Sample records for amphipathic dna polymers

  1. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Juteau Jean-Marc


    Full Text Available Abstract Background Phosphorothioated oligonucleotides (PS-ONs have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9 inhibited both murine CMV (MCMV and guinea pig CMV (GPCMV with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated

  2. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake. (United States)

    Mercado, S A; Slater, N K H


    Amphipathic pH-responsive polymers have shown to increase the permeability of cell membranes to trehalose hence improving the cryopreservation of mammalian cells. However, the trafficking of both the polymer and trehalose across the cell membrane has not yet been thoroughly analysed. The objective of this study was to investigate the effect on cryopreservation of the trafficking of the disaccharide trehalose along PP-50, an amphipathic polymer, through an osteosarcoma cell line (SAOS-2). Confocal microscopy analysis confirmed the presence of intracellular labelled trehalose only when incubated in the presence of PP-50. Further analysis confirmed that both trehalose and PP-50 localised in the cytoplasm, accumulated mainly in the perinuclear area. Quantitative analysis of the colocalisation between trehalose and PP-50 showed Pearson and Manders coefficients of 0.862 ± 0.008 and 0.766 ± 0.033, respectively, suggesting a high degree of intracellular colocalisation between these molecules. Cryopreserved cells pre-incubated with trehalose and PP-50 showed increased cryosurvival when compared with cells pre-incubated in the absence of the polymer. PP-50 showed to be directly involved in the uptake of trehalose, a critical characteristic towards use in cryopreservation and biomedical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Insight into the role of physicochemical parameters in a novel series of amphipathic peptides for efficient DNA delivery. (United States)

    Sharma, Rajpal; Shivpuri, Shivangi; Anand, Amitesh; Kulshreshtha, Ankur; Ganguli, Munia


    Amphipathic peptides constitute a class of molecules with the potential to develop as efficient and safer alternatives to viral and other nonviral vectors for intracellular delivery of therapeutics. These peptides can be useful for nucleic acid delivery and hence promise to have pharmaceutical application, particularly in gene therapy. In order to design novel amphipathic peptides and improve their efficiency of therapeutic cargo delivery, one needs to understand the role of the physicochemical properties of the peptide. There are very few reports in the literature where the physicochemical properties of the peptide have been correlated with efficiency of plasmid DNA delivery. In the present work we hunted out a naturally occurring amphipathic peptide termed Mgpe-1 (derived from HUMAN Protein phosphatase 1E) as a possible novel DNA delivery agent. We systematically altered the physicochemical parameters of this peptide to further enhance its DNA delivery efficiency. We changed its amphipathicity (from secondary to primary), the total charge (from +6 to +9), hydrophobicity, and the amino acid composition (lysine and serines to arginine; substitution of tryptophan) and studied which of these alterations affect DNA delivery efficiency. Our results showed that although Mgpe-1 exhibited very strong cellular uptake, its plasmid DNA delivery efficiency was poor. The presence of nine arginines improved the DNA delivery efficiency, and the effect was observed in both the primary and the secondary amphipathic variants. We further observed that the presence of tryptophan was important but not essential and the effect of its removal was stronger in the case of the secondary amphipathic peptide. However, increase in total hydrophobicity of the peptide led to a fall in transfection efficiency in the primary amphipathic peptide whereas the secondary amphipathic peptide having the same chemical composition was almost unaffected by this change. The primary amphipathic peptides with

  4. The intracellular fate of an amphipathic pH-responsive polymer: Key characteristics towards drug delivery. (United States)

    Mercado, S A; Orellana-Tavra, C; Chen, A; Slater, N K H


    Biopolymers have become important drug delivery systems for therapeutic molecules by enhancing their accessibility and efficacy intracellularly. However, the transport of these drugs across the cell membrane and their release into the cytosol remain a challenge. The trafficking of poly (l-lysine iso-phthalamide) grafted with phenylalanine (PP-50) was investigated using an osteosarcoma cell line (SAOS-2). Colocalisation of this amphipathic biopolymer with endocytosis tracers, such as transferrin and lactosylceramide, suggested that PP-50 is partially internalised by both clathrin and caveolin-mediated endocytosis. Macropinocytosis was also investigated, but a smaller correlation was found between this mechanism and PP-50 transport. A significant decrease in polymer-mediated calcein uptake was found when cells were pre-incubated with endocytosis inhibitors, suggesting also the use of a combination of mechanisms for cell internalisation. In addition, PP-50 colocalisation with endosome and lysosome pathway markers showed that the polymer was able to escape the endolysosomal compartment before maturation. This is a critical characteristic of a biopolymer towards use as drug delivery systems and biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni


    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units...... to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general. Udgivelsesdato: 2003-Jun-15...

  6. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands. (United States)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni; Schack, Lotte; Wind, Troels; Kenney, John M; Andreasen, Peter A


    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As compared with native PAI-1, the polymers exhibited an increased resistance to temperature-induced unfolding. Polymerization was associated with specific changes in patterns of digestion with non-target proteases. During incubation with urokinase-type plasminogen activator, the polymers were slowly converted to reactive centre-cleaved monomers, indicating substrate behaviour of the terminal PAI-1 molecules in the polymers. A quadruple mutant of PAI-1 with a retarded rate of latency transition also had a retarded rate of polymerization. Studying a number of serpins by native gel electrophoresis, ligand-induced polymerization was observed only with PAI-1 and heparin cofactor II, which were also able to copolymerize. On the basis of these results, we suggest that the binding of ligands in a specific region of PAI-1 leads to so-called loop-sheet polymerization, in which the reactive centre loop of one molecule binds to beta-sheet A in another molecule. Induction of serpin polymerization by small organochemical ligands is a novel finding and is of protein chemical interest in relation to pathological protein polymerization in general.

  7. A lipase-responsive vehicle using amphipathic polymer synthesized with the lipase as catalyst. (United States)

    Ge, Jun; Lu, Diannan; Yang, Cheng; Liu, Zheng


    We describe an enzyme-responsive polymeric vehicle, which is of great interest in controlled drug delivery, biosensing, and other related areas. The polymer synthesized using lipase as catalyst in DMSO has a favorable molecular structure that is quickly hydrolyzed by lipase in aqueous phase, and allows a fast release of encapsulated molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Inclusion of DNA into organic gelator fibers made of amphipathic molecules and its controlled release. (United States)

    Karinaga, Ryouji; Jeong, Yeonhwan; Shinkai, Seiji; Kaneko, Kenji; Sakurai, Kazuo


    When methyl 4,6-O-(p-nitrobenzylidene)-alpha-D-glucopyranoside (p-NO(2)Glu) was dissolved in water, p-NO(2)Glu molecules self-assembled to form a fiber (elemental fiber), and as a result, the solution became a partially transparent gel. When an equal (or more) amount of DNA was added to the gel, a white and crystalline gel was obtained. Energy-dispersive X-ray spectroscopy coupled with TEM and confocal microscopy suggested that DNA was included in the gel fibers made of p-NO(2)Glu molecules. The results imply that p-NO(2)Glu molecules are self-assembled to form an elemental fiber and these elemental fibers and DNA are twisted together to form higher hierarchic fibers. When the complexed gel made of plasmid DNA (pDNA) and p-NO(2)Glu was added to E. coli T7 S30 extract solution, the pDNA had less expression ability compared with naked one. When we added methyl-beta-cyclodextrin (MbetaCyD), the expression rate was recovered with increasing added amount of MbetaCyD. The present paper shows inclusion and controlled release of DNA from a novel supporting material of DNA and that technology could play an important role in the development of localized approaches to gene therapy.

  9. Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. (United States)

    Pocanschi, Cosmin L; Popot, Jean-Luc; Kleinschmidt, Jörg H


    Amphipols are a class of amphipathic polymers designed to maintain membrane proteins in aqueous solutions in the absence of detergents. Denatured β-barrel membrane proteins, like outer membrane proteins OmpA from Escherichia coli and FomA from Fusobacterium nucleatum, can be folded by dilution of the denaturant urea in the presence of amphipol A8-35. Here, the folding kinetics and stability of OmpA in A8-35 have been investigated. Folding is well described by two parallel first-order processes, whose half-times, ~5 and ~70 min, respectively, are independent of A8-35 concentration. The faster process contributed ~55-64 % to OmpA folding. Folding into A8-35 was faster than into dioleoylphosphatidylcholine bilayers and complete at ratios as low as ~0.17 g/g A8-35/OmpA, corresponding to ~1-2 A8-35 molecules per OmpA. Activation energies were determined from the temperature dependence of folding kinetics, monitored both by electrophoresis, which reports on the formation of stable OmpA tertiary structure, and by fluorescence spectroscopy, which reflects changes in the environment of tryptophan side chains. The two methods yielded consistent estimates, namely ~5-9 kJ/mol for the fast process and ~29-37 kJ/mol for the slow one, which is lower than is observed for OmpA folding into dioleoylphosphatidylcholine bilayers. Folding and unfolding titrations with urea demonstrated that OmpA folding into A8-35 is reversible and that amphipol-refolded OmpA is thermodynamically stable at room temperature. Comparison of activation energies for folding and unfolding in A8-35 versus detergent indicates that stabilization of A8-35-trapped OmpA against denaturation by urea is a kinetic, not a thermodynamic phenomenon.

  10. Polymer multilayer tattooing for enhanced DNA vaccination (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.


    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  11. Programmed Switching of Single Polymer Conformation on DNA Origami

    DEFF Research Database (Denmark)

    Krissanaprasit, Abhichart; Madsen, Mikael; Knudsen, Jakob Bach


    ) by DNA hybridization directed by single-stranded guiding strands and ssDNA tracks extending from the origami surface and polymer handle. We demonstrate switching of a conjugated organic polymer conformation between left- and right-turned conformations of the polymer on DNA origami based on toehold......-mediated strand displacement. The switching is observed by atomic force microscopy and by Förster resonance energy transfer between the polymer and two different organic dyes positioned in close proximity to the respective patterns. Using this method, the polymer conformation can be switched six times...... successively. This controlled nanomechanical switching of conjugated organic polymer conformation demonstrates unique control of the shape of a single polymer molecule, and it may constitute a new component for the development of reconfigurable nanophotonic and nanoelectronic devices....

  12. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells (United States)

    Hu, Kelei; Zhou, Huige; Liu, Ying; Liu, Zhu; Liu, Jing; Tang, Jinglong; Li, Jiayang; Zhang, Jiakun; Sheng, Wang; Zhao, Yuliang; Wu, Yan; Chen, Chunying


    Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond. With a double emulsion method, a nano delivery system was constructed to deliver doxorubicin (DOX) and cyclopamine (CYC, a primary inhibitor of the hedgehog signaling pathway of CSCs) to both a CD44-overexpressing breast CSC subpopulation and bulk breast cancer cells and allow an on-demand release. The resulting drug-loaded NPs exhibited a redox-responsive drug release profile. Dual drug-loaded particles potently diminished the number and size of tumorspheres and HA showed a targeting effect towards breast CSCs. In vivo combination therapy further demonstrated a remarkable synergistic anti-tumor effect and prolonged survival compared to mono-therapy using the orthotopic mammary fat pad tumor growth model. The co-delivery of drug and the CSC specific inhibitor towards targeted cancer chemotherapeutics provides an insight into anticancer strategy with facile control and high efficacy.Cancer stem cells (CSCs) have the ability to transform into bulk cancer cells, to promote tumor growth and establish tumor metastasis. To effectively inhibit tumor growth and prevent metastasis, treatments with conventional chemotherapy drugs should be combined with CSC targeted drugs. In this study, we describe the synthesis and characterization of a new amphiphilic polymer, hyaluronic acid-cystamine-polylactic-co-glycolic acid (HA-SS-PLGA), composed of a hydrophobic PLGA head and a hydrophilic HA segment linked by a bioreducible disulfide bond

  13. DNA polyplexes formed using PEGylated biodegradable hyperbranched polymers. (United States)

    Tao, Lei; Chou, William C; Tan, Beng H; Davis, Thomas P


    A novel PEGylated biodegradable hyperbranched PEG-b-PDMAEMA has been synthesized. The low toxicity, small molecular weight PDMAEMA chains were crosslinked using a biodegradable disulfide-based dimethacrylate (DSDMA) agent to yield higher molecular weight hyperbranched polymers. PEG chains were linked onto the polymer surface, masking the positive charge (as shown by Zeta potential measurements) and reducing the toxicity of the polymer. The hyperbranched structures were also cleaved under reducing conditions and analyzed, confirming the expected component structures. The hyperbranched polymer was mixed with DNA and efficient binding was shown to occur through electrostatic interactions. The hyperbranched structures could be reduced easily, generating lower toxicity oligomer chains.

  14. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.


    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  15. DNA-polymer micelles as nanoparticles with recognition ability. (United States)

    Talom, Renée Mayap; Fuks, Gad; Kaps, Leonard; Oberdisse, Julian; Cerclier, Christel; Gaillard, Cédric; Mingotaud, Christophe; Gauffre, Fabienne


    The Watson-Crick binding of DNA single strands is a powerful tool for the assembly of nanostructures. Our objective is to develop polymer nanoparticles equipped with DNA strands for surface-patterning applications, taking advantage of the DNA technology, in particular, recognition and reversibility. A hybrid DNA copolymer is synthesized through the conjugation of a ssDNA (22-mer) with a poly(ethylene oxide)-poly(caprolactone) diblock copolymer (PEO-b-PCl). It is shown that, in water, the PEO-b-PCl-ssDNA(22) polymer forms micelles with a PCl hydrophobic core and a hydrophilic corona made of PEO and DNA. The micelles are thoroughly characterized using electron microscopy (TEM and cryoTEM) and small-angle neutron scattering. The binding of these DNA micelles to a surface through DNA recognition is monitored using a quartz crystal microbalance and imaged by atomic force microscopy. The micelles can be released from the surface by a competitive displacement event. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics

    Directory of Open Access Journals (Sweden)

    Kathryn Regan


    Full Text Available Double-stranded DNA offers a robust platform for investigating fundamental questions regarding the dynamics of entangled polymer solutions. The exceptional monodispersity and multiple naturally occurring topologies of DNA, as well as a wide range of tunable lengths and concentrations that encompass the entanglement regime, enable direct testing of molecular-level entanglement theories and corresponding scaling laws. DNA is also amenable to a wide range of techniques from passive to nonlinear measurements and from single-molecule to bulk macroscopic experiments. Over the past two decades, researchers have developed methods to directly visualize and manipulate single entangled DNA molecules in steady-state and stressed conditions using fluorescence microscopy, particle tracking and optical tweezers. Developments in microfluidics, microrheology and bulk rheology have also enabled characterization of the viscoelastic response of entangled DNA from molecular levels to macroscopic scales and over timescales that span from linear to nonlinear regimes. Experiments using DNA have uniquely elucidated the debated entanglement properties of circular polymers and blends of linear and circular polymers. Experiments have also revealed important lengthscale and timescale dependent entanglement dynamics not predicted by classical tube models, both validating and refuting new proposed extensions and alternatives to tube theory and motivating further theoretical work to describe the rich dynamics exhibited in entangled polymer systems.

  17. Dual-Colored DNA Comb Polymers for Single Molecule Rheology (United States)

    Mai, Danielle; Marciel, Amanda; Schroeder, Charles


    We report the synthesis and characterization of branched biopolymers for single molecule rheology. In our work, we utilize a hybrid enzymatic-synthetic approach to graft ``short'' DNA branches to ``long'' DNA backbones, thereby producing macromolecular DNA comb polymers. The branches and backbones are synthesized via polymerase chain reaction with chemically modified deoxyribonucleotides (dNTPs): ``short'' branches consist of Cy5-labeled dNTPs and a terminal azide group, and ``long'' backbones contain dibenzylcyclooctyne-modified (DBCO) dNTPs. In this way, we utilize strain-promoted, copper-free cycloaddition ``click'' reactions for facile grafting of azide-terminated branches at DBCO sites along backbones. Copper-free click reactions are bio-orthogonal and nearly quantitative when carried out under mild conditions. Moreover, comb polymers can be labeled with an intercalating dye (e.g., YOYO) for dual-color fluorescence imaging. We characterized these materials using gel electrophoresis, HPLC, and optical microscopy, with atomic force microscopy in progress. Overall, DNA combs are suitable for single molecule dynamics, and in this way, our work holds the potential to improve our understanding of topologically complex polymer melts and solutions.

  18. Polymer- and salt-induced toroids of hexagonal DNA.


    Ubbink, J; Odijk, T


    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  19. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  20. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer. (United States)

    Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V


    Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon


    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  2. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman


    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  3. DNA Nanotubes as a Versatile Tool to Study Semiflexible Polymers. (United States)

    Schnauß, Jörg; Glaser, Martin; Lorenz, Jessica S; Schuldt, Carsten; Möser, Christin; Sajfutdinow, Martin; Händler, Tina; Käs, Josef A; Smith, David M


    Mechanical properties of complex, polymer-based soft matter, such as cells or biopolymer networks, can be understood in neither the classical frame of flexible polymers nor of rigid rods. Underlying filaments remain outstretched due to their non-vanishing backbone stiffness, which is quantified via the persistence length (lp), but they are also subject to strong thermal fluctuations. Their finite bending stiffness leads to unique, non-trivial collective mechanics of bulk networks, enabling the formation of stable scaffolds at low volume fractions while providing large mesh sizes. This underlying principle is prevalent in nature (e.g., in cells or tissues), minimizing the high molecular content and thereby facilitating diffusive or active transport. Due to their biological implications and potential technological applications in biocompatible hydrogels, semiflexible polymers have been subject to considerable study. However, comprehensible investigations remained challenging since they relied on natural polymers, such as actin filaments, which are not freely tunable. Despite these limitations and due to the lack of synthetic, mechanically tunable, and semiflexible polymers, actin filaments were established as the common model system. A major limitation is that the central quantity lp cannot be freely tuned to study its impact on macroscopic bulk structures. This limitation was resolved by employing structurally programmable DNA nanotubes, enabling controlled alteration of the filament stiffness. They are formed through tile-based designs, where a discrete set of partially complementary strands hybridize in a ring structure with a discrete circumference. These rings feature sticky ends, enabling the effective polymerization into filaments several microns in length, and display similar polymerization kinetics as natural biopolymers. Due to their programmable mechanics, these tubes are versatile, novel tools to study the impact of lp on the single-molecule as well as

  4. Amphipathic agents for membrane protein study. (United States)

    Sadaf, Aiman; Cho, Kyung Ho; Byrne, Bernadette; Chae, Pil Seok


    Membrane proteins (MPs) are insoluble in aqueous media as a result of incompatibility between the hydrophilic property of the solvent molecules and the hydrophobic nature of MP surfaces, normally associated with lipid membranes. Amphipathic compounds are necessary for extraction of these macromolecules from the native membranes and their maintenance in solution. The amphipathic agents surround the hydrophobic segments of MPs, thus serving as a membrane mimetic system. Of the available amphipathic agents, detergents are most widely used for MP manipulation. However, MPs encapsulated by conventional detergent micelles have a tendency to undergo structural degradation, hampering MP advance, and necessitating the development of novel detergents with enhanced efficacy for MP study. In this chapter, we will introduce both conventional and novel classes of detergents and discuss about the chemical structures, design principles, and efficacies of these compounds for MP solubilization and stabilization. The behaviors of those agents toward MP crystallization will be a primary topic in our discussion. This discussion highlights the common features of popular conventional/novel detergents essential for successful MP structural study. The conclusions reached by this discussion would not only enable MP scientists to rationally select a set of detergent candidates among a large number of detergents but also provide detergent inventors with useful guidelines in designing novel amphipathic systems. © 2015 Elsevier Inc. All rights reserved.

  5. Preparation, single-molecule manipulation and energy transfer investigation of a polyfluorene-graft-DNA polymer

    DEFF Research Database (Denmark)

    Madsen, Mikael; Christensen, Rasmus S.; Krissanaprasit, Abhichart


    with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This allows us to demonstrate controlled single polymer patterning, as well as energy transfer between two different polymer-DNA conjugates. Finally, we demonstrate highly...

  6. Anisotropic Membrane Curvature Sensing by Amphipathic Peptides. (United States)

    Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin


    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Anisotropic Membrane Curvature Sensing by Amphipathic Peptides


    Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin


    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodelling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe a new approach to study curvature sensing, by simulating the direction-dependent interactions of single molecules with a buckled lipid bilayer. We analyse three amphipathic antimicrobial peptides, a class of membrane-associated m...

  8. Effect of sieving polymer concentration on separation of 100 bp DNA Ladder by capillary gel electrophoresis (United States)

    Nakazumi, T.; Hara, Y.


    We studied the effect of sieving polymer concentration on separation of a 100 bp DNA Ladder by capillary gel electrophoresis (CGE) using hydroxyethyl cellulose (HEC) with a molecular size of 1000 k. For measurement purposes, we selected a fused silica capillary with total length of 15 cm and effective length of 7.5 cm; this was applied to compact CGE equipment for a Point-Care-Testing (POCT) system. Measurement results of the 100 bp DNA Ladder sample indicated that small DNA separation was significantly affected by HEC sieving polymer concentration. This was due to the level of entanglement between small DNA molecules and the sieving polymer chain significantly influencing migration time, mobility, and resolution length of the CGE process. We concluded that 1.0 w/v % HEC sieving polymer concentration was optimal for CGE separation of DNA ≥1000bp in the 100 bp DNA Ladder (100–1500 bp) when using the short-length capillary.

  9. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates. (United States)

    Kiviaho, Jenny K; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa; Kostiainen, Mauri A


    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.

  10. Interaction of 18-residue peptides derived from amphipathic helical ...

    Indian Academy of Sciences (India)


    amphipathic peptides having potent antimicrobial activities;. Biochemistry 31 12688–12694. Cornell R B and Taneva S G 2006 Amphipathic helices as mediators of the membrane interaction of amphitropic proteins, and as modulators of bilayer physical properties; Curr. Protein. Pept. Sci. 6 539–552. Dathe M, Schumann M, ...

  11. Comment on "Monomer Dynamics in Double- and Single-Stranded DNA Polymers"


    Tothova, J.; Brutovsky, B.; Lisy, V.


    It is discussed that the kinetics observed by Shusterman et al. [Phys. Rev. Lett. 92, 048303] for long dsDNA is not the Rouse one and, in fact, the macromolecule behaves (approximately) as the Zimm polymer.

  12. Origin of spatial organization of DNA-polymer in bacterial chromosomes (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Chatterji, Apratim


    In vivo DNA organization at large length scales (∼100 \\text{nm}) is highly debated and polymer models have proved useful to understand the principles of DNA organization. Here, we show that extracted from contact maps of bacterial DNA. We are able to predict the structure of 2 DNAs (E. coli and Caulobacter crescentus) using Monte Carlo simulations of the bead-spring polymer with cross-links at these special positions. Simulations with cross-links at random positions along the chain show that the organization of the polymer is different in nature from the previous case. We provide some direct and some indirect experimental validation for our predicted organization of DNA-polymers.

  13. Amphipathic helices from aromatic amino acid oligomers. (United States)

    Gillies, Elizabeth R; Dolain, Christel; Léger, Jean-Michel; Huc, Ivan


    Synthetic helical foldamers are of significant interest for mimicking the conformations of naturally occurring molecules while at the same time introducing new structures and properties. In particular, oligoamides of aromatic amino acids are attractive targets, as their folding is highly predictable and stable. Here the design and synthesis of new amphipathic helical oligoamides based on quinoline-derived amino acids having either hydrophobic or cationic side chains are described. Their structures were characterized in the solid state by single-crystal X-ray diffraction and in solution by NMR. Results of these studies suggest that an oligomer as short as a pentamer folds into a stable helical conformation in protic solvents, including MeOH and H(2)O. The introduction of polar proteinogenic side chains to these foldamers, as described here for the first time, promises to provide possibilities for the biological applications of these molecules. In particular, amphipathic helices are versatile targets to explore due to their importance in a variety of biological processes, and the unique structure and properties of the quinoline-derived oligoamides may allow new structure-activity relationships to be developed.

  14. DNA Computing Systems Activated by Electrochemically-triggered DNA Release from a Polymer-brush-modified Electrode Array (United States)

    Gamella, Maria; Zakharchenko, Andrey; Guz, Nataliia; Masi, Madeline; Minko, Sergiy; Kolpashchikov, Dmitry M.; Iken, Heiko; Poghossian, Arshak; Schöning, Michael J.; Katz, Evgeny


    An array of four independently wired indium tin oxide (ITO) electrodes was used for electrochemically stimulated DNA release and activation of DNA-based Identity, AND and XOR logic gates. Single-stranded DNA molecules were loaded on the mixed poly(N,N-di-methylaminoethyl methacrylate) (PDMAEMA)/poly-(methacrylic acid) (PMAA) brush covalently attached to the ITO electrodes. The DNA deposition was performed at pH 5.0 when the polymer brush is positively charged due to protonation of tertiary amino groups in PDMAE-MA, thus resulting in electrostatic attraction of the negatively charged DNA. By applying electrolysis at −1.0 V(vs. Ag/AgCl reference) electrochemical oxygen reduction resulted in the consumption of hydrogen ions and local pH increase near the electrode surface. The process resulted in recharging the polymer brush to the negative state due to dissociation of carboxylic groups of PMAA, thus repulsing the negatively charged DNA and releasing it from the electrode surface. The DNA release was performed in various combinations from different electrodes in the array assembly. The released DNA operated as input signals for activation of the Boolean logic gates. The developed system represents a step forward in DNA computing, combining for the first time DNA chemical processes with electronic input signals. PMID:29379265

  15. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates (United States)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.


    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  16. Adsorption of amphipathic dendrons on polystyrene nanoparticles. (United States)

    Sakthivel, T; Florence, A T


    Adsorption of dendrons onto nanoparticles may provide new model structures which may be useful in drug and gene delivery. Tritiated amphipathic dendrons having three lipidic (C(14)) chains coupled to branched (dendritic) lysine head groups with 8, 16 or 32 free terminal amino groups have been synthesised by solid phase peptide techniques. The interaction between these tritiated dendrons and 200 nm polystyrene latex nanoparticles was investigated in phosphate buffered saline. The amount of dendron adsorbed increased with increasing concentration of dendrons and then decreased. Maximum adsorption of dendrons per gram of nanoparticles was found to be between 8.2 and 84 x 10(-6)M, the amounts adsorbed being inversely proportional to the number of amino groups present in the molecule. The number of dendron molecules adsorbed per nanoparticle was found to be between 430 and 4421. The degree of adsorption was found to be slightly altered by the temperature. Copyright 2002 Elsevier Science B.V.

  17. Preparation and characterization of novel PBAE/PLGA polymer blend microparticles for DNA vaccine delivery. (United States)

    Balashanmugam, Meenashi Vanathi; Nagarethinam, Sivagurunathan; Jagani, Hitesh; Josyula, Venkata Rao; Alrohaimi, Abdulmohsen; Udupa, Nayanabhirama


    Poly(beta-amino ester) (PBAE) with its pH sensitiveness and Poly(lactic-co-glycolic acid) (PLGA) with huge DNA cargo capacity in combination prove to be highly efficient as DNA delivery system. To study the effectiveness of novel synthesized PBAE polymer with PLGA blend at different ratios in DNA vaccine delivery. In the present study, multifunctional polymer blend microparticles using a combination of PLGA and novel PBAE polymers A1 (bis(3-(propionyloxy)propyl)3,3'-(propane-1,3-diyl-bis(methylazanediyl))dipropanoate) and A2 (bis(4-(propionyloxy)butyl)3,3'-(ethane-1,2-diyl-bis(isopropylazanediyl))dipropanoate) at different ratios (85:15, 75:25, and 50:50) were prepared by double emulsion solvent removal method. The microparticles were characterized for cytotoxicity, transfection efficiency, and DNA encapsulation efficiency. It was evident from results that among the microparticles prepared with PLGA/PBAE blend the PLGA:PBAE at 85:15 ratio was found to be more effective combination than the microparticles prepared with PLGA alone in terms of transfection efficiency and better DNA integrity. Microparticles made of PLGA and PBAE A1 at 85:15 ratio, respectively, were found to be less toxic when compared with microparticles prepared with A2 polymer. The results encourage the use of the synthesized PBAE polymer in combination with PLGA as an effective gene delivery system.

  18. Role of special cross-links in structure formation of bacterial DNA polymer (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim


    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  19. Elucidation of polymer induced DNA condensation. Visualisation at the single molecular level

    International Nuclear Information System (INIS)

    Martin, Alison Laura


    DNA condensation is a phenomenon that has stimulated interest from biologists, physicists, and polymer chemists for decades. At the cellular level, this process is key to the packing of DNA within the nuclear envelope, and the exposure of the appropriate nucleic acid sequences in order for transcription to occur, and proteins to be produced. The advent of gene therapy has led to an invigoration of this subject area. In order to successfully deliver to, and transfect target cells, many delivery vectors condense the therapeutic DNA into small compact particles. The nature of these particles have a considerable influence on the ultimate expression of the administered nucleic acid material. In addition, at its most fundamental, DNA itself is a classical polyelectrolyte polymer, the behaviour of which has applicability to other charged polymeric systems. There are two core interwound themes to this investigation; the visualisation of DNA condensate morphology at ultra-resolution, and the elucidation of the mechanisms of formation of these structures. The technique of atomic force microscopy is central to these investigations. Methodologies have been devised allowing the visualisation of the tertiary structure and conformational behaviour of individual DNA condensates in near in situ conditions. Condensation of the nucleic acid material has been induced by two classes of cation; small molecular cations, like those found within eukaryotic cells, and a range of cationic polymers. The cationic polymers investigated all have considerable potential as gene delivery vectors. The resultant DNA condensates have been assessed and contrasted in terms of their tertiary morphology, lateral dimensions, and structural volume. Assessments have also been made regarding the influence of the molecular architecture of the cationic moiety and the nature of the input nucleic acid material on the resultant DNA condensates. With regard to the elucidation of the mechanisms of DNA condensate

  20. Molecular sieving polymer for DNA/RNA separation in capillary electrophoresis (United States)

    Liu, Chenchen; Yamaguchi, Yoshinori; Dou, Xiaoming


    In capillary polymer electrophoresis, the property of polymer sieving matrix dominates the migration behavior of DNA/RNA. We investigated the capillary electrophoresis of RNA ranging from 100 nt to 10,000 nt in polyacrylamide (PA) solutions with different molecular weights (Mw) and different concentrations. We observed that the resolution length (RSL) of RNA fragments was improved and the migration time was prolonged, when polymer concentration was increased. The resolution for small RNA fragments (3000 nt) became inseparable. In addition, we estimated the smallest resolvable nucleotide length (Ls) by the plot of RSL against RNA size.

  1. Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Klukowska, A.; Kristensen, Anders


    We present results regarding the fast and inexpensive fabrication of polymer biochips for investigating the statics and dynamics of DNA confined in nanochannels. The biochips have been fabricated by means of nanoimprint lithography ( NIL) in low molecular weight polymethyl methacrylate ( PMMA......) using a 4 inch diameter two-level hybrid stamp. The fluidic structures were sealed using thermal polymer fusion bonding. The stamp has nanometer-and micrometer-sized protrusions defined in a thermally grown SiO2 layer and the sol - gel process derived duromeric hybrid polymer Ormocomp, respectively...

  2. The Hydrodynamics of DNA Electrophoretic Stretch and Relaxation in a Polymer Solution (United States)

    Ferree, Sean; Blanch, Harvey W.


    Theories of DNA electrophoretic separations generally treat the DNA as a free draining polymer moving in an electric field at a rate that depends on the effective charge density of the molecule. Separations can occur in sieving media ranging from ultradilute polymer solutions to tightly cross-linked gels. It has recently been shown that DNA is not free-draining when both electric and nonelectric forces simultaneously act on the molecule, as occurs when DNA collides with a polymer during electrophoretic separations. Here we show that a semidilute polymer solution screens the hydrodynamic interaction that results from the application of these forces. Fluorescently labeled DNA tethered at one end in a semidilute solution of hydroxyl-ethyl cellulose stretch more in an electric field than they stretch in free solution, and approach free-draining behavior. The steady stretching behavior is predicted without adjustable parameters by a theory developed by Stigter using a hydrodynamic screening length found from effective medium theory. Data on the relaxation of stretched molecules after the electric field is removed agree with the Rouse model prediction, which neglects hydrodynamic interactions. The slowest relaxation time constant, τR, scales with chain length as τR ∼ L1.9±0.17 when analyzed by the data collapse method, and as τR ∼ L2.17±0.17 when analyzed by multiexponential fit. PMID:15240480

  3. Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. (United States)

    Zhang, Jinmin; Yu, Jiankun; Jiang, Jingzheng; Chen, Xiao; Sun, Yanping; Yang, Zhen; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Ding, Pingtian


    Polymers of guanidinylated disulfide containing poly(amido amine)s (Gua-SS-PAAs), have shown high transfection efficiency and low cytotoxicity. Previously, we synthesized two Gua-SS-PAA polymers, using guanidino containing monomers (i.e., arginine and agmatine, denoted as ARG and AGM, respectively) and N,N'-cystaminebisacrylamide (CBA). In this study, these two polymers, AGM-CBA and ARG-CBA were complexed with plasmid DNA, and their uptake pathway was investigated. Complexes distribution in MCF-7 cells, and changes on cell endosomes/lysosomes and membrane after the cells were exposed to complexes were tested. In addition, how the transfection efficiency changed with the cell cycle status as well as endocytosis inhibitors were studied. The polymers of AGM-CBA and ARG-CBA can avoid endosomal/lysosomal trap, therefore, greatly delivering plasmid DNA (pDNA) to the cell nucleoli. It is the guanidine groups in the polymers that enhanced complexes' permeation through cell membrane with slight membrane damage, and targeting to the nucleoli. J. Cell. Biochem. 118: 903-913, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. (United States)

    Bechinger, Burkhard; Lohner, Karl


    Antimicrobial peptides have raised much interest as pathogens become resistant against conventional antibiotics. We review biophysical studies that have been performed to better understand the interactions of linear amphipathic cationic peptides such as magainins, cecropins, dermaseptin, delta-lysin or melittin. The amphipathic character of these peptides and their interactions with membranes resemble the properties of detergent molecules and analogies between membrane-active peptide and detergents are presented. Several models have been suggested to explain the pore-forming, membrane-lytic and antibiotic activities of these peptides. Here we suggest that these might be 'special cases' within complicated phase diagrams describing the morphological plasticity of peptide/lipid supramolecular assemblies.

  5. DNA-inspired hierarchical polymer design: electrostatics and hydrogen bonding in concert. (United States)

    Hemp, Sean T; Long, Timothy E


    Nucleic acids and proteins, two of nature's biopolymers, assemble into complex structures to achieve desired biological functions and inspire the design of synthetic macromolecules containing a wide variety of noncovalent interactions including electrostatics and hydrogen bonding. Researchers have incorporated DNA nucleobases into a wide variety of synthetic monomers/polymers achieving stimuli-responsive materials, supramolecular assemblies, and well-controlled macromolecules. Recently, scientists utilized both electrostatics and complementary hydrogen bonding to orthogonally functionalize a polymer backbone through supramolecular assembly. Diverse macromolecules with noncovalent interactions will create materials with properties necessary for biomedical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structuring polymers for delivery of DNA-based therapeutics: updated insights. (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh


    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  7. Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures. (United States)

    Chen, Xi; Moerschell, Richard P; Pearce, David A; Ramanan, Durga D; Sherman, Fred


    The dispensable N-terminus of iso-1-cytochrome c (iso-1) in the yeast Saccharomyces cerevisiae was replaced by 11 different amphipathic structures. Rapid degradation of the corresponding iso-1 occurred, with the degree of degradation increasing with the amphipathic moments; and this amphipathic-dependent degradation was designated ADD. ADD occurred with the holo-forms in the mitochondria but not as the apo-forms in the cytosol. The extreme mutant type degraded with a half-life of approximately 12 min, whereas the normal iso-1 was stable over hours. ADD was influenced by the rho+/rho- state and by numerous chromosomal genes. Most importantly, ADD appeared to be specifically suppressed to various extents by deletions of any of the YME1, AFG3, or RCA1 genes encoding membrane-associated mitochondrial proteases, probably because the amphipathic structures caused a stronger association with the mitochondrial inner membrane and its associated proteases. The use of ADD assisted in the differentiation of substrates of different mitochondrial degradation pathways.

  8. Introduction of Curvature in Amphipathic Oligothiophenes for Defined Aggregate Formation

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M. A.; Stuart, Marc C. A.; Eelkema, Rienk; van Esch, Jan H.


    In this study the possibility to control the size and shape of self-assembled structures through the local curvature of their molecular building blocks has been investigated. To this end a series of amphipathic conjugated oligothiophenes with a well-defined curvature of their backbone has been

  9. Interaction of 18-residue peptides derived from amphipathic helical ...

    Indian Academy of Sciences (India)

    We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from –1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical ...

  10. How curved membranes recruit amphipathic helices and protein anchoring motifs

    DEFF Research Database (Denmark)

    Hatzakis, Nikos; Bhatia, Vikram Kjøller; Larsen, Jannik


    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing...

  11. Highly sensitive polymer-based cantilever-sensors for DNA detection

    International Nuclear Information System (INIS)

    Calleja, M.; Nordstroem, M.; Alvarez, M.; Tamayo, J.; Lechuga, L.M.; Boisen, A.


    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers

  12. F-108 polymer and capillary electrophoresis easily resolves complex environmental DNA mixtures and SNPs. (United States)

    Damaso, Natalie; Martin, Lauren; Kushwaha, Priyanka; Mills, DeEtta


    Ecological studies of microbial communities often use profiling methods but the true community diversity can be underestimated in methods that separate amplicons based on sequence length using performance optimized polymer 4. Taxonomically, unrelated organisms can produce the same length amplicon even though the amplicons have different sequences. F-108 polymer has previously been shown to resolve same length amplicons by sequence polymorphisms. In this study, we showed F-108 polymer, using the ABI Prism 310 Genetic Analyzer and CE, resolved four bacteria that produced the same length amplicon for the 16S rRNA domain V3 but have variable nucleotide content. Second, a microbial mat community profile was resolved and supported by NextGen sequencing where the number of peaks in the F-108 profile was in concordance with the confirmed species numbers in the mat. Third, equine DNA was analyzed for SNPs. The F-108 polymer was able to distinguish heterozygous and homozygous individuals for the melanocortin 1 receptor coat color gene. The method proved to be rapid, inexpensive, reproducible, and uses common CE instruments. The potential for F-108 to resolve DNA mixtures or SNPs can be applied to various sample types-from SNPs to forensic mixtures to ecological communities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation. (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali


    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  14. Smart DNA vectors based on cyclodextrin polymers: compaction and endosomal release. (United States)

    Wintgens, Véronique; Leborgne, Christian; Baconnais, Sonia; Burckbuchler, Virginie; Le Cam, Eric; Scherman, Daniel; Kichler, Antoine; Amiel, Catherine


    Neutral β-cyclodextrin polymers (polyβCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyβCD/cationic Ada-based delivery system. We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyβCD and Ada derivatives was evaluated by fluorimetric titration. Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyβCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.

  15. Single-Molecule Spectroscopic Investigations of Amphipathic Helix Formation (United States)

    Cunningham, Joy Ann; Okamoto, Kenji; English, Douglas


    We are using single molecule spectroscopy to examine surface-induced conformational states occurring through interaction of a polypeptide with an interface. Specifically, we investigate the folding of amphipathic helices by using single-molecule fluorescence resonance energy transfer to construct peptide conformational distributions in solution and at interfaces. Analysis of the conformational distributions and kinetics of peptides in different environments reveals properties of the free energy surface for helix formation at an interface relative to formation in solution.

  16. Persistent draining crossover in DNA and other semi-flexible polymers: Evidence from hydrodynamic models and extensive measurements on DNA solutions (United States)

    Mansfield, Marc L.; Tsortos, Achilleas; Douglas, Jack F.


    Although the scaling theory of polymer solutions has had many successes, this type of argument is deficient when applied to hydrodynamic solution properties. Since the foundation of polymer science, it has been appreciated that measurements of polymer size from diffusivity, sedimentation, and solution viscosity reflect a convolution of effects relating to polymer geometry and the strength of the hydrodynamic interactions within the polymer coil, i.e., "draining." Specifically, when polymers are expanded either by self-excluded volume interactions or inherent chain stiffness, the hydrodynamic interactions within the coil become weaker. This means there is no general relationship between static and hydrodynamic size measurements, e.g., the radius of gyration and the hydrodynamic radius. We study this problem by examining the hydrodynamic properties of duplex DNA in solution over a wide range of molecular masses both by hydrodynamic modeling using a numerical path-integration method and by comparing with extensive experimental observations. We also considered how excluded volume interactions influence the solution properties of DNA and confirm that excluded volume interactions are rather weak in duplex DNA in solution so that the simple worm-like chain model without excluded volume gives a good leading-order description of DNA for molar masses up to 107 or 108 g/mol or contour lengths between 5 μm and 50 μm. Since draining must also depend on the detailed chain monomer structure, future work aiming to characterize polymers in solution through hydrodynamic measurements will have to more carefully consider the relation between chain molecular structure and hydrodynamic solution properties. In particular, scaling theory is inadequate for quantitative polymer characterization.

  17. Conducting polymer based DNA biosensor for the detection of the Bacillus cereus group species (United States)

    Velusamy, Vijayalakshmi; Arshak, Khalil; Korostynska, Olga; Oliwa, Kamila; Adley, Catherine


    Biosensor designs are emerging at a significant rate and play an increasingly important role in foodborne pathogen detection. Conducting polymers are excellent tools for the fabrication of biosensors and polypyrrole has been used in the detection of biomolecules due to its unique properties. The prime intention of this paper was to pioneer the design and fabrication of a single-strand (ss) DNA biosensor for the detection of the Bacillus cereus (B.cereus) group species. Growth of B. cereus, results in production of several highly active toxins. Therefore, consumption of food containing >106 bacteria/gm may results in emetic and diarrhoeal syndromes. The most common source of this bacterium is found in liquid food products, milk powder, mixed food products and is of particular concern in the baby formula industry. The electrochemical deposition technique, such as cyclic voltammetry, was used to develop and test a model DNA-based biosensor on a gold electrode electropolymerized with polypyrrole. The electrically conducting polymer, polypyrrole is used as a platform for immobilizing DNA (1μg) on the gold electrode surface, since it can be more easily deposited from neutral pH aqueous solutions of pyrrolemonomers. The average current peak during the electrodeposition event is 288μA. There is a clear change in the current after hybridization of the complementary oligonucleotide (6.35μA) and for the noncomplementary oligonucleotide (5.77μA). The drop in current after each event was clearly noticeable and it proved to be effective.

  18. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. (United States)

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue


    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  19. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA (United States)

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan


    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0 × 10- 12-2.5 × 10- 11 mol/L. The detection limit was 1.7 × 10- 12 mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.

  20. Bilayer interfacial properties modulate the binding of amphipathic peptides. (United States)

    Allende, Daniel; Vidal, Adriana; Simon, Sidney A; McIntosh, Thomas J


    The free energy of transfer (DeltaG degrees ) from water to lipid bilayers was measured for two amphipathic peptides, the presequence of the mitochondrial peptide rhodanese (MPR) and melittin. Experiments were designed to determine the effects on peptide partitioning of the addition of lipids that produce structural modifications to the bilayer/water interface. In particular, the addition of cholesterol or the cholesterol analog 6-ketocholestanol increases the bilayer area compressibility modulus, indicating that these molecules modify lipid-lipid interactions in the plane of the bilayer. The addition of 6-ketocholestanol or lipids with attached polyethylene glycol chains (PEG-lipids) modify the effective thickness of the interfacial region; 6-ketocholestanol increases the width of hydrophilic headgroup region in the direction of the acyl chains whereas the protruding PEG chains of PEG-lipids increase the structural width of the headgroup region into the surrounding aqueous phase. The incorporation of PEG-lipids with PEG molecular weights of 2000 or 5000 had no appreciable effect on peptide partitioning that could not be accounted for by the presence of surface charge. However, for both MPR and melittin DeltaG degrees decreased linearly with increasing bilayer compressibility modulus, demonstrating the importance of bilayer mechanical properties in the binding of amphipathic peptides.

  1. Cellular uptake of Aib-containing amphipathic helix peptide. (United States)

    Wada, Shun-ichi; Tsuda, Hirokazu; Okada, Terumi; Urata, Hidehito


    Cell-penetrating peptides (CPPs) are useful tools for the delivery of hydrophilic bioactive molecules, such as peptides, proteins, and oligonucleotides, across the cell membrane. To realize the delivery of therapeutic macromolecules by CPPs, the CPPs are required to show resistance to protease and no cytotoxicity. In order to produce potent non-toxic and protease-resistant CPPs with high cellular uptake, we designed an amphipathic helix peptide using α-aminoisobutyric acid (Aib, U) and named it MAP(Aib). In the MAP(Aib) molecule, five Aib residues are aligned on the hydrophobic face of the helix and five lysine (K) residues are aligned on the hydrophilic face. MAP(Aib) showed potent resistance to trypsin and pronase compared with MAP, an amphipathic helix peptide formed by usual amino acids. Fluorescein-labeled MAP(Aib) efficiently traversed the A549 cell membrane, diffusing into the cytoplasm and slightly into the nucleus without exerting any cytotoxicity. In contrast, MAP was poorly taken up by the cell. These results indicate that the incorporation of Aib residues into CPPs markedly improves cellular uptake and MAP(Aib) may be a useful tool for the delivery of hydrophilic macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Introduction of curvature in amphipathic oligothiophenes for defined aggregate formation. (United States)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurélie M A; Stuart, Marc C A; Eelkema, Rienk; van Esch, Jan H


    In this study the possibility to control the size and shape of self-assembled structures through the local curvature of their molecular building blocks has been investigated. To this end a series of amphipathic conjugated oligothiophenes with a well-defined curvature of their backbone has been designed and synthesized. The molecular (local) curvature of these oligothiophenes resulted from a preference for cis instead of trans conformations at specific positions along the oligothiophene backbone, which can be controlled by the sequence of hydrophilic and hydrophobic groups, while their ratio was kept constant. The self-assembly of ter-, sexi-, and dodecathiophenes appeared to be a low-cooperative process, involving the formation of premicellar aggregates at sub-millimolar concentrations, which at concentrations in the millimolar regime transformed into micelles and cylindrical micelles. The aggregates display fine structures with dimensions reminiscent of the thiophene molecules. The structure-morphology relationship of the ter- and sexithiophenes could be described by conventional packing theory. However, with the dodecathiophene, the backbone curvature governed the formation of cylindrical aggregates with a well-defined diameter. These results demonstrate that it is possible to control the aggregation morphology of simple amphipathic oligothiophenes by implementation of an additional structural motif namely, the curvature.

  3. Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles (United States)

    Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu


    Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly. PMID:25502789

  4. Modelling of electrokinetic phenomena involving confined polymers: Applications to DNA separation and electroosmotic flow control (United States)

    Tessier, Frederic

    Microfluidic and nanofluidic technology is revolutionizing experimental practices in analytical chemistry, molecular biology and medicine. Indeed, the development of systems of small dimensions for the processing of fluids heralds the miniaturization of traditional, cumbersome laboratory equipment onto robust, portable and efficient microchip devices (similar to the electronic microchips found in computers). Moreover, the conjunction of scale between the smallest man-made device and the largest macromolecules evolved by Nature is fertile ground for the blooming of our knowledge about the key processes of life. In fact, the conjunction is threefold, because modern computational resources also allow us to contemplate a rather explicit modelling of physical systems between the nanoscale and the microscale. In the five articles comprising this thesis, we present the results of computer simulations that address specific questions concerning the operation of two different model systems relevant to the development of small-scale fluidic devices for the manipulation and analysis of biomolecules. First, we use a Bond-Fluctuation Monte Carlo approach to study the electrophoretic drift of macromolecules across an entropic trap array built for the length separation of long, double-stranded DNA molecules. We show that the motion of the molecules is consistent with a simple balance between electric and entropic forces, in terms of a single characteristic parameter. We also extract detailed information on polymer deformation during migration, predict the separation of topoisomers, and investigate innovative ratchet driving regimes. Secondly, we present theoretical derivations, numerical calculations and Molecular Dynamics simulation results for an electrolyte confined in a capillary of nanoscopic dimensions. In particular, we study the effectiveness of neutral grafted polymer chains in reducing the magnitude of electroosmotic flow (fluid flow induced by an external electric field

  5. Knots modify the coil-stretch transition in linear DNA polymers. (United States)

    Soh, Beatrice W; Narsimhan, Vivek; Klotz, Alexander R; Doyle, Patrick S


    We perform single-molecule DNA experiments to investigate the relaxation dynamics of knotted polymers and examine the steady-state behavior of knotted polymers in elongational fields. The occurrence of a knot reduces the relaxation time of a molecule and leads to a shift in the molecule's coil-stretch transition to larger strain rates. We measure chain extension and extension fluctuations as a function of strain rate for unknotted and knotted molecules. The curves for knotted molecules can be collapsed onto the unknotted curves by defining an effective Weissenberg number based on the measured knotted relaxation time in the low extension regime, or a relaxation time based on Rouse/Zimm scaling theories in the high extension regime. Because a knot reduces a molecule's relaxation time, we observe that knot untying near the coil-stretch transition can result in dramatic changes in the molecule's conformation. For example, a knotted molecule at a given strain rate can experience a stretch-coil transition, followed by a coil-stretch transition, after the knot partially or fully unties.

  6. Biogenesis and the growth of DNA-like polymer chains: a computer simulation

    International Nuclear Information System (INIS)

    Herrmann, H.J.; Tsallis, C.


    We study, through computer simulation, a crucial step of Biogenesis, namely the growth of self-replicating codified DNA-like polymers starting from a mixture of oligomers. We have adopted the growth scheme that has been recently proposed by Ferreira and Tsallis which incorporates usual ideas of autocatalysis through complementary pairs and within which a central role is played by the hydrogen-like links (characterized by the probabilities p AT and p CG of chemical bonding of the A-T and C-G pairs respectively) between the two chains of the growing polymer. We find that the average equilibrium polymeric length ξ diverges, for any fixed ratio (1-p AT )/(1-p sub (CG)), as ξ ∝ 1/r1-p AT . Selection of patterns may happen at all stages and in particular at chemical equilibrium. Selection occurs via two different mechanisms: (i) away from the critical point p AT = p CG = 1 if p AT ≠ p CG ; (ii) both on and away from the critical point if the initial concentrations of nucleotides (A, T, C and G or their precursors) are different. (author) [pt

  7. How curved membranes recruit amphipathic helices and protein anchoring motifs. (United States)

    Hatzakis, Nikos S; Bhatia, Vikram K; Larsen, Jannik; Madsen, Kenneth L; Bolinger, Pierre-Yves; Kunding, Andreas H; Castillo, John; Gether, Ulrik; Hedegård, Per; Stamou, Dimitrios


    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity. We proposed a model based on curvature-induced defects in lipid packing that related these findings to lipid sorting and accurately predicted the existence of a new ubiquitous class of curvature sensors: membrane-anchored proteins. The fact that unrelated structural motifs such as alpha-helices and alkyl chains sense MC led us to propose that MC sensing is a generic property of curved membranes rather than a property of the anchoring molecules. We therefore anticipate that MC will promote the redistribution of proteins that are anchored in membranes through other types of hydrophobic moieties.

  8. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    International Nuclear Information System (INIS)

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.


    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  9. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)


    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  10. Evaluation of silicon and polymer substrates for fabrication of integrated microfluidic microsystems for DNA extraction and amplification. (United States)

    Gheorghe, M; Blionas, S; Ragoussis, J; Galvin, P


    This paper is presenting two different alternatives for the DNA extraction and amplification that will be carried out by two competitive research projects developing bioanalytical microsystems with microfluidics. The first project will develop the microfluidics part on polymer material and the other one on silicon. The polymer approach is currently under development based on a modular microfluidic architecture aimed to simplify the process of designing and building such a microsystem device. A silicon alternative is about to start and is expected to decrease packaging costs of the microsystem allowing future manufacturability of the device.

  11. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins. (United States)

    Haddad, John Faissal; Yang, Yidai; Yeung, Sylvain; Couture, Jean-François


    An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Larsen, Niels Bent


    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes ...... systems, including polystyrene (PS), cyclic olefin copolymer (COC), liquid crystalline polymer (LCP), and polyimide (PI)....

  13. Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain

    NARCIS (Netherlands)

    Hernandez-Garcia, Armando; Estrich, Nicole A.; Werten, Marc W.T.; Maarel, van der Johan R.C.; Labean, Thomas H.; Wolf, de Frits A.; Cohen Stuart, Martien A.; Vries, de Renko


    Emerging DNA-based nanotechnologies would benefit from the ability to modulate the properties (e.g., solubility, melting temperature, chemical stability) of diverse DNA templates (single molecules or origami nanostructures) through controlled, self-assembling coatings. We here introduce a DNA

  14. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    Full Text Available In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs assembled from Cu(II and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1 RCPN binds dye-labeled single-stranded DNA (ssDNA probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2 Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  15. Creation of lipid partitions by deposition of amphipathic viral peptides. (United States)

    Cho, Nam-Joon; Cho, Sang-Joon; Hardesty, Jasper O; Glenn, Jeffrey S; Frank, Curtis W


    Phospholipid vesicles exhibit a natural characteristic to fuse and reform into a continuous single bilayer membrane on hydrophilic solid substrates such as glass, mica, and silica. The resulting solid-supported bilayer mimics physiological tendencies such as lipid flip-flop and lateral mobility. The lateral mobility of fluorescently labeled lipids fused into solid-supported bilayers is found to change upon deposition on the membrane surface of an amphipathic alpha-helical peptide (AH) derived from the hepatitis C virus (HCV) NS5A protein. The binding of the AH peptide to a phospholipid bilayer, with the helical axis parallel to the bilayer, leads to immobilization of the bilayer. We used AFM to better understand the mechanistic details of this specific interaction, and determined that the diminished fluidity of the bilayer is due to membrane thinning. Utilizing this specific interaction between AH peptides and lipid molecules, we demonstrate a novel process for the creation of lipid partition by employing AH peptides as agents to immobilize lipid molecules, thus creating a patterned solid support with partition-defined areas of freely mobile lipid bilayers. This architecture could have a wide range of applications in novel sensing, biotechnology, high-throughput screening, and biomimetic strategies.

  16. Amphipathic properties of HIV-1 gp41 fusion inhibitors. (United States)

    Gochin, Miriam; Zhou, Guangyan


    Small molecule inhibition of HIV fusion has been an elusive goal, despite years of effort by both pharmaceutical and academic laboratories. In this review, we will discuss the amphipathic properties of both peptide and small molecule inhibitors of gp41-mediated fusion. Many of the peptides and small molecules that have been developed target a large hydrophobic pocket situated within the grooves of the coiled coil, a potential hotspot for inhibiting the trimer of hairpin formation that accompanies fusion. Peptide studies reveal molecular properties required for effective inhibition, including elongated structure and lipophilic or amphiphilic nature. The characteristics of peptides that bind in this pocket provide features that should be considered in small molecule development. Additionally, a novel site for small molecule inhibition of fusion has recently been suggested, involving residues of the loop and fusion peptide. We will review the small molecule structures that have been developed, evidence pointing to their mechanism of action and strategies towards improving their affinity. The data points to the need for a strongly amphiphilic character of the inhibitors, possibly as a means to mediate the membrane - protein interaction that occurs in gp41 in addition to the protein - protein interaction that accompanies the fusion-activating conformational transition.

  17. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. (United States)

    Xu, Rongzuo; Fisher, Michael; Juliano, R L


    We report the preparation and physical and biological characterization of human serum albumin-based micelles of approximately 30 nm diameter for the delivery of amphipathic drugs, represented by doxorubicin. The micelles were surface conjugated with cyclic RGD peptides to guide selective delivery to cells expressing the α(v)β(3) integrin. Multiple poly(ethylene glycol)s (PEGs) with molecular weight of 3400 Da were used to form a hydrophilic outer layer, with the inner core formed by albumin conjugated with doxorubicin via disulfide bonds. Additional doxorubicin was physically adsorbed into this core to attain a high drug loading capacity, where each albumin was associated with about 50 doxorubicin molecules. The formed micelles were stable in serum but continuously released doxorubicin when incubated with free thiols at concentrations mimicking the intracellular environment. When incubated with human melanoma cells (M21+) that express the α(v)β(3) integrin, higher uptake and longer retention of doxorubicin was observed with the RGD-targeted micelles than in the case of untargeted control micelles or free doxorubicin. Consequently, the RGD-targeted micelles manifested cytotoxicity at lower doses of drug than control micelles or free drug.

  18. DNA translocation across protein channels: How does a polymer worm through a hole? (United States)

    Muthukumar, M.


    Free energy barriers control the translocation of polymers through narrow channels. Based on an analogy with the classical nucleation and growth process, we have calculated the translocation time and its dependencies on the length, stiffness, and sequence of the polymer, solution conditions, and the strength of the driving electrochemical potential gradient. Our predictions will be compared with experimental results and prospects of reading polymer sequences.

  19. Highly Sensitive Polymer-based Cantilever-sensors for DNA Detection

    DEFF Research Database (Denmark)

    Gomez, Montserrat; Nordström, Maria; Alvarez, M.


    polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized...

  20. Manipulating lipid bilayer material properties using biologically active amphipathic molecules (United States)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.


    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  1. Transfer-matrix calculations of DNA polymer micromechanics under tension and torque constraints. (United States)

    Efremov, Artem K; Winardhi, Ricksen S; Yan, Jie


    Recent development of single-molecule manipulation technologies has made it possible to exert constant force and torque on individual DNA biopolymers to probe their elastic characteristics and structural stability. It has been previously shown that depending on the nature of applied mechanical constraints, DNA can exist in several forms including B-, L-, and P-DNA. However, there is still a lack of understanding of how structural heterogeneity of DNA, which may naturally arise due to sequence-dependent DNA properties, protein binding, or DNA damage, influences local stability of the above DNA states. To provide a more complete and detailed description of the DNA mechanics, we developed a theoretical framework based on transfer-matrix calculations and demonstrated how it can be used to predict the DNA behavior upon application of a wide range of force and torque constraints. The resulting phase diagram shows DNA structural transitions that are in good agreement with previous experimental and theoretical studies. We further discuss how the constructed formalism can be extended to include local inhomogeneities in the DNA physical properties, thus making it possible to investigate the effect of DNA sequence as well as protein binding on DNA structural stability.

  2. Anti-plasmodial action of de novo-designed, cationic, lysine-branched, amphipathic, helical peptides

    Directory of Open Access Journals (Sweden)

    Kaushik Naveen K


    Full Text Available Abstract Background A lack of vaccine and rampant drug resistance demands new anti-malarials. Methods In vitro blood stage anti-plasmodial properties of several de novo-designed, chemically synthesized, cationic, amphipathic, helical, antibiotic peptides were examined against Plasmodium falciparum using SYBR Green assay. Mechanistic details of anti-plasmodial action were examined by optical/fluorescence microscopy and FACS analysis. Results Unlike the monomeric decapeptides {(Ac-GXRKXHKXWA-NH2 (X = F,ΔF (Fm, ΔFm IC50 >100 μM}, the lysine-branched,dimeric versions showed far greater potency {IC50 (μM Fd 1.5 , ΔFd 1.39}. The more helical and proteolytically stable ΔFd was studied for mechanistic details. ΔFq, a K-K2 dendrimer of ΔFm and (ΔFm2 a linear dimer of ΔFm showed IC50 (μM of 0.25 and 2.4 respectively. The healthy/infected red cell selectivity indices were >35 (ΔFd, >20 (ΔFm2 and 10 (ΔFq. FITC-ΔFd showed rapid and selective accumulation in parasitized red cells. Overlaying DAPI and FITC florescence suggested that ΔFd binds DNA. Trophozoites and schizonts incubated with ΔFd (2.5 μM egressed anomalously and Band-3 immunostaining revealed them not to be associated with RBC membrane. Prematurely egressed merozoites from peptide-treated cultures were found to be invasion incompetent. Conclusion Good selectivity (>35, good resistance index (1.1 and low cytotoxicity indicate the promise of ΔFd against malaria.

  3. Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs. (United States)

    Ireland, Sam M; Sula, Altin; Wallace, B A


    Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo-electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well-defined solubilised forms of the membrane proteins. In this study we used circular dichroism spectroscopy to compare the secondary structures and thermal stabilities of the NavMs voltage-gated sodium channel in different amphipols and detergents as a means of identifying amphipathic environments that maximally maintain the protein structure whilst providing a stabilising environment. These types of characterisations also have potential as means of screening for sample types that may be more suitable for crystallisation and/or cryo-electron microscopy structure determinations. © 2017 The Authors Biopolymers Published by Wiley Periodicals, Inc.

  4. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors. (United States)

    Li, Jianfeng; Lee, Eun-Cheol


    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Investigation of DNA condensing properties of amphiphilic triblock cationic polymers by atomic force microscopy. (United States)

    Lidgi-Guigui, Nathalie; Guis, Christine; Brissault, Blandine; Kichler, Antoine; Leborgne, Christian; Scherman, Daniel; Labdi, Sid; Curmi, Patrick A


    Introduction of nucleic acids into cells is an important biotechnology research field which also holds great promise for therapeutic applications. One of the key steps in the gene delivery process is compaction of DNA into nanometric particles. The study of DNA condensing properties of three linear cationic triblock copolymers poly(ethylenimine-b-propylene glycol-b-ethylenimine), namely, LPEI(50)-PPG(36)-LPEI(50), LPEI(19)-PPG(36)-LPEI(19), and LPEI(14)-PPG(68)-LPEI(14), indicates that proper DNA condensation is driven by both the charge and the size of the respective cationic hydrophilic linear polyethylenimine (LPEI) and neutral hydrophobic poly(propylene glycol) (PPG) parts. Atomic force microscopy was used to investigate the interactions of the triblock copolymers with plasmid DNA at the single molecule level and to enlighten the mechanism involved in DNA condensation.

  6. Polyspecific organic anion transporting polypeptides mediate hepatic uptake of amphipathic type II organic cations

    NARCIS (Netherlands)

    van Montfoort, J.E; Hagenbuch, B; Fattinger, K.E; Muller, M; Groothuis, Geny; Meijer, D.K F; Meier, P.J


    Hepatic uptake of albumin-bound amphipathic organic cations has been suggested to be mediated by multispecific bile salt and organic anion transport systems. Therefore, we investigated whether the recently cloned rat organic anion transporting polypeptides 1 and 2 as well as the human organic anion

  7. Light-Induced Local Heating for Thermophoretic Manipulation of DNA in Polymer Micro- and Nanochannels

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Larsen, Niels Bent; Kristensen, Anders


    We present a method for making polymer chips with a narrow-band near-infrared absorber layer that enables light-induced local heating of liquids inside fluidic micro- and nanochannels fabricated by thermal imprint in polymethyl methacrylate. We have characterized the resulting liquid temperature...

  8. Amphipathicity Determines Different Cytotoxic Mechanisms of Lysine- or Arginine-Rich Cationic Hydrophobic Peptides in Cancer Cells. (United States)

    Liu, Xiaoli; Cao, Rui; Wang, Sha; Jia, Junli; Fei, Hao


    Cationic amphipathic peptides (CAPs) are known to be able to cause membrane destabilization and induce cell death, yet how the hydrophobicity, amphipathicity, and lysine (K)/arginine (R) composition synergistically affect the peptide activity remains incompletely understood. Here, we designed a panel of peptides based on the well-known anticancer peptide KLA. Increasing hydrophobicity enhanced the cytotoxicities of both the K- and R-rich peptides. Peptides with an intact amphipathic helical interface can cause instant cell death through a membrane lysis mechanism. Interestingly, rearranging the residue positions to minimize amphipathicity caused a great decrease of cytotoxicity to the K-rich peptides but not to the R-rich peptides. The amphipathicity-minimized R-rich peptide 6 (RL2) (RLLRLLRLRRLLRL-NH2) penetrated the cell membrane and induced caspase-3-dependent apoptotic cell death. We found that the modulation of hydrophobicity, amphipathicity, and K/R residues leads to distinct mechanisms of action of cationic hydrophobic peptides. Amphipathicity-reduced, arginine-rich cationic hydrophobic peptides (CHPs) may represent a new class of peptide therapeutics.


    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting...... density plays a critical role and we therefore investigated the antifouling properties of the poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating produced by the recently developed temperature-induced polyelectrolyte (TIP) grafting technique. The PLL-g-PEG coatings with higher density resulted...

  10. Electrophoretic detection and separation of mutant DNA using replaceable polymer matrices (United States)

    Karger, Barry L.; Thilly, William G.; Foret, Frantisek; Khrapko, Konstaintin; Koehavong, Phouthone; Cohen, Aharon S.; Giese, Roger W.


    The disclosure relates to a method for resolving double-stranded DNA species differing by at least one base pair. Each of the species is characterized by an iso-melting domain with a unique melting temperature contiguous with a melting domain of higher thermal stability.

  11. A polymer, random walk model for the size-distribution of large DNA fragments after high linear energy transfer radiation (United States)

    Ponomarev, A. L.; Brenner, D.; Hlatky, L. R.; Sachs, R. K.


    DNA double-strand breaks (DSBs) produced by densely ionizing radiation are not located randomly in the genome: recent data indicate DSB clustering along chromosomes. Stochastic DSB clustering at large scales, from > 100 Mbp down to random-walk, coarse-grained polymer model for chromatin is combined with a simple track structure model in Monte Carlo software called DNAbreak and is applied to data on alpha-particle irradiation of V-79 cells. The chromatin model neglects molecular details but systematically incorporates an increase in average spatial separation between two DNA loci as the number of base-pairs between the loci increases. Fragment-size distributions obtained using DNAbreak match data on large fragments about as well as distributions previously obtained with a less mechanistic approach. Dose-response relations, linear at small doses of high linear energy transfer (LET) radiation, are obtained. They are found to be non-linear when the dose becomes so large that there is a significant probability of overlapping or close juxtaposition, along one chromosome, for different DSB clusters from different tracks. The non-linearity is more evident for large fragments than for small. The DNAbreak results furnish an example of the RLC (randomly located clusters) analytic formalism, which generalizes the broken-stick fragment-size distribution of the random-breakage model that is often applied to low-LET data.

  12. A New FRET-Based Sensitive DNA Sensor for Medical Diagnostics using PNA Probe and Water-Soluble Blue Light Emitting Polymer

    Directory of Open Access Journals (Sweden)

    Nidhi Mathur


    Full Text Available A reliable, fast, and low-cost biosensor for medical diagnostics using DNA sequence detection has been developed and tested for the detection of the bacterium “Bacillus anthracis.” In this sensor, Poly [9,9-di (6,6′- N, N′ trimethylammonium hexylfluorenyl-2, 7-diyl-alt-co- (1,4-phenylene] dibromide salt (PFP has been taken as cationic conjugated polymer (CCP and PNA attached with fluorescein dye (PNAC∗ as a probe. The basic principle of this sensor is that when a PNAC∗ probe is hybridized with a single strand DNA (ssDNA having complementary sequence, Forster resonance energy transfer (FRET may take place from PFP to the PNAC∗/DNA complex. If the FRET is efficient, the photoluminescence from the PFP will be highly quenched and that from PNAC∗ will be enhanced. On the other hand, if the DNA sequence is noncomplementary to PNA, FRET will not occur.

  13. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides. (United States)

    Wang, Chien-Kuo; Shih, Ling-Yi; Chang, Kuan Y


    It has been unclear to which antimicrobial activities (e.g., anti-gram-positive bacterial, anti-gram-negative bacterial, antifungal, antiparasitic, and antiviral activities) of antimicrobial peptides (AMPs) a given physiochemical property matters most. This is the first computational study using large-scale AMPs to examine the relationships between antimicrobial activities and two major physiochemical properties of AMPs-amphipathicity and net charge. The results showed that among all kinds of antimicrobial activities, amphipathicity and net charge best differentiated between AMPs with and without anti-gram-negative bacterial activities. In terms of amphipathicity and charge, all the AMPs whose activities were significantly associated with amphipathicity and net charge were alike except those with anti-gram-positive bacterial activities. Furthermore, the higher the amphipathic value, the greater the proportion of AMPs possessing both antibacterial and antifungal activities. This dose-response-like pattern suggests a possible causal relationship-dual antibacterial and antifungal activities of AMPs may be attributable to amphipathicity. These novel findings could be useful for identifying potent AMPs computationally.

  14. Large-Scale Analysis of Antimicrobial Activities in Relation to Amphipathicity and Charge Reveals Novel Characterization of Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Chien-Kuo Wang


    Full Text Available It has been unclear to which antimicrobial activities (e.g., anti-gram-positive bacterial, anti-gram-negative bacterial, antifungal, antiparasitic, and antiviral activities of antimicrobial peptides (AMPs a given physiochemical property matters most. This is the first computational study using large-scale AMPs to examine the relationships between antimicrobial activities and two major physiochemical properties of AMPs—amphipathicity and net charge. The results showed that among all kinds of antimicrobial activities, amphipathicity and net charge best differentiated between AMPs with and without anti-gram-negative bacterial activities. In terms of amphipathicity and charge, all the AMPs whose activities were significantly associated with amphipathicity and net charge were alike except those with anti-gram-positive bacterial activities. Furthermore, the higher the amphipathic value, the greater the proportion of AMPs possessing both antibacterial and antifungal activities. This dose–response-like pattern suggests a possible causal relationship—dual antibacterial and antifungal activities of AMPs may be attributable to amphipathicity. These novel findings could be useful for identifying potent AMPs computationally.

  15. Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. (United States)

    Groenink, J; Walgreen-Weterings, E; van 't Hof, W; Veerman, E C; Nieuw Amerongen, A V


    Peptides derived from the N-terminal domain that comprises an amphipathic alpha-helix in human lactoferrin (LFh 18-31 and LFh 20-38) and bovine lactoferrin (LFb 17-30 and LFb 19-37) were chemically synthesised. Since many positively charged amphipathic alpha-helices contain antimicrobial activity, the peptides were tested for their antimicrobial activity against various oral pathogens. Both peptides from bovine lactoferrin had more potent antimicrobial activities than the human equivalents. Peptide LFb 17-30, containing the largest number of positively charged amino acids, showed the highest antimicrobial activity to both Gram-positive and Gram-negative bacteria. Since native lactoferrin molecules had no killing activity, release of these peptides from the native protein should be investigated to explore the use in oral care products.

  16. Surface Force of Polystyrene Latex Particles in Aqueous Anionic Amphipathic Solutions (United States)

    Fujii, Masatoshi; Hamochi, Nagisa; Kato, Tadashi


    The surface forces between a polystyrene particle (negatively charged surface) of latex and a flat silica plate for several concentrations of aqueous solution of anionic amphipathic molecules (sodium dodecylsulfonate) were investigated using an atomic force microscope (AFM) colloidal probe method. In the lower concentration region approximately 1-2 mM, the surface force showed general repulsive profiles according to normal Derjaguin-Landau-Verwey-Overbeek (DLVO) theory between the surfaces having the same sign of surface charge under an electrolyte aqueous solution. While in the higher concentration region at less than the critical micelle concentration (cmc), the surface force showed attractive profiles. Findings suggest that the anionic amphipathic molecules adsorbed to the polystyrene particle in the higher concentration region and induced changes in the surface morphology and properties of the surface region. The change in the surface morphology is believed to be one of the origins of the attractive interaction.

  17. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves


    BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...

  18. Amphipathic Benzenes Are Designed Inhibitors of the Estrogen Receptor α/Steroid Receptor Coactivator Interaction


    Gunther, Jillian R.; Moore, Terry W.; Collins, Margaret L.; Katzenellenbogen, John A.


    We report here on the design, synthesis and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor α. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich α-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor α. Several of these molecules are among the most potent inhibitors of this interaction describe...


    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    density plays a critical role and we therefore investigated the antifouling properties of the poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating produced by the recently developed temperature-induced polyelectrolyte (TIP) grafting technique. The PLL-g-PEG coatings with higher density resulted......Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting......-cell adhesion forces measured for each strain and toward titanium and the two types of PLL-g-PEG coatings. We were intrigued by the strain-dependent results in adhesion to conventional PLL-g-PEG, and investigated if the difference in adhesion mechanism between the three strains could explain the result. We...

  20. When is a carrier not a membrane carrier? The cytoplasmic transport of amphipathic molecules. (United States)

    Weisiger, R A


    After entering the cell, small molecules must penetrate the cytoplasm before they are metabolized, excreted, or can convey information to the cell nucleus. Without efficient cytoplasmic transport, most such molecules would efflux back out of the cell before they could reach their targets. Cytoplasmic movement of amphipathic molecules (e.g., long-chain fatty acids, bilirubin, bile acids) is greatly slowed by their tendency to bind intracellular structures. Soluble cytoplasmic binding proteins reduce this binding by increasing the aqueous solubility of their ligands. These soluble carriers catalyze the transport of hydrophobic molecules across hydrophilic water layers, just as membrane carriers catalyze the transport of hydrophilic molecules across the hydrophobic membrane core. They even display the kinetic features of carrier-mediated transport, including saturation, mutual competition between similar molecules, and countertransport. Recent data suggest that amphipathic molecules cross the cytoplasm very slowly, with apparent diffusion constants 10(2) to 10(4) times smaller than in water. By modulating the rate of cytoplasmic transport, cytosolic binding proteins may regulate transport and metabolism of amphipathic molecules. Storage diseases may cause hepatocellular dysfunction by disrupting normal cytoplasmic transport.

  1. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. (United States)

    Pae, Janely; Liivamägi, Laura; Lubenets, Dmitri; Arukuusk, Piret; Langel, Ülo; Pooga, Margus


    Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Learning from host-defense peptides: cationic, amphipathic peptoids with potent anticancer activity.

    Directory of Open Access Journals (Sweden)

    Wei Huang

    Full Text Available Cationic, amphipathic host defense peptides represent a promising group of agents to be developed for anticancer applications. Poly-N-substituted glycines, or peptoids, are a class of biostable, peptidomimetic scaffold that can display a great diversity of side chains in highly tunable sequences via facile solid-phase synthesis. Herein, we present a library of anti-proliferative peptoids that mimics the cationic, amphipathic structural feature of the host defense peptides and explore the relationships between the structure, anticancer activity and selectivity of these peptoids. Several peptoids are found to be potent against a broad range of cancer cell lines at low-micromolar concentrations including cancer cells with multidrug resistance (MDR, causing cytotoxicity in a concentration-dependent manner. They can penetrate into cells, but their cytotoxicity primarily involves plasma membrane perturbations. Furthermore, peptoid 1, the most potent peptoid synthesized, significantly inhibited tumor growth in a human breast cancer xenotransplantation model without any noticeable acute adverse effects in mice. Taken together, our work provided important structural information for designing host defense peptides or their mimics for anticancer applications. Several cationic, amphipathic peptoids are very attractive for further development due to their high solubility, stability against protease degradation, their broad, potent cytotoxicity against cancer cells and their ability to overcome multidrug resistance.

  3. Mutations of human DNA topoisomerase I at poly(ADP-ribose) binding sites: modulation of camptothecin activity by ADP-ribose polymers. (United States)

    Tesauro, Cinzia; Graziani, Grazia; Arnò, Barbara; Zuccaro, Laura; Muzi, Alessia; D'Annessa, Ilda; Santori, Elettra; Tentori, Lucio; Leonetti, Carlo; Fiorani, Paola; Desideri, Alessandro


    DNA topoisomerases are key enzymes that modulate the topological state of DNA through the breaking and rejoining of DNA strands. Human topoisomerase I belongs to the family of poly(ADP-ribose)-binding proteins and is the target of camptothecin derived anticancer drugs. Poly(ADP-ribosyl)ation occurs at specific sites of the enzyme inhibiting the cleavage and enhancing the religation steps during the catalytic cycle. Thus, ADP-ribose polymers antagonize the activity of topoisomerase I poisons, whereas PARP inhibitors increase their antitumor effects. Using site-directed mutagenesis we have analyzed the interaction of human topoisomerase I and poly(ADP-ribose) through enzymatic activity and binding procedures. Mutations of the human topoisomerase I hydrophobic or charged residues, located on the putative polymer binding sites, are not sufficient to abolish or reduce the binding of the poly(ADP-ribose) to the protein. These results suggest either the presence of additional binding sites or that the mutations are not enough perturbative to destroy the poly(ADP-ribose) interaction, although in one mutant they fully abolish the enzyme activity. It can be concluded that mutations at the hydrophobic or charged residues of the putative polymer binding sites do not interfere with the ability of poly(ADP-ribose) to antagonize the antitumor activity of topoisomerase I poisons.

  4. Five water-soluble zwitterionic copper(II)-carboxylate polymers: role of dipyridyl coligands in enhancing the DNA-binding, cleaving and anticancer activities. (United States)

    Chen, Ming; Tang, Xiao-Yan; Yang, Shui-Ping; Li, Huan-Huan; Zhao, Hai-Qing; Jiang, Zhi-Hong; Chen, Jin-Xiang; Chen, Wen-Hua


    Five water-soluble zwitterionic copper-carboxylate polymers were prepared from the reaction of N-carboxymethyl-(3,5-dicarboxyl)pyridinium bromide (H3CmdcpBr) with Cu(NO3)2 in the presence of NaOH by modulating the temperature, solvent and ancillary dipyridyl ligands. These complexes include a 1D ladder-shaped polymer {[Cu3(Cmdcp)2(OH)2(H2O)2]·H2O}n () formed in H2O at room temperature, and a 2D network polymer {[Cu(Cmdcp) (H2O)2]·2H2O}n () isolated in H2O at 135 °C. At 100 °C in H2O/DMF, the same reaction in the presence of an additional 2,2'-bipyridine (bipy) gave a 2D zwitterionic complex {[Cu(Cmdcp)(bipy)]·3H2O}n () together with a 1D double-stranded polymer {[Cu(Cmdcp)(H2O)2]·H2O}n () as a minor product. The replacement of bipy with phenanthroline (phen) afforded a 1D zigzag polymer chain {[Cu(Cmdcp)(phen)(H2O)]2·9H2O}5 (). All these complexes were characterized by IR, elemental analyses and single crystal X-ray crystallography. Agarose gel electrophoresis (GE) and ethidium bromide (EB) displacement experiments indicated that complex exhibited the highest pBR322 DNA cleaving ability with the catalytic efficiency (kmax/KM) of 14.80 h(-1) mM(-1) and the highest binding affinity toward calf-thymus DNA. The MTT assay indicated that complex showed significant inhibitory activity toward the proliferation of several tumor cells. Its IC50 value was at micromolar level and lower than those of cisplatin and complexes , especially toward resistant lung adenocarcinoma cell A549.

  5. Amphipathic benzenes are designed inhibitors of the estrogen receptor alpha/steroid receptor coactivator interaction. (United States)

    Gunther, Jillian R; Moore, Terry W; Collins, Margaret L; Katzenellenbogen, John A


    We report here on the design, synthesis, and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor alpha. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich alpha-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor alpha. Several of these molecules are among the most potent inhibitors of this interaction described to date and are active at low micromolar concentrations in both in vitro models of estrogen receptor action and in cell-based assays of estrogen receptor-mediated coactivator interaction and transcription.

  6. The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses. (United States)

    Vigant, Frederic; Hollmann, Axel; Lee, Jihye; Santos, Nuno C; Jung, Michael E; Lee, Benhur


    Rigid amphipathic fusion inhibitors (RAFIs) are lipophilic inverted-cone-shaped molecules thought to antagonize the membrane curvature transitions that occur during virus-cell fusion and are broad-spectrum antivirals against enveloped viruses (Broad-SAVE). Here, we show that RAFIs act like membrane-binding photosensitizers: their antiviral effect is dependent on light and the generation of singlet oxygen ((1)O(2)), similar to the mechanistic paradigm established for LJ001, a chemically unrelated class of Broad-SAVE. Photosensitization of viral membranes is a common mechanism that underlies these Broad-SAVE.

  7. Binding Dynamics of Hepatitis C Virus' NS5A Amphipathic Peptide to Cell and Model Membranes▿


    Cho, Nam-Joon; Cheong, Kwang Ho; Lee, ChoongHo; Frank, Curtis W.; Glenn, Jeffrey S.


    Membrane association of the hepatitis C virus NS5A protein is required for viral replication. This association is dependent on an N-terminal amphipathic helix (AH) within NS5A and is restricted to a subset of host cell intracellular membranes. The mechanism underlying this specificity is not known, but it may suggest a novel strategy for developing specific antiviral therapy. Here we have probed the mechanistic details of NS5A AH-mediated binding to both cell-derived and model membranes by us...

  8. Synthesis and antimicrobial evaluation of cationic low molecular weight amphipathic 1,2,3-triazoles. (United States)

    Bakka, Thomas A; Strøm, Morten B; Andersen, Jeanette H; Gautun, Odd R


    A library of 28 small cationic 1,4-substituted 1,2,3-triazoles was prepared for studies of antimicrobial activity. The structures addressed the pharmacophore model of small antimicrobial peptides and an amphipathic motif found in marine antimicrobials. Eight compounds showed promising antimicrobial activity, of which the most potent compound 10b displayed minimum inhibitory concentrations of 4-8μg/mL against Streptococcus agalacticae, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. The simple syntheses and low degree of functionalization make these 1,4-substituted 1,2,3-triazoles interesting for further optimizations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The synthesis of amphipathic prodrugs of 1,2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol. (United States)

    Quan, Jing; Chen, Zhichun; Han, Chengyou; Lin, Xianfu


    A facile, high regioselective enzymatic synthesis approach for the preparation of amphipathic prodrugs with saccharides of mephenesin and chlorphenesin was developed. Firstly, transesterification of two drugs with divinyl dicarboxylates with different carbon chain length was performed under the catalysis of Candida antarctica lipase acrylic resin and Lipozyme in anhydrous acetone at 50 degrees C, respectively. A series of lipophilic derivatives with vinyl groups of mephenesin and chlorphenesin were prepared. The influences of different organic solvents, enzyme sources, reaction time, and the acylation reagents on the synthesis of vinyl esters were investigated. And then, protease-catalyzed high regioselective acylation of D-glucose and D-mannose with vinyl esters of mephenesin and chlorphenesin gave drug-saccharide derivatives in good yields. The studies of lipophilicity and hydrolysis in vitro of prodrugs verified that drug-saccharide derivatives had amphipathic properties, and both lipophilic and amphipathic drug derivatives had obvious controlled release characteristics.

  10. Electrospray tandem mass spectrometry of a novel series of amphipathic functionalized ether-linked di- and trisaccharides and cyclic oligosaccharides. (United States)

    Banoub, J; Thibault, P; Gouéth, P Y; Ronco, G; Villa, P


    Electrospray mass spectrometry (ESMS) has aided the structural characterization of a novel series of amphipathic functionalized ether-linked di- and trisaccharides, composed of units of alkyl derivatives of glucofuranose and either units of glucofuranose or diacetylgalactose. The structural elucidation of a novel eight-membered macrocyclic ether-linked disaccharide and an 11-membered macrocyclic ether-linked trisaccharide was also effected using ESMS. Low-energy collision-induced dissociation MS/MS analysis of the [M + H]+ precursor ions confirmed the characteristic fingerprint patterns obtained in the conventional electrospray spectra and proved to be a specific and very sensitive method for the detection and characterization of these novel amphipathic molecules.

  11. Evaluation of the use of amphipathic peptide-based protein carrier for in vitro cancer research. (United States)

    Lo, Seong Loong; Wang, Shu


    Intracellular delivery of proteins offers an alternative to genetic modification or siRNA transfection for functional studies of proteins in live cells, especially for studies in cancer cells for therapeutics development. However, lack of efficient and biocompatible delivery system has limited the use of protein for in vitro cancer research. In this study, we design and evaluate an amphipathic peptide RV24, composing of a hydrophobic domain for protein binding, a flexible linker, and a hydrophilic domain to facilitate cell penetration. When using β-galactosidase as a cargo protein for comparison with commercially available peptide- and lipid-based carriers, RV24 peptide provides up to 5-fold increase in quantity delivered into 3 different cancer cell lines. Green fluorescent protein could also be delivered rapidly within 4h and transduced up to 83% of tested cancer cell lines. Although having a cell penetrating domain, RV24 peptide did not compromise cell viability, morphology and granularity significantly. These findings suggest the feasibility of using biocompatible amphipathic peptide to efficiently deliver protein-based molecules intracellularly for in vitro cancer research. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Tailoring a bacteriochlorin building block with cationic, amphipathic, or lipophilic substituents. (United States)

    Ruzié, Christian; Krayer, Michael; Balasubramanian, Thiagarajan; Lindsey, Jonathan S


    Bacteriochlorins are attractive candidates for photodynamic therapy (PDT) of diverse medical indications owing to their strong absorption in the near-infrared (NIR) region, but their use has been stymied by lack of access to stable, synthetically malleable molecules. To overcome these limitations, a synthetic free base 3,13-dibromobacteriochlorin (BC-Br(3)Br(13)) has been exploited as a building block in the synthesis of diverse bacteriochlorins via Pd-mediated coupling reactions (Sonogashira, Suzuki, and reductive carbonylation). Each bacteriochlorin is stable to adventitious dehydrogenation by virtue of the presence of a geminal dimethyl group in each pyrroline ring. The target bacteriochlorins bear cationic, lipophilic, or amphipathic substituents at the 3- and 13- (beta-pyrrolic) positions. A dicarboxybacteriochlorin was converted to amide derivatives via the intermediate diacid chloride. A diformylbacteriochlorin was subjected to reductive amination to give aminomethyl derivatives. A set of 3,5-disubstituted aryl groups bearing lipophilic or amphipathic groups was introduced via Suzuki coupling. Altogether 22 free base bacteriochlorins have been prepared. Eight aminoalkylbacteriochlorins were quaternized with methyl iodide at two or four amine sites per molecule, which resulted in water solubility. Each bacteriochlorin exhibits a Q(y) absorption band in the range of 720-772 nm. The ability to introduce a wide variety of peripheral functional groups makes these bacteriochlorins attractive candidates for diverse applications in photomedicine including PDT in the NIR region.

  13. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. (United States)

    Uematsu, N; Matsuzaki, K


    Various physicochemical properties play important roles in the membrane activities of amphipathic antimicrobial peptides. To examine the effects of the polar angle, two model peptides, thetap100 and thetap180, with polar angles of 100 degrees and 180 degrees, respectively, were designed, and their interactions with membranes were investigated in detail. These peptides have almost identical physicochemical properties except for polar angle. Like naturally occurring peptides, these peptides selectively bind to acidic membranes, assuming amphipathic alpha-helices, and formed peptide-lipid supramolecular complex pores accompanied by lipid flip-flop and peptide translocation. Despite its somewhat lower membrane affinity, thetap100 exhibited higher membrane permeabilization activity, a greater flip-flop rate, as well as more antimicrobial activity due to a higher pore formation rate compared with thetap180. Consistent with these results, the peptide translocation rate of thetap100 was higher. Furthermore, the number of peptides constituting thetap100 pores was less than that of thetap180, and thetap100 pores involved more lipid molecules, as reflected by its cation selectivity. The polar angle was found to be an important parameter determining peptide-lipid interactions.

  14. Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide. (United States)

    Marks, Alexandra J; Cooper, Margaret S; Anderson, Robert J; Orchard, Kim H; Hale, Geoffrey; North, Janet M; Ganeshaguru, Kanagasabai; Steele, Andrew J; Mehta, Atul B; Lowdell, Mark W; Wickremasinghe, R Gitendra


    The alpha-helical amphipathic peptide D-(KLAKLAK)2 is toxic to eukaryotic cells if internalized by a suitable targeting mechanism. We have targeted this peptide to malignant hemopoietic cells via conjugation to monoclonal antibodies, which recognize lineage-specific cell surface molecules. An anti-CD19/peptide conjugate efficiently killed 3/3 B lymphoid lines. However, an anti-CD33/peptide conjugate was cytotoxic to only one of three CD33-positive myeloid leukemia lines. The IC50 towards susceptible lines were in the low nanomolar range. Conjugates were highly selective and did not kill cells that did not express the appropriate cell surface cognate of the antibody moiety. Anti-CD19/peptide conjugates efficiently killed cells from patients with chronic lymphocytic leukemia but anti-CD33/peptide reagents were less effective against fresh acute myeloid leukemia cells. We therefore suggest that amphipathic peptides may be of value as targeted therapeutic agents for the treatment of a subset of hematologic malignancies.

  15. Cationic amphipathic peptides accumulate sialylated proteins and lipids in the plasma membrane of eukaryotic host cells. (United States)

    Weghuber, Julian; Aichinger, Michael C; Brameshuber, Mario; Wieser, Stefan; Ruprecht, Verena; Plochberger, Birgit; Madl, Josef; Horner, Andreas; Reipert, Siegfried; Lohner, Karl; Henics, Tamás; Schütz, Gerhard J


    Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns. (United States)

    Aberle, Daniel; Oetter, Kay-Marcus; Meyers, Gregor


    Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  17. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns.

    Directory of Open Access Journals (Sweden)

    Daniel Aberle

    Full Text Available Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.

  18. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix. (United States)

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E


    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  19. Amphipathic variable region heavy chain peptides derived from monoclonal human Wegener's anti-PR3 antibodies stimulate lymphocytes from patients with Wegener's granulomatosis and microscopic polyangiitis (United States)

    Peen, E; Malone, C; Myers, C; Williams, R C; Peck, A B; Csernok, E; Gross, W L; Staud, R


    Amphipathic variable-region heavy chain 11-mer peptides from monoclonal human IgM antiproteinase-3 antibodies were studied for peripheral blood lymphocyte stimulation in 21 patients with Wegener's granulomatosis (WG) or microscopic polyangiitis (MPA), connective tissue disease controls and normal control subjects. Positive T-cell activation was observed in most experiments with WG patients' lymphocytes using amphipathic VH-region peptides from four different human monoclonal anti-PR3 antibodies. Control peptides of the same length but without amphipathic characteristics along with other amphipathic peptides not derived from monoclonal anti-PR3 sequence were employed as controls. No significant lymphocyte stimulation was observed with normal controls, but positive stimulation with amphipathic VH peptides was also recorded in other connective tissue disease controls mainly patients with rheumatoid arthritis. Amphipathic peptides not derived from anti-PR3 sequence did not stimulate WG lymphocytes. Our findings indicate that lymphocyte reactivity as an element of cell-mediated immunity may be activated by amphipathic VH-region amino acid sequences of autoantibodies which are themselves associated with diseases such as WG. PMID:11529926

  20. Efficient simulation of semiflexible polymers

    NARCIS (Netherlands)

    Panja, Deb; Barkema, Gerard T.; van Leeuwen, J. M. J.


    Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydrodynamic interactions. The dsDNA is modeled with

  1. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. (United States)

    Cheng, Ningning; Yamamoto, Yoko; Koda, Keiichi; Tamai, Yutaka; Uraki, Yasumitsu


    Amphipathic lignin derivatives (A-LDs) were already demonstrated to improve enzymatic saccharification of lignocellulose. Based on this knowledge, two kinds of A-LDs prepared from black liquor of soda pulping of Japanese cedar were applied to a fed-batch simultaneous saccharification and fermentation (SSF) process for unbleached soda pulp of Japanese cedar to produce bioethanol. Both lignin derivatives slightly accelerated yeast fermentation of glucose but not inhibited it. In addition, ethanol yields based on the theoretical maximum ethanol production in the fed-batch SSF process was increased from 49% without A-LDs to 64% in the presence of A-LDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A conserved amphipathic ligand binding region influences k-path-dependent activity of cytochrome C oxidase. (United States)

    Hiser, Carrie; Buhrow, Leann; Liu, Jian; Kuhn, Leslie; Ferguson-Miller, Shelagh


    A conserved, crystallographically defined bile acid binding site was originally identified in the membrane domain of mammalian and bacterial cytochrome c oxidase (CcO). Current studies show other amphipathic molecules including detergents, fatty acids, steroids, and porphyrins bind to this site and affect the already 50% inhibited activity of the E101A mutant of Rhodobacter sphaeroides CcO as well as altering the activity of wild-type and bovine enzymes. Dodecyl maltoside, Triton X100, C12E8, lysophophatidylcholine, and CHOBIMALT detergents further inhibit RsCcO E101A, with lesser inhibition observed in wild-type. The detergent inhibition is overcome in the presence of micromolar concentrations of steroids and porphyrin analogues including deoxycholate, cholesteryl hemisuccinate, bilirubin, and protoporphyrin IX. In addition to alleviating detergent inhibition, amphipathic carboxylates including arachidonic, docosahexanoic, and phytanic acids stimulate the activity of E101A to wild-type levels by providing the missing carboxyl group. Computational modeling of dodecyl maltoside, bilirubin, and protoporphyrin IX into the conserved steroid site shows energetically favorable binding modes for these ligands and suggests that a groove at the interface of subunit I and II, including the entrance to the K-path and helix VIII of subunit I, mediates the observed competitive ligand interactions involving two overlapping sites. Spectral analysis indicates that ligand binding to this region affects CcO activity by altering the K-path-dependent electron transfer equilibrium between heme a and heme a(3). The high affinity and specificity of a number of compounds for this region, and its conservation and impact on CcO activity, support its physiological significance.

  3. How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters? (United States)

    Theodoulou, Frederica L; Carrier, David J; Schaedler, Theresia A; Baldwin, Stephen A; Baker, Alison


    Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the β-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data. © 2016 The Author(s).

  4. Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity. (United States)

    Datta, Geeta; Epand, Raquel F; Epand, Richard M; Chaddha, Manjula; Kirksey, Matthew A; Garber, David W; Lund-Katz, Sissel; Phillips, Michael C; Hama, Susan; Navab, Mohamad; Fogelman, Alan M; Palgunachari, Mayakonda N; Segrest, Jere P; Anantharamaiah, G M


    The apolipoprotein A-I mimetic peptide 4F (Ac-DWFKAFYDKVAEKFKEAF-NH(2)), with four Phe residues on the nonpolar face of the amphipathic alpha-helix, is strongly anti-inflammatory, whereas two 3F analogs (3F(3) and 3F(14)) are not. To understand how changes in helix nonpolar face structure affect function, two additional 3F analogs, Ac-DKLKAFYDKVFEWAKEAF-NH(2) (3F-1) and Ac-DKWKAVYDKFAEAFKEFL-NH(2) (3F-2), were designed using the same amino acid composition as 3F(3) and 3F(14). The aromatic residues in 3F-1 and 3F-2 are near the polar-nonpolar interface and at the center of the nonpolar face of the helix, respectively. Like 4F, but in contrast to 3F(3) and 3F(14), these peptides effectively inhibited lytic peptide-induced hemolysis, oxidized phospholipid-induced monocyte chemotaxis, and scavenged lipid hydroperoxides from low density lipoprotein. High pressure liquid chromatography retention times and monolayer exclusion pressures indicated that there is no direct correlation of peptide function with lipid affinity. Fluorescence studies suggested that, although the peptides bind phospholipids similarly, the Trp residue in 4F, 3F-1, and 3F-2 is less motionally restricted than in 3F(3) and 3F(14). Based on these results and molecular modeling studies, we propose that the arrangement of aromatic residues in class A amphipathic helical molecules regulates entry of reactive oxygen species into peptide-phospholipid complexes, thereby reducing the extent of monocyte chemotaxis, an important step in atherosclerosis.

  5. A Conserved Amphipathic Ligand Binding Region Influences K-Path Dependent Activity of Cytochrome c Oxidase (United States)

    Hiser, Carrie; Buhrow, Leann; Liu, Jian; Kuhn, Leslie; Ferguson-Miller, Shelagh


    A conserved, crystallographically-defined bile acid binding site was originally identified in the membrane domain of mammalian and bacterial cytochrome c oxidase (CcO). Current studies show other amphipathic molecules including detergents, fatty acids, steroids, and porphyrins bind to this site and affect the already 50% inhibited activity of the E101A mutant of Rhodobacter sphaeroides CcO, as well as altering the activity of wildtype and bovine enzymes. Dodecyl maltoside, Triton X100, C12E8, lysophophatidylcholine and CHOBIMALT detergents further inhibit RsCcO E101A, with lesser inhibition observed in wildtype. The detergent inhibition is overcome in the presence of μM concentrations of steroids and porphyrin analogs including deoxycholate, cholesteryl hemisuccinate, bilirubin, and protoporphyrin IX. In addition to alleviating detergent inhibition, amphipathic carboxylates including arachidonic, docosahexanoic, and phytanic acids stimulate the activity of E101A to wildtype levels by providing the missing carboxyl group. Computational modeling of dodecyl maltoside, bilirubin, and protoporphyrin IX into the conserved steroid site shows energetically favorable binding modes for these ligands and suggests that a groove at the interface of subunit I and II, including the entrance to the K-path and helix VIII of subunit I, mediates the observed competitive ligand interactions involving two overlapping sites. Spectral analysis indicates that ligand binding to this region affects CcO activity by altering the K path dependent electron transfer equilibrium between heme a and heme a3. The high affinity and specificity of a number of compounds for this region, and its conservation and impact on CcO activity, support its physiological significance. PMID:23351100

  6. TRPA1 is differentially modulated by the amphipathic molecules trinitrophenol and chlorpromazine. (United States)

    Hill, Kerstin; Schaefer, Michael


    TRPA1, a poorly selective Ca(2+)-permeable cation channel, is expressed in peripheral sensory neurons, where it is considered to contribute to a variety of sensory processes such as the detection of painful stimuli. Furthermore, TRPA1 was also identified in hair cells of the inner ear, but its involvement in sensing mechanical forces is still being controversially discussed. Amphipathic molecules such as trinitrophenol and chlorpromazine have been shown to provide useful tools to study mechanosensitive channels. Depending on their charge, they partition in the inner or outer sheets of the lipid bilayer, causing a curvature of the membrane, which has been demonstrated to activate or inhibit mechanosensitive ion channels. In the present study, we investigated the effect of these molecules on TRPA1 gating. TRPA1 was robustly activated by the anionic amphipathic molecule trinitrophenol. The whole-cell and single channel properties resemble those previously described for TRPA1. Moreover, we could show that the toxin GsMTx-4 acts on TRPA1. In addition to its recently described role as an inhibitor of stretch-activated ion channels, it serves as a potent activator of TRPA1 channels. On the other hand, the positively charged drug chlorpromazine modulates activated TRPA1 currents in a voltage-dependent way. The exposure of activated TRPA1 channels to chlorpromazine led to a block at positive potentials and an increased open probability at negative potentials. The variability in the shape of the I-V curve gives a first indication that native mechanically activated TRPA1 currents must not necessarily exhibit the same biophysical properties as ligand-activated TRPA1 currents.

  7. Fluorescent strategy based on cationic conjugated polymer fluorescence resonance energy transfer for the quantification of 5-(hydroxymethyl)cytosine in genomic DNA. (United States)

    Hong, Tingting; Wang, Tianlu; Guo, Pu; Xing, Xiwen; Ding, Fei; Chen, Yuqi; Wu, Jinjun; Ma, Jingwei; Wu, Fan; Zhou, Xiang


    DNA methylation is dynamically reprogrammed during early embryonic development in mammals. It can be explained partially by the discovery of 5-(hydroxymethyl)cytosine (5-hmC), 5-formylcytosine (5-fC), and 5-carboxylcytosine (5-caC), which are identified as key players involved in both active and passive demethylation pathways. As one of the ten-eleven translocation oxidation products, 5-hmC was found relatively abundant in neuron cells and embryonic stem cells. Herein we report a new method for 5-hmC quantification in genomic DNA based on CCP-FRET (cationic conjugated polymers act as the energy donor and induce fluorescence resonance energy transfer) assay combined with KRuO4 oxidation. 5-hmC in genomic DNA can be selectively transformed into 5-fC by the oxidation of KRuO4 and then labeled with hydroxylamine-BODIPY (BODIPY = 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore through the reaction between 5-fC and hydroxylamine-BODIPY. After the fluorescently labeled DNA was captured by CCP through electrostatic interactions, a significant FRET between CCP and hydroxylamine-BODIPY fluorophore was observed. This CCP-FRET-based assay benefits from light-harvesting, large Stokes shift, and optical signal amplification properties of the CCP. Furthermore, this CCP-FRET-based assay was quite successfully demonstrated for the 5-hmC quantification in three types of cells (mESc, HeLa, HEK 293T), providing a much more convenient choice for 5-hmC quantification in genomic DNA.

  8. DNA barcoding via counterstaining with AT/GC sensitive ligands in injection-molded all-polymer nanochannel devices

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Reisner, Walter


    /or requirement of specialized facilities/skill-sets. In this article we show that nanochannel-based mapping can be performed in all polymer chips fabricated via injection molding: a fabrication process so inexpensive that the devices can be considered disposable. Fluorescent intensity variations can be obtained...

  9. Preparation of a hyper-cross-linked polymer monolithic column and its application to the sensitive determination of genomic DNA methylation. (United States)

    Chen, Ming-Luan; Liu, Yu-Li; Xing, Xi-Wen; Zhou, Xiang; Feng, Yu-Qi; Yuan, Bi-Feng


    A hyper-cross-linked polymer monolithic column, poly(methacrylatoethyl trimethyl ammonium-co-vinylbenzene chloride-co-divinylbenzene) (MATE-co-VBC-co-DVB) with phenyl and quaternary ammonium groups was successfully prepared in the current study. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The poly(MATE-co-VBC-co-DVB) monolithic column was demonstrated to have strong anion exchange/reversed-phase (SAX/RP) mixed-mode retention for analytes on capillary liquid chromatography (cLC). By using this monolithic column, we developed a rapid and sensitive method for the detection of DNA methylation. Our results showed that six nucleobases (adenine, guanine, cytosine, thymine, uracil, and 5-methylcytosine (5-mC)) can be baseline separated within 15 min by electrostatic repulsion and hydrophobic interactions between nucleobases and the monolithic stationary phase. The limit of detection (LOD, signal/noise = 3) of 5-mC is 0.014 pmol and endogenous 5-mC can be distinctly detected by using only 10 ng genomic DNA, which is comparable to that obtained by mass spectrometry analysis. Furthermore, by using the method developed here, we found that DNA methylation inhibitor 5-azacytidine (5-aza-C) and 5-aza-2'-deoxycytidine (5-aza-CdR) could induce a significant decrease of genome-wide DNA methylation in human lung carcinoma cells (A549) and cervical carcinoma cells (HeLa). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance (United States)

    Zabihi, Omid; Ahmadi, Mojtaba; Khayyam, Hamid; Naebe, Minoo


    Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

  11. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds. (United States)

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick


    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  12. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds

    Directory of Open Access Journals (Sweden)

    Marion Navarri


    Full Text Available The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness, as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  13. Interaction of an amphipathic peptide with phosphatidycholine/phosphatidylethanolamine mixed membranes. (United States)

    Shintou, Keisuke; Nakano, Minoru; Kamo, Tomoari; Kuroda, Yoshihiro; Handa, Tetsurou


    The effect of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in mixed membranes with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on interaction with a class A amphipathic peptide, Ac-DWLKAFYDKVAEKLKEAF-NH(2) (Ac-18A-NH(2)), was investigated. The fluorescence lifetime of 2-(9-anthroyloxy)stearic acid and (2)H NMR spectra were used to evaluate the penetration of water molecules into the membrane interface and the order of lipid acyl chains, respectively. The results demonstrated that DOPE in the mixed membranes decreased the fluorescence lifetime and increased the acyl-chain order, and that Ac-18A-NH(2) affected them more for membranes with higher DOPE fractions. The partition coefficient (K(p)) of the peptide to the mixed membranes was increased with the increase in the DOPE mole fractions. From the temperature dependence of the K(p) values, the binding of Ac-18A-NH(2) to POPC/DOPE mixed membranes was found to be entropy-driven. The formation of an alpha-helix at the membrane's surface is supposed to induce positive curvature strain, which decreases the headgroup hydration and acyl-chain order of lipids. Thus, the binding of Ac-18A-NH(2) to membranes is entropically more favorable at higher DOPE fractions since the peptide's insertion into the membrane can decrease the order parameter and unfavorable headgroup hydration, which explains the enhanced peptide binding.

  14. The high resolution structure of tyrocidine A reveals an amphipathic dimer (United States)

    Loll, Patrick J.; Upton, Elizabeth C.; Nahoum, Virginie; Economou, Nicoleta J.; Cocklin, Simon


    Tyrocidine A, one of the first antibiotics ever to be discovered, is a cyclic decapeptide that binds to membranes of target bacteria, disrupting their integrity. It is active against a broad spectrum of Gram-positive organisms, and has recently engendered interest as a potential scaffold for development of new drugs to combat antibiotic-resistant pathogens. We present here the X-ray crystal structure of tyrocidine A at a resolution of 0.95 Å. The structure reveals that tyrocidine forms an intimate and highly amphipathic homodimer made up of four beta strands that associate into a single, highly curved antiparallel beta sheet. We used surface plasmon resonance and potassium efflux assays to demonstrate that tyrocidine binds tightly to mimetics of bacterial membranes with an apparent dissociation constant (KD) of 10 μM, and efficiently permeabilizes bacterial cells at concentrations equal to and below the KD. Using variant forms of tyrocidine in which the fluorescent probe p-cyano-phenylalanine had been inserted on either the polar or apolar face of the molecule, we performed fluorescence quenching experiments, using both water-soluble and membrane-embedded quenchers. The quenching results, together with the structure, strongly support a membrane association model in which the convex, apolar face of tyrocidine’s beta sheet is oriented toward the membrane interior, while the concave, polar face is presented to the aqueous phase. PMID:24530898

  15. Cell-Penetrating Peptides: Design Strategies beyond Primary Structure and Amphipathicity

    Directory of Open Access Journals (Sweden)

    Daniela Kalafatovic


    Full Text Available Efficient intracellular drug delivery and target specificity are often hampered by the presence of biological barriers. Thus, compounds that efficiently cross cell membranes are the key to improving the therapeutic value and on-target specificity of non-permeable drugs. The discovery of cell-penetrating peptides (CPPs and the early design approaches through mimicking the natural penetration domains used by viruses have led to greater efficiency of intracellular delivery. Following these nature-inspired examples, a number of rationally designed CPPs has been developed. In this review, a variety of CPP designs will be described, including linear and flexible, positively charged and often amphipathic CPPs, and more rigid versions comprising cyclic, stapled, or dimeric and/or multivalent, self-assembled peptides or peptido-mimetics. The application of distinct design strategies to known physico-chemical properties of CPPs offers the opportunity to improve their penetration efficiency and/or internalization kinetics. This led to increased design complexity of new CPPs that does not always result in greater CPP activity. Therefore, the transition of CPPs to a clinical setting remains a challenge also due to the concomitant involvement of various internalization routes and heterogeneity of cells used in the in vitro studies.

  16. Flexibility vs rigidity of amphipathic peptide conjugates when interacting with lipid bilayers. (United States)

    Babii, Oleg; Afonin, Sergii; Schober, Tim; Komarov, Igor V; Ulrich, Anne S


    For the first time, the photoisomerization of a diarylethene moiety (DAET) in peptide conjugates was used to probe the effects of molecular rigidity/flexibility on the structure and behavior of model peptides bound to lipid membranes. The DAET unit was incorporated into the backbones of linear peptide-based constructs, connecting two amphipathic sequences (derived from the β-stranded peptide (KIGAKI) 3 and/or the α-helical peptide BP100). A β-strand-DAET-α-helix and an α-helix-DAET-α-helix models were synthesized and studied in phospholipid membranes. Light-induced photoisomerization of the linker allowed the generation of two forms of each conjugate, which differed in the conformational mobility of the junction between the α-helical and/or the β-stranded part of these peptidomimetic molecules. A detailed study of their structural, orientational and conformational behavior, both in isotropic solution and in phospholipid model membranes, was carried out using circular dichroism and solid-state 19 F-NMR spectroscopy. The study showed that the rigid and flexible forms of the two conjugates had appreciably different structures only when embedded in an anisotropic lipid environment and only in the gel phase. The influence of the rigidity/flexibility of the studied conjugates on the lipid thermotropic phase transition was also investigated by differential scanning calorimetry. Both models were found to destabilize the lamellar gel phases. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Amphipathic guanidine-embedded glyoxamide-based peptidomimetics as novel antibacterial agents and biofilm disruptors. (United States)

    Nizalapur, Shashidhar; Kimyon, Onder; Yee, Eugene; Ho, Kitty; Berry, Thomas; Manefield, Mike; Cranfield, Charles G; Willcox, Mark; Black, David StC; Kumar, Naresh


    Antimicrobial resistance in bacteria is becoming increasingly prevalent, posing a critical challenge to global health. Bacterial biofilm formation is a common resistance mechanism that reduces the effectiveness of antibiotics. Thus, the development of compounds that can disrupt bacterial biofilms is a potential strategy to combat antimicrobial resistance. We report herein the synthesis of amphipathic guanidine-embedded glyoxamide-based peptidomimetics via ring-opening reactions of N-naphthoylisatins with amines and amino acids. These compounds were investigated for their antibacterial activity by the determination of minimum inhibitory concentration (MIC) against S. aureus and E. coli. Compounds 35, 36, and 66 exhibited MIC values of 6, 8 and 10 μg mL -1 against S. aureus, respectively, while compounds 55 and 56 showed MIC values of 17 and 19 μg mL -1 against E. coli, respectively. Biofilm disruption and inhibition activities were also evaluated against various Gram-positive and Gram-negative bacteria. The most active compound 65 exhibited the greatest disruption of established biofilms by 65% in S. aureus, 61% in P. aeruginosa, and 60% in S. marcescens respectively, at 250 μM concentration, while compound 52 inhibited the formation of biofilms by 72% in S. marcescens at 250 μM. We also report here the in vitro toxicity against MRC-5 human lung fibroblast cells. Finally, the pore forming capability of the three most potent compounds were tested using tethered bilayer lipid membrane (tBLM) technology.

  18. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. (United States)

    Cheng, Ningning; Koda, Keiichi; Tamai, Yutaka; Yamamoto, Yoko; Takasuka, Taichi E; Uraki, Yasumitsu


    Amphipathic lignin derivatives (A-LDs) prepared from the black liquor of soda pulping of Japanese cedar are strong accelerators for bioethanol production under a fed-batch simultaneous enzymatic saccharification and fermentation (SSF) process. To improve the bioethanol production concentration, conditions such as reaction temperature, stirring program, and A-LDs loadings were optimized in both small scale and large scale fed-batch SSF. The fed-batch SSF in the presence of 3.0g/L A-LDs at 38°C gave the maximum ethanol production and a high enzyme recovery rate. Furthermore, a jar-fermenter equipped with a powerful mechanical stirrer was designed for 1.5L-scale fed-batch SSF to achieve rigorous mixing during high substrate loading. Finally, the 1.5L fed-batch SSF with a substrate loading of 30% (w/v) produced a high ethanol concentration of 87.9g/L in the presence of A-LDs under optimized conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Interaction of amphipathic α-helical peptides with a lipid membrane: Adsorption and pore formation (United States)

    Zhdanov, Vladimir P.


    Amphipathic α-helical peptides often exhibit antimicrobial or antiviral properties. Adsorption of such peptides at a lipid membrane may result in pore formation. Current phenomenological models of the latter process imply that the peptide-peptide lateral interaction is repulsive and that the conditions for pore formation depend on the difference of the peptide energies at the membrane surface and in a pore. There is, however, experimental evidence that the kinetics of peptide adsorption at small vesicles (about 100 nm diameter) may be cooperative and accordingly the peptide-peptide lateral interaction may be attractive. In addition, the experiments indicate that the peptide-induced pore formation is often observed at the conditions close to those corresponding to pore formation under externally induced tensile stress where the difference of the peptide energies at the membrane surface and in a pore is irrelevant. Here, a model describing both types of peptide-peptide lateral interactions at a membrane is proposed. In addition, a new scenario of peptide-induced pore formation naturally explaining the similarity of this process under different conditions is suggested.

  20. Potentiating the Anticancer Properties of Bisphosphonates by Nanocomplexation with the Cationic Amphipathic Peptide, RALA. (United States)

    Massey, Ashley S; Pentlavalli, Sreekanth; Cunningham, Richard; McCrudden, Cian M; McErlean, Emma M; Redpath, Philip; Ali, Ahlam A; Annett, Stephanie; McBride, John W; McCaffrey, Joanne; Robson, Tracy; Migaud, Marie E; McCarthy, Helen O


    Bisphosphonates (BPs) are a class of bone resorptive drug with a high affinity for the hydroxyapatite structure of bone matrices that are used for the treatment of osteoporosis. However, clinical application is limited by a common toxicity, BP-related osteonecrosis of the jaw. There is emerging evidence that BPs possess anticancer potential, but exploitation of these antiproliferative properties is limited by their toxicities. We previously reported the utility of a cationic amphipathic fusogenic peptide, RALA, to traffic anionic nucleic acids into various cell types in the form of cationic nanoparticles. We hypothesized that complexation with RALA could similarly be used to conceal a BP's hydroxyapatite affinity, and to enhance bioavailability, thereby improving anticancer efficacy. Incubation of RALA with alendronate, etidronate, risedronate, or zoledronate provoked spontaneous electrostatic formation of cationic nanoparticles that did not exceed 100 nm in diameter and that were stable over a range of temperatures and for up to 6 h. The nanoparticles demonstrated a pH responsiveness, possibly indicative of a conformational change, that could facilitate release of the BP cargo in the endosomal environment. RALA/BP nanoparticles were more potent anticancer agents than their free BP counterparts in assays investigating the viability of PC3 prostate cancer and MDA-MB-231 breast cancer cells. Moreover, RALA complexation potentiated the tumor growth delay activity of alendronate in a PC3 xenograft model of prostate cancer. Taken together, these findings further validate the use of BPs as repurposed anticancer agents.

  1. Efficient DNA-Polymer Coupling in Organic Solvents: A Survey of Amide Coupling, Thiol-Ene and Tetrazine-Norbornene Chemistries Applied to Conjugation of Poly(N-Isopropylacrylamide). (United States)

    Wilks, Thomas R; O'Reilly, Rachel K


    A range of chemistries were explored for the efficient covalent conjugation of DNA to poly(N-isopropylacrylamide) (poly(NIPAM)) in organic solvents. Amide coupling and thiol-ene Michael addition were found to be ineffective for the synthesis of the desired products. However, the inverse electron-demand Diels-Alder (DA inv ) reaction between tetrazine (Tz) and norbornene (Nb) was found to give DNA-polymer conjugates in good yields (up to 40%) in organic solvents (N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone), and without the need for a catalyst. Methods for the synthesis of Tz-and Nb- functionalised DNA were developed, along with a post-polymerisation functionalisation strategy for the production of Tz-functionalised polymers.

  2. Residue-and-polymer-free graphene transfer: DNA-CTMA/graphene/GaN bio-hybrid photodiode for light-sensitive applications (United States)

    Reddy, M. Siva Pratap; Park, Herie; Lee, Jung-Hee


    In this work, we present a residue-and-polymer-free graphene transfer method by using the adhesive force between graphene and a target substrate, the hydrophobic property of graphene, and the surface tension of the solutions. We used an n-type GaN substrate as the target substrate to make a photodiode (PD). Recently, the inclusion of biomolecules in photodetection technology has attracted considerable attention in the electronics and photonics research, particularly due to the rapid evolution of organic-inorganic bio-hybrid PDs (Bio-HPDs). This report presents a significant photoresponse of the bioinspired graphene-based PD fabricated with deoxyribonucleic acid-cetyltrimetylammonium chloride (DNA-CTMA) biomolecules on the n-type GaN substrate. Bio-HPDs respond to the infrared, visible, and ultraviolet wavelengths. Moreover, the Bio-HPDs show photosensitivities (Iphoto/Idark) of 21, 143, and 1194 for infrared, visible, and ultraviolet wavebands, respectively, which can be attributed to the integration of high-mobility graphene and photosensitive DNA-CTMA biomolecules. In addition, the corresponding charge transfer mechanisms in the PDs are explained by energy band diagrams.

  3. Gain of local structure in an amphipathic peptide does not require a specific tertiary framework. (United States)

    Roman, Ernesto A; Rosi, Pablo; González Lebrero, Mariano C; Wuilloud, Rodolfo; González Flecha, F Luis; Delfino, José M; Santos, Javier


    In this work, we studied how an amphipathic peptide of the surface of the globular protein thioredoxin, TRX94-108, acquires a native-like structure when it becomes involved in an apolar interaction network. We designed peptide variants where the tendency to form alpha-helical conformation is modulated by replacing each of the leucine amino acid residues by an alanine. The induction of structure caused by sodium dodecyl sulfate (SDS) binding was studied by capillary zone electrophoresis, circular dichroism, DOSY-NMR, and molecular dynamics simulations (MDS). In addition, we analyzed the strength of the interaction between a C18 RP-HPLC matrix and the peptides. The results presented here reveal that (a) critical elements in the sequence of the wild-type peptide stabilize a SDS/peptide supramolecular cluster; (b) the hydrophobic nature of the interaction between SDS molecules and the peptide constrains the ensemble of conformations; (c) nonspecific apolar surfaces are sufficient to stabilize peptide secondary structure. Remarkably, MDS shed light on a contact network formed by a limited number of SDS molecules that serves as a structural scaffold preserving the helical conformation of this module. This mechanism might prevail when a peptide with low helical propensity is involved in structure consolidation. We suggest that folding of peptides sharing this feature does not require a preformed tightly-packed protein core. Thus, the formation of specific tertiary interactions would be the consequence of peptide folding and not its cause. In this scenario, folding might be thought of as a process that includes unspecific rounds of structure stabilization guiding the protein to the native state. 2010 Wiley-Liss, Inc.

  4. pH responsiveness of fibrous assemblies of repeat-sequence amphipathic α-helix polypeptides. (United States)

    Takei, Toshiaki; Tsumoto, Kouhei; Okonogi, Atsuhito; Kimura, Akiko; Kojima, Shuichi; Yazaki, Kazumori; Takei, Tsunetomo; Ueda, Takuya; Miura, Kin-ichiro


    We reported previously that our designed polypeptide α3 (21 residues), which has three repeats of a seven-amino-acid sequence (LETLAKA)3, forms not only an amphipathic α-helix structure but also long fibrous assemblies in aqueous solution. To address the relationship between the electrical states of the polypeptide and its α-helix and fibrous assembly formation, we characterized mutated polypeptides in which charged amino acid residues of α3 were replaced with Ser. We prepared the following polypeptides: 2Sα3 (LSTLAKA)3, in which all Glu residues were replaced with Ser residues; 6Sα3 (LETLASA)3, in which all Lys residues were replaced with Ser; and 2S6Sα3 (LSTLASA)3; in which all Glu and Lys residues were replaced with Ser. In 0.1M KCl, 2Sα3 formed an α-helix under basic conditions and 6Sα3 formed an α-helix under acid conditions. In 1M KCl, they both formed α-helices under a wide pH range. In addition, 2Sα3 and 6Sα3 formed fibrous assemblies under the same buffer conditions in which they formed α-helices. α-Helix and fibrous assembly formation by these polypeptides was reversible in a pH-dependent manner. In contrast, 2S6Sα3 formed an α-helix under basic conditions in 1M KCl. Taken together, these findings reveal that the charge states of the charged amino acid residues and the charge state of the Leu residue located at the terminus play an important role in α-helix formation. © 2015 The Protein Society.

  5. Binding dynamics of hepatitis C virus' NS5A amphipathic peptide to cell and model membranes. (United States)

    Cho, Nam-Joon; Cheong, Kwang Ho; Lee, ChoongHo; Frank, Curtis W; Glenn, Jeffrey S


    Membrane association of the hepatitis C virus NS5A protein is required for viral replication. This association is dependent on an N-terminal amphipathic helix (AH) within NS5A and is restricted to a subset of host cell intracellular membranes. The mechanism underlying this specificity is not known, but it may suggest a novel strategy for developing specific antiviral therapy. Here we have probed the mechanistic details of NS5A AH-mediated binding to both cell-derived and model membranes by use of biochemical membrane flotation and quartz crystal microbalance (QCM) with dissipation. With both assays, we observed AH-mediated binding to model lipid bilayers. When cell-derived membranes were coated on the quartz nanosensor, however, significantly more binding was detected, and the QCM-derived kinetic measurements suggested the existence of an interacting receptor in the target membranes. Biochemical flotation assays performed with trypsin-treated cell-derived membranes exhibited reduced AH-mediated membrane binding, while membrane binding of control cytochrome b5 remained unaffected. Similarly, trypsin treatment of the nanosensor coated with cellular membranes abolished AH peptide binding to the cellular membranes but did not affect the binding of a control lipid-binding peptide. These results therefore suggest that a protein plays a critical role in mediating and stabilizing the binding of NS5A's AH to its target membrane. These results also demonstrate the successful development of a new nanosensor technology ideal both for studying the interaction between a protein and its target membrane and for developing inhibitors of that interaction.

  6. Binding Dynamics of Hepatitis C Virus' NS5A Amphipathic Peptide to Cell and Model Membranes▿ (United States)

    Cho, Nam-Joon; Cheong, Kwang Ho; Lee, ChoongHo; Frank, Curtis W.; Glenn, Jeffrey S.


    Membrane association of the hepatitis C virus NS5A protein is required for viral replication. This association is dependent on an N-terminal amphipathic helix (AH) within NS5A and is restricted to a subset of host cell intracellular membranes. The mechanism underlying this specificity is not known, but it may suggest a novel strategy for developing specific antiviral therapy. Here we have probed the mechanistic details of NS5A AH-mediated binding to both cell-derived and model membranes by use of biochemical membrane flotation and quartz crystal microbalance (QCM) with dissipation. With both assays, we observed AH-mediated binding to model lipid bilayers. When cell-derived membranes were coated on the quartz nanosensor, however, significantly more binding was detected, and the QCM-derived kinetic measurements suggested the existence of an interacting receptor in the target membranes. Biochemical flotation assays performed with trypsin-treated cell-derived membranes exhibited reduced AH-mediated membrane binding, while membrane binding of control cytochrome b5 remained unaffected. Similarly, trypsin treatment of the nanosensor coated with cellular membranes abolished AH peptide binding to the cellular membranes but did not affect the binding of a control lipid-binding peptide. These results therefore suggest that a protein plays a critical role in mediating and stabilizing the binding of NS5A's AH to its target membrane. These results also demonstrate the successful development of a new nanosensor technology ideal both for studying the interaction between a protein and its target membrane and for developing inhibitors of that interaction. PMID:17428867

  7. Examination of chlorpromazine and other amphipathic drugs on the activity of lipopolysaccharide antagonists, E5564 and E5531. (United States)

    Yang, H; Daun, J M; Rose, J R; Christ, W J; Gusovsky, F; Chow, J C


    The synthetic antagonists of lipopolysaccharide (LPS), E5531 and E5564, are analogs of the lipid A portion of LPS that not only lack agonistic activity but also inhibit the biological effects of LPS both in vitro and in vivo. The effects of LPS and these synthetic antagonists have been localized to the recently described Toll-like receptor 4 (TLR4). A recent report indicated that the naturally occurring LPS antagonist Rhodobacter sphaeroides LPS loses its antagonist properties and gains pro-inflammatory qualities in the presence of chlorpromazine and other amphipathic drugs. To determine whether these reported actions occur with our chemically defined LPS antagonists, we examined the effects of chlorpromazine, fluphenazine, trifluoperazine, and lidocaine on the antagonism elicited by RsLPS and E5531 in U373 cells, which produce IL-6 in response to LPS. We also tested the effects of these amphipathic molecules on the LPS-neutralizing activity of RsLPS and E5564 on LPS-induced TNF-alpha release in human whole blood. The results indicate that neither chlorpromazine, fluphenazine, trifluoperazine nor lidocaine alter the activity of E5531 or E5564 in an in vitro cell system or human whole blood. Furthermore, chlorpromazine did not affect the antagonistic activity of RsLPS or E5564 on IL-6 generation by peripheral blood mononuclear cells. Thus, based on these data, our purified synthetic LPS-antagonists do not appear to lose their antagonistic properties and/or become agonists in the presence of amphipathic agents or drugs.

  8. Improving membrane binding as a design strategy for amphipathic peptide hormones: 2-helix variants of PYY3-36. (United States)

    Pedersen, Søren L; Bhatia, Vikram K; Jurt, Simon; Paulsson, Johan F; Pedersen, Maria H; Jorgensen, Rasmus; Holst, Birgitte; Stamou, Dimitrios; Vrang, Niels; Zerbe, Oliver; Jensen, Knud J


    It has been hypothesized that amphipathic peptides might bind to membranes prior to activating their cognate receptors, but this has proven difficult to test. The peptide hormone PYY3-36 is believed to perform its appetite-suppressing actions through binding to hypothalamic Y2 receptors. It has been proposed that PYY3-36 via its amphipathic α-helix binds to the plasma membrane prior to receptor docking. Here, our aim was to study the implication of this hypothesis using new analogs of PYY3-36. We first studied membrane binding of PYY3-36. Next, we designed a series of PYY3-36 analogs to increase membrane-binding affinity by substituting the N-terminal segment with a de novo designed α-helical, amphipathic sequence. These 2-helix variants of PYY3-36 were assembled by solid-phase peptide synthesis. Pharmacological studies demonstrated that even though the native peptide sequence was radically changed, highly active Y2 receptor agonists were generated. A potent analog, with a Kd of 4 nM for membranes, was structurally characterized by NMR in the membrane-bound state, which clearly showed that it formed the expected 2-helix. The topology of the peptide-micelle association was studied by paramagnetic relaxation enhancement using a spin label, which confirmed that the hydrophobic residues bound to the membrane. Our studies further support the hypothesis that PYY3-36 associates with the membrane and indicate that this can be used in the design of novel molecules with high receptor binding potency. These observations are likely to be generally important for peptide hormones and biopharmaceutical drugs derived from them. This new 2-helix variant of PYY3-36 will be useful as a tool compound for studying peptide-membrane interactions. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  9. Designed low amphipathic peptides with alpha-helical propensity exhibiting antimicrobial activity via a lipid domain formation mechanism. (United States)

    Yamamoto, Naoki; Tamura, Atsuo


    Although several low amphipathic peptides have been known to exhibit antimicrobial activity, their mode of action has not been completely elucidated. In this study, using designed low amphipathic peptides that retain different alpha-helical content and hydrophobicity, we attempted to investigate the mechanism of these properties. Calorimetric and thermodynamic analyses demonstrated that the peptides induce formation of two lipid domains in an anionic liposome at a high peptide-to-lipid ratio. On the other hand, even at a low peptide-to-lipid ratio, they caused minimal membrane damage, such as flip-flop of membrane lipids or leakage of calcein molecules from liposomes, and never translocated across membranes. Interaction energies between the peptides and anionic liposomes showed good correlation with antimicrobial activity for both Escherichia coli and Bacillus subtilis. We thus propose that the domain formation mechanism in which antimicrobial peptides exhibit activity solely by forming lipid domains without membrane damage is a major determinant of the antimicrobial activity of low amphipathic peptides. These peptides appear to stiffen the membrane such that it is deprived of the fluidity necessary for biological functions. We also showed that to construct the lipid domains, peptides need not form stable and cooperative structures. Rather, it is essential for peptides to only interact tightly with the membrane interface via strong electrostatic interactions, and slight differences in binding strength are invoked by differences in hydrophobicity. The peptides thus designed might pave the way for "clean" antimicrobial reagents that never cause release of membrane elements and efflux of their inner components. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. (United States)

    Vassilevski, Alexander A; Sachkova, Maria Y; Ignatova, Anastasija A; Kozlov, Sergey A; Feofanov, Alexei V; Grishin, Eugene V


    In addition to the conventional neurotoxins and cytotoxins, venom of the lynx spider Oxyopes takobius was found to contain two-domain modular toxins named spiderines: OtTx1a, 1b, 2a and 2b. These toxins show both insecticidal activity (a median lethal dose against flesh fly larvae of 75 μg·g(-1)) and potent antimicrobial effects (minimal inhibitory concentrations in the range 0.1-10 μm). Full sequences of the purified spiderines were established by a combination of Edman degradation, mass spectrometry and cDNA cloning. They are relatively large molecules (~ 110 residues, 12.0-12.5 kDa) and consist of two distinct modules separated by a short linker. The N-terminal part (~ 40 residues) contains no cysteine residues, is highly cationic, forms amphipathic α-helical structures in a membrane-mimicking environment, and shows potent cytolytic effects on cells of various origins. The C-terminal part (~ 60 residues) is disulfide-rich (five S-S bonds), and contains the inhibitor cystine knot (ICK/knottin) signature. The N-terminal part of spiderines is very similar to linear cytotoxic peptides found in various organisms, whereas the C-terminal part corresponds to the usual spider neurotoxins. We synthesized the modules of OtTx1a and compared their activity to that of full-length mature toxin produced recombinantly, highlighting the importance of the N-terminal part, which retained full-length toxin activity in both insecticidal and antimicrobial assays. The unique structure of spiderines completes the range of two-domain spider toxins. © 2013 FEBS.

  11. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. (United States)

    Signorelli, Sara; Santini, Simona; Yamada, Tohru; Bizzarri, Anna Rita; Beattie, Craig W; Cannistraro, Salvatore


    Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Polymer films (United States)

    Granick, Steve; Sukhishvili, Svetlana A.


    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  13. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. (United States)

    Petosa, C; Masters, S C; Bankston, L A; Pohl, J; Wang, B; Fu, H; Liddington, R C


    14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins.

  14. Temperature profiling of polypeptides in reversed-phase liquid chromatography. I. Monitoring of dimerization and unfolding of amphipathic alpha-helical peptides. (United States)

    Mant, Colin T; Chen, Yuxin; Hodges, Robert S


    The present study sets out to extend the utility of reversed-phase liquid chromatography (RP-HPLC) by demonstrating its ability to monitor dimerization and unfolding of de novo designed synthetic amphipathic alpha-helical peptides on stationary phases of varying hydrophobicity. Thus, we have compared the effect of temperature (5-80 degrees C) on the RP-HPLC (C8 or cyano columns) elution behaviour of mixtures of peptides encompassing amphipathic alpha-helical structure, amphipathic alpha-helical structure with L- or D-substitutions or non-amphipathic alpha-helical structure. By comparing the retention behaviour of the helical peptides to a peptide of negligible secondary structure (a random coil), we rationalize that "temperature profiling" by RP-HPLC can monitor association of peptide molecules, either through oligomerization or aggregation, or monitor unfolding of alpha-helical peptides with increasing temperature. We believe that the conformation-dependent response of peptides to RP-HPLC under changing temperature has implications both for general analysis and purification of peptides but also for the de novo design of peptides and proteins.

  15. Amphipathic structure of theonellapeptolide-Id, a hydrophobic tridecapeptide lactone from the Okinawa marine sponge Theonella swinhoei. (United States)

    Doi, M; Ishida, T; Kobayashi, M; Katsuya, Y; Mezaki, Y; Sasaki, M; Terashima, A; Taniguchi, T; Tanaka, C


    Theonellapeptolide-Id (TNLP), a cyclic tridecapeptide lactone, was crystallized from dimethylformamide-water solution. In the asymmetric unit, two peptide molecules were combined with solvent molecules, and the total molecular weight was over 3000 Dalton. The crystal structure including solvent molecules was finally determined at 0.80 A resolution using synchrotron radiation. The conformations of two independent molecules were similar to each other and were also similar to the previously reported structure (Doi, Ishida, Kobayashi, Deschamps and Flippen-Anderson, 1999, Acta Crystallogr Sect C, 55, 796-798). About 13 hydrated water molecules were found at disordered 19 sites; they were located at a certain region to avoid contact with aliphatic side-chains of peptolide in the crystal. The spatial disposition of the solvent molecules and peptides subsequently caused the formation of the amphipathic layer. Copyright 2000 John Wiley & Sons, Inc.

  16. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy. (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo


    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Facial amphipathic deoxycholic acid-modified polyethyleneimine for efficient MMP-2 siRNA delivery in vascular smooth muscle cells. (United States)

    Kim, Dongkyu; Lee, Dokyoung; Jang, Yeon Lim; Chae, Su Young; Choi, Donghoon; Jeong, Ji Hoon; Kim, Sun Hwa


    Clinical applications of RNA interference-based therapeutics such as small interfering RNAs (siRNAs) have been limited mainly due to low intracellular delivery efficiency in vitro and in vivo. In this study, facially amphipathic deoxycholic acid (DA)-modified polyethyleneimine (PEI(1.8)) (DA-PEI(1.8)) was synthesized and used as a potent carrier system for siRNA targeted against matrix metalloproteinase-2 (MMP-2) to inhibit the migration of vascular smooth muscle cells (SMCs), which is the major pathomechanism in the development of atherosclerosis and restenosis after arterial injury. A representative facial amphipathic bile acid DA having a high membrane permeability was conjugated to the terminal amine groups of the low molecular weight PEI(1.8) via amide bonds. The DA-PEI(1.8) conjugates formed self-assembled nanoparticles with siRNA molecules in an aqueous phase and the DA-PEI(1.8)/siRNA polyplexes became stabilized and condensed as particle incubation time increased from 0 to 4h. Both cellular internalization and target gene silencing were enhanced as the DA-PEI(1.8)/siRNA polyplexes stabilized. When vascular SMCs were transfected with MMP-2 siRNA, the DA-PEI(1.8)/siRNA polyplex formulation led to a significant decrease in MMP-2 gene expression, resulting in the suppression of cell migration. These results suggest that the DA-PEI(1.8)/MMP-2 siRNA delivery system may be useful in anti-restenotic treatment for various vasculoproliferative disorders such as atherosclerosis, in-stent restenosis, and vein graft failure. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  18. Biodegradable Polymers


    Vroman, Isabelle; Tighzert, Lan


    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  19. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. (United States)

    Vaillant, Andrew


    Antiviral polymers are a well-studied class of broad spectrum viral attachment/entry inhibitors whose activity increases with polymer length and with increased amphipathic (hydrophobic) character. The newest members of this class of compounds are nucleic acid polymers whose activity is derived from the sequence independent properties of phosphorothioated oligonucleotides as amphipathic polymers. Although the antiviral mechanisms and broad spectrum antiviral activity of nucleic acid polymers mirror the functionality of other members of this class, they exert in addition a unique post entry activity in hepatitis B infection which inhibits the release of HBsAg from infected hepatocytes. This review provides a general overview of the antiviral polymer class with a focus on nucleic acid polymers and their development as therapeutic agents for the treatment of hepatitis B/hepatitis D. This article forms part of a symposium in Antiviral Research on ''An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis B.''. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  20. IL-26 Confers Proinflammatory Properties to Extracellular DNA. (United States)

    Poli, Caroline; Augusto, Jean François; Dauvé, Jonathan; Adam, Clément; Preisser, Laurence; Larochette, Vincent; Pignon, Pascale; Savina, Ariel; Blanchard, Simon; Subra, Jean François; Chevailler, Alain; Procaccio, Vincent; Croué, Anne; Créminon, Christophe; Morel, Alain; Delneste, Yves; Fickenscher, Helmut; Jeannin, Pascale


    In physiological conditions, self-DNA released by dying cells is not detected by intracellular DNA sensors. In chronic inflammatory disorders, unabated inflammation has been associated with a break in innate immune tolerance to self-DNA. However, extracellular DNA has to complex with DNA-binding molecules to gain access to intracellular DNA sensors. IL-26 is a member of the IL-10 cytokine family, overexpressed in numerous chronic inflammatory diseases, in which biological activity remains unclear. We demonstrate in this study that IL-26 binds to genomic DNA, mitochondrial DNA, and neutrophil extracellular traps, and shuttles them in the cytosol of human myeloid cells. As a consequence, IL-26 allows extracellular DNA to trigger proinflammatory cytokine secretion by monocytes, in a STING- and inflammasome-dependent manner. Supporting these biological properties, IL-10-based modeling predicts two DNA-binding domains, two amphipathic helices, and an in-plane membrane anchor in IL-26, which are structural features of cationic amphipathic cell-penetrating peptides. In line with these properties, patients with active autoantibody-associated vasculitis, a chronic relapsing autoimmune inflammatory disease associated with extensive cell death, exhibit high levels of both circulating IL-26 and IL-26-DNA complexes. Moreover, in patients with crescentic glomerulonephritis, IL-26 is expressed by renal arterial smooth muscle cells and deposits in necrotizing lesions. Accordingly, human primary smooth cells secrete IL-26 in response to proinflammatory cytokines. In conclusion, IL-26 is a unique cationic protein more similar to a soluble pattern recognition receptor than to conventional cytokines. IL-26 expressed in inflammatory lesions confers proinflammatory properties to DNA released by dying cells, setting up a positive amplification loop between extensive cell death and unabated inflammation. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng


    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  2. Controlled Release from Recombinant Polymers (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza


    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  3. Membrane anchoring of the AgrD N-terminal amphipathic region is required for its processing to produce a quorum-sensing pheromone in Staphylococcus aureus. (United States)

    Zhang, Linsheng; Lin, Jianqun; Ji, Guangyong


    Quorum-sensing pheromones are signal molecules that are secreted from Gram-positive bacteria and utilized by these bacteria to communicate among individual cells to regulate their activities as a group through a cell density-sensing mechanism. Typically, these pheromones are processed from precursor polypeptides. The mechanisms of trafficking, processing, and modification of the precursor to generate a mature pheromone are unclear. In Staphylococcus aureus, AgrD is the propeptide for an autoinducing peptide (AIP) pheromone that triggers the Agr cell density-sensing system upon reaching a threshold and subsequently regulates expression of virulence factor genes. The transmembrane protein AgrB, encoded in the agr locus, is necessary for the processing of AgrD to produce mature AIP; however, it is not clear how AgrD interacts with AgrB and how this interaction results in the generation of mature AIP. In this study, we found that the AgrD propeptide was integrated into the cytoplasmic membrane by a conserved alpha-helical amphipathic motif in its N-terminal region. We demonstrated that membrane targeting of AgrD by this motif was required for the stabilization of AgrD and the production of mature AIP, although this region was not specifically involved in the interaction with AgrB. An artificial amphipathic peptide replacing the N-terminal amphipathic motif of AgrD directed the protein to the cytoplasmic membrane and enabled the production of AIP. Analysis of Bacillus ComX precursor protein sequences suggested that the amphipathic membrane-targeting motif might also exist in pheromone precursors of other Gram-positive bacteria.

  4. In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface


    Cornut, I.; Desbat, B.; Turlet, J.M.; Dufourcq, J.


    Free amphipathic peptides and peptides bound to dimyristoylphosphatidylcholine (DMPC) were studied directly at the air/water interface using polarization modulation infrared reflection absorption spectroscopy (PMIRRAS). Such differential reflectivity measurements proved to be a sensitive and efficient technique to investigate in situ the respective conformations and orientations of lipid and peptide molecules in pure and mixed films. Data obtained for melittin, a natural hemolytic peptide, ar...

  5. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides

    Directory of Open Access Journals (Sweden)

    Aubin eMoutal


    Full Text Available The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2 is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3 conjugated to the HIV transactivator of transcription (TAT protein’s cationic cell penetrating peptide motif (CPP protected neurons in the face of toxic levels of Ca2+ influx leaked in via N-methyl-D-aspartate receptor (NMDAR hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9, hydrophobic (membrane transport sequence (MTS of k-fibroblast growth factor or amphipathic (model amphipathic peptide (MAP CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA-evoked Ca2+ influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca2+ influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 minutes, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (> 24 hours treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.

  6. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers. (United States)

    Ahmed, Marya


    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  7. Small Amphipathic Molecules Modulate Secondary Structure and Amyloid Fibril-forming Kinetics of Alzheimer Disease Peptide Aβ1–42 (United States)

    Ryan, Timothy M.; Friedhuber, Anna; Lind, Monica; Howlett, Geoffrey J.; Masters, Colin; Roberts, Blaine R.


    Amyloid fibril formation is associated with a number of debilitating systemic and neurodegenerative diseases. One of the most prominent is Alzheimer disease in which aggregation and deposition of the Aβ peptide occur. Aβ is widely considered to mediate the extensive neuronal loss observed in this disease through the formation of soluble oligomeric species, with the final fibrillar end product of the aggregation process being relatively inert. Factors that influence the aggregation of these amyloid-forming proteins are therefore very important. We have screened a library of 96 amphipathic molecules for effects on Aβ1–42 aggregation and self-association. We find, using thioflavin T fluorescence and electron microscopy assays, that 30 of the molecules inhibit the aggregation process, whereas 36 activate fibril formation. Several activators and inhibitors were subjected to further analysis using analytical ultracentrifugation and circular dichroism. Activators typically display a 1:10 peptide:detergent stoichiometry for maximal activation, whereas the inhibitors are effective at a 1:1 stoichiometry. Analytical ultracentrifugation and circular dichroism experiments show that activators promote a mixture of unfolded and β-sheet structures and rapidly form large aggregates, whereas inhibitors induce α-helical structures that form stable dimeric/trimeric oligomers. The results suggest that Aβ1–42 contains at least one small molecule binding site, which modulates the secondary structure and aggregation processes. Further studies of the binding of these compounds to Aβ may provide insight for developing therapeutic strategies aimed at stabilizing Aβ in a favorable conformation. PMID:22461629

  8. A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. (United States)

    Crombez, Laurence; Aldrian-Herrada, Gudrun; Konate, Karidia; Nguyen, Quan N; McMaster, Gary K; Brasseur, Robert; Heitz, Frederic; Divita, Gilles


    RNA interference constitutes a powerful tool for biological studies, but has also become one of the most challenging therapeutic strategies. However, small interfering RNA (siRNA)-based strategies suffer from their poor delivery and biodistribution. Cell-penetrating peptides (CPPs) have been shown to improve the intracellular delivery of various biologically active molecules into living cells and have more recently been applied to siRNA delivery. To improve cellular uptake of siRNA into challenging cell lines, we have designed a secondary amphipathic peptide (CADY) of 20 residues combining aromatic tryptophan and cationic arginine residues. CADY adopts a helical conformation within cell membranes, thereby exposing charged residues on one side, and Trp groups that favor cellular uptake on the other. We show that CADY forms stable complexes with siRNA, thereby increasing their stability and improving their delivery into a wide variety of cell lines, including suspension and primary cell lines. CADY-mediated delivery of subnanomolar concentrations of siRNA leads to significant knockdown of the target gene at both the mRNA and protein levels. Moreover, we demonstrate that CADY is not toxic and enters cells through a mechanism which is independent of the major endosomal pathway. Given its biological properties, we propose that CADY-based technology will have a significant effect on the development of fundamental and therapeutic siRNA-based applications.

  9. A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex. (United States)

    Sivadas, Priyanka; Dienes, Jennifer M; St Maurice, Martin; Meek, William D; Yang, Pinfen


    A-kinase anchoring proteins (AKAPs) contain an amphipathic helix (AH) that binds the dimerization and docking (D/D) domain, RIIa, in cAMP-dependent protein kinase A (PKA). Many AKAPs were discovered solely based on the AH-RIIa interaction in vitro. An RIIa or a similar Dpy-30 domain is also present in numerous diverged molecules that are implicated in critical processes as diverse as flagellar beating, membrane trafficking, histone methylation, and stem cell differentiation, yet these molecules remain poorly characterized. Here we demonstrate that an AKAP, RSP3, forms a dimeric structural scaffold in the flagellar radial spoke complex, anchoring through two distinct AHs, the RIIa and Dpy-30 domains, in four non-PKA spoke proteins involved in the assembly and modulation of the complex. Interestingly, one AH can bind both RIIa and Dpy-30 domains in vitro. Thus, AHs and D/D domains constitute a versatile yet potentially promiscuous system for localizing various effector mechanisms. These results greatly expand the current concept about anchoring mechanisms and AKAPs.

  10. Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Aβ(1-42). (United States)

    Ryan, Timothy M; Friedhuber, Anna; Lind, Monica; Howlett, Geoffrey J; Masters, Colin; Roberts, Blaine R


    Amyloid fibril formation is associated with a number of debilitating systemic and neurodegenerative diseases. One of the most prominent is Alzheimer disease in which aggregation and deposition of the Aβ peptide occur. Aβ is widely considered to mediate the extensive neuronal loss observed in this disease through the formation of soluble oligomeric species, with the final fibrillar end product of the aggregation process being relatively inert. Factors that influence the aggregation of these amyloid-forming proteins are therefore very important. We have screened a library of 96 amphipathic molecules for effects on Aβ(1-42) aggregation and self-association. We find, using thioflavin T fluorescence and electron microscopy assays, that 30 of the molecules inhibit the aggregation process, whereas 36 activate fibril formation. Several activators and inhibitors were subjected to further analysis using analytical ultracentrifugation and circular dichroism. Activators typically display a 1:10 peptide:detergent stoichiometry for maximal activation, whereas the inhibitors are effective at a 1:1 stoichiometry. Analytical ultracentrifugation and circular dichroism experiments show that activators promote a mixture of unfolded and β-sheet structures and rapidly form large aggregates, whereas inhibitors induce α-helical structures that form stable dimeric/trimeric oligomers. The results suggest that Aβ(1-42) contains at least one small molecule binding site, which modulates the secondary structure and aggregation processes. Further studies of the binding of these compounds to Aβ may provide insight for developing therapeutic strategies aimed at stabilizing Aβ in a favorable conformation.

  11. The role of polar and facial amphipathic character in determining lipopolysaccharide-binding properties in synthetic cationic peptides. (United States)

    David, S A; Awasthi, S K; Balaram, P


    Two series of peptides, designated K and NK were synthesized and tested for lipid A binding and neutralizing properties. K2, which has an 11-residue amphiphilic core, and a branched N-terminus bearing two branched lysinyl residues does not bind lipid A, while NK2, also with an 11-residue amphiphilic core comprised entirely of non-ionizable residues, and a similarly branched, cationic N-terminus, binds lipid A very weakly. Both peptides do not inhibit lipopolysaccharide (LPS) activity in the Limulus assay, nor do they inhibit LPS-induced TNF-alpha and NO production in J774 cells. These results are entirely unlike a homologous peptide with an exclusively hydrophobic core whose LPS-binding and neutralizing properties are very similar to that of polymyxin B [David SA, Awasthi SK, Wiese A et al. Characterization of the interactions of a polycationic, amphiphilic, terminally branched oligopeptide with lipid A and lipopolysaccharide from the deep rough mutant of Salmonella minnesota. J Endotoxin Res 1996; 3: 369-379]. These data suggest that a clear segregation of charged and apolar domains is crucial in molecules designed for purposes of LPS sequestration and that head-tail (polar) orientation of the cationic/hydrophobic regions is preferable to molecules with mixed or facial cationic/amphipathic character.

  12. Intracellular biomass flocculation as a key mechanism of rapid bacterial killing by cationic, amphipathic antimicrobial peptides and peptoids. (United States)

    Chongsiriwatana, Nathaniel P; Lin, Jennifer S; Kapoor, Rinki; Wetzler, Modi; Rea, Jennifer A C; Didwania, Maruti K; Contag, Christopher H; Barron, Annelise E


    Many organisms rely on antimicrobial peptides (AMPs) as a first line of defense against pathogens. In general, most AMPs are thought to kill bacteria by binding to and disrupting cell membranes. However, certain AMPs instead appear to inhibit biomacromolecule synthesis, while causing less membrane damage. Despite an unclear understanding of mechanism(s), there is considerable interest in mimicking AMPs with stable, synthetic molecules. Antimicrobial N-substituted glycine (peptoid) oligomers ("ampetoids") are structural, functional and mechanistic analogs of helical, cationic AMPs, which offer broad-spectrum antibacterial activity and better therapeutic potential than peptides. Here, we show through quantitative studies of membrane permeabilization, electron microscopy, and soft X-ray tomography that both AMPs and ampetoids trigger extensive and rapid non-specific aggregation of intracellular biomacromolecules that correlates with microbial death. We present data demonstrating that ampetoids are "fast killers", which rapidly aggregate bacterial ribosomes in vitro and in vivo. We suggest intracellular biomass flocculation is a key mechanism of killing for cationic, amphipathic AMPs, which may explain why most AMPs require micromolar concentrations for activity, show significant selectivity for killing bacteria over mammalian cells, and finally, why development of resistance to AMPs is less prevalent than developed resistance to conventional antibiotics.

  13. Effect of Ala replacement with Aib in amphipathic cell-penetrating peptide on oligonucleotide delivery into cells. (United States)

    Wada, Shun-Ichi; Hashimoto, Yuki; Kawai, Yui; Miyata, Kaori; Tsuda, Hirokazu; Nakagawa, Osamu; Urata, Hidehito


    A number of cell-penetrating peptides (CPPs) have been characterized and their usefulness as delivery tools has been clarified. As one of the CPPs, model amphipathic peptide (MAP) was developed by integrating both hydrophobic and hydrophilic amino acids in its sequence. In our previous work, we designed MAP(Aib) by replacing five alanine (Ala) residues on the hydrophobic face of the helix in the MAP sequence with α-aminoisobutyric acid (Aib) residues, and the replacement resulted in higher helix propensity, stronger resistance to protease, and higher cell membrane permeability than MAP. As a next step, we examined the efficiency of oligonucleotide (ODN) delivery into cells by MAP(Aib) in comparison with that by MAP. The electrostatically formed MAP(Aib)/ODN complex was more easily taken up by cells than the MAP/ODN complex, and the ODN delivery by MAP(Aib) was via an endocytic pathway. We demonstrated that the incorporation of Aib residues into CPPs enhances the delivery of hydrophilic molecules, such as ODN, into cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. An amphipathic sequence in the cytoplasmic tail of HIV-1 Env alters cell tropism and modulates viral receptor specificity. (United States)

    Vzorov, A N; Yang, C; Compans, R W


    The human immunodeficiency virus type 1 (HIV-1) 92UG046 Env protein, obtained from a CD4-independent HIV-1 primary isolate (Zerhouni et al., 2004), has the ability to initiate an infection in HeLa cells expressing CD4 when carrying the full-length (FL) Env, but uses CD8 molecules for receptor-mediated entry when carrying a truncated Env (CT84). To determine whether a specific length or structure in the cytoplasmic tail (CT) is responsible for this alteration of tropism, we compared a series of Env constructs with different CT truncations and the presence or absence of an amphipathic alpha- helical sequence. We found that truncated constructs containing the alpha-helical LLP-2 structure in their CT domains conferred a switch from CD4 to CD8 tropism. The results support the conclusion that the structure of the CT domain can play an important role in determining receptor specificity.


    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer

  16. DNA nanotechnology: On-command molecular Trojans (United States)

    Niemeyer, Christof M.


    Lipid-motif-decorated DNA nanocapsules filled with photoresponsive polymers are capable of delivering signalling molecules into target organisms for biological perturbations at high spatiotemporal resolution.

  17. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    polymer nanocompo- sites are used as advanced toner materials for high quality colour copiers and printers and as contrast agents in NMR analysis, memory devices. .... tions on polymer nanocomposite can thus pay rich dividends. Suggested Reading. [1] Metal-Polymer Nanocomposites Nicolais, Luigi(ed.) ; Carotenuto,.

  18. Elasticity of semiflexible polymers in two dimensions (United States)

    Prasad, Ashok; Hori, Yuko; Kondev, Jané


    We study theoretically the entropic elasticity of a semiflexible polymer, such as DNA, confined to two dimensions. Using the worm-like-chain model we obtain an exact analytical expression for the partition function of the polymer pulled at one end with a constant force. The force-extension relation for the polymer is computed in the long chain limit in terms of Mathieu characteristic functions. We also present applications to the interaction between a semiflexible polymer and a nematic field, and derive the nematic order parameter and average extension of the polymer in a strong field.

  19. Knots in polymers

    Indian Academy of Sciences (India)

    Ey; 05.40.Fb; 02.10.Kn; 82.35.Rs. 1. Introduction. Knots and links naturally appear in long polymers [1] and play an important role in biological processes [2]. The simplest statistical–mechanical model of a ..... [6] A D Bates and A Maxwell, DNA Topology (IRL Press, Oxford, 1993). [7] P Pieranski, S Przyby l and A Stasiak, ...

  20. Free energy of a potassium ion in a model of the channel formed by an amphipathic leucine-serine peptide. (United States)

    Smith, Graham R; Sansom, Mark S P


    We use molecular dynamics simulations to investigate the position-dependent free energy of a potassium ion in a model of an ion channel formed by the synthetic amphipathic leucine-serine peptide, LS3. The channel model is a parallel bundle of six LS3 helices around which are packed 146 methane-like spheres in order to mimic a membrane. At either end of and within the channel are 1051 water molecules, plus four ions (two potassium and two chloride). The free energy of a potassium ion in the channel was estimated using the weighted histogram analysis (WHAM) method. This is the first time to our knowledge that such a calculation has been carried out as a function of the position of an ion in three dimensions within a channel. The results indicate that for this channel, which is lined by hydrophilic serine sidechains, there is a relatively weak dependence of the free energy on the axial/off-axial position of the ion. There are some off-axis local minima, especially in the C-terminal half of the channel. Using the free energy results, a single channel current-voltage curve was estimated using a one-dimensional Nernst-Planck equation. Although reasonable agreement with experiment is achieved for K(+) ions flowing from the N-terminal to the C-terminal mouth, in the opposite direction the current is underestimated. This underestimation may be a consequence of under-sampling of the conformational dynamics of the channel. We suggest that our simulations may have captured, for example, a sub-conductance level (i.e. an incompletely open state) of the LS3 channel.

  1. Biological activities and molecular interactions of the C-terminal residue of thrombospondin-4, an epitome of acidic amphipathic peptides. (United States)

    Congote, Luis F; Sadvakassova, Gulzhakhan; Dobocan, Monica C; Difalco, Marcos R; Kriazhev, Leonid


    C21, the C-terminal residue of thrombospondin-4 (TSP-4), was identified as a peptide growth factor during an investigation concerning erythropoietin-dependent, erythroid stimulating factors of endothelial origin. It is active in cultures of several human hematopoietic stem cells, skin fibroblasts and kidney epithelial cells and stimulates red cell formation in anemic mice. A method of affinity chromatography in the presence of high concentrations of Triton X-100, previously developed for identifying proteins associated with the TSP-1 receptor CD47, was utilized for the detection of C21 binding molecules and their detergent-resistant, associated partners. These experiments helped to delineate two different mechanisms of C21 action, which are compatible with its cell proliferating activity. As a cell matrix peptide, C21 binds to the osteopontin receptor CD44 and could act as an osteopontin antagonist, preventing the inhibition of primitive hematopoietic stem cell proliferation. TSP-1, another matrix protein, binds to C21 and could indirectly act as an antagonist, by shunting C21-CD44 interactions. The second mechanism is a direct effect of C21 on cell proliferation. The extremely rapid internalization and nuclear localization of the peptide could be explained by CD44-mediated internalization, followed by a microtubule-mediated transport towards the nucleus, or, eventually, direct membrane insertion. These alternative hypotheses are supported by previously observed membrane insertion of similar synthetic and viral acidic amphipathic peptides, the presence of microtubule-associated protein 1B (MAP1B) and dynactin in the triton-soluble complexes associated with C21 and the presence in such complexes of dual compartment proteins for nuclei and plasma membranes, such as MAP1B, AHNAK and CD44. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1). (United States)

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Abián, Olga; Velázquez-Campoy, Adrián; Iovanna, Juan L; Neira, José L


    NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma (PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small molecules could not be adequate to modulate its functions. We explored how amphipathic helical-designed peptides were capable of interacting with wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction. Peptide dissociation constants towards wild-type NUPR1 were ~ 3 μM, whereas no interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region of the Polycomb RING protein 1 (C-RING1B). Designed peptides can be used as lead compounds to inhibit NUPR1 interactions. Peptides may be exploited as drugs to target IDPs. Copyright © 2018. Published by Elsevier B.V.

  3. Inhibitory effects of nontoxic protein volvatoxin A1 on pore-forming cardiotoxic protein volvatoxin A2 by interaction with amphipathic alpha-helix. (United States)

    Wu, Pei-Tzu; Lin, Su-Chang; Hsu, Chyong-Ing; Liaw, Yen-Chywan; Lin, Jung-Yaw


    Volvatoxin A2, a pore-forming cardiotoxic protein, was isolated from the edible mushroom Volvariella volvacea. Previous studies have demonstrated that volvatoxin A consists of volvatoxin A2 and volvatoxin A1, and the hemolytic activity of volvatoxin A2 is completely abolished by volvatoxin A1 at a volvatoxin A2/volvatoxin A1 molar ratio of 2. In this study, we investigated the molecular mechanism by which volvatoxin A1 inhibits the cytotoxicity of volvatoxin A2. Volvatoxin A1 by itself was found to be nontoxic, and furthermore, it inhibited the hemolytic and cytotoxic activities of volvatoxin A2 at molar ratios of 2 or lower. Interestingly, volvatoxin A1 contains 393 amino acid residues that closely resemble a tandem repeat of volvatoxin A2. Volvatoxin A1 contains two pairs of amphipathic alpha-helices but it lacks a heparin-binding site. This suggests that volvatoxin A1 may interact with volvatoxin A2 but not with the cell membrane. By using confocal microscopy, it was demonstrated that volvatoxin A1 could not bind to the cell membrane; however, volvatoxin A1 could inhibit binding of volvatoxin A2 to the cell membrane at a molar ratio of 2. Via peptide competition assay and in conjunction with pull-down and co-pull-down experiments, we demonstrated that volvatoxin A1 and volvatoxin A2 may form a complex. Our results suggest that this occurs via the interaction of one molecule of volvatoxin A1, which contains two amphipathic alpha-helices, with two molecules of volvatoxin A2, each of which contains one amphipathic alpha-helix. Taken together, the results of this study reveal a novel mechanism by which volvatoxin A1 regulates the cytotoxicity of volvatoxin A2 via direct interaction, and potentially provide an exciting new strategy for chemotherapy.

  4. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis. (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J


    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Amphipathic alpha-helices and putative cholesterol binding domains of the influenza virus matrix M1 protein are crucial for virion structure organisation. (United States)

    Tsfasman, Tatyana; Kost, Vladimir; Markushin, Stanislav; Lotte, Vera; Koptiaeva, Irina; Bogacheva, Elena; Baratova, Ludmila; Radyukhin, Victor


    The influenza virus matrix M1 protein is an amphitropic membrane-associated protein, forming the matrix layer immediately beneath the virus raft membrane, thereby ensuring the proper structure of the influenza virion. The objective of this study was to elucidate M1 fine structural characteristics, which determine amphitropic properties and raft membrane activities of the protein, via 3D in silico modelling with subsequent mutational analysis. Computer simulations suggest the amphipathic nature of the M1 α-helices and the existence of putative cholesterol binding (CRAC) motifs on six amphipathic α-helices. Our finding explains for the first time many features of this protein, particularly the amphitropic properties and raft/cholesterol binding potential. To verify these results, we generated mutants of the A/WSN/33 strain via reverse genetics. The M1 mutations included F32Y in the CRAC of α-helix 2, W45Y and W45F in the CRAC of α-helix 3, Y100S in the CRAC of α-helix 6, M128A and M128S in the CRAC of α-helix 8 and a double L103I/L130I mutation in both a putative cholesterol consensus motif and the nuclear localisation signal. All mutations resulted in viruses with unusual filamentous morphology. Previous experimental data regarding the morphology of M1-gene mutant influenza viruses can now be explained in structural terms and are consistent with the pivotal role of the CRAC-domains and amphipathic α-helices in M1-lipid interactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn


    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  7. Routing of individual polymers in designed patterns

    DEFF Research Database (Denmark)

    Knudsen, Jakob Bach; Liu, Lei; Kodal, Anne Louise Bank


    Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been...... demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble...... into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could...

  8. Polymer Chemistry (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne


    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  9. Star Polymers. (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G


    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  10. Polymer Electrolytes (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.


    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  11. Polymer Crowding in Confined Polymer-Nanoparticle Mixtures (United States)

    Davis, Wyatt J.; Denton, Alan R.

    Crowding can influence the conformations and thus functionality of macromolecules in quasi-two-dimensional environments, such as DNA or proteins confined to a cell membrane. We explore such crowding within a model of polymers as penetrable ellipses, whose shapes are governed by the statistics of a 2D random walk. The principal radii of the polymers fluctuate according to probability distributions of the eigenvalues of the gyration tensor. Within this coarse-grained model, we perform Monte Carlo simulations of mixtures of polymers and hard nanodisks, including trial changes in polymer conformation (shape and orientation). Penetration of polymers by nanodisks is incorporated with a free energy cost predicted by polymer field theory. Over ranges of size ratio and nanodisk density, we analyze the influence of crowding on polymer shape by computing eigenvalue distributions, mean radius of gyration, and mean asphericity of the polymer. We compare results with predictions of free-volume theory and with corresponding results in three dimensions. Our approach may help to interpret recent (and motivate future) experimental studies of biopolymers interacting with cell membranes, with relevance for drug delivery and gene therapy. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  12. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum


    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  13. High Density Data Storage Systems by DNA Complexes and Nano-Particles from DNA Hybrid Materials

    National Research Council Canada - National Science Library

    Ogata, Naoya


    ...) In-situ Intercalation of Phtharocyanine dye (PC) into DNA and Polyamine Complex, (3) syntheses and characterization of Nano-particles derived from DNA-polymer Hybrid Materials Containing Optical Dyes, and (4...

  14. Basic amphipathic model peptides: Structural investigations in solution, studied by circular dichroism, fluorescence, analytical ultracentrifugation and molecular modelling (United States)

    Mangavel, C.; Sy, D.; Reynaud, J. A.


    A twenty amino acid residue long amphipathic peptide made of ten leucine and ten lysine residues and four derivatives, in which a tryptophan, as a fluorescent probe, is substituted for a leucine, are studied. The peptides in water are mainly in an unordered conformation (~90%), and undergo a two state reversible transition upon heating, leading to a partially helical conformation (cold denaturation). Time resolved fluorescence results show that fluorescence decay for the four Trp containing peptides is best described by triple fluorescence decay kinetics. In TFE/water mixture, peptides adopt a single α-helix conformation but the Leu-Trp9 substitution leads to an effective helix destabilizing effect. In salted media, the peptides are fully helical and present a great tendency to self associate by bringing the hydrophobic faces of helices into close contact. This proceeds in non-cooperative multisteps leading to the formation of α helix aggregates with various degrees of complexation. Using modelling, the relative hydrophobic surface areas accessible to water molecules in n-mer structures are calculated and discussed. Nous avons étudié un peptide amphipathique composé de dix lysine et dix leucine, ainsi que quatre dérivés comportant un résidu tryptophane pour les études par fluorescence. Dans l'eau, les peptides ne sont pas structurés (~90%), et se structurent partiellement en hélice α par chauffage (dénaturation froide). Les mesures de déclin de fluorescence font apparaître une cinétique à trois temps de vie. Dans un mélange eau/TFE, les peptides adoptent une conformation en hélice α, mais la substitution Leu-Trp9 possède un effet déstabilisant. En mileu salin, les peptides sont totalement hélicoïdaux et ont tendance à s'agréger de façon à regrouper leur face hydrophobe. Ce processus se fait en plusieurs étapes avec des agrégats de taille variable. L'existence de tels agrégats est discutée sur la base de la modélisation mol

  15. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka


    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  16. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    thane, PVC, polyesters, polystyrene and polypropylene. Also, some biocompatible polymers like PLA, poly (E-caprolactone) to mention a few, have been synthesized by varying methods and with different clay loadings (%by weight). The hydrophobicity /hydrophilicity ofthe polymer affects its dispersion in the clay.

  17. Simulations of Polymer Translocation (United States)

    Vocks, H.


    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze -- i.e., translocate -- themselves through the pores. DNA, RNA and proteins are such naturally occuring long molecules in a variety of biological processes. Understandably, the process of translocation has been an active topic of current research: not only because it is a cornerstone of many biological processes, but also due to its relevance for practical applications. Translocation is a complicated process in living organisms -- the presence of chaperone molecules, pH, chemical potential gradients, and assisting molecular motors strongly influence its dynamics. Consequently, the translocation process has been empirically studied in great variety in biological literature. Study of translocation as a biophysical process is more recent. Herein, the polymer is simplified to a sequentially connected string of N monomers as it passes through a narrow pore on a membrane. The quantities of interest are the typical time scale for the polymer to leave a confining cell (the ``escape of a polymer from a vesicle'' time scale), and the typical time scale the polymer spends in the pore (the ``dwell'' time scale) as a function of N and other parameters like membrane thickness, membrane adsorption, electrochemical potential gradient, etc. Our research is focused on computer simulations of translocation. Since our main interest is in the scaling properties, we use a highly simplified description of the translocation process. The polymer is described as a self-avoiding walk on a lattice, and its dynamics consists of single-monomer jumps from one lattice site to another neighboring one. Since we have a very efficient program to simulate such polymer dynamics, which we decribe in Chapter 2, we can perform long

  18. Enhanced photophysics of conjugated polymers (United States)

    Chen, Liaohai [Darien, IL


    A particulate fluorescent conjugated polymer surfactant complex and method of making and using same. The particles are between about 15 and about 50 nm and when formed from a lipsome surfactant have a charge density similar to DNA and are strongly absorbed by cancer cells.

  19. Polymer fragmentation in extensional flow

    International Nuclear Information System (INIS)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech


    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments

  20. Polymer fragmentation in extensional flow

    Energy Technology Data Exchange (ETDEWEB)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech


    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments.

  1. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization. (United States)

    Jeon, Yung Jin; Kim, Hyun Jik


    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  2. Organometallic Polymers. (United States)

    Carraher, Charles E., Jr.


    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  3. Septal membrane localization by C-terminal amphipathic α-helices of MinD in Bacillus subtilis mutant cells lacking MinJ or DivIVA. (United States)

    Ishikawa, Kazuki; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji


    The Min system, which inhibits assembly of the cytokinetic protein FtsZ, is largely responsible for positioning the division site in rod-shaped bacteria. It has been reported that MinJ, which bridges DivIVA and MinD, is targeted to the cell poles by an interaction with DivIVA, and that MinJ in turn recruits MinCD to the cell poles. MinC, however, is located primarily at active division sites at mid-cell when expressed from its native promoter. Surprisingly, we found that Bacillus subtilis MinD is located at nascent septal membranes and at an asymmetric site on lateral membranes between nascent septal membranes in filamentous cells lacking MinJ or DivIVA. Bacillus subtilis MinD has two amphipathic α-helices rich in basic amino acid residues at its C-terminus; one of these, named MTS1 here, is the counterpart of the membrane targeting sequence (MTS) in Escherichia coli MinD while the other, named MTS-like sequence (MTSL), is the nearest helix to MTS1. These amphipathic helices were located independently at nascent septal membranes in cells lacking MinJ or DivIVA, whereas elimination of the helices from the wild type protein reduced its localization considerably. MinD variants with altered MTS1 and MTSL, in which basic amino acid residues were replaced with proline or acidic residues, were not located at nascent septal membranes, indicating that the binding to the nascent septal membranes requires basic residues and a helical structure. The septal localization of MTSL, but not of MTS1, was dependent on host cell MinD. These results suggest that MinD is targeted to nascent septal membranes via its C-terminal amphipathic α-helices in B. subtilis cells lacking MinJ or DivIVA. Moreover, the diffuse distribution of MinD lacking both MTSs suggests that only a small fraction of MinD depends on MinJ for its localization to nascent septal membranes.

  4. Polymers All Around You! (United States)

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  5. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan


    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  6. PP3 forms stable tetrameric structures through hydrophobic interactions via the C-terminal amphipathic helix and undergoes reversible thermal dissociation and denaturation. (United States)

    Pedersen, Lise R L; Nielsen, Søren B; Hansted, Jon G; Petersen, Torben E; Otzen, Daniel E; Sørensen, Esben S


    The milk protein proteose peptone component 3 (PP3), also called lactophorin, is a small phosphoglycoprotein that is expressed exclusively in lactating mammary tissue. The C-terminal part of the protein contains an amphipathic helix, which, upon proteolytic liberation, shows antibacterial activity. Previous studies indicate that PP3 forms multimeric structures and inhibits lipolysis in milk. PP3 is the principal component of the proteose peptone fraction of milk. This fraction is obtained by heating and acidifying skimmed milk, and in the dairy industry milk products are also typically exposed to treatments such as pasteurization, which potentially could result in irreversible denaturation and inactivation of bioactive components. We show here, by the use of CD, that PP3 undergoes reversible thermal denaturation and that the α-helical structure of PP3 remains stable even at gastric pH levels. This suggests that the secondary structure survives treatment during the purification and possibly some of the industrial processing of milk. Finally, asymmetric flow field-flow fractionation and multi-angle light scattering reveal that PP3 forms a rather stable tetrameric complex, which dissociates and unfolds in guanidinium chloride. The cooperative unfolding of PP3 was completely removed by the surfactant n-dodecyl-β-d-maltoside and by oleic acid. We interpret this to mean that the PP3 monomers associate through hydrophobic interactions via the hydrophobic surface of the amphipathic helix. These observations suggest that PP3 tetramers act as reservoirs of PP3 molecules, which in the monomeric state may stabilize the milk fat globule. © 2011 The Authors Journal compilation © 2011 FEBS.

  7. Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase. (United States)

    Wang, H; Zhang, L; Liddington, R; Fu, H


    14-3-3 proteins bind to a diverse group of regulatory molecules such as Raf-1, Cbl, and c-Bcr that are involved in signal transduction pathways. The crystal structure of 14-3-3zeta reveals a conserved amphipathic groove that may mediate the association of 14-3-3 with diverse ligands. Consistently, mutations on the charged surface of the groove (Lys-49, Arg-56, and Arg-60) decrease the binding of 14-3-3zeta to the ligands tested (Zhang, L., Wang, H., Liu, D., Liddington, R., and Fu, H. (1997) J. Biol. Chem. 272, 13717-13724). Here we report that mutations that altered the hydrophobic property of the groove, V176D, L216D, L220D, and L227D, disrupted the interaction of 14-3-3zeta with Raf-1 kinase. The reduced binding of the 14-3-3zeta mutants to Raf-1 was apparently not because of gross structural changes in the mutants as judged by their ability to form dimers, by partial proteolysis profiles, and by circular dichroism analysis. These hydrophobic residues appeared to be required for the binding of 14-3-3zeta to distinct activation states of Raf-1 because mutations V176D, L216D, L220D, and L227D reduced the interaction of 14-3-3zeta with Raf-1 from both phorbol 12-myristate 13-acetate-stimulated and unstimulated Jurkat T cells. These same mutations also disrupted the association of 14-3-3zeta with other regulatory molecules such as Cbl and c-Bcr, suggesting that the hydrophobic surface of the amphipathic groove represents part of a binding site shared by a number of 14-3-3-associated proteins. The conservation of the hydrophobic residues Val-176, Leu-216, Leu-220, and Leu-227 among known 14-3-3 family members implies their general importance in ligand binding.

  8. Ideally amphipathic beta-sheeted peptides at interfaces: structure, orientation, affinities for lipids and hemolytic activity of (KL)(m)K peptides. (United States)

    Castano, S; Desbat, B; Dufourcq, J


    Designed to model ideally amphipathic beta-sheets, the minimalist linear (KL)(m)K peptides (m=4-7) were synthesized and proved to form stable films at the air/water interface, they insert into compressed dimyristoylphosphatidylcholine monolayers and interact with egg phosphatidylcholine vesicles. Whatever the interface or the lateral pressure applied to the films, FT-IR and polarization-modulated IRRAS spectroscopy developed in situ on the films indicated that all the peptides totally fold into intermolecular antiparallel beta-sheets. Calculated spectra of the amide region allowed us to define the orientation of the beta-strands compared to the interface. It is concluded that such beta-sheets remain flat-oriented without deep perturbation of zwitterionic phospholipids. Dansyl labelling at the N-terminus indicates that all the peptides are monomeric at a low concentration in aqueous buffer and bind to lipids with similar Dns burying. The affinities for zwitterionic lecithin mono- and bilayers, quantitatively estimated from buffer to lipid partition constants, monotonically increased with peptide length, indicating that hydrophobicity is a limiting parameter for lipid and membrane affinities. Peptides induced permeability increases on zwitterionic liposomes, they are strongly hemolytic towards human erythrocytes and their activity increases concurrently with length. Taking into account the lipid affinity, a hemolytic efficiency can be defined: at the same amount of peptide bound, this efficiency strongly increases with the peptide length. It is proposed that the first determinant step of membrane disturbance is the invasion of the outer membrane leaflet by these ideally amphipathic beta-sheeted structures lying flat at the interface, like large rafts depending on the number of beta-strands.

  9. Towards understanding the Tat translocation mechanism through structural and biophysical studies of the amphipathic region of TatA from Escherichia coli. (United States)

    Chan, Catherine S; Haney, Evan F; Vogel, Hans J; Turner, Raymond J


    The twin-arginine translocase (Tat) system is used by many bacteria and plants to move folded proteins across the cytoplasmic or thylakoid membrane. In most bacteria, the TatA protein is believed to form a defined pore in the membrane through homo-oligomerization with other TatA protomers. The predicted secondary structure of TatA includes a transmembrane helix, an amphipathic helix, and an unstructured C-terminal region. Here biophysical and structural investigations were performed on a synthetic peptide representing the amphipathic region of TatA (residues 22 to 44, abbreviated TatAH2). The C-terminal region of TatA (residues 44-89) was previously shown to be accessible from both the cytoplasmic and periplasmic sides of the membrane only when the membrane potential was intact, suggesting dependence of its topology on an energized membrane (Chan et al. 2007 Biochemistry 46: 7396-404). Such observation suggests that the TatAH2 region would have unique lipid interactions that may be related to the function of TatA during translocation and thus warranted further investigations. NMR and CD spectroscopy of TatAH2 show that it adopts a predominantly helical structure in a membrane environment while remaining unstructured in aqueous solution. Differential scanning calorimetry studies also reveal that TatAH2 interacts with DPPG lipids but not with DPPC, suggesting that negatively charged phospholipid head groups contribute to the membrane interactions with TatA. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)


    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  11. Polymer electronics

    CERN Document Server

    Geoghegan, Mark


    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  12. Conducting Polymers

    Indian Academy of Sciences (India)

    backbone (by the process of doping) and make them electrically. Conducting Polymers. From a Laboratory Curiosity to the Market Place. S Ramakrishnan ..... switching occurs between transparent yellow and green in less than. 100ms. Thus, while these materials are yet to achieve the set target. (in terms of their life cycle) ...

  13. Conducting Polymers

    Indian Academy of Sciences (India)

    ized the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the. Nobel Prize in Chemistry in 1963 for their discovery.) ... transport of charge in these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in ...

  14. Conducting Polymers

    Indian Academy of Sciences (India)

    the plastics industry by providing a route to polypropylene. (Zeigler and Natta jointly won the Nobel Prize in chemistry in 1963 for their discovery.) ... these systems can be understood in a simple fashion, by causing the imine and amine nitrogens to exchange places along the polymer backbone (in protonated emeraldinel.

  15. Conducting Polymers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Conducting Polymers - From a Laboratory Curiosity to the Market Place. S Ramakrishnan. Volume 16 Issue 12 December 2011 pp 1254-1265. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Polymer solutions (United States)

    Krawczyk, Gerhard Erich [Bremen, DE; Miller, Kevin Michael [West Dundee, IL


    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  17. Polymer physics

    CERN Document Server

    Gedde, Ulf W


    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  18. Supramolecular polymers

    National Research Council Canada - National Science Library

    Ciferri, A


    ... to the new class of self-assembled polymers that undergo reversible growth by the formation of noncovalent bonds. This class (Part II) is wider than expected: not only mainchain assemblies of hydrogen-bonded repeating units, but also planar organization of S-layer proteins, micellar and related three-dimensional structures of blo...


    Energy Technology Data Exchange (ETDEWEB)



    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  20. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev


    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  1. Folding of the presequence of yeast pAPI into an amphipathic helix determines transport of the protein from the cytosol to the vacuole. (United States)

    Martinez, E; Jimenez, M A; Seguí-Real, B; Vandekerckhove, J; Sandoval, I V


    To investigate the role of the 17 residues long presequence (p17) in the transport of the precursor of yeast API (pAPI) from the cytosol to the vacuole we have studied the effects of point mutations upon its conformation and on the process of transport. 1H NMR analysis of p17 indicates that in aqueous solution 26% of the molecules have the 4-12 segment folded into an helix. The hydrophobic environment provided by SDS micelles promotes the folding of 54% of the p17 molecules into a 5-16 amphipathic alpha-helix. Both Schiffer-Edmunson helical wheel analysis of segment 4-12 and residue hydrophobic moments calculated considering all possible side-chain orientations between 80 and 120 degrees, indicate the amphipathic character of the helixes assembled in water and detergent. Charge interactions between the dipole pairs N-Glu2Glu3 and C-Lys12Lys13 are essential for helix stability and condition pAPI transport. Substitution of either Pro2Pro3 or Lys2Lys3 for Glu2Glu3, results in moderate destabilization of the helix, decreases protein targeting to the vacuolar membrane and partly inhibits translocation of the protein to the vacuolar lumen. Replacement of either Pro12Pro13 or Glu12Glu13 for Lys12Lys13, causes a major disruption of the helix, decreases protein targeting and blocks completely the translocation of the protein to the vacuolar lumen. Replacement of Gly7 for Ile7, a substitution which is known to destabilize alpha-helixes in peptides and proteins as a result of the peptide bond to the solvent at Gly residues, produces similar effects as the substitutions for the K12K13 pair. The effects of Gly7 on helix stability and protein transport are partly reversed by introduction of Asp residues at positions 2 and 3 and Ala at position 4. Replacements such as Arg2 for Glu2, or Arg6 for Glu6, which change the net and local charges of the presequence without altering its conformation, have no effect on the protein transport. These results provide direct evidence of the

  2. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens. (United States)

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit


    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer.

  3. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan


    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  4. Colloids dragged through a polymer solution: experiment, theory and simulation


    Gutsche, Christof; Kremer, Friedrich; Krüger, Matthias; Rauscher, Markus; Weeber, Rudolf; Harting, Jens


    We present micro-rheological measurments of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a violation of the Stokes-Einstein relation based on the independently measured viscosity of the DNA solution: the drag force is larger than expected. We attribute this to the accumulation of DNA infront of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborat...

  5. Supramolecular Complexes of DNA (United States)

    Zuber, G.; Scherman, D.

    Deoxyribose nucleic acid or DNA is a linear polymer in the form of a double strand, synthesised by sequential polymerisation of a large number of units chosen from among the nucleic bases called purines (adenosine A and guanosine G) and pyrimidines (cytosine C and thymidine T). DNA contains all the genetic information required for life. It exists in the form of a limited number (a few dozen) of very big molecules, called chromosomes. This genetic information is first of all transcribed. In this process, a restricted fragment of the DNA called a gene is copied in the form of ribonucleic acid, or RNA. This RNA is itself a polymer, but with a single strand in which the sequence of nucleic acids is schematically analogous to the sequence on one of the two strands of the transcribed DNA. Finally, this RNA is translated into a protein, yet another linear polymer. The proteins make up the main part of the active constituents ensuring the survival of the cell. Any loss of information, either by mutation or by deletion of the DNA, will cause an imbalance in the cell's metabolism that may in turn lead to incurable pathologies. Several strategies have been developed to reduce the consequences of such genetic deficiencies or, more generally, to act, by amplifying or suppressing them, on the mechanisms leading from the reading of the genetic information to the production of proteins: Strategies aiming to introduce synthetic DNA or RNA, which selectively block the expression of certain genes, are now being studied by an increasing number of research scientists and pharmacologists. They use antisense oligodeoxyribonucleotides or interfering oligoribonucleotides and they already have clinical applications. This kind of therapy is often called gene pharmacology. Other, more ambitious strategies aim to repair in situ mutated or incomplete DNA within the chromosomes themselves, by introducing short sequences of DNA or RNA which recognise and take the place of mutations. This is the

  6. Polymer physics of nuclear organization and function

    Energy Technology Data Exchange (ETDEWEB)

    Amitai, A. [Department of Chemical Engineering, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Holcman, D., E-mail: [Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Churchill College, CB30DS, Cambridge (United Kingdom); Ecole Normale Superieure, Paris (France)


    We review here recent progress to link the nuclear organization to its function, based on elementary physical processes such as diffusion, polymer dynamics of DNA, chromatin and the search mechanism for a small target by double-stranded DNA (dsDNA) break. These physical models and their analysis make it possible to compute critical rates involved in cell reorganization timing, which depend on many parameters. In the framework of polymer models, various empirical observations are interpreted as anomalous diffusion of chromatin at various time scales. The reviewed theoretical approaches offer a framework for extracting features, biophysical parameters, predictions, and so on, based on a large variety of experimental data, such as chromosomal capture data, single particle trajectories, and more. Combining theoretical approaches with live cell microscopy data should unveil some of the still unexplained behavior of the nucleus in carrying out some of its key function involved in survival, DNA repair or gene activation.

  7. Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. (United States)

    Ahmad, Aqeel; Yadav, Sharada Prasad; Asthana, Neeta; Mitra, Kalyan; Srivastava, Swati Prakash; Ghosh, Jimut Kanti


    The toxicity of naturally occurring or designed antimicrobial peptides is a major barrier for converting them into drugs. To synthesize antimicrobial peptides with reduced toxicity, several amphipathic peptides were designed based on the leucine zipper sequence. The first one was a leucine zipper peptide (LZP); in others, leucine residues at the a- and/or d-position were substituted with single or double alanine residues. The results showed that LZP and its analogs exhibited appreciable and similar antibacterial activity against the tested gram-positive and gram-negative bacteria. However, the substitution of alanine progressively lowered the toxicity of LZP against human red blood cells (hRBCs). The substitution of leucine with alanine impaired the binding and localization of LZP to hRBCs, but had little effect on the peptide-induced damage of Escherichia coli cells. Although LZP and its analogs exhibited similar permeability, secondary structures, and localization in negatively charged membranes, significant differences were observed among these peptides in zwitterionic membranes. The results suggest a novel approach for designing antibacterial peptides with modulation of toxicity against hRBCs by employing the leucine zipper sequence. Also, to the best of our knowledge, the results demonstrate that this sequence could be utilized to design novel cell-selective molecules for the first time.

  8. Amphipathic tail-anchoring peptide and Bcl-2 homology domain-3 (BH3) peptides from Bcl-2 family proteins induce apoptosis through different mechanisms. (United States)

    Ko, Jae-Kyun; Choi, Kyoung-Han; Peng, Jun; He, Feng; Zhang, Zhi; Weisleder, Noah; Lin, Jialing; Ma, Jianjie


    Bcl-2 homology domain-3 (BH3) peptides are potent cancer therapeutic reagents that target regulators of apoptotic cell death in cancer cells. However, their cytotoxic effects are affected by different expression levels of Bcl-2 family proteins. We recently found that the amphipathic tail-anchoring peptide (ATAP) from Bfl-1, a bifunctional Bcl-2 family member, produced strong pro-apoptotic activity by permeabilizing the mitochondrial outer membrane. Here, we test whether the activity of ATAP requires other cellular factors and whether ATAP has an advantage over the BH3 peptides in targeting cancer cells. Confocal microscopic imaging illustrates specific targeting of ATAP to mitochondria, whereas BH3 peptides show diffuse patterns of cytosolic distribution. Although the pro-apoptotic activities of BH3 peptides are largely inhibited by either overexpression of anti-apoptotic Bcl-2 or Bcl-xL or nullification of pro-apoptotic Bax and Bak in cells, the pro-apoptotic function of ATAP is not affected by these cellular factors. Reconstitution of synthetic ATAP into liposomal membranes results in release of fluorescent molecules of the size of cytochrome c from the liposomes, suggesting that the membrane permeabilizing activity of ATAP does not require additional protein factors. Because ATAP can target to the mitochondrial membrane and its pro-apoptotic activity does not depend on the content of Bcl-2 family proteins, it represents a promising candidate for anti-cancer drugs that can potentially overcome the intrinsic apoptosis-resistant nature of cancer cells.

  9. Polymer conformation during flow in porous media

    NARCIS (Netherlands)

    Kawale, D.; Bouwman, G.W.; Sachdev, S.; Zitha, P.L.J.; Kreutzer, M.T.; Rossen, W.R.; Boukany, P.


    Molecular conformations of individual polymers during flow through porous media are directly observed by single-DNA imaging in microfluidics. As the Weissenberg number increases during flow (Wi > 1), we observe two types of elastic instabilities: (a) stationary dead-zone and (b) time-dependant

  10. DNA compaction by nonbinding macromolecules

    NARCIS (Netherlands)

    Vries, de R.J.


    Compaction of DNA by nonbinding macromolecules such as uncharged flexible polymer chains and negatively charged globular proteins is thought to have various applications in biophysics, for example in the formation of a nucleoid structure in bacteria. A simple experimental model that has been very

  11. From commodity polymers to functional polymers. (United States)

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng


    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications.

  12. An amphipathic alpha-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function.

    Directory of Open Access Journals (Sweden)

    Ling Liu


    Full Text Available Brome mosaic virus (BMV protein 1a has multiple key roles in viral RNA replication. 1a localizes to perinuclear endoplasmic reticulum (ER membranes as a peripheral membrane protein, induces ER membrane invaginations in which RNA replication complexes form, and recruits and stabilizes BMV 2a polymerase (2a(Pol and RNA replication templates at these sites to establish active replication complexes. During replication, 1a provides RNA capping, NTPase and possibly RNA helicase functions. Here we identify in BMV 1a an amphipathic alpha-helix, helix A, and use NMR analysis to define its structure and propensity to insert in hydrophobic membrane-mimicking micelles. We show that helix A is essential for efficient 1a-ER membrane association and normal perinuclear ER localization, and that deletion or mutation of helix A abolishes RNA replication. Strikingly, mutations in helix A give rise to two dramatically opposite 1a function phenotypes, implying that helix A acts as a molecular switch regulating the intricate balance between separable 1a functions. One class of helix A deletions and amino acid substitutions markedly inhibits 1a-membrane association and abolishes ER membrane invagination, viral RNA template recruitment, and replication, but doubles the 1a-mediated increase in 2a(Pol accumulation. The second class of helix A mutations not only maintains efficient 1a-membrane association but also amplifies the number of 1a-induced membrane invaginations 5- to 8-fold and enhances viral RNA template recruitment, while failing to stimulate 2a(Pol accumulation. The results provide new insights into the pathways of RNA replication complex assembly and show that helix A is critical for assembly and function of the viral RNA replication complex, including its central role in targeting replication components and controlling modes of 1a action.

  13. Shape memory polymers (United States)

    Wilson, Thomas S.; Bearinger, Jane P.


    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  14. Cationic polymers for nuclaic acid delivery to tumors

    NARCIS (Netherlands)

    Wolf, H.K. de


    In the field of cancer gene therapy, the use of gene carrier systems is considered indispensable. Cationic polymers are able to effectively condense plasmid DNA to nano-sized particles, further referred to as polyplexes. Compared to free DNA, polyplexes have shown improved nuclease-resistance, a

  15. Synthesis and supramolecular assembly of biomimetic polymers (United States)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  16. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel


    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  17. Kinetics and mechanism of plasmid DNA penetration through nanopores

    NARCIS (Netherlands)

    Arkhangelsky, E.; Sefi, Y.; Hajaj, B.; Rothenberg, G.; Gitis, V.


    DNA transport through membranes is a key step in many biological processes. The phenomenon of DNA penetration through narrow polymer membrane pores was previously observed only under the influence of external electric fields. Recently, it was shown that some types of DNA could penetrate through

  18. Interfacing DNA nanodevices with biology

    DEFF Research Database (Denmark)

    Vinther, Mathias; Kjems, Jørgen


    these nanodevices is molecular self-assembly. In nature, deoxyribonucleic acid (DNA) is inarguably one of the most remarkable self-assembling molecules. Governed by the Watson–Crick base-pairing rules, DNA assembles with a structural reliability and predictability based on sequence composition unlike any other...... complex biological polymer. This consistency has enabled rational design of hundreds of two- and three-dimensional shapes with a molecular precision and homogeneity not preceded by any other known technology at the nanometer scale. During the last two decades, DNA nanotechnology has undergone a rapid...... evolution pioneered by the work of Nadrian Seeman (Kallenbach et al 1983 Nature 205 829–31). Especially the introduction of the versatile DNA Origami technique by Rothemund (2006 Nature 440 297–302) led to an efflorescence of new DNA-based self-assembled nanostructures (Andersen et al 2009 Nature 459 73...

  19. Colloids dragged through a polymer solution: Experiment, theory, and simulation. (United States)

    Gutsche, Christof; Kremer, Friedrich; Krüger, Matthias; Rauscher, Markus; Weeber, Rudolf; Harting, Jens


    We present microrheological measurements of the drag force on colloids pulled through a solution of lambda-DNA (used here as a monodisperse model polymer) with an optical tweezer. The experiments show a drag force that is larger than expected from the Stokes formula and the independently measured viscosity of the DNA solution. We attribute this to the accumulation of DNA in front of the colloid and the reduced DNA density behind the colloid. This hypothesis is corroborated by a simple drift-diffusion model for the DNA molecules, which reproduces the experimental data surprisingly well, as well as by corresponding Brownian dynamics simulations.

  20. Polymers and radiation

    International Nuclear Information System (INIS)

    Zagorski, Z.


    The article is the broad review of history and state of art in radiation chemistry of polymers. The scientific background of radiation interaction with polymers and mechanisms of radiolytic degradation for aqueous solutions and 'dry' state of polymers have been shown. Also the applications of radiation for polymer properties modifications has been discussed in terms of polymers grafting and cross-linking for achieve shape memory feature, preparation of radioresistant polymers used for medical supplies being devoted to radiation sterilization etc. The polish contribution in related studies has been presented as well

  1. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.


    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  2. Particle Interactions in DNA-laden Flows

    International Nuclear Information System (INIS)

    Bybee, M D; Miller, G H; Trebotich, D


    Microfluidic devices are becoming state-of-the-art in many significant applications including pathogen detection, continuous monitoring, and drug delivery. Numerical algorithms which can simulate flows of complex fluids within these devices are needed for their development and optimization. A method is being developed at LLNL by Trebotich et. al. [30] for simulations of DNA-laden flows in complex microscale geometries such as packed bed reactors and pillar chips. In this method an incompressible Newtonian fluid is discretized with Cartesian grid embedded boundary methods, and the DNA is represented by a bead-rod polymer model. The fluid and polymer are coupled through a body force. In its current state, polymer-surface interactions are treated as elastic collisions between beads and surface, and polymer-polymer interactions are neglected. Implementation of polymer-polymer interactions is the main objective of this work. It is achieved by two methods: (1) a rigid constraint whereby rods elastically bounce off one another, and (2) a smooth potential acting between rods. In addition, a smooth potential is also implemented for the polymer-surface interactions. Background information will also be presented as well as related work by other researchers

  3. A polarized view on DNA under tension (United States)

    van Mameren, Joost; Vermeulen, Karen; Wuite, Gijs J. L.; Peterman, Erwin J. G.


    In the past decades, sensitive fluorescence microscopy techniques have contributed significantly to our understanding of the dynamics of DNA. The specific labeling of DNA using intercalating dyes has allowed for quantitative measurement of the thermal fluctuations the polymers undergo. On the other hand, recent advances in single-molecule manipulation techniques have unraveled the mechanical and elastic properties of this intricate polymer. Here, we have combined these two approaches to study the conformational dynamics of DNA under a wide range of tensions. Using polarized fluorescence microscopy in conjunction with optical-tweezers-based manipulation of YOYO-intercalated DNA, we controllably align the YOYO dyes using DNA tension, enabling us to disentangle the rapid dynamics of the dyes from that of the DNA itself. With unprecedented control of the DNA alignment, we resolve an inconsistency in reports about the tilted orientation of intercalated dyes. We find that intercalated dyes are on average oriented perpendicular to the long axis of the DNA, yet undergo fast dynamics on the time scale of absorption and fluorescence emission. In the overstretching transition of double-stranded DNA, we do not observe changes in orientation or orientational dynamics of the dyes. Only beyond the overstretching transition, a considerable depolarization is observed, presumably caused by an average tilting of the DNA base pairs. Our combined approach thus contributes to the elucidation of unique features of the molecular dynamics of DNA.

  4. Introduction to Polymer Chemistry. (United States)

    Harris, Frank W.


    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  5. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford


    polymerized in a controlled manner with carrier monomers of historically proven biocompatible polymers. The carrier polymers, the loading of ribavirin as well as the size of the polymer were varied systematically with the aid of an automated synthesis platform. These polymers were tested in a cellular assay...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein......The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...

  6. Polymer Fluid Dynamics. (United States)

    Bird, R. Byron


    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  7. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement.

  8. Antimicrobial Modifications of Polymers


    Sedlarik, Vladimir


    This chapter is focused on antimicrobial modifications of polymer materials intended for medical devices production. Firstly, a brief introduction into the field of medical application of polymers is presented. Considering the fact that polymer medical devices are often connected with occurrence of nosocomial infections, the next part refers to this phenomenon and its causes. One of the possibilities of reducing of the infection occurrence is aimed at polymer modification. It is a key topic o...

  9. Microgel polymer composite fibres


    Kehren, Dominic


    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  10. Modeling semiflexible polymer networks

    NARCIS (Netherlands)

    Broedersz, C.P.; MacKintosh, F.C.


    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have

  11. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D


    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  12. Nanoporous polymer electrolyte (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO


    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  13. Radiation effects on polymers

    International Nuclear Information System (INIS)

    Clough, R.L.; Shalaby, S.W.


    This book covers polymer radiation effects to be available in more than a decade. This volume reviews the fundamental chemistry and physics of polymer-radiation interaction and examines recent progress in most major areas of the field. Its 38 chapters, cover: fundamentals of polymer radiation chemistry; technological applications of radiation to polymers (including radiation processing; radiation curing; sterilization; cross-linking, polymerization, grafting, x-ray resists, and others); and degradation of stabilization of irradiated polymers (including nuclear plants, scintillation detectors for particle physics, and others)

  14. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)


    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  15. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  16. Mitochondrial DNA. (United States)

    Wright, Russell G.; Bottino, Paul J.


    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  17. Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experiments

    DEFF Research Database (Denmark)

    Utko, Pawel; Persson, Karl Fredrik; Kristensen, Anders


    We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels.......We demonstrate that fabrication of nanofluidic systems can be greatly simplified by injection molding of polymers. We functionally test our devices by single-molecule DNA experiments in nanochannels....

  18. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.


    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  19. Dynamics of polymer translocation through kinked nanopores. (United States)

    Wang, Junfang; Wang, Yilin; Luo, Kaifu


    Polymer translocation through nanopore has potential technological applications for DNA sequencing, where one challenge problem is to slow down translocation speed. Inspired by experimental findings that kinked nanopores exhibit a large reduction in translocation velocity compared with their straight counterparts, we investigate the dynamics of polymer translocation through kinked nanopores in two dimensions under an applied external field. With increasing the tortuosity of an array of nanopores, our analytical results show that the translocation probability decreases. Langevin dynamics simulation results support this prediction and further indicate that with increasing the tortuosity, translocation time shows a slow increase followed by a rapid increase after a critical tortuosity. This behavior demonstrates that kinked nanopores can effectively reduce translocation speed. These results are interpreted by the roles of the tortuosity for decreasing the effective nanopore diameter, increasing effective nanopore length, and greatly increasing the DNA-pore friction.

  20. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco


    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.

  1. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery. (United States)

    Zhang, Yi-Mei; Huang, Zheng; Zhang, Ji; Wu, Wan-Xia; Liu, Yan-Hong; Yu, Xiao-Qi


    Cationic liposomes and polymers are both important candidates for use as non-viral gene vectors. However, both of them have special shortcomings and application limits. This work is devoted to the combination of advantages of liposomes and polymers. The ring-opening polymerization strategy was used for the preparation of amphiphilic polymers from cyclen-based cationic small lipids. The non-hydrophobic polymer and the corresponding lipids were also prepared for performing structure-activity relationship studies. Gel electrophoresis results reveal that both the lipopolymers and liposomes could effectively condense DNA into nanoparticles and protect DNA from degradation. Compared to polymers, the DNA binding ability of liposomes is more affected by hydrophobic tails. Under the same dosage, the synthetic polymers have stronger DNA binding ability than the liposomes. In vitro transfection experiments show that the polymers could give better transfection efficiency, which was much higher than those of the corresponding liposomes and non-hydrophobic polymer. The oleyl moiety is suitable for lipidic vectors, but things were different for polymers. Under optimized conditions, up to 14.2 times higher transfection efficiency than that for 25 kDa bPEI could be obtained. More importantly, the lipopolymers showed much better serum tolerance, which was further confirmed by protein adsorption, gel electrophoresis, flow cytometry, and CLSM assays. The results indicate that ring-opening polymerization is a promising strategy for the enhancement of the gene delivery efficiency and biocompatibility of cationic lipids.

  2. Synthetic genetic polymers capable of heredity and evolution

    DEFF Research Database (Denmark)

    Pinheiro, Vitor B; Taylor, Alexander I; Cozens, Christopher


    in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity...... for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage....

  3. Modeling DNA (United States)

    Robertson, Carol


    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  4. Dna Sequencing (United States)

    Tabor, Stanley; Richardson, Charles C.


    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  5. Stratification in Drying Polymer-Polymer and Colloid-Polymer Mixtures. (United States)

    Howard, Michael P; Nikoubashman, Arash; Panagiotopoulos, Athanassios Z


    Drying polymer-polymer and colloid-polymer mixtures were studied using Langevin dynamics computer simulations. Polymer-polymer mixtures vertically stratified into layers, with the shorter polymers enriched near the drying interface and the longer polymers pushed down toward the substrate. Colloid-polymer mixtures stratified into a polymer-on-top structure when the polymer radius of gyration was comparable to or smaller than the colloid diameter, and a colloid-on-top structure otherwise. We also developed a theoretical model for the drying mixtures based on dynamical density functional theory, which gave excellent quantitative agreement with the simulations for the polymer-polymer mixtures and qualitatively predicted the observed polymer-on-top or colloid-on-top structures for the colloid-polymer mixtures.

  6. Biodegradable cyclen-based linear and cross-linked polymers as non-viral gene vectors. (United States)

    Li, Shuo; Wang, Yu; Wang, Shan; Zhang, Ji; Wu, Shi-Fei; Wang, Bo-Lin; Zhu, Wen; Yu, Xiao-Qi


    Several 1,4,7,10-tetraazacyclododecane (cyclen)-based linear (3a-c) and cross-linked (8a-d) polymers containing biodegradable ester or disulfide bonds were described. These polymeric compounds were prepared by ring-opening polymerization from various diol glycidyl ethers. The molecular weights of the title polymers were measured by GPC. Agarose gel retardation assays showed that these compounds have good DNA-binding ability and can completely retard plasmid DNA (pDNA) at weight ratio of 20 for linear polymers and 1.2 for cross-linked polymers. The degradation of these polymers was confirmed by GPC. The formed polyplexes have appropriate sizes around 400 nm and zeta-potential values about 15-40 mV. The cytotoxicities of 8 assayed by MTT are much lower than that of 25 KDa PEI. In vitro transfection toward A549 and 293 cells showed that the transfection efficiency (TE) of 8c-DNA polyplex is close to that of 25 kDa PEI at 8c/DNA weight ratio of 4. Structure-activity relationships (SAR) of these linear and cross-linked polymers were discussed in their DNA-binding, cytotoxicity, and transfection studies. In addition, in the presence of serum, the TE of 8/DNA polyplexes could be improved by introducing chloroquine or Ca(2+) to pretreated cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira


    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  8. DNA-Assisted β-phase Nucleation and Alignment of Molecular Dipoles in PVDF Film: A Realization of Self-Poled Bioinspired Flexible Polymer Nanogenerator for Portable Electronic Devices. (United States)

    Tamang, Abiral; Ghosh, Sujoy Kumar; Garain, Samiran; Alam, Md Mehebub; Haeberle, Jörg; Henkel, Karsten; Schmeisser, Dieter; Mandal, Dipankar


    A flexible nanogenerator (NG) is fabricated with a poly(vinylidene fluoride) (PVDF) film, where deoxyribonucleic acid (DNA) is the agent for the electroactive β-phase nucleation. Denatured DNA is co-operating to align the molecular -CH2/-CF2 dipoles of PVDF causing piezoelectricity without electrical poling. The NG is capable of harvesting energy from a variety of easily accessible mechanical stress such as human touch, machine vibration, football juggling, and walking. The NG exhibits high piezoelectric energy conversion efficiency facilitating the instant turn-on of several green or blue light-emitting diodes. The generated energy can be used to charge capacitors providing a wide scope for the design of self-powered portable devices.

  9. Artificially Engineered Protein Polymers. (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D


    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  10. Internally plasticised cellulose polymers

    International Nuclear Information System (INIS)

    Burnup, M.; Hayes, G.F.; Fydelor, P.J.


    Plasticised cellulose polymers comprise base polymer having a chain of β-anhydroglucose units joined by ether linkages, with at least one of said units carrying at least one chemically unreactive side chain derived from an allylic monomer or a vinyl substituted derivative of ferrocene. The side chains are normally formed by radiation grafting. These internally plasticised celluloses are useful in particular as inhibitor coatings for rocket motor propellants and in general wherever cellulose polymers are employed. (author)

  11. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy


    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  12. JC virus agnoprotein enhances large T antigen binding to the origin of viral DNA replication: evidence for its involvement in viral DNA replication. (United States)

    Saribas, A Sami; White, Martyn K; Safak, Mahmut


    Agnoprotein is required for the successful completion of the JC virus (JCV) life cycle and was previously shown to interact with JCV large T-antigen (LT-Ag). Here, we further characterized agnoprotein's involvement in viral DNA replication. Agnoprotein enhances the DNA binding activity of LT-Ag to the viral origin (Ori) without directly interacting with DNA. The predicted amphipathic α-helix of agnoprotein plays a major role in this enhancement. All three phenylalanine (Phe) residues of agnoprotein localize to this α-helix and Phe residues in general are known to play critical roles in protein-protein interaction, protein folding and stability. The functional relevance of all Phe residues was investigated by mutagenesis. When all were mutated to alanine (Ala), the mutant virus (F31AF35AF39A) replicated significantly less efficiently than each individual Phe mutant virus alone, indicating the importance of Phe residues for agnoprotein function. Collectively, these studies indicate a close involvement of agnoprotein in viral DNA replication. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Binary Polymer Brushes of Strongly Immiscible Polymers. (United States)

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander


    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  14. Influence of the electrokinetic injection conditions on the separation of DNA fragments in capillary electrophoresis


    Catai Jonatan Ricardo; Carrilho Emanuel


    In genetic analysis by capillary electrophoresis with polymer solutions there are many variables that affect separation of the DNA fragments. A very critical one is the sample injection process, which can considerably affect the peak efficiency and the resolution. In this work, we have studied the influence of the DNA sample composition and the electrokinetic injection conditions in the separation of DNA fragments by capillary electrophoresis using replaceable polymer solutions. The studies w...

  15. Overproduction of the poly(ADP-ribose)polymerase DNA-binding domain blocks alkylation-induced DNA repair synthesis in mammalian cells.

    NARCIS (Netherlands)

    M. Molinete; W. Vermeulen (Wim); A. Bürkle; J. Mé nissier-de Murcia; J.H. Küpper; J.H.J. Hoeijmakers (Jan); G. de Murcia


    textabstractThe zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during

  16. The elastic theory of a single DNA molecule

    Indian Academy of Sciences (India)

    We study the elastic responses of double- (ds) and single-stranded (ss) DNA at external force fields. A double-strand-polymer elastic model is constructed and solved by path integral methods and Monte Carlo simulations to understand the entropic elasticity, cooperative extensibility, and supercoiling property of dsDNA.

  17. Polymers targeting habitual diseases (United States)

    The use of polymeric drug conjugates mainly for the treatment for cancer therapy has been addressed, but these polymers also find their way in treatment of various lifestyle disorders like diabetes, hypertension, cardiovascular diseases etc. The focus is being laid to develop biodegradable polymer ...

  18. Stiff Quantum Polymers


    Kleinert, H.


    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  19. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying ...

  20. Elastic lattice polymers

    NARCIS (Netherlands)

    Baiesi, M.; Barkema, G.T.; Carlon, E.


    We study a model of “elastic” lattice polymer in which a fixed number of monomers m is hosted by a self-avoiding walk with fluctuating length l. We show that the stored length density m 1− l /m scales asymptotically for large m as m= 1− /m+. . . , where is the polymer entropic exponent, so that can

  1. Polymer gels and networks

    National Research Council Canada - National Science Library

    Osada, Yoshihito; Khokhlov, A. R


    ... or magnetic field, etc.). It was realized that not only can polymer gels absorb and hold a considerable volume of liquids, but they can also be forced to expel the absorbed liquid in a controlled manner. Of particular interest are hydrogels, i.e., polymer gels, which swell extensively in water. The most common hydrogels are polyelectrolyte gels: ...

  2. Polymer light emitting diodes

    International Nuclear Information System (INIS)

    Gautier-Thianche, Emmmanuelle


    We study sandwich type semiconducting polymer light emitting diodes; anode/polymer/cathode. ITO is selected as anode, this polymer is a blend of a commercially available polymer with a high hole transport ability: polyvinyl-carbazole and a laser dye: coumarin-515. Magnesium covered with silver is chosen for the anode. We study the influence of polymer thickness and coumarin doping ratio on electroluminescence spectrum, electric characteristics and quantum efficiency. An important drawback is that diodes lifetime remains low. In the second part of our study we determine degradations causes with X-Ray reflectivity experiments. It may be due to ITO very high roughness. We realize a new type of planar electroluminescent device: a channel type electroluminescent device in which polymer layer is inserted into an aluminium channel. Such a device is by far more stable than using classical sandwich structures with the same polymer composition: indeed, charges are generated by internal-field ionization and there is no injection from the electrode to the polymer. This avoids electrochemical reactions at electrodes, thus reducing degradations routes. (author) [fr

  3. Polymers for Combating Biocorrosion

    Directory of Open Access Journals (Sweden)

    Jing Guo


    Full Text Available Biocorrosion has been considered as big trouble in many industries and marine environments due to causing of great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anticorrosion and antimicrobial properties have been widely accepted as a novel and effective approach to prevent biocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbial corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: (i traditional polymers incorporated with biocides, (ii antibacterial polymers containing quaternary ammonium compounds, and (iii conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting antibacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization, and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  4. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir


    is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  5. Conducting polymer hydrogels

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav


    Roč. 71, č. 2 (2017), s. 269-291 ISSN 0366-6352 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 Keywords : aerogel * conducting polymers * conductivity Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.258, year: 2016

  6. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    operating systems. With this situation, attempts have been made in poly (ethylene oxide) (PEO) based polymer electrolytes to reach an appreciable electrical conducti- vity at ambient temperature (Wright 1975; Martuscelli et al 1984). Generally solid polymer electrolytes have many advantages, viz. high ionic conductivity, ...

  7. PEO polymer electrolytes

    Indian Academy of Sciences (India)


    vs temperature plots showed the enhancement of conductivity with TiO2 added nanocomposite ceramic fillers. The enhanced conductivity is ... developing mixed polymer electrolyte by using a novel class of plasticizers. Classical polymer ..... phology of the ceramic filler could optimize the conduc- tion. This might lead to the ...

  8. Doped Chiral Polymer Metamaterials Project (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  9. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.


    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  10. DNA Vaccines

    Indian Academy of Sciences (India)

    DNA vaccine, immune response, antibodies, infectious diseases. GENERAL I ARTICLE. DNA Vaccines. P N Rangarajan. History of Vaccine Development. The year 1996 marked the 200th anniversary of the first vaccine developed against smallpox by Edward Jenner. In the now- famous 1796 experiment, Jenner scratched ...

  11. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul


    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  12. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen


    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  13. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius


    Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby...... the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  14. Self-Assembly of Emulsion Droplets into Polymer Chains (United States)

    Bargteil, Dylan; McMullen, Angus; Brujic, Jasna

    We experimentally investigate `beads-on-a-string' models of polymers using the spontaneous assembly of emulsion droplets into linear chains. Droplets functionalized with surface-mobile DNA allow for programmable 'monomers' through which we can influence the three-dimensional structure of the assembled 'polymer'. Such model polymers can be used to study conformational changes of polypeptides and the principles governing protein folding. In our system, we find that droplets bind via complementary DNA strands that are recruited into adhesion patches. Recruitment is driven by the DNA hybridization energy, and is limited by the energy cost of surface deformation and the entropy loss of the mobile linkers, yielding adhesion patches of a characteristic size with a given number of linkers. By tuning the initial surface coverage of linkers, we control valency between the droplets to create linear or branched polymer chains. We additionally control the flexibility of the model polymers by varying the salt concentration and study their dynamics between extended and collapsed states. This system opens the possibility of programming stable three-dimensional structures, such as those found within folded proteins.

  15. Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects

    DEFF Research Database (Denmark)

    conjugated polymer backbone, water soluble conjugated polyelectrolytes and surfactants, conjugated molecules and biomolecules and DNA and the advanced use of synchrotron radiation and electron microscopy to find out structural details in conjugated molecule films and devices as well as under ambient...

  16. Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes

    International Nuclear Information System (INIS)

    Khmelinskaia, Alena; Franquelim, Henri G; Petrov, Eugene P; Schwille, Petra


    DNA origami is a state-of-the-art technology that enables the fabrication of nano-objects with defined shapes, to which functional moieties, such as lipophilic anchors, can be attached with a nanometre scale precision. Although binding of DNA origami to lipid membranes has been extensively demonstrated, the specific requirements necessary for membrane attachment are greatly overlooked. Here, we designed a set of amphipathic rectangular-shaped DNA origami structures with varying placement and number of chol-TEG anchors used for membrane attachment. Single- and multiple-cholesteryl-modified origami nanostructures were produced and studied in terms of their membrane localization, density and dynamics. We show that the positioning of at least two chol-TEG moieties near the corners is essential to ensure efficient membrane binding of large DNA nanostructures. Quantitative fluorescence correlation spectroscopy data further confirm that increasing the number of corner-positioned chol-TEG anchors lowers the dynamics of flat DNA origami structures on freestanding membranes. Taken together, our approach provides the first evidence of the importance of the location in addition to the number of hydrophobic moieties when rationally designing minimal DNA nanostructures with controlled membrane binding. (paper)

  17. Triazene-Based Traceless Linkers for DNA-Directed Chemistry and Development of Methods for Linking Nanomaterials to DNA Origami

    DEFF Research Database (Denmark)

    Hejesen, Christian


    , kan triazen linkeren ydermere introducere ny kemi på en DNA streng ved kløvning. Det andet projekt, der er beskrevet i dette kapitel, omhandler de indledende studier og resultater for en DNA-dirigeret palladium katalyseret Suzuki-Miyaura krydskobling. I kapitel 3 bliver DNA origami feltet kort...... med ren DNA bliver kulstof-nanorørene dispergeret med syntetisk polymer der indeholder DNA. Denne polymer gør det muligt at binde kulstof-nanorørene på en DNA origami, der så kan analyseret ved hjælp af atomar kraftmikroskopi. Kapitel 4 omhandler et projekt omhandler arbejde der er udført ved Arizona...

  18. Polymer-Polymer Miscibility and Enthalpy Relaxations

    NARCIS (Netherlands)

    Bosma, Martin; Brinke, Gerrit ten; Ellis, Thomas S.

    Annealing of polymers below the glass transition temperature results in a decrease in enthalpy that is recovered during heating. The enthalpy recovery is visible as an endothermic peak in a differential scanning calorimetry (DSC) scan. The position of this peak depends on the thermal treatment given

  19. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.


    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  20. Photoreactivity of chlorpromazine with native DNA in an aqueous solution

    International Nuclear Information System (INIS)

    Fujita, Hitoshi; Yanagisawa, Fukuko; Endo, Akira; Suzuki, Kenshi


    Near-UV irradiation of a mixture of chlorpromazine and native DNA caused irreversible binding of the drug or its photoproduct(s) to DNA and double strand break of DNA. When the irradiation was performed in a reaction mixture with a low salt concentration, much more photobinding occurred. Accompanying these effects, the maximum hyperchromicity of DNA at a high temperature was decreased. This can be explained by either a partial denaturation or an inhibition of melting by a formation of complex between double helical DNA and a promazine polymer. (author)

  1. Photoluminescence in conjugated polymers

    International Nuclear Information System (INIS)

    Furst, J.E.; Laugesen, R.; Dastoor, P.; McNeill, C.


    Full text: Conjugated polymers combine the electronic and optical properties of semiconductors with the processability of polymers. They contain a sequence of alternate single and double carbon bonds so that the overlap of unhybridised p z orbitals creates a delocalised ρ system which gives semiconducting properties with p-bonding (valence) and p* -antibonding (conduction) bands. Photoluminesence (PL) in conjugated polymers results from the radiative decay of singlet excitons confined to a single chain. The present work is the first in a series of studies in our laboratory that will characterize the optical properties of conjugated polymers. The experiment involves the illumination of thin films of conjugated polymer with UV light (I=360 nm) and observing the subsequent fluorescence using a custom-built, fluorescence spectrometer. Photoluminesence spectra provide basic information about the structure of the polymer film. A typical spectrum is shown in the accompanying figure. The position of the first peak is related to the polymer chain length and resolved multiple vibronic peaks are an indication of film structure and morphology. We will also present results related to the optical degradation of these materials when exposed to air and UV light

  2. Precision manufacturing of polymer micro-nano fluidic systems

    DEFF Research Database (Denmark)

    Garnæs, Jørgen; Calaon, Matteo; Tosello, Guido


    in the sample. Design of experiment (DOE) was adopted to characterize the replication fidelity of produced polymer features. Results have shown the possibility of performing quality control of micro- and sub-μm features, taking into account the polymer shrinkage, depending on process conditions at both micro......Lab-on-a-Chip (LoC) technologies require the possibility of fabricating devices which include micro down to sub-micrometre features with high production rate and low cost. In the present study precision injection moulding is performed using a COC Topas 5013 L10 polymer to produce LoC devices...... for DNA barcoding with functional features in the 100 nm to 10 μm range. Replication quality of produced features (from nickel to polymer) was assessed by calibrated atomic force microscope (AFM) measurements performed on multiple nanochannels test structures arrays placed at different positions...

  3. Soluble porphyrin polymers (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony


    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  4. SANS studies of polymers

    International Nuclear Information System (INIS)

    Wignall, G.D.


    Before small-angle neutron scattering (SANS), chain conformation studies were limited to light and small angle x-ray scattering techniques, usually in dilute solution. SANS from blends of normal and labeled molecules could give direct information on chain conformation in bulk polymers. Water-soluble polymers may be examined in H 2 O/D 2 O mixtures using contrast variation methods to provide further information on polymer structure. This paper reviews some of the information provided by this technique using examples of experiments performed at the National Center for Small-Angle Scattering Research (NCSASR)

  5. Polymers in separation processes (United States)

    Wieszczycka, Karolina; Staszak, Katarzyna


    Application of polymer materials as membranes and ion-exchange resins was presented with a focus on their use for the recovery of metal ions from aqueous solutions. Several membrane techniques were described including reverse osmosis, nanofiltration, ultrafiltration, diffusion and Donnan dialysis, electrodialysis and membrane extraction system (polymer inclusion and supported membranes). Moreover, the examples of using ion-exchange resins in metal recovery were presented. The possibility of modification of the resin was discussed, including hybrid system with metal cation or metal oxide immobilized on polymer matrices or solvent impregnated resin.

  6. Microstructured polymer optical fibres

    CERN Document Server

    Large, Maryanne; Barton, Geoff; van Eijkelenborg, Martijn A


    Microstructured Polymer Optical Fibres describes the optical properties of microstructured fibres, how they are made and modelled, and outlines some potential applications. These applications include areas where polymer fibres are already used, such as high-data rate transmission for Fibre-to-the Home or within cars, as well as completely new areas such as the photonic bandgap transmission of ""difficult"" wavelengths. Emphasising a conceptual understanding of the underlying physics, Microstructured Polymer Optical Fibres is clearly written, and includes numerous illustrations. It provides an

  7. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G


    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  8. DNA data (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  9. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian


    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  10. DNA nanotechnology (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.


    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  11. Polymer translocation under a pulling force: Scaling arguments and threshold forces (United States)

    Menais, Timothée


    DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .

  12. A tunable DNA spring in a nanochannel (United States)

    Riehn, Robert; Staunton, Rory; Lim, Shuang Fang; Bruinsma, Robijn; Reisner, Walter; Austin, Robert


    dsDNA becomes linearized when it is confined to nanofluidic channels with a cross-section of (100 nm)^2 or less, which has made them interesting for genomic DNA analyses. DNA is typically manipulated by means of electric fields. We have found that DNA undergoes a phase transition to a condensed state if an a.c. electric field is applied along the channel direction. The molecule collapses to about 1/4 of it's initial contour length. We will discuss how the effect depends on parameters such as frequency, field strength, channel dimensions, and will discuss the origin of the effect. Interestingly, DNA behaves like an artifical muscle that can be triggered by an a.c. electric field. Since the interaction is expected to hold for any solubilized polyelectrolyte, we speculate that the mechanism may lead to a new class of polymer-based mechanical actuators. These would not suffer from depolarization like piezo transducers.

  13. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van


    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  14. Superabsorbent polymer; Kokyushusei porima

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, M. [Sanyo Kasei Kogyo K.K., Tokyo (Japan)


    Superabsorbent polymer (SAP) which has the absorbing ability from several hundreds to thousand times of the dead weight possesses many other functions in addition to the absorbing function, and studies on its application to various fields have been carried on very actively. Particularly, about 90% of the demand is for the application to body fluid absorber in the fields of sanitary materials. Basic water absorption mechanism, kinds, production methods, special features and applied cases of superabsorbent polymer are introduced. SAP is structured by loosely bridged water soluble polymer, particularly polymer electrolyte, to provide water unsoluble and water swelling properties. The kinds and production methods of SAP are described. SAP has respiration property in addition to the high water absorbing power and water holding ability. It has carboxyl ions, and has ammonia absorption ability and polyvalent metal ion adsorption ability. Paper diapers, water holding materials for soil, and cold reserving materials are discussed as examples of SAP application. 3 refs., 2 figs., 1 tab.

  15. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  16. Conjugated Polymer Solar Cells

    National Research Council Canada - National Science Library

    Paraschuk, Dmitry Y


    This report results from a contract tasking Moscow State University as follows: Conjugated polymers are promising materials for many photonics applications, in particular, for photovoltaic and solar cell devices...

  17. Tunable Optical Polymer Systems

    National Research Council Canada - National Science Library

    Jenekhe, S. A; Bard, Allen J; Chen, S. H; Hammond, P. T; Rothberg, L. J


    This multidisciplinary university research initiative (MURI) program investigated tunable optical polymer systems suitable for large-area color-switchable coatings and devices, displays, sensors, and other electronic applications...

  18. Zwitterionic Electroactive Polymer Actuators

    National Research Council Canada - National Science Library

    Zakin, Mitchell


    .... The enabling technology is a zwitterionic polyaniline derivative in which generation of +/- charge pairs upon oxidation provides significant conformational distortion along the polymer backbone, and a concomitant change in free volume...

  19. Biocatalytic Polymer Skin Adhesives

    National Research Council Canada - National Science Library

    LeJeune, Keith


    .... Preliminary results also suggest that the incorporation of enzymes within such polymers reduces immunogenic and allergenic responses that are often observed when applying protein-based materials on skin tissue...

  20. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut


    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  1. Edible Polymers: Challenges and Opportunities


    Subhas C. Shit; Pathik M. Shah


    Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlock...

  2. Reactive polymer fused deposition manufacturing (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander


    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  3. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui


    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics....

  4. Graphene-polymer composites (United States)

    Carotenuto, G.; Romeo, V.; Cannavaro, I.; Roncato, D.; Martorana, B.; Gosso, M.


    Graphene is a novel nanostructured material that can be conveniently used as filler for thermoplastic polymers or thermosetting resins, and the resulting nanocomposite material has unique mechanical and chemical/physical properties. Industrial production of graphene/polymer materials requires the availability of a chemical route to produce massive amount of graphene. Natural graphite flakes can be the best starting material for a bulk-production of graphene to be used in the polymeric nanocomposite preparation.

  5. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.


    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  6. Interfaced conducting polymers

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Bober, Patrycja; Trchová, Miroslava; Nuzhnyy, Dmitry; Bovtun, Viktor; Savinov, Maxim; Petzelt, Jan; Prokeš, J.


    Roč. 224, February (2017), s. 109-115 ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA16-02787S Institutional support: RVO:61389013 ; RVO:68378271 Keywords : polyaniline * polypyrrole * poly(p-phenylenediamine) Subject RIV: CD - Macromolecular Chemistry; CD - Macromolecular Chemistry (FZU-D) OBOR OECD: Polymer science; Polymer science (FZU-D) Impact factor: 2.435, year: 2016

  7. Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Hideshi Yokoyama


    Full Text Available Archaea-specific D-family DNA polymerase (PolD forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  8. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase. (United States)

    Matsui, Ikuo; Matsui, Eriko; Yamasaki, Kazuhiko; Yokoyama, Hideshi


    Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information.

  9. Extração de DNA de materiais de arquivo e fontes escassas para utilização em reação de polimerização em cadeia (PCR Methods of DNA extraction from archived materials and rare sources for utilization in polymer chain reaction

    Directory of Open Access Journals (Sweden)

    Jaqueline A. Barea


    Full Text Available Este trabalho visou a comparação de cinco métodos diferentes de extração de DNA de materiais de arquivo (tecidos incluídos em parafina, esfregaços de sangue periférico - corados e não corados com Leishman, lâminas com mielogramas, gotas de sangue em Guthrie Card e de fontes escassas (células bucais, um e três bulbos capilares e 2 mL de urina, para que fossem avaliadas a facilidade de aplicação e a facilidade de amplificação deste DNA pela técnica da reação de polimerização em cadeia (PCR. Os métodos incluíram digestão por proteinase K, seguida ou não por purificação com fenol/clorofórmio; Chelex 100® (BioRad; Insta Gene® (BioRad e fervura em água estéril. O DNA obtido foi testado para amplificação de três fragmentos gênicos: Brain-derived neutrophic factor (764 pb, Factor V Leiden (220 pb e Abelson (106 pb. De acordo com o comprimento do fragmento gênico estudado, da fonte potencial de DNA e do método de extração utilizado, os resultados caracterizaram o melhor caminho para padronização de procedimentos técnicos a serem incluídos no manual de Procedimentos Operacionais Padrão do Laboratório de Biologia Molecular do Hemocentro - HC - Unesp - Botucatu.The present work aimed at comparing five different methods of DNA extraction of samples from archived materials (paraffin-embedded tissues, peripheral blood smears - stained or not with Leishman, aspired bone marrow smears and Guthrie card bloodspots and from rare sources (oral cells, one and three capillary bulbs, 2 mL of urine, to evaluate the ease of application and the possibility of amplification of this DNA by the polymerization chain reaction (PCR technique. The methods included proteinase K digestion - followed or not by phenol/chloroform purification, Chelex 100® (BioRad, InstaGene® (BioRad and boiling in the sterile water. The DNA obtained was tested for amplification of three genic fragments: the brain-derived neutrophic factor gene (764 bp

  10. Rapid Polymer Sequencer (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)


    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  11. Crystallization in polymer nanocomposites (United States)

    Chrissopoulou, Kyriakh; Perivolari, Helena; Leisch, Stefanos; Papananou, Hellen; Anastasiadis, Spiros H.

    Polymer crystallization is a very interesting topic since it is responsible for the final properties of the materials. On the other hand, addition of inorganic nanomaterials has been recently widely used to optimize polymer properties. In this work, the effect of the presence of surfaces and of the severe confinement on polymer morphology and crystallization are investigated in hydrophilic nanohybrids of poly(ethylene oxide) and silica nanoparticles of different sizes; hybrids with different ratios of the two kinds of nanoparticles were synthesized as well, to achieve the highest confinement. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) were utilized to investigate the behavior and showed that the polymer chains that were able to crystallize showed a different crystalline behavior in the hybrids with lower Tm and lower crystallinity. Under severe confinement polymer crystallization was completely suppressed. Moreover, the crystallization kinetics was investigated with Isothermal Polarized Optical Microscopy (POM) and Isothermal Differential Scanning Calorimetry (DSC) showing different characteristics in the hybrids compared to that of the neat polymer depending on the silica content. Sponsored by the Greek GSRT (AENAO research project, Action KRIPIS)

  12. What Is Mitochondrial DNA? (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  13. DNA based radiological dosimetry technology

    International Nuclear Information System (INIS)

    Diaz Quijada, Gerardo A.; Roy, Emmanuel; Veres, Teodor; Dumoulin, Michel M.; Vachon, Caroline; Blagoeva, Rosita; Pierre, Martin


    Full text: The purpose of this project is to develop a personal and wearable dosimeter using a highly-innovative approach based on the specific recognition of DNA damage with a polymer hybrid. Our biosensor will be sensitive to breaks in nucleic acid macromolecules and relevant to mixed-field radiation. The dosimeter proposed will be small, field deployable and will sense damages for all radiation types at the DNA level. The generalized concept for the novel-based radiological dosimeter: 1) Single or double stranded oligonucleotide is immobilized on surface; 2) Single stranded has higher cross-section for fragmentation; 3) Double stranded is more biological relevant; 4) Radiation induces fragmentation; 5) Ultra-sensitive detection of fragments provides radiation dose. Successful efforts have been made towards a proof-of-concept personal wearable DNA-based dosimeter that is appropriate for mixed-field radiation. The covalent immobilization of oligonucleotides on large areas of plastic surfaces has been demonstrated and corroborated spectroscopically. The surface concentration of DNA was determined to be 8 x 1010 molecules/cm 2 from a Ce(IV) catalyzed hydrolysis study of a fluorescently labelled oligonucleotide. Current efforts are being directed at studying radiation induced fragmentation of DNA followed by its ultra-sensitive detection via a novel method. In addition, proof-of-concept wearable personal devices and a detection platform are presently being fabricated. (author)

  14. DNA Methylation Analysis of Free-Circulating DNA in Body Fluids. (United States)

    Jung, Maria; Kristiansen, Glen; Dietrich, Dimo


    Circulating cell-free DNA in body fluids is an analyte of great interest in basic and clinical research. The analyses of DNA methylation and hydroxymethylation patterns in body fluids might allow one to determine the certain state of a disease, in particular of cancer. DNA methylation biomarkers in liquid biopsies, i.e. blood plasma samples, may help optimizing personalized therapy for individual patients. DNA methylation analyses of specific loci usually require a bisulfite conversion of the DNA, which requires a sufficiently high amount of DNA at the appropriate concentration. However, free-circulating DNA is generally low concentrated. Therefore, high volumes of body fluids need to be analyzed. This high volume needs to be reduced in order to facilitate the bisulfite conversion. In addition, disease-related free-circulating DNA is even less abundant than normal DNA in the total amount of free-circulating DNA. Accordingly, analytical and pre-analytical methods are needed, which permit an accurate and sensitive quantification of single methylated DNA copies in the presence of unmethylated DNA in abundance.This protocol describes two methods for DNA enrichment from body fluids: DNA extraction by means of magnetic beads and polymer-mediated enrichment of DNA. Subsequent bisulfite conversion is achieved by means of a high-speed conversion protocol. Adaptions of the workflow required for the analysis of hydroxymethylation via oxidation 5-hydroxymethylcytosines to 5-formylcytosines prior to the bisulfite conversion are introduced. A quantitative real-time PCR based on the methylation-specific and HeavyMethyl PCR methodologies is introduced. This qPCR assay allows for an accurate and sensitive quantification of single copies of the DNA methylation biomarkers SHOX2 and SEPT9 in blood plasma. Specific issues regarding the analysis of body fluids and respective trouble shooting approaches are discussed.

  15. 40 CFR 723.250 - Polymers. (United States)


    ..., boron, phosphorus, titanium, manganese, iron, nickel, copper, zinc, tin, and zirconium. (3) Polymers... introduce into the polymer elements, properties, or functional groups that would render the polymer...

  16. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. (United States)

    Storrie, Hannah; Mooney, David J


    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  17. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.


    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  18. Confined relaxations of grafted polymer in solutions of linear polymer (United States)

    Poling-Skutvik, Ryan; Krishnamoorti, Ramanan; Conrad, Jacinta

    Using neutron spin echo spectroscopy (NSE), we investigate the relaxations of polymer grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. The grafted polymer has a radius of gyration comparable to radius of the silica nanoparticle with a moderate grafting density so that the grafted polymer is more extended than a Gaussian chain. On length scales ranging from 1 to 20 nm and time scales less than 100 ns, the dynamics of the grafted polymer deviate from the standard Zimm model derived for linear polymers. Instead, the polymer chains are confined and unable to fully relax over the experimental time. The confinement length agrees with the distance between chains decreases as the linear polymer concentration is increased. Additionally, the confinement length is independent of linear polymer molecular weight, suggesting that linear polymer cannot penetrate the grafted layer. Instead, the grafted chains collapse onto themselves, similar to the structural changes observed in systems of star and linear polymers at high concentrations of linear polymer. We verify this physical picture using small-angle x-ray scattering and atomic force microscopy to observe aggregation of grafted particles at high concentrations of linear polymer.

  19. DNA nanotechnology


    Nadrian C Seeman


    Since Watson and Crick’s determination of its structure nearly 50 years ago, DNA has come to fill our lives in many areas, from genetic counseling to forensics, from genomics to gene therapy. These, and other ways in which DNA affects human activities, are related to its function as genetic material, not just our genetic material, but the genetic material of all living organisms. Here, we will ignore DNA’s biological role; rather, we will discuss how the properties that make it so successful ...

  20. Piezoresistance in Polymer Nanocomposites (United States)

    Rizvi, Reza

    Piezoresistivity in conductive polymer nanocomposites occurs because of the disturbance of particle networks in the polymer matrix. The piezoresistance effect becomes more prominent if the matrix material is compliant making these materials attractive for applications that require flexible force and displacement sensors such as e-textiles and biomechanical measurement devices. However, the exact mechanisms of piezoresistivity including the relationship between the matrix polymer, conductive particle, internal structure and the composite's piezoresistance need to be better understood before it can be applied for such applications. The objective of this thesis is to report on the development of conductive polymer nanocomposites for use as flexible sensors and electrodes. Electrically conductive and piezoresistive nanocomposites were fabricated by a scalable melt compounding process. Particular attention was given to elucidating the role of matrix and filler materials, plastic deformation and porosity on the electrical conduction and piezoresistance. These effects were parametrically investigated through characterizing the morphology, electrical properties, rheological properties, and piezoresistivity of the polymer nanocomposites. The electrical and rheological behavior of the nanocomposites was modeled by the percolation-power law. Furthermore, a model was developed to describe the piezoresistance behavior during plastic deformation in relation to the stress and filler concentration.

  1. Multifunctional Polymer Nanocomposites (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  2. Efficient Xerographic Photoreceptors from Conjugated Polymers and Polymer Blends

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D


    Bilayer xerographic photoreceptors in which pi-conjugated polymers and binary conjugated polymer blends are used as the charge generation layer have been fabricated, evaluated, and shown to be highly efficient...

  3. Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects

    DEFF Research Database (Denmark)

    This book identifies modern topics and current trends of structural and soft matter aspects of conjugated polymers and oligomers. Each chapter recognizes an active research line where structural perspective dominates research and therefore the book covers fundamental aspects of persistent...... conjugated polymer backbone, water soluble conjugated polyelectrolytes and surfactants, conjugated molecules and biomolecules and DNA and the advanced use of synchrotron radiation and electron microscopy to find out structural details in conjugated molecule films and devices as well as under ambient...... and extreme conditions....

  4. 12-Crown-4-based amphipathic lipid and corresponding metal cation complexes for gene therapy applications: FT-IR characterization and surface charge determination (United States)

    Bruni, P.; Fino, V.; Pisani, M.; Tosi, G.; Stipa, P.; Ferraris, P.; Francescangeli, O.


    The new lipid 1,2- O-dioleyl-3- O-{2-[(12-crown-4)-methoxy]-ethyl}- sn-glycerol, 12C4L, has been synthesized. This molecule can coordinate different cations that should make the corresponding liposome a good candidate as vector of genetic material for possible applications in gene therapy. An important feature of the molecule is the possibility to modulate the net surface charge of their complexes with metal cations, which is important to provide efficient DNA transfections. The molecule and its complexes with some metal cations (Mg 2+, Ca 2+, Mn 2+) have been characterized by FT-IR spectroscopy and band attributions confirmed by Density Functional Theory calculations. The net surface charge has been determined by Z potential determinations.

  5. Role of non-equilibrium conformations on driven polymer translocation. (United States)

    Katkar, H H; Muthukumar, M


    One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/N K , is longer than the relaxation time τ 0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/N K equilibrium approximation. Nevertheless, we observe a scaling of ⟨τ⟩ ∼ 1/V over the entire range of chain stretching studied, in agreement with the predictions of the Fokker-Planck model. On the other hand, for realistic situations where the initial artificially imposed flow field is absent, a comparison of experimental data reported in the literature with the theory of polyelectrolyte dynamics reveals that the Zimm relaxation time (τ Zimm ) is shorter than the mean translocation time for several polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled

  6. DNA Investigations. (United States)

    Mayo, Ellen S.; Bertino, Anthony J.


    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  7. Doped Chiral Polymer Metamaterials (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)


    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  8. Active Polymer Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto


    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  9. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.


    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  10. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich


    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  11. Multilevel description of the DNA molecule translocation in solid-state synthetic nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Nosik, V. L., E-mail:; Rudakova, E. B. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)


    Interest of researchers in micro- and nanofluidics of polymer solutions and, in particular, DNA ionic solutions is constantly increasing. The use of DNA translocation with a controlled velocity through solid-state nanopores and pulsed X-ray beams in new sequencing schemes opens up new possibilities for studying the structure of DNA and other biopolymers. The problems related to the description of DNA molecular motion in a limited volume of nanopore are considered.

  12. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)


    Abstract. Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet.

  13. Direct measurements reveal non-Markovian fluctuations of DNA threading through a solid-state nanopore


    Bell, Nicholas A. W.; Keyser, Ulrich F.


    The threading of a polymer chain through a small pore is a classic problem in polymer dynamics and underlies nanopore sensing technology. However important experimental aspects of the polymer motion in a solid-state nanopore, such as an accurate measurement of the velocity variation during translocation, have remained elusive. In this work we analysed the translocation through conical quartz nanopores of a 7 kbp DNA double-strand labelled with six markers equally spaced along its contour. The...

  14. Parallel synthesis and screening of polymers for nonviral gene delivery. (United States)

    Barua, Sutapa; Joshi, Amit; Banerjee, Akhilesh; Matthews, Dana; Sharfstein, Susan T; Cramer, Steven M; Kane, Ravi S; Rege, Kaushal


    We describe the parallel synthesis and in vitro evaluation of a cationic polymer library for the discovery of nonviral gene delivery vectors. The library was synthesized based on the ring-opening polymerization reaction between epoxide groups of diglycidyl ethers and the amines of (poly)amines. Parallel screening of soluble library constituents led to the identification of lead polymers with high DNA-binding efficacies. Transfection efficacies of lead polymers were evaluated using PC3-PSMA human prostate cancer cells and murine osteoblasts in the absence and presence of serum. In vitro experiments resulted in the identification of a candidate polymer that demonstrated significantly higher transfection efficacies and lower cytotoxicities than poly(ethyleneimine) (pEI), the current standard for polymeric transfection agents. In addition, polymers that demonstrated moderately higher and comparable transfection efficacies with respect to pEI were also identified. Our results demonstrate that high-throughput synthesis and screening of polymers is a powerful approach for the identification of novel nonviral gene delivery agents.

  15. Brownian dynamics of wall tethered polymers in shear flow (United States)

    Lin, Tiras Y.; Saadat, Amir; Kushwaha, Amit; Shaqfeh, Eric S. G.


    The dynamics of a wall tethered polymer in shear flow is studied using Brownian dynamics. Simulations are performed with bead-spring chains, and the effect of hydrodynamic interactions (HI) is incorporated through Blake's tensor with a finite size bead correction. We characterize the configuration of the polymer as a function of the Weissenberg number by investigating the regions the polymer explores in both the flow-gradient and flow-vorticity planes. The fractional extension in the flow direction, the width in the vorticity direction, and the thickness in the gradient direction are reported as well, and these quantities are found to compare favorably with the experimental data of the literature. The cyclic motion of the polymer is demonstrated through analysis of the mean velocity field of the end bead. We characterize the collision process of each bead with the wall as a Poisson process and extract an average wall collision rate, which in general varies along the backbone of the chain. The inclusion of HI with the wall for a tethered polymer is found to reduce the average wall collision rate. We anticipate that results from this work will be directly applicable to, e.g., the design of polymer brushes or the use of DNA for making nanowires in molecular electronics. T.Y.L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  16. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun


    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  17. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)


    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically......The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous...... invisible polymer coatings....

  18. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)


    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  19. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld


    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  20. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm


    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  1. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.


    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  2. Polymer Chemistry in High School. (United States)

    Stucki, Roger


    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  3. Edible Polymers: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Subhas C. Shit


    Full Text Available Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlocked a new possibility for development of films, coatings, extrudable pellets, and synthetic nanopolymers, particularly designed for medical, agricultural, and industrial fields. Edible polymers offer many advantages for delivering drugs and tissue engineering. Edible polymer technology helps food industries to make their products more attractive and safe to use. Novel edible materials have been derived from many natural sources that have conventionally been regarded as discarded materials. The objective of this review is to provide a comprehensive introduction to edible polymers by providing descriptions in terms of their origin, properties, and potential uses.

  4. Polymer architecture and drug delivery. (United States)

    Qiu, Li Yan; Bae, You Han


    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  5. The structural diversity of artificial genetic polymers. (United States)

    Anosova, Irina; Kowal, Ewa A; Dunn, Matthew R; Chaput, John C; Van Horn, Wade D; Egli, Martin


    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Self-assembled alignment of nanorod by using DNA brush (Conference Presentation) (United States)

    Ijiro, Kuniharu; Nakamura, Satoshi; Mitomo, Hideyuki; Pike, Andrew; Matsuo, Yasutaka; Niikura, Kenichi


    Surface modification with polymer is widely applied to various kinds of applications. Recently, polymer brushes, which is a layer of polymers attached with one end to a surface, have attracted much attention as functionalized surfaces. In particular, ionic polymer brushes provide ultra-low friction or anti-fouling because they act as highly hydrated soft film. Almost ionic polymer brushes have been prepared from synthetic polymers. Few biopolymers have been investigated for polymer brush studies. DNA which is one of ionic biopolymers has unique functions and conformations which synthetic polymers don't have. We found that cationic gold nanorods (30 x 10 nm) were adsorbed to DNA bush (148 bp) prepared on a glass surface in an aqueous solution by observation using extinction spectra. When the cationic charge density of gold nanorods were decreased, nanorods were immobilized perpendicularly to the substrate by binding to DNA elongated. This indicates that self-assembled alignment of gold nanorods can be achieved by using DNA brush. Formed aligned gold nanorods can be used for plasmonic color analysis.

  7. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi


    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  8. Shape memory polymer medical device (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA


    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  9. Polymers in our daily life

    Directory of Open Access Journals (Sweden)

    Hassan Namazi


    Full Text Available Polymers are widely used advanced materials, which are found almost in every material used in our daily life. To date, the importance of polymers has been much more highlighted because of their applications in different dominions of sciences, technologies and industry – from basic uses to biopolymers and therapeutic polymers. The main aim of this editorial is to accentuate the pragmatic impacts of polymers in human daily life.

  10. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    For semiflexible polymers, the relevant non-dimensional quantity is lp/L, where lp is the persistence length (which is proportional to the bending modulus k) and L is the contour length of the polymer. In the limit, lp/L ≪ 1, the polymer behaves as a flexible polymer whereas in the limit lp/L ≥ 1 it behaves like a straight rod. For.

  11. Nonlinear microstructured polymer optical fibres

    DEFF Research Database (Denmark)

    Frosz, Michael Henoch

    is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...

  12. Viscoelastic Properties of Polymer Blends (United States)

    Hong, S. D.; Moacanin, J.; Soong, D.


    Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

  13. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong


    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  14. DNA Chip

    Indian Academy of Sciences (India)

    Imagine a world without identity cards; no I-cards for the college or office or bank account or anything! All you are carrying is a small (say, 2cm x 2cm) 'DNA-chip', which has the whole of your genetic profile on it. Your identity cannot get more authentic than that. Imagine a world where marriages are not decided by matching ...

  15. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.


    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  16. Synthesis of DNA block copolymers with extended nucleic acid segments by enzymatic ligation : cut and paste large hybrid architectures

    NARCIS (Netherlands)

    Ayaz, Meryem S.; Kwak, Minseok; Alemdaroglu, Fikri E.; Wang, Jie; Berger, Ruediger; Herrmann, Andreas; Berger, Rüdiger


    Ultra-high molecular weight DNA/polymer hybrid materials were prepared employing molecular biology techniques. Nucleic acid restriction and ligation enzymes were used to generate linear DNA di- and triblock copolymers that contain up to thousands of base pairs in the DNA segments.

  17. Stool DNA Test (United States)

    ... The stool DNA test is a noninvasive laboratory test that identifies DNA changes in the cells of a stool sample. ... the presence of cancer. If a stool DNA test detects abnormal DNA, additional testing may be used to investigate the ...

  18. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    Bull. Mater. Sci., Vol. 29, No. 7, December 2006, pp. 673–678. © Indian Academy of Sciences. 673. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes ... (Alamgir and Abraham 1993; Sukeshini et al 1996; Ra- jendran and Uma ... Yang et al 1996; Ramesh and Arof 2001) and such elec- trolytes exhibit ...

  19. Raw and renewable polymers

    CSIR Research Space (South Africa)

    Joseph, S


    Full Text Available with enhanced support for global sustainability. High performance plastics are the outcome of continuous research over the last few decades. The real challenge of renewable polymers lies in finding applications, which will result in mass production, and price...

  20. Knots in polymers

    Indian Academy of Sciences (India)

    Knots and topological entanglements play an important role in the statistical mechanics of polymers. While topological entanglement is a global property, it is possible to study the size of a knotted region both numerically and analytically. It can be shown that long-range repulsive interactions, as well as entropy favor small ...

  1. Conformational properties of polymers

    Indian Academy of Sciences (India)

    Abstract. We discuss exact enumeration technique and its application to polymers and biopolymers. Using this method one can obtain phase diagram in thermodynamic limit. The method works quite well in describing the outcomes of single molecule force spectroscopy results where finite size effects play a crucial role.

  2. Polymers of phenylenediamines

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav


    Roč. 41, February (2015), s. 1-31 ISSN 0079-6700 R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyphenylenediamine * phenylenediamine * conducting polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 27.184, year: 2015

  3. Polyester polymer concrete overlay. (United States)


    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  4. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line


    Cytogenetic analysis focuses on studying the cell structure, mainly in respect to chromosome content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders, but are also associated with heametological malignancies. Chromosome translocations...... for cheaper detection a label-free approach has been investigated using electrochemical impedance spectroscopy as a sensing method. We present here our recent results in regards to DNA sensing on metallic and conductive polymer electrodes for translocation detection. Our sensors are inexpensive and can...

  5. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    -polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEl, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies...

  6. Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Jankova Atanasova, Katja; Hansen, Hans Nørgaard

    -polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEI, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies...

  7. Gel polymer electrolytes for batteries (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William


    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at C.

  8. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J


    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  9. Conducting Polymers for Neutron Detection

    International Nuclear Information System (INIS)

    Clare Kimblin; Kirk Miller; Bob Vogel; Bill Quam; Harry McHugh; Glen Anthony; Steve Jones; Mike Grover


    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number

  10. Conducting Polymers for Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    Kimblin, Clare; Miller, Kirk; Vogel, Bob; Quam, Bill; McHugh, Harry; Anthony, Glen; Mike, Grover


    Conjugated polymers have emerged as an attractive technology for large-area electronic applications. As organic semiconductors, they can be used to make large-area arrays of diodes or transistors using fabrication techniques developed for polymer coatings, such as spraying and screen-printing. We have demonstrated both neutron and alpha detection using diodes made from conjugated polymers and have done preliminary work to integrate a boron carbide layer into the conventional polymer device structure to capture thermal neutrons. The polymer devices appear to be insensitive to gamma rays, due to their small physical thickness and low atomic number.

  11. DNA in Nanochannels: A Multistage Free Energy Perturbation Approach (United States)

    Wang, Yanwei; Tree, Douglas R.; Dorfman, Kevin D.


    Nanochannels are ideal platforms for studying the basic physics of confined polymers, using DNA as the model polymer. While the scaling laws for strong (Odijk) and weak (de Gennes) confinement were established decades ago, recent experiments and computer simulations have illuminated the complex physics arising between these limiting cases. To understand fully the transition region between the classical regimes of de Gennes and Odijk, it is necessary to examine the underlying free energy behavior of DNA in nanochannels. This presentation reports our studies on the confinement free energy and other properties of nanochannel-confined DNA by the multistage free energy perturbation (MFEP) technique. Emphases are focused on the methodology, the role of the aspect ratio of the channel on the confinement free energy and the force-extension relation of DNA confined in nanochannels. Y. Wang acknowledges financial support by the Natural Science Foundation of China (21204061).

  12. Statics and dynamics of DNA knotting (United States)

    Orlandini, Enzo


    Knots and entanglement in polymers and biopolymers such as DNA and proteins constitute a timely topic that spans various scientific disciplines ranging from physics to chemistry, biology and mathematics. Although in the past many advancements have been made in understanding the equilibrium knotting probability and knot complexity of long polymer chains in solutions, many questions have been addressed in recent years by both experimental and theoretical means—for instance, how the knotting probability depends on the quality of the solvent, the elastic properties of the molecule and its degree of confinement. How knots form, evolve and eventually disappear in a fluctuating chain. Are the equilibrium and non-equilibrium properties of knotted molecules affected by the knot swelling/shrinking dynamics? Moreover, thanks to the great advance in nanotechnology and micromanipulation techniques, nowadays knots can be ‘manually’ tied in a single DNA molecule, followed during their motion along the chains, forced to pass through nanopores, or stretched by external forces or elongational flows. All these experimental approaches allow access to new information on the interplay of topology and polymer physics, and this has opened new perspectives in the field. Here, we provide an overview of the current knowledge of this topic, stressing the main results obtained, including the recent developments in experimental and computational approaches. Since almost all experiments on knotting involve DNA, the review will be mainly focused on the topological properties of this fascinating and biologically relevant molecule.

  13. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins (United States)

    Dahlke, K.; Sing, C. E.


    Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.

  14. Dissolving Polymers in Ionic Liquids. (United States)

    Hoagland, David; Harner, John


    Dissolution and phase behavior of polymers in ionic liquids have been assessed by solution characterization techniques such as intrinsic viscosity and light scattering (static and dynamic). Elevated viscosity proved the greatest obstacle. As yet, whether principles standard to conventional polymer solutions apply to ionic liquid solutions is uncertain, especially for polymers such as polyelectrolytes and hydrophilic block copolymers that may specifically interact with ionic liquid anions or cations. For flexible polyelectrolytes (polymers releasing counterions into high dielectric solvents), characterization in ionic liquids suggests behaviors more typical of neutral polymer. Coil sizes and conformations are approximately the same as in aqueous buffer. Further, several globular proteins dissolve in a hydrophilic ionic liquid with conformations analogous to those in buffer. General principles of solubility, however, remain unclear, making predictions of which polymer dissolves in which ionic liquid difficult; several otherwise intractable polymers (e.g., cellulose, polyvinyl alcohol) dissolve and can be efficiently functionalized in ionic liquids.

  15. Synthesis and Evaluation of Tetramethylguanidinium-Polyethylenimine Polymers as Efficient Gene Delivery Vectors

    Directory of Open Access Journals (Sweden)

    Manohar Mahato


    Full Text Available Previously, we demonstrated that 6-(N,N,N′,N′-tetramethylguanidinium chloride-hexanoyl-polyethylenimine (THP polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N′,N′-tetramethylguanidinium-polyethylenimine (TP1-TP5 polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU. These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240–450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4–2.3-fold outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.

  16. Synthesis and evaluation of tetramethylguanidinium-polyethylenimine polymers as efficient gene delivery vectors. (United States)

    Mahato, Manohar; Yadav, Santosh; Kumar, Pradeep; Sharma, Ashwani Kumar


    Previously, we demonstrated that 6-(N,N,N',N'-tetramethylguanidinium chloride)-hexanoyl-polyethylenimine (THP) polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N',N'-tetramethylguanidinium-polyethylenimine (TP1-TP5) polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240-450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4-2.3-fold) outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.

  17. Adsorption and flocculation by polymers and polymer mixtures. (United States)

    Gregory, John; Barany, Sandor


    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. DNA Microarrays (United States)

    Nguyen, C.; Gidrol, X.

    Genomics has revolutionised biological and biomedical research. This revolution was predictable on the basis of its two driving forces: the ever increasing availability of genome sequences and the development of new technology able to exploit them. Up until now, technical limitations meant that molecular biology could only analyse one or two parameters per experiment, providing relatively little information compared with the great complexity of the systems under investigation. This gene by gene approach is inadequate to understand biological systems containing several thousand genes. It is essential to have an overall view of the DNA, RNA, and relevant proteins. A simple inventory of the genome is not sufficient to understand the functions of the genes, or indeed the way that cells and organisms work. For this purpose, functional studies based on whole genomes are needed. Among these new large-scale methods of molecular analysis, DNA microarrays provide a way of studying the genome and the transcriptome. The idea of integrating a large amount of data derived from a support with very small area has led biologists to call these chips, borrowing the term from the microelectronics industry. At the beginning of the 1990s, the development of DNA chips on nylon membranes [1, 2], then on glass [3] and silicon [4] supports, made it possible for the first time to carry out simultaneous measurements of the equilibrium concentration of all the messenger RNA (mRNA) or transcribed RNA in a cell. These microarrays offer a wide range of applications, in both fundamental and clinical research, providing a method for genome-wide characterisation of changes occurring within a cell or tissue, as for example in polymorphism studies, detection of mutations, and quantitative assays of gene copies. With regard to the transcriptome, it provides a way of characterising differentially expressed genes, profiling given biological states, and identifying regulatory channels.

  19. Design Concept of Dialyzer Biomaterials: How to Find Biocompatible Polymers Based on the Biointerfacial Water Structure. (United States)

    Tanaka, Masaru


    Although various types of materials have been used widely in dialyzers, most biomaterials lack the desired functional properties to interface with blood and have not been engineered for optimum performance. Therefore, there is increasing demand to develop novel materials to address such problems in the dialysis arena. Numerous parameters of polymeric biomaterials can affect biocompatibility in a controlled manner. The mechanisms responsible for the biocompatibility of polymers at the molecular level have not been clearly demonstrated, although many theoretical and experimental efforts have been made to try and understand them. Moreover, water interactions have been recognized as fundamental for the blood response to contact with polymers. We have proposed the 'intermediate water' concept and hypothesized that intermediate water, which prevents the proteins and blood cells from directly contacting the polymer surface, or nonfreezing water on the polymer surface, plays an important role in the biocompatibility of polymers. This chapter provides an overview of the recent experimental progress of biocompatible polymers measured by thermal, spectroscopic, and surface force techniques. Additionally, it highlights recent developments in the use of biocompatible polymeric biomaterials for dialyzers and provides an overview of the progress made in the design of multifunctional biomedical polymers by controlling the biointerfacial water structure through precision polymer synthesis. Key Messages: Intermediate water was found only in hydrated biopolymers (proteins, polysaccharides, and nucleic acids, DNA and RNA) and hydrated biocompatible synthetic polymers. Intermediate water could be one of the main screening factors for the design of appropriate dialyzer materials. © 2017 S. Karger AG, Basel.

  20. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford


    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... garnered a great deal of interest due to the substantial room for improvement inherent to conventional chemotherapeutic agents. Chemotherapeutic agents and antiviral agents have a lot of features in common due to both of them typically targeting endogenous targets, unlike antibacterial compounds, though...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin...

  1. Polymer Physics Prize Talk (United States)

    Olvera de La Cruz, Monica

    Polymer electrolytes have been particularly difficult to describe theoretically given the large number of disparate length scales involved in determining their physical properties. The Debye length, the Bjerrum length, the ion size, the chain length, and the distance between the charges along their backbones determine their structure and their response to external fields. We have developed an approach that uses multi-scale calculations with the capability of demonstrating the phase behavior of polymer electrolytes and of providing a conceptual understanding of how charge dictates nano-scale structure formation. Moreover, our molecular dynamics simulations have provided an understanding of the coupling of their conformation to their dynamics, which is crucial to design self-assembling materials, as well as to explore the dynamics of complex electrolytes for energy storage and conversion applications.

  2. Dielectric Actuation of Polymers (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  3. Polymer/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrdad shokrieh


    Full Text Available Nanocomposite materials have recently attracted increasing interests in the field of modelling. Finite element modelling can be used for computation of bulk properties of polymer/clay nanocomposites. In this study, by   considering the structure of a nano-composite material, a quasi real model is proposed. The model has been used to predict the elastic constants by selection of suitable elements and boundary conditions. The effects of nano-structural parameters on the mechanical properties of a polymer/clay nano-composite are studied. The geometrical overlap of particles, horizontal distance between particles, length of particles and nano-clay volume fraction are defined as functions of the nano-structural parameters and their effects on mechanical properties of nano-composites are studied by a finite element modelling technique.

  4. Mesoscale Polymer Assemblies (United States)

    Choudhary, Satyan; Pham, Jonathan; Crosby, Alfred


    Materials encompassing structural hierarchy and multi-functionality allow for remarkable physical properties across different length scales. Mesoscale Polymer (MSP) assemblies provide a critical link, from nanometer to centimeter scales, in the definition of such hierarchical structures. Recent focus has been on exploiting these MSP assemblies for optical, electronic, photonics and biological applications. We demonstrate a novel fabrication method for MSP assemblies. Current fabrication methods restrict the length scale and volume of such assemblies. A new method developed uses a simple piezo-actuated motion for de-pinning of a polymer solution trapped by capillary forces between a flexible blade and a rigid substrate. The advantages of new method include ability to make MSP of monodisperse length and to fabricate sufficient volumes of MSP to study their physical properties and functionality in liquid dispersions. We demonstrate the application of MSP as filler for soft materials, providing rheological studies of the MSP with surrounding matrices.

  5. How do polymers degrade? (United States)

    Lyu, Suping


    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  6. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi


    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  7. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P


    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  8. Solid polymer electrolytes (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.


    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  9. Dynamics of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, U. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik


    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs.

  10. High Mobility Conjugated Polymers (United States)


    blends with poly(3- hexylthiophene) (PHT) could be readily fabricated as uniform nanofibers by co- electrospinning their solutions with another solution...We have demonstrated that nanofibers of conjugated 10 - polymers and their blends could be conveniently fabricated by electrospinning . Furthermore, we...luminance o - - characteristics of an ITO/ PEDOT /TAPC k D r a Vol gt, V, (V) /BPQ-PPO/LiF/A! device are shown in Fig. 30. (A) Current density-voltage

  11. Dynamics of polymers

    International Nuclear Information System (INIS)

    Buchenau, U.


    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs


    Directory of Open Access Journals (Sweden)

    I. I. Karpunin


    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  13. Polymer engineering (I)

    International Nuclear Information System (INIS)

    Kim, Seong Cheol; Kim, Do Hyeon; Lee, Gi Yun


    This book deals with polymer engineering, which gives descriptions of addition polymerization, condensation polymerization, special polymerization, copolymerization, reaction of a high molecule, polymerization process, structure of a high molecule chain, molecular weight, crystal structure of a high molecule, melting and glass transition, viscoelasticity of a high molecule, rubber elasticity, transform and destroy of a high molecule, property of another matter, melting rheology of a high molecule, flowing in the tube and channel, pressing, injection molding, calendaring and spinning process.

  14. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W


    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  15. Conductive Polymer Composites


    Pierini, Filippo


    In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, ...

  16. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    Directory of Open Access Journals (Sweden)

    Petr Slepička


    Full Text Available Polymers with their advantageous physical, chemical, mechanical, and electrical properties and easy manufacturing are widely used in biology, tissue engineering, and medicine, for example, as prosthetic materials. In some cases the polymer usage may be impeded by low biocompatibility of common synthetic polymers. The biocompatibility can be improved by modification of polymer surface, for example, by plasma discharge, irradiation with ionizing radiation, and sometime subsequent grafting with suitable organic (e.g., amino-acids or inorganic (e.g., gold nanoparticles agents. In this way new chemically active structures are created on the polymer surface, and in some cases new surface relief is created. Recent advances in nanotechnology and in characterization of nanostructured objects open the way to development of new polymer-based materials with better bio-properties and higher application potential in biomedicine. Some of recent results obtained in the field are summarized and discussed in this paper.

  17. All-Polymer Lasers (United States)

    Wu, Yeheng; Lott, Joseph; Kazmierczak, Tomasz; Song, Hyunmin; Baer, Eric; Singer, Kenneth; Weder, Christoph


    We have fabricated all-polymer lasers both as distributed feedback lasers (DFB) and distributed Bragg reflector (DBR) lasers. For the DBR lasers, a layer of polymer doped with the laser dye is laminated between two multilayer polymer mirrors. The mirrors were made using the co-extrusion process combining PMMA alternated with polystyrene with 128 layers for each mirror. Two dyes were employed, Rhodamine 6G (R6G), and 1,4-bis-(α-cyano-4-methoxystyryl)-2,5-dimethoxybenzene (C1RG). They were pumped with a nanosecond laser and emitted at about 570 and 510 nm respectively. For DFB lasers, the low refractive index layers were doped with C1RG or R6G. PMMA and PMMA-PVDF were the hosts for the C1RG and R6G respectively. A total of eight co-extruded 32-layer films were stacked together to make a DFB laser. For the DBR lasers, we were able to observe thresholds as low as 100nJ. The highest conversion efficiency obtained about 14% in the forward direction. We also observed trends of lasing threshold, even spaced lasing modes and penetration of the film. Matrix method simulations taking into account layer thickness variations were consistent with experimental results. For the DFB lasers, the lowest lasing threshold observed was 52 μW.

  18. Simulated Associating Polymer Networks (United States)

    Billen, Joris

    Telechelic associating polymer networks consist of polymer chains terminated by endgroups that have a different chemical composition than the polymer backbone. When dissolved in a solution, the endgroups cluster together to form aggregates. At low temperature, a strongly connected reversible network is formed and the system behaves like a gel. Telechelic networks are of interest since they are representative for biopolymer networks (e.g. F-actin) and are widely used in medical applications (e.g. hydrogels for tissue engineering, wound dressings) and consumer products (e.g. contact lenses, paint thickeners). In this thesis such systems are studied by means of a molecular dynamics/Monte Carlo simulation. At first, the system in rest is studied by means of graph theory. The changes in network topology upon cooling to the gel state, are characterized. Hereto an extensive study of the eigenvalue spectrum of the gel network is performed. As a result, an in-depth investigation of the eigenvalue spectra for spatial ER, scale-free, and small-world networks is carried out. Next, the gel under the application of a constant shear is studied, with a focus on shear banding and the changes in topology under shear. Finally, the relation between the gel transition and percolation is discussed.

  19. BioArtificial polymers (United States)

    Szałata, Kamila; Gumi, Tania


    Nowadays, the polymer science has impact in practically all life areas. Countless benefits coming from the usage of materials with high mechanical and chemical resistance, variety of functionalities and potentiality of modification drive to the development of new application fields. Novel approaches of combining these synthetic substances with biomolecules lead to obtain multifunctional hybrid conjugates which merge the bioactivity of natural component with outstanding properties of artificial polymer. Over the decades, an immense progress in bioartificial composites domain allowed to reach a high level of knowledge in terms of natural-like systems engineering, leading to diverse strategies of biomolecule immobilization. Together with different available options, including covalent and noncovalent attachment, come various challenges, related mainly with maintaining the biological activity of fixed molecules. Even though the amount of applications that achieve commercial status is still not substantial, and is expanding continuously in the disciplines like "smart materials," biosensors, delivery systems, nanoreactors and many others. A huge number of remarkable developments reported in the literature present a potential of bioartificial conjugates as a fabrics with highly controllable structure and multiple functionalities, serving as a powerful nanotechnological tool. This novel approach brings closer biologists, chemists and engineers, who sharing their effort and complementing the knowledge can revolutionize the field of bioartificial polymer science.

  20. DNA nanotechnology: new adventures for an old warhorse. (United States)

    Zakeri, Bijan; Lu, Timothy K


    As the blueprint of life, the natural exploits of DNA are admirable. However, DNA should not only be viewed within a biological context. It is an elegantly simple yet functionally complex chemical polymer with properties that make it an ideal platform for engineering new nanotechnologies. Rapidly advancing synthesis and sequencing technologies are enabling novel unnatural applications for DNA beyond the realm of genetics. Here we explore the chemical biology of DNA nanotechnology for emerging applications in communication and digital data storage. Early studies of DNA as an alternative to magnetic and optical storage mediums have not only been promising, but have demonstrated the potential of DNA to revolutionize the way we interact with digital data in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A mathematical model and numerical method for thermoelectric DNA sequencing (United States)

    Shi, Liwei; Guilbeau, Eric J.; Nestorova, Gergana; Dai, Weizhong


    Single nucleotide polymorphisms (SNPs) are single base pair variations within the genome that are important indicators of genetic predisposition towards specific diseases. This study explores the feasibility of SNP detection using a thermoelectric sequencing method that measures the heat released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a DNA strand. We propose a three-dimensional mathematical model that governs the DNA sequencing device with a reaction zone that contains DNA template/primer complex immobilized to the surface of the lower channel wall. The model is then solved numerically. Concentrations of reactants and the temperature distribution are obtained. Results indicate that when the nucleoside is complementary to the next base in the DNA template, polymerization occurs lengthening the complementary polymer and releasing thermal energy with a measurable temperature change, implying that the thermoelectric conceptual device for sequencing DNA may be feasible for identifying specific genes in individuals.

  2. Polymer structure database and protein-polymer interactions

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich; Labský, Jiří; Skálová, Tereza; Kolenko, Petr; Dohnálek, Jan; Dušková, Jarmila; Štěpánková, Andrea; Koval, T.

    -, č. 1 (2011), s. 475-480 ISSN 1869-1315. [European Powder Diffraction Conference EPDIC 12 /12./. Darmstadt, 27.08.2010-30.08.2010] R&D Projects: GA ČR GA305/07/1073; GA AV ČR IAA500500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : hydrophilic polymers * crystalline polymers * adhesion of polymers Subject RIV: CD - Macromolecular Chemistry

  3. Sieving polymer synthesis by reversible addition fragmentation chain transfer polymerization. (United States)

    Nai, Yi Heng; Jones, Roderick C; Breadmore, Michael C


    Replaceable sieving polymers are the fundamental component for high resolution nucleic acids separation in CE. The choice of polymer and its physical properties play significant roles in influencing separation performance. Recently, reversible addition fragmentation chain transfer (RAFT) polymerization has been shown to be a versatile polymerization technique capable of yielding well defined polymers previously unattainable by conventional free radical polymerization. In this study, a high molecular weight PDMA at 765 000 gmol-1 with a PDI of 1.55 was successfully synthesized with the use of chain transfer agent - 2-propionic acidyl butyl trithiocarbonate (PABTC) in a multi-step sequential RAFT polymerization approach. This study represents the first demonstration of RAFT polymerization for synthesizing polymers with the molecular weight range suitable for high resolution DNA separation in sieving electrophoresis. Adjustment of pH in the reaction was found to be crucial for the successful RAFT polymerization of high molecular weight polymer as the buffered condition minimizes the effect of hydrolysis and aminolysis commonly associated with trithiocarbonate chain transfer agents. The separation efficiency of PABTC-PDMA was found to have marginally superior separation performance compared to a commercial PDMA formulation, POP™-CAP, of similar molecular weight range.

  4. Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides. (United States)

    Chen, Mingsheng; Hu, Mei; Wang, Dali; Wang, Guojian; Zhu, Xinyuan; Yan, Deyue; Sun, Jian


    Multifunctional gene vectors with high transfection, low cytotoxicity, and good antitumor and antibacterial activities were prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N,N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers were synthesized, and their physical and chemical properties were analyzed by FTIR, (1)H NMR, (13)C NMR, GPC, ζ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations was low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary, and tertiary amines in the polymers, hyperbranched glycoconjugated polymers showed high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibited the growth of cancer cells and bacteria efficiently. Combining the gene transfection, antitumor, and antibacterial abilities together, the multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections.

  5. Electric light scattering from single-stranded DNA in linear polyacrylamide solutions. (United States)

    Todorov, R; Starchev, K; Stoylov, S P


    The electric light scattering (ELS) of ssDNA (calf thymus, 10 kbp, 55 micrograms/mL) in denaturing polyacrylamide (PAA) solutions was studied as a function of applied sinusoidal electric field and polymer concentration. Electric fields of strengths up to 300 V/cm and of frequencies between 100 and 5000 Hz were applied. It was found that the ELS effect increases with the field strength and decreases at high frequencies. The dependence of the ELS effect of ssDNA on polymer concentration passes through a maximum at 1% PAA. The relaxation times of decay of the ELS effect increase with increasing polymer concentrations. It was demonstrated that ELS is a useful method for investigation of ssDNA behavior in the course of pulse-field electrophoresis in polymer solutions.

  6. Polymers for IUdR radiosensitization of experimental glioblastoma

    International Nuclear Information System (INIS)

    Williams, Jeffery A.; Xuan Yuan; Brem, Henry


    R (fluorescein isothiocyanate (FITC) labeled anti-IUdR antibody) and for DNA (propidium iodide). Toxicity: Groups of at ≥ 5 non-tumor bearing mice had i.c. implantation of empty (control) or experimental (50% IUdR) polymers (Day 0) alone or combined with cranial external beam irradiation (5 Gy x 2 on days 7 and 8 vs. 2 Gy BID on days 7-10) given via a calibrated 137-Cs irradiator. For in vivo radiosensitization, groups of ≥ 8 mice had sequential i.c. inoculation (2 x 10 5 cells on day 0), craniectomy and implantation of empty (control) or experimental (50% IUdR) polymers, and irradiation. To explore the effect of the timing and escalation of the radiation dose, the interval from implantation of polymers until radiation were: Expt 1:) 5 days (5 Gy on days 7 and 8 (10 Gy total)) vs. Expt 2:) 4 or 7 days (2 Gy BID x 4 on days 7-10 (16 Gy total)). Survival was recorded. Results: In vitro: The polymer provides controlled release of IUdR. After 4 days the cumulative percentages released were 43.7 ± 0.1, 70.0 ± 0.2, and 90.2 ± 0.2 (p 10 ) was -2.02 ± 0.02 or -3.68 ± 0.11 (p < 0.001), respectively. In vivo: Release: The measured activity (cpm) of i.c. 125-IUdR polymers showed protracted decrease vs. time. The proportions of implanted activity were 0.86 ± 0.08, 0.77 ± 0.10, 0.30 ± 0.03 and 0.07 ± 0.01 measured 23, 43, 120 and 311 hours, respectively, after implantation. IUdR polymers caused high tumor labeling. When measured 4 vs. 8 days after IUdR polymer implantation, the mean percentages (± SEM) of labeled tumor cells 0 (coplanar with polymer), 1 and 2 mm distant were striking: 67 ± 11, 42 ± 4, and 32 ± 9 vs. 54 ± 8, 48 ± 5 and 12 ± 4 (p = NS day 4 vs. 8), respectively. Toxicity: No deaths were recorded 80 days after polymer vs. combined polymer and radiation treatments. Radiosensitization: Expt 1: The median survival (d) was 15 for empty polymers alone vs. 16 (p = NS) or 17 (p = NS) for IUdR polymers alone or no treatment, respectively. Survival after empty vs

  7. Writing on polymer chains. (United States)

    Lutz, Jean-François


    Synthetic polymer materials are currently limited by their inability to store information in their chains, unlike some well-characterized biopolymers. Nucleic acids store and transmit genetic information, and amino acids encode the complex tridimensional structures and functions within proteins. To confer similar properties on synthetic materials, researchers must develop"writing" mechanisms, facile chemical pathways that allow control over the primary structure of synthetic polymer chains. The most obvious way to control the primary structure is to connect monomer units one-by-one in a given order using iterative chemistry. Although such synthesis strategies are commonly used to produce peptides and nucleic acids, they produce limited yields and are much slower than natural polymerization mechanisms. An alternative strategy would be to use multiblock copolymers with blocks that have specified sequences. In this case, however, the basic storage element is not a single molecular unit, but a longer block composed of several repeating units. However, the synthesis of multiblock copolymers is long and tedious. Therefore, researchers will need to develop other strategies for writing information onto polymer chains. In this Account, I describe our recent progress in the development of sequence controlled polymerization methods. Although our research focuses on different strategies, we have emphasized sequence-regulation in chain-growth polymerization processes. Chain-growth polymerizations, particularly radical polymerization, are very convenient methods for synthesizing polymers. However, in most cases, such approaches do not lead to controlled monomer sequences. During the last five years, we have shown that controlled/living chain-growth polymerization mechanisms offer interesting advantages for sequence regulation. In such mechanisms, the chains form gradually over time, and therefore the primary structure can be tuned by using time-controlled monomer additions. For

  8. Synthetic approaches to uniform polymers. (United States)

    Ali, Monzur; Brocchini, Steve


    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  9. Phases of polymer systems in solution studied via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)


    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  10. Depletion-induced instability in protein-DNA mixtures: Influence of protein charge and size

    NARCIS (Netherlands)

    Vries, de R.J.


    While there is abundant experimental and theoretical work on polymer-induced DNA condensation, it is still unclear whether globular proteins can condense linear DNA or not. We develop a simple analytical approximation for the depletion attraction between rodlike segments of semiflexible

  11. The elastic theory of a single DNA molecule

    Indian Academy of Sciences (India)

    Abstract. We study the elastic responses of double- (ds) and single-stranded (ss) DNA at exter- nal force fields. A double-strand-polymer elastic model is constructed and solved by path integral methods and Monte Carlo simulations to understand the entropic elasticity, cooperative extensibil- ity, and supercoiling property of ...

  12. DNA meets synthetic polymers—highly versatile hybrid materials

    NARCIS (Netherlands)

    Alemdaroglu, Fikri E.; Herrmann, Andreas


    The combination of synthetic polymers and DNA has provided biologists, chemists and materials scientists with a fascinating new hybrid material. The challenges in preparing these molecular chimeras were overcome by different synthetic strategies that rely on coupling the nucleic acid moiety and the

  13. Claisen thermally rearranged (CTR) polymers (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker


    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  14. Single conducting polymer nanowire based conductometric sensors (United States)

    Bangar, Mangesh Ashok

    cancer marker protein (Cancer Antigen, CA 125) using covalent immobilization for detection of CA 125 in buffer and human blood plasma. Third approach combined electrochemical deposition of conducting polymer and assembly steps into a single step fabrication & functionalization using e-beam lithographically patterned nano-channels. Using this method array of Ppy nanowires were fabricated. Further during fabrication step, by entrapping recognition molecule (avidin) biofunctionalization was achieved. Subsequently these sensors were used for detection of biotinylated single stranded DNA.

  15. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno


    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  16. Multifunctional Polymer/Inorganic Nanocomposites

    National Research Council Canada - National Science Library

    Manias, E


    ... in multifunctional nanocomposite materials. Understanding the structure/property relations in polymer/clay nanocomposites is of great importance in designing materials with desired sets of properties...

  17. Wear of polymers and composites

    CERN Document Server

    Abdelbary, Ahmed


    In the field of tribology, the wear behaviour of polymers and composite materials is considered a highly non-linear phenomenon. Wear of Polymers and Composites introduces fundamentals of polymers and composites tribology. The book suggests a new approach to explore the effect of applied load and surface defects on the fatigue wear behaviour of polymers, using a new tribometer and thorough experiments. It discusses effects of surface cracks, under different static and cyclic loading parameters on wear, and presents an intelligent algorithm, in the form of a neural network, to map the relations

  18. Phenomenology of polymer solution dynamics

    National Research Council Canada - National Science Library

    Phillies, George D. J


    ... solutions, not dilute solutions or polymer melts. From centrifugation and solvent dynamics to viscosity and diffusion, experimental measurements and their quantitative representations are the core of the discussion...

  19. Biomimetic Polymers with Antimicrobial Activity

    National Research Council Canada - National Science Library

    Tew, Gregory


    .... Our intention was to use this understanding to develop polymers that are more stable and inexpensive to produce than natural proteins, but nevertheless mimic their important biological properties...

  20. Sustainable polymers from renewable resources. (United States)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K


    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  1. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)


    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  2. Polymer Processing and Characterization Laboratory (United States)

    Federal Laboratory Consortium — The purpose is to process and evaluate polymers for use in nonlinear optical, conductive and structural Air Force applications. Primary capabilities are extrusion of...


    DEFF Research Database (Denmark)


    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  4. Fabrication of Defined Polydopamine Nanostructures by DNA Origami-Templated Polymerization. (United States)

    Tokura, Yu; Harvey, Sean; Chen, Chaojian; Wu, Yuzhou; Ng, David Y W; Weil, Tanja


    A versatile, bottom-up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage-mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase-mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as "supramolecular glue" for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami-controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Organizing DNA origami tiles into larger structures using preformed scaffold frames. (United States)

    Zhao, Zhao; Liu, Yan; Yan, Hao


    Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tile units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as "superorigami" or "origami of origami" to scale up DNA origami technology. First, this method uses a collection of bridge strands to prefold a single-stranded DNA scaffold into a loose framework. Subsequently, preformed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures.

  6. Clickable antifouling polymer brushes for polymer pen lithography

    Czech Academy of Sciences Publication Activity Database

    Bog, U.; de los Santos Pereira, Andres; Mueller, S. L.; Havenridge, S.; Parrillo, Viviana; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M.


    Roč. 9, č. 13 (2017), s. 12109-12117 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GJ15-09368Y Institutional support: RVO:61389013 Keywords : antifouling * biofunctional interfaces * polymer brushes Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  7. Enhancement of Polymer Cytocompatibility by Nanostructuring of Polymer Surface

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Kasálková-Slepičková, N.; Bačáková, Lucie; Kolská, Z.; Švorčík, V.


    Roč. 2012, č. 2012 (2012), ID527403 ISSN 1687-4110 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : polymer cytocompatibility * polymer surface * nanotechnology Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.547, year: 2012

  8. Influence of polymer architectures on diffusion in unentangled polymer melts. (United States)

    Chremos, Alexandros; Jeong, Cheol; Douglas, Jack F


    Recent simulations have indicated that the thermodynamic properties and the glassy dynamics of polymer melts are strongly influenced by the average molecular shape, as quantified by the radius of gyration tensor of the polymer molecules, and that the average molecular shape can be tuned by varying the molecular topology (e.g., ring, star, linear chain, etc.). In the present work, we investigate if the molecular shape is similarly a predominant factor in understanding the polymer center of mass diffusion D in the melt, as already established for polymer solutions. We find that all our D data for unentangled polymer melts having a range of topologies can be reasonably described as a power law of the polymer hydrodynamic radius, R h . In particular, this scaling is similar to the scaling of D for a tracer sphere having a radius on the order of the chain radius of gyration, R g . We conclude that the chain topology influences the molecular dynamics in as much as the polymer topology influences the average molecular shape. Experimental evidence seems to suggest that this situation is also true for entangled polymer melts.

  9. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)


    with salicylic acid it has recently been found (Sekhon et al 2003) that the change in conductivity with polymer addition also depends upon the donor numbers of the solvent used. Solvent with high and low donor number show different conductivity behaviour in polymer gel electrolytes. On the basis of different experimental ...

  10. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande


    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  11. HPV DNA test (United States)

    ... HPV testing in women; Cervical cancer - HPV DNA test; Cancer of cervix - HPV DNA test ... The HPV DNA test may be done during a Pap smear . You lie on a table and place your feet in stirrups. The ...

  12. Development of Silicate Polymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob

    an inorganic binder is developed based on fumed silica and potassium hydroxide. The optimal composition of the binder system was determined using compressive strength test. The investigation showed that the strength of the inorganic binder was strongly related to the content of potassium hydroxide...... hydroxide in acid and increase pH to saturation of the metal hydroxide. It is assumed that the syntheses of the inorganic polymer are carried out through polymerisation of oligomers (dimer, trimer) which provide the actual unit structures of the three dimensional macromolecular structure. In this work...

  13. Polymer solidification national program

    International Nuclear Information System (INIS)

    Kalb, P.D.; Colombo, P.


    Brookhaven National Laboratory (BNL) has developed several new and innovative polymer processes for the solidification of low-level radioactive, hazardous and mixed wastes streams. Polyethylene and modified sulfur cement solidification technologies have undergone steady, gradual development at BNL over the past nine years. During this time they have progressed through each of the stages necessary for logical technology maturation: from process conception, parameter optimization, waste form testing, evaluation of long-term durability, economic analysis, and scale-up feasibility. This technology development represents a significant investment which can potentially provide DOE with both short- and long-term savings

  14. Electron transporting polymers for light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Chang; Giles, M.; Holmes, A.B. [Univ. of Cambridge (United Kingdom)] [and others


    New oxadiazole-derived side chain polymers have been prepared by radical induced polymerization of the methacrylate precursors. The synthesis and characterization of the polymers as well as their application in enhancing emission in polymer LEDs will be reported.

  15. Synthesis of DNA (United States)

    Mariella, Jr., Raymond P.


    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  16. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.


    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...... strands from the steric hindrance generated on the bioelectrode upon hybridization. It can be concluded that DNA conformational changes are determinant in the transduction process and that the electrostatic effect is negligible....

  17. Threading DNA Through a Nanometer-Scale Pore: Biophysical and Biotechnological Applications (United States)

    Kasianowicz, John; Henrickson, Sarah; Misakian, Martin; Wang, Qian; Weetall, Howard; Roberston, Baldwin


    With the goal of developing technologies for biomedical applications (e.g. antiviral treatments, targeted genetic therapies, analyte sensing, and ultra-rapid DNA sequencing), we are studying the mechanism by which DNA is transported through a nanometer-scale pore. Individual molecules of single-stranded DNA (ssDNA) can be detected and characterized as they are driven electrophoretically through a single Staphylococcus aureus alpha-hemolysin (alpha-HL) ion channel. We recently demonstrated that the ability of ssDNA to partition into the pore depends on the side to which the polymer is added and on the magnitude of the applied potential. These results are consistent with the alpha-HL channel’s crystal structure and are providing insight into the physics of DNA transport through a nanopore. We are also researching methods for using ion channels as components of analyte sensors. Using the alpha-HL channel and ssDNA as a model system, we demonstrated an analyte sensing technology based on a single nanopore and pore-permeant polymers. Instead of affixing an analyte binding site to the channel, it is covalently attached to a polymer that is initially free in solution. The binding of analyte to the polymer alters the ability of the polymer to thread into or through the pore. This system can simultaneously quantitate multiple analytes in real-time. Finally, we demonstrate that the signal produced by the transport of individual ssDNA molecules through the alpha-HL channel depends on which end of the channel the polymer enters.

  18. Polymer dye lasers

    DEFF Research Database (Denmark)

    Balslev, Søren


    Formålet med dette Ph.D. arbejde har været at udvikle miniaturiserede polymer farvestoflasere, egnet til at blive integreret i mikrochips som også indeholder andre polymerstrukturer – som for eksempel kan findes i ”Laboratorie-på-en-chip” kredsløb. Lasernes funktion skal være at levere lys til...... meget følsomme sensorformål, og at undgå at skulle opliniere eksterne lyskilder til sensorer på polymerchips. En enkelt type gennemsigtig ”resist” (SU-8) er blevet brugt til at udvikle en række laserresonatorer i polymer. ”Resisten” er blevet formgivet via en række lithografiske teknikker: UV lithografi......, elektronstrålelithografi og Röntgenstrålelithografi. Andre polymerer er også blevet formgivet via ”nanoimprint” lithografi for at skabe laserresonatorer. En række lasere, både baseret på et flydende forstærkningsmedium og et faststof forstærkningsrmedium er blevet udviklet. Laserne giver både lys i flere ”modes” og i een...

  19. Computational modelling of polymers (United States)

    Celarier, Edward A.


    Polymeric materials and polymer/graphite composites show a very diverse range of material properties, many of which make them attractive candidates for a variety of high performance engineering applications. Their properties are ultimately determined largely by their chemical structure, and the conditions under which they are processed. It is the aim of computational chemistry to be able to simulate candidate polymers on a computer, and determine what their likely material properties will be. A number of commercially available software packages purport to predict the material properties of samples, given the chemical structures of their constituent molecules. One such system, Cerius, has been in use at LaRC. It is comprised of a number of modules, each of which performs a different kind of calculation on a molecule in the programs workspace. Particularly, interest is in evaluating the suitability of this program to aid in the study of microcrystalline polymeric materials. One of the first model systems examined was benzophenone. The results of this investigation are discussed.

  20. Supramolecular networks of telechelic polymers

    NARCIS (Netherlands)

    Bohdan, M.A.


    This thesis focuses on the fundamental understanding of phenomena associated with the gelation of end-functionalized polymers and the dynamic processes occurring inside of the gel network. To address particular questions we use two types of telechelic polymers, in which the assembly occurs due to

  1. Photoluminescence quenching of semiconducting polymer ...

    Indian Academy of Sciences (India)

    ing of decay time regarding polymer nanoparticles in presence of Au nanoparticles suggest the nonradiative energy transfer process. The values of energy transfer are 6·7%, 49·5% and 53·38% from PVK polymer nanoparticles to. 3 nm, 14 nm and 18 nm Au nanoparticles, respectively. Using FRET and SET equations we ...

  2. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    Intrinsic curvature of biopolymers is emerging as an essential feature in various biological phenomena. Examples of polymers with intrinsic curvature are microtubule in eukaryotic cells or FtsZ filaments in prokaryotic cells. We consider the general model for polymers with intrinsic curvature. We aim to study both equilibrium ...

  3. Hydrophilic polymers for drug delivery

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, Karel; Šubr, Vladimír; Pechar, Michal; Strohalm, Jiří; Jelínková, Markéta; Říhová, Blanka


    Roč. 152, - (2000), s. 151-162 ISSN 1022-1360. [European Polymer Federation Symposium on Polymeric Materials: Polymers Friendly for the Environment /7./. Szczecin, 20.09.1998-24.09.1998] R&D Projects: GA ČR GV307/96/K226 Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.406, year: 2000

  4. Statistical properties of curved polymer

    Indian Academy of Sciences (India)

    Abstract. Intrinsic curvature of biopolymers is emerging as an essential feature in vari- ous biological phenomena. Examples of polymers with intrinsic curvature are microtubule in eukaryotic cells or FtsZ filaments in prokaryotic cells. We consider the general model for polymers with intrinsic curvature. We aim to study both ...

  5. Radiation synthesis of polymer polyol

    International Nuclear Information System (INIS)

    Guo Jianmei; Zeng Xinmiao; Zhou Chengfei; Cao Wei; Zhai Tong; Wu Dezhen


    The polymer polyol was synthesized by γ irradiation. The properties of polymer polyol synthesized with different radiation dose were studied. The experiment result showed the radiation dose hadn't significant influence on the hydroxyl value of polymer polyol. The sample with different solid content had different hydroxyl value. When the radiation dose is between 1 to 12 kGy, the viscosity and hydroxyl value of polymer polyol were increased with the increment of radiation dose. When radiation dose is between 1 to 12 kGy, with the increment of radiation dose, viscosity of polymer polyol was rapidly increased, and the content solid of sample has few change. When radiation dose is higher than 20 kGy, the viscosity and hydroxyl value of polymer polyol have gradually increase with the increment of radiation dose. The size of polymer particles is 0.1-0.6 μm. The value of 150 mesh filter was 100%. The polymer polyol may be used as PU foam and elastomer. (authors)


    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan


    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  7. Natural fibres-based polymers

    Indian Academy of Sciences (India)

    Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites. Vijay Kumar Thakur A S ... Keeping in view the various advantages of natural fibres, in current series of green composites a study on natural fibre reinforced polymer composites has been made. This paper presents the ...

  8. Photo-Healable Metallosupramolecular Polymers (United States)


    Ohio Invited Lecture: Structurally Dynamic Polymers as a Route to Stimuli-Responsive Materials Apr. 2013 ACS PMSE /Chinese Chemical Society meeting...Mark Burnworth, Liming Tang, Stuart J. Rowan, Christoph Weder. Reinforcement of Self- Healing Polymer Films with Cellulose Nanowhiskers, ACS PMSE

  9. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.


    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  10. Understanding Polymer-Cell Attachment. (United States)

    Venturato, Andrea; MacFarlane, Gillian; Geng, Jin; Bradley, Mark


    The development of polymeric materials with cell adhesion abilities requires an understanding of cell-surface interactions which vary with cell type. To investigate the correlation between cell attachment and the nature of the polymer, a series of random and block copolymers composed of 2-(dimethylamino)ethyl acrylate and ethyl acrylate are synthesized through single electron transfer living radical polymerization. The polymers are synthesized with highly defined and controlled monomer compositions and exhibited narrow polydispersity indices. These polymers are examined for their performance in the attachment and growth of HeLa and HEK cells, with attachment successfully modeled on monomer composition and polymer chain length, with both cell lines found to preferentially attach to moderately hydrophobic functional materials. The understanding of the biological-material interactions assessed in this study will underpin further investigations of engineered polymer scaffolds with predictable cell binding performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Accelerated Characterization of Polymer Properties

    Energy Technology Data Exchange (ETDEWEB)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo


    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  12. Ion beam modification of polymers

    International Nuclear Information System (INIS)

    Sofield, C.J.; Sugden, S.; Ing, J.; Bridwell, L.B.; Wang, Y.Q.


    The implantation of polymers has received considerable attention in recent years, primarily to examine doping of conducting polymers and to increase the surface conductivity (by many orders of magnitude) of highly insulating polymers. The interest in these studies was partly motivated by possible applications to microelectronic device fabrication. More recently it has been observed that ion implantation can under some conditions lead to the formation of a hard (e.g. as hard as steel, ca. 3 MPa) and conducting surface layer. This paper will review the ion beam modification of polymers resulting from ion implantation with reference to fundamental ion-solid interactions. This leads us to examine whether or not implantation of polymers is a contradiction in terms. (Author)

  13. Nanorheology of Entangled Polymer Melts (United States)

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael


    We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function GGSE(t ) from the mean square displacement of NPs. GGSE(t ) for different NP diameters d are compared with the stress relaxation function G (t ) of a pure polymer melt. The deviation of GGSE(t ) from G (t ) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in GGSE(t ) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G (t ) for a pure melt with increasing d . For ring polymers, as d increases towards the spanning size R of ring polymers, GGSE(t ) approaches G (t ) of the ring melt with no entanglement plateau.

  14. Polymer properties of polythymine as revealed by translational diffusion. (United States)

    Doose, Sören; Barsch, Hannes; Sauer, Markus


    Biopolymers, such as single-stranded DNA (ssDNA), are often described as semiflexible polymers or wormlike chains. We investigated the length dependence of diffusional properties of homogeneous ssDNA (polythymine) with up to 100 nucleotides using fluorescence correlation spectroscopy. We found that the hydrodynamic radius Rh scales according to a power law, with an exponent between 0.5 and 0.7 depending on ionic strength I. With Rh being proportional to the square root of the persistence length Lp, we found that Lp approximately Im, with m=-0.22+/-0.01 for polythymine with 100 residues. For comparison, we performed molecular dynamics (MD) simulations with a force field that accounts for short-range interactions in vacuum, and determined the characteristic polymer properties end-to-end distance R, radius of gyration S, and persistence length Lp of various labeled and nonlabeled polythymine derivatives. We found excellent agreement for the length dependence of simulated S and experimental Rh measured at 100 mM NaCl, revealing that electrostatic interactions are completely shielded in aqueous solution at such ionic strength. MD simulations further showed that polythymine with >approximately 30 residues can be described as a semiflexible polymer with negligible influence of the fluorescent label; and that static flexibility is limited by geometrical and steric constraints as expressed by an intrinsic persistence length of approximately 1.7 nm. These results provide a benchmark for theories and MD simulations describing the influence of electrostatic interactions on polyelectrolyte properties, and thus help to develop a complete and accurate description of ssDNA.

  15. Spatial imaging of proteins bound to nanochannel-linearized DNA (United States)

    Wang, Yan Mei; Tegenfeldt, Jonas; Reisner, Walter; Austin, Robert; Cox, Ted


    One of the main questions in post genomic era is to understand how gene-regulating proteins control gene expression. We use single molecule techniques to image transcription factor fusion-proteins (LacI-GFP) bound to DNA by linearizing the DNA-protein construct molecule in quartz nanochannels. The nanochannels (down to 40nm wide) are fabricated using focused ion beam milling. These asymmetric (off center protein binding) DNA-protein molecules exhibit unusual behaviors upon entering nano-confinement - the longer tail always enters the channel first. Analysis considering free energy variation and charge distributions along the molecule will be presented. Polymer dynamics of DNA-protein complex and DNA in nanochannels will also be discussed.

  16. Polymer Tribology: Current State and Applications

    Directory of Open Access Journals (Sweden)

    N.K. Myshkin


    Full Text Available Polymer tribology is based on the analysis of abrasion, adhesion, and fatigue of polymer materials in a friction contact. The structural features of polymers provide a variety of tribological applications of basic polymers mostly as matrices and fillers of composite materials. Recently polymer nanocomposites are used for making components of various tribosystems. A short review of polymer materials for tribosystems is presented. The main results of studies in friction and wear of polymers are given. Formation of the real area of contact is evaluated when taking account of polymer viscoelasticity and the effects of temperature and load in the contact. Adhesion of polymers and its part in friction transfer is considered. Various aspects of friction and wear tests of polymer materials for estimation of their characteristics, prediction of service life in different operational conditions are discussed. Practical examples of applications of polymer composites and nanocomposites in various branches of industry are given.

  17. EDITORIAL: Electroactive polymer materials (United States)

    Bar-Cohen, Yoseph; Kim, Kwang J.; Ryeol Choi, Hyouk; Madden, John D. W.


    Imitating nature's mechanisms offers enormous potential for the improvement of our lives and the tools we use. This field of the study and imitation of, and inspiration from, nature's methods, designs and processes is known as biomimetics. Artificial muscles, i.e. electroactive polymers (EAPs), are one of the emerging technologies enabling biomimetics. Polymers that can be stimulated to change shape or size have been known for many years. The activation mechanisms of such polymers include electrical, chemical, pneumatic, optical and magnetic. Electrical excitation is one of the most attractive stimulators able to produce elastic deformation in polymers. The convenience and practicality of electrical stimulation and the continual improvement in capabilities make EAP materials some of the most attractive among activatable polymers (Bar-Cohen Y (ed) 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges 2nd edn, vol PM136 (Bellingham, WA: SPIE Press) pp 1-765). As polymers, EAP materials offer many appealing characteristics that include low weight, fracture tolerance and pliability. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored to suit a broad range of requirements. These capabilities and the significant change of shape or size under electrical stimulation while being able to endure many cycles of actuation are inspiring many potential possibilities for EAP materials among engineers and scientists in many different disciplines. Practitioners in biomimetics are particularly excited about these materials since they can be used to mimic the movements of animals and insects. Potentially, mechanisms actuated by EAPs will enable engineers to create devices previously imaginable only in science fiction. For many years EAP materials received relatively little attention due to their poor actuation capability and the small number of available materials. In the last fifteen

  18. Polymers – A New Open Access Scientific Journal on Polymer Science

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin


    Full Text Available Polymers is a new interdisciplinary, Open Access scientific journal on polymer science, published by Molecular Diversity Preservation International (MDPI. This journal welcomes manuscript submissions on polymer chemistry, macromolecular chemistry, polymer physics, polymer characterization and all related topics. Both synthetic polymers and natural polymers, including biopolymers, are considered. Manuscripts will be thoroughly peer-reviewed in a timely fashion, and papers will be published, if accepted, within 6 to 8 weeks after submission. [...


    Energy Technology Data Exchange (ETDEWEB)

    KALB, P.


    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  20. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. (United States)

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta


    coordinates [(n,m) indices]. The polymer wrapping strategy enables the generation of SWNT dispersions containing exclusively semiconducting nanotubes. Toward the applications in electronic devices, until now most applied approach is a direct processing of such SWNT dispersions into the active layer of network-type thin film field effect transistors. However, to achieve promising transistor performance (high mobility and on-off ratio) careful removal of the wrapping polymer chains seems crucial, for example, by washing or ultracentrifugation. More defined positioning of the SWNTs can be accomplished in directed self-assembly procedures. One possible strategy uses diblock copolymers containing a conjugated polymer block as dispersing moiety and a second block for directed self-assembly, for example, a DNA block for specific interaction with complementary DNA strands. Another strategy utilizes reactive side chains for controlled anchoring onto patterned surfaces (e.g., by interaction of thiol-terminated alkyl side chains with gold surfaces). A further promising application of purified SWNT dispersions is the field of organic (all-carbon) or hybrid solar cell devices.

  1. Ligation-based mutation detection and RCA in surface un-modified OSTE+ polymer microfluidic chambers

    DEFF Research Database (Denmark)

    Saharil, Farizah; Ahlford, Annika; Kuhnemund, Malte


    For the first time, we demonstrate DNA mutation detection in surface un-modified polymeric microfluidic chambers without suffering from bubble trapping or bubble formation. Microfluidic devices were manufactured in off-stoichiometry thiol-ene epoxy (OSTE+) polymer using an uncomplicated and rapid...... during bio-operation at elevated temperatures. In contrast, PMMA, PDMS and COP microfluidic devices required specific surface treatment....

  2. Optimal target search on a fast-folding polymer chain with volume exchange

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Ambjörnsson, T.; Metzler, R.


    We study the search process of a target on a rapidly folding polymer ("DNA") by an ensemble of particles ("proteins"), whose search combines 1D diffusion along the chain, Lévy type diffusion mediated by chain looping, and volume exchange. A rich behavior of the search process is obtained...

  3. [The kinetic and functional characteristics of DNA-dependent DNA-polymerases in Acholeplasma laidlawii PG-8]. (United States)

    Bezuglyĭ, S V; Skripal', I G; Babichev, V V


    The kinetic and functional characteristics of I and II forms of DNA-dependent DNA-polymerases of Acholeplasma laidlawii PG-8 have been studied. It is stated that I form of DNA polymerase possesses 5'-3'-exonuclease activity and is a typical replicase; II form of DNA-polymerase possesses both 5'-3'-polymerase and 3'-5'-exonuclease activity and is, evidently, a reparase. Both forms of enzyme give preference to poly(U)- and poly(A)-matrices having extremely high activity on these polymers. The enzymatic reactions realized by both forms of DNA-polymerases are described by the first-order equation. The calculated Michaelis-Menten constants equaled 180 and 250 microM for I and II forms of polymerases, respectively. It indicates that affinity to substrate in II form of polymerase is one-third higher than in I form of enzyme.

  4. Monomer dynamics in single- and double-stranded DNA coils (United States)

    Tothova, J.; Brutovsky, B.; Lisy, V.


    In our paper (Tothova et al., Czech. J. Phys. 55, 221 (2005)), the first observation of the kinetics of individual polymer monomers using the fluorescence correlation technique (R. Shusterman et al., Phys. Rev. Lett. 92, 048303 (2004)) has been interpreted within the bead-spring theory. Optimizing the joint Rouse-Zimm model to the experimental data, the phenomenological parameters for the statistical-mechanical description of the universal behavior of double- and single-stranded DNA and the dominant types of their dynamics have been determined. Recently, these data have been corrected (R. Shusterman et al., Phys. Rev. Lett. 98, 029901 (2007)). In the present work, the fits of the theory to the new data are given. The main conclusions of our preceding paper remain unchanged but some of the polymer parameters have changed. The new data allow a significantly better agreement with the theory than the previous ones. Our calculations confirm that dsDNA follows mainly the classical Zimm-type kinetics rather than the Rouse one as it was proposed by Shusterman et al. Single-stranded DNA also behaves predominantly as the Zimm polymer. To support these conclusions, we analyze the draining effects on the monomer dynamics and the applicability of simple “universal” laws, according to which the monomer mean square displacement scales with the time as t1/2 and t2/3 for the Rouse and Zimm polymers, respectively.

  5. Self-healing polymers (United States)

    Klein, Daniel J. (Inventor)


    A three dimensional structure fabricated from a self-healing polymeric material, comprising poly(ester amides) obtained from ethylene glycol, azelaic acid and 1,1-aminoundecanoic acid, wherein polymeric material has a melt index above 2.5 g/10 min. as determined by ASTM D1238 at C. and 2.16kg, impact resistance and ductility sufficient to resist cracking and brittle fracture upon impact by a 9 mm bullet fired at a temperature of about C. at subsonic speed in a range from about 800 feet/sec to about 1000 feet/sec. It has been determined that the important factors necessary for self-healing behavior of polymers include sufficient impact strength, control of the degree of crystallinity, low melting point and the ability to instantly melt at impacted area.

  6. Protein Polymers and Amyloids

    DEFF Research Database (Denmark)

    Risør, Michael Wulff


    Several human disorders are caused by a common general disease mechanism arising from abnormal folding and aggregation of the underlying protein. These include the prevalent dementias like Alzheimer’s and Parkinson’s, where accumulation of protein fibrillar structures, known as amyloid fibrils...... that inhibits its target protease through a large conformational change but mutations compromise this function and cause premature structural collapse into hyperstable polymers. Understanding the conformational disorders at a molecular level is not only important for our general knowledge on protein folding......, underlining the importance of understanding this relationship. The monomeric C-36 peptide was investigated by liquid-state NMR spectroscopy and found to be intrinsically disordered with minor propensities towards β-sheet structure. The plasticity of such a peptide makes it suitable for a whole range...

  7. Biomedical Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    SHEN Xue-lin


    Full Text Available Shape memory polymers(SMPs are a class of functional "smart" materials that have shown bright prospects in the area of biomedical applications. The novel smart materials with multifunction of biodegradability and biocompatibility can be designed based on their general principle, composition and structure. In this review, the latest process of three typical biodegradable SMPs(poly(lactide acide, poly(ε-caprolactone, polyurethane was summarized. These three SMPs were classified in different structures and discussed, and shape-memory mechanism, recovery rate and fixed rate, response speed was analysed in detail, also, some biomedical applications were presented. Finally, the future development and applications of SMPs are prospected: two-way SMPs and body temperature induced SMPs will be the focus attension by researchers.

  8. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park


    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  9. Electrochromic in conjugated polymers

    International Nuclear Information System (INIS)

    Picado Valenzuela, Alfredo


    This revision considered object the description of one of the materials with the greatest potential in the field of electrochromic (mainly in the visible region): the conjugated polymers (CP), area of enormous potential both now and in a short time ahead. The CP are insulating materials and organic semiconductors in a state not doped. They can be doped positively or negatively being observed a significant increase in the conductivity and being generated a color change in these materials. The understanding of how optical properties vary based on the chemical structure of the polymer or its mixtures and more precisely of the alternatives that can be entered into the conjugated system or π system to obtain a material that besides to be flexible, environmentally stable, presents the colored states. The revision was centred chiefly in the polypyrrole (Ppy), the polythiophene (PTh) and their derivatives such as poly (3.4-ethylenedioxythiophene) (PEDOT). The advantage of using monomers with variable structure, to adjust the composition of the copolymer, or to blend with the PC, allows to obtain a variety of colored states that can be modulated through the visible spectrum and even with applications to wavelengths outside of this region. Because the PC presented at least two different colored states can be varied continuously as a function of the voltage applied. In some cases, they may submit multicoloured statements, which offers a range of possibilities for their application in flexible electronic devices type screens and windows. Applications include smart windows, camouflage clothing and data screens. This type of material is emerging as one of the substitutes of the traditional inorganic semiconductor, with the advantage of its low cost, high flexibility and the possibility to generate multiple colors through the handling of the monomers in the structure and control of energy of his band gap. (author) [es

  10. More Than Just a Polymer (United States)


    Triton atomic Oxygen Resistant polymers TOR(TM), were developed by Chelmsford, Massachusetts-based Triton Systems, Inc., through a Small Business Innovation Research (SBIR) contract from NASA's Langley Research Center. The new family of polymers comes from a Langley-developed polymer technology, which marks a new class of aerospace materials that resist the extreme effects of low Earth orbit (LEO). When applied to spacecraft surfaces, TOR polymers protect against erosion caused by the atomic oxygen and radiation present in space. Other polymers, such as Teflon(R) and Kapton(R), are subject to degradation from atomic oxygen and ultraviolet radiation, but TOR polymers use atomic oxygen to their advantage. A long-lasting protective barrier means major savings in the cost of spacecraft maintenance and the time spent performing repairs. While the obvious application of this material lies with the aerospace industry, an underlying benefit is found in the field of electronics. TOR polymers can be made electrically conductive, and then utilized in the creation of sensors that react to the presence of chemical and biological agents by exhibiting a detectable change in electrical conductivity. These sensors have applications in the defense, medical, and industrial sectors.

  11. Monitoring of polymer melt processing

    International Nuclear Information System (INIS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk


    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  12. Facile preparation of a DNA sensor for rapid herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)


    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  13. Facile preparation of a DNA sensor for rapid herpes virus detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Tuan, Mai Anh; Huy, Tran Quang; Le, Anh-Tuan; Hieu, Nguyen Van


    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  14. Enzyme-mimicking polymer brush-functionalized surface for combating biomaterial-associated infections (United States)

    Jiang, Rujian; Xin, Zhirong; Xu, Shiai; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Yan, Shunjie; Luan, Shifang; Yin, Jinghua; Khan, Ather Farooq; Li, Yonggang


    Biomaterial-associated infections critically compromise the functionality and performance of the medical devices, and pose a serious threat to human healthcare. Recently, natural DNase enzyme has been recognized as a potent material to prevent bacterial adhesion and biofilm formation. However, the vulnerability of DNase dramatically limits its long-term performance in antibacterial applications. In this work, DNase-mimicking polymer brushes were constructed to mimic the DNA-cleavage activity as well as the macromolecular scaffold of the natural DNase. The bacteria repellent efficacy of DNase-mimicking polymer brush-functionalized surface was comparable to that of the DNase-functionalized surface. More importantly, due to their inherent stability, DNase-mimicking polymer brushes presented the much better performance in inhibiting bacterial biofilm development for prolonged periods of time, as compared to the natural DNase. The as-developed DNase-mimicking polymer brush-functionalized surface presents a promising approach to combat biomaterial-associated infections.

  15. Mechanical Properties of Polymer Concrete

    Directory of Open Access Journals (Sweden)

    Raman Bedi


    Full Text Available Polymer concrete was introduced in the late 1950s and became well known in the 1970s for its use in repair, thin overlays and floors, and precast components. Because of its properties like high compressive strength, fast curing, high specific strength, and resistance to chemical attacks polymer concrete has found application in very specialized domains. Simultaneously these materials have been used in machine construction also where the vibration damping property of polymer concrete has been exploited. This review deals with the efforts of various researchers in selection of ingredients, processing parameters, curing conditions, and their effects on the mechanical properties of the resulting material.

  16. Direct Photopatterning of Electrochromic Polymers

    DEFF Research Database (Denmark)

    Jensen, Jacob; Dyer, Aubrey L.; Shen, D. Eric


    . Electrochemical, spectroelectrochemical, and colorimetric analyses of the crosslinked polymer films are performed to establish that they retain the same electrochromic qualities as the parent polymers with no detriment to the observed properties. To demonstrate applicability for multi‐film processing...... show excellent film forming abilities, with thin films prepared using both spray‐casting and spin‐coating. These polymers are demonstrated to crosslink upon UV irradiation at 350 nm, in the presence of an appropriate photoinitiator, to render the films insoluble to common organic solvents...

  17. Multilayer Electroactive Polymer Composite Material (United States)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)


    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  18. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou


    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  19. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole


    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  20. Physical properties of polymers handbook

    CERN Document Server


    This book offers concise information on the properties of polymeric materials, particularly those most relevant to physical chemistry and chemical physics. Extensive updates and revisions to each chapter include eleven new chapters on novel polymeric structures, reinforcing phases in polymers, and experiments on single polymer chains. The study of complex materials is highly interdisciplinary, and new findings are scattered among a large selection of scientific and engineering journals. This book brings together data from experts in the different disciplines contributing to the rapidly growing area of polymers and complex materials.