evolution of the nanostructures is formed that leads to a different packing fashion of the n-type functional chromophores, which is facile and environmental friendly.

  1. Thin film of Poly(acrylic acid-co-allyl acrylate as a Sacrificial Protective Layer for Hydrophilic Self Cleaning Glass

    Directory of Open Access Journals (Sweden)

    Jānis Lejnieks


    Full Text Available Poly(acrylic acid-co-allyl acrylate statistical copolymers were synthesized in a controlled manner in two steps: first tert.butyl acrylate and allyl acrylate were polymerized via atom transfer radical polymerization (ATRP and afterwords the tert.butyl protective groups were removed via hydrolysis. Samples of self cleaning glass (SCG were coated with thin films of poly(acrylic acid-co-allyl acrylate and cross-linked afterwards by UV irradiation (in the presence of a photoinitiator and an accelerator. Solution cast thin films were transparent and homogeneous before and after UV cross-linking. The irradiated samples were found to be hydrophilic (Θ < 20° and water insoluble. The coating prevented the spontaneous hydrophobization of the SCG by residual silicon exhaled from the sealing material. The TiO2 photocatalyst that covers the glass surface was found to strip the protective coating. The rate of the photooxidation process was measured by IR spectroscopy. The real field performance of the protective coating was also tested.

  2. Color difference threshold determination for acrylic denture base resins. (United States)

    Ren, Jiabao; Lin, Hong; Huang, Qingmei; Liang, Qifan; Zheng, Gang


    This study aimed to set evaluation indicators, i.e., perceptibility and acceptability color difference thresholds, of color stability for acrylic denture base resins for a spectrophotometric assessing method, which offered an alternative to the visual method described in ISO 20795-1:2013. A total of 291 disk specimens 50±1 mm in diameter and 0.5±0.1 mm thick were prepared (ISO 20795-1:2013) and processed through radiation tests in an accelerated aging chamber (ISO 7491:2000) for increasing times of 0 to 42 hours. Color alterations were measured with a spectrophotometer and evaluated using the CIE L*a*b* colorimetric system. Color differences were calculated through the CIEDE2000 color difference formula. Thirty-two dental professionals without color vision deficiencies completed perceptibility and acceptability assessments under controlled conditions in vitro. An S-curve fitting procedure was used to analyze the 50:50% perceptibility and acceptability thresholds. Furthermore, perceptibility and acceptability against the differences of the three color attributes, lightness, chroma, and hue, were also investigated. According to the S-curve fitting procedure, the 50:50% perceptibility threshold was 1.71ΔE00 (r(2)=0.88) and the 50:50% acceptability threshold was 4.00 ΔE00 (r(2)=0.89). Within the limitations of this study, 1.71/4.00 ΔE00 could be used as perceptibility/acceptability thresholds for acrylic denture base resins.

  3. Characteristics and mechanisms of acrylate polymer damage to maize seedlings. (United States)

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli


    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture.

  4. Graft copolymerization of acrylic acid onto polyamide fibers (United States)

    Makhlouf, Chahira; Marais, Stéphane; Roudesli, Sadok


    The grafting of acrylic acid (AA) monomer (CH 2dbnd CH sbnd COOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction. The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn. The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements. The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements. The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.

  5. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    T Calvo-Fernández


    Full Text Available This paper reports a biological evaluation of a non-resorbable acrylic cement loaded with alendronate for the treatment of osteoporotic vertebral compression fractures. The cement formulation was based on polymethyl methacrylate and acrylic monomers; one of these had covalently linked vitamin E residues. The same cement in the absence of alendronate was used as a control. The setting of the charged cement presented a maximum polymerization temperature of 44ºC, a setting time of 24 min, a residual monomer content lower than 3 wt.%, a compressive strength of 99±10 MPa and an elastic modulus of 1.2±0.2 GPa. Cytotoxicity studies using human osteoblast cultures revealed that the leachable substances of the alendronate loaded cement collected between 1 and 7 days decreased cell viability to values lower than 80%. However, morphological changes and cellular damage in cells produced by the extracts decreased with the leak time. Cell adhesion and growth on charged cement was significantly lower than on the control. Implantation of the cement paste in the intra-femoral cavity of rabbits showed that initially the osteogenic activity was evident for the cement charged with alendronate, and the osteosynthesis process took place mainly in the trabeculae and was manifested by the presence of a non-mineralised osseous spicule. The interface between material and adjacent bone tissue was initially characterized by a variable fibrous response that in many cases it appeared reduced to thin connective tissue after a 24-week-period.

  6. Wet air oxidation of epoxy acrylate monomer industrial wastewater. (United States)

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping


    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater.

  7. Identification of sucrose synthase as an actin-binding protein (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)


    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  8. Dimerization effect of sucrose octasulfate on rat FGF1

    DEFF Research Database (Denmark)

    Kulahin, Nikolaj; Kiselyov, Vladislav; Kochoyan, Artur


    Fibroblast growth factors (FGFs) constitute a family of at least 23 structurally related heparin-binding proteins that are involved in regulation of cell growth, survival, differentiation and migration. Sucrose octasulfate (SOS), a chemical analogue of heparin, has been demonstrated to activate FGF...... signalling pathways. The structure of rat FGF1 crystallized in the presence of SOS has been determined at 2.2 A resolution. SOS-mediated dimerization of FGF1 was observed, which was further supported by gel-filtration experiments. The major contributors to the sulfate-binding sites in rat FGF1 are Lys113......, Lys118, Arg122 and Lys128. An arginine at position 116 is a consensus residue in mammalian FGF molecules; however, it is a serine in rat FGF1. This difference may be important for SOS-mediated FGF1 dimerization in rat....

  9. Rats' preferences for high fructose corn syrup vs. sucrose and sugar mixtures. (United States)

    Ackroff, Karen; Sclafani, Anthony


    High fructose corn syrup (HFCS) has replaced sucrose in many food products, which has prompted research comparing these two sweeteners in rodents. The present study examined the relative palatability of HFCS and sucrose for rats, offering 11% carbohydrate solutions to match the content of common beverages for human consumption. The animals initially preferred HFCS to sucrose but after separate experience with each solution they switched to sucrose preference. Approximating the composition of HFCS with a mixture of fructose and glucose (55:45) yielded a solution that was less attractive than sucrose or HFCS. However, HFCS contains a small amount of glucose polymers, which are very attractive to rats. A 55:42:3 mixture of fructose, glucose and glucose polymers (Polycose) was equally preferred to HFCS and was treated similarly to HFCS in comparisons vs. sucrose. Post-oral effects of sucrose, which is 50% fructose and 50% glucose, may be responsible for the shift in preference with experience. This shift, and the relatively small magnitude of differences in preference for HFCS and sucrose, suggest that palatability factors probably do not contribute to any possible difference in weight gain responses to these sweeteners.

  10. Coordination of sucrose uptake and respiration in the yeast Debaryomyces yamadae

    NARCIS (Netherlands)

    Kaliterna, J.; Weusthuis, R.A.; Castrillo, J.I.; Dijken, van J.P.; Pronk, J.T.


    Screening in batch cultures identified Debaryomyces yamadae as a yeast that exhibits the Kluyver effect for sucrose: this disaccharide can be respired but, even under oxygen-limited conditions, alcoholic fermentation of sucrose does not occur. Ethanol, glycerol and arabitol were the main fermentatio

  11. Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system

    Directory of Open Access Journals (Sweden)

    Lalonde Sylvie


    Full Text Available Abstract Background The Arabidopsis genome contains nine sucrose transporter paralogs falling into three clades: SUT1-like, SUT2 and SUT4. The carriers differ in their kinetic properties. Many transport proteins are known to exist as oligomers. The yeast-based split ubiquitin system can be used to analyze the ability of membrane proteins to interact. Results Promoter-GUS fusions were used to analyze the cellular expression of the three transporter genes in transgenic Arabidopsis plants. All three fusion genes are co-expressed in companion cells. Protein-protein interactions between Arabidopsis sucrose transporters were tested using the split ubiquitin system. Three paralogous sucrose transporters are capable of interacting as either homo- or heteromers. The interactions are specific, since a potassium channel and a glucose transporter did not show interaction with sucrose transporters. Also the biosynthetic and metabolizing enzymes, sucrose phosphate phosphatase and sucrose synthase, which were found to be at least in part bound to the plasma membrane, did not specifically interact with sucrose transporters. Conclusions The split-ubiquitin system provides a powerful tool to detect potential interactions between plant membrane proteins by heterologous expression in yeast, and can be used to screen for interactions with membrane proteins as baits. Like other membrane proteins, the Arabidopsis sucrose transporters are able to form oligomers. The biochemical approaches are required to confirm the in planta interaction.

  12. Pursuing the Pavlovian Contributions to Induction in Rats Responding for 1% Sucrose Reinforcement (United States)

    Weatherly, Jeffrey N.; Huls, Amber; Kulland, Ashley


    The present study investigated whether Pavlovian conditioning contributes, in the form of the response operandum serving as a conditioned stimulus, to the increase in the rate of response for 1% liquid-sucrose reinforcement when food-pellet reinforcement is upcoming. Rats were exposed to conditions in which sign tracking for 1% sucrose was…

  13. Sucrose regulated translational control of bZip genes in Arabidopsis thaliana

    NARCIS (Netherlands)

    Rahmani, F.


    Sucrose can translationally regulate the expression of bZIP11 and four other S-class bZip transcription factors in Arabidopsis thaliana. Sequence encoding 28 amino acids (SC-peptide) in the leader of the bZIP11 is sufficient to mediate sucrose induced translational control. A model proposes that suc

  14. 40 CFR 180.1222 - Sucrose octanoate esters; exemption from the requirement of a tolerance. (United States)


    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sucrose octanoate esters; exemption... FOOD Exemptions From Tolerances § 180.1222 Sucrose octanoate esters; exemption from the requirement of... octanoate esters in or on all food commodities when used in accordance with good agricultural practices....

  15. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.

    NARCIS (Netherlands)

    Broek, van den L.A.M.; Boxtel, van E.L.; Kievit, R.P.; Verhoef, R.P.; Beldman, G.; Voragen, A.G.J.


    Clones of a genomic library of Bifidobacterium adolescentis were grown in minimal medium with sucrose as sole carbon source. An enzymatic fructose dehydrogenase assay was used to identify sucrose-degrading enzymes. Plasmids were isolated from the positive colonies and sequence analysis revealed that

  16. Isolation, Fractionation, and Identification of Sucrose Esters from Various Oriental Tobaccos Employing Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Ashraf-Khorassani M


    Full Text Available Isolation, fractionation, and identification of sucrose esters from aged oriental tobacco employing supercritical fluids have been completed. Underivatized sucrose ester-rich extracts were obtained using supercritical CO2 at densities greater than 0.73 g/mL. Lower density CO2 provided extracts with notable amounts of tobacco derived material; yet, no detectable sucrose ester content. Preparative supercritical fluid chromatography (SFC provided for an additional purification of the sucrose ester-enriched fraction after column optimization. Structural assignments of the SFC fractions were facilitated using gas chromatography/mass spectrometry (GC/MS accompanied by N, O-bis(trimethylsilyltrifluoroacetamide-dimethylformamide (BSTFA-DMF derivatization of the free hydroxyl groups and high performance-liquid chromatography/mass spectrometry (HPLC/MS. From a relative quantitative perspective regardless of tobacco type, sucrose esters having an acetyl group on C6 of the glucose function (Group III were in higher concentration compared to both the concentration observed for sucrose ester of Group I (acetyl group on C3 of fructose and sucrose ester of Group II (no acetyl group on either glucose or fructose. Saturated fatty acid constituents were found to range from a maximum total of 18 carbons to a minimum total of 13 carbons. Unsaturated and isomeric fatty acid homologues were detected within the Group II sucrose ester.

  17. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA. (United States)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua


    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  18. Photophysical and photochemical studies of a novel amphiphilic zinc phthalocyanine and its interaction with calf thymus DNA (United States)

    Yuan, Linxin; Gui, Li; Wang, Yue; Zhang, Quanquan; Zhou, Lin; Wei, Shaohua


    β-tetra (aminophenoxy) sulfonic substituted zinc phthalocyanines (SNZnPc), a novel amphiphilic zinc phthalocyanine (Pc), was synthesized. The photophysical, photochemical, and photobiology properties were studied. Results indicated that the synthesized SNZnPc has good amphiphilic property and high reactive oxygen species (ROSs) generation ability. Furthermore, SNZnPc has strong affinity to calf thymus DNA (CT-DNA) through intercalation ways and can effectively cleavage CT-DNA after irradiation by light with appropriate wavelength.

  19. Synthesis of a new generation of amphiphiles with multi-cryptand headgroups: A comparative study at air–water interface

    Indian Academy of Sciences (India)

    B Sarkar; R K Gupta; R A Singh; P K Bharadwaj


    A laterally non-symmetric aza cryptand has been derivatized with two hydrophobic chains to afford amphiphiles with one cryptand headgroup and two hydrophobic tails. Three such units readily attach to 1,3,5-benzenetricarbonyl trichloride, to form a new generation of amphiphilic molecules with three cryptand headgroups and six hydrophobic chains. These molecules are studied at the air–water interface in a Langmuir trough. They readily form LB-films on a number of substrates that are characterized.

  20. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway

    Directory of Open Access Journals (Sweden)

    Quynh Anh eNguyen


    Full Text Available Soluble sugars not only serve as nutrients, but also act as signals for plant growth and development, but how sugar signals are perceived and translated into physiological responses in plants remains unclear. We manipulated sugar levels in transgenic plants by overexpressing sucrose synthase (SuSy, which is a key enzyme believed to have reversible sucrose synthesis and sucrose degradation functions. The ectopically expressed SuSy protein exhibited sucrose-degrading activity, which may change the flux of sucrose demand from photosynthetic to non-photosynthetic cells, and trigger an unknown sucrose signaling pathway that lead to increased sucrose content in the transgenic plants. An experiment on the transition from heterotrophic to autotrophic growth demonstrated the existence of a novel sucrose signaling pathway, which stimulated photosynthesis, and enhanced photosynthetic synthesis of sucrose, which was the direct cause or the sucrose increase. In addition, a light/dark time treatment experiment, using different day length ranges for photosynthesis/respiration showed the carbohydrate pattern within a 24-hour day and consolidated the role of sucrose signaling pathway as a way to maintain sucrose demand, and indicated the relationships between increased sucrose and upregulation of genes controlling development of the shoot apical meristem (SAM. As a result, transgenic plants featured a higher biomass and a shorter time required to switch to reproduction compared to those of control plants, indicating altered phylotaxis and more rapid advancement of developmental stages in the transgenic plants.

  1. Age-dependency of analgesia elicited by intraoral sucrose in acute and persistent pain models. (United States)

    Anseloni, Vanessa C Z; Weng, H-R; Terayama, R; Letizia, David; Davis, Barry J; Ren, Ke; Dubner, Ronald; Ennis, Matthew


    Treatment of pain in newborns is associated with problematic drug side effects. Previous studies demonstrate that an intraoral infusion of sucrose and other sweet components of mother's milk are effective in alleviating pain in infant rats and humans. These findings are of considerable significance, as sweet tastants are used in pain and stress management in a number of clinical procedures performed in human infants. The ability of sweet stimuli to induce analgesia is absent in adult rats, suggesting that this is a developmentally transient phenomenon. However, the age range over which intraoral sucrose is capable of producing analgesia is not known. We investigated the effects of intraoral sucrose (7.5%) on nocifensive withdrawal responses to thermal and mechanical stimuli in naive and inflamed rats at postnatal days (P) P0-21. In some rats, Complete Freund's adjuvant (CFA) was injected in a fore- or hindpaw to produce inflammation. In non-inflamed animals, for noxious thermal stimuli, sucrose-induced analgesia emerged at P3, peaked at P7-10, then progressively declined and was absent at P17. For mechanical forepaw stimuli, sucrose-induced analgesia emerged, and was maximal at approximately P10, then declined and was absent at P17. By contrast, maximal sucrose-induced analgesia for mechanical hindpaw stimuli was delayed (P13) compared to that for the forepaw, although it was also absent at P17. In inflamed animals, sucrose reduced hyperesthesia and hyperalgesia assessed with mechanical stimuli. Sucrose-induced analgesia in inflamed animals was initially present at P3 for the forepaw and P13 for the hindpaw, and was absent by P17 for both limbs. Intraoral sucrose produced significantly greater effects on responses in fore- and hindpaws in inflamed rats than in naive rats indicating that it reduces hyperalgesia and allodynia beyond its effects on responses in naive animals. These findings support the hypothesis that sucrose has a selective influence on analgesic

  2. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers (Solanum tuberosum). (United States)

    Hajirezaei, Mohammad-Reza; Börnke, Frederik; Peisker, Martin; Takahata, Yasuhiro; Lerchl, Jens; Kirakosyan, Ara; Sonnewald, Uwe


    To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased

  3. Sucrose Solutions as Prospective Medium to Study the Vesicle Structure SAXS and SANS study

    CERN Document Server

    Kiselev, M A; Kisselev, A M; Lombardo, D; Killany, M; Lesieur, S


    The possibility to use sucrose solutions as medium for X-ray and neutron small-angle scattering experiments has been explored for dimyristoylphosphatidylcholine (DMPC) vesicles and mixed DMPC/C_(12)E_(8) aggregates. The influence of sucrose concentration on phospholipid vesicles size and polydispersity has been investigated by complimentary X-ray and neutron scattering. Sucrose solutions decreased vesicle size and polydispersity and increased a contrast between phospholipid membrane and bulk solvent sufficiently for X-rays. 40% sucrose in H2O increased X-ray contrast by up to 10 times compared to pure H2O. The range of sucrose concentration 30%-40% created the best experimental conditions for the X-ray small-angle experiment with phospholipid vesicles.

  4. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length. (United States)

    Rufin, M A; Gruetzner, J A; Hurley, M J; Hawkins, M L; Raymond, E S; Raymond, J E; Grunlan, M A


    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide) n -OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogues (n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance.

  5. Synthesis of Highly Porous Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) Asymmetric Membranes

    KAUST Repository

    Xie, Yihui


    For the first time, self-assembly and non-solvent induced phase separation was applied to polysulfone-based linear block copolymers, reaching mechanical stability much higher than other block copolymers membranes used in this method, which were mainly based on polystyrene blocks. Poly(tert-butyl acrylate)-b-polysulfone-b-poly(tert-butyl acrylate) (PtBA30k-b-PSU14k-b-PtBA30k) with a low polydispersity of 1.4 was synthesized by combining step-growth condensation and RAFT polymerization. Various advanced electron microscopies revealed that PtBA30k-b-PSU14k-b-PtBA30k assembles into worm-like cylindrical micelles in DMAc and adopts a “flower-like” arrangement with the PSU central block forming the shell. Computational modeling described the mechanism of micelle formation and morphological transition. Asymmetric nanostructured membranes were obtained with a highly porous interconnected skin layer and a sublayer with finger-like macrovoids. Ultrafiltration tests confirmed a water permeance of 555 L m-2 h-1 bar-1 with molecular weight cut-off of 28 kg/mol. PtBA segments on the membrane surface were then hydrolyzed and complexed with metals, leading to cross-linking and enhancement of antibacterial capability.

  6. Comparison of Tensile Strength of Four Kind of Acrylic Artificial Teeth to Acrylic Denture Base In Vitro

    Directory of Open Access Journals (Sweden)

    Rosthamkhani F


    Full Text Available Introduction: Acrylic teeth properties in complete denture prostheses are important in prosthesis survival. In this regard, tooth tensile bond strength with denture base is very important. The purpose of this study was to compare tensile bond strength of three kind of artificial teeth to denture base manufactured in Iran with a kind manufactured in Italy. Materials & Methods: In this experimental in vitro study, four kind of artificial teeth (Italian Ivoclar, Yaghoot, Herasit plus and Acradent were used. Nine anterior and premolar teeth were selected and were prepared as Cylinders with 4mm diameter. Through flasking, toothbase was bonded to heat-cured acryl. Samples were thermocycled for 2500times (5˚C-55˚C and then were put in plastic pipes and under stretch to fracture by Zwick Z250 instrument. The data were analysed by One-Way ANOVA and Tukey test.Results: Mean tensile bond strength was 260N for Ivoclar, 195N for Herasit, 124N for yaghoot and 54N for Acradent. Adhesive fracture percentage was 100% for Acradent, 60% for Ivoclar, 50% for yaghoot and 35.7% for Herasit. The rest was for cohesive fracture.Conclusion: The highest tensile bond strength was seen with Ivoclar followed by Herasit, Yaghoot and Acradent respectively.

  7. Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Yi Liang


    Full Text Available Allium cepa L. is a widely cultivated and economically significant vegetable crop worldwide, with beneficial dietary and health-related properties, but its sucrose metabolism is still poorly understood. To analyze sucrose metabolism during bulb swelling, and the development of sweet taste in onion, a global transcriptome profile of onion bulbs was undertaken at three different developmental stages, using RNA-seq. A total of 79,376 unigenes, with a mean length of 678 bp, was obtained. In total, 7% of annotated Clusters of Orthologous Groups (COG were involved in carbohydrate transport and metabolism. In the Kyoto Encyclopedia of Genes and Genomes (KEGG database, starch and sucrose metabolism (147, 2.40% constituted the primary metabolism pathway in the integrated library. The expression of sucrose transporter genes was greatest during the early-swelling stage, suggesting that sucrose transporters participated in sucrose metabolism mainly at an early stage of bulb development. A gene-expression analysis of the key enzymes of sucrose metabolism suggested that sucrose synthase, cell wall invertase and invertase were all likely to participate in the hydrolysis of sucrose, generating glucose and fructose. In addition, trehalose was hydrolyzed to two molecules of glucose by trehalase. From 15 to 40 days after swelling (DAS, both the glucose and fructose contents of bulbs increased, whereas the sucrose content decreased. The growth rate between 15 and 30 DAS was slower than that between 30 and 40 DAS, suggesting that the latter was a period of rapid expansion. The dataset generated by our transcriptome profiling will provide valuable information for further research.

  8. Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.). (United States)

    Zhang, Chunsha; Zhang, Hongwei; Zhan, Zongxiang; Liu, Bingjiang; Chen, Zhentai; Liang, Yi


    Allium cepa L. is a widely cultivated and economically significant vegetable crop worldwide, with beneficial dietary and health-related properties, but its sucrose metabolism is still poorly understood. To analyze sucrose metabolism during bulb swelling, and the development of sweet taste in onion, a global transcriptome profile of onion bulbs was undertaken at three different developmental stages, using RNA-seq. A total of 79,376 unigenes, with a mean length of 678 bp, was obtained. In total, 7% of annotated Clusters of Orthologous Groups (COG) were involved in carbohydrate transport and metabolism. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, "starch and sucrose metabolism" (147, 2.40%) constituted the primary metabolism pathway in the integrated library. The expression of sucrose transporter genes was greatest during the early-swelling stage, suggesting that sucrose transporters (SUTs) participated in sucrose metabolism mainly at an early stage of bulb development. A gene-expression analysis of the key enzymes of sucrose metabolism suggested that sucrose synthase, cell wall invertase, and invertase were all likely to participate in the hydrolysis of sucrose, generating glucose, and fructose. In addition, trehalose was hydrolyzed to two molecules of glucose by trehalase. From 15 to 40 days after swelling (DAS), both the glucose and fructose contents of bulbs increased, whereas the sucrose content decreased. The growth rate between 15 and 30 DAS was slower than that between 30 and 40 DAS, suggesting that the latter was a period of rapid expansion. The dataset generated by our transcriptome profiling will provide valuable information for further research.

  9. Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.) (United States)

    Zhang, Chunsha; Zhang, Hongwei; Zhan, Zongxiang; Liu, Bingjiang; Chen, Zhentai; Liang, Yi


    Allium cepa L. is a widely cultivated and economically significant vegetable crop worldwide, with beneficial dietary and health-related properties, but its sucrose metabolism is still poorly understood. To analyze sucrose metabolism during bulb swelling, and the development of sweet taste in onion, a global transcriptome profile of onion bulbs was undertaken at three different developmental stages, using RNA-seq. A total of 79,376 unigenes, with a mean length of 678 bp, was obtained. In total, 7% of annotated Clusters of Orthologous Groups (COG) were involved in carbohydrate transport and metabolism. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, “starch and sucrose metabolism” (147, 2.40%) constituted the primary metabolism pathway in the integrated library. The expression of sucrose transporter genes was greatest during the early-swelling stage, suggesting that sucrose transporters (SUTs) participated in sucrose metabolism mainly at an early stage of bulb development. A gene-expression analysis of the key enzymes of sucrose metabolism suggested that sucrose synthase, cell wall invertase, and invertase were all likely to participate in the hydrolysis of sucrose, generating glucose, and fructose. In addition, trehalose was hydrolyzed to two molecules of glucose by trehalase. From 15 to 40 days after swelling (DAS), both the glucose and fructose contents of bulbs increased, whereas the sucrose content decreased. The growth rate between 15 and 30 DAS was slower than that between 30 and 40 DAS, suggesting that the latter was a period of rapid expansion. The dataset generated by our transcriptome profiling will provide valuable information for further research. PMID:27713754

  10. Sucrose transporters in two members of the Scrophulariaceae with different types of transport sugar. (United States)

    Knop, C; Voitsekhovskaja, O; Lohaus, G


    In order to study differences between sugar transport in oligosaccharide-translocating and sucrose-translocating species, two members of the Scrophulariaceae, Asarina barclaiana Pennell and Alonsoa meridionalis O. Kuntze, were analysed regarding minor-vein anatomy, sugar concentrations in leaves and phloem sap, and expression of sucrose transporters. The minor veins of Asarina barclaiana possess mainly transfer cells and modified intermediary cells and those of Alonsoa meridionalis have intermediary cells and ordinary companion cells. Phloem sap from these plants was collected by the laser-aphid-stylet technique. The main carbon transport forms in Asarina were sucrose and in Alonsoa raffinose and stachyose. The sum of the carbohydrate concentrations in the phloem sap of both species was as high as that in apoplastic phloem loaders. In Asarina the ratio of the sucrose concentration in the phloem to that in the cytosol of source cells was about 35 and the corresponding ratio in Alonsoa was about two. Sucrose transporter cDNAs were isolated from leaves of both species. By means of semi-quantitative reverse transcription-polymerase chain reaction, sucrose transporter mRNA was detected in different organs and also in the phloem sap. This is the first time that sucrose transporters have been found in oligosaccharide-translocating species and that the mRNA of these sucrose transporters has been localized directly in the phloem sap. Taken together, our observations indicate that Asarina is an apoplastic phloem loader, while the results for Alonsoa are ambiguous: some properties are typical of the symplastic phloem-loading mechanism, but probably a sucrose transporter is involved in loading and/or retrieval of sucrose into the phloem.

  11. Characterization of Fe3O4/P(St-MPEO) Amphiphilic Magnetic Polymer Microspheres

    Institute of Scientific and Technical Information of China (English)


    Amphiphilic magnetic microspheres consisting of styrene and poly(ethylene oxide) macromonomer(MPEO) were prepared by dispersion copolymerization in the presence of Fe3O4 magnetic fluid in an ethanol/water medium. The sizes of the magnetic microspheres and their distribution were characterized by means of scanning electron microscopy(SEM). The surface morphology and the average surface roughness of the microspheres were investigated by virtue of atomic force microscopy(AFM). It was found that the microspheres exhibit microscopic phase-separate and the mean square surface roughness of the microspheres increases with increasing MPEO used in the copolymerization. The amphiphilic magnetic microspheres containing 0.4-3.5 mg/g hydroxyl groups could be prepared from MPEO with different concentrations and styrene.

  12. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene. (United States)

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L


    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  13. Structural mechanism of nuclear transport mediated by importin β and flexible amphiphilic proteins. (United States)

    Yoshimura, Shige H; Kumeta, Masahiro; Takeyasu, Kunio


    Karyopherin β family proteins mediate the nuclear/cytoplasmic transport of various proteins through the nuclear pore complex (NPC), although they are substantially larger than the size limit of the NPC.To elucidate the molecular mechanism underlying this paradoxical function, we focused on the unique structures called HEAT repeats, which consist of repetitive amphiphilic α helices. An in vitro transport assay and FRAP analyses demonstrated that not only karyopherin β family proteins but also other proteins with HEAT repeats could pass through the NPC by themselves, and serve as transport mediators for their binding partners. Biochemical and spectroscopic analyses and molecular dynamics simulations of purified HEAT-rich proteins revealed that they interact with hydrophobic groups, including phenyl and alkyl groups, and undergo reversible conformational changes in tertiary structures, but not in secondary structures. These results show that conformational changes in the flexible amphiphilic motifs play a critical role in translocation through the NPC.

  14. Monte Carlo study of the self-assembly of achiral bolaform amphiphiles into helical nanofibers. (United States)

    Wahab, M; Schiller, P; Schmidt, R; Mögel, H-J


    It is shown by coarse-grained off-lattice Monte Carlo simulations that a geometrically induced frustration of the parallel arrangement of rigid achiral bolaform amphiphiles can cause chirality in self-assembled nanostructures. The amphiphilic molecules are represented as rigid linear chains of 8 equally sized hydrophobic spheres (tail) and a hydrophilic sphere (head) at each end. The hydrophilic and hydrophobic spheres differ in size. A very simple interaction scheme consisting of only hard-core repulsion between all spheres and square-well attraction between hydrophobic spheres is sufficient for self-assembly into helical fibers for molecules with head/tail diameter ratios ranging from 1.3 to 1.8.

  15. Nose to Brain Delivery: New Trends in Amphiphile-Based "Soft" Nanocarriers. (United States)

    Marianecci, Carlotta; Rinaldi, Federica; Hanieh, Patrizia N; Paolino, Donatella; Marzio, Luisa Di; Carafa, Maria


    The aim of the present paper is to highlight the potential of nasal mucosa as an administration route for targeting the central nervous system, in particular, the brain. Among the formulation strategies for enhance nose to brain drug delivery, the use of colloidal carriers has became a revolutionary approach. These systems should be able to entrap drugs in the desired amount, to penetrate through anatomical barriers, to efficiently release the loaded drugs in the site of action and moreover to show a good physicochemical, biological stability and good biocompatibility. The use of vesicular systems (liposomes and niosomes) together with the use of micelles, in nose to brain delivery are here presented. Vesicle structure is characterized by the presence of a hydrophobic bilayer and an aqueous core that is absent in micelles. Amphiphilic molecules are responsible for soft nanocarriers formation, in particular: liposomes are formed by phospholipids, while niosomes by non-ionic surfactant and micelles by amphiphilic polymers.

  16. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng


    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  17. Amphiphilic block copolymers as efficiency boosters in microemulsions a SANS investigation of the role of polymers

    CERN Document Server

    Endo, H; Mihailescu, M; Monkenbusch, M; Gompper, G; Richter, D; Jakobs, B; Sottmann, T; Strey, R


    The effect of amphiphilic block copolymers on ternary microemulsions (water, oil and non-ionic surfactant) is investigated. Small amounts of PEP-PEO block copolymer lead to a dramatic expansion of the one-phase region where water and oil can be solubilized by the mediation of surfactant molecules. Small-angle neutron-scattering experiments employing a high-precision two-dimensional contrast-variation technique demonstrate that the polymer is distributed uniformly on the surfactant membrane, where it modifies the membrane curvature elasticity. Furthermore, a new approach to determine the bending rigidity of an amphiphilic membrane is proposed, which is precise enough to measure the logarithmic scale dependence of the bending rigidity and its universal prefactor in bicontinuous microemulsions. (orig.)

  18. Terpene and dextran renewable resources for the synthesis of amphiphilic biopolymers. (United States)

    Alvès, Marie-Hélène; Sfeir, Huda; Tranchant, Jean-François; Gombart, Emilie; Sagorin, Gilles; Caillol, Sylvain; Billon, Laurent; Save, Maud


    The present work shows the synthesis of amphiphilic polymers based on the hydrophilic dextran and the hydrophobic terpenes as renewable resources. The first step concerns the synthesis of functional terpene molecules by thiol-ene addition chemistry involving amino or carboxylic acid thiols and dihydromyrcenol terpene. The terpene-modified polysaccharides were subsequently synthesized by coupling the functional terpenes with dextran. A reductive amination step produced terpene end-modified dextran with 94% of functionalization, while the esterification step produced three terpene-grafted dextrans with a number of terpene units per dextran of 1, 5, and 10. The amphiphilic renewable grafted polymers were tested as emulsifiers for the stabilization of liquid miniemulsion of terpene droplets dispersed in an aqueous phase. The average hydrodynamic diameter of the stable droplets was observed at about 330 nm.

  19. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres (United States)

    da Silva, Ricardo M. P.; van der Zwaag, Daan; Albertazzi, Lorenzo; Lee, Sungsoo S.; Meijer, E. W.; Stupp, Samuel I.


    The dynamic behaviour of supramolecular systems is an important dimension of their potential functions. Here, we report on the use of stochastic optical reconstruction microscopy to study the molecular exchange of peptide amphiphile nanofibres, supramolecular systems known to have important biomedical functions. Solutions of nanofibres labelled with different dyes (Cy3 and Cy5) were mixed, and the distribution of dyes inserting into initially single-colour nanofibres was quantified using correlative image analysis. Our observations are consistent with an exchange mechanism involving monomers or small clusters of molecules inserting randomly into a fibre. Different exchange rates are observed within the same fibre, suggesting that local cohesive structures exist on the basis of β-sheet discontinuous domains. The results reported here show that peptide amphiphile supramolecular systems can be dynamic and that their intermolecular interactions affect exchange patterns. This information can be used to generate useful aggregate morphologies for improved biomedical function.

  20. Preparation of Nano-porous Materials(Ⅰ) by Polymerization of Amphiphile Self-assemblies

    Institute of Scientific and Technical Information of China (English)


    The polymerization of amphiphilic self-assemblies is a promising method to synthesize nano-structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self-assemblies to amphiphilic self-assemblies is given in this paper with 49 参考文献. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano-porous materials is briefly described.